WO2014128908A1 - Propeller fan and air conditioner equipped with same - Google Patents

Propeller fan and air conditioner equipped with same Download PDF

Info

Publication number
WO2014128908A1
WO2014128908A1 PCT/JP2013/054451 JP2013054451W WO2014128908A1 WO 2014128908 A1 WO2014128908 A1 WO 2014128908A1 JP 2013054451 W JP2013054451 W JP 2013054451W WO 2014128908 A1 WO2014128908 A1 WO 2014128908A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller fan
blade
curvature
edge portion
rotation
Prior art date
Application number
PCT/JP2013/054451
Other languages
French (fr)
Japanese (ja)
Inventor
岩瀬 拓
岸谷 哲志
篤彦 深澤
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to PCT/JP2013/054451 priority Critical patent/WO2014128908A1/en
Priority to EP13875684.6A priority patent/EP2960525B1/en
Priority to CN201380073430.XA priority patent/CN105008723B/en
Priority to JP2015501179A priority patent/JP6215296B2/en
Priority to US14/768,927 priority patent/US20160003487A1/en
Publication of WO2014128908A1 publication Critical patent/WO2014128908A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • F04D29/386Skewed blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0029Axial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/703Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/713Shape curved inflexed

Definitions

  • the present invention relates to a propeller fan and an air conditioner including the same.
  • FIG. 13 shows a plan view of a propeller of a conventional propeller fan.
  • FIG. 13 is a view of the propeller viewed from the discharge side.
  • the propeller is composed of a plurality of wings provided around the hub.
  • the wing In order to reduce noise, the wing often adopts a shape that advances the wing in the rotational direction (forward wing).
  • the forward wing has the effect of reducing the tip vortex flowing out from the tip, and has the effect of reducing noise.
  • Patent Document 1 Japanese Patent Publication No. 2-2000 (Patent Document 1) is available as background technology in this technical field.
  • Patent Document 1 it is possible to increase the air volume, increase the static pressure, and reduce noise by numerically limiting the shape parameters such as the degree of blade advancement, blade inclination, and blade section warpage in the above-described forward blade. Are listed.
  • Patent Document 2 describes that noise can be reduced by reducing the blade tip vortex by causing the outer peripheral end of the blade to warp toward the suction side. Furthermore, it is described that by defining such a positional relationship between the wing and the bell mouth, it is possible to suppress the interference between the airflow and the bell mouth and reduce noise.
  • Patent Document 3 Japanese Patent No. 4818184
  • the wing tip vortex is moved to the inside of the blade outer periphery by causing the blade to warp to the suction side in a different definition method from Patent Document 2, preventing interference between the blade tip vortex and the bell mouth, It describes that noise reduction and high efficiency can be achieved.
  • the force acting on the flow of the blade is referred to as “blade force”.
  • the blade force acting on the flow of the blade is indicated by an arrow A '.
  • the blade force acts in the inner circumferential direction with respect to the direction of the rotation shaft 6 as indicated by an arrow A '. Due to the blade force in the inner circumferential direction, the flow obtains a momentum in the inner circumferential direction, so that the flow is directed in the inner circumferential direction.
  • FIG. 14 is a schematic diagram of velocity vectors projected on a cross section passing through the rotary shaft 6 in a conventional propeller fan.
  • the flow since the flow is directed in the inner circumferential direction, the flow is not supplied in the vicinity of the bell mouth arranged so as to cover the outer periphery of the propeller fan, although not shown. As a result, the air velocity in the vicinity of the bell mouth decreases. If the flow is not supplied in the vicinity of the bell mouth, the speed at the exit of the wing and the exit of the bell mouth becomes non-uniform, which is a problem in improving the efficiency of the propeller fan. Therefore, an object of the present invention is to improve the efficiency of the propeller fan.
  • the present application includes a plurality of means for solving the above-described problems.
  • the present application includes a rotation shaft serving as a rotation center and a plurality of blades provided around the rotation shaft,
  • each of the plurality of wings includes a rear edge portion formed rearward with respect to the rotation direction and a front edge formed with respect to the rotation direction.
  • the trailing edge portion is formed so as to be bent with a first curvature from the rotation shaft toward the blade tip portion from the suction side to the discharge side, and further through the inflection point, the first curvature. It is formed to be bent with a second curvature smaller than To.
  • the position at which the angle changes in the discharge direction and in the outer circumferential direction is substantially as seen from the position of the inflection point and the rotation surface. It is desirable to match.
  • the trailing edge portion projected onto a plane perpendicular to the rotation axis is formed in a convex shape in the counter-rotation direction from the rotation axis toward the blade tip portion, and further via an inflection point. Thus, it is desirable to form a straight line or a convex shape in the rotational direction.
  • each of the plurality of blades has a blade force at a portion formed by the first curvature in the rear edge portion so as to go in the outer circumferential direction with respect to the rotation axis direction. While acting, it is desirable that a blade force acts on a portion formed by the second curvature of the rear edge portion so as to be directed in an inner circumferential direction with respect to the rotation axis direction. Further, in the above configuration, it is desirable to provide a guard that allows air to pass through the discharge side of the blade and prevents contamination of foreign matters of a predetermined size or more and that is separated from the propeller by a predetermined length or more.
  • a housing having an air inlet and an air outlet, a heat exchanger disposed in the housing, and an upstream or downstream side of the heat exchanger, the air outside the housing is drawn into the suction port
  • an air conditioner provided with a fan that sucks more and blows out from the air outlet, it is desirable to use the propeller fan according to any one of the above-described configurations for the fan.
  • Sectional drawing of the plane which passes along the rotating shaft of the propeller fan of Example 1 The figure explaining the difference in the blade force in the propeller fan of Example 1, and the propeller fan of a prior art example Schematic diagram of the velocity vector projected on the cross section passing through the rotation axis in the propeller fan of Example 1
  • Sectional drawing of the plane which passes along the rotating shaft of the propeller fan of Example 2 Schematic diagram of the velocity vector projected on the cross section passing through the rotation axis in the propeller fan of Example 2
  • Example of comparison of shaft power between propeller fan and conventional propeller fan in Example 2 The figure which shows the combination with the bell mouth of the shape different from FIG. 4 in Example 2.
  • FIG. 6 is a plan view of a propeller in Example 3.
  • FIG. Figure of propeller fan in Example 4 Example of comparison of noise between propeller fan in embodiment 4 and conventional propeller fan Sectional drawing of the air conditioner in Example 5
  • Top view of conventional propeller fan propeller Schematic diagram of velocity vector projected on a cross section passing through the rotation axis in a conventional propeller fan
  • FIG. 1 is a cross-sectional view of a plane passing through the rotation axis of the propeller fan according to the first embodiment.
  • 1 denotes a blade
  • 2 denotes a hub
  • 3 denotes a trailing edge
  • 4 denotes a leading edge
  • 5 denotes a blade tip
  • 6 denotes a rotation axis serving as a rotation center
  • X denotes an air flow direction.
  • the trailing edge 3 is formed rearward with respect to the rotation direction of the blade 1
  • the leading edge 4 is formed forward with respect to the rotation direction of the blade 1.
  • the blade tip 5 is formed from the circumferential tip of the trailing edge 3 to the circumferential tip of the leading edge 4.
  • the rear edge 3 shows a rotational projection onto a plane passing through the rotation axis 6.
  • the trailing edge 3 is formed from the rotating shaft 6 toward the blade tip 5 so as to bend from the suction side to the discharge side with the first curvature ⁇ . Further, it is formed so as to bend with a second curvature ⁇ smaller than the first curvature ⁇ via the inflection point 7.
  • FIG. 2 is a diagram for explaining the difference in blade force between the propeller fan of the first embodiment and the propeller fan of the conventional example.
  • FIG. 2 is a view of the propeller fan as viewed from an oblique side.
  • A shows the blade force which the part 3b of the 2nd curvature (beta) in the trailing edge part 3 of the propeller fan of Example 1 acts.
  • a ' represents the blade force acting on the trailing edge 3b' on the blade tip 5 'side of the propeller fan of the conventional example.
  • Y indicates the direction of rotation of the wing.
  • the blade force A acts toward the outer circumferential direction with respect to the direction of the rotating shaft 6. For this reason, the flow in the vicinity of the rear edge 3b partially obtains a momentum that goes in the outer circumferential direction with respect to the direction of the rotation shaft 6.
  • the blade force A ′ of the conventional propeller fan acts in the inner circumferential direction with respect to the direction of the rotating shaft 6. Therefore, the flow between the blades obtains a momentum that goes in the inner circumferential direction with respect to the direction of the rotating shaft 6.
  • FIG. 14 shows a schematic diagram of a velocity vector projected on a cross section passing through the rotation axis of a conventional propeller fan. Due to the blade force A 'directed in the inner circumferential direction with respect to the direction of the rotating shaft 6 in FIG. 2, the flow T in FIG. 14 is directed in the inner circumferential direction in order to obtain a momentum directed in the inner circumferential direction. Accordingly, although not shown, no flow is supplied to the vicinity of the bell mouth arranged so as to cover the outer peripheral direction of the propeller fan, and the speed near the bell mouth is reduced. The fact that no flow is supplied in the vicinity of the bellmouth means that the flow U is stagnant. Then, the flow U and the flow T in the vicinity of the bell mouth become non-uniform in speed on the exit side of the blade, which may cause a reduction in efficiency.
  • FIG. 3 shows a schematic diagram of the velocity vector projected on the cross section passing through the rotation axis in the propeller fan of the first embodiment. Due to the action of the blade force A in FIG. 2, the flow in the vicinity of the blade tip 5 is directed toward the outer periphery with respect to the rotating shaft 6 as in the flow S in FIG. 3. That is, according to the shape of the trailing edge portion 3 of the present embodiment, a portion of the trailing edge portion 3 formed with the first curvature ⁇ is directed to the outer peripheral direction with respect to the direction of the rotating shaft 6. While the force A acts, the blade force acts on the portion formed by the second curvature ⁇ in the rear edge portion 3 so as to be directed in the inner circumferential direction with respect to the direction of the rotation shaft 6. .
  • FIG. 4 is a cross-sectional view of a plane passing through the rotation axis of the propeller fan according to the second embodiment.
  • 8 indicates a bell mouth
  • 9 indicates a cylindrical portion
  • 10 indicates an end portion of the bell mouth.
  • the cylindrical portion 9 is a part of the bell mouth 8 and covers the wing 1 through a predetermined clearance.
  • the end portion 10 is an end portion on the discharge side of the cylindrical portion 9, and in FIG. 1, the end portion 10 is located at a position where the angle changes at a right angle to the outer circumferential direction, and the end portion 10 is arranged to coincide with the inflection point 7 when viewed from the rotation surface. .
  • the position of the end portion 10 in the discharge direction and the angle changing in the outer peripheral direction is made to substantially coincide with the position of the inflection point 7 when viewed from the rotation surface. ing.
  • the position where the angle changes in the outer circumferential direction at the end portion 10 in the discharge direction is the portion where the outward wing force A acts and the outward wing force. It substantially coincides with the position that becomes the boundary of the portion where A does not act as seen from the surface of rotation.
  • FIG. 5 shows a schematic diagram of the velocity vector projected on the cross section passing through the rotation axis in the propeller fan of the second embodiment. Since the end portion 10 and the inflection point 7 are arranged substantially coincident with each other, the velocity distribution made uniform by the action of the blade force in the direction of arrow A shown in FIG. Is retained without being diffused. Therefore, the operational effects of Example 1 can be obtained more reliably, and the efficiency of the propeller fan can be increased.
  • FIG. 6 shows a comparison result of the shaft power of the propeller fan in Example 2 and the conventional propeller fan.
  • the power consumption of the propeller fan of the second embodiment is 3.3% energy saving, that is, higher efficiency than the conventional propeller fan.
  • FIG. 7 and 8 are diagrams showing a combination with a bell mouth having a shape different from that in FIG. 4 in the second embodiment.
  • the discharge side of the cylindrical portion 9 has an arc shape.
  • the end portion 10a becomes a contact point between the straight line of the cylindrical portion 9 and the circular arc.
  • the bell mouth of FIG. 8 has a conical taper on the discharge side of the cylindrical portion 9.
  • the end portion 10b serves as a contact point between the straight line of the cylindrical portion 9 and the conical taper.
  • the end portions 10a and 10b are arranged so as to coincide with the inflection point 7 when viewed from the surface of rotation.
  • the effects obtained by the present invention can be the same as those of the bell mouse of FIG. 4 in any of the bell mice of FIGS.
  • FIG. 9 is a plan view of the propeller according to the third embodiment.
  • FIG. 9 is a view of the propeller viewed from the discharge side.
  • the trailing edge 3 is projected on a plane perpendicular to the rotation axis.
  • the trailing edge portion 3 is formed in a convex shape in the counter-rotating direction from the hub 2 toward the blade tip portion 5, and is formed in a convex shape in the rotating direction via the inflection point 18.
  • B represents the blade force acting near the rear edge 3h of the hub 2 side
  • C represents the blade force acting near the rear edge 3t on the blade tip 5 side. It is desirable that the inflection point 18 has the same radius as the inflection point 7 described in the first and second embodiments.
  • the wing force C changes its direction in the outer circumferential direction with respect to the direction of the rotating shaft 6 compared to the wing force B. Due to this change in the direction of the blade force, the flow in the vicinity of the trailing edge 3t obtains a momentum in the outer circumferential direction, and the flow in the vicinity of the blade tip 5 becomes in the outer circumferential direction. As a result, the speed near the blade outlet is made uniform. The efficiency is increased because the mixing loss of the wake of the blade is reduced by the uniform speed.
  • the trailing edge 3 t is formed to be convex in the rotational direction, but the curvature of the trailing edge 3 t is larger than the trailing edge 3 h via the inflection point 18. Furthermore, the same effect
  • FIG. 10 is a diagram of the propeller fan in the fourth embodiment.
  • FIG. 10 shows a case where a guard is disposed on the wake side of the blades of the propeller fans of the first to third embodiments.
  • the guard is formed in a cross shape or a net shape so as to allow air to pass through to the discharge side of the blade, and the gap between the cross and the net prevents foreign matters having a predetermined size or more.
  • the speeds near the blade outlets of the propeller fans of Examples 1 to 3 are made uniform as compared with the conventional propeller fan.
  • the noise caused by the flow is proportional to the sixth power of the flow velocity, the noise generated from the guard 11 is dominant when the speed is locally high. Therefore, in the third embodiment in which the speed is made uniform, noise is reduced as compared with a combination with a conventional propeller fan.
  • FIG. 11 shows an example of noise comparison between the propeller fan in the third embodiment and the conventional propeller fan. It has been confirmed that the noise of the propeller fan in Example 3 is reduced by about 1 dB compared to the conventional propeller fan.
  • FIG. 12 is a cross-sectional view of the air conditioner according to the fifth embodiment.
  • This air conditioner is an outdoor unit.
  • the propeller 12 is fixed and supported by a motor 13 and a motor support base 14 and rotates.
  • a bell mouth 8 is disposed on the outer periphery of the propeller 12.
  • a guard 11 is disposed in the downstream area.
  • a heat exchanger 16 is installed upstream of the propeller 12.
  • a compressor 17 is mounted inside the unit 15.
  • the propeller 12 is rotated by a motor 13 so that air is sucked into the heat exchanger 16, cooled or overheated, then pressurized by the propeller 12 and the bell mouth 8, and then discharged from the guard 11. . Since the propeller fan described in any of Examples 1 to 4 is used for the propeller fan and the bell mouth, an air conditioner with low noise and high efficiency can be obtained.
  • the present invention is a technique that can be used in common as long as the air conditioner uses another type, an indoor unit, or a propeller fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

In order to prevent a reduction in speed in the vicinity of a bell mouth and prevent non-uniform speed at the outlet of a blade and the outlet of the bell mouth when a forward-swept blade that reduces the blade-tip vortex is utilized as a noise reduction means, with the blades of this propeller fan, the rear edge part, when rotationally projected on a plane passing through the rotational axis, is formed so as to bend with a first curvature from the rotational axis toward the blade tip part and from the suction side to the discharge side, and is formed so as to bend at an inflection point with a second curvature which is less than the first curvature.

Description

プロペラファン及びこれを備えた空気調和機Propeller fan and air conditioner equipped with the same
 本発明は、プロペラファン及びこれを備えた空気調和機に関する。 The present invention relates to a propeller fan and an air conditioner including the same.
 空気調和機などではプロペラファンが多く適用されている。図13に従来のプロペラファンのプロペラの平面図を示す。図13はプロペラを吐出し側から見た図である。プロペラはハブの周囲に設けられた複数の翼から構成される。翼は騒音低減を狙いとして、翼を回転方向に前進させる形状(前進翼)が採用されることが多い。前進翼には翼端から流出する翼端渦を小さくする作用があり、騒音を低減する効果がある。 プ ロ Many propeller fans are used in air conditioners. FIG. 13 shows a plan view of a propeller of a conventional propeller fan. FIG. 13 is a view of the propeller viewed from the discharge side. The propeller is composed of a plurality of wings provided around the hub. In order to reduce noise, the wing often adopts a shape that advances the wing in the rotational direction (forward wing). The forward wing has the effect of reducing the tip vortex flowing out from the tip, and has the effect of reducing noise.
 本技術分野の背景技術として、特公平2-2000(特許文献1)がある。特許文献1には、上述の前進翼における翼の前進の度合いや翼の傾き、翼断面の反りといった形状パラメータを数値限定することによって、大風量化、高静圧化及び騒音の低減ができると記載されている。 Japanese Patent Publication No. 2-2000 (Patent Document 1) is available as background technology in this technical field. In Patent Document 1, it is possible to increase the air volume, increase the static pressure, and reduce noise by numerically limiting the shape parameters such as the degree of blade advancement, blade inclination, and blade section warpage in the above-described forward blade. Are listed.
 また、特許第3744489号(特許文献2)がある。特許文献2には、翼の外周端部を吸込側に反り返らせることによって、翼端渦を小さくすることで騒音を低減することができると記載されている。さらにそのような翼とベルマウスの位置関係を規定することによって、気流とベルマウスとの干渉を抑制して騒音を低減することができると記載されている。 There is also Japanese Patent No. 3744489 (Patent Document 2). Patent Document 2 describes that noise can be reduced by reducing the blade tip vortex by causing the outer peripheral end of the blade to warp toward the suction side. Furthermore, it is described that by defining such a positional relationship between the wing and the bell mouth, it is possible to suppress the interference between the airflow and the bell mouth and reduce noise.
 更に、特許第4818184号(特許文献3)がある。特許文献3には、特許文献2とは異なる定義方法で翼を吸込側に反り返らせることによって、翼端渦を翼外周部の内側に移動させ、翼端渦とベルマウスの干渉を防ぎ、騒音低減と高効率化ができると記載されている。 Furthermore, there is Japanese Patent No. 4818184 (Patent Document 3). In Patent Document 3, the wing tip vortex is moved to the inside of the blade outer periphery by causing the blade to warp to the suction side in a different definition method from Patent Document 2, preventing interference between the blade tip vortex and the bell mouth, It describes that noise reduction and high efficiency can be achieved.
特公平2-2000JP2000-2000 特許第3744489号Japanese Patent No. 3744489 特許第4818184号Japanese Patent No. 4818184
 実施例では翼が流れに作用する力を「翼力」と称することとする。図13には翼が流れに作用する翼力を矢印A’で示す。従来のプロペラファンのプロペラでは、翼が回転方向に前進した形状であるため、翼力は矢印A’のように回転軸6の方向に対して内周方向に向かうように作用する。この内周方向向きの翼力により、流れは内周方向向きの運動量を得るため流れは内周方向向きとなる。 In the embodiment, the force acting on the flow of the blade is referred to as “blade force”. In FIG. 13, the blade force acting on the flow of the blade is indicated by an arrow A '. In the propeller of a conventional propeller fan, since the blade has a shape advanced in the rotation direction, the blade force acts in the inner circumferential direction with respect to the direction of the rotation shaft 6 as indicated by an arrow A '. Due to the blade force in the inner circumferential direction, the flow obtains a momentum in the inner circumferential direction, so that the flow is directed in the inner circumferential direction.
 図14に従来のプロペラファンにおける回転軸6を通る断面に投影した速度ベクトルの模式図を示す。図14で示すように流れは内周方向向きとなるため、図示していないがプロペラファンの外周を覆うように配置されるベルマウスの近傍には流れが供給されないこととなる。すると、ベルマウス近傍の空気速度が低下する。ベルマウス近傍に流れが供給されないと、翼の出口やベルマウスの出口における速度が不均一となるため、プロペラファンの高効率化においては課題であった。 
 そこで本発明はプロペラファンの高効率化を図ることを目的とする。
FIG. 14 is a schematic diagram of velocity vectors projected on a cross section passing through the rotary shaft 6 in a conventional propeller fan. As shown in FIG. 14, since the flow is directed in the inner circumferential direction, the flow is not supplied in the vicinity of the bell mouth arranged so as to cover the outer periphery of the propeller fan, although not shown. As a result, the air velocity in the vicinity of the bell mouth decreases. If the flow is not supplied in the vicinity of the bell mouth, the speed at the exit of the wing and the exit of the bell mouth becomes non-uniform, which is a problem in improving the efficiency of the propeller fan.
Therefore, an object of the present invention is to improve the efficiency of the propeller fan.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。 
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、回転中心となる回転軸と、該回転軸の周囲に設けられた複数の翼と、を備え、前記複数の翼の外周方向外側にベルマウスが配置されるプロペラファンにおいて、前記複数の翼のそれぞれは、回転方向に対して後方に形成される後縁部と、回転方向に対して前方に形成される前縁部と、該後縁部の外周方向の先端部から前縁部の外周方向の先端部に向かって形成される翼端部と、から形成され、前記回転軸を通る平面に回転投影した前記後縁部は、前記回転軸から前記翼端部に向かって、吸込み側から吐出し側に、第1の曲率により曲がるように形成され、さらに、変曲点を介して、前記第1の曲率よりも小さい第2の曲率により曲がるように形成されることを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present application includes a plurality of means for solving the above-described problems. For example, the present application includes a rotation shaft serving as a rotation center and a plurality of blades provided around the rotation shaft, In the propeller fan in which a bell mouth is disposed on the outer circumferential direction of the wing, each of the plurality of wings includes a rear edge portion formed rearward with respect to the rotation direction and a front edge formed with respect to the rotation direction. Formed from an edge and a blade tip formed from the tip in the outer peripheral direction of the rear edge toward the tip in the outer peripheral direction of the front edge, and rotated and projected onto a plane passing through the rotation axis The trailing edge portion is formed so as to be bent with a first curvature from the rotation shaft toward the blade tip portion from the suction side to the discharge side, and further through the inflection point, the first curvature. It is formed to be bent with a second curvature smaller than To.
 また、上記構成において、前記ベルマウスの前記翼に最も近い端面において、吐出し方向の端部で、かつ、外周方向に角度が変わる位置が、前記変曲点の位置と回転面上からみてほぼ一致することが望ましい。 
 また、上記構成において、前記回転軸に垂直な平面に投影した前記後縁部は、前記回転軸から前記翼端部に向かって、反回転方向に凸状に形成され、さらに変曲点を介して、直線状もしくは回転方向に凸状に形成されることが望ましい。
Further, in the above configuration, at the end face closest to the wing of the bell mouth, the position at which the angle changes in the discharge direction and in the outer circumferential direction is substantially as seen from the position of the inflection point and the rotation surface. It is desirable to match.
In the above configuration, the trailing edge portion projected onto a plane perpendicular to the rotation axis is formed in a convex shape in the counter-rotation direction from the rotation axis toward the blade tip portion, and further via an inflection point. Thus, it is desirable to form a straight line or a convex shape in the rotational direction.
 また、上記構成において、前記複数の翼のそれぞれは、前記後縁部のうちの前記第1の曲率で形成される部位には、前記回転軸方向に対して外周方向に向かうように翼力が作用するとともに、前記後縁部のうちの前記第2の曲率で形成される部位には、前記回転軸方向に対して内周方向に向かうように翼力が作用することが望ましい。 
 また、上記構成において、前記翼の吐出し側に空気を通すとともに所定の大きさ以上の異物混入を防止し、プロペラとの距離を所定の長さ以上に離れたガードを備えることが望ましい。 
 さらに、空気の吸込口及び吹出口を有する筐体と、該筐体内に配置された熱交換器と、該熱交換器の上流側または下流側に配置され、筐体外部の空気を前記吸込口より吸い込み、前記吹出口から吹き出すファンと、を備えた空気調和機において、該ファンに、上記した構成のうちの何れかに記載のプロペラファンを用いることが望ましい。
Further, in the above-described configuration, each of the plurality of blades has a blade force at a portion formed by the first curvature in the rear edge portion so as to go in the outer circumferential direction with respect to the rotation axis direction. While acting, it is desirable that a blade force acts on a portion formed by the second curvature of the rear edge portion so as to be directed in an inner circumferential direction with respect to the rotation axis direction.
Further, in the above configuration, it is desirable to provide a guard that allows air to pass through the discharge side of the blade and prevents contamination of foreign matters of a predetermined size or more and that is separated from the propeller by a predetermined length or more.
Further, a housing having an air inlet and an air outlet, a heat exchanger disposed in the housing, and an upstream or downstream side of the heat exchanger, the air outside the housing is drawn into the suction port In an air conditioner provided with a fan that sucks more and blows out from the air outlet, it is desirable to use the propeller fan according to any one of the above-described configurations for the fan.
 本発明によれば、プロペラファンの高効率化を実現することができる。 According to the present invention, high efficiency of the propeller fan can be realized.
実施例1のプロペラファンの回転軸を通る平面の断面図Sectional drawing of the plane which passes along the rotating shaft of the propeller fan of Example 1 実施例1のプロペラファンと従来例のプロペラファンにおける翼力の違いを説明する図The figure explaining the difference in the blade force in the propeller fan of Example 1, and the propeller fan of a prior art example 実施例1のプロペラファンにおける回転軸を通る断面に投影した速度ベクトルの模式図Schematic diagram of the velocity vector projected on the cross section passing through the rotation axis in the propeller fan of Example 1 実施例2のプロペラファンの回転軸を通る平面の断面図Sectional drawing of the plane which passes along the rotating shaft of the propeller fan of Example 2 実施例2のプロペラファンにおける回転軸を通る断面に投影した速度ベクトルの模式図Schematic diagram of the velocity vector projected on the cross section passing through the rotation axis in the propeller fan of Example 2 実施例2におけるプロペラファンと従来のプロペラファンの軸動力の比較の一例Example of comparison of shaft power between propeller fan and conventional propeller fan in Example 2 実施例2において図4とは異なる形状のベルマウスとの組み合わせを示す図The figure which shows the combination with the bell mouth of the shape different from FIG. 4 in Example 2. 実施例2において図4とは異なる形状のベルマウスとの組み合わせを示す図The figure which shows the combination with the bell mouth of the shape different from FIG. 4 in Example 2. 実施例3におけるプロペラの平面図である。6 is a plan view of a propeller in Example 3. FIG. 実施例4におけるプロペラファンの図Figure of propeller fan in Example 4 実施例4におけるプロペラファンと従来のプロペラファンの騒音の比較の一例Example of comparison of noise between propeller fan in embodiment 4 and conventional propeller fan 実施例5における空気調和機の断面図Sectional drawing of the air conditioner in Example 5 従来のプロペラファンのプロペラの平面図Top view of conventional propeller fan propeller 従来のプロペラファンにおける回転軸を通る断面に投影した速度ベクトルの模式図Schematic diagram of velocity vector projected on a cross section passing through the rotation axis in a conventional propeller fan
 以下、本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明の実施例1を図1から図3を用いて説明する。 
 図1は実施例1のプロペラファンの回転軸を通る平面の断面図である。1は翼、2はハブ、3は後縁部、4は前縁部、5は翼端部、6は回転中心となる回転軸、Xは空気の流れ方向を示す。後縁部3は翼1の回転方向に対して後方に形成され、前縁部4は翼1の回転方向に対して前方に形成される。翼端部5は後縁部3の該周方向の先端部から前縁部4の該周方向の先端部に形成される。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view of a plane passing through the rotation axis of the propeller fan according to the first embodiment. 1 denotes a blade, 2 denotes a hub, 3 denotes a trailing edge, 4 denotes a leading edge, 5 denotes a blade tip, 6 denotes a rotation axis serving as a rotation center, and X denotes an air flow direction. The trailing edge 3 is formed rearward with respect to the rotation direction of the blade 1, and the leading edge 4 is formed forward with respect to the rotation direction of the blade 1. The blade tip 5 is formed from the circumferential tip of the trailing edge 3 to the circumferential tip of the leading edge 4.
 図1において後縁部3は回転軸6を通る平面に回転投影したものを示している。後縁部3は回転軸6から翼端部5に向かって、吸込み側から吐出し側に、第1の曲率αにより曲がるように形成される。さらに変曲点7を介して、第1の曲率αよりも小さい第2の曲率βにより曲がるように形成される。 In FIG. 1, the rear edge 3 shows a rotational projection onto a plane passing through the rotation axis 6. The trailing edge 3 is formed from the rotating shaft 6 toward the blade tip 5 so as to bend from the suction side to the discharge side with the first curvature α. Further, it is formed so as to bend with a second curvature β smaller than the first curvature α via the inflection point 7.
 図2は実施例1のプロペラファンと従来例のプロペラファンにおける翼力の違いを説明する図である。図2はプロペラファンを吐出し側斜め方向より見た図である。Aは実施例1のプロペラファンの後縁部3における第2の曲率βの部分3bが作用する翼力を示す。A’は従来例のプロペラファンの翼端部5’側の後縁部3b’が作用する翼力を示す。Yは翼の回転方向を示す。 FIG. 2 is a diagram for explaining the difference in blade force between the propeller fan of the first embodiment and the propeller fan of the conventional example. FIG. 2 is a view of the propeller fan as viewed from an oblique side. A shows the blade force which the part 3b of the 2nd curvature (beta) in the trailing edge part 3 of the propeller fan of Example 1 acts. A 'represents the blade force acting on the trailing edge 3b' on the blade tip 5 'side of the propeller fan of the conventional example. Y indicates the direction of rotation of the wing.
 本実施例のプロペラファンの翼1は、上述の構成となっているため、翼力Aは回転軸6の方向に対して外周方向に向かうように作用する。そのため後縁部3b付近の流れは部分的に回転軸6の方向に対して外周方向に向かうような運動量を得ることとなる。他方、従来のプロペラファンの翼力A’は回転軸6の方向に対して内周方向に向かうように作用する。そのため翼間の流れは回転軸6の方向に対して内周方向に向かうような運動量を得る。 Since the blade 1 of the propeller fan according to the present embodiment has the above-described configuration, the blade force A acts toward the outer circumferential direction with respect to the direction of the rotating shaft 6. For this reason, the flow in the vicinity of the rear edge 3b partially obtains a momentum that goes in the outer circumferential direction with respect to the direction of the rotation shaft 6. On the other hand, the blade force A ′ of the conventional propeller fan acts in the inner circumferential direction with respect to the direction of the rotating shaft 6. Therefore, the flow between the blades obtains a momentum that goes in the inner circumferential direction with respect to the direction of the rotating shaft 6.
 図14に従来のプロペラファンにおける回転軸を通る断面に投影した速度ベクトルの模式図を示す。図2における回転軸6の方向に対して内周方向に向かう翼力A’により、図14の流れTは内周方向に向かう運動量を得るため内周方向向きとなる。したがって、図示していないがプロペラファンの外周方向を覆うように配置されるベルマウスの近傍には流れが供給されず、ベルマウス近傍の速度が低下する。ベルマウス近傍に流れが供給されないことは、すなわち、流れUのように滞ることになる。するとベルマウス近傍の流れUと流れTとで翼の出口側における速度が不均一となるものであり、効率低下の要因となり得る。 FIG. 14 shows a schematic diagram of a velocity vector projected on a cross section passing through the rotation axis of a conventional propeller fan. Due to the blade force A 'directed in the inner circumferential direction with respect to the direction of the rotating shaft 6 in FIG. 2, the flow T in FIG. 14 is directed in the inner circumferential direction in order to obtain a momentum directed in the inner circumferential direction. Accordingly, although not shown, no flow is supplied to the vicinity of the bell mouth arranged so as to cover the outer peripheral direction of the propeller fan, and the speed near the bell mouth is reduced. The fact that no flow is supplied in the vicinity of the bellmouth means that the flow U is stagnant. Then, the flow U and the flow T in the vicinity of the bell mouth become non-uniform in speed on the exit side of the blade, which may cause a reduction in efficiency.
 図3に実施例1のプロペラファンにおける回転軸を通る断面に投影した速度ベクトルの模式図を示す。図2における翼力Aの作用によって、図3の流れSのように、翼端部5付近の流れが回転軸6に対して外周方向に向かうようになる。すなわち、本実施例の後縁部3の形状によれば後縁部3のうちの第1の曲率αで形成される部位には、回転軸6の方向に対して外周方向に向かうように翼力Aが作用するとともに、後縁部3のうちの第2の曲率βで形成される部位には、回転軸6の方向に対して内周方向に向かうように翼力が作用するものである。 FIG. 3 shows a schematic diagram of the velocity vector projected on the cross section passing through the rotation axis in the propeller fan of the first embodiment. Due to the action of the blade force A in FIG. 2, the flow in the vicinity of the blade tip 5 is directed toward the outer periphery with respect to the rotating shaft 6 as in the flow S in FIG. 3. That is, according to the shape of the trailing edge portion 3 of the present embodiment, a portion of the trailing edge portion 3 formed with the first curvature α is directed to the outer peripheral direction with respect to the direction of the rotating shaft 6. While the force A acts, the blade force acts on the portion formed by the second curvature β in the rear edge portion 3 so as to be directed in the inner circumferential direction with respect to the direction of the rotation shaft 6. .
 その結果、従来はベルマウス近傍において図14に示したように流れが供給されず流れUのように滞ることがあったのに対し、翼力Aの作用により従来のような流れUが生じる事態を抑制することができる。したがって、翼出口付近の速度が均一化されることができ翼後流の混合損失が低減するため、効率を増加することが可能となる。 As a result, in the prior art, the flow was not supplied in the vicinity of the bell mouth as shown in FIG. Can be suppressed. Accordingly, the speed in the vicinity of the blade outlet can be made uniform, and the mixing loss of the blade wake can be reduced, so that the efficiency can be increased.
 本実施例では、実施例1を更に高効率化できる実施例について図4から図8を用いて説明する。 
 図4は実施例2のプロペラファンの回転軸を通る平面の断面図である。8はベルマウス、9は円筒部、10はベルマウスの端部を示す。円筒部9はベルマウス8の一部分であって、所定のクリアランスを介して、翼1を覆っている。端部10は円筒部9の吐出し側の端部で、図1においては外周方向に直角に角度が変わる位置とし、端部10を変曲点7と回転面上からみて一致して配置させる。
In the present embodiment, an embodiment that can further improve the efficiency of the first embodiment will be described with reference to FIGS.
FIG. 4 is a cross-sectional view of a plane passing through the rotation axis of the propeller fan according to the second embodiment. 8 indicates a bell mouth, 9 indicates a cylindrical portion, and 10 indicates an end portion of the bell mouth. The cylindrical portion 9 is a part of the bell mouth 8 and covers the wing 1 through a predetermined clearance. The end portion 10 is an end portion on the discharge side of the cylindrical portion 9, and in FIG. 1, the end portion 10 is located at a position where the angle changes at a right angle to the outer circumferential direction, and the end portion 10 is arranged to coincide with the inflection point 7 when viewed from the rotation surface. .
 つまりベルマウス8の翼1に最も近い端面において、吐出し方向の端部10で、かつ、外周方向に角度が変わる位置が、変曲点7の位置と回転面上からみてほぼ一致するようにしている。これによりベルマウス8の翼1に最も近い端面において、吐出し方向の端部10で、かつ、外周方向に角度が変わる位置が、外向きの翼力Aを作用する部分と外向きの翼力Aを作用しない部分の境界となる位置と、回転面上からみてほぼ一致する。 That is, at the end face closest to the wing 1 of the bell mouth 8, the position of the end portion 10 in the discharge direction and the angle changing in the outer peripheral direction is made to substantially coincide with the position of the inflection point 7 when viewed from the rotation surface. ing. As a result, at the end face closest to the wing 1 of the bell mouth 8, the position where the angle changes in the outer circumferential direction at the end portion 10 in the discharge direction is the portion where the outward wing force A acts and the outward wing force. It substantially coincides with the position that becomes the boundary of the portion where A does not act as seen from the surface of rotation.
 図5に実施例2のプロペラファンにおける回転軸を通る断面に投影した速度ベクトルの模式図を示す。端部10と変曲点7をほぼ一致して配置させているため、実施例1における図2で示した矢印A方向の翼力の作用により均一化された速度分布が、円筒部9により流れが拡散されずに保持される。そのため実施例1の作用効果をさらに確実に得ることができ、プロペラファンの効率を増加することができる。 FIG. 5 shows a schematic diagram of the velocity vector projected on the cross section passing through the rotation axis in the propeller fan of the second embodiment. Since the end portion 10 and the inflection point 7 are arranged substantially coincident with each other, the velocity distribution made uniform by the action of the blade force in the direction of arrow A shown in FIG. Is retained without being diffused. Therefore, the operational effects of Example 1 can be obtained more reliably, and the efficiency of the propeller fan can be increased.
 図6に実施例2におけるプロペラファンと従来のプロペラファンの軸動力の比較結果を示す。動作点付近において、実施例2のプロペラファンの消費電力は、従来のプロペラファンに比べて3.3%の省エネ化すなわち高効率化が得られている。 FIG. 6 shows a comparison result of the shaft power of the propeller fan in Example 2 and the conventional propeller fan. In the vicinity of the operating point, the power consumption of the propeller fan of the second embodiment is 3.3% energy saving, that is, higher efficiency than the conventional propeller fan.
 図7及び図8に実施例2において図4とは異なる形状のベルマウスとの組み合わせを示す図である。図7のベルマウスは円筒部9の吐出し側は円弧状となっている。この場合、端部10aは円筒部9の直線と円弧の接点となる。図8のベルマウスは円筒部9の吐出し側は円錐状のテーパーとなっている。この場合、端部10bは円筒部9の直線と円錐状のテーパーとの接点となる。図示のように端部10a及び10bを変曲点7と回転面上からみて一致して配置させる。本発明で得られる作用効果は、図7及び図8のいずれのベルマウスにおいても図4のベルマウスと同様の効果を得ることができる。 7 and 8 are diagrams showing a combination with a bell mouth having a shape different from that in FIG. 4 in the second embodiment. In the bell mouth of FIG. 7, the discharge side of the cylindrical portion 9 has an arc shape. In this case, the end portion 10a becomes a contact point between the straight line of the cylindrical portion 9 and the circular arc. The bell mouth of FIG. 8 has a conical taper on the discharge side of the cylindrical portion 9. In this case, the end portion 10b serves as a contact point between the straight line of the cylindrical portion 9 and the conical taper. As shown in the drawing, the end portions 10a and 10b are arranged so as to coincide with the inflection point 7 when viewed from the surface of rotation. The effects obtained by the present invention can be the same as those of the bell mouse of FIG. 4 in any of the bell mice of FIGS.
 本実施例では、実施例1又は実施例2を更に高効率化できる実施例について図9と図10を用いて説明する。 
 図9は実施例3におけるプロペラの平面図である。図9はプロペラを吐出し側から見た図である。図9では後縁部3は回転軸に垂直な平面に投影されている。後縁部3は、ハブ2から翼端部5に向かって、反回転方向に凸状に形成され、変曲点18を介して、回転方向に凸状となるように形成される。Bはハブ2側の後縁部3h付近が作用する翼力、Cは翼端部5側の後縁部3t付近が作用する翼力を示す。変曲点18は実施例1及び2で述べた変曲点7と同一の半径とすることが望ましい。
In the present embodiment, an embodiment that can further improve the efficiency of the first or second embodiment will be described with reference to FIGS. 9 and 10.
FIG. 9 is a plan view of the propeller according to the third embodiment. FIG. 9 is a view of the propeller viewed from the discharge side. In FIG. 9, the trailing edge 3 is projected on a plane perpendicular to the rotation axis. The trailing edge portion 3 is formed in a convex shape in the counter-rotating direction from the hub 2 toward the blade tip portion 5, and is formed in a convex shape in the rotating direction via the inflection point 18. B represents the blade force acting near the rear edge 3h of the hub 2 side, and C represents the blade force acting near the rear edge 3t on the blade tip 5 side. It is desirable that the inflection point 18 has the same radius as the inflection point 7 described in the first and second embodiments.
 変曲点18を境として、後縁部3tの曲率が変化したために、翼力Cは翼力Bに比べて回転軸6の方向に対して外周方向に向きが変わる。この翼力の向きの変化によって、後縁部3t付近の流れは外周方向向きの運動量を得、翼端部5付近の流れが外周方向向きとなる。その結果、翼出口付近の速度が均一化される。速度の均一化により翼後流の混合損失が低減するため、効率が増加する。 Since the curvature of the trailing edge 3t has changed with the inflection point 18 as a boundary, the wing force C changes its direction in the outer circumferential direction with respect to the direction of the rotating shaft 6 compared to the wing force B. Due to this change in the direction of the blade force, the flow in the vicinity of the trailing edge 3t obtains a momentum in the outer circumferential direction, and the flow in the vicinity of the blade tip 5 becomes in the outer circumferential direction. As a result, the speed near the blade outlet is made uniform. The efficiency is increased because the mixing loss of the wake of the blade is reduced by the uniform speed.
 なお、図9では後縁部3tは回転方向に凸状となるように形成されているが、後縁部3tの曲率が、変曲点18を介して後縁部3hに対して大きくなる方向に、さらには直線状に変化させることにより、上記で述べた同様の作用を得ることができる。 In FIG. 9, the trailing edge 3 t is formed to be convex in the rotational direction, but the curvature of the trailing edge 3 t is larger than the trailing edge 3 h via the inflection point 18. Furthermore, the same effect | action mentioned above can be acquired by changing to linear form further.
 本実施例では、実施例1から3の高効率化に加えて、低騒音化の効果も得ることができる実施例について、図10と図11を用いて説明する。 
 図10は実施例4におけるプロペラファンの図である。図10は実施例1から3のプロペラファンの翼の後流側にガードを配置したものである。このガードは、翼の吐出し側に空気を通すように桟状や網状に形成されるものであり、この桟や網の隙間によって所定の大きさ以上の異物混入を防止するものである。実施例1から3のプロペラファンの翼出口付近の速度は従来のプロペラファンに比べて均一化されている。流れによる騒音は流速の6乗に比例するため、ガード11から発生する騒音は、速度が局所的に大きい場合には、その部分から発生する騒音が支配的となる。そのため速度が均一化された本実施例3においては、従来のプロペラファンとの組み合わせに比べて騒音が低減する。
In the present embodiment, in addition to the high efficiency of the first to third embodiments, an embodiment capable of obtaining the effect of reducing noise will be described with reference to FIGS. 10 and 11.
FIG. 10 is a diagram of the propeller fan in the fourth embodiment. FIG. 10 shows a case where a guard is disposed on the wake side of the blades of the propeller fans of the first to third embodiments. The guard is formed in a cross shape or a net shape so as to allow air to pass through to the discharge side of the blade, and the gap between the cross and the net prevents foreign matters having a predetermined size or more. The speeds near the blade outlets of the propeller fans of Examples 1 to 3 are made uniform as compared with the conventional propeller fan. Since the noise caused by the flow is proportional to the sixth power of the flow velocity, the noise generated from the guard 11 is dominant when the speed is locally high. Therefore, in the third embodiment in which the speed is made uniform, noise is reduced as compared with a combination with a conventional propeller fan.
 図11に実施例3におけるプロペラファンと従来のプロペラファンの騒音の比較の一例を示す。実施例3におけるプロペラファンの騒音は従来のプロペラファンに比べて約1dB低減することが確認されている。 FIG. 11 shows an example of noise comparison between the propeller fan in the third embodiment and the conventional propeller fan. It has been confirmed that the noise of the propeller fan in Example 3 is reduced by about 1 dB compared to the conventional propeller fan.
 なお、このガード11の桟や網の隙間には大人の指が入らないように所定の大きさ以下にすることが必要である。さらに子供の指がガード11の隙間に入った場合にもプロペラ12に触ることがないようにすることが必要である。そこでガード11の桟や網の端部から後縁3とガード11が最も近づく位置19との距離Lが所定の長さ以上にすることにより更なる安全性を確保することができる。子供の指の長さは約50mmと想定されるので、距離Lとしては50mm以上を確保するのが望ましい。 It should be noted that it is necessary to keep the size of the guard 11 below a predetermined size so that adult fingers do not enter the gap between the guard 11 and the net. Furthermore, it is necessary to prevent the propeller 12 from being touched even when a child's finger enters the gap of the guard 11. Therefore, further safety can be ensured by setting the distance L between the rear edge 3 and the position 19 closest to the guard 11 from the end of the crosspiece or net of the guard 11 to a predetermined length or more. Since the length of a child's finger is assumed to be about 50 mm, it is desirable to secure a distance L of 50 mm or more.
 本実施例では、実施例1~4のいずれかの要件を備えたプロペラファンを用いた空気調和機について説明する。 
 図12は実施例5における空気調和機の断面図である。この空気調和機は室外機で、図12において、プロペラ12はモータ13、モータ支持台14に固定、支持されて回転する。プロペラ12の外周にはベルマウス8を配置する。その下流域にはガード11を配置する。ユニット15の内部には、プロペラ12の上流に熱交換器16が設置されている。ユニット15の内部には、圧縮機17が搭載されている。
In the present embodiment, an air conditioner using a propeller fan having the requirements of any of Embodiments 1 to 4 will be described.
FIG. 12 is a cross-sectional view of the air conditioner according to the fifth embodiment. This air conditioner is an outdoor unit. In FIG. 12, the propeller 12 is fixed and supported by a motor 13 and a motor support base 14 and rotates. A bell mouth 8 is disposed on the outer periphery of the propeller 12. A guard 11 is disposed in the downstream area. Inside the unit 15, a heat exchanger 16 is installed upstream of the propeller 12. A compressor 17 is mounted inside the unit 15.
 この空気調和機は、モータ13でプロペラ12を回転させることで、空気を熱交換器16に吸込、冷却又は過熱された後、プロペラ12とベルマウス8にて昇圧された後、ガード11から吐き出す。プロペラファン及びベルマウスには実施例1~4のいずれかに記載のプロペラファンを用いているため、低騒音・高効率な空気調和機を得ることができる。 In this air conditioner, the propeller 12 is rotated by a motor 13 so that air is sucked into the heat exchanger 16, cooled or overheated, then pressurized by the propeller 12 and the bell mouth 8, and then discharged from the guard 11. . Since the propeller fan described in any of Examples 1 to 4 is used for the propeller fan and the bell mouth, an air conditioner with low noise and high efficiency can be obtained.
 なお、本実施例では室外機について説明したが、空気調和機は他の型式でも、室内機でも、プロペラファンを用いるものであれば本発明は共通して使用できる技術である。 Although the outdoor unit has been described in the present embodiment, the present invention is a technique that can be used in common as long as the air conditioner uses another type, an indoor unit, or a propeller fan.
1、1’ 翼
2、2’ ハブ
3、3’、3t、3h 後縁部
4、4’ 前縁部
5、5’ 翼端部
6、6’ 回転中心
7 変曲点
8 ベルマウス
9 円筒部
10、10a、10b 端部
11 ガード
12 プロペラ
13 モータ
14 モータ支持台
15 ユニット
16 熱交換器
17 圧縮機
18 変曲点
19 ガード11の桟や網の端部から後縁3とガード11が最も近づく位置
A、A’ 翼力
B 翼力
C 翼力
L 距離
S 流れ
T 流れ
U 流れ
X 空気の流れ方向
Y 回転方向
α 第1の曲率
β 第2の曲率
1, 1 'wing 2, 2' hub 3, 3 ', 3t, 3h trailing edge 4, 4' leading edge 5, 5 'wing tip 6, 6' rotation center 7 inflection point 8 bellmouth 9 cylinder 10, 10 a, 10 b End 11 Guard 12 Propeller 13 Motor 14 Motor support 15 Unit 16 Heat exchanger 17 Compressor 18 Inflection point 19 The rear edge 3 and the guard 11 are the most from the end of the guard 11 bar or net. Approaching position A, A ′ Blade force B Blade force C Blade force L Distance S Flow T Flow U Flow X Air flow direction Y Rotational direction α First curvature β Second curvature

Claims (6)

  1.  回転中心となる回転軸と、
     該回転軸の周囲に設けられた複数の翼と、を備え、
     前記複数の翼の外周方向外側にベルマウスが配置されるプロペラファンにおいて、
     前記複数の翼のそれぞれは、
     回転方向に対して後方に形成される後縁部と、回転方向に対して前方に形成される前縁部と、該後縁部の外周方向の先端部から前縁部の外周方向の先端部に向かって形成される翼端部と、から形成され、
     前記回転軸を通る平面に回転投影した前記後縁部は、前記回転軸から前記翼端部に向かって、吸込み側から吐出し側に、第1の曲率により曲がるように形成され、さらに、変曲点を介して、前記第1の曲率よりも小さい第2の曲率により曲がるように形成されること、を特徴とするプロペラファン。
    A rotation axis as a center of rotation;
    A plurality of wings provided around the rotating shaft,
    In the propeller fan in which a bell mouth is disposed on the outer periphery side of the plurality of wings,
    Each of the plurality of wings is
    A rear edge portion formed rearward with respect to the rotation direction, a front edge portion formed forward with respect to the rotation direction, and a front edge portion in the outer peripheral direction of the front edge portion from the front end portion in the outer peripheral direction of the rear edge portion A wing tip formed toward the
    The trailing edge portion that is rotationally projected onto a plane passing through the rotating shaft is formed so as to bend with a first curvature from the suction side to the discharge side from the rotating shaft toward the blade tip portion. A propeller fan characterized by being formed to bend with a second curvature smaller than the first curvature through a curvature point.
  2.  請求項1において、前記ベルマウスの前記翼に最も近い端面において、吐出し方向の端部で、かつ、外周方向に角度が変わる位置が、前記変曲点の位置と回転面上からみてほぼ一致すること、を特徴とするプロペラファン。 The position of the inflection point and the position at which the angle changes in the outer circumferential direction at the end face closest to the wing of the bell mouth are substantially the same as the position of the inflection point when viewed from the rotation surface. Propeller fan, characterized by
  3.  請求項1において、
     前記回転軸に垂直な平面に投影した前記後縁部は、前記回転軸から前記翼端部に向かって、反回転方向に凸状に形成され、さらに変曲点を介して、直線状もしくは回転方向に凸状に形成されること、を特徴とするプロペラファン。
    In claim 1,
    The trailing edge portion projected onto a plane perpendicular to the rotation axis is formed in a convex shape in the counter-rotation direction from the rotation axis toward the blade tip, and is further linear or rotated via an inflection point. A propeller fan characterized by being formed in a convex shape in the direction.
  4.  請求項1~3の何れかにおいて、
     前記複数の翼のそれぞれは、
     前記後縁部のうちの前記第1の曲率で形成される部位には、前記回転軸方向に対して外周方向に向かうように翼力が作用するとともに、
     前記後縁部のうちの前記第2の曲率で形成される部位には、前記回転軸方向に対して内周方向に向かうように翼力が作用することを特徴とするプロペラファン。
    In any one of claims 1 to 3,
    Each of the plurality of wings is
    A wing force acts on the portion formed by the first curvature of the rear edge portion so as to go to the outer peripheral direction with respect to the rotation axis direction, and
    A propeller fan characterized in that a blade force acts on a portion of the rear edge portion formed by the second curvature so as to be directed in an inner circumferential direction with respect to the rotation axis direction.
  5.  請求項1~3の何れかにおいて、
     前記翼の吐出し側に空気を通すとともに所定の大きさ以上の異物混入を防止し、プロペラとの距離を所定の長さ以上に離れたガードを備えることを特徴とするプロペラファン。
    In any one of claims 1 to 3,
    A propeller fan characterized by comprising a guard that allows air to pass through the discharge side of the blades and prevents foreign substances having a predetermined size or more from being mixed, and is separated from the propeller by a predetermined length or more.
  6.  空気の吸込口及び吹出口を有する筐体と、
     該筐体内に配置された熱交換器と、
     該熱交換器の上流側または下流側に配置され、筐体外部の空気を前記吸込口より吸い込み、前記吹出口から吹き出すファンと、を備えた空気調和機において、
     該ファンに、請求項1から3の何れかに記載のプロペラファンを用いたことを特徴とする空気調和機。
    A housing having an air inlet and an air outlet;
    A heat exchanger disposed in the housing;
    In an air conditioner comprising: a fan arranged on the upstream side or the downstream side of the heat exchanger, sucking air outside the housing from the suction port, and blowing out from the blowout port,
    An air conditioner using the propeller fan according to any one of claims 1 to 3 as the fan.
PCT/JP2013/054451 2013-02-22 2013-02-22 Propeller fan and air conditioner equipped with same WO2014128908A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/054451 WO2014128908A1 (en) 2013-02-22 2013-02-22 Propeller fan and air conditioner equipped with same
EP13875684.6A EP2960525B1 (en) 2013-02-22 2013-02-22 Propeller fan and air conditioner equipped with same
CN201380073430.XA CN105008723B (en) 2013-02-22 2013-02-22 Screw ventilation and the air conditioner for possessing the screw ventilation
JP2015501179A JP6215296B2 (en) 2013-02-22 2013-02-22 Propeller fan and air conditioner equipped with the same
US14/768,927 US20160003487A1 (en) 2013-02-22 2013-02-22 Propeller Fan and Air Conditioner Equipped with the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054451 WO2014128908A1 (en) 2013-02-22 2013-02-22 Propeller fan and air conditioner equipped with same

Publications (1)

Publication Number Publication Date
WO2014128908A1 true WO2014128908A1 (en) 2014-08-28

Family

ID=51390736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054451 WO2014128908A1 (en) 2013-02-22 2013-02-22 Propeller fan and air conditioner equipped with same

Country Status (5)

Country Link
US (1) US20160003487A1 (en)
EP (1) EP2960525B1 (en)
JP (1) JP6215296B2 (en)
CN (1) CN105008723B (en)
WO (1) WO2014128908A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115807A (en) * 2017-01-18 2018-07-26 日立ジョンソンコントロールズ空調株式会社 Outdoor unit for air conditioner
US20180363928A1 (en) * 2016-01-25 2018-12-20 Mitsubishi Electric Corporation Outdoor unit and air conditioner including the same
US11480196B2 (en) 2017-11-16 2022-10-25 Nidec Corporation Axial fan
WO2022249270A1 (en) * 2021-05-25 2022-12-01 日立ジョンソンコントロールズ空調株式会社 Propeller fan and air conditioner

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6849366B2 (en) 2016-09-29 2021-03-24 山洋電気株式会社 Reversible flow fan
CN110914553B (en) * 2017-08-14 2021-02-19 三菱电机株式会社 Impeller, blower and air conditioner
US20200408225A1 (en) * 2018-02-02 2020-12-31 Mitsubishi Electric Corporation Axial blower
JP7173939B2 (en) * 2019-08-26 2022-11-16 ダイキン工業株式会社 Blower and heat pump unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022000B2 (en) 1984-09-05 1990-01-16 Mitsubishi Electric Corp
JPH10501867A (en) * 1995-04-19 1998-02-17 ヴァレオ テルミク モツール Axial fan
JP2000274912A (en) * 1999-03-25 2000-10-06 Mitsubishi Electric Corp Ventilating device for refrigerator
JP2002257088A (en) * 2001-03-06 2002-09-11 Toshiba Kyaria Kk Axial flow fan
JP2004301451A (en) * 2003-03-31 2004-10-28 Toshiba Kyaria Kk Outdoor machine for air conditioner
JP2006002584A (en) * 2004-06-15 2006-01-05 Samsung Electronics Co Ltd Propeller fan and air conditioner using the same
JP3744489B2 (en) 2002-12-20 2006-02-08 ダイキン工業株式会社 Blower
US7125220B2 (en) * 2004-05-06 2006-10-24 Sunonwealth Electric Machine Industry Co., Ltd. Axial-flow type fan having an air outlet blade structure
JP4818184B2 (en) 2007-04-09 2011-11-16 三菱電機株式会社 Propeller fan

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2212041A (en) * 1939-06-08 1940-08-20 Iig Electric Ventilating Compa Fan wheel
US2578806A (en) * 1949-06-04 1951-12-18 Johnson Lawrence Propeller
US4142844A (en) * 1977-05-31 1979-03-06 Allware Agencies Ltd. Fan blade assemblies for box fans
JPS64398A (en) * 1987-06-22 1989-01-05 Matsushita Electric Works Ltd Motor fan
US5466120A (en) * 1993-03-30 1995-11-14 Nippondenso Co., Ltd. Blower with bent stays
US5730583A (en) * 1994-09-29 1998-03-24 Valeo Thermique Moteur Axial flow fan blade structure
EP1070849B1 (en) * 1999-07-22 2010-03-24 LG Electronics, Inc. Axial flow fan
JP4662438B2 (en) * 2004-12-01 2011-03-30 東芝キヤリア株式会社 Axial fan, outdoor unit of air conditioner
JP3912418B2 (en) * 2005-08-01 2007-05-09 ダイキン工業株式会社 Axial fan
JP5396965B2 (en) * 2009-03-30 2014-01-22 ダイキン工業株式会社 Axial blower, air conditioner and ventilator
JP5079063B2 (en) * 2010-08-25 2012-11-21 三菱電機株式会社 Propeller, blower and heat pump device
JP5418538B2 (en) * 2011-04-28 2014-02-19 三菱電機株式会社 Blower
CN202132272U (en) * 2011-07-11 2012-02-01 珠海格力电器股份有限公司 Electromagnetic oven and cooling fan thereof
JP5689538B2 (en) * 2011-11-10 2015-03-25 三菱電機株式会社 Outdoor cooling unit for vehicle air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022000B2 (en) 1984-09-05 1990-01-16 Mitsubishi Electric Corp
JPH10501867A (en) * 1995-04-19 1998-02-17 ヴァレオ テルミク モツール Axial fan
JP2000274912A (en) * 1999-03-25 2000-10-06 Mitsubishi Electric Corp Ventilating device for refrigerator
JP2002257088A (en) * 2001-03-06 2002-09-11 Toshiba Kyaria Kk Axial flow fan
JP3744489B2 (en) 2002-12-20 2006-02-08 ダイキン工業株式会社 Blower
JP2004301451A (en) * 2003-03-31 2004-10-28 Toshiba Kyaria Kk Outdoor machine for air conditioner
US7125220B2 (en) * 2004-05-06 2006-10-24 Sunonwealth Electric Machine Industry Co., Ltd. Axial-flow type fan having an air outlet blade structure
JP2006002584A (en) * 2004-06-15 2006-01-05 Samsung Electronics Co Ltd Propeller fan and air conditioner using the same
JP4818184B2 (en) 2007-04-09 2011-11-16 三菱電機株式会社 Propeller fan

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2960525A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180363928A1 (en) * 2016-01-25 2018-12-20 Mitsubishi Electric Corporation Outdoor unit and air conditioner including the same
US11054156B2 (en) * 2016-01-25 2021-07-06 Mitsubishi Electric Corporation Outdoor unit and air conditioner including the same
JP2018115807A (en) * 2017-01-18 2018-07-26 日立ジョンソンコントロールズ空調株式会社 Outdoor unit for air conditioner
US11480196B2 (en) 2017-11-16 2022-10-25 Nidec Corporation Axial fan
WO2022249270A1 (en) * 2021-05-25 2022-12-01 日立ジョンソンコントロールズ空調株式会社 Propeller fan and air conditioner

Also Published As

Publication number Publication date
EP2960525B1 (en) 2022-10-19
JPWO2014128908A1 (en) 2017-02-02
CN105008723A (en) 2015-10-28
CN105008723B (en) 2017-08-15
US20160003487A1 (en) 2016-01-07
EP2960525A1 (en) 2015-12-30
JP6215296B2 (en) 2017-10-18
EP2960525A4 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6215296B2 (en) Propeller fan and air conditioner equipped with the same
KR101210696B1 (en) centrifugal fan
WO2014061094A1 (en) Turbo fan and air conditioner
JP5430754B2 (en) Axial blower
JP2010053803A (en) Centrifugal fan and air fluid machine using the same
CN106104005A (en) Air-blast device
CN110914553B (en) Impeller, blower and air conditioner
JP2008232049A (en) Centrifugal impeller and centrifugal blower
CN110566500B (en) Impeller of centrifugal ventilator
JP2012140881A (en) Multiblade blower
JP2012193740A (en) Turbofan and air conditioner
JP2016003641A (en) Centrifugal fan
CN109209989B (en) Centrifugal fan and range hood
KR101034976B1 (en) A ventilating device using the air curtain
JP2006097488A (en) Blower
KR20120023319A (en) A turbo fan for air conditioner
WO2020115872A1 (en) Centrifugal blower
JP7487854B1 (en) Blower
CN215860958U (en) Impeller for centrifugal fan and centrifugal fan applying impeller
JPH11289716A (en) Cooling fan for electric motor
JP6625291B1 (en) Impeller, blower and air conditioner
KR101826348B1 (en) Cross-flow fan and air conditioner equipped therewith
JP6038321B2 (en) Multi-blade blower
CN115727003A (en) Wind wheel and fan thereof
JP2014066187A (en) Fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501179

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14768927

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013875684

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE