WO2014128319A1 - Method for producing hollow microfibre membranes and membranes produced in this way - Google Patents

Method for producing hollow microfibre membranes and membranes produced in this way Download PDF

Info

Publication number
WO2014128319A1
WO2014128319A1 PCT/ES2014/070027 ES2014070027W WO2014128319A1 WO 2014128319 A1 WO2014128319 A1 WO 2014128319A1 ES 2014070027 W ES2014070027 W ES 2014070027W WO 2014128319 A1 WO2014128319 A1 WO 2014128319A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
polymer
membranes
polymers
solvent
Prior art date
Application number
PCT/ES2014/070027
Other languages
Spanish (es)
French (fr)
Inventor
Juan Manuel CROVETTO DE LA TORRE
Juan Esteban DÍAZ GÓMEZ
Original Assignee
Porous Fibers, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Porous Fibers, S.L. filed Critical Porous Fibers, S.L.
Publication of WO2014128319A1 publication Critical patent/WO2014128319A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0046Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by coagulation, i.e. wet electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/35Use of magnetic or electrical fields

Definitions

  • the present invention relates to the field of hollow microfiber polymer membranes with application in the purification and separation of gases. More specifically, it refers to a new manufacturing process for said membranes, as well as to the membranes obtained therefrom and their use, for example, in methods of gas or fluid separation.
  • These polymers can be configured, for practical use, in the form of hollow fibers of small diameter but of great length, offering a large surface area (per unit mass of polymer) of the gases, in addition to presenting small wall thicknesses.
  • This configuration of the polymers is what, classically, allows the separation of gases.
  • the hollow fibers have to be manufactured with the lowest possible thickness, but with sufficient mechanical strength, thus optimizing both the costs of the product and the amount of gas that can be processed.
  • the hollow fibers have a maximum diameter, around a millimeter or at least a few tenths of a millimeter and are formed from a viscous polymer solution, or from this molten, by extrusion and forming based on extrusion through nozzles (spinnerets) specially designed for this application.
  • these nozzles consist of two concentric needles, through which the fluid that will lead to the formation of the lumen passes.
  • the dissolution of the polymer or polymers that make up the fibers themselves flows through the space between the inner and outer needles.
  • the outer needle can simply be a solid body in which a coaxial cylinder has been perforated to which the said inner needle carrying the lumen generating fluid is attached.
  • This equipment facilitates the achievement, in the end, of the Hollow Fibers (hereinafter FH) of continuous length, due to a continuous and stable production, but with a diameter of 0.2 to 1 mm or greater.
  • electro-spun technology electro-spun technology
  • EE electrohydrodynamic
  • This polymer which is at a certain electrical voltage with respect to a second electrode (called a base), which can be connected to ground or to another voltage different from the previous one, causes a gradient of Enough electric field to occur in the "drop" that forms at the distal end of the injection needle (s), a conical shape called the Taylor cone.
  • the polymer at the end of the Taylor cone leaves it and “falls” towards the second wire-shaped electrode or small sphere, a few nanometers in diameter at least and some mire (micrometer) at most.
  • the EE presents other drawbacks, among which are not allowing the chemical phase inversion, as well as generating as a consequence of the chaotic movement, diameters of different sizes, breaks or discontinuities in the protofibers (derived from the different inertia generated during repulsions of exterior and lumen fluids). Additionally, said movement causes a lateral arrangement of the lumen in the fiber to be obtained, as well as an excessive thickness of the boundary layer, consequently it is not possible to differentiate between the active surface and its support.
  • the present invention is therefore directed to solve the above difficulties, presenting a manufacturing process of a membrane formed with micro-animal fibers from commercial polymers such as those mentioned above, and possibly also from special polymers of recent development and of very high cost, so that by arranging them in the form of a separating membrane, a large area of permeation of gases (and fluids in general) is achieved per unit mass of polymer used. To do this, it will be the object of the process to generate membranes with a minimum wall thickness, maintaining sufficient strength to withstand the working conditions.
  • a first object of the invention is a manufacturing process of composite hollow microfibers comprising:
  • a first lumen-forming fluid with a flow rate between 2 ml / h and 40 ml / h, preferably 7 ml / h at 30 ml / h, through a hollow needle terminal shaped injection device arranged coaxially inside of a mouthpiece or spinerette.
  • a second fluid characterized by comprise at least one gas separator polymer (PSG) dissolved in at least one solvent forming a viscous solution, with a viscosity value in the order of several thousand cPs (from, for example, 6000 cPs to 20,000 cPs, corresponding to solutions with a percentage by weight of polymer in the solvent of about 10-20% (said variable being variable depending on the polymer and its surface tension), which is injected with a flow rate between 2 ml / h and 40 ml / h, preferably 6 ml / h at 27 ml / h concentrically and coaxially to the first fluid
  • the pumping system of the second fluid may comprise a needle of greater diameter than the hollow needle described above or may consist of another equivalent system that allows a specific arrangement of the hollow needle, in addition to allowing the entry of the second fluid.In the case of having two concentric needles, both can have their terminal ends in the same The second needle
  • this can be a fixed or mobile flat system or preferably a rotating cylinder, to facilitate the collection and parallelism of the fibers deposited thereon.
  • said electric field gradient is combined with the gravitational field effect and with the flow rate of both fluids, thereby reducing the intensity of the electric field used compared to conventional EE techniques, said electric field being applied until said first and
  • the second fluid eventually detaches itself forming a thread or filament of flow called protofiber that, in this way, is stabilized by the conjunction of the electric field, gravitational field and flow provided by both fluids.
  • This protofiber is constituted by the first fluid (lumen generator) located inside and the second fluid (as a sheath) located outside.
  • the protofiber thus falls into an essentially vertical movement (without typical chaotic movement of the EE) and is collected in the second electrode (or base electrode) comprising a layer of a completely immiscible (non-solvent) fluid with the outer polymer, but perfectly miscible with the solvent (s) used to dissolve the polymer.
  • the protofiber solidifies forming a continuous film on the outer surface of the protofiber, without foams or pores, and of a minimum thickness (typically of some nanometers, preferably between 10 and 100 nm, up to or two microns), followed by a porous structure, often sponge type, with interconnected nanometric cavities, which minimize the path of the fluid to be separated by the rigid structure of intrinsic microporosity that is intended in the gas separating polymers.
  • This solidification is due to the gelation / coagulation of the polymer upon contact with the non-solvent fluid thereof, which is however miscible with the solvent of the outer polymer, which escapes and mixes with the fluid that accompanies the base electrode through the outside of it, as a film.
  • said phase change will be avoided, since the object is to leave free the place it occupies, forming a hollow lumen through which the fluid, gas etc., which separates from the initial mixture will move in future applications.
  • the lumen generating fluid could be removed by different methods, such as dilution or even volatilization in the heat treatment, or both in certain cases.
  • the described process is also characterized by being carried out in a controlled atmosphere of temperature, humidity and, where appropriate or possibly, a solvent supply by means of a carrier gas, in order to protect against possible evaporation of solvent from the separating polymer. or contact with excessive humidity.
  • the process is carried out at a temperature between -10 ° and 85 °, more preferably between 15 ° and 35 °.
  • the second electrode can rotate at a speed between 0 rpms and 200 rpm, preferably between 10 rpm and 130 rpm, depending on the drop speed and the diameter of the cylinder.
  • said control is carried out so that the tangential velocity of the cylinder at the point of fall of the protofiber and that of the protofiber itself are close or coincident, to avoid the formation of unwanted curls or dangerous stretches.
  • the injection device can move in a horizontal movement parallel to the surface of the cylinder, achieving a continuous alignment of microfibers with a certain parallel to each other.
  • the deposition or fall velocity of the protofiber on the base cylinder and the tangential velocity thereof must be correctly coordinated, allowing the deposition of the protofiber in an essentially normal way aligned with the generatrices of the collecting cylinder.
  • Said lateral deposition velocity may vary between 0.01 mm / s and 1 mm / s, more preferably between 0.09 mm / s and 0.5 mm / s.
  • Matrimid® as an external polymer, which consists of a commercial polyimide used in gas separations.
  • a concentration of 20% by weight can be used with an aprotic solvent, at 3.5 cm distance between electrodes and 4,500 volts of differential voltage, with a 200 mm diameter cylinder rotating at 100 rpm and using flow rates of 20 ml / h and 20 ml / hour of both lumen and Matrimid®, coagulating in pure water.
  • the first lumen-forming fluid is understood as a fluid comprising a solvent that may consist, for example, of viscous oils, polymers such as PPC (volatizable by heat treatment), PVP (water soluble and aprotic ), polyethylene oxide (easily removable), polyvinyl alcohol, and a long etc., being compatible (miscible) or not with the outer separator polymer, which does not occur for example in the conventional EE and represents an important difference between both systems .
  • Even a lumen fluid that induces moderate gelation of the inner wall of the protofiber can be used, generating inner pores that facilitate the transport of permeate fluid, by minimizing the continuous thickness that, on the other hand, is required outside the fiber .
  • This fluid after the formation of the microfibers, is eliminated giving rise to a lumen or foramen interior with respect to the outer surface or sheath of the microfibers, characterized by their continuity along them.
  • PSG gas separating polymer
  • said PSG will consist of a polymer that can be solubilized in organic solvents at a concentration sufficient for the electrowinning process and will be selected from the group of polysulfones, cellulosic plastics, dialkyl and diphenylsiloxane derivatives, polycarbonates, aliphatic polyethers, aromatic polyethers, polyesters, aliphatic polyamides, aromatic polyamides, polyurethanes, ABS plastics, acrylic polymers, liquid crystal polymers, fluorinated polymers, polyheterocycles such as polybenzoxazoles, polybenzimidazoles, or polyimides, and copolymers of the named polymer families or mixtures thereof.
  • TR thermalally rearranged polymers
  • PIM polymers polymers
  • intrinsic microporosity or some types of polyimides
  • all these types of polymers are capable of being transformed into membranes for gases in hollow fiber configuration, as long as they are soluble or can melt below their initial decomposition temperature and can be transformed into hollow fibers of small thickness and diameter by EE.
  • Another advantage of the process is that it is extensible to polymers and conventional mixtures, cheaper, allowing a reduction in costs due to the little material that is necessary to use, in addition to the lower implantation per unit of active surface, less use of adhesives , smaller size of the container system etc.
  • the size of the fiber obtained allows the use of high-priced polymers in the best possible way (at least in an order of magnitude lower than the best that can be achieved by conventional spinning procedures).
  • continuous hollow fibers cannot be achieved, nor would they be useful, since their tiny lumen would hardly allow work in separations in which the permeated gas is present in significant quantities;
  • the heat treatments recommended to inhibit plasticization or to ensure the closure of cycles in polyheterocycles, controlled crosslinking, controlled carbonization etc., are optimally applied in thinner FH (such as those produced in this procedure), whose handling it does not present, on the other hand, any problem due to the way they are collected after the formation of the fiber, not requiring that they be handled directly by machinery or any operator.
  • the proposed system with gas protection which has controlled the temperature, the degree of saturation in solvent of the gas-separating polymer and the humidity throughout the path of the protofiber, allows to work with very volatile solvents, such as chloroform, THF or toluene
  • both the first fluid and the second fluid injected into the system can be miscible. Even in certain cases, the lumen can cause controlled coagulation of the external fluid.
  • the outer polymer is Matrimid®
  • both PPC and PVP or PEO are compatible and are used without problem with aprotic solvents in both solutions.
  • One way of implementing the above is to use a rotating cylinder as a collecting electrode, which is partially submerged in the polymer's non-solvent fluid. Given the relatively high speed of rotation of the cylinder, the renewal of the non-solvent is, in this case, very effective.
  • a coagulant fluid can be added directly on the cylinder a few millimeters before the point of fall of the protofiber on the coagulant, and this combined with the previously defined bath that will carry away the non-optimal solvent that can be generated in the coagulant fluid sheet that accompanies the cylinder in its turn.
  • the hollow microfibers obtained from the process described above are also object of the invention.
  • the new manufacturing process which combines the harmony and uniformity of hollow fiber production through conventional spinning techniques, with the low diameter allowed by the EE system, obtaining microfibers with diameters of 5 to 120 microns, preferably of 5 to 100 microns and more preferably 5 to 50 microns, perfectly uniform, with a continuous outer surface lacking pores that exist, would be a preferential step for any fluid (in particular gases), and with a preferred active layer thickness of nanometers to one or two microns.
  • the base electrode consists of a cylinder covered with a conductive tissue
  • a subsequent cut of said tissue and the fiber bundle can be carried out, in a normal way to the assembly (that is, according to a generator of the cylinder , so that the fibers have a beginning and an end, constituting a bundle of aligned fibers and with the lumen open at both ends).
  • the membranes obtained have a dense outer surface (active face or "skin") and an internal porous structure, with pores or interconnected structures that allow the passage of gases or other fluids with maximum separation efficiency and minimum pressure or load loss.
  • skin active face
  • pores or interconnected structures that allow the passage of gases or other fluids with maximum separation efficiency and minimum pressure or load loss.
  • the manufacturing process of the membranes from the protofibers can be interwoven with other yarns deposited by EE in different conditions of tension, solvent, concentration, etc., whose mission is to give consistency to the whole of FH and create spaces for the passage of the gases to be processed.
  • the nature of these threads will preferably be polymeric, and for spinning all polymers capable of being processed by EE, their mixtures in all proportions and using the solvents and additives or fillers advised by experience can be used.
  • annealing the fibers at high temperature without having to manipulate them.
  • these temperatures can reach up to 450 ° C, depending on the objectives pursued. For example, to achieve RT, temperatures of 400 ° C and above are required. Certain cross-links are achieved at 250 ° C and total solvent removal usually does not require more than 160 ° C if combined with vacuum in the processing chamber.
  • what allows this process is precisely to reach the values required by the most evolved polymers, both for processing and for subsequent work, once the modules are constituted.
  • FIG. 1 shows the diagram of the process object of the invention.
  • Figures 2 to 8 show images obtained by scanning electron microscopy, where the hollow microfibers object of the invention are observed in detail.
  • Figures 9 to 11 show images of different moments of the manufacturing process of hollow microfibers.
  • Injection device can be by dosing syringe for several injection needles or by high precision gear pump system or similar for systems with many injection needles or spinnerets);
  • the first fluid (1) and the second fluid (2) are dosed in the injection device (3) through a nozzle that can be single or multiple. In this way, both the first fluid (1) and the second fluid (2) are injected with a flow rate between 2 and 40 ml / min.
  • control system (7) comprising an air filter, as well as a temperature control system (preferably, by electric resistance) and humidity (preferably, by drying the air, followed by the addition of moisture and solvent (if applicable) to the required value).
  • a condenser or solvent eliminator may be available at the air outlet of the ventilation enclosure, in order to avoid the emission of solvents into the atmosphere.
  • the air is filtered by removing excess moisture through the air inlet (8) and the temperature is preferably controlled between 0 ° C and 85 ° C.
  • the solvent can be recovered for economic or environmental reasons.
  • the actual thickness of the polymer is reduced by one or more orders of magnitude with respect to what is obtained by conventional spinning.
  • a thickness of tens of microns is a classic value in commercial membranes, and when values close to the mine are achieved, a support is usually required, which leads to high fiber diameters.
  • said support consists of another fiber (or flat membrane) that requires a previous formation process and that limits, in general, the temperatures of use.
  • the membranes in conventional systems are integrally constituted by the separator polymer, said polymer necessarily has a specific surface (surface area polymer mass unit) of two to three orders of magnitude greater than those obtained by the process of the invention, which makes the conventional system more expensive in separating polymer and much higher in module volume for the same active surface.

Abstract

The invention relates to a method comprising: (a) injecting a first lumen-forming fluid by means of an injection device arranged coaxially inside a nozzle or spinnerette, and injecting a second fluid comprising a gas-separating polymer (PSG) dissolved in at least one solvent coaxially to the first fluid; and (b) generating an electric field gradient between the spinnerette and a second electrode; combining said gradient with the effect of the gravitational field and with the flow of the two fluids, until said first and second fluid detach themselves, forming a protofibre which falls and is collected in the second electrode where the protofibre solidifies, forming the hollow microfibre. The invention also relates to the microfibres produced from said process, and to the use thereof in the production of hollow microfibre membranes.

Description

PROCESO DE FABRICACIÓN DE MEMBRANAS DE MICROFIBRAS HUECAS Y  MANUFACTURING PROCESS OF MEMBRANES OF HOLLOW MICROFIBERS AND
MEMBRANAS ASÍ OBTENIDAS  MEMBRANES SO OBTAINED
DESCRIPCIÓN DESCRIPTION
Sector de la técnica Technical sector
La presente invención se refiere al campo de las membranas poliméricas de microfibras huecas con aplicación en la purificación y separación de gases. Más concretamente, se refiere a un nuevo proceso de fabricación de dichas membranas, así como a las membranas obtenidas a partir del mismo y a su uso, por ejemplo, en métodos de separación de gases o fluidos. The present invention relates to the field of hollow microfiber polymer membranes with application in the purification and separation of gases. More specifically, it refers to a new manufacturing process for said membranes, as well as to the membranes obtained therefrom and their use, for example, in methods of gas or fluid separation.
Antecedentes de la invención Actualmente existen importantes problemas en la industria y especialmente en el medio ambiente, por los cuales existe un gran interés, tanto económico como ambiental, por conseguir segregar distintas mezclas de gases. En algunos casos, esta segregación tiene por finalidad la recuperación de dichos gases y, en otros, su confinamiento. Así por ejemplo, es empleada con objeto de separar el anhídrido carbónico de los gases de combustión de manera que éste no se emita a la atmósfera y contribuya al consabido efecto invernadero. BACKGROUND OF THE INVENTION There are currently major problems in the industry and especially in the environment, for which there is a great interest, both economically and environmentally, for segregating different gas mixtures. In some cases, this segregation is intended to recover these gases and, in others, their confinement. Thus, for example, it is used in order to separate carbon dioxide from combustion gases so that it does not emit into the atmosphere and contributes to the usual greenhouse effect.
No son menos importantes las separaciones que hay que realizar en el syngas, donde una corriente de vapor de agua a elevada temperatura descompone el carbón en C02, CO y H2, siendo este último el combustible que se persigue para muchas aplicaciones, incluidas y especialmente las células de combustible. No less important are the separations that have to be made in the syngas, where a stream of high temperature water vapor decomposes the carbon in C0 2 , CO and H 2 , the latter being the fuel that is sought for many applications, including and especially the fuel cells.
Otras separaciones cruciales en las que puede aplicarse esta tecnología son, entre otros ejemplos, las separaciones 02 y N2, o la eliminación de C02 del gas natural, que dependiendo del origen puede contener cantidades muy altas de C02. Other crucial separations in which this technology can be applied are, among other examples, the 0 2 and N 2 separations, or the removal of C0 2 from natural gas, which depending on the origin may contain very high amounts of C0 2 .
Naturalmente, en los procesos de separación de gases, elevadas presiones arrojan mayores caudales por unidad de superficie y, en general, temperaturas superiores actúan de igual modo sobre el fenómeno de la permeación de gases en polímeros conformados en forma de membrana de fibra hueca. Por esta razón, las membranas obtenidas a partir de estructuras poliméricas muy rígidas, incluso reticuladas, con mínima flexibilidad y elevada resistencia térmica son preferidas para estas aplicaciones de separación. Además, se prefieren los polímeros amorfos (vitreos) y de alta temperatura de transición vitrea. Es sabido que hay polímeros en los que los distintos gases son solubles en mayor o menor grado. Además, los gases presentan mayor o menor afinidad por los distintos polímeros en base a la estructura molecular de estos, del tipo de enlaces que los conforman, su volumen libre molecular, los grupos polares o grupos funcionales presentes en la molécula polimérica, etcétera. Naturally, in the processes of gas separation, high pressures yield higher flow rates per unit area and, in general, higher temperatures act in the same way on the phenomenon of gas permeation in polymers shaped as a hollow fiber membrane. For this reason, membranes obtained from very rigid polymer structures, even cross-linked, with minimal flexibility and high thermal resistance are preferred for these separation applications. In addition, amorphous (vitreous) and high temperature glass transition polymers are preferred. It is known that there are polymers in which different gases are soluble to a greater or lesser degree. In addition, the gases have greater or lesser affinity for the different polymers based on their molecular structure, the type of bonds that make them up, their free molecular volume, the polar groups or functional groups present in the polymer molecule, and so on.
Estos polímeros pueden configurarse, para su uso práctico, en forma de fibras huecas de pequeño diámetro pero de gran longitud, ofreciendo una gran superficie al paso (por unidad de masa de polímero) de los gases, además de presentar pequeños espesores de pared. Esta configuración de los polímeros es la que, clásicamente, permite llevar a cabo la separación de los gases. These polymers can be configured, for practical use, in the form of hollow fibers of small diameter but of great length, offering a large surface area (per unit mass of polymer) of the gases, in addition to presenting small wall thicknesses. This configuration of the polymers is what, classically, allows the separation of gases.
De este modo, se ha de obtener la mayor superficie posible al paso de los gases con la cantidad mínima de polímero. Asimismo, las fibras huecas se han de fabricar con el menor espesor posible, pero con la suficiente resistencia mecánica, optimizando de este modo tanto los costos del producto, como la cantidad de gas que puede ser procesado. In this way, the greatest possible surface area of the gases with the minimum amount of polymer has to be obtained. Also, the hollow fibers have to be manufactured with the lowest possible thickness, but with sufficient mechanical strength, thus optimizing both the costs of the product and the amount of gas that can be processed.
Actualmente, las fibras huecas tienen un diámetro máximo, en el entorno de un milímetro o como poco unas décimas de milímetro y se conforman desde una disolución viscosa de polímero, o bien partiendo de éste fundido, mediante su extrusión y conformado en base a la extrusión a través de boquillas (spinnerets) especialmente diseñadas para esta aplicación. Convencionalmente, estas boquillas constan de dos agujas concéntricas, por la interior de las cuales transcurre el fluido que dará lugar a la formación del lumen. Por el espacio entre la aguja interior y la exterior fluye a su vez la disolución del polímero o polímeros que conforman las fibras propiamente dichas. La aguja exterior puede ser simplemente un cuerpo macizo en el que se ha perforado un cilindro coaxial al cual se une la mencionada aguja interior portadora del fluido generador del lumen. Este equipo facilita la consecución, a la postre, de las Fibras Huecas (en adelante FH) de longitud continua, debido a una producción continua y estable, pero con un diámetro de 0,2 a 1 mm o superiores. Currently, the hollow fibers have a maximum diameter, around a millimeter or at least a few tenths of a millimeter and are formed from a viscous polymer solution, or from this molten, by extrusion and forming based on extrusion through nozzles (spinnerets) specially designed for this application. Conventionally, these nozzles consist of two concentric needles, through which the fluid that will lead to the formation of the lumen passes. The dissolution of the polymer or polymers that make up the fibers themselves flows through the space between the inner and outer needles. The outer needle can simply be a solid body in which a coaxial cylinder has been perforated to which the said inner needle carrying the lumen generating fluid is attached. This equipment facilitates the achievement, in the end, of the Hollow Fibers (hereinafter FH) of continuous length, due to a continuous and stable production, but with a diameter of 0.2 to 1 mm or greater.
Los polímeros económicos de bajo coste que se producen comercialmente en grandes cantidades y que, frecuentemente, se han diseñado para otras aplicaciones, son rentables en cuanto que aportan su factor de bajo coste. Sin embargo, la baja selectividad de estos polímeros económicos a los distintos gases y, sobre todo, el bajo caudal de permeación que presentan, además de su limitada resistencia térmica, hacen que no sean útiles para muchas aplicaciones. Economical low-cost polymers that are produced commercially in large quantities and that have often been designed for other applications are cost-effective in that they provide their low-cost factor. However, the low selectivity of these economic polymers to different gases and, above all, the low permeation flow rate that they have, in addition to their limited thermal resistance, make them not useful for many applications.
Existen polímeros comerciales que pueden realizar distintas separaciones de gases y que se diferencian en su permeabilidad a los gases, resistencia mecánica para trabajar a presiones o temperaturas elevadas, resistencia a ciertos químicos o resistencia incluso a los propios gases. Si estas propiedades no son suficientemente buenas, se puede producir, en función de las condiciones de trabajo, la degeneración o degradación práctica de los polímeros. There are commercial polymers that can make different gas separations and that differ in their gas permeability, mechanical resistance to work at high pressures or temperatures, resistance to certain chemicals or resistance even to the gases themselves. If these properties are not good enough, the degeneration or practical degradation of the polymers can occur, depending on the working conditions.
Prácticamente todos los polímeros comerciales se han ensayado ya como formadores de membranas planas porosas y fibras huecas porosas para la purificación y separación de gases. Ejemplos de ellos son los plásticos celulósicos, las polisulfonas, los derivados de dialquil y difenilsiloxanos, los policarbonatos, los poliéteres (alifáticos y aromáticos), los poliésteres, las poliamidas (alifáticas y aromáticas), los poliuretanos, y en menor medida otros termoplásticos para ingeniería, como son los plásticos ABS, los polímeros acrílicos, o en general polifenilenos funcionales tipo PPO, PPS o PEEK. También se han ensayado polímeros de altas prestaciones, como son los polímeros fluorados y algunos poliheterociclos, como polibenzoxazoles, polibencimidazoles, o las poliimidas, y gran cantidad de copolímeros o mezclas de las familias de polímeros nombrados. Modernamente han despertado gran interés para esta aplicación algunas poliimidas experimentales solubles, que ofrecen un balance permeabilidad/selectividad muy superior a las poliimidas convencionales o a poliimidas comerciales utilizadas hasta ahora para esta aplicación. En principio, todos estos tipos de polímeros son susceptibles de ser transformados en membranas para gases en configuración fibra hueca, con tal de que sean solubles o se puedan fundir por debajo de su temperatura inicial de descomposición. Virtually all commercial polymers have already been tested as porous flat membrane and porous hollow fiber for gas purification and separation. Examples of these are cellulosic plastics, polysulfones, dialkyl and diphenylsiloxane derivatives, polycarbonates, polyethers (aliphatic and aromatic), polyesters, polyamides (aliphatic and aromatic), polyurethanes, and to a lesser extent other thermoplastics for engineering, such as ABS plastics, acrylic polymers, or in general functional polyphenylene type PPO, PPS or PEEK. High performance polymers have also been tested, such as fluorinated polymers and some polyheterocycles, such as polybenzoxazoles, polybenzimidazoles, or polyimides, and a large number of copolymers or mixtures of the named polymer families. Modernly, some soluble experimental polyimides have aroused great interest for this application, which offer a permeability / selectivity balance far superior to conventional polyimides or commercial polyimides used so far for this application. In principle, all these types of polymers are capable of being transformed into membranes for gases in hollow fiber configuration, as long as they are soluble or can melt below their initial decomposition temperature.
En los últimos años, diversos grupos de trabajo y varias compañías, generalmente ligadas a aplicaciones biomédicas, han puesto a punto la tecnología electrohilado (electrospinning, EE) para la formación de nanohilos. Esta tecnología electrohidrodinámica (EHD) de spinning consiste en inyectar a través de una aguja hueca un polímero disuelto en uno o varios disolventes, solo o acompañado de otros polímeros o de partículas no poliméricas, solubles o no en uno o varios de esos disolventes. Este polímero, que se halla a una determinada tensión eléctrica respecto a un segundo electrodo (llamado base), el cual puede estar conectado a tierra o a otra tensión distinta a la anterior, hace que se genere un gradiente de campo eléctrico suficiente para que se produzca en la "gota" que se forma en el extremo distal de la o las agujas de inyección, una forma cónica denominada cono de Taylor. In recent years, various work groups and several companies, generally linked to biomedical applications, have developed electro-spun technology (electrospinning, EE) for the formation of nanowires. This spinning electrohydrodynamic (EHD) technology consists of injecting through a hollow needle a polymer dissolved in one or more solvents, alone or accompanied by other polymers or non-polymeric particles, soluble or not in one or more of those solvents. This polymer, which is at a certain electrical voltage with respect to a second electrode (called a base), which can be connected to ground or to another voltage different from the previous one, causes a gradient of Enough electric field to occur in the "drop" that forms at the distal end of the injection needle (s), a conical shape called the Taylor cone.
Así por ejemplo, en la patente ES2245874 se describe un método para producir nanotubos y nanofibras compuestas con estructura núcleo-cáscara, a partir de flujos coaxiales de líquidos inmiscibles o pobremente miscibles. For example, in ES2245874 a method for producing composite nanotubes and core-shell structure, from coaxial flows of immiscible or poorly miscible liquids, is described.
En general, el proceso del EE aplicado a un solo polímero comprende aportar el polímero desde la aguja de una jeringa (u otro tipo de dispositivo que permita aportar con precisión el o los polímeros, como una bomba de engranaje de alta precisión, etc.), hacia un dispositivo conductor conectado a tierra o a menor tensión que la jeringa-spinnerete, situado a la adecuada distancia de la aguja en cuestión. En el extremo de la jeringa donde se halla la salida del polímero al exterior de la misma se genera una atracción del polímero inyectado hacia el electrodo "base" que se halla a otro potencial, generándose una forma cónica del polímero saliente de la jeringa, llamado cono de Taylor. En el momento en que el gradiente de campo eléctrico entre el polímero situado en el cono de Taylor y el electrodo base es suficientemente alto, el polímero del extremo del cono de Taylor abandona éste y "cae" hacia el segundo electrodo en forma de hilo o pequeña esfera, de algunos nanómetros de diámetro como mínimo y alguna miera (micrómetro) como máximo. In general, the EE process applied to a single polymer comprises providing the polymer from the needle of a syringe (or other type of device that allows to provide precisely the polymer (s), such as a high-precision gear pump, etc.) , towards a conductive device connected to ground or less tension than the syringe-spinnerete, located at the appropriate distance from the needle in question. At the end of the syringe where the polymer outlet is located outside it, an attraction of the injected polymer is generated towards the "base" electrode that is at another potential, generating a conical shape of the polymer protruding from the syringe, called Taylor cone. At the moment when the electric field gradient between the polymer located in the Taylor cone and the base electrode is sufficiently high, the polymer at the end of the Taylor cone leaves it and "falls" towards the second wire-shaped electrode or small sphere, a few nanometers in diameter at least and some mire (micrometer) at most.
La utilización de este campo eléctrico y el consiguiente cono de Taylor, permite conseguir que las fibras obtenidas sean, en principio, de diámetro inferior a las que se obtienen de forma totalmente análoga pero usando solamente la gravedad para producir el hilado. En el EE "puro", son los parámetros eléctricos los que determinan el tamaño del hilo inicialmente obtenido. The use of this electric field and the subsequent Taylor cone, allows to obtain that the fibers obtained are, in principle, smaller in diameter than those obtained in a completely analogous way but using only gravity to produce the spinning. In the "pure" EE, it is the electrical parameters that determine the size of the wire initially obtained.
En el caso de emplear dos fluidos, además de la aguja convencional se empleará una segunda aguja interior a la primera con objeto de aportar coaxialmente con el primer polímero, un segundo fluido, que quedará confinado en el interior del hilo. De este modo, por esta segunda aguja coaxial con la primera, se inyecta mediante un sistema análogo al anterior, por ejemplo, una segunda bomba de émbolo, un nuevo fluido que puede ser, entre otros, un aceite u otro polímero disuelto (o fundido) compatible o no con el que se inyecta por el exterior. El problema de este método radica en que durante la fase de formación de la fibra el disolvente del polímero usado es eliminado en su mayor parte, pasando a la atmósfera, ocurriendo lo mismo en mayor o menor grado al disolvente del polímero interior si éste es compatible o incluso coincidente con el usado para el exterior. In the case of using two fluids, in addition to the conventional needle a second inner needle will be used to the first in order to coaxially provide with the first polymer, a second fluid, which will be confined inside the thread. Thus, by this second coaxial needle with the first, it is injected by a system analogous to the previous one, for example, a second piston pump, a new fluid that can be, among others, an oil or other dissolved (or molten polymer) ) compatible or not with the one injected on the outside. The problem with this method is that during the fiber formation phase the solvent of the polymer used is mostly removed, passing into the atmosphere, the same thing happening to a greater or lesser extent to the solvent of the inner polymer if it is compatible or even coincident with that used for the outside.
Al perderse dicho disolvente la protofibra se ioniza, lo que genera fuertes repulsiones consigo misma (al presentar la misma carga electrostática y poca masa), lo que se traduce en un movimiento caótico de la misma. Este movimiento provoca frecuentemente discontinuidades en la fibra, pérdida del lumen o conexión de éste con el exterior, siendo en la práctica imposible (o prácticamente imposible en condiciones de producción industrial de producto) el conseguir una FH continua y sin defectos que la haga válida al uso que aquí se pretende. When this solvent is lost, the protofiber is ionized, which generates strong repulsions with itself (when presenting the same electrostatic charge and low mass), which translates into a chaotic movement of it. This movement frequently causes discontinuities in the fiber, loss of the lumen or its connection with the outside, being in practice impossible (or practically impossible in conditions of industrial product production) to achieve a continuous and flawless FH that makes it valid for intended use here.
Asimismo, el EE presenta otros inconvenientes, entre los que se encuentran el no permitir la inversión de fase química, así como el generar como consecuencia del movimiento caótico, diámetros de diferentes tamaños, roturas o discontinuidades en las protofibras (derivados de las diferentes inercias generadas durante las repulsiones de los fluidos exterior y lumen). Adicionalmente, dicho movimiento provoca que se obtenga una disposición lateral del lumen en la fibra, así como un excesivo espesor de la capa límite, no siendo posible en consecuencia diferenciar entre la superficie activa y soporte de la misma. La presente invención se dirige por tanto a solventar las dificultades anteriores, presentando un proceso de fabricación de una membrana conformada con fibras microhuecas a partir de polímeros comerciales como los citados anteriormente, y eventualmente también a partir de polímeros especiales de reciente desarrollo y de muy elevado coste, de manera que al disponerlos en forma de membrana separadora, se consiga una gran superficie de permeación de gases (y fluidos en general) por unidad de masa de polímero usada. Para ello, será objeto del proceso generar membranas con un espesor mínimo de pared, conservando la resistencia suficiente para soportar las condiciones de trabajo. Likewise, the EE presents other drawbacks, among which are not allowing the chemical phase inversion, as well as generating as a consequence of the chaotic movement, diameters of different sizes, breaks or discontinuities in the protofibers (derived from the different inertia generated during repulsions of exterior and lumen fluids). Additionally, said movement causes a lateral arrangement of the lumen in the fiber to be obtained, as well as an excessive thickness of the boundary layer, consequently it is not possible to differentiate between the active surface and its support. The present invention is therefore directed to solve the above difficulties, presenting a manufacturing process of a membrane formed with micro-animal fibers from commercial polymers such as those mentioned above, and possibly also from special polymers of recent development and of very high cost, so that by arranging them in the form of a separating membrane, a large area of permeation of gases (and fluids in general) is achieved per unit mass of polymer used. To do this, it will be the object of the process to generate membranes with a minimum wall thickness, maintaining sufficient strength to withstand the working conditions.
Descripción de la invención Description of the invention
Es un primer objeto de la invención un proceso de fabricación de microfibras huecas compuestas que comprende: A first object of the invention is a manufacturing process of composite hollow microfibers comprising:
a. inyectar un primer fluido formador de lumen con un caudal comprendido entre 2 ml/h y 40 ml/h, preferiblemente de 7 ml/h a 30 ml/h, a través de un dispositivo de inyección con forma terminal de aguja hueca dispuesta coaxialmente en el interior de una boquilla o spinerette. Simultáneamente, se dosifica un segundo fluido caracterizado por comprender al menos un polímero separador de gases (PSG) disuelto en al menos un disolvente formando una disolución viscosa, con un valor de viscosidad en el orden de varios miles de cPs (desde, por ejemplo, 6000 cPs hasta 20.000 cPs, correspondiente a disoluciones con un porcentaje en peso de polímero en el disolvente de en torno al 10- 20% (siendo dicho valor variable en función del polímero y de su tensión superficial), el cual es inyectado con un caudal comprendido entre 2 ml/h y 40 ml/h, preferiblemente de 6 ml/h a 27 ml/h de manera concéntrica y coaxial al primer fluido. De manera particular, el sistema de bombeo del segundo fluido puede comprender una aguja de mayor diámetro que la aguja hueca anteriormente descrita o puede consistir en otro sistema equivalente que permita una disposición concreta de la aguja hueca, además de permitir la entrada del segundo fluido. En el caso de disponer de dos agujas concéntricas, ambas pueden tener sus extremos terminales en el mismo plano. La segunda aguja puede no existir y concretarse el paso del segundo fluido a través de un foramen practicado en el cuerpo de la boquilla en el que, coaxialmente al mismo, se aloja la aguja conductora del primer fluido. En este caso, el cuerpo de la boquilla debe estar ejecutado en un material no conductor y resistente a los disolventes, como pueden ser el PP, PEEK y otros; to. injecting a first lumen-forming fluid with a flow rate between 2 ml / h and 40 ml / h, preferably 7 ml / h at 30 ml / h, through a hollow needle terminal shaped injection device arranged coaxially inside of a mouthpiece or spinerette. Simultaneously, a second fluid characterized by comprise at least one gas separator polymer (PSG) dissolved in at least one solvent forming a viscous solution, with a viscosity value in the order of several thousand cPs (from, for example, 6000 cPs to 20,000 cPs, corresponding to solutions with a percentage by weight of polymer in the solvent of about 10-20% (said variable being variable depending on the polymer and its surface tension), which is injected with a flow rate between 2 ml / h and 40 ml / h, preferably 6 ml / h at 27 ml / h concentrically and coaxially to the first fluid, in particular, the pumping system of the second fluid may comprise a needle of greater diameter than the hollow needle described above or may consist of another equivalent system that allows a specific arrangement of the hollow needle, in addition to allowing the entry of the second fluid.In the case of having two concentric needles, both can have their terminal ends in the same The second needle may not exist and the passage of the second fluid through a foramen made in the body of the nozzle in which, coaxially thereto, the conductive needle of the first fluid is housed. In this case, the body of the nozzle must be executed in a non-conductive and solvent resistant material, such as PP, PEEK and others;
generar un gradiente de campo eléctrico entre la tensión eléctrica del sistema de inyección que constituye un primer electrodo y la tensión de un segundo electrodo que consiste preferentemente en un cilindro base situado a poca distancia (preferentemente de 1 cm a 10 cm, y más preferentemente de 2 a 10 cm) del sistema de inyección, el cual se encuentra conectado a tierra o a otra tensión distinta a la anterior, siendo dicho gradiente suficiente para que se genere una deformación en el extremo o superficie distal de la gota formada a la salida del sistema de inyección. En cuanto al segundo electrodo, éste puede ser un sistema plano fijo o móvil o preferentemente un cilindro rotativo, para facilitar la recogida y el paralelismo de las fibras depositadas sobre el mismo. De manera preferente, puede disponerse adicionalmente alrededor del mismo una manta o capa de tejido-no-tejido, TNT (preferentemente, para bajas temperaturas) o tejido tejido apropiado, recubriéndolo a modo de funda. Dicho tejido puede consistir, preferentemente, en un material que permita obtener una funda que sea buena conductora, que aporte una buena resistencia mecánica y que sea capaz de soportar elevadas temperaturas (de manera particular, capaces de soportar condiciones de trabajo de 200°C o superiores, a las cuales el rendimiento mejora considerablemente, siendo incluso imprescindibles en ocasiones y llegando incluso a superar los 450°C). Preferentemente, estos materiales pueden consistir en fibra de vidrio o fibra de carbono tejida u otro tipo de fibra sinterizada. Para altas temperaturas, podría emplearse también metal perforado (p.e. aluminio perforado, el cual es maleable y económico); generate an electric field gradient between the electrical voltage of the injection system constituting a first electrode and the voltage of a second electrode consisting preferably of a base cylinder located at a short distance (preferably from 1 cm to 10 cm, and more preferably from 2 to 10 cm) of the injection system, which is connected to ground or other voltage different from the previous one, said gradient being sufficient to generate a deformation at the end or distal surface of the drop formed at the exit of the system Injection As for the second electrode, this can be a fixed or mobile flat system or preferably a rotating cylinder, to facilitate the collection and parallelism of the fibers deposited thereon. Preferably, a non-woven blanket or layer, TNT (preferably, at low temperatures) or appropriate woven fabric may be additionally arranged around it, covering it as a sheath. Said fabric may preferably consist of a material that makes it possible to obtain a sheath that is good conductive, that provides good mechanical resistance and is capable of withstanding high temperatures (in particular, capable of withstanding working conditions of 200 ° C or higher, to which the performance improves considerably, being even essential at times and even exceeding 450 ° C). Preferably, these materials may consist of glass fiber or carbon fiber woven or other type of sintered fiber. For high temperatures, perforated metal (eg perforated aluminum, which is malleable and economical) could also be used;
dicho gradiente de campo eléctrico es combinado con el efecto de campo gravitatorio y con el caudal aportado de ambos fluidos, consiguiendo de este modo disminuir la intensidad del campo eléctrico utilizada frente a las técnicas EE convencionales, siendo dicho campo eléctrico aplicado hasta que dicho primer y segundo fluido terminan por desprenderse formando un hilo o filamento de caudal denominado protofibra que, de este modo, queda estabilizado por la conjunción del campo eléctrico, campo gravitatorio y caudal aportado de ambos fluidos. Esta protofibra se encuentra constituida por el primer fluido (generador de lumen) situado en el interior y el segundo fluido (a modo de vaina) localizado en el exterior. La protofibra cae de este modo en un movimiento esencialmente vertical (sin movimiento caótico típico del EE) y es recogida en el segundo electrodo (o electrodo base) que comprende una capa de un fluido totalmente inmiscible (no solvente) con el polímero exterior, pero perfectamente miscible con el o los disolventes utilizados para disolver el polímero. De este modo, al contacto con el mismo, la protofibra solidifica formando una película continua en la superficie exterior de la protofibra, sin forámenes o poros, y de un espesor mínimo (típicamente de algunos nanómetros, preferentemente entre 10 y 100 nm, hasta una o dos mieras), seguida de una estructura porosa, frecuentemente tipo esponja, con cavidades nanométricas interconectadas, las cuales minimizan el recorrido del fluido a separar por la estructura rígida de microporosidad intrínseca que se pretende en los polímeros separadores de gases. Esta solidificación se debe a la gelificación/coagulación del polímero al contactar con el fluido no solvente del mismo, que sí es miscible sin embargo con el disolvente del polímero exterior, el cual se escapa y mezcla con el fluido que acompaña al electrodo base por el exterior del mismo, a modo de película. De este modo, en una realización particular en la que el electrodo base sea un cilindro rotatorio, mediante la rotación del mismo se consigue renovar el fluido no solvente del polímero a través, por ejemplo, del contacto de la fibra formada con un baño sito en el inferior del cilindro o por aportación directa de agua u otro fluido coagulante (el cual puede contener agua, alcohol, acetona o una gran variedad de líquidos incompatibles con el polímero y miscibles con varios de los disolventes del mismo) al cilindro. Así, el no solvente se renueva constantemente para extraer el disolvente del polímero separador que conforma la fibra hueca, mediante un proceso de inversión de fase "química" del polímero que constituye la vaina o recubrimiento exterior. En una realización particular de la invención, el disolvente del polímero que se usa para formar el lumen puede asimismo cambiar de fase. Preferentemente, dicho cambio de fase se tratará de evitar, ya que el objeto es que deje libre el lugar que ocupa, formando un lumen hueco a través del cual se desplazará en futuras aplicaciones el fluido, gas etc., que se separe de la mezcla inicial. De este modo, el fluido generador del lumen podría eliminarse por distintos métodos, tales como por dilución o incluso por volatilización en el tratamiento térmico, o por ambas en ciertos casos. said electric field gradient is combined with the gravitational field effect and with the flow rate of both fluids, thereby reducing the intensity of the electric field used compared to conventional EE techniques, said electric field being applied until said first and The second fluid eventually detaches itself forming a thread or filament of flow called protofiber that, in this way, is stabilized by the conjunction of the electric field, gravitational field and flow provided by both fluids. This protofiber is constituted by the first fluid (lumen generator) located inside and the second fluid (as a sheath) located outside. The protofiber thus falls into an essentially vertical movement (without typical chaotic movement of the EE) and is collected in the second electrode (or base electrode) comprising a layer of a completely immiscible (non-solvent) fluid with the outer polymer, but perfectly miscible with the solvent (s) used to dissolve the polymer. Thus, upon contact with it, the protofiber solidifies forming a continuous film on the outer surface of the protofiber, without foams or pores, and of a minimum thickness (typically of some nanometers, preferably between 10 and 100 nm, up to or two microns), followed by a porous structure, often sponge type, with interconnected nanometric cavities, which minimize the path of the fluid to be separated by the rigid structure of intrinsic microporosity that is intended in the gas separating polymers. This solidification is due to the gelation / coagulation of the polymer upon contact with the non-solvent fluid thereof, which is however miscible with the solvent of the outer polymer, which escapes and mixes with the fluid that accompanies the base electrode through the outside of it, as a film. Thus, in a particular embodiment in which the base electrode is a rotating cylinder, by rotating it, it is possible to renew the non-solvent fluid of the polymer through, for example, the contact of the fiber formed with a bath located in the bottom of the cylinder or by direct supply of water or other coagulating fluid (which may contain water, alcohol, acetone or a variety of liquids incompatible with the polymer and miscible with several of the solvents thereof) to the cylinder. Thus, the non-solvent is constantly renewed to extract the solvent from the separating polymer that forms the hollow fiber, by means of a "chemical" phase inversion process of the polymer that constitutes the outer sheath or coating. In a particular embodiment of the invention, the polymer solvent used to form the lumen can also change phase. Preferably, said phase change will be avoided, since the object is to leave free the place it occupies, forming a hollow lumen through which the fluid, gas etc., which separates from the initial mixture will move in future applications. In this way, the lumen generating fluid could be removed by different methods, such as dilution or even volatilization in the heat treatment, or both in certain cases.
El proceso descrito se caracteriza asimismo por llevarse a cabo en una atmósfera controlada de temperatura, humedad y, en su caso o eventualmente, un aporte de disolvente mediante un gas portador, con objeto de proteger de una posible sobre- evaporación de disolvente del polímero separador o de contacto del mismo con humedades excesivas. En concreto, el proceso se lleva a cabo a una temperatura entre -10° y 85°, más preferentemente entre 15° y 35°. Como consecuencia de esta atmósfera controlada de disolvente, se consigue controlar la pérdida del mismo, de modo que ésta sea mínima o incluso nula y se evita la descontrolada ionización de las microfibras y un movimiento caótico de las mismas, lo que provocaría una gran dispersión del diámetro en las fibras y una indeseable disminución de su tamaño (como en el EE de las patentes de referencia descritas en los "Antecedentes de la invención"). Asimismo, se consigue evitar la aparición de microcoagulaciones en la superficie de las protofibras por precipitación de humedad en la pared exterior de las mismas. Finalmente, gracias a la coagulación de las fibras en un no solvente, éstas se obtienen libres de adherencias unas con otras, evitando la creación de tensiones que pueden llevar a la rotura de las mismas o a otros defectos que las hagan inservibles, como la fusión o el aplastamiento. The described process is also characterized by being carried out in a controlled atmosphere of temperature, humidity and, where appropriate or possibly, a solvent supply by means of a carrier gas, in order to protect against possible evaporation of solvent from the separating polymer. or contact with excessive humidity. Specifically, the process is carried out at a temperature between -10 ° and 85 °, more preferably between 15 ° and 35 °. As a consequence of this controlled atmosphere of solvent, it is possible to control its loss, so that it is minimal or even zero and the uncontrolled ionization of the microfibers and a chaotic movement of the same is avoided, which would cause a great dispersion of the diameter in the fibers and an undesirable decrease in their size (as in the EE of the reference patents described in the "Background of the invention"). Likewise, it is possible to avoid the appearance of microcoagulations on the surface of the protofibers by precipitation of moisture in the outer wall thereof. Finally, thanks to the coagulation of the fibers in a non-solvent, they are obtained free of adhesions with each other, avoiding the creation of tensions that can lead to their breakage or other defects that make them useless, such as fusion or crushing
Por otra parte, al no existir un movimiento caótico, se consigue definir exactamente el área del cilindro, lo que permite ordenar las FH como mejor convenga (preferentemente alineadas formando hélices de pequeño paso de "rosca", controlado por el movimiento horizontal de los spinnerets) y no de manera aleatoria, y hacerlo sobre una tejido soporte que, a su vez, permite manipular las FH sin llegar a tocarlas, asegurando que no haya roturas en su manejo. On the other hand, in the absence of a chaotic movement, it is possible to define exactly the area of the cylinder, which allows the FH to be ordered as best suits (preferably aligned forming small "screw" pitch propellers, controlled by the horizontal movement of the spinnerets ) and not randomly, and do it on a support fabric that, in turn, allows the FH to be manipulated without touching them, ensuring that there are no breaks in its handling.
A lo largo del proceso, el segundo electrodo puede rotar a una velocidad comprendida entre 0 rpms y 200 rpm preferentemente entre 10 rpm y 130 rpm, en función de la velocidad de caída y del diámetro del cilindro. De manera preferente, dicho control se lleva a cabo de modo que la velocidad tangencial del cilindro en el punto de caída de la protofibra y la de la propia protofibra sean cercanas o coincidentes, para evitar la formación de rizos indeseados o estiramientos peligrosos. Al mismo tiempo, el dispositivo de inyección puede desplazarse en un movimiento horizontal paralelo a la superficie del cilindro, logrando una alineación continua de microfibras con un cierto paralelismo entre sí. Para lograr esto, la velocidad de deposición o caída de la protofibra sobre el cilindro base y la velocidad tangencial del mismo deben estar coordinadas correctamente, permitiendo el depósito de la protofibra de forma alineada en sentido esencialmente normal a las generatrices del cilindro colector. Dicha velocidad lateral de deposición puede variar entre 0,01 mm/s y 1 mm/s, más preferentemente entre 0,09 mm/s y 0,5 mm/s. Throughout the process, the second electrode can rotate at a speed between 0 rpms and 200 rpm, preferably between 10 rpm and 130 rpm, depending on the drop speed and the diameter of the cylinder. Preferably, said control is carried out so that the tangential velocity of the cylinder at the point of fall of the protofiber and that of the protofiber itself are close or coincident, to avoid the formation of unwanted curls or dangerous stretches. At the same time, the injection device can move in a horizontal movement parallel to the surface of the cylinder, achieving a continuous alignment of microfibers with a certain parallel to each other. To achieve this, the deposition or fall velocity of the protofiber on the base cylinder and the tangential velocity thereof must be correctly coordinated, allowing the deposition of the protofiber in an essentially normal way aligned with the generatrices of the collecting cylinder. Said lateral deposition velocity may vary between 0.01 mm / s and 1 mm / s, more preferably between 0.09 mm / s and 0.5 mm / s.
Dependiendo de las concentraciones iniciales del polímero exterior, las características del mismo, la presencia de otros polímeros combinados con éste, la presencia de no solventes, la presencia de solventes muy volátiles, las condiciones de evaporación de los solventes de la superficie y de las características del no solvente sobre el que se deposita la protofibra, es posible obtener una superficie exterior de las fibras continua sin poros, apropiada para separar gases, y al mismo tiempo provocar en el interior nanoporos de (típicamente, pero no necesariamente) entre 10 y 100 nanómetros, que permiten el paso libre en el interior de la fibra de cualquier producto, sea gas u otro fluido. Depending on the initial concentrations of the outer polymer, its characteristics, the presence of other polymers combined with it, the presence of non-solvents, the presence of highly volatile solvents, the evaporation conditions of surface solvents and the characteristics of the non-solvent on which the protofiber is deposited, it is possible to obtain a continuous outer surface of the fibers without pores, suitable for separating gases, and at the same time causing inside nanopores of (typically, but not necessarily) between 10 and 100 nanometers, which allow the free passage inside the fiber of any product, be it gas or other fluid.
A modo de ejemplo, para determinar un caso de concentración, distancia y tensión de trabajo, es posible emplear como polímero exterior Matrimid®, que consiste en una poliimida comercial usada en separaciones de gases. En dicho caso, puede emplearse una concentración del 20% en peso con un disolvente aprótico, a 3,5 cm de distancia entre electrodos y 4.500 voltios de tensión diferencial, con un cilindro de 200 mm de diámetro girando a 100 rpm y usando caudales de 20 ml/h y 20 ml/hora tanto de lumen como de la Matrimid®, coagulando en agua pura. By way of example, to determine a case of concentration, distance and working voltage, it is possible to use Matrimid® as an external polymer, which consists of a commercial polyimide used in gas separations. In that case, a concentration of 20% by weight can be used with an aprotic solvent, at 3.5 cm distance between electrodes and 4,500 volts of differential voltage, with a 200 mm diameter cylinder rotating at 100 rpm and using flow rates of 20 ml / h and 20 ml / hour of both lumen and Matrimid®, coagulating in pure water.
A efectos de esta patente, se entiende por primer fluido formador de lumen un fluido que comprende un disolvente que puede consistir, por ejemplo, en aceites viscosos, polímeros como el PPC (volatilizable por tratamiento térmico), PVP (soluble en agua y en apróticos), óxido de polietileno (fácilmente eliminable), alcohol polivinílico, y un largo etc., siendo compatible (miscible) o no con el polímero separador exterior, lo que no ocurre por ejemplo en el EE convencional y supone una diferencia importante entre ambos sistemas. Incluso puede usarse un fluido de lumen que induzca una moderada gelificación de la pared interior de la protofibra, generando poros interiores que facilitan el transporte del fluido permeado, al minimizar el espesor continuo que, por otra parte, se requiere en el exterior de la fibra. Este fluido, tras la formación de las microfibras, es eliminado dando lugar a un lumen o foramen interior respecto a la superficie exterior o vaina de las microfibras, caracterizado por su continuidad a lo largo de las mismas. For the purposes of this patent, the first lumen-forming fluid is understood as a fluid comprising a solvent that may consist, for example, of viscous oils, polymers such as PPC (volatizable by heat treatment), PVP (water soluble and aprotic ), polyethylene oxide (easily removable), polyvinyl alcohol, and a long etc., being compatible (miscible) or not with the outer separator polymer, which does not occur for example in the conventional EE and represents an important difference between both systems . Even a lumen fluid that induces moderate gelation of the inner wall of the protofiber can be used, generating inner pores that facilitate the transport of permeate fluid, by minimizing the continuous thickness that, on the other hand, is required outside the fiber . This fluid, after the formation of the microfibers, is eliminated giving rise to a lumen or foramen interior with respect to the outer surface or sheath of the microfibers, characterized by their continuity along them.
Respecto al polímero separador de gases (PSG), a efectos de esta patente se entiende por el mismo, un polímero cuyas características estructurales, espaciales y químicas, determinan distintas solubilidades a distintas moléculas de gas, así como una difusividad diferencial de los distintos gases en el mismo. De este modo, es posible separar con eficacia industrial gases que se encuentren mezclados y presentan permeabilidades y flujos en la práctica suficientemente distintos. With respect to the gas separating polymer (PSG), for the purposes of this patent it is understood as a polymer whose structural, spatial and chemical characteristics determine different solubilities to different gas molecules, as well as a differential diffusivity of the different gases in the same. In this way, it is possible to industrially separate gases that are mixed and have sufficiently different permeabilities and flows in practice.
En una realización particular, dicho PSG consistirá en un polímero que se pueda solubilizar en disolventes orgánicos a una concentración suficiente para el proceso de electrohilado y será seleccionado del grupo de los polisulfonas, plásticos celulósicos, derivados de dialquil y difenilsiloxanos, policarbonatos, poliéteres alifáticos, poliéteres aromáticos, poliésteres, poliamidas alifáticas, poliamidas aromáticas, poliuretanos, plásticos ABS, polímeros acríilicos, polímeros cristal líquido, polímeros fluorados, poliheterociclos.como polibenzoxazoles, polibencimidazoles, o poliimidas, y copolímeros de las familias de polímeros nombrados o sus mezclas. Adicionalmente, pueden emplearse polímeros de reciente descubrimiento como los polímeros TR (thermally rearranged), polímeros PIM, o de microporosidad intrínseca, o algunos tipos de poliimidas. En principio, todos estos tipos de polímeros son susceptibles de ser transformados en membranas para gases en configuración fibra hueca, con tal de que sean solubles o se puedan fundir por debajo de su temperatura inicial de descomposición y pueden ser transformados en fibras huecas de pequeño espesor y diámetro mediante EE. In a particular embodiment, said PSG will consist of a polymer that can be solubilized in organic solvents at a concentration sufficient for the electrowinning process and will be selected from the group of polysulfones, cellulosic plastics, dialkyl and diphenylsiloxane derivatives, polycarbonates, aliphatic polyethers, aromatic polyethers, polyesters, aliphatic polyamides, aromatic polyamides, polyurethanes, ABS plastics, acrylic polymers, liquid crystal polymers, fluorinated polymers, polyheterocycles such as polybenzoxazoles, polybenzimidazoles, or polyimides, and copolymers of the named polymer families or mixtures thereof. Additionally, recently discovered polymers such as TR (thermally rearranged) polymers, PIM polymers, or intrinsic microporosity, or some types of polyimides can be used. In principle, all these types of polymers are capable of being transformed into membranes for gases in hollow fiber configuration, as long as they are soluble or can melt below their initial decomposition temperature and can be transformed into hollow fibers of small thickness and diameter by EE.
Adicionalmente, el sistema objeto de la invención permite, al ser recogido sobre un tejido de p.e. fibras de vidrio, de aramida, o de carbono, tratar térmicamente el polímero de manera especialmente sencilla, cosa imposible si se usan sistemas para disponer los polímeros que requieren un soporte de una membrana convencional de UF realizada previamente. Additionally, the system object of the invention allows, when collected on a fabric of e.g. glass, aramid, or carbon fibers, heat treat the polymer in an especially simple manner, which is impossible if systems are used to arrange the polymers that require a support of a conventional UF membrane previously made.
Otra de las ventajas del proceso es que el mismo es extensible a polímeros y mezclas convencionales, más económicas, permitiendo una reducción de costes debido al poco material que es necesario emplear, además de la menor implantación por unidad de superficie activa, menor uso de adhesivos, menor tamaño del sistema contenedor etc. En todos los casos, y respecto a los métodos convencionales de fabricación de fibras huecas y módulos de separación de gases a partir de ellas, ocurrirá: siempre ocurrirá que para la misma superficie activa el sistema convencional se requiera uno o dos órdenes de magnitud más de material que en la presente invención; Another advantage of the process is that it is extensible to polymers and conventional mixtures, cheaper, allowing a reduction in costs due to the little material that is necessary to use, in addition to the lower implantation per unit of active surface, less use of adhesives , smaller size of the container system etc. In all cases, and with respect to the conventional methods of manufacturing hollow fibers and gas separation modules from them, it will happen: it will always happen that for the same active surface the conventional system requires one or two orders of magnitude more than material than in the present invention;
siempre ocurrirá que para la misma superficie activa el módulo de fibras convencionales, y el que se deriva de esta forma de procesar el polímero, tendrá mucho más volumen, mayor tamaño requerido para su implantación, etc.;  it will always happen that for the same surface activates the conventional fiber module, and that derived from this way of processing the polymer, will have much more volume, larger size required for its implantation, etc .;
en la mayor parte de los casos, ocurrirá que la permeabilidad del polímero usado será mayor (a saber, el paso de gas por unidad de superficie expuesta) en el caso de la presente invención frente a cualquiera de los convencionales, ya que el espesor real que ha de atravesar el gas o molécula, será menor en este sistema de producción que en cualquiera de los convencionales;  In most cases, it will occur that the permeability of the polymer used will be greater (ie, the passage of gas per unit of exposed surface) in the case of the present invention compared to any of the conventional ones, since the actual thickness which must pass through the gas or molecule, will be lower in this production system than in any of the conventional ones;
el tamaño de la fibra obtenida permite utilizar los polímeros de alto precio de la mejor manera posible (al menos en un orden de magnitud inferior al mejor que pueda conseguirse por procedimientos clásicos de spinning). En el caso del EE, no pueden conseguirse fibras huecas continuas, y tampoco resultarían útiles, dado que su minúsculo lumen apenas permitiría trabajar en separaciones en los que el gas permeado esté presente en cantidades significativas;  The size of the fiber obtained allows the use of high-priced polymers in the best possible way (at least in an order of magnitude lower than the best that can be achieved by conventional spinning procedures). In the case of the EE, continuous hollow fibers cannot be achieved, nor would they be useful, since their tiny lumen would hardly allow work in separations in which the permeated gas is present in significant quantities;
los tratamientos térmicos, recomendables para inhibir la plastificación o para asegurar el cierre de ciclos en poliheterociclos, de reticulación controlada, de carbonización controlada etc, se aplican de forma óptima en FH más delgadas (como las que se producen en este procedimiento), cuya manipulación no presenta, por otra parte, problema alguno por la forma de ser colectadas tras la formación de la fibra, no requiriéndose que estas sean manipuladas directamente por maquinaria ni operario alguno.  The heat treatments, recommended to inhibit plasticization or to ensure the closure of cycles in polyheterocycles, controlled crosslinking, controlled carbonization etc., are optimally applied in thinner FH (such as those produced in this procedure), whose handling it does not present, on the other hand, any problem due to the way they are collected after the formation of the fiber, not requiring that they be handled directly by machinery or any operator.
El sistema propuesto con protección de gas, que tiene controlada la temperatura, el grado de saturación en disolvente del polímero separador de gases y la humedad en todo el recorrido de la protofibra, permite trabajar con disolventes muy volátiles, tales como el cloroformo, el THF o el tolueno. The proposed system with gas protection, which has controlled the temperature, the degree of saturation in solvent of the gas-separating polymer and the humidity throughout the path of the protofiber, allows to work with very volatile solvents, such as chloroform, THF or toluene
En una realización particular de la invención, tanto el primer fluido como el segundo fluido inyectado al sistema pueden ser miscibles. Incluso en determinados casos, el lumen puede provocar la coagulación controlada del fluido exterior. Así, en una realización particular en la que el polímero exterior sea Matrimid®,, tanto el PPC como la PVP o el PEO son compatibles y se usan sin problema con disolventes apróticos en ambas soluciones. In a particular embodiment of the invention, both the first fluid and the second fluid injected into the system can be miscible. Even in certain cases, the lumen can cause controlled coagulation of the external fluid. Thus, in a particular embodiment in the that the outer polymer is Matrimid®, both PPC and PVP or PEO are compatible and are used without problem with aprotic solvents in both solutions.
Los fluidos de lumen y el usado para el cilindro, no tienen que ser necesariamente inmiscibles, pero su contacto ha de generar una inferíase (por ejemplo, de mayor viscosidad e incluso de desestablilización de la disolución de polímero exterior) tal que facilite que el lumen mantenga su tamaño inicial, esto es, el que tiene al desprenderse de la spinnerete, con una controlable y moderada disminución del mismo, sin que ello provoque descentrados inaceptables del lumen respecto a la superficie "cilindrica exterior". The lumen fluids and the one used for the cylinder, do not necessarily have to be immiscible, but their contact must generate an infersion (for example, of higher viscosity and even destabilization of the outer polymer solution) such that it facilitates that the lumen Maintain its initial size, that is, the one it has when detached from the spinnerete, with a controllable and moderate decrease thereof, without causing unacceptable off-centering of the lumen with respect to the "outer cylindrical" surface.
Una forma de implementar lo anterior es el usar un cilindro rotativo como electrodo colector, el cual se halla parcialmente sumergido en el fluido no solvente del polímero. Dada la relativamente elevada velocidad de giro del cilindro, la renovación del no solvente es, en este caso, muy eficaz. One way of implementing the above is to use a rotating cylinder as a collecting electrode, which is partially submerged in the polymer's non-solvent fluid. Given the relatively high speed of rotation of the cylinder, the renewal of the non-solvent is, in this case, very effective.
Igualmente, puede añadirse un fluido coagulante directamente sobre el cilindro unos milímetros antes del punto de caída de la protofibra sobre el coagulante, y combinarse esto con el baño anteriormente definido que arrastrará el disolvente no óptimo que se puede generar en la lámina de fluido coagulante que acompaña al cilindro en su giro. Likewise, a coagulant fluid can be added directly on the cylinder a few millimeters before the point of fall of the protofiber on the coagulant, and this combined with the previously defined bath that will carry away the non-optimal solvent that can be generated in the coagulant fluid sheet that accompanies the cylinder in its turn.
Son asimismo objeto de la invención las microfibras huecas obtenidas a partir del proceso anteriormente descrito. Como consecuencia del nuevo proceso de fabricación, el cual conjuga la armonía y uniformidad de la producción de fibras huecas mediante técnicas de spinning convencional, con el bajo diámetro que permite el sistema EE, consiguiéndose obtener microfibras con diámetros de 5 a 120 mieras, preferentemente de 5 a 100 mieras y más preferentemente de 5 a 50 mieras, perfectamente uniformes, con una superficie externa continua careciendo de poros que de existir, supondrían un paso prefereneial para cualquier fluido (en particular gases), y con un espesor de capa activa preferente de nanómetros a una o dos mieras. Asimismo, dichas microfibras comprenden una capa interna localizada entre la superficie exterior y el lumen de pocas mieras, preferentemente de 2 a 10 mieras o incluso superior si se requiere, que sea porosa (minimizando de este modo el espesor de polímero que el fluido o la molécula transportada ha de recorrer a través del polímero separador). Asimismo, son objeto de la invención las membranas obtenidas a partir de las microfibras mediante la disposición de un haz de microfibras huecas esencialmente orientadas paralelamente (de manera ordenada y helicoidal) en su deposición en el electrodo base. En una realización preferente en la que el electrodo base consista en un cilindro recubierto de un tejido conductor, puede llevarse a cabo un corte posterior de dicho tejido y el haz de fibras, de forma normal al conjunto (es decir, según una generatriz del cilindro, de forma que las fibras tengan un principio y un final, constituyendo un haz de fibras alineadas y con el lumen abierto en ambos extremos). The hollow microfibers obtained from the process described above are also object of the invention. As a consequence of the new manufacturing process, which combines the harmony and uniformity of hollow fiber production through conventional spinning techniques, with the low diameter allowed by the EE system, obtaining microfibers with diameters of 5 to 120 microns, preferably of 5 to 100 microns and more preferably 5 to 50 microns, perfectly uniform, with a continuous outer surface lacking pores that exist, would be a preferential step for any fluid (in particular gases), and with a preferred active layer thickness of nanometers to one or two microns. Likewise, said microfibers comprise an inner layer located between the outer surface and the lumen of few microns, preferably from 2 to 10 microns or even higher if required, that is porous (thereby minimizing the thickness of polymer that the fluid or the transported molecule has to travel through the polymer separator). Likewise, the membranes obtained from the microfibers are object of the invention by means of the arrangement of a bundle of hollow microfibers essentially oriented in parallel (in an orderly and helical manner) in their deposition in the base electrode. In a preferred embodiment in which the base electrode consists of a cylinder covered with a conductive tissue, a subsequent cut of said tissue and the fiber bundle can be carried out, in a normal way to the assembly (that is, according to a generator of the cylinder , so that the fibers have a beginning and an end, constituting a bundle of aligned fibers and with the lumen open at both ends).
Las membranas obtenidas presentan una superficie exterior densa (cara activa o "piel") y una estructura porosa interior, con poros o estructuras preferentemente interconectadas que permiten el paso de gases u otros fluidos con una máxima eficacia separadora y mínima pérdida de carga o presión. De este modo, es un objeto adicional de la invención el uso de las membranas para la separación de gases y fluidos que se presentan mezclados. The membranes obtained have a dense outer surface (active face or "skin") and an internal porous structure, with pores or interconnected structures that allow the passage of gases or other fluids with maximum separation efficiency and minimum pressure or load loss. Thus, it is a further object of the invention to use the membranes for the separation of gases and fluids that are presented mixed.
Como se ha descrito, el proceso de la invención permite, mediante la regulación de las velocidades de deposición y el movimiento de la base de recogida de la protofibra (el electrodo base), que la protofibra al recogerse y coagular lo haga con un exceso de longitud que, en la práctica, se transforma en pequeñas desalineaciones de unas fibras, la generación de curvas, e incluso la creación de un cierto rizado o formación de sinusoides en las FH (lo que dependerá de los polímeros empleados, del encogimiento que presenten al secado o al tratamiento térmico por la reordenación de las moléculas o la reticulación o compactación de las mismas e incluso por su contracción al eliminarse totalmente su disolvente). Este exceso de longitud, en ocasiones necesario para prevenir que el acortamiento que se produce al secar o tratar térmicamente no destruya el módulo a fabricar con la fibra, se reduce mediante un tratamiento térmico del polímero, lo que frecuentemente produce un acortamiento de la fibra o shrinking, debido a la total eliminación de los disolventes volátiles y otros aditivos, así como a una cierta reordenación de las moléculas que con la temperatura adquieren mayor libertad de movimiento. Los rizos o sinusoides han de ser muy controlados, ajusfando la velocidad tangencial del cilindro y la caída del polímero extruido. De esta manera, junto con la libertad que se consigue en las fibras tras el corte de las mismas, al no estar unidas unas a otras en ningún modo (al ser obtenidas por coagulación o inversión de fase), se consigue que este acortamiento no las rompa o genere mínimo aceptable estrés residual. Así, es posible acortar las fibras sin generar tensiones o la rotura de las mismas. De este modo, algunas de las mejores membranas para separar gases se obtienen a partir de polímeros que se someten, una vez conformados, a procesos de tratamiento térmico que provocan transformaciones más o menos importantes en su estructura molecular, por densificación o compactación en ocasiones de los mismos, o producen reacciones de delación, reticulación o trasposición como las descritas, lo que da lugar a membranas de gran eficacia separadora de gases y, debido a su elevada rigidez a escala de estructura molecular, hace que sean resistentes a las degradaciones que ocurren en ocasiones en los polímeros separadores. As described, the process of the invention allows, by regulating the deposition rates and the movement of the protofiber collection base (the base electrode), that the protofiber when collected and coagulated does so with an excess of length that, in practice, is transformed into small misalignments of some fibers, the generation of curves, and even the creation of a certain curl or sinusoid formation in the FH (which will depend on the polymers used, the shrinkage they present at drying or heat treatment by the rearrangement of the molecules or the cross-linking or compaction thereof and even by their contraction when their solvent is completely eliminated). This excess length, sometimes necessary to prevent the shortening that occurs when drying or heat treating does not destroy the module to be manufactured with the fiber, is reduced by a heat treatment of the polymer, which frequently results in a shortening of the fiber or shrinking, due to the total elimination of volatile solvents and other additives, as well as a certain rearrangement of molecules that with temperature acquire greater freedom of movement. The curls or sinusoids have to be very controlled, adjusting the tangential speed of the cylinder and the fall of the extruded polymer. In this way, together with the freedom that is achieved in the fibers after cutting them, as they are not connected to each other in any way (when obtained by coagulation or phase inversion), this shortening is not achieved. break or generate minimum acceptable residual stress. Thus, it is possible to shorten the fibers without generating tensions or breaking them. Thus, some of the best membranes to separate gases are obtained from polymers that are subjected, once formed, to heat treatment processes that cause more or less important transformations in their molecular structure, by densification or compaction on occasion of them, or produce reactions of delation, crosslinking or Transposition as described, which gives rise to highly efficient gas separation membranes and, due to their high rigidity at the molecular structure scale, makes them resistant to the degradations that sometimes occur in the separating polymers.
Sin embargo, este tratamiento térmico frecuentemente provoca un acortamiento de las fibras y, a menudo, las fragiliza, haciendo difícil su manipulación industrial, ya que un número bajo de roturas puede invalidar un filtro completo. However, this heat treatment frequently causes a shortening of the fibers and often makes them fragile, making their industrial handling difficult, since a low number of breaks can invalidate a complete filter.
De manera particular, el proceso de fabricación de las membranas a partir de las protofibras puede estar entreverado con otros hilados depositados por EE en distintas condiciones de tensión, disolvente, concentración, etc., cuya misión es dar consistencia al conjunto de FH y crear espacios para el paso de los gases que se van a procesar. La naturaleza de estos hilos será preferentemente polimérica, y para su hilado se pueden utilizar todos los polímeros susceptibles de ser procesados por EE, sus mezclas en todas las proporciones y utilizando los disolventes y los aditivos o cargas que aconseje la experiencia. In particular, the manufacturing process of the membranes from the protofibers can be interwoven with other yarns deposited by EE in different conditions of tension, solvent, concentration, etc., whose mission is to give consistency to the whole of FH and create spaces for the passage of the gases to be processed. The nature of these threads will preferably be polymeric, and for spinning all polymers capable of being processed by EE, their mixtures in all proportions and using the solvents and additives or fillers advised by experience can be used.
En una realización particular adicional de la invención, existe la posibilidad de recocer las fibras a alta temperatura sin tener que manipular las mismas. Según los polímeros estas temperaturas pueden alcanzar hasta 450 °C, en función de los objetivos perseguidos. Por ejemplo, para lograr la TR se requieren temperaturas de 400 °C en adelante. Ciertas reticulaciones se consiguen a 250 °C y la eliminación total de disolventes no suele requerir más de 160 °C si se combina con vacío en la cámara de procesado. Dependiendo del polímero, lo que permite este proceso es justamente llegar a los valores que requieren los polímeros más evolucionados, tanto para su procesado como para el trabajo posterior, una vez constituidos los módulos. In a further particular embodiment of the invention, there is the possibility of annealing the fibers at high temperature without having to manipulate them. According to the polymers, these temperatures can reach up to 450 ° C, depending on the objectives pursued. For example, to achieve RT, temperatures of 400 ° C and above are required. Certain cross-links are achieved at 250 ° C and total solvent removal usually does not require more than 160 ° C if combined with vacuum in the processing chamber. Depending on the polymer, what allows this process is precisely to reach the values required by the most evolved polymers, both for processing and for subsequent work, once the modules are constituted.
Breve descripción de las figuras Brief description of the figures
• La Figura 1 (Fig. 1) muestra el diagrama del proceso objeto de la invención. • Figure 1 (Fig. 1) shows the diagram of the process object of the invention.
• Las Figuras 2 a 8 muestran imágenes obtenidas por microscopía electrónica de barrido, donde se observan en detalle las microfibras huecas objeto de la invención. • Las Figuras 9 a 11 muestran imágenes de distintos momentos del proceso de fabricación de las microfibras huecas. • Figures 2 to 8 show images obtained by scanning electron microscopy, where the hollow microfibers object of the invention are observed in detail. • Figures 9 to 11 show images of different moments of the manufacturing process of hollow microfibers.
Referencias en la Fig. 1 References in Fig. 1
1. Dosificación primer fluido; 1. First fluid dosage;
2. Dosificación segundo fluido;  2. Dosing second fluid;
3. Dispositivo de inyección (puede ser por jeringa dosificadora para varias agujas inyectoras o por sistema de bomba de engranajes de alta precisión o similar para sistemas de muchas agujas inyectoras o spinnerets);  3. Injection device (can be by dosing syringe for several injection needles or by high precision gear pump system or similar for systems with many injection needles or spinnerets);
4. Protofibra;  4. Protofiber;
5. Cilindro rotatorio;  5. Rotary cylinder;
6. Pletina (eliminadora de salpicaduras);  6. Plate (splash remover);
7. Sistema principal de control de atmósfera (comprende filtro de aire, sistema de control de temperatura , humedad, disolvente y presión);  7. Main atmosphere control system (includes air filter, temperature, humidity, solvent and pressure control system);
8. Entrada de aire o gases adecuados para la protección de la fibra;  8. Air or gas inlet suitable for fiber protection;
9. Sistema secundario de control de atmósfera.  9. Secondary atmosphere control system.
Descripción detallada de la invención Detailed description of the invention
A continuación se describe una realización particular del objeto de la invención, en referencia a la Fig. 1 que acompaña a la descripción a modo ilustrativo. A particular embodiment of the object of the invention is described below, with reference to Fig. 1 which accompanies the description by way of illustration.
Tal y como se muestra en la Fig. 1 , el primer fluido (1) y el segundo fluido (2) son dosificados en el dispositivo de inyección (3) a través de una boquilla que puede ser simple o múltiple. De este modo, tanto el primer fluido (1) como el segundo fluido (2) se inyectan con un caudal comprendido entre 2 y 40 ml/min. Como consecuencia del campo (eléctrico )y gravitatorio creado entre el sistema de inyección (3) y el cilindro rotatorio (5) localizado a una distancia de entre 1 y 10 cm del sistema de inyección (3), se desprenden unos filamentos o profibras que caen sobre el cilindro rotatorio (5) a una velocidad lateral del sistema de inyección (3) respecto del cilindro rotatorio (5) de entre 0,01 mm/s y 1 mm/s y una velocidad de deposición o caída correspondiente a un giro, preferentemente, de 20 a 200 rpm (en función del diámetro del cilindro). En una realización particular, dicha velocidad de giro puede ser de 100 rpm (para un cilindro de, por ejemplo, 20 cm de diámetro, siendo en dicho caso la velocidad de deposición de 60 m/min). De manera preferente, la velocidad de deposición puede variar, sin ser limitante, entre 20 y 150 m/min. Mediante el empleo de una pletina (6) localizada en la parte inferior del cilindro rotatorio (5) se consigue eliminar el exceso de líquido (a modo de salpicaduras, que en principio raramente se producen durante el proceso). La protofibra, constituida por el primer fluido (generador de lumen) situado en el interior y el segundo fluido (a modo de vaina) localizado en el exterior, al contacto con el cilindro rotatorio (5), gelifica o coagula como consecuencia del fluido localizado en la superficie del cilindro (inmiscible con el polímero del segundo fluido, pero miscible con el disolvente del mismo) dando lugar a microfibras huecas que, a lo largo del proceso, se irán distribuyendo de manera uniforme a lo largo de la superficie del cilindro rotatorio (5) al desplazarse el dispositivo de inyección en un movimiento horizontal paralelo a la superficie del cilindro. As shown in Fig. 1, the first fluid (1) and the second fluid (2) are dosed in the injection device (3) through a nozzle that can be single or multiple. In this way, both the first fluid (1) and the second fluid (2) are injected with a flow rate between 2 and 40 ml / min. As a consequence of the (electric) and gravitational field created between the injection system (3) and the rotating cylinder (5) located at a distance of between 1 and 10 cm from the injection system (3), filaments or profibras are detached that they fall on the rotary cylinder (5) at a lateral speed of the injection system (3) with respect to the rotary cylinder (5) of between 0.01 mm / s and 1 mm / s and a deposition or fall rate corresponding to a turn, preferably , from 20 to 200 rpm (depending on the diameter of the cylinder). In a particular embodiment, said rotation speed may be 100 rpm (for a cylinder of, for example, 20 cm in diameter, the deposition rate being 60 m / min in that case). Preferably, the deposition rate can vary, without limitation, between 20 and 150 m / min. By employing a plate (6) located in the lower part of the rotating cylinder (5) is able to remove excess liquid (as a splash, which in principle rarely occur during the process). The protofiber, consisting of the first fluid (lumen generator) located inside and the second fluid (as a sheath) located outside, on contact with the rotating cylinder (5), gels or coagulates as a result of the localized fluid on the surface of the cylinder (immiscible with the polymer of the second fluid, but miscible with the solvent thereof) giving rise to hollow microfibers that, throughout the process, will be distributed evenly along the surface of the rotating cylinder (5) when the injection device moves in a horizontal movement parallel to the surface of the cylinder.
Asimismo, el proceso se lleva a cabo en atmósfera controlada mediante el sistema de control (7) que comprende un filtro de aire, así como un sistema de control de temperatura (preferentemente, mediante resistencia eléctrica) y humedad (preferentemente, mediante el secado del aire, seguido de la adición de humedad y disolvente (si es el caso) hasta el valor requerido). A su vez, puede disponerse de un condensador o eliminador de disolvente a la salida del aire del recinto de ventilación, con objeto de evitar la emisión de disolventes a la atmósfera. De este modo, el aire es filtrado eliminando el exceso de humedad a través de la entrada de aire (8) y la temperatura se mantiene controlada, preferentemente, entre 0°C y 85°C. Del mismo modo, el disolvente puede ser recuperado por razones económicas o medioambientales. El control del proceso en el sistema secundario de control de atmósfera (9) permite inyectar aire (u otro gas en caso de que el polímero fuera incompatible con el oxígeno, p.e.) con objeto de controlar la humedad, temperatura y eventualmente disolvente o disolvente que el mismo contiene para controlar las condiciones de superficie que tiene la protofibra al llegar a la coagulación. Likewise, the process is carried out in a controlled atmosphere by means of the control system (7) comprising an air filter, as well as a temperature control system (preferably, by electric resistance) and humidity (preferably, by drying the air, followed by the addition of moisture and solvent (if applicable) to the required value). In turn, a condenser or solvent eliminator may be available at the air outlet of the ventilation enclosure, in order to avoid the emission of solvents into the atmosphere. In this way, the air is filtered by removing excess moisture through the air inlet (8) and the temperature is preferably controlled between 0 ° C and 85 ° C. Similarly, the solvent can be recovered for economic or environmental reasons. The process control in the secondary atmosphere control system (9) allows to inject air (or other gas in case the polymer is incompatible with oxygen, eg) in order to control the humidity, temperature and possibly solvent or solvent that It contains to control the surface conditions that the protofiber has when it reaches coagulation.
Sea cual sea el polímero, el espesor real del mismo se reduce en uno o más órdenes de magnitud respecto a lo que se obtiene por el spinning convencional. Así, un espesor de decenas de mieras es un valor clásico en membranas comerciales, y cuando se consiguen valores cercanos a la miera, se suele requerir un soporte, lo que lleva a diámetros de fibra elevados. Asimismo, dicho soporte consiste en otra fibra (o membrana plana) que requiere un proceso previo de formación y que limita, por lo general, las temperaturas de uso. Si las membranas en los sistemas convencionales están integralmente constituidas por el polímero separador, necesariamente dicho polímero tiene una superficie específica (superficie por unidad de masa de polímero) de dos a tres órdenes de magnitud mayores que las obtenidas por el procedimiento de la invención, lo que hace el sistema convencional de mayor costo en polímero separador y muy superior en volumen de módulo para la misma superficie activa. Whatever the polymer, the actual thickness of the polymer is reduced by one or more orders of magnitude with respect to what is obtained by conventional spinning. Thus, a thickness of tens of microns is a classic value in commercial membranes, and when values close to the mine are achieved, a support is usually required, which leads to high fiber diameters. Likewise, said support consists of another fiber (or flat membrane) that requires a previous formation process and that limits, in general, the temperatures of use. If the membranes in conventional systems are integrally constituted by the separator polymer, said polymer necessarily has a specific surface (surface area polymer mass unit) of two to three orders of magnitude greater than those obtained by the process of the invention, which makes the conventional system more expensive in separating polymer and much higher in module volume for the same active surface.

Claims

REIVINDICACIONES
1. Proceso de fabricación de microfibras huecas compuestas caracterizado por que comprende: 1. Manufacturing process of composite hollow microfibers characterized by comprising:
a. inyectar un primer fluido formador de lumen con un caudal comprendido entre 2 ml/h y 40 ml/h a través de un dispositivo de inyección con forma terminal de aguja hueca dispuesta coaxialmente en el interior de una boquilla o spinnerete, y un segundo fluido de manera coaxial al primer fluido, con un caudal comprendido entre 2 ml/h y 40 ml/h, donde dicho segundo fluido comprende al menos un polímero separador de gases (PSG) disuelto en al menos un disolvente; to. injecting a first lumen-forming fluid with a flow rate between 2 ml / h and 40 ml / ha through a hollow needle terminal injection device arranged coaxially inside a nozzle or spinnerete, and a second coaxial fluid to the first fluid, with a flow rate between 2 ml / h and 40 ml / h, wherein said second fluid comprises at least one gas separator polymer (PSG) dissolved in at least one solvent;
b. generar un gradiente de campo eléctrico entre la tensión eléctrica del spinnerete o primer electrodo y la tensión de un segundo electrodo situado a una distancia del spinnerete de 1 cm a 10 cm, siendo dicho gradiente suficiente para generar en el primer fluido y segundo fluido una deformación en el extremo distal del spinnerets; b. generate an electric field gradient between the electrical voltage of the spinnerete or first electrode and the voltage of a second electrode located at a distance of the spinnerete from 1 cm to 10 cm, said gradient being sufficient to generate a deformation in the first fluid and second fluid at the distal end of the spinnerets;
c. combinar dicho gradiente de campo eléctrico con el efecto de un campo gravitatorio y con el caudal aportado de ambos fluidos, hasta que dicho primer y segundo fluido terminan por desprenderse formando un filamento continuo estabilizado por la conjunción del campo eléctrico, campo gravitatorio y caudal aportado de ambos fluidos, denominado protofibra, constituido por el primer fluido situado en el interior y el segundo fluido localizado en el exterior, donde dicho filamento cae hasta ser recogido en el segundo electrodo que comprende en su área lateral un fluido inmiscible con el polímero PSG, pero miscible con el o los disolventes usados, de modo que al contacto con el mismo, la protofibra solidifica por un fenómeno de inversión de fase química, formando una película continua en la superficie externa de la protofibra, y una estructura porosa en su interior que constituye la microfibra hueca propiamente dicha; C. combining said electric field gradient with the effect of a gravitational field and with the flow rate of both fluids, until said first and second fluid eventually detach forming a continuous filament stabilized by the conjunction of the electric field, gravitational field and flow rate of both fluids, called protofiber, constituted by the first fluid located inside and the second fluid located outside, where said filament falls until it is collected in the second electrode that comprises in its lateral area a fluid immiscible with the PSG polymer, but miscible with the solvent (s) used, so that on contact with it, the protofiber solidifies by a phenomenon of chemical phase inversion, forming a continuous film on the outer surface of the protofiber, and a porous structure inside which constitutes the hollow microfiber itself;
y donde dicho proceso se lleva a cabo bajo atmósfera controlada de disolvente, temperatura, humedad y composición de dicha atmósfera. and where said process is carried out under a controlled atmosphere of solvent, temperature, humidity and composition of said atmosphere.
2. Proceso, de acuerdo a la reivindicación 1 , donde el segundo electrodo consiste en un cilindro base. 2. Process according to claim 1, wherein the second electrode consists of a base cylinder.
3. Proceso, de acuerdo a la reivindicación 2, donde el cilindro base se encuentra recubierto por una capa de tejido no tejido (TNT) o tejido tejido. 3. Process according to claim 2, wherein the base cylinder is covered by a layer of non-woven fabric (TNT) or woven fabric.
4. Proceso de acuerdo a una cualquiera de las reivindicaciones 1 a 3, donde el polímero separador de gases (PSG) consiste en un polímero que se puede solubilizar en disolventes orgánicos a una concentración suficiente para el proceso de electrohilado. 4. Process according to any one of claims 1 to 3, wherein the gas separator polymer (PSG) consists of a polymer that can be solubilized in organic solvents at a concentration sufficient for the electrowinning process.
5. Proceso de acuerdo a las reivindicaciones 1 a 4 donde el polímero seleccionado es de un grupo que consiste en polisulfonas, plásticos celulósicos, derivados de dialquil y difenilsiloxanos, policarbonatos, poliéteres alifáticos, poliéteres aromáticos, poliésteres, poliamidas alifáticas, poliamidas aromáticas, poliuretanos, plásticos ABS, polímeros acríilicos, polímeros cristal líquido, polímeros fluorados, poliheterociclos, así como copolímeros de los polímeros anteriores o cualquiera de sus combinaciones. 5. Process according to claims 1 to 4 wherein the polymer selected is from a group consisting of polysulfones, cellulosic plastics, dialkyl and diphenylsiloxanes derivatives, polycarbonates, aliphatic polyethers, aromatic polyethers, polyesters, aliphatic polyamides, aromatic polyamides, polyurethanes , ABS plastics, acrylic polymers, liquid crystal polymers, fluorinated polymers, polyheterocycles, as well as copolymers of the above polymers or any combination thereof.
6. Microfibras huecas obtenidas a partir de un proceso de acuerdo a una cualquiera de las reivindicaciones 1 a 5. 6. Hollow microfibers obtained from a process according to any one of claims 1 to 5.
7. Microfibras de acuerdo a la reivindicación 6, caracterizadas por que presentan un diámetro comprendido entre 5 y 120 mieras. 7. Microfibers according to claim 6, characterized in that they have a diameter between 5 and 120 microns.
8. Proceso de obtención de membranas caracterizado por que comprende llevar a cabo de manera continua un proceso según una cualquiera de las reivindicaciones 1 a 5, durante el cual el cilindro base rota, al tiempo que el dispositivo de inyección se desplaza en un movimiento horizontal paralelo a la superficie del cilindro, logrando una alineación ordenada y helicoidal de las microfibras en su deposición sobre la superficie del cilindro. 8. Process for obtaining membranes characterized in that it comprises continuously carrying out a process according to any one of claims 1 to 5, during which the base cylinder rotates, while the injection device moves in a horizontal movement parallel to the surface of the cylinder, achieving an orderly and helical alignment of the microfibers in their deposition on the surface of the cylinder.
9. Proceso de acuerdo a la reivindicación 8, caracterizado por que comprende una etapa adicional de tratamiento térmico a una temperatura comprendida entre 100 y 450°C. 9. Process according to claim 8, characterized in that it comprises an additional stage of heat treatment at a temperature between 100 and 450 ° C.
10. Membranas obtenidas a partir de un proceso de acuerdo a la reivindicación 8 o 9. 10. Membranes obtained from a process according to claim 8 or 9.
1 1. Uso de las membranas de acuerdo a la reivindicación 10 para la separación de gases y fluidos. 1 1. Use of the membranes according to claim 10 for the separation of gases and fluids.
PCT/ES2014/070027 2013-02-25 2014-01-17 Method for producing hollow microfibre membranes and membranes produced in this way WO2014128319A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201330253A ES2499117B1 (en) 2013-02-25 2013-02-25 MANUFACTURING PROCESS OF MEMBRANES OF HOLLOW MICROFIBERS AND MEMBRANES SO OBTAINED
ESP201330253 2013-02-25

Publications (1)

Publication Number Publication Date
WO2014128319A1 true WO2014128319A1 (en) 2014-08-28

Family

ID=51390528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070027 WO2014128319A1 (en) 2013-02-25 2014-01-17 Method for producing hollow microfibre membranes and membranes produced in this way

Country Status (2)

Country Link
ES (1) ES2499117B1 (en)
WO (1) WO2014128319A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113335A1 (en) * 2000-11-03 2002-08-22 Alex Lobovsky Spinning, processing, and applications of carbon nanotube filaments, ribbons, and yarns
EP1270771A2 (en) * 2001-06-19 2003-01-02 AAF-McQuay Inc. Method, apparatus and product for manufacturing nanofiber media
US20060226580A1 (en) * 2005-03-29 2006-10-12 University Of Washington Electrospinning of fine hollow fibers
US20100212503A1 (en) * 2007-08-02 2010-08-26 National Institute Of Advanced Industrial Science And Technology Hollow fiber carbon membrane and method for production thereof
US20120189795A1 (en) * 2011-01-26 2012-07-26 Shing-Chung Wong Electrospun microtubes and nanotubes containing rheological fluid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113335A1 (en) * 2000-11-03 2002-08-22 Alex Lobovsky Spinning, processing, and applications of carbon nanotube filaments, ribbons, and yarns
EP1270771A2 (en) * 2001-06-19 2003-01-02 AAF-McQuay Inc. Method, apparatus and product for manufacturing nanofiber media
US20060226580A1 (en) * 2005-03-29 2006-10-12 University Of Washington Electrospinning of fine hollow fibers
US20100212503A1 (en) * 2007-08-02 2010-08-26 National Institute Of Advanced Industrial Science And Technology Hollow fiber carbon membrane and method for production thereof
US20120189795A1 (en) * 2011-01-26 2012-07-26 Shing-Chung Wong Electrospun microtubes and nanotubes containing rheological fluid

Also Published As

Publication number Publication date
ES2499117B1 (en) 2015-08-11
ES2499117A1 (en) 2014-09-26

Similar Documents

Publication Publication Date Title
Feng et al. Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment
Alghoraibi et al. Different methods for nanofiber design and fabrication
JP5027554B2 (en) Method and apparatus for producing uniaxial or multiaxially oriented nanofiber assembly
ES2326455B2 (en) PROCEDURE FOR THE MANUFACTURING IN AMBIENT TEMPERATURE OF MICRO AND NANOFIBERS OF LIGNINA AND OTHER RESINOSUS COMPOUNDS.
US20110180951A1 (en) Fiber structures and process for their preparation
US20090121379A1 (en) Apparatus for electro-blowing or blowing-assisted electro-spinning technology and process for post treatment of electrospun or electroblown membranes
Chronakis Micro-/nano-fibers by electrospinning technology: processing, properties and applications
AK S et al. Fabrication of poly (Caprolactone) nanofibers by electrospinning
JP2009517554A (en) Process for producing polyolefin microfiber by electrospinning and produced fiber
US20050224999A1 (en) Electrospinning in a controlled gaseous environment
CN106999861B (en) Composite nanoparticle stabilized core carbon molecular sieve hollow fiber membranes with enhanced permeability
Liu et al. Electrospinning in compressed carbon dioxide: Hollow or open-cell fiber formation with a single nozzle configuration
CN102240511A (en) Polysulphone nanometer fiber polymer membrane and preparation method as well as application thereof
CN104178930A (en) Nanofiber membrane and preparing method thereof
Agyemang et al. Effect of poly (ethylene oxide) and water on electrospun poly (vinylidene fluoride) nanofibers with enhanced mechanical properties as pre-filter for oil-in-water filtration
Halaui et al. Development of micro-scale hollow fiber ultrafiltration membranes
Elnabawy et al. Electro-blown spinning: new insight into the effect of electric field and airflow hybridized forces on the production yield and characteristics of nanofiber membranes
Bhagure et al. A review: Electrospinning and electrospinning nanofiber technology, process & application
ES2499117B1 (en) MANUFACTURING PROCESS OF MEMBRANES OF HOLLOW MICROFIBERS AND MEMBRANES SO OBTAINED
Khayet et al. Effects of gas gap type on structural morphology and performance of hollow fibers
Das et al. Electrospinning: the state of art technique for the production of nanofibers and nanofibrous membranes for advanced engineering applications
Wang et al. Nanofiber fabrication techniques and its applicability to chitosan
JP2011047062A (en) Production process of ultrafine-diameter continuous fiber
Li et al. Producing polymer fibers by electrospinning in supercritical fluids
Santoro et al. Preparation and characterization of polymeric nanofibers by electrospinning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754011

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754011

Country of ref document: EP

Kind code of ref document: A1