WO2014126397A1 - Method for manufacturing heat insulation box with improved heat insulation capacity and heat insulation box manufactured thereby - Google Patents

Method for manufacturing heat insulation box with improved heat insulation capacity and heat insulation box manufactured thereby Download PDF

Info

Publication number
WO2014126397A1
WO2014126397A1 PCT/KR2014/001183 KR2014001183W WO2014126397A1 WO 2014126397 A1 WO2014126397 A1 WO 2014126397A1 KR 2014001183 W KR2014001183 W KR 2014001183W WO 2014126397 A1 WO2014126397 A1 WO 2014126397A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulation
vacuum
manufacturing
box
panel
Prior art date
Application number
PCT/KR2014/001183
Other languages
French (fr)
Korean (ko)
Inventor
김해덕
윤진호
박경호
Original Assignee
오씨아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오씨아이 주식회사 filed Critical 오씨아이 주식회사
Publication of WO2014126397A1 publication Critical patent/WO2014126397A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0209Thermal insulation, e.g. for fire protection or for fire containment or for high temperature environments

Definitions

  • the present invention relates to a method for manufacturing a thermal insulation box with improved thermal insulation performance and to a thermal insulation box manufactured through the same, and more particularly using a vacuum insulation material, but to improve the thermal insulation effect by preventing heat bridge phenomenon It relates to a manufacturing method and a thermal insulation box manufactured through the same.
  • Korean Laid-Open Patent Publication No. 2006-0128936 discloses an invention in which a frozen product requiring cold storage is housed in a cold storage container made of a vacuum insulator.
  • the cold storage container is characterized by bending a vacuum insulation material consisting of a bent portion of the circumferential wall portion of the four sides that are bently connected and bent along the preformed fold line.
  • US Patent No. 6192703 describes an invention for mounting a vacuum insulated panel in a sealed structure.
  • the vacuum insulation material has 8 times more excellent thermal insulation performance than the general insulation material
  • the outer surface of the vacuum insulation material is adopted as a metallic vacuum bag, so that the connecting contact portion of the vacuum insulation material has a simple shape such as a right angle shape or an inclined surface shape.
  • the vacuum insulator is constructed as a building material, a problem has been pointed out that the heat insulation performance is drastically lowered by transferring heat through a contact surface that is a connection portion of the vacuum insulator, and the same problem is pointed out in the above-described prior art.
  • Japanese Patent Laid-Open No. 4944567 is a shape in which a hexahedron is deployed in a plane to solve the problem of heat leakage from an edge part due to a heat bridge phenomenon occurring at an end portion of a flat vacuum insulating material applied to a box shape.
  • a vacuum insulator capable of assembling a hexahedron by applying a gas barrier film having a film.
  • this vacuum insulation material is not easy to produce a problem that productivity is low.
  • Japanese Patent No. 4778856 is an invention for a transport insulation container in which a vacuum insulation material is installed, wherein the insulation container in which the vacuum insulation material is disposed between the inner box and the exterior material includes a bottom surface, and the inside of the insulation container has a bottom surface. It is provided with a vacuum insulating material and a protective member bent over the surface, the inner box uses a foamed polystyrene formed on the container, and provides a heat insulating container detachably provided with the components of the heat insulating container structure.
  • a thermal insulation container has a problem that its volume is large and heavy so that portability is poor.
  • an object of the present invention is to solve such a conventional problem, while reducing the volume and weight of the thermal insulation box, and a method of manufacturing a thermal insulation box with improved thermal insulation performance that can improve the thermal insulation effect of the thermal insulation box and manufacturing through it To provide a thermal insulation box.
  • a vacuum insulation material manufacturing step of manufacturing a vacuum insulation material using synthetic silica and organic fibers A panel manufacturing step of attaching the vacuum insulation material to the basic insulation material to manufacture a side panel, a bottom panel and a door panel; A box manufacturing step of manufacturing a heat insulation box by assembling the side panel and the bottom panel such that a space is formed between the vacuum insulation of each of the side panels adjacent to each other or between the vacuum insulation of the side panel and the vacuum insulation of the bottom panel; It is achieved by the method of manufacturing a thermal insulation box comprising; an airtight step of hermetically sealing the spaced space of the thermal insulation box with a heat insulating auxiliary material.
  • the foaming step of foaming the foam material in the heat insulation box preferably further comprises.
  • the foaming step is an external jig mounting step of fixing the heat insulation box inside the external jig;
  • the method may further include attaching a first heat insulating member to the first heat insulating member to attach the first heat insulating member to the vacuum heat insulating material of the side panel to the vacuum insulating material non-formed region of the base heat insulating material of the side panel. desirable.
  • the first heat insulating member is formed of a material made of polyurethane (PU) or polyethylene (polyethylene: PE) material, but preferably provided in the form of a sponge.
  • PU polyurethane
  • PE polyethylene
  • the separation space is preferably provided with a spacing between 1 mm to 10 mm between the adjacent vacuum insulation.
  • the side panel may include a plurality of side panels, and a through part forming step of forming a through part in at least one of the side panels.
  • the second heat insulating member mounting step of interposing the second heat insulating member to the inside of the through part so as to maintain the airtight or heat insulation of the heat insulating box.
  • the second heat insulating member is formed of a material of polyurethane (PU) or polyethylene (polyethylene: PE) material is preferably provided in the form of a sponge.
  • PU polyurethane
  • PE polyethylene
  • the heat insulating auxiliary material in the airtight step is preferably formed of foamed polyurethane.
  • the door panel is preferably manufactured by attaching the basic insulating material on two opposite surfaces of the vacuum insulating material.
  • the said object is achieved by the heat insulation box manufactured through the manufacturing method of the heat insulation box in any one of Claims 1-12 according to this invention.
  • a floor panel A side panel connected along an edge of the bottom panel; And a door panel disposed to face the bottom panel so as to interpose the side panel, wherein each of the side panel, the bottom panel, and the door panel comprises: (a) a basic insulation; And (b) a vacuum insulating material attached to the basic insulating material and having a smaller area than the basic insulating material, the vacuum insulating material including synthetic silica and organic fibers, between the vacuum insulating material of each of the adjacent side panels and the vacuum of the side panel. It is achieved by an insulating box in which a heat insulating auxiliary material is interposed in at least one space formed between at least one of the heat insulating material and the vacuum insulating material of the floor panel.
  • the base insulation of the side panel and the base insulation of the bottom panel contact.
  • thermo insulation box a thermally improved thermal insulation box and a thermal insulation box manufactured through the same, by attaching a vacuum insulator on six surfaces of the thermal insulation box to minimize heat loss due to radiation.
  • the insulation member is also installed in the space between the door panel and the side panel to maximize the insulation effect, so that a high-performance insulation box that can be used as a protective device to accommodate expensive measuring devices for a long time in cryogenic or cryogenic regions Can provide.
  • the volume is reduced compared to the performance, and the weight is light, thereby improving portability.
  • FIG. 1 is a flow chart schematically showing a method of manufacturing a thermal insulation box according to an embodiment of the present invention
  • FIG. 2 is a perspective view schematically showing a panel manufactured through a panel manufacturing step in the method of manufacturing a thermal insulation box according to FIG.
  • FIG. 3 is a front view schematically illustrating a through part formed in a front panel manufactured through the through part forming step in the method of manufacturing a heat insulation box according to FIG. 1,
  • Figure 4 is a perspective view schematically showing the assembly of the rear panel and the right side panel through the box assembly step in the manufacturing method of the insulating box according to Figure 1,
  • FIG. 5 is a perspective view schematically showing a state in which a side panel assembly is formed through a box assembling step in the method of manufacturing an insulating box according to FIG. 1,
  • FIG. 6 is a plan view schematically illustrating a separation space formed in the side panel assembly through a box assembly step in the method of manufacturing an insulating box according to FIG. 1,
  • FIG. 7 is a perspective view schematically showing a state of assembling the side panel and the bottom panel through the box assembly step in the manufacturing method of the insulating box according to FIG.
  • FIG. 8 is a perspective view schematically illustrating a state in which a side panel and a bottom panel are assembled through a box assembling step in a method of manufacturing a heat insulation box according to FIG. 1,
  • FIG. 9 is a perspective view schematically showing a state in which a second heat insulating member is interposed through a through part through a second heat insulating member mounting step in the method of manufacturing a heat insulating box according to FIG. 1;
  • FIG. 10 is a perspective view schematically illustrating a state in which a space between spaces is separated by a heat insulating auxiliary material through an airtight step in the method of manufacturing a heat insulation box according to FIG. 1.
  • FIG. 11 is a plan view schematically illustrating a state in which an exterior jig is mounted on an outer side of an insulation box through an exterior jig mounting step in the method of manufacturing an insulation box according to FIG. 1;
  • FIG. 12 is a perspective view schematically illustrating a state in which the interior jig is mounted inside the insulation box through the interior jig mounting step in the manufacturing method of the insulation box according to FIG. 1;
  • FIG. 13 is a plan view schematically illustrating a state in which a foam material is injected into an insulation box through an injection step in the method of manufacturing an insulation box according to FIG. 1;
  • FIG. 14 is an exploded perspective view schematically illustrating a door panel in which a cut part is formed in the insulating box manufacturing method according to FIG. 1;
  • FIG. 15 is a front sectional view schematically illustrating a state in which a first insulation member is mounted between a side panel and a door panel through a first insulation member mounting step in the insulation box manufacturing method according to FIG. 1;
  • 16 and 17 are photographs of the insulation box manufactured by the insulation box manufacturing method according to FIG.
  • FIG. 1 is a flow chart schematically showing a method of manufacturing a thermal insulation box according to an embodiment of the present invention.
  • the manufacturing method of the thermal insulation box according to an embodiment of the present invention is to prevent the thermal insulation of the thermal insulation box is lowered by the occurrence of thermal bridges in the thermal insulation box, preparing a vacuum insulation material Step (S110) and the panel manufacturing step (S120) and the box manufacturing step (S130) and the airtight step (S140) and foaming step (S150) and the first heat insulating member attaching step (S160).
  • an embodiment of the present invention can maximize the internal space of the insulating box by attaching a thin thickness of the vacuum insulating material to the insulating box, even in the polar region by minimizing heat loss in some spaces adjacent to the vacuum insulating material facing each other It is possible to provide a thermal insulation box that can be used.
  • thermal bridge which is one of the problems to solve the present invention
  • Thermal bridge is substantially the same as cold bridge, in which a part of the wall becomes inherently or acquired thinner than other parts, or the material forming the adjacent walls is different When smaller parts occur, it means a phenomenon that is easy to condensate.
  • the vacuum insulation material in order to maintain the thermal insulation performance for a long time, it is packaged using an airtight foil made of a synthetic resin layer of metal laminating (laminating), and when the surfaces of the vacuum insulation material comes into contact with each other, the metal laminating (packing material) Laminating films may come into contact with each other, resulting in a lower thermal permeation resistance in the structure, which may result in thermal bridges.
  • the adjacent vacuum insulators 10 when assembling the panel manufactured by using the vacuum insulator 10, are assembled so that the adjacent vacuum insulators 10 do not come into contact with each other. ) And filling the separation space 115 with the heat insulating auxiliary material 116 (see FIG.) To prevent thermal bridges and maintain and improve the heat insulating performance of the heat insulating box 1.
  • the vacuum insulation material preparation step (S110) is a step of preparing a vacuum insulation material 10 prepared by mixing synthetic silica and organic fibers.
  • the vacuum insulator 10 is preferably thin so as to expand the internal space of the heat insulating box 1, it is preferable to have an excellent heat insulating performance.
  • the characteristic technical features of the vacuum insulation material 10 is a powder mixture containing synthetic silica having an average particle size of 5 ⁇ 50nm and organic fibers cut to 6 ⁇ 40mm 0.5 to 100 parts by weight of the powder mixture ⁇ 10 parts by weight of the included fiber mixture, and then using the inner core (core) made by six-side wrapping (Wrapping) with a heat shrink film.
  • the characteristic of the vacuum insulation material 10 prepared in the above-described vacuum insulation material preparation step (S110) is that it uses organic fibers.
  • Reinforcing fibers for vacuum insulation materials that have been used so far include inorganic fibers, glass fibers and ceramic fibers.
  • the two inorganic fibers are mixed well as they are made of silica and similar components, which are the main materials of the inner core, but the two fibers have little reinforcing effect of mechanical strength when mixing, and the specific gravity is high as glass fiber 2.5 and ceramic fiber 3.0, and the thermal conductivity is high. There is a high degree of disadvantage.
  • the vacuum insulating material 10 of the present embodiment introduced organic fibers as reinforcing fibers in order to improve the disadvantages of the vacuum insulating material using inorganic fibers as reinforcing fibers.
  • the reinforcing fiber used as the inner core material of the existing vacuum insulation material was glass fiber and ceramic fiber among inorganic fibers.
  • Inorganic fiber is mainly composed of silica and alumina powder such as synthetic silica, so it is well mixed with synthetic silica and weak in compression. It is known to exhibit a high reinforcing effect by exerting a bonding force.
  • organic fibers were considered to be easily separated and had low reinforcement effects because they had no bonding force during compression, and organic fibers were also known to have a problem of increasing the internal pressure of the vacuum insulator by generating gas in a vacuum.
  • the inventors of the present invention devised an organic fiber having a low specific gravity in order to improve the high specific gravity of the inorganic fiber, and in a range capable of mixing the fiber lengths of the organic fiber and the synthetic silica to prevent the organic fiber and the synthetic silica from easily separated. Increased, maximizing the friction between organic fibers and synthetic silica.
  • the length of the organic fiber is preferably cut to 6 ⁇ 40mm, it is more preferable to use a predetermined length of organic fibers than to use a variety of organic fibers. If the length of the organic fiber is shorter than 6mm, the fiber reinforcing effect is remarkably inferior, and if the length of the organic fiber is longer than 40mm, partial aggregation occurs and it is difficult to homogeneously mix with the powder.
  • the diameter of the organic fiber is preferably 1 to 100 ⁇ m, more preferably 10 to 40 ⁇ m in diameter.
  • Organic fibers are produced in bundles, so if they are smaller than 1 ⁇ m, it takes a lot of time to disperse them.
  • organic fibers 1.4 or less organic fibers of true specific gravity, such as PE, PP, Nylon, PVA, PAN, PET, can be used.
  • organic fibers of true specific gravity such as PE, PP, Nylon, PVA, PAN, PET.
  • the vacuum insulator 10 in one embodiment of the present invention is made of a mixture of powder and organic fibers containing synthetic silica.
  • the average primary particle size of the synthetic silica is preferably used 5 ⁇ 50nm. If the primary particle size is smaller than 5 nm, the volume becomes large and handling is difficult. If the primary particle size is larger than 50 nm, sufficient adiabatic effect cannot be obtained during compression.
  • the synthetic silica can be used as fumed silica produced by the gas phase reaction, precipitated silica produced by the liquid phase reaction, colloidal silica, aerogel, silica sol and the like. Among them, the use of fumed silica with low manufacturing cost and high specific surface area is preferable.
  • the inner core material of the vacuum insulator can be manufactured only with pure synthetic silica powder, and in addition to the synthetic silica, powders such as alumina, titanium oxide, silicon carbide, and graphite can be mixed to increase thermal insulation.
  • the content of synthetic silica in the preferred inner core powder mixture is 70% or more.
  • the vacuum insulation material 10 is preferably mixed with an infrared opaque fire material for blocking radiant heat and synthetic silica.
  • Infrared opaque fires used for the inner core material include titanium oxide, carbon black, talc, silicon carbide, iron oxide, zirconium oxide, and graphite. These opaque fires have a function of blocking rapid heat transfer by radiation by reflecting or absorbing more than half of the far infrared rays emitted from an object at 15 to 40 ° C.
  • the opaque fire material may occupy 5 to 30 parts by weight per 100 parts by weight of the inner core material.
  • the average particle size of the components constituting the opaque fire is 1 ⁇ 90 ⁇ m or less the particles are better effect.
  • the content of the mixture of organic fibers is preferably 0.5 to 10 parts by weight based on 100 parts by weight of the synthetic silica-containing powder mixture. If the organic fiber content is too high, it accelerates the change over time of the vacuum insulation material 130 to lower the thermal insulation performance.
  • the synthetic silica-containing powder mixture and the organic fiber-containing fiber mixture it is preferable to mix the powder mixture and the fiber mixture homogeneously in a mixer at a predetermined compounding ratio.
  • the synthetic silica-containing powder mixture and the organic fiber-containing fiber mixture may be laminated in separate layers, but the mechanical strength improvement effect may not be as good as that of the homogeneous compounding.
  • the manufacturing process for making the inner core of the vacuum insulator from the synthetic silica-containing powder mixture and the organic fiber-containing fiber mixture takes several steps. Here, various manufacturing processes are possible according to the arrangement order of each step. But the result has similar properties.
  • the easiest process for manufacturing the vacuum insulating material 10 comprises the steps of separately drying the synthetic silica-containing powder mixture and the organic fiber-containing fiber mixture; Blending the dried powder mixture and the fiber mixture in a ratio; Compacting the blend.
  • the drying of the synthetic silica-containing powder mixture is preferably 100 to 150 ° C. drying at atmospheric pressure for the purpose of evaporating moisture.
  • the drying method of the fiber mixture including organic fibers varies depending on the heat resistance temperature of the fibers.
  • Nylon fiber has a heat resistance temperature of more than 1120 °C, it is preferable to dry the pressure of 100 ⁇ 140 °C, but PP fiber drying having a low heat temperature is preferably low pressure drying at a lower 70 ⁇ 80 °C.
  • the organic fiber is preferably dried at a temperature of 10 ⁇ 20 °C lower than the softening temperature of the fiber.
  • the blending of the synthetic silica-containing powder mixture and the organic fiber-containing fiber mixture can be used with powder mixers such as ribbon mixers, Nida-groups, Nauta-mixers, and blade mixers.
  • powder mixers such as ribbon mixers, Nida-groups, Nauta-mixers, and blade mixers.
  • the evenly blended mixture is compressed by a press, controlling the density of the inner core.
  • the density of the inner core is an important factor that greatly affects the mechanical strength and thermal insulation of the finished product, and it is preferable to compress at a density of 0.12 to 0.35 g / cm 3. Presses can be manufactured with both single-acting presses and roller presses.
  • the vacuum insulation material 10 of the present invention may use a heat shrinkable film or a film having moisture permeability to wrap six sides after blending the powder mixture and the fiber mixture, which are core materials.
  • the heat-shrink film is selected from PE, LLDPE, PP, PVC, PET and the like, and the moisture-permeable film has a water vapor transmission rate of 30 g / m 2 or less per 24 hours or a water vapor transmission coefficient of 0.28 g / m 2 ⁇ h ⁇ mmHg or less. It is done.
  • the compression molded vacuum insulation material 10 is wrapped by six-side wrapping with a heat-shrink film selected from PE, LLDPE, PP, PVC, PET, etc., and finally vacuum-packed with a final finishing material such as nylon, PET, PP, or aluminum multilayer film.
  • a heat-shrink film selected from PE, LLDPE, PP, PVC, PET, etc.
  • a final finishing material such as nylon, PET, PP, or aluminum multilayer film.
  • the six-side wrapping used in the present invention (Wrapping) packaging uses a heat-shrink film selected from PE, LLDPE, PP, PVC, PET, in the heat-insulating material is required moisture resistance of 30 g / m2 or less per 24 hours or A film having a moisture permeability of 0.28 g / m 2 ⁇ h ⁇ mmHg or less is used, and wrapping is carried out once or twice.
  • PE film packaging wraps the silica insulation molded body with PE film and seals it with heat adhesion.
  • Shrink film packaging such as LLDPE wraps the silica insulation molded body with the shrink film such as LLDPE and shrink wraps using a shrink wrap machine.
  • Another internal core manufacturing process includes the steps of blending a synthetic silica-containing powder mixture and an organic fiber-containing fiber mixture; Drying the moisture of the blend; Compressing the dried formulation is possible.
  • Another internal core manufacturing process includes the steps of blending a powder mixture containing synthetic silica and a fiber mixture containing organic fibers; Compacting the blend; It is possible to dry the compressed formulation.
  • Vacuum insulating material 10 of the present invention is finally subjected to the final packaging process as an aluminum packaging material.
  • the final packaging of the vacuum insulation material 10 according to an embodiment of the present invention is wrapped by wrapping the two corners of the four corners of the vacuum insulation material 10 with n1 aluminum packaging material, finally wrapped by the aluminum packaging material.
  • the other two corners may maintain the most stable vacuum packaging state in which the vacuum is not terminated even if the bend is formed in the vacuum insulation material 10 by wrapping the aluminum packaging material in, for example, three-stage folding.
  • FIG. 2 is a perspective view schematically showing a panel manufactured through a panel manufacturing step in the method of manufacturing an insulating box according to FIG. 1.
  • the panel manufacturing step (S120) may include attaching the above-described vacuum insulation material 10 to the basic insulation material 20 to manufacture the side panel 110, the bottom panel 120, and the door panel 130. Step.
  • the heat insulation box 1 is provided in a rectangular shape, so that the side panel 110 includes the front panel 111, the rear panel 112, the left side panel 113, and the right side panel 114. It may include.
  • each panel is manufactured by attaching the vacuum insulating material 10 on one surface of the basic insulating material (20).
  • the vacuum insulation material 10 may be attached to one layer of the basic insulation material 20, but two or more layers are attached to reduce the thermal insulation performance due to poor vacuum of the vacuum insulation material 10 during the manufacturing process of the thermal insulation box (1). You can prevent it.
  • the vacuum insulation material 10 during the production of each panel to have a smaller size than the basic insulation material 20 so that when the vacuum insulation material 10 and the foundation insulation material 20 is attached, the vacuum insulation material in the corner portion of the foundation insulation material 20 The remaining space to which the 10 is not attached can be formed.
  • the base insulation 20 and the vacuum insulation 10 may be attached in a state where the center of the base insulation 20 and the center of the vacuum insulation 10 coincide with each other so that the remaining space is formed, or the foundation insulation 20
  • the remaining space can be secured by indicating the area to which the vacuum insulator 10 is attached on the outer surface of the substrate.
  • the remaining space may be used as a space for assembling each panel in a later box manufacturing step (S130), the size of the remaining space in advance so that the vacuum insulation materials 10 attached to the panels adjacent to each other do not touch each other. Can be set.
  • each of the vacuum insulation material 10 may be attached via a double-sided tape.
  • the double-sided tape may be attached in a state spaced 1 to 2 mm from each corner of the vacuum insulator 10.
  • an additional pressure may be applied to the vacuum insulators 10 attached to each other through the double-sided tape, and the separation distance between the vacuum insulators 10 attached to each other is preferably 0.5 mm.
  • the penetrating part forming step S121 may be additionally performed after the panel manufacturing step S120 according to the exemplary embodiment of the present invention.
  • FIG. 3 is a front view schematically showing that the through part is formed in the front panel manufactured through the through part forming step in the method of manufacturing the thermal insulation box according to FIG. 1.
  • the penetrating part forming step S121 is a step of forming a penetrating part on at least one of the side panels 110.
  • a penetrating part 111a is formed on the front panel 111 for convenience of description. Assume that
  • the penetrating portion (111a) is a part of the front panel 111, preferably cutting the basic insulating material constituting the front panel 111 so as to effectively maintain the thermal insulation performance while connecting the inside and outside of the heat insulating box (1) do.
  • the components such as cables can be connected to the outside and the insulation performance can be maintained, so that the electrical equipment can be easily used even in areas where the temperature difference between the inside and outside, such as polar regions, is large.
  • the through part 111a may be formed in a semi-circular shape, but is not limited thereto, and may be formed in various shapes according to a target to be penetrated.
  • the door panel 130 may be manufactured by attaching the basic insulating material 20 on opposite sides of the vacuum insulating material 10.
  • the basic heat insulating material 20 attached to the upper surface of the vacuum insulating material 10 is disposed outside the heat insulating box 1
  • the basic heat insulating material 20 attached to the lower surface of the vacuum heat insulating material 10 is a heat insulating box (1) It is disposed inside of.
  • FIG. 14 is an exploded perspective view schematically illustrating a door panel in which a cut part is formed in the insulating box manufacturing method according to FIG. 1.
  • the base insulating material of the door panel 130 may form a cut portion 131 which cuts a part of a region facing the through portion 111a. Therefore, a part of the second heat insulating member 111 b may contact the cut portion 131 side in the basic heat insulating material of the door panel 130, and as a result, the second heat insulating member 111 b may pass through the through portion 111 a and the cut portion ( It may be installed between the 131.
  • Figure 4 is a perspective view schematically showing the assembly of the rear panel and the right side panel through the box assembly step in the manufacturing method of the insulating box according to Figure 1
  • Figure 5 is a box assembly in the manufacturing method of the insulating box according to Figure 1
  • 6 is a perspective view schematically illustrating a side panel assembly formed through the step
  • FIG. 6 schematically illustrates a separation space formed in the side panel assembly through the box assembly step in the method of manufacturing the insulation box according to FIG. 1.
  • 7 is a perspective view schematically illustrating a state in which the side panel and the bottom panel are assembled through the box assembly step in the method of manufacturing the insulating box according to FIG.
  • FIG. 8 is a manufacturing method of the insulating box according to FIG. 1.
  • Figure 3 is a perspective view schematically showing the assembled state of the side panel and the bottom panel through the box assembly step.
  • the box manufacturing step (S130) is a step of manufacturing the insulation box 1 by assembling each side panel 110 and the bottom panel 120, and each side panel 110. ) To form a space between the vacuum insulator of the () or between the vacuum insulator of the side panel 110 and the vacuum insulator of the bottom panel 120 to manufacture a thermal insulation box (1).
  • This box manufacturing step (S130) may be performed by a variety of methods, referring to Figures 4 and 5 in one embodiment of the present invention after assembling the side panel 110 in the insulating box 1, Figure 7 and 8, it will be described as manufacturing by assembling the bottom panel 120 under the assembled side panel 110.
  • the front panel 111, the rear panel 112, the left side panel 113 and the right side panel 114 are assembled to assemble the side panel 110 in a quadrangular shape in which the upper and lower sides are opened as a whole.
  • the vacuum insulator in the front panel 111 is adjacent to the vacuum insulator in the left side panel 113 and the vacuum insulator in the right side panel 114, and the vacuum insulator in the back panel 112 is Since the vacuum insulator of the left side panel 113 and the vacuum insulator of the right side panel 114 are adjacent to each other, the vacuum insulator in the front panel 111 is between the vacuum insulator of the left side panel 113 and the right side panel 114. A space 115 is formed between the vacuum insulator. Similarly, the vacuum insulator in the rear panel 112 forms a space (not shown) between the vacuum insulator of the left side panel 113 and the vacuum insulator of the right side panel 114.
  • each of the space is preferably a distance between the vacuum insulation material adjacent to each other in the range of 1 to 10 mm.
  • an adhesive may be used to assemble the respective side panels 110, and the adhesive may be preferably a urethane-based adhesive, more preferably a cryogenic urethane-based adhesive.
  • the bottom panel 120 is assembled to the lower side of the side panel 110 assembly.
  • the side panel 110 and the bottom panel 120 may be assembled by applying an adhesive to the remaining space of the bottom panel 120.
  • the remaining space of the bottom panel 120 may be provided to correspond to the lower end of the side panel 110 assembly so that the side surface of the vacuum insulation of the bottom panel 120 may be in surface contact with the remaining space of the side panel 110.
  • the outer side of the side panel 110 assembly and the side of the bottom panel 120 may be disposed on the same plane.
  • a space is formed between the vacuum insulators of the side panel 110 and the vacuum insulator of the bottom panel 120, and the spaces between the vacuum insulators adjacent to each other are spaced apart in a range of 1 to 10 mm. It is preferable.
  • an adhesive may be used to assemble the side panel 110 and the bottom panel 120, preferably an urethane-based adhesive, more preferably a cryogenic urethane-based adhesive.
  • the second heat insulating member mounting step S131 may be additionally performed to hermetically seal the through part 111a formed in the panel manufacturing step S120.
  • FIG. 9 is a perspective view schematically illustrating a state in which a second heat insulating member is interposed through a through part through a second heat insulating member mounting step in the method of manufacturing a heat insulating box according to FIG. 1.
  • the second heat insulating member mounting step S131 includes a second heat insulating member 111b corresponding to a shape of the through portion 111a for airtightness and heat insulation of the through portion 111a. 111a) This step is installed through the inside.
  • the second heat insulating member 111b is interposed between the through part 111a and the through part 111a. Through the inside and outside of the insulation box (1) to prevent the connection.
  • the second heat insulating member 111b may be provided in a donut shape.
  • the second heat insulating member 111b may be manufactured to be about 150% larger than the diameter of the penetrating portion 111a and mounted to the penetrating portion 111a by interference fit to minimize the gap caused by the penetrating portion 111a.
  • the second heat insulating member 111b may easily pass through the penetrating portion 111a to have the object to pass through the penetrating portion 111a, and may have a suitable elastic force to maintain insulation performance, but may be worn by friction. It is preferable that it is made of a material having few.
  • the material of the second heat insulating member 111b may be selected from polyurethane (PU) or polyethylene (PE) material, and preferably, polyurethane (PU) material.
  • the second heat insulating member 111b may be provided in the form of a sponge.
  • FIG. 10 is a perspective view schematically illustrating a state in which a space between spaced spaces is sealed with a heat insulating auxiliary material through an airtight step in the method of manufacturing a heat insulation box according to FIG. 1.
  • the airtight step S140 may include a space between the vacuum insulation of each side panel 110 and a space between the vacuum insulation of the side panel 110 and the vacuum insulation of the bottom panel 120.
  • each of the vacuum heat insulating materials may be in contact with each other can exhibit a heat insulating effect 50% or more than when the heat insulating effect is reduced by the thermal bridge phenomenon.
  • the insulating auxiliary material 116 may use a foamed polyurethane.
  • FIG. 11 is a plan view schematically illustrating a state in which an exterior jig is mounted on an outer side of an insulation box through an exterior jig mounting step in the method of manufacturing an insulation box according to FIG. 1
  • FIG. 12 is a method of manufacturing an insulation box according to FIG. 1.
  • Fig. 13 is a perspective view schematically showing the mounting of the built-in jig to the inside of the insulating box through the mounting jig for mounting the interior
  • Figure 13 is a foam material in the insulating box through the injection step in the manufacturing method of the insulating box according to FIG. It is a top view which shows schematically the injected state.
  • the foaming step (S150) is a step of foaming the foam material 250 inside the insulation box 1 using the jig 210 for airtightness in the insulation box 1.
  • the external jig mounting step (S151) is a step of fixing the insulating box 1 to the inside of the external jig 220.
  • the internal jig mounting step (S152) is to fix the internal jig 230 to the inside of the insulating box (1).
  • the inside of the heat insulating box 1 may be damaged by friction, and the inside jig 230 is wrapped with a packaging material to prevent the inside. Can be.
  • the external jig 220 and the internal jig 230 are mounted to the inside and the outside of the heat insulation box 1, respectively, to effectively fix the position of the heat insulation box 1.
  • the injection step (S153) is a foam material 250 in the space between the outer jig 220 and the inner jig 230, more precisely between the base insulation and the inner jig 230 of the side panel 110 assembly. Injecting. In one embodiment of the present invention performs the injection step (S153) through the foam material injection port 240, the injected foam material 250 is finally foamed to improve the airtightness of the thermal insulation box (1).
  • the injection step (S153) may additionally remove the external jig 220 or the internal jig 230 from the heat insulating box (1).
  • FIG. 15 is a front sectional view schematically illustrating a state in which a first insulation member is mounted between a side panel and a door panel through a first insulation member mounting step in the insulation box manufacturing method according to FIG. 1.
  • the first heat insulating member attaching step of attaching the first heat insulating member 132 to the space between the vacuum heat insulating material of the door panel 130 and the basic heat insulating material of the side panel 110 is performed. It may further include (S160).
  • the space between the basic insulation material of the side panel 110 and the vacuum insulation material of the door panel 130 does not have a vacuum insulation material among the side panels 110.
  • a space is formed between the formed region and the vacuum insulating material of the door panel 130, so that the airtightness and heat insulating performance of the heat insulating box 1 may be degraded.
  • the first insulation member 132 may be additionally installed in the space between the basic insulation of the side panel 110 and the vacuum insulation of the door panel 130.
  • the first heat insulating member 132 is provided in a sponge form, it may be selected from a polyurethane (PU) or polyethylene (PE) material.
  • 16 and 17 are photographs of the insulation box manufactured by the insulation box manufacturing method according to FIG.
  • the vacuum insulation material preparing step (S110) the vacuum insulation material of 200 mm ⁇ 200 mm ⁇ 15 mm to be used for the bottom panel 120 and the door panel 130 is the same as the vacuum insulation material of 159 mm ⁇ 159 mm ⁇ 18 mm to be used for the side panel 110. It manufactures by a process.
  • each vacuum insulation material after drying the PP fiber prepared in a diameter of 40 ⁇ m, 19mm length for about 2 hours under a temperature condition of 70 ° C, 97wt% fumed silica powder mixture 97wt%, PP fiber After adjusting to have a magnification of 3wt%, put into a blade mixer and mix for about 10 minutes. After the mixing process, the evenly mixed mixture is placed in a square frame and compressed by a single-acting press to produce a core material having a specific gravity of 0.16. After wrapping the core material on a six-sided (wrapping), it is packed in an aluminum packaging material and injected into a vacuum chamber to evacuate and seal under a pressure condition of 40 bar or less.
  • a 200 mm ⁇ 200 mm ⁇ 15 mm vacuum insulating material is used for the bottom panel 120 and the door panel 130, respectively, and a 59 mm ⁇ 159 mm ⁇ 18 mm vacuum insulating material is used for each side panel 110. ) To make panels.
  • the separation distance between the space between the vacuum insulation of the side panel 110 and the space between the vacuum insulation of the side panel 110 and the vacuum insulation of the bottom panel 120 is 5mm Side panel 110 and bottom panel 120 were assembled as possible.
  • polystyrene having a thickness of 23 mm X 159 mm X 18 mm, was attached between the vacuum insulating material of the door panel 130 and the basic insulating material of the side panel 110 to form a heat insulating gas.
  • the insulation box 1 manufactured by the method of manufacturing the insulation box according to an embodiment of the present invention has a plurality of side panels 110 connected along the edge of the bottom panel 120 and the bottom panel 120. ) And a door panel 130 facing the bottom panel 120 such that the side panels 110 are interposed between the bottom panel 120 and the bottom panel 120.
  • each of the side panels 110, the bottom panel 120 and the door panel 130 is attached to the base insulation 20 and the base insulation 20 and has a smaller area than the base insulation 20, synthetic silica And a vacuum insulator 10 including glass fibers.
  • the insulating auxiliary material 116 is interposed between the vacuum insulating material of each of the side panels 110 adjacent to each other and between the vacuum insulating material of the side panel 110 and the vacuum insulating material of the bottom panel 130. Done.
  • each of the side panels 110 adjacent to each other may be provided to contact each other.
  • the base insulation of the side panel 110 and the base insulation of the bottom panel 130 may also be provided to contact each other.
  • the above table is a table showing the results of measuring the internal temperature of the thermal insulation box and the thermal insulation box of the comparative example manufactured according to an embodiment of the present invention in a large refrigerator at minus 25 ° C. Looking at it, it can be seen that the internal temperature of the thermal insulation box of the comparative example has a sharp temperature drop after 24 hours, while the internal temperature of the thermal insulation box of the present invention hardly changes in temperature.
  • the heat insulation box 1 manufactured by the above-described method can be maximized the internal use space by applying a vacuum insulation material 10 having a thin and very excellent heat insulation performance, has a superior heat insulation performance than the conventional heat insulation box In addition, it is possible to provide a compact, lightweight and insulated box.
  • a method of manufacturing a thermally improved thermal insulation box that can improve the thermal insulation effect by using a vacuum insulation material, but prevents thermal bridges, and provides a thermal insulation box manufactured through the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)
  • Mechanical Engineering (AREA)

Abstract

The present invention relates to a method for manufacturing a heat insulation box with an excellent heat insulation capacity by preventing a heat-exchanging phenomenon, and provides a method for manufacturing a heat insulation box having side panels, a bottom panel, and a door panel, including the steps of: producing a vacuum heat insulation material by using a synthetic silica and an organic fiber; producing a plurality of side panels, a bottom panel, and a door panel by means of the vacuum heat insulation material attached to a basic heat insulation material; assembling the side panels and bottom panel to produce a heat insulation box with an isolation space formed between adjacent ones of the vacuum insulation materials of the side panels and between the vacuum heat insulation materials of the side panels and that of the bottom panel; and sealing the isolation spaces of the heat insulation box with a supplementary heat insulation material.

Description

단열 성능이 향상된 단열 박스의 제조방법 및 이를 통해 제조된 단열 박스Method for manufacturing insulation box with improved insulation performance and insulation box manufactured by the same
본 발명은 단열 성능이 향상된 단열 박스의 제조방법 및 이를 통해 제조된 단열 박스에 관한 것으로서, 보다 상세하게는 진공단열재를 이용하되 열교현상을 방지함으로써 단열 효과를 향상시킬 수 있는 단열 성능이 향상된 단열 박스의 제조방법 및 이를 통해 제조된 단열 박스에 관한 것이다.The present invention relates to a method for manufacturing a thermal insulation box with improved thermal insulation performance and to a thermal insulation box manufactured through the same, and more particularly using a vacuum insulation material, but to improve the thermal insulation effect by preventing heat bridge phenomenon It relates to a manufacturing method and a thermal insulation box manufactured through the same.
최근 화석연료의 고갈 등에 의한 에너지 절약의 필요성 및 시급성에 대한 전세계적인 인식으로 확산되고 있으며, 환경보호에 대한 절실함도 글로벌 운동으로 확산되고 있는 실정이다.Recently, the need for energy saving due to the depletion of fossil fuel, etc. has spread to the global recognition of the urgent need, and the need for environmental protection is spreading to the global movement.
이와 같은 에너지 절약과 환경보호라는 전세계적인 흐름에 맞추어 건축물 및 보온기 등 에너지를 사용하는 곳에 단열재를 사용함으로써 에너지 절약과 환경 보호를 위한 다양한 연구를 수행하고 있다.In accordance with the global trend of energy saving and environmental protection, various researches for energy saving and environmental protection are being conducted by using insulation materials where energy is used, such as buildings and warmers.
특정 온도 범위 내에서 물품을 보관할 수 있도록, 외부와의 열교환을 최소화하는 단열박스 분야에서도 진공단열재를 활용하고자 하는 상당한 연구가 실시되어 왔으며, 특히, 일반에 널리 보급되고 있고 여름철 냉음료수를 보관하는 아이스박스 등의 내부에 단열재를 설치하여 단열성능을 향상시키는 기술이 널리 보급되어 왔다.Significant research has been conducted to utilize vacuum insulators in the field of insulation boxes that minimize heat exchange with the outside, in order to keep the goods within a certain temperature range. In particular, ice that is widely used in the public and stores cold beverages in summer BACKGROUND ART In order to improve insulation performance by installing a heat insulating material inside a box or the like, it has been widely used.
한국 공개특허공보 제2006-0128936호는 보냉을 요하는 냉동상품을 진공단열재로 구성된 보냉용기의 내부에 수납하는 발명을 개시하고 있다. 이러한 보냉 용기는 절곡 가능하게 연접된 4면의 둘레 벽부와 절곡 가능하게 연접된 뚜껑 부분으로 구성된 진공단열재를 기형성된 접는 선을 따라 절곡하여 형성하는 것을 특징으로 한다.Korean Laid-Open Patent Publication No. 2006-0128936 discloses an invention in which a frozen product requiring cold storage is housed in a cold storage container made of a vacuum insulator. The cold storage container is characterized by bending a vacuum insulation material consisting of a bent portion of the circumferential wall portion of the four sides that are bently connected and bent along the preformed fold line.
미국 등록특허공보 제6192703호는 밀폐 구조체에 진공단열 패널을 장착하는 발명을 기재하고 있다. US Patent No. 6192703 describes an invention for mounting a vacuum insulated panel in a sealed structure.
상술한 보온 및 단열케이스에 적용되고 있는 종래의 단열기술은 단열재의 성능이 떨어지거나 단열재의 가공성이 불량하여 보온 및 단열케이스의 용량 증대가 불가피한 문제점이 지적되고 있다.Conventional heat insulation technology applied to the above-mentioned heat insulation and heat insulation case has been pointed out that the performance of heat insulation and heat insulation case is inevitable due to poor performance of heat insulation or poor workability of heat insulation.
또한, 진공단열재는 일반적인 단열재에 비해 8배 이상의 우수한 단열 성능을 가짐에도 불구하고 진공단열재의 외피를 금속성 진공봉투로 채택함으로써 진공단열재의 연결 접촉부분이 직각의 형태나 경사면의 형태와 같은 단순한 형태로 제조되어 공급된다. 이에 따라, 진공단열재를 건축자재로 시공할 경우 진공단열재의 연결부분인 접촉면을 통하여 열이 전달됨으로써 단열성능이 급격히 저하되는 문제점이 지적되어 왔고, 상술한 종래의 기술에서도 동일한 문제점이 지적된다.In addition, although the vacuum insulation material has 8 times more excellent thermal insulation performance than the general insulation material, the outer surface of the vacuum insulation material is adopted as a metallic vacuum bag, so that the connecting contact portion of the vacuum insulation material has a simple shape such as a right angle shape or an inclined surface shape. Manufactured and supplied. Accordingly, when the vacuum insulator is constructed as a building material, a problem has been pointed out that the heat insulation performance is drastically lowered by transferring heat through a contact surface that is a connection portion of the vacuum insulator, and the same problem is pointed out in the above-described prior art.
한편, 일본 등록특허공보 제4944567호는 박스형태에 적용되는 평판상의 진공단열재의 단부에 열교(heat bridge) 현상이 발생함으로써 모서리부로부터 열이 누설되는 문제를 해결하기 위해 육면체를 평면에 전개한 형상을 가지는 가스 배리어(barrier)성 필름을 적용하여 육면체 조립이 가능한 진공단열재를 개시하고 있다. 그러나, 이러하 진공단열재는 제조가 용이치 않아 생산성이 떨어진다는 문제점이 발생한다.On the other hand, Japanese Patent Laid-Open No. 4944567 is a shape in which a hexahedron is deployed in a plane to solve the problem of heat leakage from an edge part due to a heat bridge phenomenon occurring at an end portion of a flat vacuum insulating material applied to a box shape. Disclosed is a vacuum insulator capable of assembling a hexahedron by applying a gas barrier film having a film. However, this vacuum insulation material is not easy to produce a problem that productivity is low.
또한, 일본 등록특허공보 제4778856호는 진공단열재가 설치되는 수송용 단열 용기에 대한 발명으로, 안쪽상자와 외장재와의 사이에 진공단열재가 배치되는 단열용기는 밑면을 포함하며, 단열용기 내부의 2면 이상에 걸쳐 접어 구부러지는 진공 단열재와 보호부재를 구비하고, 안쪽상자에는 용기상에 형성되는 발포 폴리스틸렌을 이용하며, 단열용기 구조의 구성요소가 착탈가능하게 마련된 단열용기를 제공한다. 그러나, 이러한 단열용기는 자체 부피가 크고 무거워 휴대성이 떨어진다는 문제점이 존재한다.In addition, Japanese Patent No. 4778856 is an invention for a transport insulation container in which a vacuum insulation material is installed, wherein the insulation container in which the vacuum insulation material is disposed between the inner box and the exterior material includes a bottom surface, and the inside of the insulation container has a bottom surface. It is provided with a vacuum insulating material and a protective member bent over the surface, the inner box uses a foamed polystyrene formed on the container, and provides a heat insulating container detachably provided with the components of the heat insulating container structure. However, such a thermal insulation container has a problem that its volume is large and heavy so that portability is poor.
1. 한국 공개특허공보 제2006-0128936호 (2006.12.24)1. Korean Unexamined Patent Publication No. 2006-0128936 (2006.12.24)
2. 미국 등록특허공보 제6192703호 (2001.02.27)2. United States Patent Publication No. 6192703 (2001.02.27)
3. 일본 등록특허공보 제4944567호 (2008.05.08)3. Japanese Patent No. 4944567 (2008.05.08)
4. 일본 등록특허공보 제4778856호 (2008.02.14)4. Japanese Patent Publication No. 4778856 (2008.02.14)
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 단열박스의 부피 및 무게를 줄이면서도 단열박스의 단열효과를 향상시킬 수 있는 단열 성능이 향상된 단열 박스의 제조방법 및 이를 통해 제조된 단열 박스를 제공함에 있다.Accordingly, an object of the present invention is to solve such a conventional problem, while reducing the volume and weight of the thermal insulation box, and a method of manufacturing a thermal insulation box with improved thermal insulation performance that can improve the thermal insulation effect of the thermal insulation box and manufacturing through it To provide a thermal insulation box.
상기 목적은, 본 발명에 따라, 측면 패널, 바닥 패널 및 도어 패널을 구비하는 단열박스를 제조하는 단열박스 제조방법에 있어서, 합성실리카 및 유기섬유를 이용하여 진공단열재를 제조하는 진공단열재 제조단계; 기초단열재에 상기 진공단열재를 부착하여 측면 패널, 바닥 패널 및 도어 패널을 제조하는 패널 제조 단계; 서로 인접한 상기 측면 패널 각각의 진공단열재 사이 또는 상기 측면 패널의 진공단열재와 상기 바닥 패널의 진공단열재 사이에 이격 공간이 형성되도록 상기 측면 패널 및 상기 바닥 패널을 조립하여 단열박스를 제조하는 박스 제조단계; 상기 단열박스의 이격 공간을 단열보조재로 기밀하는 기밀단계;를 포함하는 단열 박스의 제조방법에 의해 달성된다.The above object, according to the present invention, in the heat insulation box manufacturing method for manufacturing a heat insulation box having a side panel, a bottom panel and a door panel, a vacuum insulation material manufacturing step of manufacturing a vacuum insulation material using synthetic silica and organic fibers; A panel manufacturing step of attaching the vacuum insulation material to the basic insulation material to manufacture a side panel, a bottom panel and a door panel; A box manufacturing step of manufacturing a heat insulation box by assembling the side panel and the bottom panel such that a space is formed between the vacuum insulation of each of the side panels adjacent to each other or between the vacuum insulation of the side panel and the vacuum insulation of the bottom panel; It is achieved by the method of manufacturing a thermal insulation box comprising; an airtight step of hermetically sealing the spaced space of the thermal insulation box with a heat insulating auxiliary material.
여기서, 상기 단열박스 내부에 발포물질을 발포하는 발포단계;를 더 포함하는 것이 바람직하다.Here, the foaming step of foaming the foam material in the heat insulation box; preferably further comprises.
또한, 상기 발포단계는 상기 단열박스를 외부용 지그 내측에 고정설치하는 외부용 지그 장착단계; 상기 단열박스의 내측으로 내부용 지그를 고정설치하는 내부용 지그 장착단계; 상기 외부용 지그 및 상기 내부용 지그 사이로 발포물질을 주입하는 주입단계;를 포함하는 것이 바람직하다.In addition, the foaming step is an external jig mounting step of fixing the heat insulation box inside the external jig; An internal jig mounting step of fixing the internal jig to the inside of the insulation box; It is preferable to include a; injection step of injecting a foam material between the outer jig and the inner jig.
또한, 상기 측면패널의 기초단열재 중 진공단열재 미형성 영역에 상기 측면패널의 진공단열재와 접촉하도록 제1 단열부재를 부착하는 제1 단열부재를 부착하는 제1 단열부재 부착단계;를 더 포함하는 것이 바람직하다.The method may further include attaching a first heat insulating member to the first heat insulating member to attach the first heat insulating member to the vacuum heat insulating material of the side panel to the vacuum insulating material non-formed region of the base heat insulating material of the side panel. desirable.
또한, 상기 제1 단열부재는 폴리우레탄(polyurethane:PU) 또는 폴리에틸렌(polyethylene:PE) 재질의 소재로 형성되되 스폰지 형태로 구비되는 것이 바람직하다.In addition, the first heat insulating member is formed of a material made of polyurethane (PU) or polyethylene (polyethylene: PE) material, but preferably provided in the form of a sponge.
또한, 상기 이격 공간은 서로 인접하는 진공단열재 사이의 간격이 1 ㎜ 내지 10 ㎜ 으로 마련되는 것이 바람직하다.In addition, the separation space is preferably provided with a spacing between 1 mm to 10 mm between the adjacent vacuum insulation.
또한, 상기 박스 제조단계는 우레탄계 접착제를 사용하여 상기 각각의 측면 패널 또는 상기 바닥 패널과 상기 측면 패널을 조립시키는 것이 바람직하다.In addition, in the box manufacturing step, it is preferable to assemble the respective side panels or the bottom panel and the side panel using a urethane-based adhesive.
또한, 상기 측면 패널은 복수개로 마련되고, 상기 측면 패널 중 적어도 어느 하나에 관통부를 형성하는 관통부 형성단계;를 더 포함하는 것이 바람직하다.The side panel may include a plurality of side panels, and a through part forming step of forming a through part in at least one of the side panels.
또한, 상기 단열박스의 기밀 또는 단열을 유지하도록 상기 관통부의 내측으로 제2 단열부재를 개재하는 제2 단열부재 장착단계;를 더 포함하는 것이 바람직하다.In addition, the second heat insulating member mounting step of interposing the second heat insulating member to the inside of the through part so as to maintain the airtight or heat insulation of the heat insulating box.
또한, 상기 제2 단열부재는 폴리우레탄(polyurethane:PU) 또는 폴리에틸렌(polyethylene:PE) 재질의 소재로 형성되되 스폰지 형태로 구비되는 것이 바람직하다.In addition, the second heat insulating member is formed of a material of polyurethane (PU) or polyethylene (polyethylene: PE) material is preferably provided in the form of a sponge.
또한, 상기 기밀단계에서 상기 단열보조재는 발포폴리우레탄으로 형성되는 것이 바람직하다.In addition, the heat insulating auxiliary material in the airtight step is preferably formed of foamed polyurethane.
또한, 상기 패널 제조단계에서 상기 도어 패널은 진공단열재의 서로 대향하는 두 면상에 기초단열재를 부착하여 제조되는 것이 바람직하다.In addition, in the panel manufacturing step, the door panel is preferably manufactured by attaching the basic insulating material on two opposite surfaces of the vacuum insulating material.
또한, 상기 목적은, 본 발명에 따라, 제 1항 내지 제 12항 중 어느 한 항에 기재된 단열 박스의 제조방법을 통해 제조된 단열 박스에 의해 달성된다.Moreover, the said object is achieved by the heat insulation box manufactured through the manufacturing method of the heat insulation box in any one of Claims 1-12 according to this invention.
또한, 상기 목적은, 본 발명에 따라, 바닥 패널; 상기 바닥 패널의 가장자리를 따라 연결된 측면 패널; 및 상기 바닥 패널과 마주하여 상기 측면 패널을 개재하도록 배치된 도어 패널을 포함하고, 상기 측면 패널, 상기 바닥 패널 및 상기 도어 패널 각각은 (a) 기초단열재; 및 (b) 상기 기초단열재에 부착되고, 상기 기초단열재보다 좁은 면적을 가지며, 합성실리카와 유기섬유를 포함하는 진공단열재를 포함하며, 서로 인접한 측면 패널들 각각의 진공단열재 사이 및 상기 측면 패널의 진공 단열재와 상기 바닥 패널의 진공단열재 사이 중 적어도 어느 하나에 형성된 이격공간에 단열보조재가 개재된 단열 박스에 의해 달성된다.In addition, the above object is, according to the present invention, a floor panel; A side panel connected along an edge of the bottom panel; And a door panel disposed to face the bottom panel so as to interpose the side panel, wherein each of the side panel, the bottom panel, and the door panel comprises: (a) a basic insulation; And (b) a vacuum insulating material attached to the basic insulating material and having a smaller area than the basic insulating material, the vacuum insulating material including synthetic silica and organic fibers, between the vacuum insulating material of each of the adjacent side panels and the vacuum of the side panel. It is achieved by an insulating box in which a heat insulating auxiliary material is interposed in at least one space formed between at least one of the heat insulating material and the vacuum insulating material of the floor panel.
여기서, 서로 인접한 측면 패널 각각의 기초단열재는 접촉하는 것이 바람작하다.Here, it is preferable that the basic insulation of each of the side panels adjacent to each other come into contact.
또한, 상기 측면 패널의 기초단열재와 상기 바닥 패널의 기초단열재는 접촉하는 것이 바람직하다.In addition, it is preferable that the base insulation of the side panel and the base insulation of the bottom panel contact.
본 발명에 따르면, 단열 박스의 내부의 6 면상에 진공단열재를 부착하여 복사에 의한 열손실을 최소화할 수 있는 단열 성능이 향상된 단열 박스의 제조방법 및 이를 통해 제조된 단열 박스가 제공된다.According to the present invention, there is provided a method for manufacturing a thermally improved thermal insulation box and a thermal insulation box manufactured through the same, by attaching a vacuum insulator on six surfaces of the thermal insulation box to minimize heat loss due to radiation.
또한, 단열 박스의 내부 6면 상에 진공단열재를 복수개 부착함으로써 진공단열재의 진공불량 발생시에도 열손실을 최소화할 수 있다.In addition, by attaching a plurality of vacuum insulating material on the inner six surfaces of the heat insulating box it is possible to minimize the heat loss even when the vacuum failure of the vacuum insulating material.
또한, 단열 박스 내측 및 진공단열재 사이의 일정 부분에 발포물질을 발포하여 단열 소재 사이의 밀착성 및 기밀성을 향상시킬 수 있다.In addition, it is possible to improve the adhesion and airtightness between the heat insulating material by foaming the foam material in a portion between the heat insulating box and the vacuum insulating material.
또한, 도어 패널과 측면 패널 사이의 공간에도 단열 부재를 장착함으로써 단열효과를 극대화할 수 있어 극저온 또는 극고온 지방에서 고가의 측정 장치를 오랜 동안 수용할 수 있는 보호장비로써 사용가능한 고성능의 단열 박스를 제공할 수 있다.In addition, the insulation member is also installed in the space between the door panel and the side panel to maximize the insulation effect, so that a high-performance insulation box that can be used as a protective device to accommodate expensive measuring devices for a long time in cryogenic or cryogenic regions Can provide.
또한, 종래의 단열박스보다 성능 대비 부피는 줄이고, 무게는 가벼워 휴대성이 향상된다.In addition, compared to the conventional heat insulation box, the volume is reduced compared to the performance, and the weight is light, thereby improving portability.
도 1은 본 발명의 일실시예에 따른 단열박스의 제조방법을 개략적으로 도시한 순서도이고,1 is a flow chart schematically showing a method of manufacturing a thermal insulation box according to an embodiment of the present invention,
도 2는 도 1에 따른 단열박스의 제조방법에서 패널 제조단계을 통해 제조된 패널을 개략적으로 도시한 사시도이고,2 is a perspective view schematically showing a panel manufactured through a panel manufacturing step in the method of manufacturing a thermal insulation box according to FIG.
도 3은 도 1에 따른 단열박스의 제조방법에서 관통부 형성단계를 통해 제조된 정면 패널에 관통부를 형성한 것을 개략적으로 도시한 정면도이고,FIG. 3 is a front view schematically illustrating a through part formed in a front panel manufactured through the through part forming step in the method of manufacturing a heat insulation box according to FIG. 1,
도 4는 도 1에 따른 단열박스의 제조방법에서 박스 조립단계를 통해 후면 패널과 우측면패널을 조립하는 모습을 개략적으로 도시한 사시도이고,Figure 4 is a perspective view schematically showing the assembly of the rear panel and the right side panel through the box assembly step in the manufacturing method of the insulating box according to Figure 1,
도 5는 도 1에 따른 단열박스의 제조방법에서 박스 조립단계를 통해 측면 패널 조립체를 형성한 모습을 개략적으로 도시한 사시도이고,5 is a perspective view schematically showing a state in which a side panel assembly is formed through a box assembling step in the method of manufacturing an insulating box according to FIG. 1,
도 6는 도 1에 따른 단열박스의 제조방법에서 박스 조립단계를 통해 측면 패널 조립체에 이격 공간이 형성된 모습을 개략적으로 도시한 평면도이고,FIG. 6 is a plan view schematically illustrating a separation space formed in the side panel assembly through a box assembly step in the method of manufacturing an insulating box according to FIG. 1,
도 7은 도 1에 따른 단열박스의 제조방법에서 박스 조립단계를 통해 측면 패널과 바닥 패널을 조립하는 모습을 개략적으로 도시한 사시도이고,7 is a perspective view schematically showing a state of assembling the side panel and the bottom panel through the box assembly step in the manufacturing method of the insulating box according to FIG.
도 8은 도 1에 따른 단열박스의 제조방법에서 박스 조립단계를 통해 측면 패널과 바닥 패널을 조립된 모습을 개략적으로 도시한 사시도이고,8 is a perspective view schematically illustrating a state in which a side panel and a bottom panel are assembled through a box assembling step in a method of manufacturing a heat insulation box according to FIG. 1,
도 9는 도 1에 따른 단열박스의 제조방법에서 제2 단열부재 장착단계를 통해 제2 단열부재를 관통부에 개재한 모습을 개략적으로 도시한 사시도이고,FIG. 9 is a perspective view schematically showing a state in which a second heat insulating member is interposed through a through part through a second heat insulating member mounting step in the method of manufacturing a heat insulating box according to FIG. 1;
도 10은 도 1에 따른 단열박스의 제조방법에서 기밀단계를 통해 이격 공간 사이를 단열보조재로 기밀한 모습을 개략적으로 도시한 사시도이고,FIG. 10 is a perspective view schematically illustrating a state in which a space between spaces is separated by a heat insulating auxiliary material through an airtight step in the method of manufacturing a heat insulation box according to FIG. 1.
도 11은 도 1에 따른 단열박스의 제조방법에서 외장용 지그 장착단계를 통해 단열박스 외측에 외장용 지그를 장착한 모습을 개략적으로 도시한 평면도이고,FIG. 11 is a plan view schematically illustrating a state in which an exterior jig is mounted on an outer side of an insulation box through an exterior jig mounting step in the method of manufacturing an insulation box according to FIG. 1;
도 12는 도 1에 따른 단열박스의 제조방법에서 내장용 지그 장착단계를 통해 단열박스 내측에 내장용 지그를 장착하는 모습을 개략적으로 도시한 사시도이고,12 is a perspective view schematically illustrating a state in which the interior jig is mounted inside the insulation box through the interior jig mounting step in the manufacturing method of the insulation box according to FIG. 1;
도 13은 도 1에 따른 단열박스의 제조방법에서 주입단계를 통해 단열박스 내부에 발포물질이 주입된 모습을 개략적으로 도시한 평면도이고,FIG. 13 is a plan view schematically illustrating a state in which a foam material is injected into an insulation box through an injection step in the method of manufacturing an insulation box according to FIG. 1;
도 14는 도 1에 따른 단열박스 제조방법에서 절단부가 형성된 도어패널을 개략적으로 도시한 분해사시도이고,FIG. 14 is an exploded perspective view schematically illustrating a door panel in which a cut part is formed in the insulating box manufacturing method according to FIG. 1;
도 15는 도 1에 따른 단열박스 제조방법에서 제1 단열부재 장착단계를 통해 측면패널과 도어패널 사이에 제1 단열부재가 장착된 모습을 개략적으로 도시한 정단면도이고,FIG. 15 is a front sectional view schematically illustrating a state in which a first insulation member is mounted between a side panel and a door panel through a first insulation member mounting step in the insulation box manufacturing method according to FIG. 1;
도 16, 17은 도 1에 따른 단열박스 제조방법을 통해 제조된 단열박스에 대한 사진이다.16 and 17 are photographs of the insulation box manufactured by the insulation box manufacturing method according to FIG.
이하, 첨부한 도면을 참조하여 본 발명의 일실시예에 따른 단열박스의 제조방법에 대하여 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the manufacturing method of the insulating box according to an embodiment of the present invention.
도 1은 본 발명의 일실시예에 따른 단열박스의 제조방법을 개략적으로 도시한 순서도이다.1 is a flow chart schematically showing a method of manufacturing a thermal insulation box according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일실시예에 따른 단열박스의 제조방법(S100)은 단열박스 내부에서 열교현상이 발생함으로써 단열박스의 단열성능을 저하시키는 것을 방지할 수 있는 것으로서, 진공단열재 준비단계(S110)와 패널제조단계(S120)와 박스제조단계(S130)와 기밀단계(S140)와 발포단계(S150)와 제1 단열부재 부착단계(S160)를 포함한다.Referring to Figure 1, the manufacturing method of the thermal insulation box according to an embodiment of the present invention (S100) is to prevent the thermal insulation of the thermal insulation box is lowered by the occurrence of thermal bridges in the thermal insulation box, preparing a vacuum insulation material Step (S110) and the panel manufacturing step (S120) and the box manufacturing step (S130) and the airtight step (S140) and foaming step (S150) and the first heat insulating member attaching step (S160).
또한, 본 발명의 일실시예는 얇은 두께의 진공단열재를 단열박스에 부착시킴으로써 단열박스의 내부공간을 최대화시킬 수 있고, 인접하는 진공단열재가 서로 마주보는 일부 공간에서의 열손실을 최소화함으로써 극지방에서도 사용가능한 단열박스를 제공할 수 있다.In addition, an embodiment of the present invention can maximize the internal space of the insulating box by attaching a thin thickness of the vacuum insulating material to the insulating box, even in the polar region by minimizing heat loss in some spaces adjacent to the vacuum insulating material facing each other It is possible to provide a thermal insulation box that can be used.
한편, 본 발명의 일실시예에 따른 단열박스의 제조방법(S100)를 설명하기에 앞서, 본 발명이 해결하기 위한 문제점 중 하나인 열교 현상(thermal bridge)에 대해 설명한다.On the other hand, prior to explaining the manufacturing method (S100) of the insulating box according to an embodiment of the present invention, a thermal bridge phenomenon (thermal bridge) which is one of the problems to solve the present invention will be described.
"열교 현상"(thermal bridge) 은 냉교 현상과 실질적으로 동일한 의미로, 구조상 벽의 일부분이 선천적 또는 후천적으로 다른 부분에 비해 얇아진다든지, 아니면 서로 인접하는 벽을 구성하는 재료가 상이함으로써 열관류 저항이 더 작은 부분이 발생하면 결로(結露)하기 쉬운 현상을 의미한다.“Thermal bridge” is substantially the same as cold bridge, in which a part of the wall becomes inherently or acquired thinner than other parts, or the material forming the adjacent walls is different When smaller parts occur, it means a phenomenon that is easy to condensate.
여기서, 진공단열재의 경우, 단열성능을 장기간 유지할 수 있도록 금속 라미네이팅(laminating)의 합성 수지층으로 이루어진 기밀 포일을 이용하여 포장을 하게 되며, 이러한 진공단열재의 표면이 서로 접촉하게 되면 포장재인 금속 라미네이팅(laminating) 필름이 서로 접촉하여 구조상 열관류 저항이 더 낮은 부분이 발생할 수 있고 이로 인해 열교 현상이 발생할 수 있다.Here, in the case of the vacuum insulation material, in order to maintain the thermal insulation performance for a long time, it is packaged using an airtight foil made of a synthetic resin layer of metal laminating (laminating), and when the surfaces of the vacuum insulation material comes into contact with each other, the metal laminating (packing material) Laminating films may come into contact with each other, resulting in a lower thermal permeation resistance in the structure, which may result in thermal bridges.
이에 따라, 본 발명의 일실시예에서는 진공단열재(10)를 이용하여 제작된 패널을 조립할 경우, 인접하는 진공단열재(10)들이 서로 접촉하지 않도록 조립하여 이격 공간(separation distance)(115, 도 참조)을 형성하고, 이격 공간(115)에 단열보조재(116, 도 참조)를 채움으로써 열교 현상을 방지하고 단열박스(1)의 단열 성능을 유지 및 향상시킬 수 있다.Accordingly, in one embodiment of the present invention, when assembling the panel manufactured by using the vacuum insulator 10, the adjacent vacuum insulators 10 are assembled so that the adjacent vacuum insulators 10 do not come into contact with each other. ) And filling the separation space 115 with the heat insulating auxiliary material 116 (see FIG.) To prevent thermal bridges and maintain and improve the heat insulating performance of the heat insulating box 1.
상기 진공단열재 준비단계(S110)는 합성실리카와 유기섬유를 배합하여 제조된 진공단열재(10)를 준비하는 단계이다. The vacuum insulation material preparation step (S110) is a step of preparing a vacuum insulation material 10 prepared by mixing synthetic silica and organic fibers.
여기서, 진공단열재(10)는 단열박스(1)의 내부공간을 확장시킬 수 있도록 두께가 얇게 마련되고, 우수한 단열성능을 가지도록 하는 것이 바람직하다.Here, the vacuum insulator 10 is preferably thin so as to expand the internal space of the heat insulating box 1, it is preferable to have an excellent heat insulating performance.
한편, 진공단열재(10)의 특징적인 기술사상은 5 ~ 50㎚의 평균 입자크기를 갖는 합성실리카를 포함하는 분말 혼합물과 6 ~ 40㎜로 절단된 유기섬유가 상기 분말 혼합물 100 중량부에 대하여 0.5 ~ 10 중량부 포함된 섬유 혼합물을 배합한 다음, 열수축필름으로 6면 랩핑(Wrapping)하여 만들어지는 내부 심재(core)를 이용한다는 점이다.On the other hand, the characteristic technical features of the vacuum insulation material 10 is a powder mixture containing synthetic silica having an average particle size of 5 ~ 50nm and organic fibers cut to 6 ~ 40mm 0.5 to 100 parts by weight of the powder mixture ~ 10 parts by weight of the included fiber mixture, and then using the inner core (core) made by six-side wrapping (Wrapping) with a heat shrink film.
상술한 진공단열재 준비단계(S110)에서 준비되는 진공단열재(10)의 특징은 유기섬유를 사용한다는 점이다. 지금까지 사용되어온 진공단열재용 보강 섬유는 무기섬유인 유리섬유와 세라믹섬유가 있다. 두 무기섬유는 내부 심재의 주재료인 실리카와 유사 성분으로 만들어짐에 따라 혼합이 잘 되지만, 두 섬유는 혼합시 기계적 강도의 보강 효과는 크지 않으며, 비중이 유리섬유 2.5, 세라믹섬유 3.0으로 높고, 열전도도가 높은 단점이 있다. The characteristic of the vacuum insulation material 10 prepared in the above-described vacuum insulation material preparation step (S110) is that it uses organic fibers. Reinforcing fibers for vacuum insulation materials that have been used so far include inorganic fibers, glass fibers and ceramic fibers. The two inorganic fibers are mixed well as they are made of silica and similar components, which are the main materials of the inner core, but the two fibers have little reinforcing effect of mechanical strength when mixing, and the specific gravity is high as glass fiber 2.5 and ceramic fiber 3.0, and the thermal conductivity is high. There is a high degree of disadvantage.
따라서, 본 실시예의 진공단열재(10)는 무기섬유를 보강 섬유로 이용한 진공단열재의 단점을 개선하기 위하여 보강 섬유로 유기섬유를 도입하였다. 기존 진공단열재의 내부 심재로 사용되던 보강섬유는 무기섬유 중 유리섬유, 세라믹섬유가 사용되었으며, 무기섬유는 합성실리카와 같은 실리카, 알루미나 분말이 주를 이루고 있어서 합성실리카와 혼합이 잘 되고 압축시 약한 결합력을 발휘하여 보강효과가 높은 것으로 알려져 있다. 반면 유기섬유는 압축시에 결합력이 없어서 쉽게 분리되고 보강효과가 낮은 것으로 간주되었고, 또한 유기섬유는 진공중에서 가스를 발생시켜 진공단열재의 내부 압력을 높이는 문제가 있는 것으로 알려져 있었다. 그러나 본 발명의 발명자들은 무기섬유의 높은 비중의 개선을 위하여 낮은 비중을 갖는 유기섬유를 착안하였으며, 유기섬유와 합성실리카가 쉽게 이탈하는 것을 방지하도록 유기섬유와 합성실리카의 섬유길이를 혼합 가능한 범위에서 늘려, 유기섬유와 합성실리카 간의 마찰력을 최대화시켰다.Therefore, the vacuum insulating material 10 of the present embodiment introduced organic fibers as reinforcing fibers in order to improve the disadvantages of the vacuum insulating material using inorganic fibers as reinforcing fibers. The reinforcing fiber used as the inner core material of the existing vacuum insulation material was glass fiber and ceramic fiber among inorganic fibers.Inorganic fiber is mainly composed of silica and alumina powder such as synthetic silica, so it is well mixed with synthetic silica and weak in compression. It is known to exhibit a high reinforcing effect by exerting a bonding force. On the other hand, organic fibers were considered to be easily separated and had low reinforcement effects because they had no bonding force during compression, and organic fibers were also known to have a problem of increasing the internal pressure of the vacuum insulator by generating gas in a vacuum. However, the inventors of the present invention devised an organic fiber having a low specific gravity in order to improve the high specific gravity of the inorganic fiber, and in a range capable of mixing the fiber lengths of the organic fiber and the synthetic silica to prevent the organic fiber and the synthetic silica from easily separated. Increased, maximizing the friction between organic fibers and synthetic silica.
그 결과 휘어진 유기섬유의 굴곡부에서 합성실리카와의 마찰력이 효율적으로 작용하여 무기섬유의 약한 결합효과보다 우수한 내부 심재의 기계적 강도가 향상되는 효과를 찾아냈다. 유기섬유는 진공단열재의 내부 심재에서 합성실리카와 결합효과는 거의 없으나 섬유 간의 마찰력과 섬유의 굴곡부에서 발생하는 합성실리카와의 마찰력이 기존 섬유보다 더 큰 강도 보강 효과를 발휘한다. As a result, the frictional force with the synthetic silica in the bent portion of the bent organic fibers effectively acted to find the effect of improving the mechanical strength of the inner core material superior to the weak bonding effect of the inorganic fibers. Organic fiber has little bonding effect with synthetic silica in the inner core of vacuum insulation material, but the friction between fiber and synthetic silica generated at the bend of the fiber shows greater strength reinforcement effect than the existing fiber.
한편, 유기섬유의 길이는 6 ~ 40㎜가 되도록 절단하는 것이 바람직하며, 다양한 길이의 유기섬유를 사용하는 것보다는 일정 길이의 유기섬유를 사용하는 것이 더욱 바람직하다. 유기섬유의 길이가 6㎜보다 짧으면 섬유 보강 효과가 현저히 떨어지며, 40㎜보다 길면 부분 뭉침이 발생하여 분말과의 균질한 혼합이 어렵다. On the other hand, the length of the organic fiber is preferably cut to 6 ~ 40mm, it is more preferable to use a predetermined length of organic fibers than to use a variety of organic fibers. If the length of the organic fiber is shorter than 6mm, the fiber reinforcing effect is remarkably inferior, and if the length of the organic fiber is longer than 40mm, partial aggregation occurs and it is difficult to homogeneously mix with the powder.
또한, 유기섬유의 직경은 1 ~ 100㎛가 바람직하며, 보다 바람직하게는 10 ~ 40㎛의 직경을 선택한다. 유기섬유는 다발로 생산되므로 1㎛보다 작으면 분산에 많은 시간이 걸리며, 100㎛보다 크면 잘 휘지 않고 섬유수가 적어서 섬유보강 효과가 아주 낮다.Further, the diameter of the organic fiber is preferably 1 to 100 µm, more preferably 10 to 40 µm in diameter. Organic fibers are produced in bundles, so if they are smaller than 1 μm, it takes a lot of time to disperse them.
여기서, 사용되는 유기섬유의 종류에는 PE, PP, Nylon, PVA, PAN, PET 등의 진비중 1.4 이하의 유기섬유가 사용 가능하다. 내부 심재의 섬유보강을 위하여는 유기섬유만의 사용이 바람직하나 유기섬유와 고비중의 탄소섬유, 유리섬유 등의 혼합도 가능하다. 이 경우에도 주된 보강 기능은 유기섬유가 담당하게 된다.Here, as the type of organic fibers used, 1.4 or less organic fibers of true specific gravity, such as PE, PP, Nylon, PVA, PAN, PET, can be used. In order to reinforce the fiber of the inner core, it is preferable to use only organic fibers, but it is also possible to mix organic fibers with high specific carbon fibers and glass fibers. Even in this case, the main reinforcing function is the organic fiber.
한편, 본 발명의 일실시예에서의 진공단열재(10)는 합성실리카를 포함하는 분말과 유기섬유의 배합으로 이루어진다. 여기서, 합성실리카의 평균 1차 입자크기는 5 ~ 50㎚를 사용함이 바람직하다. 1차 입자크기가 5㎚보다 작으면 부피가 커져서 취급이 어렵고, 50㎚보다 크면 압축시 충분한 단열효과를 얻을 수 없다. 또한, 합성실리카의 BET 비표면적은 40 ~ 400㎡/g을 사용하는 것이 바람직하다. 비표면적이 40㎡/g 이하가 되면 단열성이 떨어지고 400㎡/g을 넘으면 너무 미세하여 내부 심재 제조가 어려워진다.On the other hand, the vacuum insulator 10 in one embodiment of the present invention is made of a mixture of powder and organic fibers containing synthetic silica. Here, the average primary particle size of the synthetic silica is preferably used 5 ~ 50nm. If the primary particle size is smaller than 5 nm, the volume becomes large and handling is difficult. If the primary particle size is larger than 50 nm, sufficient adiabatic effect cannot be obtained during compression. In addition, it is preferable to use 40-400 m <2> / g of BET specific surface areas of synthetic silica. When the specific surface area is 40 m 2 / g or less, the thermal insulation is inferior, and when it exceeds 400 m 2 / g, it is too fine to make the internal core material is difficult.
여기서, 합성실리카는 기상반응으로 만들어지는 흄드실리카, 액상반응으로 만들어지는 침전실리카, 콜로이드 실리카, 에어로겔, 실리카졸 등으로 사용가능하다. 이 중 제조 단가가 싸고 비표면적이 큰 흄드실리카의 사용이 바람직하다. 진공단열재의 내부 심재 제조는 순수 합성실리카 분말만으로도 제조 가능하며, 합성실리카외에도 알루미나, 산화티탄, 탄화규소, 흑연 등의 분말이 단열성을 높이기 위해 혼합 가능하다. 바람직한 내부 심재용 분말 혼합물 중 합성실리카 함량이 70%이상을 차지하는 것이 좋다.Here, the synthetic silica can be used as fumed silica produced by the gas phase reaction, precipitated silica produced by the liquid phase reaction, colloidal silica, aerogel, silica sol and the like. Among them, the use of fumed silica with low manufacturing cost and high specific surface area is preferable. The inner core material of the vacuum insulator can be manufactured only with pure synthetic silica powder, and in addition to the synthetic silica, powders such as alumina, titanium oxide, silicon carbide, and graphite can be mixed to increase thermal insulation. Preferably, the content of synthetic silica in the preferred inner core powder mixture is 70% or more.
또한, 본 발명의 일실시예에 따른 진공단열재(10)는 복사열을 차단해주기 위한 적외선 불투명화재를 합성실리카와 혼합하는 것이 좋다. 내부 심재에 사용되는 적외선 불투명화재는 산화티탄, 카본블랙, 활석, 탄화규소, 산화철, 산화지르코늄, 흑연 등이 있다. 이들 불투명화재는 15 ~ 40℃의 물체에서 방출되는 원적외선을 반 이상 반사 또는 흡수함으로써 복사에 의한 빠른 열전달을 차단하는 기능을 가진다. 불투명화재는 내부 심재 100 중량부 당 5 내지 30 중량부를 차지하는 것이 좋다. 불투명화재를 이루는 성분들의 평균 입자크기는 1 ~ 90㎛ 이하로 작은 입자일수록 효과가 좋다.In addition, the vacuum insulation material 10 according to an embodiment of the present invention is preferably mixed with an infrared opaque fire material for blocking radiant heat and synthetic silica. Infrared opaque fires used for the inner core material include titanium oxide, carbon black, talc, silicon carbide, iron oxide, zirconium oxide, and graphite. These opaque fires have a function of blocking rapid heat transfer by radiation by reflecting or absorbing more than half of the far infrared rays emitted from an object at 15 to 40 ° C. The opaque fire material may occupy 5 to 30 parts by weight per 100 parts by weight of the inner core material. The average particle size of the components constituting the opaque fire is 1 ~ 90㎛ or less the particles are better effect.
더 나아가, 유기섬유의 혼합물의 함량은 합성실리카 포함 분말 혼합물 100 중량부에 대하여 0.5 ~ 10 중량부로 함이 바람직하다. 유기섬유 함량이 너무 높아지면 진공단열재(130)의 경시변화를 가속하여 단열성능을 떨어뜨린다. Further, the content of the mixture of organic fibers is preferably 0.5 to 10 parts by weight based on 100 parts by weight of the synthetic silica-containing powder mixture. If the organic fiber content is too high, it accelerates the change over time of the vacuum insulation material 130 to lower the thermal insulation performance.
한편, 합성실리카 포함 분말 혼합물과 유기섬유 포함 섬유 혼합물의 배합은 분말 혼합물과 섬유 혼합물를 믹서에서 일정 배합비로 균질 배합하는 것이 좋다. 다른 방법으로 합성실리카 포함 분말 혼합물과 유기섬유 포함 섬유 혼합물을 각각의 층으로 적층하여 만드는 것도 가능하나 동일 유기섬유 사용량 대비 기계적 강도 향상 효과가 균질 배합보다 좋지 않을 수 있다.On the other hand, for the blending of the synthetic silica-containing powder mixture and the organic fiber-containing fiber mixture, it is preferable to mix the powder mixture and the fiber mixture homogeneously in a mixer at a predetermined compounding ratio. Alternatively, the synthetic silica-containing powder mixture and the organic fiber-containing fiber mixture may be laminated in separate layers, but the mechanical strength improvement effect may not be as good as that of the homogeneous compounding.
합성실리카 포함 분말 혼합물과 유기섬유 포함 섬유 혼합물로 진공단열재의 내부 심재를 만드는 제조공정은 여러 단계를 거쳐 이루어진다. 여기서 각 단계의 배치 순서에 따라 다양한 제조공정이 가능하다. 그러나 그 결과물은 유사한 물성을 가진다.The manufacturing process for making the inner core of the vacuum insulator from the synthetic silica-containing powder mixture and the organic fiber-containing fiber mixture takes several steps. Here, various manufacturing processes are possible according to the arrangement order of each step. But the result has similar properties.
여기서, 진공단열재(10)를 제조하기 가장 용이한 과정은 합성실리카 포함 분말 혼합물과 유기섬유 포함 섬유 혼합물을 개별적으로 건조하는 단계; 건조된 분말 혼합물과 섬유 혼합물을 일정비로 배합하는 단계; 배합물을 압축하는 단계로 이루어진다.Here, the easiest process for manufacturing the vacuum insulating material 10 comprises the steps of separately drying the synthetic silica-containing powder mixture and the organic fiber-containing fiber mixture; Blending the dried powder mixture and the fiber mixture in a ratio; Compacting the blend.
합성실리카 포함 분말 혼합물의 건조는 수분을 증발시키는 목적으로 상압에서 100 ~ 150℃ 건조가 바람직하다. 유기섬유 포함 섬유 혼합물의 건조는 섬유의 내열 온도에 따라 건조방식이 다르다. Nylon 섬유는 내열온도가 1120℃를 넘으니 100 ~ 140℃의 상압 건조가 바람직하나, 낮은 내열온도를 갖는 PP 섬유 건조는 이보다 낮은 70 ~ 80℃에서 저압 건조시키는 것이 좋다. 유기섬유는 섬유의 연화온도 보다 10 ~ 20℃ 낮은 온도에서 건조시키는 것이 좋다. 합성실리카 포함 분말 혼합물과 유기섬유 포함 섬유 혼합물의 배합은 리본믹서, 니다-기, Nauta-믹서, 블래이드 믹서 등의 분말 혼합기의 사용이 가능하다. 고르게 잘 섞인 배합물은 프레스로 압축하게 되는데, 이때 내부 심재의 밀도를 조절한다. 내부 심재의 밀도는 기계적 강도와 완제품의 단열성에 크게 영향을 주는 중요한 인자로 밀도 0.12 ~ 0.35g/㎤에서 압축하는 것이 바람직하다. 프레스는 단동식 프레스와 롤러식 프레스 모두로 제작이 가능하다.The drying of the synthetic silica-containing powder mixture is preferably 100 to 150 ° C. drying at atmospheric pressure for the purpose of evaporating moisture. The drying method of the fiber mixture including organic fibers varies depending on the heat resistance temperature of the fibers. Nylon fiber has a heat resistance temperature of more than 1120 ℃, it is preferable to dry the pressure of 100 ~ 140 ℃, but PP fiber drying having a low heat temperature is preferably low pressure drying at a lower 70 ~ 80 ℃. The organic fiber is preferably dried at a temperature of 10 ~ 20 ℃ lower than the softening temperature of the fiber. The blending of the synthetic silica-containing powder mixture and the organic fiber-containing fiber mixture can be used with powder mixers such as ribbon mixers, Nida-groups, Nauta-mixers, and blade mixers. The evenly blended mixture is compressed by a press, controlling the density of the inner core. The density of the inner core is an important factor that greatly affects the mechanical strength and thermal insulation of the finished product, and it is preferable to compress at a density of 0.12 to 0.35 g / cm 3. Presses can be manufactured with both single-acting presses and roller presses.
본 발명의 진공단열재(10)는 심재 원료인 분말 혼합물 및 섬유 혼합물을 배합 후 6면 랩핑하기 위해 열 수축필름 또는 투습저항을 가진 필름을 사용할 수 있다. 상기 열수축필름은 PE, LLDPE, PP, PVC, PET 등에서 선택되고 상기 투습저항을 진 필름은 투습도가 24시간당 30 g/㎡ 이하 또는 투습계수가 0.28 g/㎡·h·㎜Hg 이하인 것을 이용하는 것을 특징으로 한다.The vacuum insulation material 10 of the present invention may use a heat shrinkable film or a film having moisture permeability to wrap six sides after blending the powder mixture and the fiber mixture, which are core materials. The heat-shrink film is selected from PE, LLDPE, PP, PVC, PET and the like, and the moisture-permeable film has a water vapor transmission rate of 30 g / m 2 or less per 24 hours or a water vapor transmission coefficient of 0.28 g / m 2 · h · mmHg or less. It is done.
압축성형된 진공단열재(10)는 PE, LLDPE, PP, PVC, PET 등에서 선택되는 열수축필름으로 6면 랩핑(Wrapping)한 후 나일론, PET, PP, 알루미늄 다층 필름 등의 최종마감재로 진공 포장하여 최종적으로 사용될 수 있다.The compression molded vacuum insulation material 10 is wrapped by six-side wrapping with a heat-shrink film selected from PE, LLDPE, PP, PVC, PET, etc., and finally vacuum-packed with a final finishing material such as nylon, PET, PP, or aluminum multilayer film. Can be used as
본 발명에서 사용되는 6면 랩핑(Wrapping) 포장에는 PE, LLDPE, PP, PVC, PET 중에서 선택되는 열수축필름을 사용하며, 내습성능이 요구되는 단열재에서는 필름의 투습도가 24시간당 30 g/㎡ 이하 또는 투습계수가 0.28 g/㎡·h·㎜Hg 이하의 투습저항을 가진 필름을 사용하며, 랩핑(Wrapping) 포장은 1회 또는 2회 실시한다. PE 필름포장은 실리카 단열재 성형체를 PE 필름으로 감싸주고 열접착으로 씰링 처리하며, LLDPE 등의 수축필름 포장은 실리카 단열재 성형체를 LLDPE 등의 수축필름으로 감싸주고 수축포장기를 이용하여 수축포장한다. The six-side wrapping used in the present invention (Wrapping) packaging uses a heat-shrink film selected from PE, LLDPE, PP, PVC, PET, in the heat-insulating material is required moisture resistance of 30 g / ㎡ or less per 24 hours or A film having a moisture permeability of 0.28 g / m 2 · h · mmHg or less is used, and wrapping is carried out once or twice. PE film packaging wraps the silica insulation molded body with PE film and seals it with heat adhesion. Shrink film packaging such as LLDPE wraps the silica insulation molded body with the shrink film such as LLDPE and shrink wraps using a shrink wrap machine.
PE, LLDPE, PP, PVC, PET 중에서 선택되는 열수축필름으로 6면 랩핑 포장하여 휨강도 및 내흡습성, 경량성 등의 물성 개선을 가능하게 하였다. 또한, 투습 저항을 가진 필름을 사용시에는 건축물의 에너지 절약 설계 기준에 방습층 기준을 만족하고 건물 내벽에 단열재 시공시 방습필름을 설치하는 공정을 생략함으로써, 공사 현장 적용시 시공 기간 단축 및 인건비 절감의 효과를 가져올 수 있다.Six-side wrapping wrapped with heat-shrink film selected from PE, LLDPE, PP, PVC, PET to improve the physical properties such as bending strength, hygroscopicity, light weight. In addition, when using a film with moisture-permeable resistance, it satisfies the moisture-proof floor standard in the energy-saving design standard of the building and omits the process of installing the moisture-proof film when installing the insulation material on the inner wall of the building, thereby reducing the construction period and labor cost when applying the construction site. Can be imported.
다른 내부 심재의 제조과정으로는 합성실리카 포함 분말 혼합물과 유기섬유 포함 섬유 혼합물을 배합하는 단계; 배합물의 수분을 건조하는 단계; 건조된 배합물을 압축하는 단계가 가능하다. Another internal core manufacturing process includes the steps of blending a synthetic silica-containing powder mixture and an organic fiber-containing fiber mixture; Drying the moisture of the blend; Compressing the dried formulation is possible.
또 다른 내부 심재 제조과정으로는 합성실리카 포함 분말 혼합물과 유기섬유 포함 섬유 혼합물을 배합하는 단계; 배합물을 압축하는 단계; 압축된 배합물을 건조하는 단계가 가능하다.Another internal core manufacturing process includes the steps of blending a powder mixture containing synthetic silica and a fiber mixture containing organic fibers; Compacting the blend; It is possible to dry the compressed formulation.
본 발명의 진공단열재(10)는 최종적으로 알루미늄 포장재로서 최종 포장과정을 거치게 된다. 본 발명의 일실시예에 따른 진공단열재(10)의 최종포장은 알루미늄 포장재 n1장으로 진공단열재(10)의 4 모서리 중에서 2개의 모서리를 감싸면서 포장을 한 후, 최종적으로 알루미늄 포장재에 의해 감싸지지 않는 다른 2개의 모서리는 알루미늄 포장재를 예컨대, 3단 접기로 포장함으로써 진공단열재(10)에 굴곡이 성형되더라도 진공이 해지되지 않는 가장 안정적인 진공포장 상태를 유지할 수 있다. Vacuum insulating material 10 of the present invention is finally subjected to the final packaging process as an aluminum packaging material. The final packaging of the vacuum insulation material 10 according to an embodiment of the present invention is wrapped by wrapping the two corners of the four corners of the vacuum insulation material 10 with n1 aluminum packaging material, finally wrapped by the aluminum packaging material. The other two corners may maintain the most stable vacuum packaging state in which the vacuum is not terminated even if the bend is formed in the vacuum insulation material 10 by wrapping the aluminum packaging material in, for example, three-stage folding.
도 2는 도 1에 따른 단열박스의 제조방법에서 패널 제조단계을 통해 제조된 패널을 개략적으로 도시한 사시도이다.FIG. 2 is a perspective view schematically showing a panel manufactured through a panel manufacturing step in the method of manufacturing an insulating box according to FIG. 1.
도 2를 참조하면, 상기 패널 제조 단계(S120)는 상술한 진공단열재(10)를 기초단열재(20)에 부착시켜 측면 패널(110), 바닥 패널(120) 및 도어 패널(130)을 제조하는 단계이다.Referring to FIG. 2, the panel manufacturing step (S120) may include attaching the above-described vacuum insulation material 10 to the basic insulation material 20 to manufacture the side panel 110, the bottom panel 120, and the door panel 130. Step.
본 발명의 일실시예에서 단열박스(1)는 사각형의 형태로 마련되므로 측면 패널(110)은 전면 패널(111), 후면패널(112), 좌측면패널(113) 및 우측면패널(114)을 포함할 수 있다.In an embodiment of the present invention, the heat insulation box 1 is provided in a rectangular shape, so that the side panel 110 includes the front panel 111, the rear panel 112, the left side panel 113, and the right side panel 114. It may include.
한편, 각각의 패널들은 기초단열재(20)의 일면에 진공단열재(10)를 부착시킴으로써 제작한다. 여기서, 진공단열재(10)는 기초단열재(20)에 1겹이 부착될 수 있으나 2겹 이상이 부착되어 단열박스(1)의 제조공정시 진공단열재(10)의 진공불량에 의한 단열 성능 하락을 방지할 수 있다.On the other hand, each panel is manufactured by attaching the vacuum insulating material 10 on one surface of the basic insulating material (20). Here, the vacuum insulation material 10 may be attached to one layer of the basic insulation material 20, but two or more layers are attached to reduce the thermal insulation performance due to poor vacuum of the vacuum insulation material 10 during the manufacturing process of the thermal insulation box (1). You can prevent it.
또한, 각각의 패널 제작시 진공단열재(10)는 기초단열재(20)보다 작은 크기를 갖도록 하여 진공단열재(10)와 기초단열재(20)의 부착시, 기초단열재(20)의 모서리 부분에 진공단열재(10)가 부착되지 않는 잔여 공간이 형성되도록 할 수 있다.In addition, the vacuum insulation material 10 during the production of each panel to have a smaller size than the basic insulation material 20 so that when the vacuum insulation material 10 and the foundation insulation material 20 is attached, the vacuum insulation material in the corner portion of the foundation insulation material 20 The remaining space to which the 10 is not attached can be formed.
이와 같은 잔여 공간이 형성되도록 기초단열재(20)의 중심과 진공단열재(10)의 중심이 일치된 상태로 기초단열재(20)와 진공단열재(10)를 부착시킬 수 있으며, 아니면 기초단열재(20)의 외면상에 미리 진공단열재(10)가 부착될 영역을 표시함으로써 잔여 공간을 확보할 수 있다.The base insulation 20 and the vacuum insulation 10 may be attached in a state where the center of the base insulation 20 and the center of the vacuum insulation 10 coincide with each other so that the remaining space is formed, or the foundation insulation 20 The remaining space can be secured by indicating the area to which the vacuum insulator 10 is attached on the outer surface of the substrate.
여기서, 잔여 공간은 추후 박스 제조단계(S130)시 각각의 패널을 조립을 위한 공간으로 활용될 수 있으며, 서로 인접하는 패널에 부착된 진공단열재(10)들이 서로 접촉하지 않도록 미리 잔여 공간의 크기 등을 설정할 수 있다.Here, the remaining space may be used as a space for assembling each panel in a later box manufacturing step (S130), the size of the remaining space in advance so that the vacuum insulation materials 10 attached to the panels adjacent to each other do not touch each other. Can be set.
한편, 기초단열재(20) 상에 2겹 이상의 진공단열재(10)를 부착하는 경우, 각각의 진공단열재(10)는 양면 테이프를 통해 부착할 수 있다. 이러한 경우, 양면테이프는 진공단열재(10)의 각각의 모서리로부터 1 ~ 2 ㎜ 이격시킨 상태로 부착시킬 수 있다. On the other hand, when attaching two or more layers of vacuum insulation material 10 on the basic insulation material 20, each of the vacuum insulation material 10 may be attached via a double-sided tape. In this case, the double-sided tape may be attached in a state spaced 1 to 2 mm from each corner of the vacuum insulator 10.
여기서, 양면 테이프를 통해 서로 부착된 진공단열재(10)에 추가적인 압력을 가할 수 있으며, 서로 부착된 진공단열재(10) 사이의 이격거리는 0.5 ㎜인 것이 바람직하다. Here, an additional pressure may be applied to the vacuum insulators 10 attached to each other through the double-sided tape, and the separation distance between the vacuum insulators 10 attached to each other is preferably 0.5 mm.
한편, 본 발명의 일실시예에 따른 패널 제조단계(S120) 이후에 관통부 형성단계(S121)를 추가적으로 수행할 수 있다. Meanwhile, the penetrating part forming step S121 may be additionally performed after the panel manufacturing step S120 according to the exemplary embodiment of the present invention.
도 3은 도 1에 따른 단열박스의 제조방법에서 관통부 형성단계를 통해 제조된 정면 패널에 관통부를 형성한 것을 개략적으로 도시한 정면도이다.FIG. 3 is a front view schematically showing that the through part is formed in the front panel manufactured through the through part forming step in the method of manufacturing the thermal insulation box according to FIG. 1.
도 3을 참조하여 상기 관통부 형성단계(S121)는 측면 패널(110) 중 적어도 어느 하나에 관통부를 형성하는 단계로, 설명의 편의를 위해 전면 패널(111) 상에 관통부(111a)가 형성되는 것으로 가정한다.Referring to FIG. 3, the penetrating part forming step S121 is a step of forming a penetrating part on at least one of the side panels 110. A penetrating part 111a is formed on the front panel 111 for convenience of description. Assume that
한편, 관통부(111a)는 전면 패널(111)의 일부, 바람직하게는 전면 패널(111)을 구성하는 기초단열재를 절단하여 단열박스(1) 내부와 외부를 연결하면서도 효과적으로 단열성능을 유지할 수 있도록 한다. 특히, 케이블과 같은 구성요소를 외부와 연결시킬 수 있으며 단열 성능을 유지할 수 있어 극지방과 같이 내외부의 온도 차이가 큰 지역에서도 전기장비를 용이하게 이용할 수 있다.On the other hand, the penetrating portion (111a) is a part of the front panel 111, preferably cutting the basic insulating material constituting the front panel 111 so as to effectively maintain the thermal insulation performance while connecting the inside and outside of the heat insulating box (1) do. In particular, the components such as cables can be connected to the outside and the insulation performance can be maintained, so that the electrical equipment can be easily used even in areas where the temperature difference between the inside and outside, such as polar regions, is large.
여기서, 관통부(111a)는 반원형으로 형성될 수 있으나 이에 제한되는 것은 아니며, 관통시키고자 하는 대상에 따라 다양한 형태로 형성될 수 있다. Here, the through part 111a may be formed in a semi-circular shape, but is not limited thereto, and may be formed in various shapes according to a target to be penetrated.
한편, 도어 패널(130)은 진공단열재(10)의 대향하는 양 면상에 기초단열재(20)를 부착시킴으로써 제조될 수 있다. 여기서, 진공단열재(10)의 상면에 부착되는 기초단열재(20)는 단열박스(1)의 외측에 배치되고, 진공단열재(10)의 하면에 부착되는 기초단열재(20)는 단열박스(1)의 내측에 배치된다.On the other hand, the door panel 130 may be manufactured by attaching the basic insulating material 20 on opposite sides of the vacuum insulating material 10. Here, the basic heat insulating material 20 attached to the upper surface of the vacuum insulating material 10 is disposed outside the heat insulating box 1, the basic heat insulating material 20 attached to the lower surface of the vacuum heat insulating material 10 is a heat insulating box (1) It is disposed inside of.
도 14는 도 1에 따른 단열박스 제조방법에서 절단부가 형성된 도어패널을 개략적으로 도시한 분해사시도이다.FIG. 14 is an exploded perspective view schematically illustrating a door panel in which a cut part is formed in the insulating box manufacturing method according to FIG. 1.
도 14를 참조하면, 도어 패널(130)의 기초단열재는 관통부(111a)를 마주보는 위치의 일부 영역을 절단한 절단부(131)을 형성할 수 있다. 따라서, 제2 단열부재(111b)의 일부가 도어 패널(130)의 기초단열재에서 절단부(131) 측과 접촉할 수 있고, 결국, 제2 단열부재(111b)가 관통부(111a) 및 절단부(131) 사이에 개재되어 설치될 수 있다.Referring to FIG. 14, the base insulating material of the door panel 130 may form a cut portion 131 which cuts a part of a region facing the through portion 111a. Therefore, a part of the second heat insulating member 111 b may contact the cut portion 131 side in the basic heat insulating material of the door panel 130, and as a result, the second heat insulating member 111 b may pass through the through portion 111 a and the cut portion ( It may be installed between the 131.
도 4는 도 1에 따른 단열박스의 제조방법에서 박스 조립단계를 통해 후면 패널과 우측면패널을 조립하는 모습을 개략적으로 도시한 사시도이고, 도 5는 도 1에 따른 단열박스의 제조방법에서 박스 조립단계를 통해 측면 패널 조립체를 형성한 모습을 개략적으로 도시한 사시도이고, 도 6는 도 1에 따른 단열박스의 제조방법에서 박스 조립단계를 통해 측면 패널 조립체에 이격 공간이 형성된 모습을 개략적으로 도시한 평면도이고, 도 7은 도 1에 따른 단열박스의 제조방법에서 박스 조립단계를 통해 측면 패널과 바닥 패널을 조립하는 모습을 개략적으로 도시한 사시도이고, 도 8은 도 1에 따른 단열박스의 제조방법에서 박스 조립단계를 통해 측면 패널과 바닥 패널을 조립된 모습을 개략적으로 도시한 사시도이다.Figure 4 is a perspective view schematically showing the assembly of the rear panel and the right side panel through the box assembly step in the manufacturing method of the insulating box according to Figure 1, Figure 5 is a box assembly in the manufacturing method of the insulating box according to Figure 1 6 is a perspective view schematically illustrating a side panel assembly formed through the step, and FIG. 6 schematically illustrates a separation space formed in the side panel assembly through the box assembly step in the method of manufacturing the insulation box according to FIG. 1. 7 is a perspective view schematically illustrating a state in which the side panel and the bottom panel are assembled through the box assembly step in the method of manufacturing the insulating box according to FIG. 1, and FIG. 8 is a manufacturing method of the insulating box according to FIG. 1. In Figure 3 is a perspective view schematically showing the assembled state of the side panel and the bottom panel through the box assembly step.
도 4 내지 도 8을 참조하면, 상기 박스 제조단계(S130)는 각각의 측면 패널(110) 및 바닥 패널(120)을 조립하여 단열박스(1)를 제조하는 단계로서, 각각의 측면 패널(110)의 진공단열재 사이 또는 측면 패널(110)의 진공단열재와 바닥 패널(120)의 진공단열재 사이에 이격 공간을 형성하며 단열박스(1)를 제조한다.4 to 8, the box manufacturing step (S130) is a step of manufacturing the insulation box 1 by assembling each side panel 110 and the bottom panel 120, and each side panel 110. ) To form a space between the vacuum insulator of the () or between the vacuum insulator of the side panel 110 and the vacuum insulator of the bottom panel 120 to manufacture a thermal insulation box (1).
이러한 박스 제조단계(S130)는 다양한 방법에 의하여 수행될 수 있으나, 도 4 및 도 5를 참조하면 본 발명의 일실시예에서는 단열박스(1)를 측면 패널(110)을 먼저 조립한 후, 도 7 및 도 8을 참조하면, 조립된 측면 패널(110)의 하측에 바닥 패널(120)을 조립함으로써 제조하는 것으로 설명한다. This box manufacturing step (S130) may be performed by a variety of methods, referring to Figures 4 and 5 in one embodiment of the present invention after assembling the side panel 110 in the insulating box 1, Figure 7 and 8, it will be described as manufacturing by assembling the bottom panel 120 under the assembled side panel 110.
먼저, 전면패널(111), 후면패널(112), 좌측면패널(113) 및 우측면패널(114)을 조립하여 전체적으로 상하측이 개방된 사각형상으로 측면 패널(110)을 조립한다.First, the front panel 111, the rear panel 112, the left side panel 113 and the right side panel 114 are assembled to assemble the side panel 110 in a quadrangular shape in which the upper and lower sides are opened as a whole.
여기서, 도 6을 참조하면, 전면패널(111)에서의 진공단열재는 좌측면패널(113)의 진공단열재 및 우측면패널(114)의 진공단열재와 인접하며, 후면패널(112)에서의 진공단열재는 좌측면패널(113)의 진공단열재 및 우측면패널(114)의 진공단열재와 인접하므로, 전면패널(111)에서의 진공단열재는 좌측면패널(113)의 진공단열재와의 사이 및 우측면패널(114)의 진공단열재와의 사이에 이격 공간(115)을 형성한다. 마찬가지로, 후면패널(112)에서의 진공단열재는 좌측면패널(113)의 진공단열재와의 사이 및 우측면패널(114)의 진공단열재와의 사이에 이격 공간(미도시)을 형성한다.Here, referring to FIG. 6, the vacuum insulator in the front panel 111 is adjacent to the vacuum insulator in the left side panel 113 and the vacuum insulator in the right side panel 114, and the vacuum insulator in the back panel 112 is Since the vacuum insulator of the left side panel 113 and the vacuum insulator of the right side panel 114 are adjacent to each other, the vacuum insulator in the front panel 111 is between the vacuum insulator of the left side panel 113 and the right side panel 114. A space 115 is formed between the vacuum insulator. Similarly, the vacuum insulator in the rear panel 112 forms a space (not shown) between the vacuum insulator of the left side panel 113 and the vacuum insulator of the right side panel 114.
즉, 측면패널(110)의 조립을 통해 총 4개의 이격 공간이 형성된다.That is, a total of four separation spaces are formed by assembling the side panel 110.
여기서, 각각의 이격 공간은 서로 인접하는 진공단열재 사이의 거리가 1 내지 10 ㎜의 범위로 이격되는 것이 바람직하다.Here, each of the space is preferably a distance between the vacuum insulation material adjacent to each other in the range of 1 to 10 mm.
한편, 각각의 측면 패널(110)들을 조립하기 위해 접착제를 사용할 수 있으며, 접착제로는 바람직하게 우레탄계 접착제, 더 바람직하게는 극저온용 우레탄계 접착제를 사용할 수 있다.On the other hand, an adhesive may be used to assemble the respective side panels 110, and the adhesive may be preferably a urethane-based adhesive, more preferably a cryogenic urethane-based adhesive.
상술한 것과 같이 측면 패널(110)들을 조립한 이후에 측면 패널(110) 조립체의 하측으로 바닥 패널(120)을 조립한다. 여기서, 바닥 패널(120)의 잔여 공간에 접착제를 도포하여 측면 패널(110)과 바닥 패널(120)을 조립할 수 있다.After assembling the side panels 110 as described above, the bottom panel 120 is assembled to the lower side of the side panel 110 assembly. Here, the side panel 110 and the bottom panel 120 may be assembled by applying an adhesive to the remaining space of the bottom panel 120.
또한, 바닥 패널(120)의 진공단열재의 측면이 측면 패널(110)의 잔여 공간과 면접촉할 수 있도록 바닥 패널(120)의 잔여 공간은 측면 패널(110) 조립체의 하단부와 대응되게 마련될 수 있으며, 이를 통해 측면 패널(110) 조립체의 외측면과 바닥 패널(120)의 측면이 동일평면상에 배치될 수 있다., In addition, the remaining space of the bottom panel 120 may be provided to correspond to the lower end of the side panel 110 assembly so that the side surface of the vacuum insulation of the bottom panel 120 may be in surface contact with the remaining space of the side panel 110. The outer side of the side panel 110 assembly and the side of the bottom panel 120 may be disposed on the same plane.
한편, 측면 패널(110)의 진공단열재들과 바닥 패널(120)의 진공단열재 사이에도 이격 공간이 형성되며 각각의 이격 공간은 서로 인접하는 진공단열재 사이의 거리가 1 내지 10 ㎜의 범위로 이격되는 것이 바람직하다. Meanwhile, a space is formed between the vacuum insulators of the side panel 110 and the vacuum insulator of the bottom panel 120, and the spaces between the vacuum insulators adjacent to each other are spaced apart in a range of 1 to 10 mm. It is preferable.
한편, 측면 패널(110)과 바닥 패널(120)을 조립하기 위해 접착제를 사용할 수 있으며, 접착제로는 바람직하게 우레탄계 접착제, 더 바람직하게는 극저온용 우레탄계 접착제를 사용할 수 있다.On the other hand, an adhesive may be used to assemble the side panel 110 and the bottom panel 120, preferably an urethane-based adhesive, more preferably a cryogenic urethane-based adhesive.
한편, 본 발명의 일실시예에서는 상술한 패널 제조단계(S120)에서 형성된 관통부(111a)를 기밀하기 위하여 제2 단열부재 장착단계(S131)를 추가적으로 수행할 수 있다.Meanwhile, in one embodiment of the present invention, the second heat insulating member mounting step S131 may be additionally performed to hermetically seal the through part 111a formed in the panel manufacturing step S120.
도 9는 도 1에 따른 단열박스의 제조방법에서 제2 단열부재 장착단계를 통해 제2 단열부재를 관통부에 개재한 모습을 개략적으로 도시한 사시도이다.FIG. 9 is a perspective view schematically illustrating a state in which a second heat insulating member is interposed through a through part through a second heat insulating member mounting step in the method of manufacturing a heat insulating box according to FIG. 1.
도 9를 참조하면, 상기 제2 단열부재 장착단계(S131)는 관통부(111a)의 기밀, 단열처리를 위해 관통부(111a)의 형상과 대응되는 제2 단열부재(111b)를 관통부(111a) 내측에 개재시켜 설치하는 단계이다.Referring to FIG. 9, the second heat insulating member mounting step S131 includes a second heat insulating member 111b corresponding to a shape of the through portion 111a for airtightness and heat insulation of the through portion 111a. 111a) This step is installed through the inside.
예컨대, 관통부(111a)를 통해 케이블 또는 하네스(harness) 류가 단열박스(1)의 내부로 유입될 때, 제2 단열부재(111b)를 관통부(111a)에 개재시켜 관통부(111a)를 통해 단열박스(1)의 내부와 외부가 연결되는 것을 방지한다.For example, when a cable or harness flows into the heat insulation box 1 through the through part 111a, the second heat insulating member 111b is interposed between the through part 111a and the through part 111a. Through the inside and outside of the insulation box (1) to prevent the connection.
여기서, 제2 단열부재(111b)는 도넛형상으로 마련될 수 있다. 또한, 제2 단열부재(111b)는 관통부(111a)의 직경보다 약 150% 정도 크게 제작되어 관통부(111a)에 억지끼움으로 장착됨으로써 관통부(111a)에 의한 빈틈을 최소화시킬 수 있다. Here, the second heat insulating member 111b may be provided in a donut shape. In addition, the second heat insulating member 111b may be manufactured to be about 150% larger than the diameter of the penetrating portion 111a and mounted to the penetrating portion 111a by interference fit to minimize the gap caused by the penetrating portion 111a.
또한, 제2 단열부재(111b)는 관통부(111a)를 통과시키고자 하는 대상이 용이하게 관통부(111a)를 통과할 수 있고, 단열성능을 유지시키기 위해 적절한 탄성력을 지니되 마찰에 의한 마모가 적은 재질로 이루어지는 것이 바람직하다. 예컨대,제2 단열부재(111b)의 재질은 폴리우레탄(polyurethane:PU) 또는 폴리에틸렌(polyethylene:PE) 재질에서 선택될 수 있고, 바람직하게는 폴리우레탄(polyurethane:PU) 재질을 이용할 수 있다. 또한, 제2 단열부재(111b)는 스폰지 형태로 마련될 수 있다.In addition, the second heat insulating member 111b may easily pass through the penetrating portion 111a to have the object to pass through the penetrating portion 111a, and may have a suitable elastic force to maintain insulation performance, but may be worn by friction. It is preferable that it is made of a material having few. For example, the material of the second heat insulating member 111b may be selected from polyurethane (PU) or polyethylene (PE) material, and preferably, polyurethane (PU) material. In addition, the second heat insulating member 111b may be provided in the form of a sponge.
도 10은 도 1에 따른 단열박스의 제조방법에서 기밀단계를 통해 이격 공간 사이를 단열보조재로 기밀한 모습을 개략적으로 도시한 사시도이다.FIG. 10 is a perspective view schematically illustrating a state in which a space between spaced spaces is sealed with a heat insulating auxiliary material through an airtight step in the method of manufacturing a heat insulation box according to FIG. 1.
도 10을 참조하면, 상기 기밀단계(S140)는 각각의 측면 패널(110)의 진공단열재 사이의 이격공간 및 측면 패널(110)의 진공단열재와 바닥 패널(120)의 진공단열재 사이의 이격공간을 단열보조재(116)로 기밀하는 단계이다.Referring to FIG. 10, the airtight step S140 may include a space between the vacuum insulation of each side panel 110 and a space between the vacuum insulation of the side panel 110 and the vacuum insulation of the bottom panel 120. The step of airtight with the heat insulating auxiliary material (116).
여기서, 이격 공간 사이를 단열보조재(116)로 기밀하면, 각각의 진공단열재들이 상호 접촉하여 열교현상에 의해 단열 효과가 감소한 경우보다 50% 이상의 단열효과를 나타낼 수 있다. 본 발명의 일실시예에서 단열보조재(116)로는 발포폴리우레탄을 사용할 수 있다.Here, when the space between the space is sealed with the heat insulating auxiliary material 116, each of the vacuum heat insulating materials may be in contact with each other can exhibit a heat insulating effect 50% or more than when the heat insulating effect is reduced by the thermal bridge phenomenon. In one embodiment of the present invention, the insulating auxiliary material 116 may use a foamed polyurethane.
도 11은 도 1에 따른 단열박스의 제조방법에서 외장용 지그 장착단계를 통해 단열박스 외측에 외장용 지그를 장착한 모습을 개략적으로 도시한 평면도이고, 도 12는 도 1에 따른 단열박스의 제조방법에서 내장용 지그 장착단계를 통해 단열박스 내측에 내장용 지그를 장착하는 모습을 개략적으로 도시한 사시도이고, 도 13은 도 1에 따른 단열박스의 제조방법에서 주입단계를 통해 단열박스 내부에 발포물질이 주입된 모습을 개략적으로 도시한 평면도이다.FIG. 11 is a plan view schematically illustrating a state in which an exterior jig is mounted on an outer side of an insulation box through an exterior jig mounting step in the method of manufacturing an insulation box according to FIG. 1, and FIG. 12 is a method of manufacturing an insulation box according to FIG. 1. Fig. 13 is a perspective view schematically showing the mounting of the built-in jig to the inside of the insulating box through the mounting jig for mounting the interior, Figure 13 is a foam material in the insulating box through the injection step in the manufacturing method of the insulating box according to FIG. It is a top view which shows schematically the injected state.
도 11 내지 도 13을 참조하면, 상기 발포단계(S150)는 단열박스(1) 내부의 기밀을 위해 지그(210)를 이용하여 단열박스(1) 내부에 발포물질(250)을 발포하는 단계로서, 외부용 지그 장착단계(S151)와 내부용 지그 장착단계(S152)와 주입단계(S153)을 포함한다.11 to 13, the foaming step (S150) is a step of foaming the foam material 250 inside the insulation box 1 using the jig 210 for airtightness in the insulation box 1. The external jig mounting step (S151) and the internal jig mounting step (S152) and the injection step (S153).
상기 외부용 지그 장착단계(S151)는 단열박스(1)를 외부용 지그(220) 내측에 고정설치하는 단계이다. The external jig mounting step (S151) is a step of fixing the insulating box 1 to the inside of the external jig 220.
상기 내부용 지그 장착단계(S152)는 내부용 지그(230)를 단열박스(1) 내측에 고정설치하는 것이다. 여기서, 내부용 지그(230)가 단열박스(1) 내부와 접촉하는 경우, 마찰에 의해 단열박스(1) 내부를 손상시킬 수 있으며, 이를 방지하도록 내부용 지그(230)는 외면이 포장재로 포장될 수 있다. The internal jig mounting step (S152) is to fix the internal jig 230 to the inside of the insulating box (1). Here, when the inner jig 230 is in contact with the inside of the heat insulating box 1, the inside of the heat insulating box 1 may be damaged by friction, and the inside jig 230 is wrapped with a packaging material to prevent the inside. Can be.
즉, 단열박스(1)의 내외부에 각각 외부용 지그(220)와 내부용 지그(230)가 장착됨으로써 단열박스(1)의 위치를 효과적으로 고정시킬 수 있다.That is, the external jig 220 and the internal jig 230 are mounted to the inside and the outside of the heat insulation box 1, respectively, to effectively fix the position of the heat insulation box 1.
상기 주입단계(S153)는 외부용 지그(220)와 내부용 지그(230) 사이, 더 정확히는 측면 패널(110) 조립체의 기초단열재와 내부용 지그(230) 사이의 공간에 발포물질(250)을 주입하는 단계이다. 본 발명의 일실시예에서는 발포물질 주입구(240)을 통해 주입단계(S153)를 수행하며, 주입되는 발포물질(250)은 결국 발포되어 단열박스(1)의 기밀성을 향상시킨다.The injection step (S153) is a foam material 250 in the space between the outer jig 220 and the inner jig 230, more precisely between the base insulation and the inner jig 230 of the side panel 110 assembly. Injecting. In one embodiment of the present invention performs the injection step (S153) through the foam material injection port 240, the injected foam material 250 is finally foamed to improve the airtightness of the thermal insulation box (1).
한편, 주입단계(S153) 이후에 추가적으로 외부용 지그(220) 또는 내부용 지그(230)를 단열박스(1)로부터 탈거할 수 있다.On the other hand, after the injection step (S153) may additionally remove the external jig 220 or the internal jig 230 from the heat insulating box (1).
도 15는 도 1에 따른 단열박스 제조방법에서 제1 단열부재 장착단계를 통해 측면패널과 도어패널 사이에 제1 단열부재가 장착된 모습을 개략적으로 도시한 정단면도이다.FIG. 15 is a front sectional view schematically illustrating a state in which a first insulation member is mounted between a side panel and a door panel through a first insulation member mounting step in the insulation box manufacturing method according to FIG. 1.
도 15를 참조하면, 본 발명의 일실시예에서는 도어패널(130)의 진공단열재와 측면패널(110)의 기초단열재 사이의 공간에 제1 단열부재(132)를 부착하는 제1 단열부재 부착단계(S160)를 더 포함할 수 있다.Referring to FIG. 15, in the embodiment of the present invention, the first heat insulating member attaching step of attaching the first heat insulating member 132 to the space between the vacuum heat insulating material of the door panel 130 and the basic heat insulating material of the side panel 110 is performed. It may further include (S160).
최종적으로 단열박스(1)에 도어 패널(130)을 장착할 시, 측면패널(110)의 기초단열재와 도어패널(130)의 진공단열재 사이에 공간, 특히 측면패널(110) 중 진공단열재가 미형성된 영역과 도어패널(130)의 진공단열재 사이에 공간이 형성되어 단열박스(1)의 기밀성 및 단열성능이 떨어질 수 있다. When the door panel 130 is finally mounted on the heat insulation box 1, the space between the basic insulation material of the side panel 110 and the vacuum insulation material of the door panel 130 does not have a vacuum insulation material among the side panels 110. A space is formed between the formed region and the vacuum insulating material of the door panel 130, so that the airtightness and heat insulating performance of the heat insulating box 1 may be degraded.
이를 방지하고자, 측면패널(110)의 기초단열재와 도어패널(130)의 진공단열재 사이에 공간에 추가적으로 제1 단열부재(132)를 장착할 수 있다. 여기서, 제1 단열부재(132)는 스폰지 형태로 마련되되, 폴리우레탄(polyurethane:PU) 또는 폴리에틸렌(polyethylene:PE) 재질 중에서 선택될 수 있다.To prevent this, the first insulation member 132 may be additionally installed in the space between the basic insulation of the side panel 110 and the vacuum insulation of the door panel 130. Here, the first heat insulating member 132 is provided in a sponge form, it may be selected from a polyurethane (PU) or polyethylene (PE) material.
도 16, 17은 도 1에 따른 단열박스 제조방법을 통해 제조된 단열박스에 대한 사진이다.16 and 17 are photographs of the insulation box manufactured by the insulation box manufacturing method according to FIG.
이하, 본 발명의 일실시예에 따른 단열박스의 제조방법(S100)을 적용한 실례를 통해 제조되며 도 16 및 도 17에 개시된 단열박스의 제조방법(S100)을 설명한다.Hereinafter, the manufacturing method (S100) of the insulating box manufactured by the example applying the manufacturing method (S100) of the insulating box according to an embodiment of the present invention and disclosed in FIGS. 16 and 17 will be described.
상기 진공단열재 준비단계(S110)에서는 바닥패널(120) 및 도어패널(130)에 사용될 200㎜X200㎜X15㎜의 진공단열재와 측면패널(110)에 사용될 159㎜X159㎜X18㎜의 진공단열재를 동일한 공정에 의해 제조한다. In the vacuum insulation material preparing step (S110), the vacuum insulation material of 200 mm × 200 mm × 15 mm to be used for the bottom panel 120 and the door panel 130 is the same as the vacuum insulation material of 159 mm × 159 mm × 18 mm to be used for the side panel 110. It manufactures by a process.
각각의 진공단열재의 제조과정을 살펴보면, 직경 40㎛, 길이 19㎜로 마련된 PP 섬유를 70°C의 온도 조건 하에서 대략 2시간 정도 진공건조한 후, 97wt% 흄드실리카 분말 혼합물이 97wt%, PP섬유가 3wt%의 배율을 갖도록 조절한 후 블레이드 믹서에 넣고 10분 정도 혼합한다. 혼합과정을 거친 후, 고르게 섞인 혼합물을 4각틀에 넣고 단동식 프레스로 압축하여 비중 0.16의 심재를 제조한다. 이러한 심재를 6면 랩핑(wrapping)한 후, 알루미늄 포장재로 포장한 후 진공챔버에 주입하여 40bar의 이하의 압력조건 하에서 진공배기하고 밀봉한다. Looking at the manufacturing process of each vacuum insulation material, after drying the PP fiber prepared in a diameter of 40㎛, 19mm length for about 2 hours under a temperature condition of 70 ° C, 97wt% fumed silica powder mixture 97wt%, PP fiber After adjusting to have a magnification of 3wt%, put into a blade mixer and mix for about 10 minutes. After the mixing process, the evenly mixed mixture is placed in a square frame and compressed by a single-acting press to produce a core material having a specific gravity of 0.16. After wrapping the core material on a six-sided (wrapping), it is packed in an aluminum packaging material and injected into a vacuum chamber to evacuate and seal under a pressure condition of 40 bar or less.
상기 패널 제조단계(S120)에서는 200㎜X200㎜X15㎜의 진공단열재를 바닥패널(120) 및 도어패널(130)에 각각 사용하고, 59㎜X159㎜X18㎜의 진공단열재는 각각의 측면패널(110)에 사용하여 패널을 제조한다.In the panel manufacturing step (S120), a 200 mm × 200 mm × 15 mm vacuum insulating material is used for the bottom panel 120 and the door panel 130, respectively, and a 59 mm × 159 mm × 18 mm vacuum insulating material is used for each side panel 110. ) To make panels.
상기 박스 제조단계(S130)에서는 측면패널(110)의 진공단열재 사이의 이격공간 및 측면패널(110)의 진공단열재와 바닥패널(120)의 진공단열재 사이의 이격공간의 이격 거리가 모두 5㎜가 되도록 측면패널(110) 및 바닥패널(120)을 조립하였다.In the box manufacturing step (S130), the separation distance between the space between the vacuum insulation of the side panel 110 and the space between the vacuum insulation of the side panel 110 and the vacuum insulation of the bottom panel 120 is 5mm Side panel 110 and bottom panel 120 were assembled as possible.
상기 기밀단계(S140)에서는 이격공간 사이로 폴리우레탄을 사출하고 발포시킴으로써 서로 인접하는 진공단열재들이 접촉하지 않으면서 단열기밀을 이루도록 하였다.In the airtight step (S140), by injecting and foaming the polyurethane between the separation space to achieve a heat insulating airtight without the vacuum insulation materials adjacent to each other.
상기 제1 단열부재 부착단계(S160)에서는 23㎜X159㎜X18㎜의 폴리스티롤을 도어패널(130)의 진공단열재와 측면패널(110)의 기초단열재 사이에 부착하여 단열기밀을 이루었다.In the first heat insulating member attaching step (S160), polystyrene, having a thickness of 23 mm X 159 mm X 18 mm, was attached between the vacuum insulating material of the door panel 130 and the basic insulating material of the side panel 110 to form a heat insulating gas.
결국 본 발명의 일실시예에 따른 단열박스의 제조방법(S100)에 의해 제조된 단열 박스(1)는 바닥 패널(120)과 바닥 패널(120)의 가장자리를 따라 연결된 복수의 측면 패널들(110)과 바닥 패널(120)을 마주하여 바닥 패널(120)과의 사이에 측면 패널(110)들이 개재되도록 배치된 도어 패널(130)을 포함한다.As a result, the insulation box 1 manufactured by the method of manufacturing the insulation box according to an embodiment of the present invention (S100) has a plurality of side panels 110 connected along the edge of the bottom panel 120 and the bottom panel 120. ) And a door panel 130 facing the bottom panel 120 such that the side panels 110 are interposed between the bottom panel 120 and the bottom panel 120.
여기서, 각각의 측면 패널들(110), 바닥 패널(120) 및 도어 패널(130)은 기초단열재(20)와 기초단열재(20)에 부착되고 기초단열재(20)보다 좁은 면적을 가지며, 합성실리카와 유리섬유를 포함하는 진공단열재(10)를 포함한다.Here, each of the side panels 110, the bottom panel 120 and the door panel 130 is attached to the base insulation 20 and the base insulation 20 and has a smaller area than the base insulation 20, synthetic silica And a vacuum insulator 10 including glass fibers.
또한, 서로 인접한 측면 패널들(110) 각각의 진공단열재 사이 및 측면 패널(110)의 진공단열재와 바닥패널(130)의 진공단열재 사이 중 적어도 어느 하나에 형성된 이격공간에 단열보조재(116)를 개재하게 된다.In addition, the insulating auxiliary material 116 is interposed between the vacuum insulating material of each of the side panels 110 adjacent to each other and between the vacuum insulating material of the side panel 110 and the vacuum insulating material of the bottom panel 130. Done.
여기서, 서로 인접한 측면 패널들(110) 각각의 기초단열재는 서로 접촉하도록 마련될 수 있다.Here, the base insulation of each of the side panels 110 adjacent to each other may be provided to contact each other.
또한, 측면 패널(110)의 기초단열재와 바닥 패널(130)의 기초단열재도 서로 접촉하도록 마련될 수 있다.In addition, the base insulation of the side panel 110 and the base insulation of the bottom panel 130 may also be provided to contact each other.
상술한 방법에 의해 제작된 단열박스와 상술한 방법에 의해 제작되되 진공단열재 사이에 기초단열재를 설치하지 않고 진공단열재가 접촉하도록 설계된 단열박스를 동일한 조건하에서 실험하여 단열박스의 내부의 온도변화를 측정하였다.Measure the temperature change inside the insulation box by experimenting with the insulation box manufactured by the above-described method and the insulation box manufactured by the above-described method, but designed to be in contact with the vacuum insulation material without installing the basic insulation material between the vacuum insulation material under the same conditions. It was.
표 1
시간(h) 0 12 24 36 48 60 72
본 발명의 일실시예에 따른 단열박스의 내부온도(°C) 15 15 14 15 11 10 5
본 발명의 비교례에 따른 단열박스의 내부온도(°C) 15 8 2 -10 -15 -20 -20
Table 1
Hours (h) 0 12 24 36 48 60 72
Internal temperature (° C) of the insulation box according to an embodiment of the present invention 15 15 14 15 11 10 5
Internal temperature (° C) of the insulation box according to a comparative example of the present invention 15 8 2 -10 -15 -20 -20
상술한 표는 영하 25°C의 대형 냉장고에서 본 발명의 일실시예에 따라 제작된 단열박스와 비교예의 단열박스의 내부 온도를 측정한 결과를 나타낸 표이다. 살펴보면, 비교례의 단열박스의 내부온도는 24시간 이후부터 급격한 온도하강이 일어나는 반면에 본원 발명의 단열박스의 내부온도는 온도변화가 거의 일어나지 않는 것을 확인할 수 있다.The above table is a table showing the results of measuring the internal temperature of the thermal insulation box and the thermal insulation box of the comparative example manufactured according to an embodiment of the present invention in a large refrigerator at minus 25 ° C. Looking at it, it can be seen that the internal temperature of the thermal insulation box of the comparative example has a sharp temperature drop after 24 hours, while the internal temperature of the thermal insulation box of the present invention hardly changes in temperature.
즉, 상술한 방법에 의해 제조된 단열박스(1)는 얇으면서 매우 우수한 단열 성능을 가진 진공단열재(10)가 적용됨으로써 내부 사용공간을 최대화시킬 수 있고, 종래의 단열박스보다 우수한 단열성능을 가지면서도 부피가 작고 가벼운 단열박스를 제공할 수 있다.That is, the heat insulation box 1 manufactured by the above-described method can be maximized the internal use space by applying a vacuum insulation material 10 having a thin and very excellent heat insulation performance, has a superior heat insulation performance than the conventional heat insulation box In addition, it is possible to provide a compact, lightweight and insulated box.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiment, but may be embodied in various forms of embodiments within the scope of the appended claims. Without departing from the gist of the invention claimed in the claims, it is intended that any person skilled in the art to which the present invention pertains falls within the scope of the claims described in the present invention to various extents which can be modified.
진공단열재를 이용하되 열교현상을 방지함으로써 단열 효과를 향상시킬 수 있는 단열 성능이 향상된 단열 박스의 제조방법 및 이를 통해 제조된 단열 박스를 제공한다.Provided is a method of manufacturing a thermally improved thermal insulation box that can improve the thermal insulation effect by using a vacuum insulation material, but prevents thermal bridges, and provides a thermal insulation box manufactured through the same.

Claims (16)

  1. 측면 패널, 바닥 패널 및 도어 패널을 구비하는 단열박스를 제조하는 단열박스 제조방법에 있어서,In the heat insulation box manufacturing method for manufacturing a heat insulation box having a side panel, a bottom panel and a door panel,
    합성실리카 및 유기섬유를 이용하여 진공단열재를 제조하는 진공단열재 제조단계;A vacuum insulating material manufacturing step of manufacturing a vacuum insulating material using synthetic silica and organic fibers;
    기초단열재에 상기 진공단열재를 부착하여 측면 패널, 바닥 패널 및 도어 패널을 제조하는 패널 제조 단계;A panel manufacturing step of attaching the vacuum insulation material to the basic insulation material to manufacture a side panel, a bottom panel and a door panel;
    서로 인접한 상기 측면 패널 각각의 진공단열재 사이 또는 상기 측면 패널의 진공단열재와 상기 바닥 패널의 진공단열재 사이에 이격 공간이 형성되도록 상기 측면 패널 및 상기 바닥 패널을 조립하여 단열박스를 제조하는 박스 제조단계;A box manufacturing step of manufacturing a heat insulation box by assembling the side panel and the bottom panel such that a space is formed between the vacuum insulation of each of the side panels adjacent to each other or between the vacuum insulation of the side panel and the vacuum insulation of the bottom panel;
    상기 단열박스의 이격 공간을 단열보조재로 기밀하는 기밀단계;를 포함하는 단열 박스의 제조방법.Method of manufacturing a thermal insulation box comprising a; airtight step of hermetically sealing the spaced space of the thermal insulation box with an insulating auxiliary material.
  2. 제 1항에 있어서,The method of claim 1,
    상기 단열박스 내부에 발포물질을 발포하는 발포단계;를 더 포함하는 단열 박스의 제조방법.Foaming step of foaming the foam material in the insulation box; manufacturing method of the insulation box further comprising.
  3. 제 2항에 있어서,The method of claim 2,
    상기 발포단계는 상기 단열박스를 외부용 지그 내측에 고정설치하는 외부용 지그 장착단계; 상기 단열박스의 내측으로 내부용 지그를 고정설치하는 내부용 지그 장착단계; 상기 외부용 지그 및 상기 내부용 지그 사이로 발포물질을 주입하는 주입단계;를 포함하는 단열박스의 제조방법.The foaming step is an external jig mounting step of fixing the heat insulation box inside the external jig; An internal jig mounting step of fixing the internal jig to the inside of the insulation box; And an injection step of injecting a foam material between the external jig and the internal jig.
  4. 제 1항에 있어서,The method of claim 1,
    상기 측면패널의 기초단열재 중 진공단열재 미형성 영역에 상기 측면패널의 진공단열재와 접촉하도록 제1 단열부재를 부착하는 제1 단열부재 부착단계;를 더 포함하는 단열 박스의 제조방법. And a first heat insulating member attaching step of attaching a first heat insulating member to the vacuum heat insulating material of the side panel so as not to contact the vacuum heat insulating material of the side panel among the basic heat insulating materials of the side panel.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 제1 단열부재는 폴리우레탄(polyurethane:PU) 또는 폴리에틸렌(polyethylene:PE) 재질의 소재로 형성되되 스폰지 형태로 구비되는 단열 박스의 제조방법. The first heat insulating member is made of a polyurethane (PU) or polyethylene (polyethylene: PE) material of the material manufacturing method of the insulating box provided in the form of a sponge.
  6. 제 1항에 있어서,The method of claim 1,
    상기 이격 공간은 서로 인접하는 진공단열재 사이의 간격이 1 ㎜ 내지 10 ㎜ 으로 마련되는 단열 박스의 제조방법. The separation space is a method of manufacturing a thermal insulation box is provided with a gap between the adjacent vacuum insulation material 1 mm to 10 mm.
  7. 제 1항에 있어서,The method of claim 1,
    상기 박스 제조단계는 우레탄계 접착제를 사용하여 상기 각각의 측면 패널 또는 상기 바닥 패널과 상기 측면 패널을 조립시키는 단열 박스의 제조방법. The box manufacturing step is a method of manufacturing a thermal insulation box to assemble the respective side panels or the bottom panel and the side panel using a urethane-based adhesive.
  8. 제 1항에 있어서,The method of claim 1,
    상기 측면 패널은 복수개로 마련되고,The side panel is provided in plurality,
    상기 측면 패널 중 적어도 어느 하나에 관통부를 형성하는 관통부 형성단계;를 더 포함하는 단열 박스의 제조방법. And a through part forming step of forming a through part in at least one of the side panels.
  9. 제 8항에 있어서,The method of claim 8,
    상기 단열박스의 기밀 또는 단열을 유지하도록 상기 관통부의 내측으로 제2 단열부재를 개재하는 제2 단열부재 장착단계;를 더 포함하는 단열 박스의 제조방법. And a second heat insulating member mounting step of interposing a second heat insulating member to the inside of the through part to maintain the airtightness or heat insulation of the heat insulating box.
  10. 제 9항에 있어서,The method of claim 9,
    상기 제2 단열부재는 폴리우레탄(polyurethane:PU) 또는 폴리에틸렌(polyethylene:PE) 재질의 소재로 형성되되 스폰지 형태로 구비되는 단열 박스의 제조방법. The second heat insulating member is made of a polyurethane (PU) or polyethylene (polyethylene: PE) material of the material manufacturing method of the insulating box provided in the form of a sponge.
  11. 제 1항에 있어서,The method of claim 1,
    상기 기밀단계에서 상기 단열보조재는 발포폴리우레탄으로 형성되는 단열 박스의 제조방법. In the hermetic step, the insulating auxiliary material is a method of manufacturing a thermal insulation box is formed of polyurethane foam.
  12. 제 1항에 있어서,The method of claim 1,
    상기 패널 제조단계에서 상기 도어 패널은 진공단열재의 서로 대향하는 두 면상에 기초단열재를 부착하여 제조되는 단열 박스의 제조방법. In the panel manufacturing step, the door panel is manufactured by attaching the basic insulating material on two surfaces of the vacuum insulating material facing each other.
  13. 제 1항 내지 제 12항 중 어느 한 항에 기재된 단열 박스의 제조방법을 통해 제조된 단열 박스.The heat insulation box manufactured by the manufacturing method of the heat insulation box in any one of Claims 1-12.
  14. 바닥 패널;Floor panels;
    상기 바닥 패널의 가장자리를 따라 연결된 측면 패널; 및A side panel connected along an edge of the bottom panel; And
    상기 바닥 패널과 마주하여 상기 측면 패널을 개재하도록 배치된 도어 패널을 포함하고,A door panel disposed to face the bottom panel and to interpose the side panel;
    상기 측면 패널, 상기 바닥 패널 및 상기 도어 패널 각각은Each of the side panel, the bottom panel and the door panel
    (a) 기초단열재; 및(a) basic insulation; And
    (b) 상기 기초단열재에 부착되고, 상기 기초단열재보다 좁은 면적을 가지며, 합성실리카와 유기섬유를 포함하는 진공단열재를 포함하며,(b) a vacuum insulation material attached to the foundation insulation material, having a narrower area than the foundation insulation material, and comprising synthetic silica and organic fibers;
    서로 인접한 측면 패널들 각각의 진공단열재 사이 및 상기 측면 패널의 진공 단열재와 상기 바닥 패널의 진공단열재 사이 중 적어도 어느 하나에 형성된 이격공간에 단열보조재가 개재된 단열 박스.An insulating box having a heat insulating auxiliary material interposed between the vacuum insulating material of each of the adjacent side panels and at least one of the vacuum insulating material of the side panel and the vacuum insulating material of the bottom panel.
  15. 제 14항에 있어서,The method of claim 14,
    서로 인접한 측면 패널 각각의 기초단열재는 접촉하는 것을 특징으로 하는 단열 박스.Insulation box, characterized in that the basic insulation of each side panel adjacent to each other in contact.
  16. 제 14항에 있어서,The method of claim 14,
    상기 측면 패널의 기초단열재와 상기 바닥 패널의 기초단열재는 접촉하는 것을 특징으로 하는 단열 박스.Insulation box, characterized in that the base insulation of the side panel and the base insulation of the bottom panel contact.
PCT/KR2014/001183 2013-02-13 2014-02-13 Method for manufacturing heat insulation box with improved heat insulation capacity and heat insulation box manufactured thereby WO2014126397A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0015475 2013-02-13
KR20130015475 2013-02-13

Publications (1)

Publication Number Publication Date
WO2014126397A1 true WO2014126397A1 (en) 2014-08-21

Family

ID=51354346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001183 WO2014126397A1 (en) 2013-02-13 2014-02-13 Method for manufacturing heat insulation box with improved heat insulation capacity and heat insulation box manufactured thereby

Country Status (2)

Country Link
KR (2) KR20140102150A (en)
WO (1) WO2014126397A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4019427A1 (en) * 2020-12-22 2022-06-29 va-Q-tec AG Insulation container for holding temperature-sensitive products
WO2022258228A1 (en) * 2021-06-10 2022-12-15 Softbox Systems Limited A method of manufacture of a passive temperature control carton for transport and storage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015122756A1 (en) * 2015-12-23 2017-06-29 Saint-Gobain Isover Method for producing vacuum insulation panels

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100239158B1 (en) * 1995-03-29 2000-01-15 쓰치야 히로오 Insulated container
JP3852537B2 (en) * 1999-04-15 2006-11-29 三菱電機株式会社 Heat insulation box
KR20110061148A (en) * 2009-12-01 2011-06-09 오씨아이 주식회사 Continuous manufacturing process for the core of vacuum heat insulator
JP4944567B2 (en) * 2006-10-25 2012-06-06 旭ファイバーグラス株式会社 Vacuum insulation article and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100239158B1 (en) * 1995-03-29 2000-01-15 쓰치야 히로오 Insulated container
JP3852537B2 (en) * 1999-04-15 2006-11-29 三菱電機株式会社 Heat insulation box
JP4944567B2 (en) * 2006-10-25 2012-06-06 旭ファイバーグラス株式会社 Vacuum insulation article and method for manufacturing the same
KR20110061148A (en) * 2009-12-01 2011-06-09 오씨아이 주식회사 Continuous manufacturing process for the core of vacuum heat insulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4019427A1 (en) * 2020-12-22 2022-06-29 va-Q-tec AG Insulation container for holding temperature-sensitive products
WO2022258228A1 (en) * 2021-06-10 2022-12-15 Softbox Systems Limited A method of manufacture of a passive temperature control carton for transport and storage

Also Published As

Publication number Publication date
KR101560125B1 (en) 2015-10-14
KR20150099504A (en) 2015-08-31
KR20140102150A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2014163274A1 (en) Ice box using curved vacuum insulator and method for manufacturing same
WO2012015095A1 (en) Vacuum thermal insulation panel
WO2012026715A2 (en) Vacuum insulation material
WO2011108850A2 (en) Grooved type of vacuum thermal insulation material and a production method for the same
KR101821473B1 (en) Method for Manufacturing Vacuum Insulation Panels
WO2011016698A2 (en) Vacuum insulation member, refrigerator having vacuum insulation member, and method for fabricating vacuum insulation member
WO2015046778A1 (en) Vacuum heat insulating material and manufacturing method therefor
WO2014178540A1 (en) Outer cover material for vacuum insulator and high-performance vacuum insulator comprising same
WO2012115400A2 (en) Vacuum insulation material including an inner bag, and method for manufacturing same
KR101436927B1 (en) A composite thermally insulating material
WO2014126397A1 (en) Method for manufacturing heat insulation box with improved heat insulation capacity and heat insulation box manufactured thereby
WO2011016695A2 (en) Vacuum insulation member, registrator having vacuum insulation member, and method for fabricating vacuum insulation member
WO2011016694A2 (en) Method for fabricating core of vacuum insulation panel, core of vacuum insulation panel, and vacuum insulation panel having the same
KR20150122900A (en) Envelope for vacuum insulation panel and vacuum insulation panel inculding the same
WO2014010983A1 (en) Vacuum insulation panel including annealed binderless glass fiber
WO2012086954A2 (en) Core material for a vacuum insulation panel formed of a phenolic resin-cured foam and vacuum insulation panel using same, and method for manufacturing same
KR101964913B1 (en) Composite insulation using board-type foam insulation and a closed air layer
WO2019098519A1 (en) Low-dust silica aerogel blanket and method for manufacturing same
KR101452211B1 (en) Core material for vacuum insulator and vacuum insulator using the same
JP3590758B2 (en) Notebook computer
KR20130095090A (en) Core material for vacuum insulator using glass fiber fabric and vacuum insulator using the same
WO2014123382A1 (en) Method for forming curved surface for vacuum insulation material, and cold and hot water purifier using vacuum insulation material having curved surface
KR20230064103A (en) How to manufacture an insulation packaging box and an insulation packaging box manufactured therethrough.
KR101418630B1 (en) Vacuum insulation panel comprising rock wool and vacuum insulation panel comprising thereof
WO2018044081A1 (en) Vacuum insulator covering material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751727

Country of ref document: EP

Kind code of ref document: A1