WO2014126284A1 - Silicon plate impurity removing method using water jet - Google Patents

Silicon plate impurity removing method using water jet Download PDF

Info

Publication number
WO2014126284A1
WO2014126284A1 PCT/KR2013/001273 KR2013001273W WO2014126284A1 WO 2014126284 A1 WO2014126284 A1 WO 2014126284A1 KR 2013001273 W KR2013001273 W KR 2013001273W WO 2014126284 A1 WO2014126284 A1 WO 2014126284A1
Authority
WO
WIPO (PCT)
Prior art keywords
impurities
silicon
silicon plate
waterjet
water
Prior art date
Application number
PCT/KR2013/001273
Other languages
French (fr)
Korean (ko)
Inventor
한성욱
Original Assignee
주식회사 클린솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 클린솔루션 filed Critical 주식회사 클린솔루션
Priority to PCT/KR2013/001273 priority Critical patent/WO2014126284A1/en
Publication of WO2014126284A1 publication Critical patent/WO2014126284A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Definitions

  • the present invention relates to a method of cutting a silicon plate using a waterjet, and more particularly, to a method of removing a region containing impurities in a polycrystalline silicon plate by a waterjet.
  • High-purity silicon of 99.9999% (6N) or more is used for the manufacture of silicon wafers.
  • the use of high-purity and expensive raw materials leads to an increase in the cost of solar power generation. This is a cause of weakening the competitiveness of photovoltaic power generation compared to the power generation method using fossil fuel.
  • photovoltaic wafer manufacturers are adopting a method of recovering and re-melting silicon scrap from the wafer fabrication process.
  • Silicon wafer melts silicon and grows crystal in a certain direction for a long time to process a round column-shaped ingot into a wafer, and inside the single crystal wafer and furnace (furnace) simply dissolve and solidify the silicon in various directions It can be classified into a polycrystalline wafer which is manufactured by processing a silicon block having a grain boundary.
  • the silicon dissolved and solidified in the furnace for the manufacture of the polycrystalline wafer is distributed most of the impurities to the upper layer of the silicon block due to the thermal buoyancy due to the high temperature (about 1400 degrees) during melting. Therefore, the silicon ingot used to make the silicon wafer is cut off and removed about 2 to 3 cm of the upper part of the solidified silicon block, and the center silicon is used.
  • the furnace consists of a tower for supporting a silicon wafer, a pedestal supporting the wafer, a liner which is a case surrounding the tower and the pedestal, a gas supply pipe for transporting various gases, and a heater for maintaining a high temperature.
  • the furnace is of the form of a tube and a box. The heat treatment through the furnace can remove unwanted impurities or organic matter, and the material can be formed with a new phase through mutual diffusion between raw material samples.
  • FIG. 1 illustrates a silicon block 100. 1 illustrates a shape in which a silicon block is cut on top of a silicon block using a diamond wire saw. Since the upper silicon plate 110 cut as described above contains a large amount of impurities, it cannot be recycled as it is, and thus the impurities remaining in the silicon surface and the deep portion should be removed.
  • compressed air which is injected at a high pressure with contaminated impurities on a surface, carries an abrasive (Sic or zirconium) and sprays it on a contaminated portion to remove contaminants or to reduce the hardness of the abrasive.
  • Grinding method is used to grind contaminated parts of silicon blocks by rotating grinding wheels containing high materials. Since the kinetic energy of the compressed air and the abrasive is relatively small, the above-described method increases time and cost in order to penetrate deeply into the silicon (about 3 cm thick) and remove impurities, making it impossible to use commercially.
  • the problem to be solved by the present invention is to propose a method for effectively removing the impurities present on the upper portion of the silicon plate.
  • Another problem to be solved by the present invention is to propose a method for preventing dust from scattering in the process of removing impurities.
  • the impurity removal method of the silicon plate of the present invention removes the impurity using a waterjet in the state submerged in the water to the upper surface of the silicon plate containing the impurity which is a part cut from the polycrystalline silicon block, and sprayed from the waterjet Water includes an abrasive.
  • the impurity removal method includes removing a surface of the silicon plate by using a waterjet in which a nozzle injection angle is set to a first injection angle, and a portion where impurities are aggregated in the silicon plate from which the surface is removed. And cutting using the waterjet in which the spray angle of the nozzle is set to the second spray angle.
  • the impurity removal method described above includes removing the surface of the silicon plate using a set spray angle, and removing a portion of the silicon plate from which the surface is removed by applying a physical impact.
  • the present invention effectively removes impurities present in the silicon plate, which is a part cut from the silicon block, according to the water jet.
  • the present invention can be used commercially by reducing the time and cost by removing impurities contained in the silicon plate using a waterjet method.
  • FIG. 2 illustrates a silicon plate obtained by cutting a polycrystalline silicon ingot by a diamond wire saw method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a process of removing a region including impurities according to an embodiment of the present invention.
  • FIG. 4 is a view illustrating a difference in injection angles injected from a nozzle of a waterjet according to an embodiment of the present invention.
  • FIG. 5 illustrates a silicon plate from which regions containing impurities are removed according to an embodiment of the present invention.
  • FIG. 2 illustrates a silicon plate cut from a silicon block including impurities according to an embodiment of the present invention.
  • the silicon melted and solidified in the furnace for the manufacture of the polycrystalline wafer is distributed by dispersing impurities in the upper part of the silicon block due to thermal buoyancy due to the temperature at the time of melting.
  • impurities are widely distributed in the upper surface layer of the silicon block, but as they move downward from the upper surface layer, the impurities are distributed only in specific portions. Therefore, when the upper surface layer of the cut silicon block is removed by about 2 mm, it is possible to identify a part where the impurities are aggregated.
  • the present invention relates to a method for efficiently cutting a portion in which impurities are aggregated as described above by using a waterjet.
  • the upper portion of the silicon block having a relatively large amount of impurities in the silicon block will be described, but is not limited thereto.
  • the lower part or the side of the silicon block in which the impurities are aggregated may be equally applied.
  • Waterjet is a technology that precisely cuts the material using water. Compresses the water pressure to ultra high pressure (3500 bar to 4000 bar) and converts the stop energy of the water into kinetic energy. It is a technology to precisely cut the material by intensive spraying. In general, water is compressed and sprayed to ultra high pressure in order to increase the cutting ability, and the abrasive is mixed and sprayed.
  • Waterjet is characterized by high energy and ultra high pressure processing, so it is high energy and ultra high pressure processing.Therefore, there is no deformation, residual stress, microcracking, or chemical deformation of the base material. It is suitable for cutting of materials or hard materials, non-ferrous materials, glass, resin, stone, etc., and excellent quality can be obtained.
  • the waterjet can be freely designed because it is not affected by the shape, and it is suitable for cutting complex products, and the post-processing time is significantly shortened by the excellent roughness and quality of the cut surface.
  • the waterjet is water-cutting, so it is suitable for cutting products with explosive, oxidizing and volatile properties. It is an environmentally friendly technology that does not generate dust or harmful gas during operation, and complements the disadvantages of conventional equipment. Safety can be secured.
  • Water jets are divided into pure water cutting and abrasive mixed cutting depending on the type of application. Pure water cutting is cut under the pressure of pure water and is easy to cut paper, wood, rubber, fiber, synthetic resin, etc.
  • Abrasive mixed cutting is a method of cutting water and abrasives at a very high pressure, and is easy to cut tiles, marble, metals and nonmetals.
  • FIG. 3 is a flowchart illustrating a method of removing impurities distributed in a silicon plate according to an embodiment of the present invention.
  • a method of removing impurities distributed in a silicon plate according to an embodiment of the present invention will be described in detail with reference to FIG. 3.
  • At least one surface of the top, bottom, and sides of the polycrystalline silicon block is cut to have a predetermined thickness by using a diamond wire saw method.
  • the thickness cut by the diamond wire saw method may also vary.
  • the silicon block is generally cut to have a thickness of about 2 to 3 cm.
  • the thickness to be cut may vary depending on the form or amount of impurities.
  • the cutting thickness of the upper part where impurities are concentrated by thermal stress is larger than the cutting thickness of the lower part or the side part.
  • the part cut from the silicon block is called a silicon plate.
  • the central portion of the silicon block from which the top, bottom, and sides are removed does not contain impurities.
  • step S302 the silicon plate is filled with enough water to immerse. That is, water is filled to the extent that the silicon plate is immersed in a container that performs a process of removing impurities distributed in the silicon plate. In this manner, dust generated when the silicon plate is etched using the waterjet can be prevented from scattering.
  • a container that performs a process of removing impurities distributed in the silicon plate forms holes at a predetermined height to discharge water generated when etching the silicon plate using a waterjet.
  • the upper surface of the silicon plate is removed using a waterjet.
  • the waterjet is used to remove the top surface of the silicon plate.
  • the waterjet widens the spray angle of the water sprayed from the nozzle to remove only the top surface.
  • the hydraulic pressure is relatively weak so that only the surface is removed (etched) without the silicon plate being cut.
  • the spray angle of water sprayed from the nozzle is narrow, the hydraulic pressure is relatively high to cut the silicon plate.
  • step S302 only the surface of the silicon plate has to be removed, thereby widening the spray angle of the water sprayed from the nozzle.
  • FIG. 4 illustrates an injection angle of water injected from a nozzle according to an embodiment of the present invention. 4 illustrates a case where the spray angles of the water sprayed from the nozzles are wide (a) and narrow (b).
  • step S306 the portion of the silicon plate from which the top surface is removed is cut by using a waterjet.
  • the parts where the impurities are aggregated can be known. Therefore, the injection angle of the water sprayed from the nozzle is narrowed to cut off the portion where the impurities are aggregated.
  • the step S304 is performed again.
  • the present invention proposes a method of removing or cutting the surface of the silicon plate by adjusting the spray angle of water sprayed from the nozzle of the waterjet.
  • a portion of the silicon plate in which impurities are aggregated may be removed by applying an impact using a hammer or the like.
  • the portion where the impurities are aggregated can be separated from the portion composed of silicon even with a small impact.
  • FIG. 5 illustrates before and after removing a portion containing impurities using a waterjet according to an embodiment of the present invention.
  • FIG. 5 illustrates a part containing impurities on one side of the silicon plate
  • FIG. 5 illustrates a process in which the part containing impurities is removed using a waterjet. have. As described above, it can be seen that the cutting surface is clean and the cutting time is shortened by removing the portion containing impurities using the waterjet.
  • the present invention can sense an area containing impurities using a sensor, and automatically cut an area containing impurities using the sensed information.
  • the sensor should be able to distinguish between the region containing impurities and the region containing no impurities, and generally distinguishes the color difference between the region containing impurities and the region containing no impurities.

Abstract

In the context of the production of silicon ingots for solar cell, the present invention relates to technology for removing and reusing impurities from a silicon dissolution process by using a water jet in a site comprising the impurities. To this end, the silicon plate impurity removing method of the present invention entails immersion in water up to the upper surface of a silicon plate comprising impurities constituted by portions cut from a polycrystalline silicon block, and, in this state, removing the impurities by using a water jet; the water sprayed from the water jet comprising an abrasive.

Description

워터젯을 이용한 실리콘 플레이트의 불순물 제거 방법Impurity Removal Method of Silicon Plate Using Waterjet
본 발명은 워터젯을 이용한 실리콘 플레이트 절단 방법에 관한 것으로, 더욱 상세하게는 다결정 실리콘 플레이트 중 불순물이 포함되어 있는 영역을 워터젯으로 제거하는 방법에 관한 것이다.The present invention relates to a method of cutting a silicon plate using a waterjet, and more particularly, to a method of removing a region containing impurities in a polycrystalline silicon plate by a waterjet.
실리콘 웨이퍼 제조를 위하여 99.9999%(6N) 이상의 고순도의 실리콘을 사용하며 고순도, 고가의 원재료 사용은 태양광 발전단가의 상승을 가져온다. 이는 화석연료를 이용한 발전 방법에 비하여 태양광 발전의 경쟁력 약화의 원인이 되고 있다. 태양광 웨이퍼 제조사는 이러한 원재료의 가격부담을 줄이고자 웨이퍼 제작과정에서 배출되는 실리콘 스크랩(scrap: 파편)을 회수하여 이를 다시 재활용(re-melting)하는 방법을 채택하고 있다.High-purity silicon of 99.9999% (6N) or more is used for the manufacture of silicon wafers. The use of high-purity and expensive raw materials leads to an increase in the cost of solar power generation. This is a cause of weakening the competitiveness of photovoltaic power generation compared to the power generation method using fossil fuel. In order to reduce the cost of raw materials, photovoltaic wafer manufacturers are adopting a method of recovering and re-melting silicon scrap from the wafer fabrication process.
실리콘 웨이퍼는 실리콘을 녹여서 이를 장시간에 걸쳐 일정방향으로 결정을 성장시켜 둥근 기둥형태의 잉곳을 웨이퍼로 가공하여 제작하는 단결정 웨이퍼와 퍼니스(furnace) 내부에서 단순히 실리콘의 용해와 응고과정을 거쳐 다양한 방향의 입계(grain boundary)를 형성한 실리콘 블록(block)을 가공하여 제작하는 다결정 웨이퍼로 구분할 수 있다. 특히 다결정 웨이퍼의 제조를 위하여 퍼니스 내부에서 용해, 응고되는 실리콘은 용해시 고온(약 1400도)에 기인한 열부력으로 인해 대부분의 불순물이 실리콘 블록의 상층부로 이동하여 분포된다. 그리므로 실리콘 웨이퍼를 만들기 위하여 사용되는 실리콘 잉곳은 응고된 실리콘 블록의 상부 약 2 내지 3㎝ 부분을 절단하여 제거한 후 중앙부의 실리콘을 사용하고 있다.Silicon wafer melts silicon and grows crystal in a certain direction for a long time to process a round column-shaped ingot into a wafer, and inside the single crystal wafer and furnace (furnace) simply dissolve and solidify the silicon in various directions It can be classified into a polycrystalline wafer which is manufactured by processing a silicon block having a grain boundary. In particular, the silicon dissolved and solidified in the furnace for the manufacture of the polycrystalline wafer is distributed most of the impurities to the upper layer of the silicon block due to the thermal buoyancy due to the high temperature (about 1400 degrees) during melting. Therefore, the silicon ingot used to make the silicon wafer is cut off and removed about 2 to 3 cm of the upper part of the solidified silicon block, and the center silicon is used.
퍼니스는 실리콘 웨이퍼를 지지하는 타워, 이를 지지하는 페데스탈, 타워와 페데스탈을 둘러싸고 있는 케이스인 라이너, 여러 가지 가스를 운반하기 위한 가스 공급관 및 고온을 유지하기 위한 히터 등으로 구성된다. 일반적으로 퍼니스의 형태는 튜브형과 박스형이 있다. 퍼니스를 통해 열처리함으로써 원하지 않는 불순물이나 유기물을 제거할 수 있으며, 원료 시료들간에 상호 확산을 통해 새로운 상(phase)을 가지는 물질을 형성할 수 있어 반도체 제조공정에서는 반드시 필요한 중요한 장치이다.The furnace consists of a tower for supporting a silicon wafer, a pedestal supporting the wafer, a liner which is a case surrounding the tower and the pedestal, a gas supply pipe for transporting various gases, and a heater for maintaining a high temperature. In general, the furnace is of the form of a tube and a box. The heat treatment through the furnace can remove unwanted impurities or organic matter, and the material can be formed with a new phase through mutual diffusion between raw material samples.
도 1은 실리콘 블록(100)을 도시하고 있다. 도 1에 의하면 실리콘 블록을 다이아몬드 와이어 쏘(Diamond Wire Saw) 방식으로 실리콘의 상부를 절단한 형상을 도시하고 있다. 상술한 바와 같이 절단된 상부 실리콘 플레이트(110)는 불순물이 많이 포함되어 있어서 그대로 재활용이 불가능하여 실리콘 표면 및 심층부에 잔류하는 불순물을 제거하여 사용하여야 한다.1 illustrates a silicon block 100. 1 illustrates a shape in which a silicon block is cut on top of a silicon block using a diamond wire saw. Since the upper silicon plate 110 cut as described above contains a large amount of impurities, it cannot be recycled as it is, and thus the impurities remaining in the silicon surface and the deep portion should be removed.
종래 절단된 실리콘 플레이트(110)의 불순물 제거방법은 표면에 오염된 불순물을 고압으로 분사되는 압축공기가 연마제(Sic 혹은 지르코늄)를 운반하여 이를 오염부위에 분사하여 오염물을 제거하거나, 연마제를 경도가 높은 재료가 포함된 숫돌을 회전시켜 실리콘 블록의 오염부위를 갈아내는 글라인딩(grainding) 방법이 주로 이용되고 있다. 상술한 방법은 압축공기와 연마제의 운동에너지가 비교적 작기 때문에 실리콘 내부(두께 약 3㎝)에 깊숙이 침투하여 불순물을 제거하기 위해서는 시간과 비용이 증가하여 상업적으로 사용하기는 불가능하다.In the conventional method of removing impurities of the cut silicon plate 110, compressed air, which is injected at a high pressure with contaminated impurities on a surface, carries an abrasive (Sic or zirconium) and sprays it on a contaminated portion to remove contaminants or to reduce the hardness of the abrasive. Grinding method is used to grind contaminated parts of silicon blocks by rotating grinding wheels containing high materials. Since the kinetic energy of the compressed air and the abrasive is relatively small, the above-described method increases time and cost in order to penetrate deeply into the silicon (about 3 cm thick) and remove impurities, making it impossible to use commercially.
본 발명이 해결하려는 과제는 실리콘 플레이트의 상부에 존재하는 불순물을 효과적으로 제거하는 방안을 제안함에 있다.The problem to be solved by the present invention is to propose a method for effectively removing the impurities present on the upper portion of the silicon plate.
본 발명이 해결하려는 또 다른 과제는 불순물을 제거하는 과정에서 발생되는 분진이 비산하는 것을 방지하는 방안을 제안함에 있다.Another problem to be solved by the present invention is to propose a method for preventing dust from scattering in the process of removing impurities.
이를 위해 본 발명의 실리콘 플레이트의 불순물 제거 방법은 다결정 실리콘 블록으로부터 절단된 부분인 불순물이 포함되어 있는 실리콘 플레이트의 상면까지 물에 잠긴 상태에서 상기 불순물을 워터젯을 이용하여 제거하고, 상기 워터젯으로부터 분사되는 물은 연마제를 포함한다.To this end, the impurity removal method of the silicon plate of the present invention removes the impurity using a waterjet in the state submerged in the water to the upper surface of the silicon plate containing the impurity which is a part cut from the polycrystalline silicon block, and sprayed from the waterjet Water includes an abrasive.
상술한 불순물 제거 방법은 상기 불순물 제거 방법은 상기 실리콘 플레이트의 표면을 노즐의 분사 각도가 제1분사 각도로 설정된 워터젯을 이용하여 제거하는 단계와 표면이 제거된 상기 실리콘 플레이트에서 불순물이 응집되어 있는 부분을 노즐의 분사 각도가 제2 분사 각도로 설정된 워터젯을 이용하여 절단하는 단계를 포함한다.In the above-described impurity removal method, the impurity removal method includes removing a surface of the silicon plate by using a waterjet in which a nozzle injection angle is set to a first injection angle, and a portion where impurities are aggregated in the silicon plate from which the surface is removed. And cutting using the waterjet in which the spray angle of the nozzle is set to the second spray angle.
상술한 상기 불순물 제거 방법은 상기 실리콘 플레이트의 표면을 설정된 분사각도를 이용하여 제거하는 단계와 표면이 제거된 상기 실리콘 플레이트에서 불순물이 응집되어 있는 부분을 물리적인 충격을 가하여 제거하는 단계를 포함한다.The impurity removal method described above includes removing the surface of the silicon plate using a set spray angle, and removing a portion of the silicon plate from which the surface is removed by applying a physical impact.
본 발명은 따른 실리콘 블록으로부터 절단된 부분인 실리콘 플레이트에 존재하는 불순물을 워터젯을 이용하여 효과적으로 제거한다. 또한 본 발명은 실리콘 플레이트에 포함되어 있는 불순물을 워터젯 방식을 이용하여 제거함으로써 시간과 비용을 감소시켜 상업적으로도 사용이 가능하다.The present invention effectively removes impurities present in the silicon plate, which is a part cut from the silicon block, according to the water jet. In addition, the present invention can be used commercially by reducing the time and cost by removing impurities contained in the silicon plate using a waterjet method.
또한 워터젯으로부터 분사되는 물에 연마제를 포함시켜 분사함으로써 운동에너지가 증가되어 원하는 부분을 깨끗하게 식각할 수 있다는 장점을 갖는다. In addition, by including an abrasive in the water sprayed from the waterjet and spraying has the advantage that the kinetic energy can be increased to cleanly etch the desired portion.
부가하여 실리콘 플레이트가 잠길 정도로 물을 채운 후 워터젯을 이용하여 실리콘 플레이트를 식각함으로써, 식각 시 발생하는 분진이 비산되는 것을 방지할 수 있다.In addition, by filling the water to the extent that the silicon plate is immersed, by etching the silicon plate using a water jet, it is possible to prevent the dust generated during etching to scatter.
도 1은 다결정 실리콘 잉곳을 도시하고 있으며,1 shows a polycrystalline silicon ingot,
도 2는 본 발명의 일실시 예에 따른 다결정 실리콘 잉곳을 다이아몬드 와이어 쏘 방식으로 절단한 실리콘 플레이트를 도시하고 있으며,2 illustrates a silicon plate obtained by cutting a polycrystalline silicon ingot by a diamond wire saw method according to an embodiment of the present invention.
도 3은 본 발명의 일실시 예에 따른 불순물이 포함되어 있는 영역을 제거하는 과정을 도시한 흐름도이며,3 is a flowchart illustrating a process of removing a region including impurities according to an embodiment of the present invention.
도 4는 본 발명의 일실시 예에 따른 워터젯의 노즐로부터 분사되는 분사 각도의 차이를 도시하고 있으며,4 is a view illustrating a difference in injection angles injected from a nozzle of a waterjet according to an embodiment of the present invention.
도 5는 본 발명의 일실시 예에 따른 불순물이 포함되어 있는 영역이 제거된 실리콘 플레이트를 도시하고 있다.5 illustrates a silicon plate from which regions containing impurities are removed according to an embodiment of the present invention.
전술한, 그리고 추가적인 본 발명의 양상들은 첨부된 도면을 참조하여 설명되는 바람직한 실시 예들을 통하여 더욱 명백해질 것이다. 이하에서는 본 발명의 이러한 실시 예를 통해 당업자가 용이하게 이해하고 재현할 수 있도록 상세히 설명하기로 한다.The foregoing and further aspects of the present invention will become more apparent through the preferred embodiments described with reference to the accompanying drawings. Hereinafter will be described in detail to enable those skilled in the art to easily understand and reproduce through this embodiment of the present invention.
도 2는 본 발명의 일실시 예에 따른 불순물이 포함되어 있는 실리콘 블록으로부터 절단된 부분인 실리콘 플레이트를 도시하고 있다. 상술한 바와 같이 다결정 웨이퍼의 제조를 위하여 퍼니스 내부에서 용해, 응고되는 실리콘은 용해시의 온도에 기인한 열부력 현상으로 인해 불순물이 실리콘 블록의 상층부로 이동하여 분포된다. 또한, 불순물은 실리콘 블록의 상부 표층에는 넓게 분포하나, 상부 표층에서 하부로 이동할수록 불순물은 특정 부분에만 분포하게 된다. 따라서 절단된 실리콘 블록의 상부 표층을 2㎜ 정도 제거하게 되면 불순물이 응집되어 있는 부분을 식별할 수 있게 된다. 본 발명은 상술한 바와 같이 불순물이 응집되어 있는 부분을 워터젯을 이용하여 효율적으로 절단하는 방법에 관한 것이다. 이하에서는 실리콘 블록에서 불순물이 상대적으로 많은 실리콘 블록의 상부에 대해 설명하지만, 이에 한정되는 것은 아니다. 즉, 불순물이 응집되어 있는 실리콘 블록의 하부 또는 측부도 동일하게 적용될 수 있다.FIG. 2 illustrates a silicon plate cut from a silicon block including impurities according to an embodiment of the present invention. As described above, the silicon melted and solidified in the furnace for the manufacture of the polycrystalline wafer is distributed by dispersing impurities in the upper part of the silicon block due to thermal buoyancy due to the temperature at the time of melting. In addition, impurities are widely distributed in the upper surface layer of the silicon block, but as they move downward from the upper surface layer, the impurities are distributed only in specific portions. Therefore, when the upper surface layer of the cut silicon block is removed by about 2 mm, it is possible to identify a part where the impurities are aggregated. The present invention relates to a method for efficiently cutting a portion in which impurities are aggregated as described above by using a waterjet. Hereinafter, the upper portion of the silicon block having a relatively large amount of impurities in the silicon block will be described, but is not limited thereto. In other words, the lower part or the side of the silicon block in which the impurities are aggregated may be equally applied.
워터젯은 물을 이용하여 소재를 정밀하게 절단하는 기술에 관한 것으로 물의 압력을 초고압(3500bar 내지 4000bar) 이상으로 압축하여 물의 정지에너지를 운동에너지로 전환한 후 미세한 노즐을 통해 음속 이상의 속도로 좁은 면적에 집중적으로 분사시켜 소재를 정밀 절단하는 기술이다. 일반적으로 절단(CUTTING)능력을 증대시키기 위하여 물을 초고압으로 압축 분사하고, 연마재를 혼합 분사한다.Waterjet is a technology that precisely cuts the material using water. Compresses the water pressure to ultra high pressure (3500 bar to 4000 bar) and converts the stop energy of the water into kinetic energy. It is a technology to precisely cut the material by intensive spraying. In general, water is compressed and sprayed to ultra high pressure in order to increase the cutting ability, and the abrasive is mixed and sprayed.
워터젯의 특징은 고에너지, 초고압 가공이므로 고에너지, 초고압 가공이므로 모재에 대한 변형 및 잔류응력, 미세균열, 화학적 변형이 없으며, 기존의 절단 방법으로는 불가능하거나 취약하였던 소재(예: 열처리로 경화된 소재 또는 고경도 재질, 비철류, 유리, 수지, 석재등)의 절단에 적합하며 우수한 품질을 얻을 수 있다.Waterjet is characterized by high energy and ultra high pressure processing, so it is high energy and ultra high pressure processing.Therefore, there is no deformation, residual stress, microcracking, or chemical deformation of the base material. It is suitable for cutting of materials or hard materials, non-ferrous materials, glass, resin, stone, etc., and excellent quality can be obtained.
또한 워터젯은 형상에 영향을 받지 않아 자유로운 디자인이 가능하며 복잡한 제품의 절단에 적합하며, 절단면의 조도 및 품질이 우수하여 후가공 시간이 현격히 단축된다. In addition, the waterjet can be freely designed because it is not affected by the shape, and it is suitable for cutting complex products, and the post-processing time is significantly shortened by the excellent roughness and quality of the cut surface.
부가하여 워터젯은 물을 이용한 절단이므로 폭발성, 산화성, 휘발성이 있는 제품의 절단에 적합하며, 환경 친화적인 기술로서 작업 중 분진, 유해 Gas 등이 발생하지 않으며 기존의 재래식 장비의 단점을 보완하여 사용자의 안전을 확보할 수 있다.In addition, the waterjet is water-cutting, so it is suitable for cutting products with explosive, oxidizing and volatile properties. It is an environmentally friendly technology that does not generate dust or harmful gas during operation, and complements the disadvantages of conventional equipment. Safety can be secured.
워터젯은 작업 종류별 용도에 따라 순수물 커팅과 연마재 혼합 커팅으로 구분된다. 순수물 커팅은 순수한 물만의 압력으로 절단하며 종이, 목재, 고무, 섬유, 합성수지 등의 절단에 용이하다. 연마재 혼합 커팅은 물과 연마재를 혼합하여 초고압으로 절단하는 방식이며, 타일, 대리석, 금속, 비금속의 절단에 용이하다.Water jets are divided into pure water cutting and abrasive mixed cutting depending on the type of application. Pure water cutting is cut under the pressure of pure water and is easy to cut paper, wood, rubber, fiber, synthetic resin, etc. Abrasive mixed cutting is a method of cutting water and abrasives at a very high pressure, and is easy to cut tiles, marble, metals and nonmetals.
도 3은 본 발명의 일실시 예에 따른 실리콘 플레이트에 분포되어 있는 불순물을 제거하는 방법을 도시한 흐름도이다. 이하 도 3을 이용하여 본 발명의 일실시 예에 따른 실리콘 플레이트에 분포되어 있는 불순물을 제거하는 방법에 대해 상세하게 알아보기로 한다.3 is a flowchart illustrating a method of removing impurities distributed in a silicon plate according to an embodiment of the present invention. Hereinafter, a method of removing impurities distributed in a silicon plate according to an embodiment of the present invention will be described in detail with reference to FIG. 3.
S300단계에서 다결정 실리콘 블록의 상부 및 하부, 측부 중 적어도 하나의 면을 다이아몬드 와이어 쏘 방식을 이용하여 일정한 두께를 갖도록 절단한다. 불순물이 포함되어 있는 두께에 따라 다이아몬드 와이어 쏘 방식으로 절단되는 두께 역시 달라질 수 있다.In operation S300, at least one surface of the top, bottom, and sides of the polycrystalline silicon block is cut to have a predetermined thickness by using a diamond wire saw method. Depending on the thickness of the impurities, the thickness cut by the diamond wire saw method may also vary.
상술한 바와 같이 일반적으로 실리콘 블록을 2 내지 3㎝ 정도의 두께를 갖도록 절단한다. 하지만, 불순물이 분포되어 있는 형태나 양에 따라 절단되는 두께는 달라질 수 있다. 일예로 열응력에 의해 불순물이 집중되어 있는 상부의 절단 두께는 하부나 측부의 절단 두께에 비해 크다. 이하 실리콘 블록으로부터 절단된 부분을 실리콘 플레이트라고 한다. 상술한 바와 같이 상부, 하부 및 측부가 제거된 실리콘 블록의 중앙 부분은 불순물이 포함되어 있지 않게 된다.As described above, the silicon block is generally cut to have a thickness of about 2 to 3 cm. However, the thickness to be cut may vary depending on the form or amount of impurities. For example, the cutting thickness of the upper part where impurities are concentrated by thermal stress is larger than the cutting thickness of the lower part or the side part. Hereinafter, the part cut from the silicon block is called a silicon plate. As described above, the central portion of the silicon block from which the top, bottom, and sides are removed does not contain impurities.
S302단계에서 실리콘 플레이트가 잠길 정도로 물을 채운다. 즉, 실리콘 플레이트에 분포되어 있는 불순물을 제거하는 공정을 수행하는 용기에 실리콘 플레이트가 잠길 정도로 물을 채운다. 이와 같이 함으로써 워터젯을 이용하여 실리콘 플레이트를 식각하는 경우 발생하는 분진이 비산되는 것을 방지할 수 있다. 이를 위해 실리콘 플레이트에 분포되어 있는 불순물을 제거하는 공정을 수행하는 용기는 일정 높이 구멍을 형성하여 워터젯을 이용하여 실리콘 플레이트를 식각하는 경우에 발생되는 물을 배출하도록 한다.In step S302, the silicon plate is filled with enough water to immerse. That is, water is filled to the extent that the silicon plate is immersed in a container that performs a process of removing impurities distributed in the silicon plate. In this manner, dust generated when the silicon plate is etched using the waterjet can be prevented from scattering. To this end, a container that performs a process of removing impurities distributed in the silicon plate forms holes at a predetermined height to discharge water generated when etching the silicon plate using a waterjet.
S304단계에서 실리콘 플레이트의 상면을 워터젯을 이용하여 제거한다. 상술한 바와 같이 불순물은 실리콘 플레이트의 상단 부분에는 불균일하게 분포되어 있는 반면, 하단 부분은 응집되어 있다. 따라서 워터젯을 이용하여 실리콘 플레이트의 상단 표면을 제거한다. 워터젯은 상단 표면만을 제거하기 위해 노즐로부터 분사되는 물의 분사 각도를 넓게 한다. 즉, 노즐로부터 분사되는 물의 분사각도가 넓은 경우에는 수압이 상대적으로 약해 실리콘 플레이트가 절단되지 않고 표면만을 제거(식각)하게 된다. 이에 비해 노즐로부터 분사되는 물의 분사각도가 좁은 경우에는 수압이 상대적으로 높아 실리콘 플레이트를 절단하게 된다. S302단계에서는 실리콘 플레이트의 표면만을 제거해야 하므로 노즐로부터 분사되는 물의 분사각도를 넓게 한다.In operation S304, the upper surface of the silicon plate is removed using a waterjet. As described above, impurities are unevenly distributed in the upper portion of the silicon plate, while the lower portion is aggregated. Thus, the waterjet is used to remove the top surface of the silicon plate. The waterjet widens the spray angle of the water sprayed from the nozzle to remove only the top surface. In other words, when the spray angle of the water sprayed from the nozzle is wide, the hydraulic pressure is relatively weak so that only the surface is removed (etched) without the silicon plate being cut. On the other hand, when the spray angle of water sprayed from the nozzle is narrow, the hydraulic pressure is relatively high to cut the silicon plate. In step S302, only the surface of the silicon plate has to be removed, thereby widening the spray angle of the water sprayed from the nozzle.
도 4는 본 발명의 일실시 예에 따른 노즐로부터 분사되는 물의 분사각도를 도시하고 있다. 도 4는 노즐로부터 분사되는 물의 분사각도가 넓은 경우(a)와 좁은 경우(b)를 도시하고 있다.4 illustrates an injection angle of water injected from a nozzle according to an embodiment of the present invention. 4 illustrates a case where the spray angles of the water sprayed from the nozzles are wide (a) and narrow (b).
S306단계에서 상단 표면이 제거된 실리콘 플레이트에서 불순물이 응집되어 있는 부분을 워터젯을 이용하여 절단한다. 상술한 바와 같이 실리콘 플레이트는 표면을 일정 두께만큼 제거하게 되면 불순물이 응집되어 있는 부분을 알 수 있게 된다. 따라서 노즐로부터 분사되는 물의 분사각도를 좁게 하여 불순물이 응집되어 있는 부분을 절단한다. 물론 실리콘 플레이트에서 불순물이 응집되어 있는 부분이 확인되지 않으면 S304단계를 재수행한다.In step S306, the portion of the silicon plate from which the top surface is removed is cut by using a waterjet. As described above, when the surface of the silicon plate is removed by a predetermined thickness, the parts where the impurities are aggregated can be known. Therefore, the injection angle of the water sprayed from the nozzle is narrowed to cut off the portion where the impurities are aggregated. Of course, if the part where the impurities are aggregated in the silicon plate is not confirmed, the step S304 is performed again.
이와 같이 본 발명은 워터젯의 노즐로부터 분사되는 물의 분사각도를 조절하여 실리콘 플레이트의 표면을 제거하거나 절단하는 방안을 제안한다.As described above, the present invention proposes a method of removing or cutting the surface of the silicon plate by adjusting the spray angle of water sprayed from the nozzle of the waterjet.
물론 S304단계를 수행한 실리콘 플레이트에서 불순물이 응집되어 있는 부분에 압력을 가하여 제거할 수 있다. 일예로 실리콘 플레이트에서 불순물이 응집되어 있는 부분에 헤머 등을 이용하여 충격을 가하여 제거할 수 있다. 불순물이 응집되어 있는 부분을 작은 충격으로도 실리콘으로 구성되어 있는 부분에서 분리할 수 있다.Of course, it can be removed by applying pressure to a part where the impurities are agglomerated in the silicon plate in step S304. For example, a portion of the silicon plate in which impurities are aggregated may be removed by applying an impact using a hammer or the like. The portion where the impurities are aggregated can be separated from the portion composed of silicon even with a small impact.
도 5는 본 발명의 일실시 예에 따른 워터젯을 이용하여 불순물이 포함된 부분을 제거한 전후를 도시하고 있다.5 illustrates before and after removing a portion containing impurities using a waterjet according to an embodiment of the present invention.
도 5의 좌측도면(a)은 실리콘 플레이트의 일측면에 불순물이 함유된 부분을 도시하고 있으며, 도 5의 우측도면(b)은 불순물이 함유된 부분을 워터젯을 이용하여 제거된 과정을 도시하고 있다. 상술한 바와 같이 워터젯을 이용하여 불순물이 포함된 부분을 제거함으로써 절단면이 깨끗하며 절단 시간이 단축됨을 알 수 있다.FIG. 5 illustrates a part containing impurities on one side of the silicon plate, and FIG. 5 illustrates a process in which the part containing impurities is removed using a waterjet. have. As described above, it can be seen that the cutting surface is clean and the cutting time is shortened by removing the portion containing impurities using the waterjet.
부가하여 본 발명은 센서를 이용하여 불순물이 포함되어 있는 영역을 센싱하고, 센싱된 정보를 이용하여 불순물이 포함된 영역을 자동으로 절단할 수 있다. 이를 위해 센서는 불순물이 포함된 영역과 불순물이 포함되지 않은 영역을 구별할 수 있어야 하며, 일반적으로 불순물이 포함된 영역과 불순물이 포함되지 않은 영역의 색상 차이를 구별한다.In addition, the present invention can sense an area containing impurities using a sensor, and automatically cut an area containing impurities using the sensed information. For this purpose, the sensor should be able to distinguish between the region containing impurities and the region containing no impurities, and generally distinguishes the color difference between the region containing impurities and the region containing no impurities.
본 발명은 도면에 도시된 일실시 예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.Although the present invention has been described with reference to one embodiment shown in the drawings, this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. .
(부호의 설명)(Explanation of the sign)
100: 실리콘 블록, 110: 실리콘 플레이트100: silicon block, 110: silicon plate

Claims (5)

  1. 다결정 실리콘 블록으로부터 절단된 부분인 불순물이 포함되어 있는 실리콘 플레이트의 상면까지 물에 잠긴 상태에서 상기 불순물을 워터젯을 이용하여 제거하고, 상기 워터젯으로부터 분사되는 물은 연마제를 포함하고 있음을 특징으로 하는 실리콘 플레이트의 불순물 제거 방법.The silicon is characterized in that the impurities are removed using a waterjet in a state submerged to the upper surface of the silicon plate containing impurities, which are parts cut from the polycrystalline silicon block, and the water sprayed from the waterjet contains an abrasive. How to remove impurities from the plate.
  2. 제 1항에 있어서, 상기 불순물 제거 방법은,The method of claim 1, wherein the impurity removal method,
    상기 실리콘 플레이트의 표면을 노즐의 분사 각도가 제1분사 각도로 설정된 워터젯을 이용하여 제거하는 단계;Removing the surface of the silicon plate using a waterjet in which the nozzle spray angle is set to the first spray angle;
    표면이 제거된 상기 실리콘 플레이트에서 불순물이 응집되어 있는 부분을 노즐의 분사 각도가 제2 분사 각도로 설정된 워터젯을 이용하여 절단하는 단계를 포함함을 특징으로 하는 실리콘 플레이트의 불순물 제거 방법.And cutting the portion in which the surface of the silicon plate from which impurities have been aggregated by using a waterjet in which a nozzle spray angle is set to a second spray angle.
  3. 제 2항에 있어서, 상기 제1분사 각도는 상기 제2분사 각도에 비해 상대적으로 넓게 설정됨을 특징으로 하는 실리콘 플레이트의 불순물 제거 방법.The method of claim 2, wherein the first injection angle is set relatively wider than the second injection angle.
  4. 제 3항에 있어서, 상기 제1분사 각도로 제거되는 상기 실리콘 플레이트의 두께는 2㎜ 이상임을 특징으로 하는 실리콘 플레이트의 불순물 제거 방법.4. The method of claim 3, wherein the thickness of the silicon plate removed at the first injection angle is 2 mm or more.
  5. 제 1항에 있어서, 상기 불순물 제거 방법은,The method of claim 1, wherein the impurity removal method,
    상기 실리콘 플레이트의 표면을 설정된 분사각도를 이용하여 제거하는 단계;Removing the surface of the silicon plate using a set spray angle;
    표면이 제거된 상기 실리콘 플레이트에서 불순물이 응집되어 있는 부분을 물리적인 충격을 가하여 제거하는 단계를 포함함을 특징으로 하는 실리콘 플레이트의 불순물 제거 방법.And removing a portion of the silicon plate from which the surface is removed by applying a physical impact to the portion where the impurities are agglomerated.
PCT/KR2013/001273 2013-02-18 2013-02-18 Silicon plate impurity removing method using water jet WO2014126284A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/001273 WO2014126284A1 (en) 2013-02-18 2013-02-18 Silicon plate impurity removing method using water jet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/001273 WO2014126284A1 (en) 2013-02-18 2013-02-18 Silicon plate impurity removing method using water jet

Publications (1)

Publication Number Publication Date
WO2014126284A1 true WO2014126284A1 (en) 2014-08-21

Family

ID=51354277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001273 WO2014126284A1 (en) 2013-02-18 2013-02-18 Silicon plate impurity removing method using water jet

Country Status (1)

Country Link
WO (1) WO2014126284A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745562A (en) * 1993-07-30 1995-02-14 Sony Corp Dicing method and device of semiconductor wafer
US20040026382A1 (en) * 2000-04-04 2004-02-12 Bernold Richerzhagen Method for cutting an object and or futher processing the cut material an carrier for holding the object and the cut material
JP2005150200A (en) * 2003-11-12 2005-06-09 Disco Abrasive Syst Ltd Surface grinding method
KR20110115881A (en) * 2010-04-16 2011-10-24 금오공과대학교 산학협력단 Water jet separation system for ultra-thin solar cell silicon wafers and the method therewith
KR20120013186A (en) * 2011-05-23 2012-02-14 (주)클린솔루션 Method for cutting silicon ingot used water-jet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745562A (en) * 1993-07-30 1995-02-14 Sony Corp Dicing method and device of semiconductor wafer
US20040026382A1 (en) * 2000-04-04 2004-02-12 Bernold Richerzhagen Method for cutting an object and or futher processing the cut material an carrier for holding the object and the cut material
JP2005150200A (en) * 2003-11-12 2005-06-09 Disco Abrasive Syst Ltd Surface grinding method
KR20110115881A (en) * 2010-04-16 2011-10-24 금오공과대학교 산학협력단 Water jet separation system for ultra-thin solar cell silicon wafers and the method therewith
KR20120013186A (en) * 2011-05-23 2012-02-14 (주)클린솔루션 Method for cutting silicon ingot used water-jet

Similar Documents

Publication Publication Date Title
JP4689373B2 (en) How to reuse silicon
CN104176737B (en) Method for recovering silicon powder from cut mortar waste
Yang et al. A rapid thermal process for silicon recycle and refining from cutting kerf-loss slurry waste
CN202401116U (en) Degassing device for casting aluminum alloy
JP2015209342A (en) Cutter wheel for scribing and scribing device
KR101155261B1 (en) Method for cutting silicon ingot used water-jet
WO2014126284A1 (en) Silicon plate impurity removing method using water jet
JP2006160575A (en) Method of purifying silicon and silicon
KR101301691B1 (en) Method for cutting silicon ingot used water-jet
KR101077261B1 (en) Method for cutting silicon ingot used water-jet
JP6431979B2 (en) Briquette manufacturing method and briquette manufactured using the same
CN105621866A (en) Production method of high-quality and high-purity melted quartz blocks
CN104278275A (en) Silicon chip wet-etching method
CN111020192B (en) Method for purifying and recycling AgCd alloy from AgCd waste
JP3450112B2 (en) Surface treatment method for quartz glass jig and surface treated jig
KR100839829B1 (en) Ingot production apparatus and method for solar cell using waste silicon
JPH06271309A (en) Method for crushing polycrystalline silicon
CN113337738A (en) Method for recovering germanium waste
CN106676283B (en) One kind ladles the continuous depassing unit in pond and degasification method
JP2000052299A (en) Parting method
CN106795042B (en) The manufacturing method of glass substrate
KR101202009B1 (en) Recovery Method of High-purified Silicon
KR102543520B1 (en) Etching composition
JP4845722B2 (en) Method for producing silicon raw material
JP2013199395A (en) Method for producing granular silicon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875075

Country of ref document: EP

Kind code of ref document: A1