WO2014126241A1 - Light emitting material and organic el element - Google Patents

Light emitting material and organic el element Download PDF

Info

Publication number
WO2014126241A1
WO2014126241A1 PCT/JP2014/053642 JP2014053642W WO2014126241A1 WO 2014126241 A1 WO2014126241 A1 WO 2014126241A1 JP 2014053642 W JP2014053642 W JP 2014053642W WO 2014126241 A1 WO2014126241 A1 WO 2014126241A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
carbon atoms
layer
organic
Prior art date
Application number
PCT/JP2014/053642
Other languages
French (fr)
Japanese (ja)
Inventor
清水 正毅
裕介 稲本
井上 健二
岳夫 大塚
昌也 日高
Original Assignee
国立大学法人京都工芸繊維大学
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学, 株式会社カネカ filed Critical 国立大学法人京都工芸繊維大学
Priority to JP2015500331A priority Critical patent/JP6313742B2/en
Publication of WO2014126241A1 publication Critical patent/WO2014126241A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a light emitting material and an organic EL element using the light emitting material.
  • Organic EL elements are attracting attention as light emitting elements used in flat display panels and lighting devices.
  • the organic EL element can emit light of various wavelengths by appropriately selecting the material constituting the light emitting layer.
  • Various ⁇ -conjugated compounds have been studied as organic light-emitting materials used for organic EL devices, and anthracene derivatives, distyrylarylene derivatives, fluorene derivatives, pyrene derivatives, and the like have already been developed as blue light-emitting materials.
  • Patent Document 1 reports that when a silicon-bridged indole derivative is used together with a light-emitting host material such as an anthracene derivative, an organic EL element having a high light emission efficiency and a long life can be obtained. Further, Non-Patent Document 1 reports that the following silicon-bridged 2- (2-naphthyl) indole compound is applicable as a blue light-emitting dopant material or a light-emitting host material.
  • the organic light emitting material can change the light emission characteristics such as the shape of the light emission spectrum and the light emission wavelength by derivatization by introducing a substituent.
  • the ⁇ -conjugated structure of the compound changes, the light emission characteristics change greatly, and it is difficult to predict the light emission characteristics and the light emission lifetime.
  • an object of the present invention is to provide a novel blue light emitting material exhibiting high light emission efficiency and an organic EL element using the light emitting material.
  • this invention relates to the luminescent material containing the silicon bridge
  • R 1 to R 3 each independently represents a lower alkyl group having 1 to 6 carbon atoms, an aryl group or an unsaturated heterocyclic group.
  • R 4 is a substituent bonded to the benzene ring, and R 5 is a substituent bonded to the indole ring.
  • p is an integer of 0 to 5
  • q is an integer of 0 to 4.
  • R 4 and R 5 are each independently a halogen atom, cyano group, amino group, aryl group, unsaturated heterocyclic group, lower alkyl group having 1 to 6 carbon atoms, lower alkoxy group having 1 to 6 carbon atoms, carbon number It represents a lower alkylthio group having 1 to 6 carbon atoms, a halogen-substituted lower alkyl group having 1 to 6 carbon atoms, a halogen-substituted lower alkoxy group having 1 to 6 carbon atoms, an amino group, an aryl group or an unsaturated heterocyclic group. If R 4 and R 5 are present in plural, the plurality of R 4 and R 5, may each be the same or different. A plurality of R 4 may be bonded to each other to form a ring structure.
  • p is preferably 0 or 1
  • q 0 is preferable.
  • R 4 is preferably bonded to the para-position of the benzene ring (the following formula (II)).
  • R 4 is preferably a methoxy group, for example.
  • the luminescent material of the present invention contains a host material and a dopant material.
  • the dopant material is preferably a compound of the above formula (I) or formula (II), and the host material is preferably an anthracene derivative.
  • the present invention relates to an organic EL device having at least a light emitting layer between a pair of electrodes consisting of an anode and a cathode.
  • a light emitting layer has the said light emitting material.
  • the light emitting material of the present invention is a blue light emitting material having a light emission maximum wavelength in a blue region having a wavelength shorter than 500 nm, and an organic EL device having high light emission efficiency can be produced.
  • the light emitting material of the present invention contains a silicon bridged 2- (2-naphthyl) indole derivative represented by the following formula (I).
  • R 1 and R 2 each independently represents a lower alkyl group having 1 to 6 carbon atoms, an aryl group or an unsaturated heterocyclic group.
  • R 3 represents a lower alkyl group having 1 to 6 carbon atoms, an aryl group, or an unsaturated heterocyclic group.
  • R 4 is a substituent bonded to the benzene ring, and R 5 is a substituent bonded to the indole ring.
  • p is an integer of 0 to 5
  • q is an integer of 0 to 4.
  • R 4 and R 5 are each independently a halogen atom, a cyano group, a lower alkyl group having 1 to 6 carbon atoms, a lower alkoxy group having 1 to 6 carbon atoms, a lower alkylthio group having 1 to 6 carbon atoms, or 1 to 6 represents a halogen-substituted lower alkyl group, an amino group, an aryl group or an unsaturated heterocyclic group.
  • the plurality of R 4 and R 5 may be the same or different.
  • a plurality of R 4 may be bonded to each other to form a ring structure.
  • R 1 and R 2 represent a lower alkyl group having 1 to 6 carbon atoms, an aryl group, or an unsaturated heterocyclic group.
  • Examples of the lower alkyl group include linear or branched alkyl groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, n-pentyl group, 1-ethylpropyl group, isopentyl group And neopentyl group, n-hexyl group, 1,2,2-trimethylpropyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, isohexyl group, 3-methylpentyl group, and the like.
  • aryl group examples include a phenyl group, a biphenyl group, and a naphthyl group.
  • the aryl group has a substituent such as a lower alkyl group, a lower alkoxy group, a halogen-substituted lower alkyl group, a lower alkoxycarbonyl group, a lower alkylcarbonyl group, an amino group, an aminocarbonyl group, or a halogen atom on the phenyl ring or naphthalene ring.
  • a substituent such as a lower alkyl group, a lower alkoxy group, a halogen-substituted lower alkyl group, a lower alkoxycarbonyl group, a lower alkylcarbonyl group, an amino group, an aminocarbonyl group, or a halogen atom on the phenyl ring or naphthalene ring.
  • a substituent such as a lower alkyl group,
  • the amino group may have one or two substituents in addition to the unsubstituted amino group (—NH 2 ). Moreover, when an amino group has two substituents, these may be the same or different. When the amino group has a substituent, the substituent is preferably the lower alkyl group or aryl group exemplified above.
  • amino group examples include unsubstituted amino group, methylamino group, ethylamino group, n-propylamino group, isopropylamino group, n-butylamino group, tert-butylamino group, n-pentylamino group, n -Hexylamino, arylamino, dimethylamino, diethylamino, di-n-propylamino, di-n-butylamino, di-n-pentylamino, di-n-hexylamino, N- Methyl-N-ethylamino group, N-ethyl-Nn-propylamino group, N-methyl-Nn-butylamino group, N-methyl-Nn-hexylamino group, diarylamino group, etc. Can be mentioned.
  • the amino group when an amino group can form a hydrogen bond, concentration quenching occurs and the light emission efficiency tends to decrease. Therefore, the amino group preferably has two substituents, and a diarylamino group is particularly preferable.
  • the unsaturated heterocyclic ring of the unsaturated heterocyclic group includes a 5- to 10-membered ring, preferably a 5- to 6-membered ring.
  • R 3 represents a hydrogen atom, a lower alkyl group having 1 to 6 carbon atoms, an aryl group or an unsaturated heterocyclic group.
  • the lower alkyl group, aryl group and unsaturated heterocyclic group include the same substituents as those described above as examples of R 1 and R 2 .
  • R 3 a lower alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group is particularly preferable.
  • R 4 and R 5 each independently represent a halogen atom, a cyano group, a lower alkyl group having 1 to 6 carbon atoms, a lower alkoxy group having 1 to 6 carbon atoms, or a lower group having 1 to 6 carbon atoms. It represents an alkylthio group, a halogen-substituted lower alkyl group having 1 to 6 carbon atoms, a halogen-substituted lower alkoxy group having 1 to 6 carbon atoms, an amino group, an aryl group or an unsaturated heterocyclic group.
  • the plurality of R 4 may be bonded to each other to form a ring structure.
  • Examples of the lower alkyl group, amino group, aryl group or unsaturated heterocyclic group include the same substituents as those described above as examples of R 1 and R 2 .
  • Examples of the halogen atom include a fluorine atom and a chlorine atom.
  • Examples of the lower alkoxy group include straight or branched lower alkoxy groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, having straight or branched chains. Specifically, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, sec-butoxy group, n-pentyloxy group, isopentyloxy group, neo A pentyloxy group, an n-hexyloxy group, an isohexyloxy group, a 3-methylpentyloxy group, and the like can be given.
  • Examples of the lower alkylthio group include linear or branched alkylthio groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms. Specific examples include a methylthio group, an ethylthio group, an n-propylthio group, an isopropylthio group, an n-butylthio group, a tert-butylthio group, an n-pentylthio group, and an n-hexylthio group.
  • halogen-substituted alkyl group examples include the above-exemplified alkyl groups substituted with 1 to 7, more preferably 1 to 3 halogen atoms.
  • halogen-substituted alkoxy group examples include the alkoxy groups exemplified above substituted with 1 to 7, more preferably 1 to 3 halogen atoms. Specific examples include those in which an oxygen atom (—O—) is added to the halogen-substituted alkyl group exemplified above.
  • Ring structure in which a plurality of R 4 are bonded to each other to form may be a fused aromatic ring to the benzene ring, it may be an aliphatic ring.
  • the ring structure formed by bonding a plurality of R 4 s may be a heterocyclic ring.
  • the substituent R 4 is preferably an alkoxy group, an alkyl group, a halogen-substituted alkoxy group, a halogen-substituted alkyl group, an amino group, an alkylthio group, an aryl group, or an unsaturated heterocyclic group.
  • R 4 is preferably an alkoxy group, and particularly preferably a methoxy group.
  • R 1 and R 2 are preferably both lower alkyl groups.
  • R 1 and R 2 are preferably the same substituent. In particular, it is preferable that both R 1 and R 2 are isopropyl groups.
  • R 3 is preferably a lower alkyl group, and particularly preferably a methyl group.
  • the light-emitting material of the present invention preferably contains a compound represented by the following formula (III), and particularly preferably contains a compound represented by the following formula (IV).
  • the method for synthesizing the above compound is not particularly limited, and a target compound can be obtained by combining various known reactions. For example, using 6-aryl-1-bromo-2-naphthol (1) as a starting material, As shown in scheme 1, compound (A) can be synthesized in four steps.
  • the silicon-bridged 2- (2-naphthyl) indole derivative can be used alone as a light emitting material.
  • the silicon-bridged 2- (2-naphthyl) indole derivative can also be used as a light emitting dopant material or a light emitting host material as a light emitting material together with another light emitting dopant material or a light emitting host material.
  • an organic EL light emitting layer having excellent light emission efficiency and a longer light emission lifetime can be formed.
  • the host material is not particularly limited, but an anthracene derivative is preferably used.
  • the anthracene derivative is not particularly limited as long as it can be used as a light emitting material, and various known compounds can be used.
  • anthracene derivatives include 9,10-di (naphth-2-yl) anthracene (abbreviation: ADN), 2-tert-butyl-9,10-di (naphth-2-yl) anthracene (abbreviation: TBADN) 2-methyl-9,10-bis (naphthalen-2-yl) anthracene (abbreviation: MADN), 2,2′-di (9,10-diphenylanthracene) (abbreviation: TPBA), 4,4′-di (10- (naphthalen-1-yl) anthracen-9-yl) biphenyl (abbreviation: BUBH-3), and the like.
  • ADN 9,10-di (naphth-2-yl) anthracene
  • TBADN 2-tert-butyl-9,10-di (naphth-2-yl) anthracene
  • MADN 2-methyl-9,10-bis (
  • the addition ratio of the silicon-bridged 2- (2-naphthyl) indole derivative to the anthracene derivative (host compound) Is not particularly limited.
  • the content of the silicon-bridged 2- (2-naphthyl) indole derivative is preferably 1 to 50 parts by weight, more preferably 2 to 30 parts by weight, still more preferably 2.5 to 100 parts by weight based on 100 parts by weight of the anthracene derivative. 25 parts by weight, particularly preferably 3 to 20 parts by weight.
  • An organic light emitting layer can be formed by depositing a silicon-crosslinked 2- (2-naphthyl) indole derivative on a support such as a substrate.
  • a silicon-bridged 2- (2-naphthyl) indole derivative is used as a dopant
  • an organic light emitting layer can be formed by co-evaporation with a host material such as an anthracene derivative.
  • FIG. 1 is an example of a layer configuration of an organic EL device.
  • the organic EL device shown in FIG. 1 has a configuration called “bottom emission type” in which light is extracted from the transparent substrate 3 side.
  • the organic EL device 1 has an organic EL element 2 on a transparent substrate 3, and the organic EL element is sealed by a sealing portion 7.
  • the organic EL element 2 includes a functional layer 5 having at least one light emitting layer between a pair of electrodes composed of a transparent electrode layer (anode) 4 and a back electrode layer (cathode) 6.
  • the functional layer 5 is formed by laminating a plurality of organic compound thin films.
  • FIG. 2 is an example of a layer configuration of the functional layer 5.
  • the functional layer 5 includes a hole injection layer 10, a hole transport layer 11, a light emitting layer 12, an electron transport layer 15, and an electron injection layer 16. That is, in the organic EL element 2, the light emitting layer 12 is located between the transparent electrode layer 4 and the back electrode layer 6.
  • the transparent substrate 3 is not particularly limited as long as it is made of a material having translucency.
  • the transparent substrate 3 since light is extracted from the transparent substrate 3 side, the transparent substrate 3 preferably has a transmittance in the visible light region of 80% or more, and preferably 90% or more. More preferably, it is more preferably 95% or more.
  • the transparent substrate 3 a glass substrate, a flexible transparent film substrate, or the like may be used.
  • the organic EL device adopts a top emission method the substrate may be opaque.
  • a transparent electrode layer (anode) 4 is laminated on the transparent substrate 3.
  • the material which comprises the transparent electrode layer 4 is not specifically limited, A well-known thing can be used. Examples thereof include those made of materials such as indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO 2 ), and zinc oxide (ZnO). Among these, ITO or IZO is preferably used from the viewpoint of the light extraction efficiency from the light emitting layer 12 and the ease of electrode patterning.
  • the transparent electrode layer 4 may be doped with one or more dopants such as aluminum, gallium, silicon, boron, and niobium as necessary.
  • the transmittance of the transparent electrode layer 4 is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more in the visible light region.
  • the transparent electrode layer 4 is formed on the transparent substrate 3 by a dry process such as sputtering or CVD.
  • the film thickness of the transparent electrode layer 4 may be appropriately selected in consideration of light transmittance and electrical conductivity, and is, for example, 80 to 300 nm, preferably 100 to 150 nm, more preferably 130 to 150 nm.
  • a functional layer 5 is formed on the transparent electrode layer 4, and a back electrode layer (cathode) 6 is formed thereon.
  • the material used for the back electrode layer is preferably a metal having a low work function, or an alloy or metal oxide thereof. Examples of the metal having a low work function include Li for alkali metals and Mg, Ca, etc. for alkaline earth metals. In addition, a single metal made of rare earth metal or an alloy such as Al, In, or Ag may be used. Further, as disclosed in Japanese Patent Application Laid-Open No.
  • an organic metal complex compound containing at least one selected from the group consisting of alkaline earth metal ions and alkali metal ions as an organic layer in contact with the cathode Can also be used.
  • a metal capable of reducing metal ions in the complex compound to a metal in a vacuum, such as Al, Zr, Ti, Si, or an alloy containing these metals, as the cathode.
  • the functional layer 5 has at least one light emitting layer 12.
  • Each layer constituting the functional layer is generally composed of an amorphous film containing an organic compound, a polymer compound, a transition metal complex, or the like.
  • the functional layer 5 generally has a laminated structure composed of a plurality of layers.
  • the functional layer 5 includes a hole injection layer 10, a hole transport layer 11, a light emitting layer 12, an electron transport layer 15, and an electron injection layer 16.
  • the functional layer 5 only needs to have the light emitting layer 12, and the hole injection layer 10, the hole transport layer 11, the electron transport layer 15, and the electron injection layer 16 are provided as necessary.
  • the light emitting layer 12 contains the above silicon-bridged 2- (2-naphthyl) indole derivative. Further, as described above, the light emitting material of the light emitting layer 12 preferably contains an anthracene derivative as a host material. In this case, the light emitting layer 12 preferably contains 1 to 50 parts by weight of a silicon-bridged 2- (2-naphthyl) indole derivative as a dopant material with respect to 100 parts by weight of an anthracene derivative as a host material.
  • the content of the silicon-crosslinked 2- (2-naphthyl) indole derivative is more preferably 2 to 30 parts by weight, still more preferably 2.5 to 25 parts by weight, and particularly preferably 3 to 20 parts by weight.
  • the formation method of the light emitting layer is not particularly limited, and a dry process such as a vacuum deposition method or a transfer method, or a wet process such as a coating method or a printing method can be employed.
  • a vacuum deposition method is preferably used.
  • a desired vapor deposition ratio can be realized by co-depositing a host material and a dopant material and controlling the vapor deposition rate at that time.
  • the functional layer 5 may have a hole injection layer 10 or a hole transport layer 11 between the light emitting layer 12 and the anode 4.
  • an electron blocking layer or the like may be further provided between the hole transport layer 11 and the light emitting layer 12.
  • Examples of the material constituting the hole injection layer 10 include metal oxides such as molybdenum oxide, vanadium oxide, ruthenium oxide, and manganese oxide, and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano. -Quinodimethane (abbreviation: F4-TCNQ). Further, a mixed layer of molybdenum trioxide and N, N-bis (naphthalen-1-yl) -N, N′-bis (phenyl) -benzidine (abbreviation: NPB) may be used as the hole injection layer 10. it can.
  • metal oxides such as molybdenum oxide, vanadium oxide, ruthenium oxide, and manganese oxide, and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano.
  • F4-TCNQ -Quinodimethane
  • NPB N-bis (naphthalen-1-yl) -N, N′-
  • Hol transport layer Materials constituting the hole transport layer include arylamine compounds, imidazole compounds, oxadiazole compounds, oxazole compounds, triazole compounds, chalcone compounds, styrylanthracene compounds, stilbene compounds, tetraarylethenes.
  • the hole transport efficiency from the hole transport layer to the light emitting layer can be effectively increased.
  • arylamine compounds that can constitute the hole transport layer material triarylamine derivatives are preferred, and in particular, 4,4′-bis [N- (2-naphthyl) -N-phenyl-amino] biphenyl (“ ⁇ -NPD Or “NPB”) is particularly preferred.
  • the functional layer 5 may have an electron injection layer 16 and an electron transport layer 15 between the light emitting layer 12 and the cathode 6.
  • a hole blocking layer or the like may be further provided between the electron transport layer 15 and the light emitting layer 12.
  • Examples of the material constituting the hole blocking layer include 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (common name: butocuproine, BCP).
  • Materials constituting the electron transport layer 15 include tris (8-hydroxy-quinolinato) aluminum (abbreviation: Alq 3 ), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 1,3-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazo-5-yl] benzene (Bpy-OXD), 4,7-diphenyl-1,10-phenanthroline (Bphen), 2,2 ′, 2 ′′-(1,3,5-Benzinetriyl) -tris (1-phenyl-1-H-benzimidazole) (TPBi), 2- (4-biphenyl) -5- (4 -Tert-Butifphenyl) -1,3,4-oxadiazole (PBD), bis (2-methyl 1-8-quinolinolato) -4- (phenylphenolato) aluminum (BAlq), 3- (4 Biphenyl) -4-phenyl -5-
  • Examples of the material constituting the electron injection layer 16 include alkali metals such as Li; alkaline earth metals such as Mg and Ca; alloys containing one or more of the metals; oxides, halides, and carbonates of the metals; As well as mixtures thereof. Specific examples include 8-hydroxyquinolinolato (lithium) (Liq), lithium fluoride (LiF), and the like.
  • the organic EL element 2 shown in FIG. 2 has a hole injection layer 10, a hole transport layer 11, a light emitting layer 12, an electron on the transparent electrode layer 4 formed on the transparent substrate 3 by a technique such as vacuum deposition. It can be manufactured by laminating the transport layer 15, the electron injection layer 16, and the back electrode layer 6 sequentially. The organic EL element 2 manufactured in this way is sealed by the sealing portion 7 to become the organic EL device 1.
  • FIG. 2 demonstrated the structure in which the functional layer 5 consists of five layers, this invention is not limited to the said embodiment.
  • a configuration in which some or all of the hole injection layer 10, the hole transport layer 11, the electron transport layer 15, and the electron injection layer 16 are omitted may be employed.
  • a hole blocking layer and an electron blocking layer may be provided before and after the light emitting layer 12.
  • each layer constituting the functional layer 5 is not particularly limited, and can be formed by an appropriate method such as a vacuum deposition method, a coating method, or a printing method.
  • Example 1 Synthesis of Compound A1
  • Compound A1 was synthesized in four stages by the above scheme 1 using 6-phenyl-1-bromo-2-naphthol (1) as a starting material.
  • schem 1 is described in Efficient blue electroluminescence of silylene-bridged 2- (2-naphthyl) indole (M. Shimizu et al. J. Mater. Chem. 2012, Vol. 22, pages 4337-4342) except that the starting materials are different. This is similar to the synthetic scheme described.
  • the resulting compound A1 had a melting point of 250 ° C. and a thermal decomposition temperature of 306 ° C. (the temperature at which mass loss by thermogravimetric analysis (TGA) was 5% was defined as the thermal decomposition temperature).
  • Compound 1 was measured for 1 H-NMR, and the following results were obtained.
  • Example 2 Synthesis of Compound A2
  • Compound A2 was synthesized in the same manner as in Example 1 except that 6- (4-methoxyphenyl) -1-bromo-2-naphthol was used as a starting material.
  • the resulting compound A2 had a melting point of 256 ° C. and a thermal decomposition temperature of 321 ° C.
  • Compound 1 was measured for 1 H-NMR, and the following results were obtained.
  • Example 3 Synthesis of Compound A3 Compound A3 was synthesized in the same manner as in Example 1 except that 6- (4-trifluoromethylphenyl) -1-bromo-2-naphthol was used as a starting material. did.
  • Example 4 Production of organic EL device using compound A1 Bottom emission type evaluation device having a light emitting region of 2 mm x 2 mm on a glass substrate having a patterned ITO electrode (film thickness 150 nm) by the following procedure. Was made.
  • Molybdenum trioxide (MoO 3 ) was vapor-deposited on the ITO electrode (anode) to form a hole injection layer (film thickness 0.8 nm).
  • Example 2 the compound A1 obtained in Example 1 was vacuum deposited on the hole transport layer to form a light emitting layer (film thickness 20 nm).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • Alq 3 tris (8-hydroxy-quinolinato) aluminum
  • Alq 3 was vacuum-deposited on the hole blocking layer to form an electron transport layer (thickness 30 nm).
  • LiF was vacuum-deposited to form an electron injection layer (film thickness: 1 nm).
  • aluminum was formed to a thickness of 100 nm as a cathode.
  • the organic EL element after vapor deposition was moved to an inert glow box, a two-component curable resin was applied to the glass cap, and the substrate and the cap were bonded together. After the curing of the resin was completed, the bonded substrate was taken out under atmospheric pressure, a current was applied, and current-voltage-luminance (IVL) characteristics and emission intensity spectrum were measured.
  • IVL current-voltage-luminance
  • Example 5 Production of organic EL device using compound A1 As a material for the light emitting layer, instead of compound A1, compound A2 obtained in Example 2 was vacuum-deposited to form a light emitting layer (film thickness 20 nm). Formed. Otherwise, an organic EL device was produced in the same manner as in Example 4, and the IVL characteristics and emission intensity spectrum were measured under atmospheric pressure.
  • MoO 3 and NPB were co-evaporated on the ITO electrode (anode) to form a hole injection layer (film thickness 60 nm).
  • NPB was vacuum deposited to form a hole transport layer (film thickness 20 nm).
  • An electron transporting material (ETM-033 manufactured by Merck & Co., Inc.) was vacuum deposited on the light emitting layer to form an electron transporting layer (60 nm).
  • LiF was vacuum-deposited on the electron transport layer to form an electron injection layer (film thickness 1 nm).
  • aluminum was formed to a thickness of 100 nm as a cathode.
  • Example 6 Preparation of organic EL device using compound A1 as dopant material Compound A1 and 2-methyl-9,10-bis (naphthalen-2-yl) anthracene (MADN) in a weight ratio of 10:90 was co-evaporated to form a light emitting layer (film thickness 20 nm). Otherwise, an organic EL device was produced in the same manner as in Example 4 above, and the IVL characteristics and emission intensity spectrum were measured under atmospheric pressure.
  • MADN 2-methyl-9,10-bis (naphthalen-2-yl) anthracene
  • Example 7 Production of organic EL device using compound A2 as dopant material Compound A2 and MADN were co-evaporated at a weight ratio of 10:90 to form a light emitting layer (film thickness 20 nm). Otherwise, an organic EL device was produced in the same manner as in Example 4 above, and the IVL characteristics and emission intensity spectrum were measured under atmospheric pressure.
  • Comparative Example 3 The compound obtained in Comparative Example 1 and MADN were co-evaporated at a weight ratio of 7:93 to form a light emitting layer (film thickness 20 nm). An electron transporting material (ETM-033 manufactured by Merck & Co., Inc.) was vacuum deposited thereon to form an electron transporting layer (40 nm). Otherwise, an organic EL device was produced in the same manner as in Comparative Example 2 above, and the IVL characteristics and emission intensity spectrum were measured under atmospheric pressure.
  • ETM-033 manufactured by Merck & Co., Inc.
  • Table 2 shows the maximum light emission wavelength, the maximum current light emission efficiency, and the maximum power light emission efficiency of the organic EL devices prepared in Examples 4 to 7 and Comparative Examples 2 and 3.
  • Examples 4 and 5 and Comparative Example 2 part of the element configuration such as the film thickness of the light emitting layer is different.
  • the PL fluorescence quantum efficiencies of the film made of the compound A1 and the film made of the compound A2 are both substantially constant in the film thickness range of 5 nm to 20 nm. Therefore, the light emission efficiencies of the devices of Examples 4 and 5 and Comparative Example 2 This difference is not due to the difference in the thickness of the light emitting layer, but to the difference in the characteristics of the material.
  • Example 6 and 7 and Comparative Example 3 the co-evaporation ratio of the dopant material in the light emitting layer is different, but the co-evaporation ratio (weight ratio) of Compound A1 and Compound A2 to MADN is 1:99 to In the range of 10:90, since the fluorescence quantum yield of the film is substantially constant, the difference in emission characteristics between Examples 6 and 7 and Comparative Example 3 is not due to the difference in the co-evaporation ratio. This can be attributed to the difference in characteristics.
  • the organic EL elements prepared in Examples 4 to 7 were continuously lit at a constant driving current density of 10 mA / cm 2 at room temperature, and the time until the luminance became half of the initial value (light emission lifetime) was measured.
  • the light emission time of the device of Example 4 was 5.2 hours
  • the light emission time of the device of Example 5 was 4.8 hours.
  • the light emission lifetime of the device of Example 6 is 280 hours
  • the light emission life of the device of Example 7 is 320 hours
  • the organic EL device It was confirmed that the light emission lifetime of the was significantly improved.
  • a blue light-emitting material with high luminous efficiency and long life can be obtained by using a silicon-bridged indole derivative having an aryl group introduced on the naphthalene ring as a dopant material for an anthracene derivative host.
  • Organic EL element 4 Transparent electrode layer (anode) 5 Functional layer 6 Back electrode layer (cathode) 12 Light emitting layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This light emitting material contains a silicon crosslinked indole derivative represented by formula (I). In formula (I), each of R1 and R2 independently represents a lower alkyl group having 1-6 carbon atoms, an aryl group, an amino group or an unsaturated heterocyclic group; R3 represents a hydrogen atom, a lower alkyl group having 1-6 carbon atoms, an aryl group or an unsaturated heterocyclic group; R4 is a substituent bonded to a benzene ring, R5 is a substituent bonded to an indole ring, and each of R4 and R5 independently represents a halogen atom, a cyano group, a lower alkyl group having 1-6 carbon atoms, a lower alkoxy group having 1-6 carbon atoms, a lower alkylthio group having 1-6 carbon atoms, a halogen-substituted lower alkyl group having 1-6 carbon atoms, a halogen-substituted lower alkoxy group having 1-6 carbon atoms, an amino group, an aryl group or an unsaturated heterocyclic group; and a plurality of R4 moieties may combine together to form a ring structure.

Description

発光材料および有機EL素子Luminescent material and organic EL device
 本発明は、発光材料およびそれを用いた有機EL素子に関する。 The present invention relates to a light emitting material and an organic EL element using the light emitting material.
 フラットディスプレイパネルや照明装置に用いられる発光素子として、有機EL素子が注目されている。有機EL素子は、発光層を構成する材料を適宜選択することにより、種々の波長の光を発光することができる。有機EL素子に用いられる有機発光材料としては、種々のπ共役化合物が検討されており、アントラセン誘導体、ジスチリルアリーレン誘導体、フルオレン誘導体、ピレン誘導体等が青色発光材料として既に開発されている。 Organic EL elements are attracting attention as light emitting elements used in flat display panels and lighting devices. The organic EL element can emit light of various wavelengths by appropriately selecting the material constituting the light emitting layer. Various π-conjugated compounds have been studied as organic light-emitting materials used for organic EL devices, and anthracene derivatives, distyrylarylene derivatives, fluorene derivatives, pyrene derivatives, and the like have already been developed as blue light-emitting materials.
 最近、新規の青色発光材料としてケイ素架橋インドール誘導体が見出され、固体状態での発光効率に優れていることが報告されている(特許文献1)。また、特許文献2では、ケイ素架橋インドール誘導体は、アントラセン誘導体等の発光ホスト材料と共に用いられた場合に、高発光効率、かつ長寿命の有機EL素子が得られることが報告されている。さらに、非特許文献1では、下記のケイ素架橋2-(2-ナフチル)インドール化合物が、青色発光ドーパント材料あるいは発光ホスト材料として適用可能であることが報告されている。 Recently, a silicon-bridged indole derivative has been found as a novel blue light-emitting material, and it has been reported that it has excellent light-emitting efficiency in a solid state (Patent Document 1). Patent Document 2 reports that when a silicon-bridged indole derivative is used together with a light-emitting host material such as an anthracene derivative, an organic EL element having a high light emission efficiency and a long life can be obtained. Further, Non-Patent Document 1 reports that the following silicon-bridged 2- (2-naphthyl) indole compound is applicable as a blue light-emitting dopant material or a light-emitting host material.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
WO2010/047335号国際公開パンフレットWO2010 / 047335 International Publication Pamphlet 特開2012-87187号公報JP 2012-87187 A
 上記のように、種々の青色発光材料が開発されているが、有機EL素子の発光効率の向上には課題が残されており、所望の発光波長や発光スペクトル形状を有し、高発光効率かつ発光寿命の長い材料の開発が求められている。有機発光材料は、置換基導入等による誘導体化によって、発光スペクトルの形状や発光波長等の発光特性を変化させることができる。一方、化合物のπ共役構造が変化すると、発光特性が大きく変化するため、その発光特性や発光寿命を予測することは困難である。 As described above, various blue light emitting materials have been developed. However, there remains a problem in improving the light emission efficiency of the organic EL element, and it has a desired light emission wavelength and light emission spectrum shape, and has high light emission efficiency. There is a need for the development of materials with a long emission lifetime. The organic light emitting material can change the light emission characteristics such as the shape of the light emission spectrum and the light emission wavelength by derivatization by introducing a substituent. On the other hand, if the π-conjugated structure of the compound changes, the light emission characteristics change greatly, and it is difficult to predict the light emission characteristics and the light emission lifetime.
 上記現状に鑑み、本発明は、高い発光効率を示す新規の青色発光材料、および当該発光材料を用いた有機EL素子の提供を目的とする。 In view of the above-described present situation, an object of the present invention is to provide a novel blue light emitting material exhibiting high light emission efficiency and an organic EL element using the light emitting material.
 本発明者らが検討の結果、ナフタレン環上にアリール基が導入されたケイ素架橋インドール誘導体が、発光効率に優れることを見出し、本発明に至った。すなわち、本発明は、下記式(I)で表されるケイ素架橋インドール誘導体を含有する発光材料に関する。 As a result of investigations by the present inventors, it was found that a silicon-bridged indole derivative having an aryl group introduced on the naphthalene ring is excellent in luminous efficiency, leading to the present invention. That is, this invention relates to the luminescent material containing the silicon bridge | crosslinking indole derivative represented by following formula (I).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式(I)中、
 R~Rはそれぞれ独立に、炭素数1~6の低級アルキル基、アリール基または不飽和複素環基を表す。R4は、ベンゼン環に結合した置換基であり、R5は、インドール環に結合した置換基である。pは0~5の整数であり、qは0~4の整数である。R4およびRはそれぞれ独立に、ハロゲン原子、シアノ基、アミノ基、アリール基、不飽和複素環基、炭素数1~6の低級アルキル基、炭素数1~6の低級アルコキシ基、炭素数1~6の低級アルキルチオ基または炭素数1~6のハロゲン置換低級アルキル基、炭素数1~6のハロゲン置換低級アルコキシ基、アミノ基、アリール基または不飽和複素環基を表す。RおよびRがそれぞれ複数存在する場合、複数のRおよびRは、それぞれ同一でも異なっていてもよい。複数のRは、互いに結合して環構造を形成してもよい。
In formula (I),
R 1 to R 3 each independently represents a lower alkyl group having 1 to 6 carbon atoms, an aryl group or an unsaturated heterocyclic group. R 4 is a substituent bonded to the benzene ring, and R 5 is a substituent bonded to the indole ring. p is an integer of 0 to 5, and q is an integer of 0 to 4. R 4 and R 5 are each independently a halogen atom, cyano group, amino group, aryl group, unsaturated heterocyclic group, lower alkyl group having 1 to 6 carbon atoms, lower alkoxy group having 1 to 6 carbon atoms, carbon number It represents a lower alkylthio group having 1 to 6 carbon atoms, a halogen-substituted lower alkyl group having 1 to 6 carbon atoms, a halogen-substituted lower alkoxy group having 1 to 6 carbon atoms, an amino group, an aryl group or an unsaturated heterocyclic group. If R 4 and R 5 are present in plural, the plurality of R 4 and R 5, may each be the same or different. A plurality of R 4 may be bonded to each other to form a ring structure.
 特に、本発明の発光材料は、上記式(I)において、pが0または1であることが好ましく、q=0であることが好ましい。また、pが1である場合、置換基R4は、ベンゼン環のパラ位に結合していることが好ましい(下記式(II))。Rは、例えばメトキシ基が好ましい。 In particular, in the luminescent material of the present invention, in the above formula (I), p is preferably 0 or 1, and q = 0 is preferable. When p is 1, the substituent R 4 is preferably bonded to the para-position of the benzene ring (the following formula (II)). R 4 is preferably a methoxy group, for example.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一実施形態において、本発明の発光材料は、ホスト材料およびドーパント材料を含有する。ドーパント材料は、上記式(I)または式(II)の化合物であることが好ましく、ホスト材料は、アントラセン誘導体であることが好ましい。上記化合物が、アントラセン誘導体ホストのドーパント材料として用いられることで、発光寿命の長い有機EL素子を作製することができる。 In one embodiment, the luminescent material of the present invention contains a host material and a dopant material. The dopant material is preferably a compound of the above formula (I) or formula (II), and the host material is preferably an anthracene derivative. By using the above compound as a dopant material for an anthracene derivative host, an organic EL device having a long emission lifetime can be produced.
 さらに、本発明は、陽極および陰極からなる一対の電極の間に少なくとも発光層を備える有機EL素子に関する。本発明の有機EL素子は、発光層が、上記発光材料を有する。 Furthermore, the present invention relates to an organic EL device having at least a light emitting layer between a pair of electrodes consisting of an anode and a cathode. As for the organic EL element of this invention, a light emitting layer has the said light emitting material.
 本発明の発光材料は、500nmよりも短波長の青色領域に発光極大波長を有する青色発光材料であり、高い発光効率を有する有機EL素子を作製可能である。 The light emitting material of the present invention is a blue light emitting material having a light emission maximum wavelength in a blue region having a wavelength shorter than 500 nm, and an organic EL device having high light emission efficiency can be produced.
有機EL装置の層構成の一例を示す模式的断面図である。It is a typical sectional view showing an example of layer composition of an organic EL device. 図1の有機EL装置における有機EL素子の層構成の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the layer structure of the organic EL element in the organic EL apparatus of FIG.
[化合物の構造]
 本発明の発光材料は、下記式(I)で表されるケイ素架橋2-(2-ナフチル)インドール誘導体を含有する。
[Structure of compound]
The light emitting material of the present invention contains a silicon bridged 2- (2-naphthyl) indole derivative represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(I)中、RおよびRはそれぞれ独立に、炭素数1~6の低級アルキル基、アリール基または不飽和複素環基を表す。R3は、炭素数1~6の低級アルキル基、アリール基または不飽和複素環基を表す。R4は、ベンゼン環に結合した置換基であり、R5は、インドール環に結合した置換基である。pは0~5の整数であり、qは0~4の整数である。R4およびRはそれぞれ独立に、ハロゲン原子、シアノ基、炭素数1~6の低級アルキル基、炭素数1~6の低級アルコキシ基、炭素数1~6の低級アルキルチオ基、炭素数1~6のハロゲン置換低級アルキル基、アミノ基、アリール基または不飽和複素環基を表す。RおよびRがそれぞれ複数存在する場合(pおよびqがそれぞれ2以上の場合)、複数のRおよびRは、それぞれ同一でも異なっていてもよい。複数のRは、互いに結合して環構造を形成してもよい。 In formula (I), R 1 and R 2 each independently represents a lower alkyl group having 1 to 6 carbon atoms, an aryl group or an unsaturated heterocyclic group. R 3 represents a lower alkyl group having 1 to 6 carbon atoms, an aryl group, or an unsaturated heterocyclic group. R 4 is a substituent bonded to the benzene ring, and R 5 is a substituent bonded to the indole ring. p is an integer of 0 to 5, and q is an integer of 0 to 4. R 4 and R 5 are each independently a halogen atom, a cyano group, a lower alkyl group having 1 to 6 carbon atoms, a lower alkoxy group having 1 to 6 carbon atoms, a lower alkylthio group having 1 to 6 carbon atoms, or 1 to 6 represents a halogen-substituted lower alkyl group, an amino group, an aryl group or an unsaturated heterocyclic group. When a plurality of R 4 and R 5 are present (when p and q are each 2 or more), the plurality of R 4 and R 5 may be the same or different. A plurality of R 4 may be bonded to each other to form a ring structure.
[置換基の例]
<RおよびR
 式(I)において、RおよびRは、炭素数1~6の低級アルキル基、アリール基、または不飽和複素環基を表す。
[Substituent examples]
<R 1 and R 2 >
In the formula (I), R 1 and R 2 represent a lower alkyl group having 1 to 6 carbon atoms, an aryl group, or an unsaturated heterocyclic group.
 前記低級アルキル基としては、炭素数1~6、好ましくは炭素数1~4の直鎖状または分岐を有するアルキル基が挙げられる。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、1-エチルプロピル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、1,2,2-トリメチルプロピル基、3,3-ジメチルブチル基、2-エチルブチル基、イソヘキシル基、3-メチルペンチル基、等が挙げられる。 Examples of the lower alkyl group include linear or branched alkyl groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, n-pentyl group, 1-ethylpropyl group, isopentyl group And neopentyl group, n-hexyl group, 1,2,2-trimethylpropyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, isohexyl group, 3-methylpentyl group, and the like.
 前記アリール基としては、例えば、フェニル基、ビフェニル基、ナフチル基等が挙げられる。アリール基は、フェニル環又はナフタレン環上に、低級アルキル基、低級アルコキシ基、ハロゲン置換低級アルキル基、低級アルコキシカルボニル基、低級アルキルカルボニル基、アミノ基、アミノカルボニル基、ハロゲン原子等の置換基を、1または複数有するものであってもよい。 Examples of the aryl group include a phenyl group, a biphenyl group, and a naphthyl group. The aryl group has a substituent such as a lower alkyl group, a lower alkoxy group, a halogen-substituted lower alkyl group, a lower alkoxycarbonyl group, a lower alkylcarbonyl group, an amino group, an aminocarbonyl group, or a halogen atom on the phenyl ring or naphthalene ring. One or more may be included.
 前記アミノ基は、無置換アミノ基(-NH)の他、1個または2個の置換基を有するものであってもよい。また、アミノ基が2個の置換基を有する場合、これらは同一でもよく、異なっていてもよい。アミノ基が置換基を有する場合、その置換基としては、前記例示の低級アルキル基やアリール基が好ましい。アミノ基の具体例としては、無置換アミノ基、メチルアミノ基、エチルアミノ基、n-プロピルアミノ基、イソプロピルアミノ基、n-ブチルアミノ基、tert-ブチルアミノ基、n-ペンチルアミノ基、n-ヘキシルアミノ基、アリールアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジ-n-ブチルアミノ基、ジ-n-ペンチルアミノ基、ジ-n-ヘキシルアミノ基、N-メチル-N-エチルアミノ基、N-エチル-N-n-プロピルアミノ基、N-メチル-N-n-ブチルアミノ基、N-メチル-N-n-ヘキシルアミノ基、ジアリールアミノ基、等が挙げられる。 The amino group may have one or two substituents in addition to the unsubstituted amino group (—NH 2 ). Moreover, when an amino group has two substituents, these may be the same or different. When the amino group has a substituent, the substituent is preferably the lower alkyl group or aryl group exemplified above. Specific examples of the amino group include unsubstituted amino group, methylamino group, ethylamino group, n-propylamino group, isopropylamino group, n-butylamino group, tert-butylamino group, n-pentylamino group, n -Hexylamino, arylamino, dimethylamino, diethylamino, di-n-propylamino, di-n-butylamino, di-n-pentylamino, di-n-hexylamino, N- Methyl-N-ethylamino group, N-ethyl-Nn-propylamino group, N-methyl-Nn-butylamino group, N-methyl-Nn-hexylamino group, diarylamino group, etc. Can be mentioned.
 なお、アミノ基が水素結合を形成し得る場合、濃度消光を生じ、発光効率が低下する傾向がある。そのため、前記アミノ基は、2個の置換基を有するものが好ましく、中でもジアリールアミノ基が特に好ましい。 In addition, when an amino group can form a hydrogen bond, concentration quenching occurs and the light emission efficiency tends to decrease. Therefore, the amino group preferably has two substituents, and a diarylamino group is particularly preferable.
 前記不飽和複素環基の不飽和複素環としては、5~10員環、好ましくは5~6員環のものが挙げられる。具体的には、ピリジン環、ピロール環、オキサゾール環、イソキサゾール環、チアゾール環、イソチアゾール環、フラザン環、イミダゾール環、ピラゾール環、ピラジン環、ピリミジン環、ピリダジン環、ジハイドロオキサゾール環、チオフェン環、フラン環、ピラゾール環、等が挙げられる。 The unsaturated heterocyclic ring of the unsaturated heterocyclic group includes a 5- to 10-membered ring, preferably a 5- to 6-membered ring. Specifically, pyridine ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, furazane ring, imidazole ring, pyrazole ring, pyrazine ring, pyrimidine ring, pyridazine ring, dihydrooxazole ring, thiophene ring, A furan ring, a pyrazole ring, etc. are mentioned.
<R
 式(I)において、R3は、水素原子、炭素数1~6の低級アルキル基、アリール基または不飽和複素環基を表す。低級アルキル基、アリール基および不飽和複素環基としては、RおよびRの例として前記したものと同一の各置換基が挙げられる。中でも、Rとしては、炭素数1~4の低級アルキル基が好ましく、メチル基が特に好ましい。
<R 3 >
In the formula (I), R 3 represents a hydrogen atom, a lower alkyl group having 1 to 6 carbon atoms, an aryl group or an unsaturated heterocyclic group. Examples of the lower alkyl group, aryl group and unsaturated heterocyclic group include the same substituents as those described above as examples of R 1 and R 2 . Among them, as R 3 , a lower alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group is particularly preferable.
<RおよびR
 式(I)において、RおよびRは、それぞれ独立に、ハロゲン原子、シアノ基、炭素数1~6の低級アルキル基、炭素数1~6の低級アルコキシ基、炭素数1~6の低級アルキルチオ基、炭素数1~6のハロゲン置換低級アルキル基、炭素数1~6のハロゲン置換低級アルコキシ基、アミノ基、アリール基または不飽和複素環基を表す。Rが複数存在する場合(pが2以上の場合)、複数のRは、互いに結合して環構造を形成してもよい。
<R 4 and R 5>
In the formula (I), R 4 and R 5 each independently represent a halogen atom, a cyano group, a lower alkyl group having 1 to 6 carbon atoms, a lower alkoxy group having 1 to 6 carbon atoms, or a lower group having 1 to 6 carbon atoms. It represents an alkylthio group, a halogen-substituted lower alkyl group having 1 to 6 carbon atoms, a halogen-substituted lower alkoxy group having 1 to 6 carbon atoms, an amino group, an aryl group or an unsaturated heterocyclic group. When a plurality of R 4 are present (when p is 2 or more), the plurality of R 4 may be bonded to each other to form a ring structure.
 低級アルキル基、アミノ基、アリール基または不飽和複素環基としては、RおよびRの例として前記したものと同一の各置換基が挙げられる。
 ハロゲン原子としては、フッ素原子および塩素原子が挙げられる。
Examples of the lower alkyl group, amino group, aryl group or unsaturated heterocyclic group include the same substituents as those described above as examples of R 1 and R 2 .
Examples of the halogen atom include a fluorine atom and a chlorine atom.
 低級アルコキシ基としては、直鎖状または分岐を有する炭素数1~6、好ましくは炭素数1~4の、直鎖状または分岐を有する低級アルコキシ基が挙げられる。具体的には、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基、sec-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、3-メチルペンチルオキシ基、等が挙げられる。 Examples of the lower alkoxy group include straight or branched lower alkoxy groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, having straight or branched chains. Specifically, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, sec-butoxy group, n-pentyloxy group, isopentyloxy group, neo A pentyloxy group, an n-hexyloxy group, an isohexyloxy group, a 3-methylpentyloxy group, and the like can be given.
 低級アルキルチオ基としては、炭素数1~6、好ましくは炭素数1~4の直鎖状または分岐を有するアルキルチオ基が挙げられる。具体的には、メチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、n-ブチルチオ基、tert-ブチルチオ基、n-ペンチルチオ基、n-ヘキシルチオ基等が挙げられる。 Examples of the lower alkylthio group include linear or branched alkylthio groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms. Specific examples include a methylthio group, an ethylthio group, an n-propylthio group, an isopropylthio group, an n-butylthio group, a tert-butylthio group, an n-pentylthio group, and an n-hexylthio group.
 ハロゲン置換アルキル基としては、1~7個、より好ましくは1~3個のハロゲン原子で置換された前記例示のアルキル基を挙げることができる。具体的には、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、ジクロロフルオロメチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、2-フルオロエチル基、2-クロロエチル基、3,3,3-トリフルオロプロピル基、ヘプタフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、ヘプタフルオロイソプロピル基、3-クロロプロピル基、2-クロロプロピル基、3-ブロモプロピル基、4,4,4-トリフルオロブチル基、4,4,4,3,3-ペンタフルオロブチル基、4-クロロブチル基、4-ブロモブチル基、2-クロロブチル基、5,5,5-トリフルオロペンチル基、5-クロロペンチル基、6,6,6-トリフルオロヘキシル基、6-クロロヘキシル基、ペルフルオロヘキシル基、等が挙げられる。 Examples of the halogen-substituted alkyl group include the above-exemplified alkyl groups substituted with 1 to 7, more preferably 1 to 3 halogen atoms. Specifically, fluoromethyl group, difluoromethyl group, trifluoromethyl group, chloromethyl group, dichloromethyl group, trichloromethyl group, bromomethyl group, dibromomethyl group, dichlorofluoromethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, pentafluoroethyl group, 2-fluoroethyl group, 2-chloroethyl group, 3,3,3-trifluoropropyl group, heptafluoropropyl group, 2,2,3,3 , 3-pentafluoropropyl group, heptafluoroisopropyl group, 3-chloropropyl group, 2-chloropropyl group, 3-bromopropyl group, 4,4,4-trifluorobutyl group, 4,4,4,3, 3-pentafluorobutyl group, 4-chlorobutyl group, 4-bromobutyl group, 2-chlorobutyl group, 5, 5, 5 Trifluoro-pentyl group, 5-chloropentyl group, 6,6,6-trifluoro hexyl, 6-chloro-hexyl group, perfluorohexyl group, and the like.
 ハロゲン置換アルコキシ基としては、1~7個、より好ましくは1~3個のハロゲン原子で置換された前記例示のアルコキシ基を挙げることができる。具体的には、前記例示のハロゲン置換アルキル基に酸素原子(-O-)が付加されたものが挙げられる。 Examples of the halogen-substituted alkoxy group include the alkoxy groups exemplified above substituted with 1 to 7, more preferably 1 to 3 halogen atoms. Specific examples include those in which an oxygen atom (—O—) is added to the halogen-substituted alkyl group exemplified above.
 複数のRが互いに結合して形成される環構造は、ベンゼン環に縮合した芳香族環であってもよく、脂肪族環であってもよい。また、複数のRが互いに結合して形成される環構造は、複素環でもよい。 Ring structure in which a plurality of R 4 are bonded to each other to form may be a fused aromatic ring to the benzene ring, it may be an aliphatic ring. The ring structure formed by bonding a plurality of R 4 s may be a heterocyclic ring.
[好ましい化合物の例]
 上記式(I)において、qは0であることが好ましい。すなわち、インドール環の炭素原子は、置換基を有していないことが好ましい。また、pは0または1であることが好ましい。p=1の場合、R4はベンゼン環のパラ位に結合していることが好ましい。これらを総合すると、本発明の発光材料は、下記式(II)で表される化合物を含有することが好ましい。
[Examples of preferred compounds]
In the above formula (I), q is preferably 0. That is, the carbon atom of the indole ring preferably has no substituent. Further, p is preferably 0 or 1. When p = 1, R 4 is preferably bonded to the para position of the benzene ring. When these are put together, it is preferable that the luminescent material of the present invention contains a compound represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 また、置換基Rとしては、前述のごとく、アルコキシ基、アルキル基、ハロゲン置換アルコキシ基、ハロゲン置換アルキル基、アミノ基、アルキルチオ基、アリール基、および不飽和複素環基が好ましい。中でも、高い青色発光効率を有する材料を得る観点から、Rとしてはアルコキシ基が好ましく、メトキシ基が特に好ましい。 As described above, the substituent R 4 is preferably an alkoxy group, an alkyl group, a halogen-substituted alkoxy group, a halogen-substituted alkyl group, an amino group, an alkylthio group, an aryl group, or an unsaturated heterocyclic group. Among these, from the viewpoint of obtaining a material having high blue light emission efficiency, R 4 is preferably an alkoxy group, and particularly preferably a methoxy group.
 RおよびRは、いずれも低級アルキル基であることが好ましい。また、RおよびRは同一の置換基であることが好ましい。特に、RおよびRが、いずれもイソプロピル基であることが好ましい。
 Rは低級アルキル基であることが好ましく、中でもメチル基が好ましい。
R 1 and R 2 are preferably both lower alkyl groups. R 1 and R 2 are preferably the same substituent. In particular, it is preferable that both R 1 and R 2 are isopropyl groups.
R 3 is preferably a lower alkyl group, and particularly preferably a methyl group.
 以上を総合すると、本発明の発光材料は、下記式(III)で表される化合物を含有することが好ましく、中でも、下記式(IV)で表される化合物を含有することが好ましい。 In summary, the light-emitting material of the present invention preferably contains a compound represented by the following formula (III), and particularly preferably contains a compound represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[合成方法]
 上記化合物の合成方法は特に限定されず、各種公知の反応を組み合わせて、目的の化合物を得ることができ、例えば、6-アリール-1-ブロモ-2-ナフトール(1)を出発原料として、下記scheme1に示されるように、4段階で化合物(A)を合成することができる。
[Synthesis method]
The method for synthesizing the above compound is not particularly limited, and a target compound can be obtained by combining various known reactions. For example, using 6-aryl-1-bromo-2-naphthol (1) as a starting material, As shown in scheme 1, compound (A) can be synthesized in four steps.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[発光材料としての使用例]
 上記のケイ素架橋2-(2-ナフチル)インドール誘導体は、単独で発光材料として用いることができる。また、上記ケイ素架橋2-(2-ナフチル)インドール誘導体は、発光ドーパント材料、あるいは発光ホスト材料として、他の発光ドーパント材料や、発光ホスト材料と共に発光材料として用いることもできる。特に、上記ケイ素架橋2-(2-ナフチル)インドール誘導体を発光ドーパント材料として用いることで、発光効率に優れ、かつより発光寿命の長い有機EL発光層を形成することができる。
[Usage example as luminescent material]
The silicon-bridged 2- (2-naphthyl) indole derivative can be used alone as a light emitting material. The silicon-bridged 2- (2-naphthyl) indole derivative can also be used as a light emitting dopant material or a light emitting host material as a light emitting material together with another light emitting dopant material or a light emitting host material. In particular, by using the silicon-bridged 2- (2-naphthyl) indole derivative as a light emitting dopant material, an organic EL light emitting layer having excellent light emission efficiency and a longer light emission lifetime can be formed.
 ケイ素架橋2-(2-ナフチル)インドール誘導体が、発光ドーパント材料として用いられる場合、ホスト材料は特に限定されないが、アントラセン誘導体が好適に用いられる。アントラセン誘導体としては、発光材料として使用可能なものであれば特に限定されず、各種公知の化合物が用いられる。アントラセン誘導体の例としては、9,10-ジ(ナフト-2-イル)アントラセン(略称:ADN)、2‐tert-ブチル-9,10-ジ(ナフト-2-イル)アントラセン(略称:TBADN)、2-メチル-9,10-ビス(ナフタレン-2-イル)アントラセン(略称:MADN)、2,2’-ジ(9,10-ジフェニルアントラセン)(略称:TPBA)、4,4’-ジ(10-(ナフタレン-1-イル)アントラセン-9-イル)ビフェニル(略称:BUBH-3)、等が挙げられる。 When the silicon bridged 2- (2-naphthyl) indole derivative is used as a light emitting dopant material, the host material is not particularly limited, but an anthracene derivative is preferably used. The anthracene derivative is not particularly limited as long as it can be used as a light emitting material, and various known compounds can be used. Examples of anthracene derivatives include 9,10-di (naphth-2-yl) anthracene (abbreviation: ADN), 2-tert-butyl-9,10-di (naphth-2-yl) anthracene (abbreviation: TBADN) 2-methyl-9,10-bis (naphthalen-2-yl) anthracene (abbreviation: MADN), 2,2′-di (9,10-diphenylanthracene) (abbreviation: TPBA), 4,4′-di (10- (naphthalen-1-yl) anthracen-9-yl) biphenyl (abbreviation: BUBH-3), and the like.
 ドーパント材料として、ケイ素架橋2-(2-ナフチル)インドール誘導体が用いられ、ホスト材料としてアントラセン誘導体が用いられる場合、アントラセン誘導体(ホスト化合物)に対するケイ素架橋2-(2-ナフチル)インドール誘導体の添加割合は特に限定されない。ケイ素架橋2-(2-ナフチル)インドール誘導体の含有量は、好ましくは、アントラセン誘導体100重量部に対して、1~50重量部、より好ましくは2~30重量部、さらに好ましくは2.5~25重量部、特に好ましくは3~20重量部である。 When a silicon-bridged 2- (2-naphthyl) indole derivative is used as the dopant material and an anthracene derivative is used as the host material, the addition ratio of the silicon-bridged 2- (2-naphthyl) indole derivative to the anthracene derivative (host compound) Is not particularly limited. The content of the silicon-bridged 2- (2-naphthyl) indole derivative is preferably 1 to 50 parts by weight, more preferably 2 to 30 parts by weight, still more preferably 2.5 to 100 parts by weight based on 100 parts by weight of the anthracene derivative. 25 parts by weight, particularly preferably 3 to 20 parts by weight.
 ケイ素架橋2-(2-ナフチル)インドール誘導体を、基板等の支持体上に成膜することで、有機発光層が形成され得る。ケイ素架橋2-(2-ナフチル)インドール誘導体がドーパントとして用いられる場合は、アントラセン誘導体等のホスト材料と共蒸着することにより、有機発光層が形成され得る。 An organic light emitting layer can be formed by depositing a silicon-crosslinked 2- (2-naphthyl) indole derivative on a support such as a substrate. When a silicon-bridged 2- (2-naphthyl) indole derivative is used as a dopant, an organic light emitting layer can be formed by co-evaporation with a host material such as an anthracene derivative.
[有機EL素子]
 上記の発光材料は、有機EL素子の発光層の材料として好適である。
 図1は、有機EL装置の層構成の一例である。図1に示される有機EL装置は、透明基板3側から光が取り出される、「ボトムエミッション型」と称される構成である。有機EL装置1は、透明基板3上に、有機EL素子2を有し、有機EL素子は、封止部7によって封止されている。有機EL素子2は、透明電極層(陽極)4および裏面電極層(陰極)6からなる一対の電極間に、少なくとも1つの発光層を有する機能層5を備える。
[Organic EL device]
The above light emitting material is suitable as a material for the light emitting layer of the organic EL element.
FIG. 1 is an example of a layer configuration of an organic EL device. The organic EL device shown in FIG. 1 has a configuration called “bottom emission type” in which light is extracted from the transparent substrate 3 side. The organic EL device 1 has an organic EL element 2 on a transparent substrate 3, and the organic EL element is sealed by a sealing portion 7. The organic EL element 2 includes a functional layer 5 having at least one light emitting layer between a pair of electrodes composed of a transparent electrode layer (anode) 4 and a back electrode layer (cathode) 6.
 機能層5は、複数の有機化合物薄膜が積層されたものである。図2は、機能層5の層構成の一例である。図2に示される有機EL素子2において、機能層5は、正孔注入層10、正孔輸送層11、発光層12、電子輸送層15、および電子注入層16を有する。すなわち、有機EL素子2において、発光層12は、透明電極層4と裏面電極層6との間に位置している。 The functional layer 5 is formed by laminating a plurality of organic compound thin films. FIG. 2 is an example of a layer configuration of the functional layer 5. In the organic EL element 2 shown in FIG. 2, the functional layer 5 includes a hole injection layer 10, a hole transport layer 11, a light emitting layer 12, an electron transport layer 15, and an electron injection layer 16. That is, in the organic EL element 2, the light emitting layer 12 is located between the transparent electrode layer 4 and the back electrode layer 6.
(透明基板)
 ボトムエミッション型の有機EL装置において、透明基板3は、透光性を有する材料からなるものであれば特に限定はない。図1に示すボトムエミッション方式の実施形態では、透明基板3側から光が取り出されるため、透明基板3は可視光域における透過率が80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましい。透明基板3としては、ガラス基板、フレキシブルな透明フィルム基板等を使用してもよい。なお、有機EL装置がトップエミッション方式を採用する場合、基板は不透明なものであってもよい。
(Transparent substrate)
In the bottom emission type organic EL device, the transparent substrate 3 is not particularly limited as long as it is made of a material having translucency. In the embodiment of the bottom emission method shown in FIG. 1, since light is extracted from the transparent substrate 3 side, the transparent substrate 3 preferably has a transmittance in the visible light region of 80% or more, and preferably 90% or more. More preferably, it is more preferably 95% or more. As the transparent substrate 3, a glass substrate, a flexible transparent film substrate, or the like may be used. When the organic EL device adopts a top emission method, the substrate may be opaque.
(透明電極)
 透明基板3上には、透明電極層(陽極)4が積層される。透明電極層4を構成する材料は特に限定されず、公知のものが使用できる。例えば、インジウム・スズ酸化物(ITO)、インジウム・亜鉛酸化物(IZO)、酸化錫(SnO2)、酸化亜鉛(ZnO)等の材料からなるものが挙げられる。中でも、発光層12からの光の取出し効率や、電極のパターニングの容易性の観点からは、ITOあるいはIZOが好ましく用いられる。
(Transparent electrode)
A transparent electrode layer (anode) 4 is laminated on the transparent substrate 3. The material which comprises the transparent electrode layer 4 is not specifically limited, A well-known thing can be used. Examples thereof include those made of materials such as indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO 2 ), and zinc oxide (ZnO). Among these, ITO or IZO is preferably used from the viewpoint of the light extraction efficiency from the light emitting layer 12 and the ease of electrode patterning.
 透明電極層4には、必要に応じて、アルミニウム、ガリウム、ケイ素、ホウ素、ニオブ等の1種以上のドーパントがドーピングされていてもよい。透明電極層4の透過率は、可視光域における透過率が70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。透明電極層4は、例えば、スパッタ法やCVD法等のドライプロセスによって透明基板3上に形成される。透明電極層4の膜厚は、光の透過性や電気伝導度を考慮して適宜選択すればよいが、例えば80~300nmであり、好ましくは100~150nm、より好ましくは130~150nmである。 The transparent electrode layer 4 may be doped with one or more dopants such as aluminum, gallium, silicon, boron, and niobium as necessary. The transmittance of the transparent electrode layer 4 is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more in the visible light region. The transparent electrode layer 4 is formed on the transparent substrate 3 by a dry process such as sputtering or CVD. The film thickness of the transparent electrode layer 4 may be appropriately selected in consideration of light transmittance and electrical conductivity, and is, for example, 80 to 300 nm, preferably 100 to 150 nm, more preferably 130 to 150 nm.
(裏面電極層)
 透明電極層4上には、機能層5が形成され、その上に裏面電極層(陰極)6が形成される。裏面電極層に用いられる材料としては、好ましくは仕事関数の小さい金属、または、その合金や金属酸化物等が挙げられる。仕事関数の小さい金属としては、アルカリ金属ではLi等、アルカリ土類金属ではMg、Ca等が例示される。また、希土類金属等からなる金属単体、あるいは、これらの金属とAl、In、Ag等の合金等が用いられることもある。さらに、特開2001-102175号公報等に開示されているように、陰極に接する有機層として、アルカリ土類金属イオン、アルカリ金属イオンからなる群から選択される少なくとも1種を含む有機金属錯体化合物を用いることもできる。この場合、陰極として、当該錯体化合物中の金属イオンを真空中で金属に還元し得る金属、例えばAl、Zr、Ti、Si等もしくはこれらの金属を含有する合金を用いることが好ましい。
(Back electrode layer)
A functional layer 5 is formed on the transparent electrode layer 4, and a back electrode layer (cathode) 6 is formed thereon. The material used for the back electrode layer is preferably a metal having a low work function, or an alloy or metal oxide thereof. Examples of the metal having a low work function include Li for alkali metals and Mg, Ca, etc. for alkaline earth metals. In addition, a single metal made of rare earth metal or an alloy such as Al, In, or Ag may be used. Further, as disclosed in Japanese Patent Application Laid-Open No. 2001-102175, etc., an organic metal complex compound containing at least one selected from the group consisting of alkaline earth metal ions and alkali metal ions as an organic layer in contact with the cathode Can also be used. In this case, it is preferable to use a metal capable of reducing metal ions in the complex compound to a metal in a vacuum, such as Al, Zr, Ti, Si, or an alloy containing these metals, as the cathode.
(機能層)
 次に機能層5について説明する。機能層5は、少なくとも1層の発光層12を有する。機能層を構成する各層は、一般に、有機化合物、高分子化合物、遷移金属錯体等を含むアモルファス膜で構成される。機能層5は、一般に複数の層からなる積層構造を有している。図2では、機能層5は、正孔注入層10、正孔輸送層11、発光層12、電子輸送層15、および電子注入層16を有する。機能層5は、発光層12を有していればよく、正孔注入層10、正孔輸送層11、電子輸送層15、および電子注入層16は必要に応じて設けられる。
(Functional layer)
Next, the functional layer 5 will be described. The functional layer 5 has at least one light emitting layer 12. Each layer constituting the functional layer is generally composed of an amorphous film containing an organic compound, a polymer compound, a transition metal complex, or the like. The functional layer 5 generally has a laminated structure composed of a plurality of layers. In FIG. 2, the functional layer 5 includes a hole injection layer 10, a hole transport layer 11, a light emitting layer 12, an electron transport layer 15, and an electron injection layer 16. The functional layer 5 only needs to have the light emitting layer 12, and the hole injection layer 10, the hole transport layer 11, the electron transport layer 15, and the electron injection layer 16 are provided as necessary.
(発光層)
 本発明の有機EL素子において、発光層12は、上記のケイ素架橋2-(2-ナフチル)インドール誘導体を含有する。また、前述のように、発光層12の発光材料は、ホスト材料としてアントラセン誘導体を含有することが好ましい。この場合、発光層12は、ホスト材料としてのアントラセン誘導体100重量部に対して、ドーパント材料としてのケイ素架橋2-(2-ナフチル)インドール誘導体を1~50重量部含有することが好ましい。ケイ素架橋2-(2-ナフチル)インドール誘導体の含有量は、より好ましくは2~30重量部、さらに好ましくは2.5~25重量部、特に好ましくは3~20重量部である。発光層を構成する材料として、上記発光材料を用いることで、発光効率に優れる青色発光層が得られる。
(Light emitting layer)
In the organic EL device of the present invention, the light emitting layer 12 contains the above silicon-bridged 2- (2-naphthyl) indole derivative. Further, as described above, the light emitting material of the light emitting layer 12 preferably contains an anthracene derivative as a host material. In this case, the light emitting layer 12 preferably contains 1 to 50 parts by weight of a silicon-bridged 2- (2-naphthyl) indole derivative as a dopant material with respect to 100 parts by weight of an anthracene derivative as a host material. The content of the silicon-crosslinked 2- (2-naphthyl) indole derivative is more preferably 2 to 30 parts by weight, still more preferably 2.5 to 25 parts by weight, and particularly preferably 3 to 20 parts by weight. By using the above light emitting material as a material constituting the light emitting layer, a blue light emitting layer having excellent light emission efficiency can be obtained.
 発光層の形成方法は特に限定されず、真空蒸着法や転写法等のドライプロセスの他、コーティング法や印刷法等のウェットプロセスを採用することができる。特に、本発明の発光材料は良好な製膜性を示すことから、真空蒸着法が好適に用いられる。真空蒸着法においては、ホスト材料とドーパント材料を共蒸着し、その際の蒸着速度を制御することにより、所望の蒸着比(ドープ濃度)を実現することができる。 The formation method of the light emitting layer is not particularly limited, and a dry process such as a vacuum deposition method or a transfer method, or a wet process such as a coating method or a printing method can be employed. In particular, since the luminescent material of the present invention exhibits good film forming properties, a vacuum deposition method is preferably used. In the vacuum vapor deposition method, a desired vapor deposition ratio (dope concentration) can be realized by co-depositing a host material and a dopant material and controlling the vapor deposition rate at that time.
(正孔注入層および正孔輸送層)
 図2に示すように、機能層5は、発光層12と陽極4との間に、正孔注入層10や、正孔輸送層11を有していてもよい。また、図示されていないが、正孔輸送層11と発光層12との間に、さらに電子阻止層等を有していてもよい。
(Hole injection layer and hole transport layer)
As shown in FIG. 2, the functional layer 5 may have a hole injection layer 10 or a hole transport layer 11 between the light emitting layer 12 and the anode 4. Although not shown, an electron blocking layer or the like may be further provided between the hole transport layer 11 and the light emitting layer 12.
 正孔注入層10を構成する材料としては、酸化モリブデン、酸化バナジウム、酸化ルテニウム、酸化マンガン等の金属酸化物や、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノ-キノジメタン(略称:F4-TCNQ)が挙げられる。さらに、三酸化モリブデンとN,N-ビス(ナフタレン-1-イル)-N,N’-ビス(フェニル)-ベンジジン(略称:NPB)との混合層を正孔注入層10として採用することができる。 Examples of the material constituting the hole injection layer 10 include metal oxides such as molybdenum oxide, vanadium oxide, ruthenium oxide, and manganese oxide, and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano. -Quinodimethane (abbreviation: F4-TCNQ). Further, a mixed layer of molybdenum trioxide and N, N-bis (naphthalen-1-yl) -N, N′-bis (phenyl) -benzidine (abbreviation: NPB) may be used as the hole injection layer 10. it can.
(正孔輸送層)
 正孔輸送層を構成する材料としては、アリールアミン系化合物、イミダゾール系化合物、オキサジアゾール系化合物、オキサゾール系化合物、トリアゾール系化合物、カルコン系化合物、スチリルアントラセン系化合物、スチルベン系化合物、テトラアリールエテン系化合物、トリアリールアミン系化合物、トリアリールエテン系化合物、トリアリールメタン系化合物、フタロシアニン系化合物、フルオレノン系化合物、ヒドラジン系化合物、カルバゾール系化合物、N-ビニルカルバゾール系化合物、ピラゾリン系化合物、ピラゾロン系化合物、フェニルアントラセン系化合物、フェニレンジアミン系化合物、ポリアリールアルカン系化合物、ポリシラン系化合物、ポリフェニレンビニレン系化合物等が挙げられる。
(Hole transport layer)
Materials constituting the hole transport layer include arylamine compounds, imidazole compounds, oxadiazole compounds, oxazole compounds, triazole compounds, chalcone compounds, styrylanthracene compounds, stilbene compounds, tetraarylethenes. Compounds, triarylamine compounds, triarylethene compounds, triarylmethane compounds, phthalocyanine compounds, fluorenone compounds, hydrazine compounds, carbazole compounds, N-vinylcarbazole compounds, pyrazoline compounds, pyrazolone compounds Examples include compounds, phenylanthracene compounds, phenylenediamine compounds, polyarylalkane compounds, polysilane compounds, polyphenylene vinylene compounds, and the like.
 特に、アリールアミン化合物を含有する正孔輸送層は、アリールアミン化合物がラジカルカチオン化し易いため、正孔輸送層から発光層への正孔輸送効率を効果的に上昇させることができる。正孔輸送層材料を構成し得るアリールアミン化合物の中でも、トリアリールアミン誘導体が好ましく、特に4、4’-ビス[N-(2-ナフチル)-N-フェニル-アミノ]ビフェニル(「α―NPD」、または「NPB」と称される場合がある)が特に好ましい。 Particularly, in the hole transport layer containing an arylamine compound, since the arylamine compound is easily radically cationized, the hole transport efficiency from the hole transport layer to the light emitting layer can be effectively increased. Of the arylamine compounds that can constitute the hole transport layer material, triarylamine derivatives are preferred, and in particular, 4,4′-bis [N- (2-naphthyl) -N-phenyl-amino] biphenyl (“α-NPD Or “NPB”) is particularly preferred.
(電子輸送層および電子注入層)
 図2に示すように、機能層5は、発光層12と陰極6との間に、電子注入層16や電子輸送層15を有していてもよい。また、図示されていないが、電子輸送層15と発光層12との間に、さらに正孔阻止層等を有していてもよい。正孔阻止層を構成する材料としては、例えば、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(通称:バトクプロイン、BCP)等が挙げられる。
(Electron transport layer and electron injection layer)
As shown in FIG. 2, the functional layer 5 may have an electron injection layer 16 and an electron transport layer 15 between the light emitting layer 12 and the cathode 6. Although not shown, a hole blocking layer or the like may be further provided between the electron transport layer 15 and the light emitting layer 12. Examples of the material constituting the hole blocking layer include 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (common name: butocuproine, BCP).
 電子輸送層15を構成する材料としては、トリス(8-ヒドロキシ-キノリナト)アルミニウム(略称:Alq)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、1,3-ビス[2-(2,2’-ビピリジン-6-イル)-1,3,4-オキサジアゾ-5-イル]ベンゼン(Bpy-OXD)、4,7-ジフェニル-1,10-フェナントロリン(Bphen)、2,2’,2’’-(1,3,5-ベンジントリイル)-トリス(1-フェニル-1-H-ベンゾイミダゾール)(TPBi)、2-(4-ビフェニル)-5-(4-tert-ブチフフェニル)-1,3,4-オキサジアゾール(PBD)、ビス(2-メチルl-8-キノリノラト)-4-(フェニルフェノラト)アルミニウム(BAlq)、3-(4-ビフェニル)-4-フェニル-5-tert-ブチルフェニル-1,2,4-トリアゾール(TAZ)、等が挙げられる。 Materials constituting the electron transport layer 15 include tris (8-hydroxy-quinolinato) aluminum (abbreviation: Alq 3 ), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 1,3-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazo-5-yl] benzene (Bpy-OXD), 4,7-diphenyl-1,10-phenanthroline (Bphen), 2,2 ′, 2 ″-(1,3,5-Benzinetriyl) -tris (1-phenyl-1-H-benzimidazole) (TPBi), 2- (4-biphenyl) -5- (4 -Tert-Butifphenyl) -1,3,4-oxadiazole (PBD), bis (2-methyl 1-8-quinolinolato) -4- (phenylphenolato) aluminum (BAlq), 3- (4 Biphenyl) -4-phenyl -5-tert-butylphenyl-1,2,4-triazole (TAZ), and the like.
 電子注入層16を構成する材料としては、Li等のアルカリ金属;Mg、Ca等のアルカリ土類金属;1種以上の前記金属を含む合金;前記金属の酸化物、ハロゲン化物、および炭酸化物;ならびにこれらの混合物が挙げられる。具体的には、8-ヒドロキシキノリノラト(リチウム)(Liq)、フッ化リチウム(LiF)、等が挙げられる。 Examples of the material constituting the electron injection layer 16 include alkali metals such as Li; alkaline earth metals such as Mg and Ca; alloys containing one or more of the metals; oxides, halides, and carbonates of the metals; As well as mixtures thereof. Specific examples include 8-hydroxyquinolinolato (lithium) (Liq), lithium fluoride (LiF), and the like.
 図2に示す有機EL素子2は、透明基板3上に形成された透明電極層4上に、真空蒸着法等の手法により、正孔注入層10、正孔輸送層11、発光層12、電子輸送層15、電子注入層16、および裏面電極層6を順次積層することにより製造することができる。このようにして製造された有機EL素子2は、封止部7によって封止され、有機EL装置1となる。 The organic EL element 2 shown in FIG. 2 has a hole injection layer 10, a hole transport layer 11, a light emitting layer 12, an electron on the transparent electrode layer 4 formed on the transparent substrate 3 by a technique such as vacuum deposition. It can be manufactured by laminating the transport layer 15, the electron injection layer 16, and the back electrode layer 6 sequentially. The organic EL element 2 manufactured in this way is sealed by the sealing portion 7 to become the organic EL device 1.
 なお、図2では、機能層5が5つの層からなる構成について説明したが、本発明は当該実施形態に限定されるものではない。例えば、正孔注入層10、正孔輸送層11、電子輸送層15、電子注入層16の一部または全部が省略された構成でもよい。また、前述のごとく、発光層12の前後に正孔阻止層や電子阻止層が設けられていてもよい。 In addition, although FIG. 2 demonstrated the structure in which the functional layer 5 consists of five layers, this invention is not limited to the said embodiment. For example, a configuration in which some or all of the hole injection layer 10, the hole transport layer 11, the electron transport layer 15, and the electron injection layer 16 are omitted may be employed. Further, as described above, a hole blocking layer and an electron blocking layer may be provided before and after the light emitting layer 12.
 機能層5を構成する各層の成膜方法については特に制限はなく、真空蒸着法やコーティング法、印刷法等の適宜の方法によって形成することができる。 The method for forming each layer constituting the functional layer 5 is not particularly limited, and can be formed by an appropriate method such as a vacuum deposition method, a coating method, or a printing method.
 以下に、化合物の合成例および有機EL素子の作製例を挙げて本発明をより具体的に説明するが、本発明はこれらの例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to compound synthesis examples and organic EL device fabrication examples, but the present invention is not limited to these examples.
[実施例1]化合物A1の合成
 本実施例では、6-フェニル-1-ブロモ-2-ナフトール(1)を出発原料として、上記scheme1により、4段階で化合物A1を合成した。なお、scheme1は、出発原料が異なること以外は、Efficient blue electroluminescence of silylene-bridged 2-(2-naphthyl)indole (M.Shimizu 他 J. Mater. Chem. 2012年 第22巻 4337-4342頁)に記載の合成スキームと同様である。
[Example 1] Synthesis of Compound A1 In this example, Compound A1 was synthesized in four stages by the above scheme 1 using 6-phenyl-1-bromo-2-naphthol (1) as a starting material. It should be noted that schem 1 is described in Efficient blue electroluminescence of silylene-bridged 2- (2-naphthyl) indole (M. Shimizu et al. J. Mater. Chem. 2012, Vol. 22, pages 4337-4342) except that the starting materials are different. This is similar to the synthetic scheme described.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 得られた化合物A1の融点は250℃、熱分解温度は306℃であった(熱重量分析(TGA)による質量減少が5%となる温度を、熱分解温度とした)。
 化合物A1について、H-NMRを測定したところ、次の結果が得られた。
 H-NMR(400MHz,CDCl):δ(ppm)= 0.92(d,J=7.6Hz,6H), 1.39(d,J=7.6Hz,6H), 1.63(heptet,J=7.6Hz,6H), 7.17(ddd,J=7.4,1.2Hz,1H), 7.24(ddd,J=8.0,1.2Hz,1H), 7.36~7.42(m,2H),7.50(dd,J=7.6Hz,2H), 7.65(d,J=8.0Hz,1H), 7.73~7.79(m,3H), 7.88(d,J=8.8Hz,1H), 7.95(d,J=8.4Hz,1H), 8.03~8.08(m,2H)。
The resulting compound A1 had a melting point of 250 ° C. and a thermal decomposition temperature of 306 ° C. (the temperature at which mass loss by thermogravimetric analysis (TGA) was 5% was defined as the thermal decomposition temperature).
Compound 1 was measured for 1 H-NMR, and the following results were obtained.
1 H-NMR (400 MHz, CDCl 3 ): δ (ppm) = 0.92 (d, J = 7.6 Hz, 6H), 1.39 (d, J = 7.6 Hz, 6H), 1.63 ( heptet, J = 7.6 Hz, 6H), 7.17 (ddd, J = 7.4, 1.2 Hz, 1H), 7.24 (ddd, J = 8.0, 1.2 Hz, 1H), 7 .36 to 7.42 (m, 2H), 7.50 (dd, J = 7.6 Hz, 2H), 7.65 (d, J = 8.0 Hz, 1H), 7.73 to 7.79 ( m, 3H), 7.88 (d, J = 8.8 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 8.03 to 8.08 (m, 2H).
[実施例2]化合物A2の合成
 出発原料として、6-(4-メトキシフェニル)-1-ブロモ-2-ナフトールを用いた以外は、上記実施例1と同様にして、化合物A2を合成した。
[Example 2] Synthesis of Compound A2 Compound A2 was synthesized in the same manner as in Example 1 except that 6- (4-methoxyphenyl) -1-bromo-2-naphthol was used as a starting material.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 得られた化合物A2の融点は256℃、熱分解温度は321℃であった。
 化合物A2について、H-NMRを測定したところ、次の結果が得られた。
 H-NMR(CDCl,300MHz):δ(ppm)= 0.91(d,6H,J=7.2Hz), 1.28(d,6H,J=7.2Hz), 1.55(heptet,2H,J=7.2,7.2Hz), 3.89(s,3H), 4.23(s,3H), 7.40(d,2H,J=9. Hz), 7.18(d,2H,J=8.1Hz), 7.40(d,1H,J=8.7Hz), 7.64(d,1H,J=7.8Hz), 7.69(d,2H,J=9.0Hz), 7.73(d,1H,J=6.9Hz), 7.85(d,1H,J=8.7Hz), 7.93(d,1H,J=9.0Hz), 7.99(s,1H), 8.05(d,1H,J=8.4Hz)。
The resulting compound A2 had a melting point of 256 ° C. and a thermal decomposition temperature of 321 ° C.
Compound 1 was measured for 1 H-NMR, and the following results were obtained.
1 H-NMR (CDCl 3 , 300 MHz): δ (ppm) = 0.91 (d, 6H, J = 7.2 Hz), 1.28 (d, 6H, J = 7.2 Hz), 1.55 ( heptet, 2H, J = 7.2, 7.2 Hz), 3.89 (s, 3H), 4.23 (s, 3H), 7.40 (d, 2H, J = 9 Hz), 7. 18 (d, 2H, J = 8.1 Hz), 7.40 (d, 1H, J = 8.7 Hz), 7.64 (d, 1H, J = 7.8 Hz), 7.69 (d, 2H) , J = 9.0 Hz), 7.73 (d, 1H, J = 6.9 Hz), 7.85 (d, 1H, J = 8.7 Hz), 7.93 (d, 1H, J = 9. 0 Hz), 7.99 (s, 1 H), 8.05 (d, 1 H, J = 8.4 Hz).
[実施例3]化合物A3の合成
 出発原料として、6-(4-トリフルオロメチルフェニル)-1-ブロモ-2-ナフトールを用いた以外は、上記実施例1と同様にして、化合物A3を合成した。
[Example 3] Synthesis of Compound A3 Compound A3 was synthesized in the same manner as in Example 1 except that 6- (4-trifluoromethylphenyl) -1-bromo-2-naphthol was used as a starting material. did.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[比較例1]
 出発原料として、1-ブロモ-2-ナフトールを用いた以外は、上記実施例1と同様にして、下記の化合物(熱分解温度:244℃)を得た。
Figure JPOXMLDOC01-appb-C000013
[Comparative Example 1]
The following compound (thermal decomposition temperature: 244 ° C.) was obtained in the same manner as in Example 1 except that 1-bromo-2-naphthol was used as a starting material.
Figure JPOXMLDOC01-appb-C000013
[化合物の発光特性の評価]
 上記実施例および比較例で得られたそれぞれの化合物の微結晶を試料として、絶対PL量子収率測定装置(浜松ホトニクス社製 型番:C9920-02)を用いて、室温(25℃)での微結晶の発光量子収率および発光極大波長を測定した。また、各化合物をPMMA中に分散したフィルムでの発光量子収率および発光極大波長を測定した。結果を表1に示す。
[Evaluation of Luminescent Properties of Compounds]
Using the crystallites of the respective compounds obtained in the above Examples and Comparative Examples as samples, using an absolute PL quantum yield measuring apparatus (model number: C9920-02, manufactured by Hamamatsu Photonics), fine crystals at room temperature (25 ° C.) were used. The emission quantum yield and emission maximum wavelength of the crystal were measured. Moreover, the light emission quantum yield and the light emission maximum wavelength in the film which disperse | distributed each compound in PMMA were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
[実施例4]化合物A1を用いた有機EL素子の作製
 パターニングされたITO電極(膜厚150nm)を有するガラス基板上に、以下の手順で、2mm×2mmの発光領域を有するボトムエミッション型評価素子を作製した。
[Example 4] Production of organic EL device using compound A1 Bottom emission type evaluation device having a light emitting region of 2 mm x 2 mm on a glass substrate having a patterned ITO electrode (film thickness 150 nm) by the following procedure. Was made.
 ITO電極(陽極)上に、三酸化モリブデン(MoO)を蒸着し、正孔注入層(膜厚0.8nm)を形成した。正孔注入層の上に、N,N-ビス(ナフタレン-1-イル)-N,N’-ビス(フェニル)-ベンジジン(NPB)を真空蒸着し、正孔輸送層(膜厚60nm)を形成した。 Molybdenum trioxide (MoO 3 ) was vapor-deposited on the ITO electrode (anode) to form a hole injection layer (film thickness 0.8 nm). On the hole injection layer, N, N-bis (naphthalen-1-yl) -N, N′-bis (phenyl) -benzidine (NPB) was vacuum deposited to form a hole transport layer (film thickness 60 nm). Formed.
 次に、正孔輸送層の上に、上記実施例1で得られた化合物A1を真空蒸着して、発光層(膜厚20nm)を形成した。 Next, the compound A1 obtained in Example 1 was vacuum deposited on the hole transport layer to form a light emitting layer (film thickness 20 nm).
 発光層の上に、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を真空蒸着し、正孔阻止層(膜厚10nm)を形成した。次に、正孔阻止層上に、トリス(8-ヒドロキシ-キノリナト)アルミニウム(Alq)を真空蒸着し、電子輸送層(膜厚30nm)を形成した。電子輸送層の上に、LiFを真空蒸着し、電子注入層(膜厚1nm)を形成した。電子注入層の上に、陰極として、アルミニウムを100nmの膜厚で成膜した。 On the light emitting layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was vacuum-deposited to form a hole blocking layer (thickness 10 nm). Next, tris (8-hydroxy-quinolinato) aluminum (Alq 3 ) was vacuum-deposited on the hole blocking layer to form an electron transport layer (thickness 30 nm). On the electron transport layer, LiF was vacuum-deposited to form an electron injection layer (film thickness: 1 nm). On the electron injection layer, aluminum was formed to a thickness of 100 nm as a cathode.
 陰極を形成後、不活性下のグローボックスに、蒸着成膜後の有機EL素子を移動し、ガラスキャップに2液性硬化樹脂を塗布し、基板とキャップを貼り合わせた。樹脂の硬化完了後、貼り合わせた基板を大気圧下に取り出し、電流を通電して、電流-電圧-輝度(I-V-L)特性および発光強度スペクトルを測定した。 After forming the cathode, the organic EL element after vapor deposition was moved to an inert glow box, a two-component curable resin was applied to the glass cap, and the substrate and the cap were bonded together. After the curing of the resin was completed, the bonded substrate was taken out under atmospheric pressure, a current was applied, and current-voltage-luminance (IVL) characteristics and emission intensity spectrum were measured.
[実施例5]化合物A1を用いた有機EL素子の作製
 発光層の材料として、化合物A1に代えて、上記実施例2で得られた化合物A2を真空蒸着して、発光層(膜厚20nm)を形成した。それ以外は、上記実施例4と同様にして、有機EL素子を作製し、大気圧下で、I-V-L特性および発光強度スペクトルを測定した。
[Example 5] Production of organic EL device using compound A1 As a material for the light emitting layer, instead of compound A1, compound A2 obtained in Example 2 was vacuum-deposited to form a light emitting layer (film thickness 20 nm). Formed. Otherwise, an organic EL device was produced in the same manner as in Example 4, and the IVL characteristics and emission intensity spectrum were measured under atmospheric pressure.
[比較例2]
 パターニングされたITO電極(膜厚150nm)を有するガラス基板上に、以下の手順で、2mm×2mmの発光領域を有するボトムエミッション型評価素子を作製した。
[Comparative Example 2]
On a glass substrate having a patterned ITO electrode (film thickness 150 nm), a bottom emission type evaluation element having a light emitting region of 2 mm × 2 mm was produced by the following procedure.
 ITO電極(陽極)上に、MoOとNPBとを共蒸着し、正孔注入層(膜厚60nm)を形成した。正孔注入層の上に、NPBを真空蒸着し、正孔輸送層(膜厚20nm)を形成した。 MoO 3 and NPB were co-evaporated on the ITO electrode (anode) to form a hole injection layer (film thickness 60 nm). On the hole injection layer, NPB was vacuum deposited to form a hole transport layer (film thickness 20 nm).
 次に、正孔輸送層の上に、上記比較例1で得られた化合物を真空蒸着して、発光層(膜厚5nm)を形成した。 Next, the compound obtained in Comparative Example 1 was vacuum deposited on the hole transport layer to form a light emitting layer (film thickness 5 nm).
 発光層の上に、電子輸送材料(メルク社製 ETM-033)を真空蒸着し、電子輸送層(60nm)を形成した。次に、電子輸送層の上に、LiFを真空蒸着し、電子注入層(膜厚1nm)を形成した。電子注入層上に、陰極として、アルミニウムを100nmの膜厚で成膜した。その後は、上記実施例4と同様に、基板とキャップの貼り合わせおよび硬化を行った後、大気圧下でI-V-L特性および発光強度スペクトルを測定した。 An electron transporting material (ETM-033 manufactured by Merck & Co., Inc.) was vacuum deposited on the light emitting layer to form an electron transporting layer (60 nm). Next, LiF was vacuum-deposited on the electron transport layer to form an electron injection layer (film thickness 1 nm). On the electron injection layer, aluminum was formed to a thickness of 100 nm as a cathode. Thereafter, in the same manner as in Example 4, after the substrate and the cap were bonded and cured, the IVL characteristics and emission intensity spectrum were measured under atmospheric pressure.
[実施例6]化合物A1をドーパント材料として用いた有機EL素子の作製
 化合物A1と2-メチル-9,10-ビス(ナフタレン-2-イル)アントラセン(MADN)とを、10:90の重量比で共蒸着して、発光層(膜厚20nm)を形成した。それ以外は、上記実施例4と同様にして有機EL素子を作製し、大気圧下でI-V-L特性および発光強度スペクトルを測定した。
[Example 6] Preparation of organic EL device using compound A1 as dopant material Compound A1 and 2-methyl-9,10-bis (naphthalen-2-yl) anthracene (MADN) in a weight ratio of 10:90 Was co-evaporated to form a light emitting layer (film thickness 20 nm). Otherwise, an organic EL device was produced in the same manner as in Example 4 above, and the IVL characteristics and emission intensity spectrum were measured under atmospheric pressure.
[実施例7]化合物A2をドーパント材料として用いた有機EL素子の作製
 化合物A2とMADNとを、10:90の重量比で共蒸着して、発光層(膜厚20nm)を形成した。それ以外は、上記実施例4と同様にして有機EL素子を作製し、大気圧下でI-V-L特性および発光強度スペクトルを測定した。
[Example 7] Production of organic EL device using compound A2 as dopant material Compound A2 and MADN were co-evaporated at a weight ratio of 10:90 to form a light emitting layer (film thickness 20 nm). Otherwise, an organic EL device was produced in the same manner as in Example 4 above, and the IVL characteristics and emission intensity spectrum were measured under atmospheric pressure.
[比較例3]
 上記比較例1で得られた化合物とMADNとを、7:93の重量比で共蒸着して、発光層(膜厚20nm)を形成した。その上に、電子輸送材料(メルク社製 ETM-033)を真空蒸着し、電子輸送層(40nm)を形成した。それ以外は、上記比較例2と同様にして有機EL素子を作製し、大気圧下でI-V-L特性および発光強度スペクトルを測定した。
[Comparative Example 3]
The compound obtained in Comparative Example 1 and MADN were co-evaporated at a weight ratio of 7:93 to form a light emitting layer (film thickness 20 nm). An electron transporting material (ETM-033 manufactured by Merck & Co., Inc.) was vacuum deposited thereon to form an electron transporting layer (40 nm). Otherwise, an organic EL device was produced in the same manner as in Comparative Example 2 above, and the IVL characteristics and emission intensity spectrum were measured under atmospheric pressure.
[有機EL素子の評価結果]
 上記実施例4~7および比較例2,3で作成した有機EL素子の、発光極大波長、最大電流発光効率、および最大電力発光効率を、表2に示す。
[Evaluation results of organic EL elements]
Table 2 shows the maximum light emission wavelength, the maximum current light emission efficiency, and the maximum power light emission efficiency of the organic EL devices prepared in Examples 4 to 7 and Comparative Examples 2 and 3.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 以上の結果から、実施例1の化合物A1を発光材料として用いた有機EL素子および実施例2の化合物A2を発光材料として用いた有機EL素子は、化合物A1および化合物A2が単独で用いられた場合(実施例4および実施例5)、ならびに化合物A1およびA2がドーパント材料としてアントラセン誘導体と共に用いられた場合(実施例6および実施例7)のいずれにおいても、比較例よりも高発光効率であることが示された。 From the above results, in the organic EL device using the compound A1 of Example 1 as the luminescent material and the organic EL device using the compound A2 of Example 2 as the luminescent material, when the compound A1 and the compound A2 are used alone (Example 4 and Example 5) and when A1 and A2 are used together with anthracene derivatives as dopant materials (Example 6 and Example 7), the luminous efficiency is higher than that of the comparative example. It has been shown.
 なお、上記実施例4,5と比較例2では、発光層の膜厚等の素子構成の一部が異なっている。しかしながら、化合物A1からなる膜および化合物A2からなる膜のPL蛍光量子効率は、いずれも膜厚5nm~20nmの範囲で略一定であるため、実施例4,5と比較例2の素子の発光効率の差は、発光層の膜厚の相違によるものではなく、材料の特性の相違に起因するものであるといえる。また、実施例6,7と比較例3では、発光層中のドーパント材料の共蒸着比が異なっているが、化合物A1および化合物A2とMADNとの共蒸着比(重量比)が1:99~10:90の範囲では、膜の蛍光量子収率が略一定であることから、実施例6,7と比較例3の発光特性の差は、共蒸着比の相違によるものではなく、発光材料の特性の相違に起因するものであるといえる。 In Examples 4 and 5 and Comparative Example 2, part of the element configuration such as the film thickness of the light emitting layer is different. However, the PL fluorescence quantum efficiencies of the film made of the compound A1 and the film made of the compound A2 are both substantially constant in the film thickness range of 5 nm to 20 nm. Therefore, the light emission efficiencies of the devices of Examples 4 and 5 and Comparative Example 2 This difference is not due to the difference in the thickness of the light emitting layer, but to the difference in the characteristics of the material. In Examples 6 and 7 and Comparative Example 3, the co-evaporation ratio of the dopant material in the light emitting layer is different, but the co-evaporation ratio (weight ratio) of Compound A1 and Compound A2 to MADN is 1:99 to In the range of 10:90, since the fluorescence quantum yield of the film is substantially constant, the difference in emission characteristics between Examples 6 and 7 and Comparative Example 3 is not due to the difference in the co-evaporation ratio. This can be attributed to the difference in characteristics.
[発光寿命の評価]
 実施例4~7で作成した有機EL素子を、室温下10mA/cmの一定駆動電流密度で連続点灯し、輝度が初期値の半分となるまでの時間(発光寿命)を測定した。実施例4の素子の発光時間は5.2時間、実施例5の素子の発光時間は4.8時間であった。これに対して、実施例6の素子の発光寿命280時間、実施例7の素子の発光寿命は320時間であり、化合物A1および化合物A2を発光層のドーパント材料として用いた場合に、有機EL素子の発光寿命が大幅に改善されることが確認された。これらの結果から、アントラセン誘導体ホストのドーパント材料として、ナフタレン環上にアリール基が導入されたケイ素架橋インドール誘導体が用いられることで、高発光効率かつ長寿命の青色発光材料が得られることが分かる。
[Evaluation of luminous lifetime]
The organic EL elements prepared in Examples 4 to 7 were continuously lit at a constant driving current density of 10 mA / cm 2 at room temperature, and the time until the luminance became half of the initial value (light emission lifetime) was measured. The light emission time of the device of Example 4 was 5.2 hours, and the light emission time of the device of Example 5 was 4.8 hours. On the other hand, the light emission lifetime of the device of Example 6 is 280 hours, the light emission life of the device of Example 7 is 320 hours, and when the compound A1 and the compound A2 are used as the dopant material of the light emitting layer, the organic EL device It was confirmed that the light emission lifetime of the was significantly improved. From these results, it is understood that a blue light-emitting material with high luminous efficiency and long life can be obtained by using a silicon-bridged indole derivative having an aryl group introduced on the naphthalene ring as a dopant material for an anthracene derivative host.
  2 有機EL素子
  4 透明電極層(陽極)
  5 機能層
  6 裏面電極層(陰極)
 12 発光層
2 Organic EL element 4 Transparent electrode layer (anode)
5 Functional layer 6 Back electrode layer (cathode)
12 Light emitting layer

Claims (9)

  1.  下記式(I)で表されるケイ素架橋インドール誘導体を含有する発光材料:
    Figure JPOXMLDOC01-appb-C000001
    式(I)中、
     RおよびRはそれぞれ独立に、炭素数1~6の低級アルキル基、アリール基、または不飽和複素環基を表し、
     R3は、炭素数1~6の低級アルキル基、アリール基、または不飽和複素環基を表し、
     R4は、ベンゼン環に結合した置換基であり、R5は、インドール環に結合した置換基であり、pは0~5の整数であり、qは0~4の整数であり、
     R4およびRはそれぞれ独立に、ハロゲン原子、シアノ基、炭素数1~6の低級アルキル基、炭素数1~6の低級アルコキシ基、炭素数1~6の低級アルキルチオ基、炭素数1~6のハロゲン置換低級アルキル基、炭素数1~6のハロゲン置換低級アルコキシ基、アミノ基、アリール基または不飽和複素環基を表し、
     Rが複数存在する場合、複数のRは、同一でも異なっていてもよく、複数のRは互いに結合して環構造を形成してもよく、
     Rが複数存在する場合、複数のRは、同一でも異なっていてもよい。
    Luminescent material containing a silicon-bridged indole derivative represented by the following formula (I):
    Figure JPOXMLDOC01-appb-C000001
    In formula (I),
    R 1 and R 2 each independently represents a lower alkyl group having 1 to 6 carbon atoms, an aryl group, or an unsaturated heterocyclic group,
    R 3 represents a lower alkyl group having 1 to 6 carbon atoms, an aryl group, or an unsaturated heterocyclic group,
    R 4 is a substituent bonded to the benzene ring, R 5 is a substituent bonded to the indole ring, p is an integer of 0 to 5, q is an integer of 0 to 4,
    R 4 and R 5 are each independently a halogen atom, a cyano group, a lower alkyl group having 1 to 6 carbon atoms, a lower alkoxy group having 1 to 6 carbon atoms, a lower alkylthio group having 1 to 6 carbon atoms, or 1 to 6 halogen-substituted lower alkyl groups, halogen-substituted lower alkoxy groups having 1 to 6 carbon atoms, amino groups, aryl groups or unsaturated heterocyclic groups,
    If R 4 there are a plurality, the plurality of R 4 may be the same or different, a plurality of R 4 may be bonded to form a ring structure,
    If R 5 there are a plurality, the plurality of R 5, may be the same or different.
  2.  前記式(I)において、pが0または1である、請求項1に記載の発光材料。 The luminescent material according to claim 1, wherein p is 0 or 1 in the formula (I).
  3.  前記式(I)において、pが1であり、R4がベンゼン環のパラ位に結合している、請求項1に記載の発光材料。 The luminescent material according to claim 1, wherein, in the formula (I), p is 1 and R 4 is bonded to the para-position of the benzene ring.
  4.  前記R4がメトキシ基である、請求項3に記載の発光材料。 The luminescent material according to claim 3, wherein R 4 is a methoxy group.
  5.  前記式(I)において、qが0である、請求項1~4のいずれか1項に記載の発光材料。 The luminescent material according to any one of claims 1 to 4, wherein q is 0 in the formula (I).
  6.  前記式(I)において、R1およびR2が同一の置換基である、請求項1~5のいずれか1項に記載の発光材料。 The luminescent material according to any one of claims 1 to 5, wherein, in the formula (I), R 1 and R 2 are the same substituent.
  7.  前記式(I)において、R1およびR2がいずれもイソプロピル基であり、R3がメチル基である、請求項6に記載の発光材料。 The light emitting material according to claim 6, wherein in the formula (I), R 1 and R 2 are both isopropyl groups and R 3 is a methyl group.
  8.  ホスト材料およびドーパント材料を含有し、
     前記ドーパント材料が請求項1~7のいずれか1項に記載の発光材料であり、前記ホスト材料がアントラセン誘導体である、発光材料。
    Contains a host material and a dopant material,
    A luminescent material, wherein the dopant material is the luminescent material according to any one of claims 1 to 7, and the host material is an anthracene derivative.
  9.  陽極および陰極からなる一対の電極の間に少なくとも発光層を備え、
     前記発光層が、請求項1~8のいずれか1項に記載の発光材料を有する有機EL素子。
    At least a light emitting layer is provided between a pair of electrodes consisting of an anode and a cathode,
    9. An organic EL device, wherein the light emitting layer comprises the light emitting material according to claim 1.
PCT/JP2014/053642 2013-02-18 2014-02-17 Light emitting material and organic el element WO2014126241A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015500331A JP6313742B2 (en) 2013-02-18 2014-02-17 Luminescent material and organic EL device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-029363 2013-02-18
JP2013029363 2013-02-18

Publications (1)

Publication Number Publication Date
WO2014126241A1 true WO2014126241A1 (en) 2014-08-21

Family

ID=51354239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053642 WO2014126241A1 (en) 2013-02-18 2014-02-17 Light emitting material and organic el element

Country Status (2)

Country Link
JP (1) JP6313742B2 (en)
WO (1) WO2014126241A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177144A1 (en) * 2020-03-04 2021-09-10 国立大学法人東海国立大学機構 Naphthyl silole production method, naphthyl silole having heterocyclic group, and graphene nanoribbons having heterocyclic group

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047335A1 (en) * 2008-10-21 2010-04-29 国立大学法人京都大学 Benzene compound
WO2011132866A1 (en) * 2010-04-20 2011-10-27 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
JP2012087187A (en) * 2010-10-18 2012-05-10 Kaneka Corp Light-emitting material and organic el element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047335A1 (en) * 2008-10-21 2010-04-29 国立大学法人京都大学 Benzene compound
WO2011132866A1 (en) * 2010-04-20 2011-10-27 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
JP2012087187A (en) * 2010-10-18 2012-05-10 Kaneka Corp Light-emitting material and organic el element

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KENJI MOCHIDA ET AL.: "Palladium-Catalyzed Intramolecular Coupling of 2-[(2-Pyrrolyl) silyl] aryl Triflates through 1,2-Silicon Migration", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, no. 24, 2009, pages 8350 - 8351 *
MASAKI SHIMIZU ET AL.: "Efficient blue electroluminescence of silylene-bridged 2-(2-naphthyl)indole", JOURNAL OF MATERIALS CHEMISTRY, vol. 22, no. 10, 14 March 2012 (2012-03-14), pages 4337 - 4342 *
MASAKI SHIMIZU ET AL.: "Highly Efficient Blue Fluorescence from 3,2'-Silylene-Bridged 2-Phenylindoles in the Solid State", THE JOURNAL OF PHYSICAL CHEMISTRY, vol. 115, no. 22, 2011, pages 11265 - 11274 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177144A1 (en) * 2020-03-04 2021-09-10 国立大学法人東海国立大学機構 Naphthyl silole production method, naphthyl silole having heterocyclic group, and graphene nanoribbons having heterocyclic group

Also Published As

Publication number Publication date
JP6313742B2 (en) 2018-04-18
JPWO2014126241A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
US11937495B2 (en) Organic light emitting element, composition and membrane
JP6596587B2 (en) COMPOUND FOR ORGANIC ELECTRONIC ELEMENT, ORGANIC ELECTRONIC ELEMENT USING THE SAME, AND ELECTRONIC DEVICE THEREOF
KR101293320B1 (en) Aromatic amine derivative and organic electroluminescent element using same
JP5399418B2 (en) Organic electroluminescence device
CN108138040B (en) Compound for organic electroluminescent device, organic electroluminescent device using the same, and electronic device thereof
WO2013137001A1 (en) Organic electroluminescent element
WO2013088973A1 (en) Organic electroluminescent element
KR20170059985A (en) Organic electroluminescent element
TW201245150A (en) Organic electroluminescent element
TW201038533A (en) Materials for organic electroluminescent devices
KR20160004566A (en) Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
TWI697497B (en) Organic electroluminescent element
WO2015159971A1 (en) Organic electroluminescent element
KR20150120523A (en) Boron compound for organic electroluminescent elements, and organic electroluminescent element
KR20150064687A (en) Novel blue fluorescent host compound and organic electroluminescent device comprising same
JP2014067989A (en) Organic light-emitting element, luminescence material precursor, luminescence material, chemical compound, and process of manufacturing organic light-emitting element
KR20150064682A (en) Novel electroluminescent compound and organic electroluminescent device comprising same
JP5934559B2 (en) Luminescent material and organic EL device
JP2016130231A (en) Compound, mixture, light-emitting layer, organic light-emitting element, and assist dopant
KR20160021424A (en) Novel compound and organic electroluminescent device comprising same
JP2012087187A (en) Light-emitting material and organic el element
JP6313742B2 (en) Luminescent material and organic EL device
WO2016111196A1 (en) Compound, mixture, light-emitting layer, organic light-emitting element, and assist dopant
KR20160045019A (en) Novel compound and organic electroluminescent device comprising same
JP6529286B2 (en) Luminescent material and organic EL device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751619

Country of ref document: EP

Kind code of ref document: A1