WO2014125960A1 - Signal processing device and signal processing method - Google Patents

Signal processing device and signal processing method Download PDF

Info

Publication number
WO2014125960A1
WO2014125960A1 PCT/JP2014/052500 JP2014052500W WO2014125960A1 WO 2014125960 A1 WO2014125960 A1 WO 2014125960A1 JP 2014052500 W JP2014052500 W JP 2014052500W WO 2014125960 A1 WO2014125960 A1 WO 2014125960A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
communication
signal
detection
racon
Prior art date
Application number
PCT/JP2014/052500
Other languages
French (fr)
Japanese (ja)
Inventor
潤 山林
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Publication of WO2014125960A1 publication Critical patent/WO2014125960A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/04Display arrangements
    • G01S7/06Cathode-ray tube displays or other two dimensional or three-dimensional displays
    • G01S7/10Providing two-dimensional and co-ordinated display of distance and direction
    • G01S7/12Plan-position indicators, i.e. P.P.I.
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control

Definitions

  • the present invention relates to a signal processing device provided in a radar device and a signal processing method in the radar device.
  • Patent Documents 1 and 2 disclose a configuration in which information held by a radar device is transmitted using a pulse signal.
  • the radar beacon 102 is referred to as a racon 102.
  • the racon 102 is disposed in the vicinity of the land 104.
  • the radar apparatus 100 communicates with the racon 102 in the communication range 106.
  • the communication range 106 is a fan-shaped range centering on the antenna unit 105 of the radar apparatus 100. In this case, in the communication range 106, the radar apparatus 100 does not transmit a pulse signal for detection, and thus does not detect a target.
  • echo images are not displayed on the PPI screen 107 of the radar apparatus 100 for the racon 102, the other ship 103, and the land 104 existing in the communication range 106. More specifically, the echo image of the racon 102 is not seen at all, and the echo image P103 of the other ship 103 and the echo image P104 of the land 104 are lacking in the communication range 106. Therefore, the operator of the radar apparatus 100 cannot recognize the target in the communication range 106 on the PPI screen 107.
  • the present invention has an object to provide a signal processing device and a signal processing method capable of displaying a detection result even in an area where data transmission is performed in view of the above situation.
  • a signal processing device is a signal processing device provided in a radar device.
  • the signal processing device includes a detection signal generation unit, a communication signal generation unit, a communication range detection unit, and an image data generation unit.
  • the detection signal generation unit is configured to transmit a detection signal for detecting a target around the radar device.
  • the communication signal generation unit is configured to transmit a communication signal for communicating with a predetermined communication target.
  • the communication range detection unit is configured to detect a communication range communicating with the communication target in an azimuth direction around the radar device.
  • the image data generation unit is configured to generate image data indicating a detection result using the detection signal.
  • a process for generating the image data indicating the detection result of the communication range is different from a process for generating the image data indicating the detection result outside the communication range.
  • the signal processing device further includes a determination unit that determines which of the detection signal and the communication signal is transmitted.
  • the determination unit makes the transmission interval of the detection signal in the communication range larger than the transmission interval of the detection signal outside the communication range.
  • the determination unit transmits the communication signal when the detection signal is not transmitted in the communication range.
  • the image data generation unit generates the image data indicating a detection result of the communication range using a past detection result.
  • the signal processing device further includes a sweep memory.
  • the sweep memory stores a detection reception signal received after transmission of the detection signal.
  • the image data generation unit can use the detection reception signal stored in the sweep memory as the past detection result.
  • the signal processing device further includes an image memory.
  • the image memory stores image data indicating past detection results as past image data.
  • the image data generation unit uses the past image data as the past detection result.
  • the image data generation unit generates the image data so that display specifying the communication range is performed.
  • the image data generation unit generates the image data so that display specifying the position of the communication target is performed.
  • a signal processing method is a signal processing method in a radar apparatus.
  • the signal processing method includes a detection signal generation step, a communication signal generation step, a communication range detection step, and an image data generation step.
  • a detection signal for detecting a target around the radar apparatus is generated.
  • a communication signal transmitting step a communication signal for communicating with a predetermined communication target is generated.
  • a communication range communicating with the communication target is detected in an azimuth direction around the radar device.
  • image data generation step image data indicating a detection result using the detection signal is generated.
  • the process for generating the image data indicating the detection result of the communication range is different from the process for generating the image data indicating the detection result outside the communication range.
  • the detection result can be displayed even in the area where data transmission is performed.
  • FIG. 1 is a conceptual diagram for explaining the concept of the radar system 1 according to the first embodiment of the present invention.
  • the radar system 1 is a marine radar system will be described as an example.
  • the radar system 1 may be a radar system for other moving objects such as an aircraft.
  • the radar system 1 includes a radar transceiver 10 and a radar beacon (hereinafter referred to as a racon) 20.
  • the radar transceiver 10 is an example of the “radar apparatus” in the present invention.
  • the racon 20 is an example of the “communication target” in the present invention.
  • FIG. 2 is a schematic diagram showing an example of the positional relationship between the radar transceiver 10 and the racon 20.
  • FIG. 2 shows a circular area centering on the radar transceiver 10 (own ship 2).
  • FIG. 3 is a diagram showing a display example of a PPI (Plan Position Indicator) screen 161 of a radar image display 16 to be described later of the radar transceiver 10.
  • FIG. 2 shows a display corresponding to the display content on the PPI screen 161.
  • PPI Plan Position Indicator
  • FIG. 2 shows a state where the racon 20, the other ship 3, and the land 4 are present around the radar transceiver 10 (own ship 2).
  • a radar transceiver 10 is a marine radar provided in a vessel such as a fishing boat.
  • the ship provided with the radar transceiver 10 is referred to as “own ship”.
  • a ship other than own ship 2 is referred to as other ship 3.
  • the radar transceiver 10 is configured to alternately perform transmission of an electromagnetic wave and reception of an echo signal Ec generated by reflecting the emitted electromagnetic wave. More specifically, the radar transceiver 10 is configured to transmit a radar wave W10.
  • the radar wave W10 includes a radar detection pulse W11 for detecting a target or a radar communication pulse W12 for communication.
  • the radar detection pulse W11 is a pulse signal for detecting a target around the ship 2.
  • An echo signal Ec is transmitted toward the ship 2 due to the emission of the radar detection pulse W11.
  • the radar transceiver 10 generates image data of an image displayed on the PPI screen 161 using the echo signal Ec.
  • the radar communication pulse W12 is a communication signal for transmitting radar communication information D10 held by the radar transceiver 10 to the racon 20.
  • the radar communication information D10 is, for example, information (a ship's register, ship number, etc.) that identifies the ship 2.
  • the radar communication information D10 may not be information that identifies the ship 2 but may be arbitrary information such as character information, image information, or voice information.
  • the racon 20 is disposed in a narrow channel. In the present embodiment, a case where the ship 2 navigates the gorge channel will be described as an example.
  • the racon 20 transmits the racon response wave W20. That is, the racon 20 is configured to transmit the racon response wave W20 using the radar wave W10 as a trigger.
  • the racon response wave W20 includes a racon notification pulse W21 or a racon communication pulse W22.
  • the racon notification pulse W ⁇ b> 21 is a notification signal for notifying the radar transceiver 10 of the presence of the racon 20.
  • the racon communication pulse W22 is a communication signal for transmitting the racon communication information D20 given to the racon 20 to the radar transceiver 10.
  • the racon communication information D20 is information including at least one of characters, images, and sounds.
  • the racon communication information D20 includes information indicating the position (latitude and longitude) of the racon 20 and weather information of the sea area where the racon 20 is installed. Note that the racon communication information D20 is not limited to the above-described exemplary content, and may be other information.
  • the racon communication information D20 is information that is not intended to be displayed on the PPI screen 161.
  • the radar transceiver 10 receives the antenna reception wave W1 in response to the transmission of the radar wave W10. Specifically, when the radar transceiver 10 transmits a radar detection pulse W11, the antenna reception wave W1 includes an echo signal Ec. The radar transceiver 10 displays an echo image specified by the echo signal Ec on the PPI screen 161. In this case, when the antenna received wave W1 includes the racon notification pulse W21, an image specified by the racon notification pulse W21 is also displayed on the PPI screen 161.
  • FIG. 3 displays a Morse code-like image PD indicating “D” as an image specified by the racon notification pulse W21.
  • the radar transceiver 10 transmits the radar communication pulse W12 toward the racon 20, the antenna reception wave W1 includes the racon communication pulse W22.
  • the radar transceiver 10 displays the racon communication information D20 included in the racon communication pulse W22 on a screen different from the PPI screen 161.
  • FIG. 4 is a block diagram showing the configuration of the racon 20. Next, a specific configuration of the racon 20 will be described. As shown in FIGS. 1 and 4, the racon 20 is provided as a transponder device, and transmits a racon response wave W20 in response to receiving the radar wave W10.
  • the racon 20 includes an antenna unit 21, a circulator 22, a receiver 23, a transmitter 24, an information transmission / reception processing unit 25, a racon communication information memory 26, and a reception information memory 27.
  • the antenna unit 21 is configured to perform reception of electromagnetic waves and transmission of electromagnetic waves. Specifically, the antenna unit 21 receives the radar wave W ⁇ b> 10 and outputs the radar wave W ⁇ b> 10 to the receiver 23 via the circulator 22. The antenna unit 21 transmits a racon response wave W20 output from the transmitter 24 via the circulator 22.
  • the antenna unit 21 is used to transmit and receive electromagnetic waves, but this need not be the case.
  • the electromagnetic wave transmitting antenna unit and the electromagnetic wave receiving antenna unit may be separate.
  • the circulator 22 is a three-port circulator to which the antenna unit 21, the receiver 23, and the transmitter 24 are connected.
  • the circulator 22 transmits the radar wave W10 received by the antenna unit 21 to the receiver 23. Further, the circulator 22 transmits the racon response wave W20 output from the transmitter 24 to the antenna unit 21.
  • the receiver 23 amplifies the radar wave W10 output from the circulator 22 and outputs it to the information transmission / reception processing unit 25.
  • the transmitter 24 upconverts and amplifies the racon response wave W20 generated by the information transmission / reception processor 25 to a predetermined RF frequency band.
  • the transmitter 24 outputs the racon response wave W20 to the circulator 22 at the timing indicated by the transmission trigger Tg generated by the information transmission / reception processing unit 25. Accordingly, the transmitter 24 transmits the racon response wave W20 toward the antenna unit 11 of the radar transceiver 10.
  • the information transmission / reception processing unit 25 When receiving the radar wave W10 from the radar transceiver 10, the information transmission / reception processing unit 25 is configured to generate a racon response wave W20 corresponding to the radar wave W10 and to perform transmission processing of the racon response wave W20. Has been.
  • the information transmission / reception processing unit 25 is configured using a CPU, a RAM, a ROM (not shown), and the like.
  • the information transmission / reception processing unit 25 includes a demodulation processing unit 251, a transmission information setting unit 252, a pulse waveform generation unit 253, and a transmission timing setting unit 254.
  • the demodulation processing unit 251 is connected to the receiver 23 and receives the radar wave W10 from the receiver 23.
  • the demodulation processing unit 251 demodulates the radar communication pulse W12 using a demodulation method corresponding to the modulation method of the radar transceiver 10.
  • the demodulation processing unit 251 acquires the signal sequence of the radar communication information D10 by the demodulation process of the radar communication pulse W12.
  • the demodulation processing unit 251 outputs the radar communication information D10 to the transmission information setting unit 252.
  • the demodulation processing unit 251 outputs the demodulation processing result of the radar detection pulse W11 to the transmission information setting unit 252.
  • the transmission information setting unit 252 sets a predetermined signal sequence based on the processing result of the demodulation processing unit 251. Specifically, when the demodulation processing unit 251 outputs the signal sequence of the radar communication information D10, the transmission information setting unit 252 reads the racon communication information D20 from the racon communication information memory 26. Then, transmission information setting section 252 generates a signal sequence of racon communication information D21.
  • the signal sequence of the racon communication information D21 is a signal sequence obtained by adding an additional signal sequence to the signal sequence of the racon communication information D20.
  • the additional signal sequence includes a signal sequence as a preamble for the radar transceiver 10 to detect and synchronize the racon response wave W20, and a signal sequence for specifying a code for error detection / error correction.
  • Each of the signal sequence and the additional signal sequence of the racon communication information D20 is a binary code string indicating the information as binary values of “0” and “1”.
  • the transmission information setting unit 252 when the demodulation processing unit 251 outputs the demodulation processing result of the radar detection pulse W11, the transmission information setting unit 252 generates a signal sequence of the racon notification pulse W21.
  • the pulse waveform generation unit 253 modulates the signal series set by the transmission information setting unit 252 by a predetermined method. As a result, the pulse waveform generator 253 generates the racon response wave W20 (the racon detection pulse W21 or the racon communication pulse W22).
  • the racon communication pulse W22 includes racon communication information D20.
  • ASK Amplitude Shift Keying
  • FSK Frequency Shift Keying
  • PSK Phase Shift Keying
  • the timing at which the transmitter 24 outputs the racon response wave W20 is set by the transmission timing setting unit 254.
  • the transmission timing setting unit 254 detects the falling edge or the rising edge of the radar wave W10.
  • the transmission timing setting unit 254 generates a transmission trigger Tg of the racon response wave W20 after a predetermined period has elapsed since the detection of the edge.
  • the transmission timing setting unit 254 outputs this transmission trigger Tg to the transmitter 24.
  • this transmission trigger Tg is given, the transmitter 24 outputs a racon response wave W20 to the antenna 21 via the circulator 22.
  • the racon communication information memory 26 is a storage unit provided in the racon 20, and is formed by using, for example, a nonvolatile memory such as a ROM or a flash memory.
  • the racon communication information memory 26 may be provided as one component of the racon 20 or may be provided as an element different from the racon 20.
  • the reception information memory 27 is a storage unit provided in the racon 20 and is formed by using, for example, a nonvolatile memory such as a ROM or a flash memory.
  • the reception information memory 27 may be provided as one component of the racon 20 or may be provided as an element different from the racon 20.
  • the reception information memory 27 stores the demodulation processing result of the demodulation processing unit 251.
  • the racon 20 can store the radar communication information D10.
  • the radar communication information D10 is used as, for example, a ship navigation history.
  • FIG. 5 is a block diagram showing the configuration of the radar transceiver 10.
  • the radar transceiver 10 includes an antenna unit 11, a circulator 12, a transmitter 13, a receiver 14, a signal processing unit 15, a radar image display 16, and communication.
  • An information display 17 and a radar communication information memory 18 are provided.
  • the antenna unit 11 is configured to perform transmission of electromagnetic waves and reception of electromagnetic waves. Specifically, the antenna unit 11 outputs a radar wave W10 output from the transmitter 13 via the circulator 12. The antenna unit 11 receives the antenna reception wave W1 and outputs the antenna reception wave W1 to the receiver 14 via the circulator 12.
  • the antenna unit 11 transmits the radar wave W10 to the 360 degrees around the ship 2 while receiving the antenna reception wave W1 while rotating around the vertical axis.
  • the operation from the transmission of the radar wave W10 to the transmission of the next pulsed radio wave is referred to as “sweep”.
  • the operation of rotating the antenna unit 11 360 ° while transmitting / receiving radio waves is referred to as “scan”.
  • the antenna reception wave W1 received after the transmission includes the echo signal Ec.
  • the echo signal Ec is a reflected wave generated by the transmission of the radar detection pulse W11.
  • the racon 20 transmits the racon notification pulse W21. Therefore, in this case, the antenna reception wave W1 includes the racon notification pulse W21 in addition to the echo signal Ec.
  • the echo signal Ec and the racon notification pulse W21 are collectively referred to as a detection reception signal R (k).
  • the detection reception signal R (k) is a signal received by the antenna unit 11 after the antenna unit 11 transmits the radar detection pulse W11.
  • the time k indicates the time when the detection reception signal R (k) is received.
  • the radar transceiver 10 transmits the radar communication pulse W12 toward the racon 20, the received antenna reception wave W1 includes the racon communication pulse W22 but does not include the echo signal Ec.
  • the antenna unit 11 is used to perform a transmission operation and a reception operation.
  • the electromagnetic wave transmitting antenna unit and the electromagnetic wave receiving antenna unit may be separate.
  • the circulator 12 is a three-port circulator to which the antenna unit 11, the transmitter 13, and the receiver 14 are connected.
  • the circulator 12 transmits the radar wave W10 output from the transmitter 13 to the antenna unit 11. Further, the circulator 12 transmits the antenna reception wave W ⁇ b> 1 received by the antenna unit 11 to the receiver 14.
  • the transmitter 13 up-converts and amplifies the radar wave W10 (radar detection pulse W11 or radar communication pulse W12) generated by the signal processing unit 15 to a predetermined RF (Radio frequency) frequency band.
  • the receiver 14 amplifies the antenna reception wave W1 from the antenna unit 11.
  • the receiver 14 outputs the amplified antenna reception wave W ⁇ b> 1 to the signal processing unit 15.
  • the signal processing unit 15 is an example of the “signal processing device” in the present invention.
  • the signal processing unit 15 is configured to generate a radar wave W10. Further, the signal processing unit 15 generates the pixel data Y k [i, j] of the image to be displayed on the radar image display 16 and the racon communication information to be displayed on the communication information display 17 based on the antenna reception wave W1. D20 is extracted.
  • the signal processing unit 15 includes a sweep memory 151, an image data generation unit 152, a demodulation processing unit 153, a determination unit 154, a radar communication information setting unit 155, a radar communication pulse generation unit 156, and a radar detection pulse generation unit. 157 and a transmission waveform switching unit 158.
  • the sweep memory 151 is configured to store the detection reception signal R (k) received by the receiver 14.
  • the detection reception signal R (k) is a reception signal of R- ⁇ system coordinates. The position corresponding to the detection reception signal R (k) is indicated by polar coordinates shown in FIG. 2 where the position from the antenna unit 11 (own ship 2) is the distance r and the angle about the antenna unit 11 is the antenna angle ⁇ . Identified.
  • the sweep memory 151 stores the latest detection reception signal R (k) or the detection reception signal R (k ⁇ 1) of the past for one sweep.
  • the reception signal R (k ⁇ 1) for past detection for one sweep is an example of the “past detection result” of the present invention.
  • the detection reception signals R (k) and R (k ⁇ 1) are collectively referred to as detection reception signals R (K).
  • FIG. 6 is a flowchart for explaining an example of the operation of the sweep memory 151.
  • the sweep memory 151 determines whether or not the radar wave W10 transmitted at the most recent time is a detector detection pulse W11 (step S101). Specifically, the sweep memory 151 determines whether or not a command signal CM (described later) output from the determination unit 154 is a command for transmitting the radar detection pulse W11.
  • CM command signal
  • the sweep memory 151 stores the detection reception signal R (k) from the receiver 14 (step S102). . That is, the sweep memory 151 updates the detection reception signal R (k).
  • the sweep memory 151 does not store the detection reception signal R (k) from the receiver 14 (Step S101). S103). In this case, the sweep memory 151 does not update the stored contents, and retains the detection reception signal R (k ⁇ 1) that is already held as a past detection result.
  • the detection reception signal R (k) or the detection reception signal R (k ⁇ 1) stored in the sweep memory 151 is supplied to the image data generation unit 152.
  • the image data generation unit 152 is configured to generate image data based on the detection result using the radar detection pulse W11. More specifically, the image data generation unit 152 generates pixel data Y k [i, j] for causing the radar image display 16 to display using the detection reception signal R (K).
  • the pixel data Y k [i, j] is an example of the “image data” in the present invention.
  • the image data generation unit 152 includes a pixel data generation unit 152a and an image memory 152b.
  • the pixel data generation unit 152a determines pixel data G k [i, j] to be written to the image memory 152b based on the detection reception signal R (K).
  • [I, j] indicates coordinates in the XY coordinate system
  • pixel data G k [i, j] indicates a signal level at coordinates specified by [i, j].
  • the pixel data generation unit 152a converts each position specified by the detection reception signal R (K) from the R- ⁇ coordinate system to the XY coordinate system (orthogonal coordinate system).
  • the pixel data generation unit 152a sets the position of the antenna unit 11 as the origin (i 0 , j 0 ).
  • the pixel data generation unit 152a corresponds to the XY coordinate system based on the antenna angle ⁇ and the reading position of the detection reception signal R (K) (corresponding to the distance r from the antenna unit 11).
  • the address (position) is determined.
  • Pixel data G k [i, j] obtained based on one detection reception signal R (K) is pixel data of a region detected by one sweep operation.
  • the pixel data generation unit 152a outputs the pixel data G k [i, j] to the image memory 152b.
  • the image memory 152b stores pixel data G k [i, j] for a plurality of sweeps corresponding to one scan.
  • the image memory 152b performs processing on at least a part of the accumulated pixel data G k [i, j] for one scan. Thereby, each pixel data G k [i, j] is output to the radar image display 16 as pixel data Y k [i, j].
  • the radar image display 16 is configured to display an image specified by the pixel data Y k [i, j].
  • the radar image display 16 is a display device such as a liquid crystal display.
  • the PPI screen 161 of the radar image display 16 is configured to two-dimensionally display the position of the target by scanning lines that rotate on a circular display area.
  • the PPI screen 161 displays the position of own ship 2 as the center. Each pixel of the PPI screen 161 displays a color and gradation according to the received signal level at the corresponding coordinates (i, j). As a result, the echo image P3 of the other ship 3, the echo image P4 of the land 4 and the echo image P20 of the racon 20 are displayed on the PPI screen 161.
  • the radar transceiver 10 is configured to alternatively transmit a radar detection pulse W11 and a radar communication pulse W12. For this reason, the radar transceiver 10 cannot detect the target because it does not transmit the radar detection pulse W11 while transmitting the radar communication pulse W12.
  • pixel data Y k [i, j] is generated when the radar wave W10 can communicate with the racon 20 and when the radar wave W10 cannot communicate with the racon 20.
  • the processing to do is different.
  • the radar detection pulse W11 is also used in the PCA1 corresponding to the communication range CA1 in which the radar transceiver 10 and the racon 20 can communicate on the PPI screen 161. The detection result is displayed. A specific example of such processing will be described later.
  • the communication range CA1 indicates a range in which the radar transceiver 10 and the racon 20 can communicate with each other.
  • the communication range CA1 is a fan-shaped area in plan view.
  • the antenna reception wave W1 is output to the demodulation processing unit 153 in addition to the sweep memory 151.
  • the demodulation processing unit 153 demodulates the racon response wave W20 using a demodulation method corresponding to the modulation method of the racon 20. Thereby, the demodulation process part 153 acquires racon communication information D20.
  • the racon communication information D20 is output to the communication information display 17 and the determination unit 154.
  • the communication information display 17 is a display for displaying the racon communication information D20.
  • the communication information indicator 17 is a display device such as a liquid crystal display.
  • the communication information display 17 and the radar image display 16 are configured separately, but this need not be the case.
  • the communication information display 17 and the radar image display 16 may be configured by a display device having a single display screen.
  • the determination unit 154 is an example of the “communication range detection unit” in the present invention.
  • the determination unit 154 is provided to determine which of the radar detection pulse W11 and the radar communication pulse W12 is to be transmitted.
  • the determination unit 154 performs processing for transmitting the radar detection pulse W11 to the communication range CA1 between transmissions of the radar communication pulse W12. An example of the flow of processing in the determination unit 154 will be described later. Next, a configuration for generating the radar communication pulse W12 will be described.
  • the radar information setting unit 155 is configured to generate a signal sequence of the radar communication information D11.
  • the signal sequence of the radar communication information D11 is a signal sequence obtained by adding an additional signal sequence to the signal sequence of the radar communication information D10 stored in the radar communication information memory 18.
  • the additional signal series includes a signal series as a preamble indicating the radar communication pulse W12, and a signal series for specifying a code for error detection / error correction.
  • the radar communication information setting unit 155 outputs the signal sequence of the radar communication information D11 to the radar communication pulse generation unit 156.
  • the radar communication information memory 18 in which the radar communication information D10 is stored is a storage unit provided in the radar transceiver 10, and is formed by using, for example, a nonvolatile memory such as a ROM or a flash memory.
  • the radar communication information memory 18 may be provided as one component of the radar transceiver 10 or may be provided as an element different from the radar transceiver 10.
  • the radar communication pulse generation unit 156 is an example of the “communication signal generation unit” in the present invention.
  • the radar communication pulse generation unit 156 performs generation processing of the radar communication pulse W12.
  • the radar communication pulse generator 156 modulates the signal sequence of the radar communication information D11 by a predetermined method. Thereby, the radar communication pulse generation unit 156 generates the radar communication pulse W12.
  • the radar communication pulse W12 is an example of the “communication signal for communicating with a communication target” in the present invention.
  • Radar communication pulse W12 is output to transmission waveform switching section 158.
  • the transmission waveform switching unit 158 is connected to the radar detection pulse generation unit 157 in addition to the radar communication pulse generation unit 156.
  • the radar detection pulse generation unit 157 is an example of the “detection signal generation unit” in the present invention.
  • the radar detection pulse generator 157 generates a waveform of the radar detection pulse W11.
  • the radar detection pulse W11 is an example of the “detection signal for detecting a target around the radar device” of the present invention, and generates an echo signal Ec having a sufficiently strong intensity when irradiated on the target. It is a pulse. As a result, the target can be detected using the radar detection pulse W11.
  • the radar communication pulse W12 is a data communication pulse for transmitting the radar communication information D10, and is not a pulse for generating the echo signal Ec when the target is irradiated. That is, the radar communication pulse W12 is not used for detecting a target.
  • the radar detection pulse generation unit 157 transmits the radar detection pulse W11 to the transmission waveform switching unit 158.
  • the transmission waveform switching unit 158 switches between the mode for transmitting the radar detection pulse W11 and the mode for transmitting the radar communication pulse W12 based on the command signal CM from the determination unit 154.
  • the transmission waveform switching unit 158 selects the mode for transmitting the radar detection pulse W11
  • the transmission waveform switching unit 158 outputs the radar detection pulse W11 from the radar detection pulse generation unit 157 to the transmitter 13.
  • the transmission waveform switching unit 158 selects the mode for transmitting the radar communication pulse W12
  • the transmission waveform switching unit 158 outputs the radar communication pulse W12 from the radar communication pulse generation unit 156 to the transmitter 13.
  • FIG. 7 is a flowchart illustrating an example of a processing flow of the determination unit 154.
  • the determination unit 154 determines whether the antenna received wave W1 demodulated by the demodulation processing unit 153 includes the racon response wave W20 (step S201). For example, when the power of the antenna reception wave W1 is less than the predetermined power, the determination unit 154 determines that the racon response wave W20 is not included in the antenna reception wave W1 (NO in step S201).
  • the determination unit 154 determines the presence or absence of the racon response wave W20 depending on whether or not the demodulation processing result in the demodulation processing unit 153 includes a preamble signal sequence indicating the racon response wave W20. Also good. For example, when the demodulation processing unit 153 successfully demodulates the racon response wave W20, the determination unit 154 may determine that the antenna received wave W1 includes the racon response wave W20.
  • the determination unit 154 transmits a signal indicating that the radar detection pulse W11 is transmitted as the command signal CM to the transmission waveform switching unit. It transmits to 158 (step S202).
  • the determination unit 154 determines that the racon response wave W20 is included in the antenna reception wave W1 (YES in step S201). Determination unit 154 treats the range in which racon response wave W20 is detected as communication range CA1. Thus, the determination unit 154 detects the communication range CA1 that communicates with the racon 20 in the azimuth direction C1 by determining whether or not the racon response wave W20 is included in the antenna reception wave W1.
  • the determination unit 154 determines the number of times the radar communication pulse W12 is continuously transmitted (step S203). Specifically, if the radar communication pulse W12 from radar transceiver 10 has been continuously transmitted x 1 time (YES in step S203), the determination unit 154 as a command signal CM, transmits the radar detection pulse W11 The signal is output to the transmission waveform switching unit 158 (step S202). Thereby, the radar transceiver 10 can be switched to the detection mode even while the radar transceiver 10 is in the communication mode.
  • the continuous transmission number of racons communication pulse W22 is is less than x 1 sweep times (NO in step S203), the determination unit 154 as a command signal CM, the signal to be transmitted radar communication pulse W12, transmission waveform switching The data is output to the unit 158 (step S204).
  • the above is an example of processing in the determination unit 154. Next, a state realized by the determination by the determination unit 154 will be described.
  • FIG. 8 is a diagram for explaining the main points of the operation of the radar transceiver 10 and the main points of the operation of the racon 20.
  • the radar transceiver 10 transmits the radar detection pulse W ⁇ b> 11 to the outside of the communication range CA ⁇ b> 1 in the operation of the ⁇ 1 sweep (timing T ⁇ b> 1), the racon 20 The racon response wave W20 is not transmitted. Thereafter, in the operation of the ⁇ 2 sweep, the radar transceiver 10 transmits the radar detection pulse W11 toward the communication range CA1 (timing T2). Thereafter, the radar transceiver 10 starts receiving the detection reception signal R (k) (timing T3).
  • the racon 20 transmits a racon notification pulse W21 to the radar transceiver 10 (timing T4).
  • the racon response wave W20 is received by the radar transceiver 10.
  • the radar transceiver 10 recognizes the presence of the racon 20.
  • radar transceiver 10 transmits a radar communication pulse W12 (timing T5), then starts receiving the racon communication pulse W22 (Step T6).
  • the racon 20 that has received the radar communication pulse W12 acquires the radar communication information D10 by performing demodulation processing on the radar communication pulse W12, and stores the radar communication information D10 in the reception information memory 27.
  • the racon 20 outputs a racon communication pulse W22 in parallel with this storage operation (timing T7).
  • the racon communication pulse W22 is received by the radar transceiver 10, and as a result, the racon communication information D20 is displayed on the communication information display 17.
  • the radar communication pulse W12 is not transmitted continuously x 2 times. Therefore, the radar transceiver 10, the theta 4 sweep th operation, again, sends the radar communication pulse W12 (timing T8). Thereafter, the radar transceiver 10 starts receiving the racon communication pulse W22 (timing T9).
  • the racon 20 that has received the radar communication pulse W12 performs demodulation processing of the radar detection pulse W11, thereby acquiring the radar communication information D10, and stores the radar communication information D10 in the reception information memory 27.
  • the racon 20 outputs a racon communication pulse W22 in parallel with this storage operation (timing T10).
  • the racon communication pulse W22 is received by the radar transceiver 10, and as a result, the racon communication information D20 is displayed on the communication information display 17.
  • radar communications pulse W12 is, x 2 sweeps (2 sweep) is transmitted continuously. Therefore, the determination unit 154 outputs a transmission command of the radar detection pulse W11 to the transmission waveform switching unit 158 as the command signal CM.
  • the radar transceiver 10 theta 5 in sweep th operation, transmits the radar detection pulse W11 (timing T11). Thereafter, the radar transceiver 10 starts receiving the detection reception signal R (k) (timing T12).
  • the operation from timing T2 to timing T11 is repeated while reaching the racon 20. That is, the operation from timing T11 to T20 is the same as the operation from timing T2 to timing T11.
  • the radar transceiver 10 After timing T20, when the radar wave W10 does not reach the communication range CA1 with the rotation of the antenna unit 11, the radar transceiver 10 repeats transmission of the radar detection pulse W11. When the radar wave W10 reaches the communication range CA1 again with the rotation of the antenna unit 11, the processes at timings T2 to T11 are repeated.
  • the radar detection pulse W11 is transmitted between the time when the radar communication pulse W12 is repeatedly transmitted. 2, 3, and 5, with the above-described configuration, on PPI screen 161, display without a sense of incongruity is performed between range PCA ⁇ b> 1 corresponding to communication range CA ⁇ b> 1 and other ranges.
  • the outside of the range PCA1 corresponding to outside the communication range CA1 shows a detection result obtained by transmitting the radar detection pulse W11 at the same azimuth interval as the resolution of the radar transceiver 10. .
  • the echo image P3 of the other ship 3 and the echo image P4 of the land 4 are displayed as images continuous in the azimuth direction C1.
  • a range PCA1 corresponding to the communication range CA1 indicates a detection result when the radar detection pulse W11 is transmitted at an azimuth interval three times the resolution of the radar transceiver 10.
  • the image of the direction in which the radar communication pulse W12 is transmitted is displayed on the PPI screen 161 using the detection result by the transmission of the latest radar detection pulse W11. Is done.
  • the range PCA1 corresponding to the communication range CA1 the lack of images due to the fact that the radar detection pulse W11 is not transmitted is compensated.
  • the signal processing unit 15 of the present embodiment has a configuration for indicating that the echo image display processing related to the range PCA1 corresponding to the communication range CA1 is different from the echo image display processing related to other than the range PCA1. is doing.
  • the determination unit 154 specifies a range in which the racon response wave W20 is detected in the azimuth direction C1 by referring to the command signal CM generated by itself.
  • the determination unit 154 outputs a command signal CM for changing the contour of the pixel region corresponding to this range as indicated by a broken line to the image memory 152b.
  • the image memory 152b changes the corresponding pixel data G k [i, j] in the image memory 152b as instructed.
  • the pixel data after this change processing is performed is output as pixel data Y k [i, j].
  • the outline of the communication range CA1 is indicated by a dotted line.
  • the radar communication pulse W12 is transmitted in the communication range CA1. Then, while the radar communication pulse W12 is being transmitted, the radar detection pulse W11 is not transmitted. For this reason, the target is not detected in the area where the radar detection pulse W11 is not transmitted in the communication range CA1.
  • the pixel data Y k [i, j] indicating the detection result of the communication range CA1 and process for generating, pixel data indicating the communication range CA1 outside of the detection results Y k [i, j] This is different from the process for generating.
  • the pixel data G k [i, j] indicating the target detection result can be generated by the image data generation unit 152 even in the area where the radar detection pulse W11 is not transmitted in the communication range CA1. It becomes possible. As described above, the detection result using the radar detection pulse W11 can be displayed on the PPI screen 161 for the communication range CA1 in which data communication is performed.
  • the determination unit 154 makes the transmission interval of the radar detection pulse W11 in the communication range CA1 larger than the transmission interval of the radar detection pulse W11 outside the communication range CA1.
  • the determination unit 154 causes the radar communication pulse W12 to be transmitted when the radar detection pulse W11 is not transmitted in the communication range CA1. Thereby, the radar transceiver 10 can detect the target while transmitting the radar communication information D10 in the communication range CA1.
  • the image data generation unit 152 uses the past detection reception signal R (k-1) in addition to the detection reception signal R (k) to detect the communication range CA1. To generate pixel data G k [i, j]. Thereby, the radar transceiver 10 can generate the pixel data G k [i, j] by using the past detection result even in the region where the radar detection pulse W11 is not transmitted.
  • the image data generation unit 152 uses the past detection reception signal R (k ⁇ 1) stored in the sweep memory 151 as the past detection result. That is, the image data generation unit 152 can use the detection reception signal R (k ⁇ 1) as raw data obtained by transmitting the radar detection pulse W11 as a past detection result. . Thereby, the image data generation unit 152 can generate more accurate pixel data Y k [i, j]. As a result, the image data generation unit 152 can generate pixel data Y k [i, j] that can more accurately display the target detection result in the communication range CA1 on the PPI screen 161.
  • the image data generation unit 152 generates pixel data G k [i, j] that can be displayed to specify the communication range CA1. Thereby, the operator who has seen the PPI screen 161 can recognize the communication range CA1. As a result, it is possible to notify the operator of the radar transceiver 10 that the detection result of the communication range CA1 and the detection result outside the communication range CA1 are displayed on the PPI screen 161 through different image processing.
  • the image data generation unit 152 generates the pixel data Y k [i, j] so that display for specifying the position of the racon 20 is performed.
  • the operator who sees the display on the PPI screen 161 can know the position of the racon 20. That is, the echo image P20 of the racon 20 as a target within the communication range CA1 to which the radar communication pulse W12 is transmitted can be displayed on the PPI screen 161.
  • the second embodiment of the present invention is different from the first embodiment in the processing in the sweep memory 151, the processing in the selection unit 154, and the processing in the image memory 152b. This will be specifically described below.
  • the sweep memory 151 holds only the reception signal R (k) for detection in the latest sweep operation regardless of whether or not the radar wave W1 transmitted from the radar transceiver 10 is the radar detection pulse W11.
  • FIG. 9 is a flowchart for explaining an example of a processing flow in the determination unit 154 according to the second embodiment of the present invention.
  • the determination unit 154 performs the process shown in FIG. 9 for each sweep operation. As shown in FIGS. 5 and 9, the determination unit 154 first determines whether or not the antenna received wave W1 received by the receiver 14 includes the racon communication pulse W22 (step 301). The determination unit 154 determines the presence or absence of the racon communication pulse W22 based on, for example, whether or not a preamble indicating the racon communication pulse W22 is included.
  • the determination unit 154 transmits a signal indicating that the radar detection pulse W11 is transmitted in the same direction at the next scan as the command signal CM.
  • the waveform is transmitted to the transmission waveform switching unit 158 (step S302).
  • determining unit 154 determines that racon communication pulse W22 is included in antenna reception wave W1 (YES in step S301)
  • racon communication pulse W22 continues in the direction in which racon communication pulse W22 is received.
  • the number of times of transmission is determined (step S303).
  • the radar transceiver 10 can be switched to the detection mode even while the radar transceiver 10 is in the communication mode.
  • step S301 the continuous transmission number of racons communication pulse W22 is is less than 2 times x (NO in step S303), determination unit 154, as a command signal CM, A signal for transmitting the radar communication pulse W12 in the same direction at the next scan is output to the transmission waveform switching unit 158 (step S304).
  • the above is an example of the flow of processing in the determination unit 154 according to the second embodiment of the present invention. Next, a state realized by the determination by the determination unit 154 will be described.
  • FIG. 10 is a diagram for explaining the main points of the operation of the radar transceiver 10 and the main points of the operation of the racon 20 in the second embodiment of the present invention.
  • FIG. 10 shows the operation of the radar transceiver 10 and the operation of the racon 20 at each of the N-2 scan time, the N-1 scan time, and the N scan time.
  • the radar transceiver 10 As shown in FIGS. 5, 9 and 10, the N-2 scan time, the radar transceiver 10, the operation of the theta 1 sweep th transmitting the radar detection pulse W11. However, in this ⁇ 1 sweep, the radar wave W10 is not received by the racon 20, and the racon response wave W20 is not transmitted to the radar transceiver 10.
  • the radar transceiver 10 transmits the radar detection pulse W11 again at the ⁇ 2 sweep, the radar detection pulse W11 is received by the racon 20. As a result, the racon 20 transmits a racon notification pulse W21 to the radar transceiver 10.
  • the radar detection pulse W11 is transmitted during the ⁇ 2 sweep operation at the next N ⁇ 1 scan (step S302). .
  • the radar detection pulse W11 is transmitted during the ⁇ 2 sweep operation.
  • the operation in the theta 3 sweeps.
  • N-2 scan time when the theta 3 sweep operation, by radar communication pulse W12 is transmitted, racon communication pulse W22 are transmitted.
  • the number of transmissions racons communication pulse W22 in theta 3 sweep operation time is still once (NO at step S303). Therefore, the radar transceiver 10, when the theta 3 sweep operation in the next N-1 scan time, transmits radar communication pulse W12 (step S304).
  • the racon communication pulse W22 is transmitted from the racon 20 during the ⁇ 3 sweep operation at the N-1 scan time.
  • the radar transceiver 10 the continuous reception times of racon communication pulse W22 in theta 3 sweep operation time reaches the second time (YES in step S303). Therefore, the radar transceiver 10 transmits the radar detection pulse W11 during the next N scan operation (step S302).
  • Both the ⁇ 4 sweep operation and the ⁇ 5 sweep operation are the same as the operations in the ⁇ 3 sweep operation.
  • the radar transceiver 10 receives the racon notification pulse W21 and then transmits the radar communication pulse W12 during each sweep operation of ⁇ 3 , ⁇ 4 , ⁇ 5 in the communication range CA1. repeat.
  • the radar transceiver 10 receives the racon notification pulse W21 and then transmits the radar communication pulse W12 during each sweep operation of ⁇ 3 , ⁇ 4 , ⁇ 5 in the communication range CA1. repeat.
  • the radar transceiver 10 repeats the transmission of the radar detection pulse W11 even though it receives the racon notification pulse W21 from the racon 20.
  • the operation at the N-2 scan time, the operation at the N-1 scan time, and the operation at the N scan time are repeatedly performed.
  • the image memory 152b stores pixel data Y k ⁇ 1 [i, j] at the time point before one scan.
  • the pixel data Y k ⁇ 1 [i, j] is an example of “past image data indicating a past detection result” in the present invention.
  • the image memory 152b scans for each pixel using the pixel data G k [i, j] generated by the pixel data generation unit 152a and the past corresponding pixel data Y k ⁇ 1 [i, j]. Perform correlation processing. Specifically, the level Y k [i, j] of the pixel data output from the image memory 152b is obtained by the following calculation.
  • Y k [i, j] ⁇ ⁇ Y k ⁇ 1 [i, j] + ⁇ ⁇ G k [i, j]
  • ⁇ and ⁇ are predetermined weighting coefficients, respectively.
  • the blending ratio between the past pixel data Y k ⁇ 1 [i, j] and the latest pixel data G k [i, j] is determined by the weighting coefficients ⁇ and ⁇ .
  • the sum of the weighting coefficients ⁇ and ⁇ is set to 1.
  • each pixel data Y k [i, j] is weighted by a case where it is generated along with transmission of the radar detection pulse W11 and a case where it is generated along with transmission of the radar communication pulse W12.
  • the setting values ⁇ and ⁇ are different.
  • FIG. 11 is a flowchart for explaining an example of a processing flow for setting the weighting coefficients ⁇ and ⁇ by the image memory 152b.
  • the image memory 152b reads the determination result in the determination unit 154 (step S401).
  • the image memory 152b determines whether or not the radar detection pulse W11 is transmitted at the latest sweep time (step S402).
  • step S402 the image memory 152b performs weighting so that both the past pixel data Y k-1 [i, j] and the latest pixel data G k [i, j] are reflected.
  • step S402 the radar detection pulse W11 is not transmitted.
  • the detection reception signal R (k) is not input to the sweep memory 151.
  • the echo image P20 of the racon 20 and the like can be displayed on the PPI screen 161 using the past pixel data Y k-1 [i, j] also for the location where the radar communication pulse W12 is transmitted. .
  • the image memory 152b stores pixel data indicating past detection results as past pixel data Y k-1 [i, j]. Further, the image data generation unit 152 uses the past pixel data Y k ⁇ 1 [i, j] as a past detection result using the radar detection pulse W11. The data amount of the pixel data G k [i, j] is small compared to the data amount of the detection reception signal R (k) as raw data. Therefore, the memory capacity required for the radar transceiver 10 can be reduced.
  • the radar transceiver 10 transmits the radar detection pulse W11 in the communication range CA1 while transmitting the radar communication pulse W12. In such a configuration, the transmission speed of the radar communication pulse W12 decreases. However, as a result of the radar detection pulse W11 being transmitted to the communication range CA1, it is possible to detect a target existing within the communication range CA1. On the other hand, in the second embodiment of the present invention, more radar communication pulses W12 can be transmitted in the communication range CA1 at the N-2 scan time and the N-1 scan time. Therefore, the transmission speed of information by the radar transceiver 10 can be further increased.
  • the portion where the radar detection pulse W11 is not transmitted is displayed on the PPI screen 161 using the past pixel data Y k-1 [i, j]. Therefore, there is room for improvement in the accuracy of detection of the presence / absence of a target at a location where the radar detection pulse W11 is not transmitted.
  • FIG. 12 is a block diagram showing a configuration of a radar transceiver 10A according to the third embodiment of the present invention.
  • a radar transceiver 10A includes an antenna unit 11, a circulator 12, a transmitter 13, a receiver 14, a signal processing unit 15A, a radar video display 16, and a communication information display 17. And a radar communication information memory 18.
  • the signal processing unit 15A includes a sweep memory 151, an image data generation unit 152, a demodulation processing unit 153, a determination unit 154, a radar communication information setting unit 155, a radar communication pulse generation unit 156, and a radar detection pulse generation unit. 157, a transmission waveform switching unit 158, and a control unit 159.
  • the control unit 159 is connected to the receiver 14, the determination unit 154, and the pixel data generation unit 152a.
  • FIG. 13 is a flowchart for explaining an example of a process flow in the control unit 159.
  • control unit 159 determines the type of radar wave W10 at the latest time point (step S501).
  • the control unit 159 determines the type of the radar wave W10 by referring to the command signal CM output from the determination unit 154 to the transmission waveform switching unit 158.
  • the control unit 159 reads the latest detection reception signal R (k) stored in the sweep buffer 151 (Ste S502).
  • the control unit 159 stores the past (before one sweep operation) stored in the image memory 152b. Pixel data Y k ⁇ 1 [i, j] is read (step S503).
  • control unit 159 refers to the read detection reception signal R (k) or the pixel data Y k ⁇ 1 [i, j]. Thus, the control unit 159 determines whether or not a target (another ship 3 or the like) exists between the radar transceiver 10A and the racon 20 (step S504). Specifically, the control unit 159 determines whether or not the signal level in the region between the radar transceiver 10A and the racon 20 exceeds a predetermined threshold value.
  • the control unit 159 determines that a target exists between the radar transceiver 10A and the racon 20 (YES in step S504). In this case, the control unit 159 causes the determination unit 154 to set the first processing mode (step S505).
  • the first processing mode is a mode for performing processing similar to the processing in the first embodiment of the present invention. When the first processing mode is set, processing similar to the processing in the flowcharts shown in FIGS. 6 and 7 is performed. Therefore, detailed description of the first processing mode is omitted.
  • the control unit 159 determines that there is no target between the radar transceiver 10A and the racon 20 (NO in step S504). In this case, the control unit 159 causes the determination unit 154 to set the second processing mode (step S506).
  • the second processing mode is a mode for performing processing similar to the processing in the second embodiment of the present invention. When the second processing mode is set, processing similar to the processing in the flowcharts shown in FIGS. 9 and 11 is performed. Therefore, detailed description of the second processing mode is omitted.
  • the radar transceiver 10A of the third embodiment of the present invention when a target such as the other ship 3 exists in the vicinity of the own ship 2, the process in the first processing mode is performed. Thereby, when the target exists in the vicinity of the own ship 2, the radar detection pulse W11 is transmitted toward the communication range CA1 every time the scanning operation is performed. Thereby, the radar transceiver 10A can detect the target in the vicinity of the ship 2 more accurately.
  • the processing in the second processing mode is performed.
  • a radar that can display the echo image P3 of the target existing in the communication range CA1 on the PPI screen 161 and transmit it to the racon 20.
  • More communication pulses W12 can be made. Thereby, the total amount of information that can be transmitted to the racon 20 in one scan operation can be increased.
  • the signal processing unit 15,15A the generated pixel data Y k indicating the detection result of the communication range CA1 [i, j] and generation processing, the pixel data Y k indicating the detection results of the outside communication range CA1 [i, j] What is necessary is just to be comprised so that a process may differ.
  • the image data generation unit 152 uses the past detection result (the detection reception signal R (k ⁇ 1) or the past pixel data Y k ⁇ 1 [i, j]), An example in which pixel data Y k [i, j] indicating the detection result of the communication range CA1 is generated has been described. However, this need not be the case. For example, the image data generation unit 152 may generate the pixel data Y k [i, j] without using the past detection result.
  • the signal processing unit 15 has been described as an example in which the past detection reception signal R (k ⁇ 1) is not used. However, this need not be the case.
  • the past detection reception signal R (k ⁇ 1) may be output from the sweep memory 151 to the image data generation unit 152.
  • the image data generation unit 152 may generate image data of an image without a display that identifies the communication range CA1 (displayed with a broken line in FIG. 3).
  • the radar transceivers 10 and 10A communicate with the racon 20.
  • the radar transceivers 10 and 10 ⁇ / b> A may communicate with a communication target other than the racon 20.
  • the radar transmitter / receiver 10, 10A has been described as an example in which one radar communication information D10 is repeatedly transmitted. However, this need not be the case.
  • the radar transceivers 10 and 10A may transmit different types of radar communication information. In this case, different types of radar communication information may be transmitted in a lump or may be individually transmitted by a plurality of radar communication pulses W12.

Abstract

[Problem] To provide a signal processing device and signal processing method whereby detection results can be displayed even in regions in which data transmission is performed. [Solution] A signal processing unit (15) in a radar transceiver (10) is provided with a radar detection-pulse generation unit (157), a radar communication-pulse generation unit (156), a determination unit (154), and an image-data generation unit (152). The determination unit (154) detects communication bounds (CA1) within which the radar transceiver (10) can communicate with a racon (20). The image-data generation unit (152) generates pixel data (Yk[i,j]) based on detection results obtained using radar detection pulses (W11). The process performed in the signal processing unit (15) to generate pixel data (Yk[i,j]) representing detection results within the aforementioned communication bounds (CA1) is different from the process performed in the signal processing unit (15) to generate pixel data (Yk[i,j]) representing detection results outside said communication bounds (CA1).

Description

信号処理装置、及び信号処理方法Signal processing apparatus and signal processing method
 本発明は、レーダ装置に備えられる信号処理装置、及びレーダ装置における信号処理方法に関する。 The present invention relates to a signal processing device provided in a radar device and a signal processing method in the radar device.
 例えば、船舶は、レーダ装置等を備えている。レーダ装置は、パルス信号を用いて、当該レーダ装置の周囲の物標を探知する。このようなレーダ装置において、物標の探知に加え、情報を送信する構成が知られている(例えば、特許文献1,2参照)。特許文献1,2には、レーダ装置が保持する情報を、パルス信号を用いて送信する構成が開示されている。 For example, a ship is equipped with a radar device and the like. The radar device detects a target around the radar device using the pulse signal. In such a radar apparatus, a configuration for transmitting information in addition to detecting a target is known (see, for example, Patent Documents 1 and 2). Patent Documents 1 and 2 disclose a configuration in which information held by a radar device is transmitted using a pulse signal.
特許第2797145号明細書([作用])Japanese Patent No. 2797145 ([Action]) 特開2010-8069号公報([0023])JP 2010-8069 A ([0023])
 特許文献2に記載の構成では、パルス電波に、通信データを重畳して形成された通信データ重畳電波を送信する場合を、データ送信状態として規定している。このデータ送信状態では、通信データ重畳電波の反射によって生じる反射波は、物標の探知に用いられない。このため、特許文献2に記載の構成では、データ送信状態において、物標を探知できない。その結果、レーダ装置のPPI(Plan Position Indicator scope)画面のうち、データ送信状態に対応する領域には、物標が表示されない。 In the configuration described in Patent Document 2, a case where a communication data superimposed radio wave formed by superimposing communication data on a pulse radio wave is transmitted is defined as a data transmission state. In this data transmission state, the reflected wave generated by the reflection of the communication data superimposed radio wave is not used for target detection. For this reason, the configuration described in Patent Document 2 cannot detect a target in the data transmission state. As a result, the target is not displayed in the area corresponding to the data transmission state in the PPI (Plan Position Indicator scope) screen of the radar apparatus.
 具体的には、図14に示すように、レーダ装置100を搭載した船舶(自船101)が、レーダービーコン102及び他船103の周囲を航行している場合を考える。以下、レーダービーコン102を、レーコン102という。レーコン102は、陸地104の近傍に配置されている。この場合、レーダ装置100は、レーコン102と通信範囲106で通信する。通信範囲106は、レーダ装置100のアンテナ部105を中心とする、扇状の範囲である。この場合、通信範囲106では、レーダ装置100は、探知用のパルス信号を送信しないので、物標を探知しない。 Specifically, as shown in FIG. 14, consider a case where a ship (own ship 101) equipped with the radar apparatus 100 is navigating around the radar beacon 102 and the other ship 103. Hereinafter, the radar beacon 102 is referred to as a racon 102. The racon 102 is disposed in the vicinity of the land 104. In this case, the radar apparatus 100 communicates with the racon 102 in the communication range 106. The communication range 106 is a fan-shaped range centering on the antenna unit 105 of the radar apparatus 100. In this case, in the communication range 106, the radar apparatus 100 does not transmit a pulse signal for detection, and thus does not detect a target.
 その結果、図15に示すように、レーダ装置100のPPI画面107には、通信範囲106に存在しているレーコン102、他船103及び陸地104について、エコー像は、表示されない。より具体的には、レーコン102のエコー像は、全く見えず、他船103のエコー像P103及び陸地104のエコー像P104は、通信範囲106内の部分が欠けている。したがって、レーダ装置100のオペレータは、通信範囲106における物標を、PPI画面107によっては認識できない。 As a result, as shown in FIG. 15, echo images are not displayed on the PPI screen 107 of the radar apparatus 100 for the racon 102, the other ship 103, and the land 104 existing in the communication range 106. More specifically, the echo image of the racon 102 is not seen at all, and the echo image P103 of the other ship 103 and the echo image P104 of the land 104 are lacking in the communication range 106. Therefore, the operator of the radar apparatus 100 cannot recognize the target in the communication range 106 on the PPI screen 107.
 本発明は、上記実情に鑑みることにより、データ送信が行われる領域についても、探知結果を表示することのできる、信号処理装置、及び信号処理方法を提供することを目的とする。 The present invention has an object to provide a signal processing device and a signal processing method capable of displaying a detection result even in an area where data transmission is performed in view of the above situation.
 (1)上記課題を解決するために、この発明のある局面に係わる信号処理装置は、レーダ装置に備えられる信号処理装置である。前記信号処理装置は、探知信号生成部と、通信信号生成部と、通信範囲検出部と、画像データ生成部と、を備える。前記探知信号生成部は、前記レーダ装置の周囲の物標を探知するための探知信号を送信するように構成されている。前記通信信号生成部は、所定の通信対象と通信するための通信信号を送信するように構成されている。前記通信範囲検出部は、前記レーダ装置の周囲の方位方向において、前記通信対象と通信する通信範囲を検出するように構成されている。前記画像データ生成部は、前記探知信号を用いた探知結果を示す画像データを生成するように構成されている。前記信号処理装置において、前記通信範囲の探知結果を示す前記画像データを生成するための処理と、前記通信範囲外の探知結果を示す前記画像データを生成するための処理と、が異なっている。 (1) In order to solve the above problems, a signal processing device according to an aspect of the present invention is a signal processing device provided in a radar device. The signal processing device includes a detection signal generation unit, a communication signal generation unit, a communication range detection unit, and an image data generation unit. The detection signal generation unit is configured to transmit a detection signal for detecting a target around the radar device. The communication signal generation unit is configured to transmit a communication signal for communicating with a predetermined communication target. The communication range detection unit is configured to detect a communication range communicating with the communication target in an azimuth direction around the radar device. The image data generation unit is configured to generate image data indicating a detection result using the detection signal. In the signal processing apparatus, a process for generating the image data indicating the detection result of the communication range is different from a process for generating the image data indicating the detection result outside the communication range.
 (2)好ましくは、前記信号処理装置は、前記探知信号及び前記通信信号の何れを送信するかを判断する、判断部を更に備える。前記判断部は、前記通信範囲における前記探知信号の送信間隔を、前記通信範囲外における前記探知信号の送信間隔よりも大きくさせる。前記判断部は、前記通信範囲において、前記探知信号が送信されていないときに前記通信信号を送信させる。 (2) Preferably, the signal processing device further includes a determination unit that determines which of the detection signal and the communication signal is transmitted. The determination unit makes the transmission interval of the detection signal in the communication range larger than the transmission interval of the detection signal outside the communication range. The determination unit transmits the communication signal when the detection signal is not transmitted in the communication range.
 (3)好ましくは、前記画像データ生成部は、過去の探知結果を用いて、前記通信範囲の探知結果を示す前記画像データを生成する。 (3) Preferably, the image data generation unit generates the image data indicating a detection result of the communication range using a past detection result.
 (4)より好ましくは、前記信号処理装置は、スイープメモリを更に備える。前記スイープメモリは、前記探知信号の送信後に受信された探知用受信信号を記憶する。前記画像データ生成部は、前記スイープメモリに記憶されている前記探知用受信信号を、前記過去の探知結果として用いることが可能である。 (4) More preferably, the signal processing device further includes a sweep memory. The sweep memory stores a detection reception signal received after transmission of the detection signal. The image data generation unit can use the detection reception signal stored in the sweep memory as the past detection result.
 (5)また、より好ましくは、前記信号処理装置は、画像メモリを更に備える。前記画像メモリは、過去の探知結果を示す画像データを過去画像データとして記憶する。前記画像データ生成部は、前記過去画像データを、前記過去の探知結果として用いる。 (5) More preferably, the signal processing device further includes an image memory. The image memory stores image data indicating past detection results as past image data. The image data generation unit uses the past image data as the past detection result.
 (6)好ましくは、前記画像データ生成部は、前記通信範囲を特定する表示が行われるように前記画像データを生成する。 (6) Preferably, the image data generation unit generates the image data so that display specifying the communication range is performed.
 (7)好ましくは、前記画像データ生成部は、前記通信対象の位置を特定する表示が行われるように前記画像データを生成する。 (7) Preferably, the image data generation unit generates the image data so that display specifying the position of the communication target is performed.
 (8)上記課題を解決するために、この発明のある局面に係わる信号処理方法は、レーダ装置における信号処理方法である。前記信号処理方法は、探知信号生成ステップと、通信信号生成ステップと、通信範囲検出ステップと、画像データ生成ステップと、を含む。前記探知信号生成ステップでは、前記レーダ装置の周囲の物標を探知するための探知信号を生成する。前記通信信号送信ステップでは、所定の通信対象と通信するための通信信号を生成する。前記通信範囲検出ステップでは、前記レーダ装置の周囲の方位方向において、前記通信対象と通信する通信範囲を検出する。前記画像データ生成ステップでは、前記探知信号を用いた探知結果を示す画像データを生成する。前記信号処理方法において、前記通信範囲の探知結果を示す前記画像データを生成するための処理と、前記通信範囲外の探知結果を示す前記画像データを生成するための処理と、が異なっている。 (8) In order to solve the above problems, a signal processing method according to an aspect of the present invention is a signal processing method in a radar apparatus. The signal processing method includes a detection signal generation step, a communication signal generation step, a communication range detection step, and an image data generation step. In the detection signal generation step, a detection signal for detecting a target around the radar apparatus is generated. In the communication signal transmitting step, a communication signal for communicating with a predetermined communication target is generated. In the communication range detection step, a communication range communicating with the communication target is detected in an azimuth direction around the radar device. In the image data generation step, image data indicating a detection result using the detection signal is generated. In the signal processing method, the process for generating the image data indicating the detection result of the communication range is different from the process for generating the image data indicating the detection result outside the communication range.
 本発明によると、データ送信が行われる領域についても、探知結果を表示することができる。 According to the present invention, the detection result can be displayed even in the area where data transmission is performed.
本発明の第1実施形態に係るレーダシステムの概念を説明するための概念図である。It is a conceptual diagram for demonstrating the concept of the radar system which concerns on 1st Embodiment of this invention. レーダ送受信機と、レーコンとの位置関係の一例を示す、模式図である。It is a schematic diagram which shows an example of the positional relationship between a radar transceiver and a racon. レーダ送受信機のレーダ映像表示器のPPI画面の表示例を示す図である。It is a figure which shows the example of a display of the PPI screen of the radar image display of a radar transceiver. レーコンの構成を示すブロック図である。It is a block diagram which shows the structure of a racon. レーダ送受信機の構成を示すブロック図である。It is a block diagram which shows the structure of a radar transceiver. スイープメモリの動作の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of operation | movement of a sweep memory. 判断部の処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process of a judgment part. レーダ送受信機の動作の要点と、レーコンの動作の要点とを説明するための図である。It is a figure for demonstrating the main point of operation | movement of a radar transmitter / receiver, and the main point of operation | movement of a racon. 本発明の第2実施形態における判断部での処理の流れの一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the flow of a process in the judgment part in 2nd Embodiment of this invention. 本発明の第2実施形態におけるレーダ送受信機の動作の要点と、レーコンの動作の要点とを説明するための図である。It is a figure for demonstrating the main point of operation | movement of the radar transmitter-receiver in 2nd Embodiment of this invention, and the main point of operation | movement of a racon. 画像メモリによる、重み付け係数を設定する処理の流れの一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the flow of a process which sets a weighting coefficient by an image memory. 本発明の第3実施形態に係るレーダ送受信機の構成を示すブロック図である。It is a block diagram which shows the structure of the radar transmitter / receiver which concerns on 3rd Embodiment of this invention. 制御部における処理の流れの一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the flow of a process in a control part. 従来技術のレーダ装置を説明するための模式図である。It is a schematic diagram for demonstrating the radar apparatus of a prior art. 従来技術のレーダ装置のPPI画面の表示例を説明するための模式図である。It is a schematic diagram for demonstrating the example of a display of the PPI screen of the radar apparatus of a prior art.
[第1実施形態]
 以下、本発明を実施するための形態について、図面を参照しつつ説明する。本発明は、信号処理装置、及び信号処理方法として広く適用することができる。尚、以下では、図中同一または相当部分には、同一符号を付してその説明は繰り返さない。
[First Embodiment]
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The present invention can be widely applied as a signal processing apparatus and a signal processing method. In the following, the same or corresponding parts in the drawings are denoted by the same reference numerals, and description thereof will not be repeated.
 まず、本実施形態に係るレーダシステム1の概念を説明する。図1は、本発明の第1実施形態に係るレーダシステム1の概念を説明するための概念図である。本実施形態では、レーダシステム1が、船舶用のレーダシステムである場合を例に説明する。尚、レーダシステム1は、航空機等、他の移動体用のレーダシステムであってもよい。 First, the concept of the radar system 1 according to the present embodiment will be described. FIG. 1 is a conceptual diagram for explaining the concept of the radar system 1 according to the first embodiment of the present invention. In the present embodiment, a case where the radar system 1 is a marine radar system will be described as an example. The radar system 1 may be a radar system for other moving objects such as an aircraft.
 レーダシステム1は、レーダ送受信機10と、レーダービーコン(以下、レーコンという)20と、を有している。レーダ送受信機10は、本発明の「レーダ装置」の一例である。また、レーコン20は、本発明の「通信対象」の一例である。 The radar system 1 includes a radar transceiver 10 and a radar beacon (hereinafter referred to as a racon) 20. The radar transceiver 10 is an example of the “radar apparatus” in the present invention. The racon 20 is an example of the “communication target” in the present invention.
 図2は、レーダ送受信機10と、レーコン20との位置関係の一例を示す、模式図である。図2は、レーダ送受信機10(自船2)を中心とする、円形状の領域を示している。図3は、レーダ送受信機10の後述するレーダ映像表示器16のPPI(Plan Position Indicator)画面161の表示例を示す図である。図2は、PPI画面161での表示内容に対応した表示をしている。 FIG. 2 is a schematic diagram showing an example of the positional relationship between the radar transceiver 10 and the racon 20. FIG. 2 shows a circular area centering on the radar transceiver 10 (own ship 2). FIG. 3 is a diagram showing a display example of a PPI (Plan Position Indicator) screen 161 of a radar image display 16 to be described later of the radar transceiver 10. FIG. 2 shows a display corresponding to the display content on the PPI screen 161.
 図2は、レーダ送受信機10(自船2)の周囲に、レーコン20、他船3、及び陸地4が存在している状態を示している。図1~図3を参照して、レーダ送受信機10は、漁船等の船舶に備えられる舶用レーダである。本実施形態では、レーダ送受信機10が備えられている船舶を「自船」という。また、自船2以外の船舶を、他船3という。 FIG. 2 shows a state where the racon 20, the other ship 3, and the land 4 are present around the radar transceiver 10 (own ship 2). 1 to 3, a radar transceiver 10 is a marine radar provided in a vessel such as a fishing boat. In this embodiment, the ship provided with the radar transceiver 10 is referred to as “own ship”. A ship other than own ship 2 is referred to as other ship 3.
 レーダ送受信機10は、電磁波の送信と、発射された電磁波が反射することで生じるエコー信号Ecの受信と、を交互に行うように構成されている。より具体的には、レーダ送受信機10は、レーダ波W10を送信するように構成されている。このレーダ波W10は、物標の探知を目的としたレーダ探知パルスW11、又は、通信を目的としたレーダ通信パルスW12を含む。 The radar transceiver 10 is configured to alternately perform transmission of an electromagnetic wave and reception of an echo signal Ec generated by reflecting the emitted electromagnetic wave. More specifically, the radar transceiver 10 is configured to transmit a radar wave W10. The radar wave W10 includes a radar detection pulse W11 for detecting a target or a radar communication pulse W12 for communication.
 レーダ探知パルスW11は、自船2の周囲の物標を探知するためのパルス信号である。レーダ探知パルスW11が発射されることに起因して、エコー信号Ecが自船2に向けて送信される。レーダ送受信機10は、このエコー信号Ecを用いて、PPI画面161に表示される画像の画像データを生成する。 The radar detection pulse W11 is a pulse signal for detecting a target around the ship 2. An echo signal Ec is transmitted toward the ship 2 due to the emission of the radar detection pulse W11. The radar transceiver 10 generates image data of an image displayed on the PPI screen 161 using the echo signal Ec.
 レーダ通信パルスW12は、レーダ送受信機10が保有しているレーダ通信情報D10を、レーコン20に送信するための通信信号である。レーダ通信情報D10は、例えば、自船2を特定する情報(船籍、船舶番号等)である。尚、レーダ通信情報D10は、自船2を特定する情報でなくてもよく、文字情報、画像情報、又は音声情報等、任意の情報であってもよい。 The radar communication pulse W12 is a communication signal for transmitting radar communication information D10 held by the radar transceiver 10 to the racon 20. The radar communication information D10 is, for example, information (a ship's register, ship number, etc.) that identifies the ship 2. The radar communication information D10 may not be information that identifies the ship 2 but may be arbitrary information such as character information, image information, or voice information.
 本実施形態では、レーコン20は、峡水道(narrow channel)に配置されている。本実施形態では、自船2が峡水道を航行する場合を例に説明する。レーコン20は、レーダ波W10を受信したことに応答して、レーコン応答波W20を送信する。即ち、レーコン20は、レーダ波W10をトリガとして、レーコン応答波W20を送信するように構成されている。レーコン応答波W20は、レーコン通知パルスW21、又はレーコン通信パルスW22を含んでいる。レーコン通知パルスW21は、レーコン20の存在をレーダ送受信機10に通知するための、通知信号である。レーコン通信パルスW22は、レーコン20に与えられているレーコン通信情報D20をレーダ送受信機10に送信するための、通信信号である。 In the present embodiment, the racon 20 is disposed in a narrow channel. In the present embodiment, a case where the ship 2 navigates the gorge channel will be described as an example. In response to receiving the radar wave W10, the racon 20 transmits the racon response wave W20. That is, the racon 20 is configured to transmit the racon response wave W20 using the radar wave W10 as a trigger. The racon response wave W20 includes a racon notification pulse W21 or a racon communication pulse W22. The racon notification pulse W <b> 21 is a notification signal for notifying the radar transceiver 10 of the presence of the racon 20. The racon communication pulse W22 is a communication signal for transmitting the racon communication information D20 given to the racon 20 to the radar transceiver 10.
 本実施形態では、レーコン通信情報D20は、文字、画像、及び音声の少なくとも一つを含む情報である。本実施形態では、レーコン通信情報D20は、レーコン20の位置(緯度及び経度)を示す情報、及びレーコン20が設置されている海域の天候情報を含んでいる。尚、レーコン通信情報D20は、上述の例示内容に限定されず、他の情報であってもよい。レーコン通信情報D20は、PPI画面161への表示を意図されていない情報である。 In the present embodiment, the racon communication information D20 is information including at least one of characters, images, and sounds. In the present embodiment, the racon communication information D20 includes information indicating the position (latitude and longitude) of the racon 20 and weather information of the sea area where the racon 20 is installed. Note that the racon communication information D20 is not limited to the above-described exemplary content, and may be other information. The racon communication information D20 is information that is not intended to be displayed on the PPI screen 161.
 レーダ送受信機10は、レーダ波W10を送信したことに応じて、アンテナ受信波W1を受信する。具体的には、レーダ送受信機10がレーダ探知パルスW11を送信した場合、アンテナ受信波W1は、エコー信号Ecを含んでいる。レーダ送受信機10は、エコー信号Ecによって特定されるエコー像を、PPI画面161に表示する。この場合において、アンテナ受信波W1に、レーコン通知パルスW21が含まれている場合、レーコン通知パルスW21で特定される画像も、PPI画面161に表示される。図3は、レーコン通知パルスW21で特定される画像として、"D"を示すモールス符号状の像PDを表示している。 The radar transceiver 10 receives the antenna reception wave W1 in response to the transmission of the radar wave W10. Specifically, when the radar transceiver 10 transmits a radar detection pulse W11, the antenna reception wave W1 includes an echo signal Ec. The radar transceiver 10 displays an echo image specified by the echo signal Ec on the PPI screen 161. In this case, when the antenna received wave W1 includes the racon notification pulse W21, an image specified by the racon notification pulse W21 is also displayed on the PPI screen 161. FIG. 3 displays a Morse code-like image PD indicating “D” as an image specified by the racon notification pulse W21.
 一方、レーダ送受信機10がレーコン20に向けてレーダ通信パルスW12を送信した場合、アンテナ受信波W1は、レーコン通信パルスW22を含んでいる。この場合、レーダ送受信機10は、レーコン通信パルスW22に含まれているレーコン通信情報D20を、PPI画面161とは別の画面に表示する。 On the other hand, when the radar transceiver 10 transmits the radar communication pulse W12 toward the racon 20, the antenna reception wave W1 includes the racon communication pulse W22. In this case, the radar transceiver 10 displays the racon communication information D20 included in the racon communication pulse W22 on a screen different from the PPI screen 161.
[レーコンの詳細な構成] 図4は、レーコン20の構成を示すブロック図である。次に、レーコン20の具体的な構成について説明する。図1及び図4に示すように、レーコン20は、トランスポンダ装置として設けられており、レーダ波W10を受信したことに反応して、レーコン応答波W20を送信する。 [Detailed Configuration of Racon] FIG. 4 is a block diagram showing the configuration of the racon 20. Next, a specific configuration of the racon 20 will be described. As shown in FIGS. 1 and 4, the racon 20 is provided as a transponder device, and transmits a racon response wave W20 in response to receiving the radar wave W10.
 レーコン20は、アンテナ部21と、サーキュレータ22と、受信機23と、送信機24と、情報送受信処理部25と、レーコン通信情報メモリ26と、受信情報メモリ27と、を有している。 The racon 20 includes an antenna unit 21, a circulator 22, a receiver 23, a transmitter 24, an information transmission / reception processing unit 25, a racon communication information memory 26, and a reception information memory 27.
 アンテナ部21は、電磁波の受信と、電磁波の送信と、を行うように構成されている。具体的には、アンテナ部21は、レーダ波W10を受信し、このレーダ波W10を、サーキュレータ22経由で受信機23へ出力する。また、アンテナ部21は、送信機24からサーキュレータ22を経由して出力されたレーコン応答波W20を、送信する。 The antenna unit 21 is configured to perform reception of electromagnetic waves and transmission of electromagnetic waves. Specifically, the antenna unit 21 receives the radar wave W <b> 10 and outputs the radar wave W <b> 10 to the receiver 23 via the circulator 22. The antenna unit 21 transmits a racon response wave W20 output from the transmitter 24 via the circulator 22.
 尚、本実施形態では、アンテナ部21を用いて、電磁波の送信及び受信を行っているけれども、この通りでなくてもよい。例えば、レーコン20において、電磁波の送信用アンテナ部と、電磁波の受信用アンテナ部とは、別体であってもよい。 In the present embodiment, the antenna unit 21 is used to transmit and receive electromagnetic waves, but this need not be the case. For example, in the racon 20, the electromagnetic wave transmitting antenna unit and the electromagnetic wave receiving antenna unit may be separate.
 サーキュレータ22は、アンテナ部21、受信機23及び送信機24が接続された、3ポートサーキュレータである。このサーキュレータ22は、アンテナ部21で受信されたレーダ波W10を、受信機23へ伝達する。また、サーキュレータ22は、送信機24から出力されたレーコン応答波W20を、アンテナ部21へ伝達する。 The circulator 22 is a three-port circulator to which the antenna unit 21, the receiver 23, and the transmitter 24 are connected. The circulator 22 transmits the radar wave W10 received by the antenna unit 21 to the receiver 23. Further, the circulator 22 transmits the racon response wave W20 output from the transmitter 24 to the antenna unit 21.
 受信機23は、サーキュレータ22から出力されたレーダ波W10を増幅し、情報送受信処理部25に出力する。 The receiver 23 amplifies the radar wave W10 output from the circulator 22 and outputs it to the information transmission / reception processing unit 25.
 送信機24は、情報送受信処理部25によって生成されたレーコン応答波W20を、所定のRF周波数帯にアップコンバート及び増幅する。送信機24は、レーコン応答波W20を、情報送受信処理部25で生成された送信トリガTgの示すタイミングで、サーキュレータ22に出力する。これにより、送信機24は、レーダ送受信機10のアンテナ部11へ向けて、レーコン応答波W20を送信する。 The transmitter 24 upconverts and amplifies the racon response wave W20 generated by the information transmission / reception processor 25 to a predetermined RF frequency band. The transmitter 24 outputs the racon response wave W20 to the circulator 22 at the timing indicated by the transmission trigger Tg generated by the information transmission / reception processing unit 25. Accordingly, the transmitter 24 transmits the racon response wave W20 toward the antenna unit 11 of the radar transceiver 10.
 情報送受信処理部25は、レーダ送受信機10からレーダ波W10を受信した場合に、このレーダ波W10に応じたレーコン応答波W20を生成し、且つ、レーコン応答波W20の送信処理を行うように構成されている。情報送受信処理部25は、CPU、RAM及びROM(図示せず)等を用いて構成されている。 When receiving the radar wave W10 from the radar transceiver 10, the information transmission / reception processing unit 25 is configured to generate a racon response wave W20 corresponding to the radar wave W10 and to perform transmission processing of the racon response wave W20. Has been. The information transmission / reception processing unit 25 is configured using a CPU, a RAM, a ROM (not shown), and the like.
 情報送受信処理部25は、復調処理部251と、送信情報設定部252と、パルス波形生成部253と、送信タイミング設定部254と、を有している。 The information transmission / reception processing unit 25 includes a demodulation processing unit 251, a transmission information setting unit 252, a pulse waveform generation unit 253, and a transmission timing setting unit 254.
 復調処理部251は、受信機23に接続されており、この受信機23から、レーダ波W10を受け付ける。レーダ波W10がレーダ通信パルスW12である場合、復調処理部251は、レーダ送受信機10の変調方式に対応する復調方式を用いて、レーダ通信パルスW12を復調処理する。復調処理部251は、レーダ通信パルスW12の復調処理により、レーダ通信情報D10の信号系列を取得する。復調処理部251は、レーダ通信情報D10を、送信情報設定部252へ出力する。一方、レーダ波W10がレーダ探知パルスW11である場合、復調処理部251は、レーダ探知パルスW11の復調処理結果を、送信情報設定部252へ出力する。 The demodulation processing unit 251 is connected to the receiver 23 and receives the radar wave W10 from the receiver 23. When the radar wave W10 is the radar communication pulse W12, the demodulation processing unit 251 demodulates the radar communication pulse W12 using a demodulation method corresponding to the modulation method of the radar transceiver 10. The demodulation processing unit 251 acquires the signal sequence of the radar communication information D10 by the demodulation process of the radar communication pulse W12. The demodulation processing unit 251 outputs the radar communication information D10 to the transmission information setting unit 252. On the other hand, when the radar wave W10 is the radar detection pulse W11, the demodulation processing unit 251 outputs the demodulation processing result of the radar detection pulse W11 to the transmission information setting unit 252.
 送信情報設定部252は、復調処理部251の処理結果に基づいて、所定の信号系列を設定する。具体的には、復調処理部251が、レーダ通信情報D10の信号系列を出力した場合、送信情報設定部252は、レーコン通信情報メモリ26から、レーコン通信情報D20を読み出す。そして、送信情報設定部252は、レーコン通信情報D21の信号系列を生成する。レーコン通信情報D21の信号系列は、レーコン通信情報D20の信号系列に付加信号系列を付加した、信号系列である。 The transmission information setting unit 252 sets a predetermined signal sequence based on the processing result of the demodulation processing unit 251. Specifically, when the demodulation processing unit 251 outputs the signal sequence of the radar communication information D10, the transmission information setting unit 252 reads the racon communication information D20 from the racon communication information memory 26. Then, transmission information setting section 252 generates a signal sequence of racon communication information D21. The signal sequence of the racon communication information D21 is a signal sequence obtained by adding an additional signal sequence to the signal sequence of the racon communication information D20.
 上記の付加信号系列は、レーダ送受信機10がレーコン応答波W20を検出及び同期するためのプリアンブルとしての信号系列と、誤り検出・誤り訂正のための符号を特定する信号系列と、を含んでいる。レーコン通信情報D20の信号系列、及び付加信号系列は、何れも、情報を、「0」及び「1」の2値で示した2値符号列である。 The additional signal sequence includes a signal sequence as a preamble for the radar transceiver 10 to detect and synchronize the racon response wave W20, and a signal sequence for specifying a code for error detection / error correction. . Each of the signal sequence and the additional signal sequence of the racon communication information D20 is a binary code string indicating the information as binary values of “0” and “1”.
 一方、復調処理部251が、レーダ探知パルスW11の復調処理結果を出力した場合、送信情報設定部252は、レーコン通知パルスW21の信号系列を生成する。 On the other hand, when the demodulation processing unit 251 outputs the demodulation processing result of the radar detection pulse W11, the transmission information setting unit 252 generates a signal sequence of the racon notification pulse W21.
 パルス波形生成部253は、送信情報設定部252で設定された信号系列に、所定の方式で変調を施す。これにより、パルス波形生成部253は、レーコン応答波W20(レーコン探知パルスW21又はレーコン通信パルスW22)を生成する。レーコン通信パルスW22は、レーコン通信情報D20を含んでいる。 The pulse waveform generation unit 253 modulates the signal series set by the transmission information setting unit 252 by a predetermined method. As a result, the pulse waveform generator 253 generates the racon response wave W20 (the racon detection pulse W21 or the racon communication pulse W22). The racon communication pulse W22 includes racon communication information D20.
 上記の変調方法として、ASK(Amplitude Shift Keying)変調、FSK(Frequency Shift Keying)変調、PSK(Phase Shift Keying)変調等を用いることができる。パルス波形生成部253で生成されたレーコン応答波W20は、送信機24へ出力される。 As the modulation method, ASK (Amplitude Shift Keying) modulation, FSK (Frequency Shift Keying) modulation, PSK (Phase Shift Keying) modulation, or the like can be used. The racon response wave W20 generated by the pulse waveform generator 253 is output to the transmitter 24.
 送信機24が、レーコン応答波W20を出力するタイミングは、送信タイミング設定部254によって、設定される。 The timing at which the transmitter 24 outputs the racon response wave W20 is set by the transmission timing setting unit 254.
 送信タイミング設定部254は、レーダ波W10について、立下りまたは立上りのエッジを検知する。送信タイミング設定部254は、上記のエッジを検知してから所定期間経過後に、レーコン応答波W20の送信トリガTgを生成する。送信タイミング設定部254は、この送信トリガTgを、送信機24へ出力する。送信機24は、この送信トリガTgが与えられると、レーコン応答波W20を、サーキュレータ22を介して、アンテナ21へ出力する。 The transmission timing setting unit 254 detects the falling edge or the rising edge of the radar wave W10. The transmission timing setting unit 254 generates a transmission trigger Tg of the racon response wave W20 after a predetermined period has elapsed since the detection of the edge. The transmission timing setting unit 254 outputs this transmission trigger Tg to the transmitter 24. When this transmission trigger Tg is given, the transmitter 24 outputs a racon response wave W20 to the antenna 21 via the circulator 22.
 レーコン通信情報メモリ26は、レーコン20に設けられた記憶部であり、例えば、ROM、フラッシュメモリ等の不揮発性メモリを用いて形成されている。尚、レーコン通信情報メモリ26は、レーコン20の一構成要素として設けられていてもよいし、レーコン20とは別の要素として設けられていてもよい。 The racon communication information memory 26 is a storage unit provided in the racon 20, and is formed by using, for example, a nonvolatile memory such as a ROM or a flash memory. The racon communication information memory 26 may be provided as one component of the racon 20 or may be provided as an element different from the racon 20.
 受信情報メモリ27は、レーコン20に設けられた記憶部であり、例えば、ROM、フラッシュメモリ等の不揮発性メモリを用いて形成されている。尚、受信情報メモリ27は、レーコン20の一構成要素として設けられていてもよいし、レーコン20とは別の要素として設けられていてもよい。受信情報メモリ27は、復調処理部251の復調処理結果を記憶する。これにより、レーコン20は、レーダ通信情報D10を記憶することができる。レーダ通信情報D10は、例えば、船舶の航行履歴として活用される。 The reception information memory 27 is a storage unit provided in the racon 20 and is formed by using, for example, a nonvolatile memory such as a ROM or a flash memory. The reception information memory 27 may be provided as one component of the racon 20 or may be provided as an element different from the racon 20. The reception information memory 27 stores the demodulation processing result of the demodulation processing unit 251. As a result, the racon 20 can store the radar communication information D10. The radar communication information D10 is used as, for example, a ship navigation history.
[レーダ送受信機の詳細な構成]
 次に、レーダ送受信機10の具体的な構成について説明する。図5は、レーダ送受信機10の構成を示すブロック図である。図1及び図5に示すように、このレーダ送受信機10は、アンテナ部11と、サーキュレータ12と、送信機13と、受信機14と、信号処理部15と、レーダ映像表示器16と、通信情報表示器17と、レーダ通信情報メモリ18と、を有している。
[Detailed configuration of radar transceiver]
Next, a specific configuration of the radar transceiver 10 will be described. FIG. 5 is a block diagram showing the configuration of the radar transceiver 10. As shown in FIGS. 1 and 5, the radar transceiver 10 includes an antenna unit 11, a circulator 12, a transmitter 13, a receiver 14, a signal processing unit 15, a radar image display 16, and communication. An information display 17 and a radar communication information memory 18 are provided.
 アンテナ部11は、電磁波の送信と、電磁波の受信と、を行うように構成されている。具体的には、アンテナ部11は、サーキュレータ12を介して送信機13から出力されたレーダ波W10を、出力する。また、アンテナ部11は、アンテナ受信波W1を受信し、このアンテナ受信波W1を、サーキュレータ12を介して受信機14へ出力する。 The antenna unit 11 is configured to perform transmission of electromagnetic waves and reception of electromagnetic waves. Specifically, the antenna unit 11 outputs a radar wave W10 output from the transmitter 13 via the circulator 12. The antenna unit 11 receives the antenna reception wave W1 and outputs the antenna reception wave W1 to the receiver 14 via the circulator 12.
 アンテナ部11は、鉛直軸回りを回転しつつ、自船2の周囲360度に対してレーダ波W10を送信するとともに、アンテナ受信波W1を受信する。なお、以下の説明では、レーダ波W10を送信してから次のパルス状電波を送信するまでの動作を、「スイープ」という。また、電波の送受信を行いながらアンテナ部11を360°回転させる動作を、「スキャン」という。 The antenna unit 11 transmits the radar wave W10 to the 360 degrees around the ship 2 while receiving the antenna reception wave W1 while rotating around the vertical axis. In the following description, the operation from the transmission of the radar wave W10 to the transmission of the next pulsed radio wave is referred to as “sweep”. Further, the operation of rotating the antenna unit 11 360 ° while transmitting / receiving radio waves is referred to as “scan”.
 レーダ送受信機10がレーダ探知パルスW11を送信した場合、この送信後に受信されるアンテナ受信波W1は、エコー信号Ecを含んでいる。エコー信号Ecは、レーダ探知パルスW11の送信によって生じた反射波である。また、レーダ波W10がレーコン20に到達した場合、前述したように、レーコン20は、レーコン通知パルスW21を送信する。よって、この場合、アンテナ受信波W1は、エコー信号Ecに加えて、レーコン通知パルスW21を含んでいる。尚、以下では、エコー信号Ec及びレーコン通知パルスW21を総称して、探知用受信信号R(k)という。探知用受信信号R(k)は、アンテナ部11がレーダ探知パルスW11を送信した後に、アンテナ部11によって受信された信号である。時刻kは、探知用受信信号R(k)が受信された時刻を示す。 When the radar transceiver 10 transmits the radar detection pulse W11, the antenna reception wave W1 received after the transmission includes the echo signal Ec. The echo signal Ec is a reflected wave generated by the transmission of the radar detection pulse W11. Further, when the radar wave W10 reaches the racon 20, as described above, the racon 20 transmits the racon notification pulse W21. Therefore, in this case, the antenna reception wave W1 includes the racon notification pulse W21 in addition to the echo signal Ec. Hereinafter, the echo signal Ec and the racon notification pulse W21 are collectively referred to as a detection reception signal R (k). The detection reception signal R (k) is a signal received by the antenna unit 11 after the antenna unit 11 transmits the radar detection pulse W11. The time k indicates the time when the detection reception signal R (k) is received.
 また、レーダ送受信機10がレーコン20へ向けてレーダ通信パルスW12を送信した場合、受信されるアンテナ受信波W1は、レーコン通信パルスW22を含んでいるけれども、エコー信号Ecは含んでいない。 Further, when the radar transceiver 10 transmits the radar communication pulse W12 toward the racon 20, the received antenna reception wave W1 includes the racon communication pulse W22 but does not include the echo signal Ec.
 尚、本実施形態では、このアンテナ部11を用いて、送信動作及び受信動作を行っている。しかしながら、この通りでなくてもよい。例えば、電磁波の送信用アンテナ部と、電磁波の受信用アンテナ部とは、別体であってもよい。 In this embodiment, the antenna unit 11 is used to perform a transmission operation and a reception operation. However, this need not be the case. For example, the electromagnetic wave transmitting antenna unit and the electromagnetic wave receiving antenna unit may be separate.
 本実施形態では、サーキュレータ12は、アンテナ部11、送信機13及び受信機14が接続された、3ポートサーキュレータである。このサーキュレータ12は、送信機13から出力されたレーダ波W10を、アンテナ部11へ伝達する。また、サーキュレータ12は、アンテナ部11で受信されたアンテナ受信波W1を、受信機14へ伝達する。 In this embodiment, the circulator 12 is a three-port circulator to which the antenna unit 11, the transmitter 13, and the receiver 14 are connected. The circulator 12 transmits the radar wave W10 output from the transmitter 13 to the antenna unit 11. Further, the circulator 12 transmits the antenna reception wave W <b> 1 received by the antenna unit 11 to the receiver 14.
 送信機13は、信号処理部15によって生成されたレーダ波W10(レーダ探知パルスW11又はレーダ通信パルスW12)を、所定のRF(Radio Frequency)周波数帯にアップコンバート及び増幅する。 The transmitter 13 up-converts and amplifies the radar wave W10 (radar detection pulse W11 or radar communication pulse W12) generated by the signal processing unit 15 to a predetermined RF (Radio frequency) frequency band.
 受信機14は、アンテナ部11からのアンテナ受信波W1を、増幅する。受信機14は、増幅したアンテナ受信波W1を、信号処理部15に出力する。 The receiver 14 amplifies the antenna reception wave W1 from the antenna unit 11. The receiver 14 outputs the amplified antenna reception wave W <b> 1 to the signal processing unit 15.
 信号処理部15は、本発明の「信号処理装置」の一例である。信号処理部15は、レーダ波W10を生成するように構成されている。また、信号処理部15は、アンテナ受信波W1を基に、レーダ映像表示器16に表示させる画像の画素データY[i,j]の生成と、通信情報表示器17に表示させるレーコン通信情報D20の抽出と、を行うように構成されている。 The signal processing unit 15 is an example of the “signal processing device” in the present invention. The signal processing unit 15 is configured to generate a radar wave W10. Further, the signal processing unit 15 generates the pixel data Y k [i, j] of the image to be displayed on the radar image display 16 and the racon communication information to be displayed on the communication information display 17 based on the antenna reception wave W1. D20 is extracted.
 信号処理部15は、スイープメモリ151と、画像データ生成部152と、復調処理部153と、判断部154と、レーダ通信情報設定部155と、レーダ通信パルス生成部156と、レーダ探知パルス生成部157と、送信波形切替部158と、を有している。 The signal processing unit 15 includes a sweep memory 151, an image data generation unit 152, a demodulation processing unit 153, a determination unit 154, a radar communication information setting unit 155, a radar communication pulse generation unit 156, and a radar detection pulse generation unit. 157 and a transmission waveform switching unit 158.
 スイープメモリ151は、受信機14で受信された探知用受信信号R(k)を記憶するように構成されている。探知用受信信号R(k)は、R-θ系座標の受信信号である。図2に示す、アンテナ部11(自船2)からの位置を距離r、アンテナ部11を中心とする角度をアンテナ角度θとする極座標によって、探知用受信信号R(k)に対応する位置が特定される。スイープメモリ151は、最新の探知用受信信号R(k)、又は1スイープ分過去の探知用受信信号R(k-1)を、記憶している。1スイープ分過去の探知用受信信号R(k-1)は、本発明の「過去の探知結果」の一例である。尚、以下では、探知用受信信号R(k),R(k-1)を総称していう場合、探知用受信信号R(K)という。 The sweep memory 151 is configured to store the detection reception signal R (k) received by the receiver 14. The detection reception signal R (k) is a reception signal of R-θ system coordinates. The position corresponding to the detection reception signal R (k) is indicated by polar coordinates shown in FIG. 2 where the position from the antenna unit 11 (own ship 2) is the distance r and the angle about the antenna unit 11 is the antenna angle θ. Identified. The sweep memory 151 stores the latest detection reception signal R (k) or the detection reception signal R (k−1) of the past for one sweep. The reception signal R (k−1) for past detection for one sweep is an example of the “past detection result” of the present invention. Hereinafter, the detection reception signals R (k) and R (k−1) are collectively referred to as detection reception signals R (K).
 図6は、スイープメモリ151の動作の一例を説明するためのフローチャートである。以下では、フローチャートを参照しながら説明する場合、他の図面も適宜参照する。図6を参照して、スイープメモリ151は、直近の時点で送信されたレーダ波W10が、レータ探知パルスW11であるか否かを判断する(ステップS101)。具体的には、スイープメモリ151は、判断部154から出力される指令信号CM(後述)が、レーダ探知パルスW11を送信する指令であったか否かを判断する。 FIG. 6 is a flowchart for explaining an example of the operation of the sweep memory 151. In the following, when the description is made with reference to flowcharts, other drawings are also referred to as appropriate. With reference to FIG. 6, the sweep memory 151 determines whether or not the radar wave W10 transmitted at the most recent time is a detector detection pulse W11 (step S101). Specifically, the sweep memory 151 determines whether or not a command signal CM (described later) output from the determination unit 154 is a command for transmitting the radar detection pulse W11.
 指令信号CMが、レーダ探知パルスW11を送信する指令であった場合(ステップS101でYES)、スイープメモリ151は、受信機14からの探知用受信信号R(k)を、記憶する(ステップS102)。即ち、スイープメモリ151は、探知用受信信号R(k)を更新する。一方、指令信号CMが、レーダ通信パルスW12を送信する指令であった場合(ステップS101でNO)、スイープメモリ151は、受信機14からの探知用受信信号R(k)を、記憶しない(ステップS103)。この場合、スイープメモリ151は、記憶内容を更新せず、既に保持している探知用受信信号R(k-1)を、過去の探知結果として保持する。 When the command signal CM is a command for transmitting the radar detection pulse W11 (YES in step S101), the sweep memory 151 stores the detection reception signal R (k) from the receiver 14 (step S102). . That is, the sweep memory 151 updates the detection reception signal R (k). On the other hand, when the command signal CM is a command for transmitting the radar communication pulse W12 (NO in Step S101), the sweep memory 151 does not store the detection reception signal R (k) from the receiver 14 (Step S101). S103). In this case, the sweep memory 151 does not update the stored contents, and retains the detection reception signal R (k−1) that is already held as a past detection result.
 再び図2及び図5を参照して、スイープメモリ151に記憶されている探知用受信信号R(k)又は探知用受信信号R(k-1)は、画像データ生成部152へ与えられる。 Referring to FIGS. 2 and 5 again, the detection reception signal R (k) or the detection reception signal R (k−1) stored in the sweep memory 151 is supplied to the image data generation unit 152.
 画像データ生成部152は、レーダ探知パルスW11を用いた探知結果に基づく画像データを生成するように構成されている。より具体的には、画像データ生成部152は、探知用受信信号R(K)を用いて、レーダ映像表示器16に表示を行わせるための画素データY[i,j]を生成する。画素データY[i,j]は、本発明の「画像データ」の一例である。 The image data generation unit 152 is configured to generate image data based on the detection result using the radar detection pulse W11. More specifically, the image data generation unit 152 generates pixel data Y k [i, j] for causing the radar image display 16 to display using the detection reception signal R (K). The pixel data Y k [i, j] is an example of the “image data” in the present invention.
 画像データ生成部152は、画素データ生成部152aと、画像メモリ152bと、を有している。 The image data generation unit 152 includes a pixel data generation unit 152a and an image memory 152b.
 画素データ生成部152aは、探知用受信信号R(K)を基に、画像メモリ152bへ書き込む画素データG[i,j]を決定する。尚、[i,j]は、X-Y座標系での座標を示しており、画素データG[i,j]は、[i,j]で特定される座標での信号レベルを示す。このように、画素データ生成部152aは、探知用受信信号R(K)で特定される各位置を、R-θ座標系からX-Y座標系(直交座標系)に変換する。 The pixel data generation unit 152a determines pixel data G k [i, j] to be written to the image memory 152b based on the detection reception signal R (K). [I, j] indicates coordinates in the XY coordinate system, and pixel data G k [i, j] indicates a signal level at coordinates specified by [i, j]. In this way, the pixel data generation unit 152a converts each position specified by the detection reception signal R (K) from the R-θ coordinate system to the XY coordinate system (orthogonal coordinate system).
 より具体的には、画素データ生成部152aは、アンテナ部11の位置を、原点(i,j)として設定する。画素データ生成部152aは、原点(i,j)から所定方向(例えば、真北方向)をθ=0として、アンテナ角度θを設定する。そして、画素データ生成部152aは、アンテナ角度θと、探知用受信信号R(K)の読み出し位置(アンテナ部11からの距離rに相当)と、を基に、X-Y座標系の対応する番地(位置)を、決定する。座標(i,j)は、下記式(1),(2)で表される。 i=i+rcosθ・・・・・(1) j=j+rsinθ・・・・・(2) More specifically, the pixel data generation unit 152a sets the position of the antenna unit 11 as the origin (i 0 , j 0 ). The pixel data generation unit 152a sets the antenna angle θ with θ = 0 as a predetermined direction (for example, true north direction) from the origin (i 0 , j 0 ). Then, the pixel data generation unit 152a corresponds to the XY coordinate system based on the antenna angle θ and the reading position of the detection reception signal R (K) (corresponding to the distance r from the antenna unit 11). The address (position) is determined. The coordinates (i, j) are represented by the following formulas (1) and (2). i = i 0 + r cos θ (1) j = j 0 + r sin θ (2)
 1つの探知用受信信号R(K)に基づいて得られる画素データG[i,j]は、1スイープ動作によって探知される領域の画素データである。画素データ生成部152aは、画素データG[i,j]を、画像メモリ152bへ出力する。画像メモリ152bは、1スキャンに相当する複数スイープ分の画素データG[i,j]を、蓄積する。画像メモリ152bは、蓄積した1スキャン分の画素データG[i,j]の少なくとも一部に処理を施す。これにより、各画素データG[i,j]は、画素データY[i,j]として、レーダ映像表示器16へ出力される。 Pixel data G k [i, j] obtained based on one detection reception signal R (K) is pixel data of a region detected by one sweep operation. The pixel data generation unit 152a outputs the pixel data G k [i, j] to the image memory 152b. The image memory 152b stores pixel data G k [i, j] for a plurality of sweeps corresponding to one scan. The image memory 152b performs processing on at least a part of the accumulated pixel data G k [i, j] for one scan. Thereby, each pixel data G k [i, j] is output to the radar image display 16 as pixel data Y k [i, j].
 図3及び図5を参照して、レーダ映像表示器16は、画素データY[i,j]で特定される画像を表示するように構成されている。レーダ映像表示器16は、液晶ディスプレイ等の表示装置である。このレーダ映像表示器16のPPI画面161は、円形の表示領域上を回転する走査線によって、物標の所在位置を、2次元的に表示するように構成されている。 3 and 5, the radar image display 16 is configured to display an image specified by the pixel data Y k [i, j]. The radar image display 16 is a display device such as a liquid crystal display. The PPI screen 161 of the radar image display 16 is configured to two-dimensionally display the position of the target by scanning lines that rotate on a circular display area.
 PPI画面161は、自船2の位置を中心に表示する。PPI画面161の各画素は、対応する座標(i,j)における受信信号レベルに応じた色及び階調の表示を行う。これにより、PPI画面161には、他船3のエコー像P3、陸地4のエコー像P4、及びレーコン20のエコー像P20が表示される。 The PPI screen 161 displays the position of own ship 2 as the center. Each pixel of the PPI screen 161 displays a color and gradation according to the received signal level at the corresponding coordinates (i, j). As a result, the echo image P3 of the other ship 3, the echo image P4 of the land 4 and the echo image P20 of the racon 20 are displayed on the PPI screen 161.
 本実施形態では、レーダ送受信機10は、レーダ探知パルスW11とレーダ通信パルスW12とを択一的に送信するように構成されている。このため、レーダ送受信機10は、レーダ通信パルスW12を送信している間、レーダ探知パルスW11を送信しないので、物標を探知できない。 In the present embodiment, the radar transceiver 10 is configured to alternatively transmit a radar detection pulse W11 and a radar communication pulse W12. For this reason, the radar transceiver 10 cannot detect the target because it does not transmit the radar detection pulse W11 while transmitting the radar communication pulse W12.
 そこで、本実施形態の信号処理部15においては、レーダ波W10がレーコン20と通信可能な場合と、レーダ波W10がレーコン20と通信できない場合とで、画素データY[i,j]を生成するための処理が異なっている。図2及び図3を参照して、このような構成により、PPI画面161において、レーダ送受信機10とレーコン20とが通信可能な通信範囲CA1に対応する箇所PCA1でも、レーダ探知パルスW11を用いた探知結果は、表示される。このような処理の具体例は、後述する。尚、通信範囲CA1は、レーダ送受信機10とレーコン20とが通信可能な範囲を示している。通信範囲CA1は、平面視で扇状の領域である。 Therefore, in the signal processing unit 15 of the present embodiment, pixel data Y k [i, j] is generated when the radar wave W10 can communicate with the racon 20 and when the radar wave W10 cannot communicate with the racon 20. The processing to do is different. With reference to FIGS. 2 and 3, with such a configuration, the radar detection pulse W11 is also used in the PCA1 corresponding to the communication range CA1 in which the radar transceiver 10 and the racon 20 can communicate on the PPI screen 161. The detection result is displayed. A specific example of such processing will be described later. The communication range CA1 indicates a range in which the radar transceiver 10 and the racon 20 can communicate with each other. The communication range CA1 is a fan-shaped area in plan view.
 図5を参照して、アンテナ受信波W1は、スイープメモリ151に加えて、復調処理部153にも出力される。アンテナ受信波W1にレーコン通信情報D20が含まれている場合、復調処理部153は、レーコン20の変調方式に対応する復調方式を用いて、レーコン応答波W20を復調する。これにより、復調処理部153は、レーコン通信情報D20を取得する。このレーコン通信情報D20は、通信情報表示器17、及び判断部154へ出力される。 Referring to FIG. 5, the antenna reception wave W1 is output to the demodulation processing unit 153 in addition to the sweep memory 151. When the antenna received wave W1 includes the racon communication information D20, the demodulation processing unit 153 demodulates the racon response wave W20 using a demodulation method corresponding to the modulation method of the racon 20. Thereby, the demodulation process part 153 acquires racon communication information D20. The racon communication information D20 is output to the communication information display 17 and the determination unit 154.
 通信情報表示器17は、レーコン通信情報D20を表示するための表示器である。通信情報表示器17は、例えば、液晶ディスプレイ等の表示装置である。尚、本実施形態では、通信情報表示器17と、レーダ映像表示器16とは、別々に構成されているけれども、この通りでなくてもよい。例えば、通信情報表示器17と、レーダ映像表示器16とは、1つの表示画面を有する表示装置によって、構成されていてもよい。 The communication information display 17 is a display for displaying the racon communication information D20. The communication information indicator 17 is a display device such as a liquid crystal display. In the present embodiment, the communication information display 17 and the radar image display 16 are configured separately, but this need not be the case. For example, the communication information display 17 and the radar image display 16 may be configured by a display device having a single display screen.
 判断部154は、本発明の「通信範囲検出部」の一例である。判断部154は、レーダ探知パルスW11とレーダ通信パルスW12の何れを送信するかを判断するために、設けられている。判断部154は、通信範囲CA1に対して、レーダ通信パルスW12の送信の合間に、レーダ探知パルスW11を送信させるための処理を行う。判断部154での処理の流れの一例は、後述する。次に、レーダ通信パルスW12を生成するための構成を説明する。 The determination unit 154 is an example of the “communication range detection unit” in the present invention. The determination unit 154 is provided to determine which of the radar detection pulse W11 and the radar communication pulse W12 is to be transmitted. The determination unit 154 performs processing for transmitting the radar detection pulse W11 to the communication range CA1 between transmissions of the radar communication pulse W12. An example of the flow of processing in the determination unit 154 will be described later. Next, a configuration for generating the radar communication pulse W12 will be described.
 レーダ情報設定部155は、レーダ通信情報D11の信号系列を生成するように構成されている。レーダ通信情報D11の信号系列は、レーダ通信情報メモリ18に記憶されているレーダ通信情報D10の信号系列に、付加信号系列を付加した、信号系列である。付加信号系列は、レーダ通信パルスW12であることを示すプリアンブルとしての信号系列と、誤り検出・誤り訂正のための符号を特定する信号系列と、を含んでいる。レーダ通信情報設定部155は、レーダ通信情報D11の信号系列を、レーダ通信パルス生成部156へ出力する。 The radar information setting unit 155 is configured to generate a signal sequence of the radar communication information D11. The signal sequence of the radar communication information D11 is a signal sequence obtained by adding an additional signal sequence to the signal sequence of the radar communication information D10 stored in the radar communication information memory 18. The additional signal series includes a signal series as a preamble indicating the radar communication pulse W12, and a signal series for specifying a code for error detection / error correction. The radar communication information setting unit 155 outputs the signal sequence of the radar communication information D11 to the radar communication pulse generation unit 156.
 尚、レーダ通信情報D10が格納されているレーダ通信情報メモリ18は、レーダ送受信機10に設けられた記憶部であり、例えば、ROM、フラッシュメモリ等の不揮発性メモリを用いて形成されている。レーダ通信情報メモリ18は、レーダ送受信機10の一構成要素として設けられていてもよいし、レーダ送受信機10とは別の要素として設けられていてもよい。 The radar communication information memory 18 in which the radar communication information D10 is stored is a storage unit provided in the radar transceiver 10, and is formed by using, for example, a nonvolatile memory such as a ROM or a flash memory. The radar communication information memory 18 may be provided as one component of the radar transceiver 10 or may be provided as an element different from the radar transceiver 10.
 レーダ通信パルス生成部156は、本発明の「通信信号生成部」の一例である。レーダ通信パルス生成部156は、レーダ通信パルスW12の生成処理を行う。このレーダ通信パルス生成部156は、上記のレーダ通信情報D11の信号系列に、所定の方式で変調を施す。これにより、レーダ通信パルス生成部156は、レーダ通信パルスW12を生成する。レーダ通信パルスW12は、本発明の「通信対象と通信するための通信信号」の一例である。 The radar communication pulse generation unit 156 is an example of the “communication signal generation unit” in the present invention. The radar communication pulse generation unit 156 performs generation processing of the radar communication pulse W12. The radar communication pulse generator 156 modulates the signal sequence of the radar communication information D11 by a predetermined method. Thereby, the radar communication pulse generation unit 156 generates the radar communication pulse W12. The radar communication pulse W12 is an example of the “communication signal for communicating with a communication target” in the present invention.
 上記の変調方法として、ASK(Amplitude Shift Keying)変調、FSK(Frequency Shift Keying)変調、PSK(Phase Shift Keying)変調等を用いることができる。レーダ通信パルスW12は、送信波形切替部158へ出力される。送信波形切替部158は、レーダ通信パルス生成部156に加え、レーダ探知パルス生成部157にも接続されている。 As the modulation method, ASK (Amplitude Shift Keying) modulation, FSK (Frequency Shift Keying) modulation, PSK (Phase Shift Keying) modulation, or the like can be used. Radar communication pulse W12 is output to transmission waveform switching section 158. The transmission waveform switching unit 158 is connected to the radar detection pulse generation unit 157 in addition to the radar communication pulse generation unit 156.
 レーダ探知パルス生成部157は、本発明の「探知信号生成部」の一例である。レーダ探知パルス生成部157は、レーダ探知パルスW11の波形を生成する。レーダ探知パルスW11は、本発明の「レーダ装置の周囲の物標を探知するための探知信号」の一例であり、物標に照射されたときに、十分な強さのエコー信号Ecを生成するパルスである。これにより、レーダ探知パルスW11を用いた、物標の探知が可能となる。 The radar detection pulse generation unit 157 is an example of the “detection signal generation unit” in the present invention. The radar detection pulse generator 157 generates a waveform of the radar detection pulse W11. The radar detection pulse W11 is an example of the “detection signal for detecting a target around the radar device” of the present invention, and generates an echo signal Ec having a sufficiently strong intensity when irradiated on the target. It is a pulse. As a result, the target can be detected using the radar detection pulse W11.
 尚、レーダ通信パルスW12は、レーダ通信情報D10を送信するための、データ通信用パルスであり、物標に照射されたときに、エコー信号Ecを発生させるパルスではない。即ち、レーダ通信パルスW12は、物標の探知には用いられない。レーダ探知パルス生成部157は、レーダ探知パルスW11を、送信波形切替部158へ送信する。 Note that the radar communication pulse W12 is a data communication pulse for transmitting the radar communication information D10, and is not a pulse for generating the echo signal Ec when the target is irradiated. That is, the radar communication pulse W12 is not used for detecting a target. The radar detection pulse generation unit 157 transmits the radar detection pulse W11 to the transmission waveform switching unit 158.
 送信波形切替部158は、判断部154からの指令信号CMに基づいて、レーダ探知パルスW11を送信するモードと、レーダ通信パルスW12を送信するモードと、を切り替える。送信波形切替部158は、レーダ探知パルスW11を送信するモードを選択した場合、レーダ探知パルス生成部157からのレーダ探知パルスW11を、送信機13へ出力する。一方、送信波形切替部158は、レーダ通信パルスW12を送信するモードを選択した場合、レーダ通信パルス生成部156からのレーダ通信パルスW12を、送信機13へ出力する。 The transmission waveform switching unit 158 switches between the mode for transmitting the radar detection pulse W11 and the mode for transmitting the radar communication pulse W12 based on the command signal CM from the determination unit 154. When the transmission waveform switching unit 158 selects the mode for transmitting the radar detection pulse W11, the transmission waveform switching unit 158 outputs the radar detection pulse W11 from the radar detection pulse generation unit 157 to the transmitter 13. On the other hand, when the transmission waveform switching unit 158 selects the mode for transmitting the radar communication pulse W12, the transmission waveform switching unit 158 outputs the radar communication pulse W12 from the radar communication pulse generation unit 156 to the transmitter 13.
 次に、判断部154の処理手順の一例を、以下に説明する。図7は、判断部154の処理の流れの一例を示すフローチャートである。 Next, an example of the processing procedure of the determination unit 154 will be described below. FIG. 7 is a flowchart illustrating an example of a processing flow of the determination unit 154.
 判断部154は、まず、復調処理部153で復調処理されたアンテナ受信波W1に、レーコン応答波W20が含まれているかどうかを判断する(ステップS201)。例えば、アンテナ受信波W1の電力が、所定電力未満であった場合、判断部154は、アンテナ受信波W1にレーコン応答波W20が含まれていないと判断する(ステップS201でNO)。 First, the determination unit 154 determines whether the antenna received wave W1 demodulated by the demodulation processing unit 153 includes the racon response wave W20 (step S201). For example, when the power of the antenna reception wave W1 is less than the predetermined power, the determination unit 154 determines that the racon response wave W20 is not included in the antenna reception wave W1 (NO in step S201).
 尚、判断部154は、復調処理部153での復調処理結果に、レーコン応答波W20であることを示すプリアンブルの信号系列が含まれているか否かによって、レーコン応答波W20の有無を判断してもよい。また、判断部154は、例えば、復調処理部153において、レーコン応答波W20の復調に成功した場合に、アンテナ受信波W1にレーコン応答波W20が含まれていると判断してもよい。 The determination unit 154 determines the presence or absence of the racon response wave W20 depending on whether or not the demodulation processing result in the demodulation processing unit 153 includes a preamble signal sequence indicating the racon response wave W20. Also good. For example, when the demodulation processing unit 153 successfully demodulates the racon response wave W20, the determination unit 154 may determine that the antenna received wave W1 includes the racon response wave W20.
 アンテナ受信波W1にレーコン応答波W20が含まれていない場合(前述のステップS201でNO)、判断部154は、指令信号CMとして、レーダ探知パルスW11を送信する旨の信号を、送信波形切替部158に送信する(ステップS202)。 When the racon response wave W20 is not included in the antenna reception wave W1 (NO in step S201 described above), the determination unit 154 transmits a signal indicating that the radar detection pulse W11 is transmitted as the command signal CM to the transmission waveform switching unit. It transmits to 158 (step S202).
 一方、例えば、アンテナ受信波W1の電力が、所定電力以上であった場合、判断部154は、アンテナ受信波W1にレーコン応答波W20が含まれていると判断する(ステップS201でYES)。判断部154は、レーコン応答波W20が検出された範囲を、通信範囲CA1として扱う。判断部154は、このように、アンテナ受信波W1にレーコン応答波W20が含まれているか否かを判断することで、方位方向C1において、レーコン20と通信する通信範囲CA1を検出する。 On the other hand, for example, when the power of the antenna reception wave W1 is equal to or higher than the predetermined power, the determination unit 154 determines that the racon response wave W20 is included in the antenna reception wave W1 (YES in step S201). Determination unit 154 treats the range in which racon response wave W20 is detected as communication range CA1. Thus, the determination unit 154 detects the communication range CA1 that communicates with the racon 20 in the azimuth direction C1 by determining whether or not the racon response wave W20 is included in the antenna reception wave W1.
 ステップS201でYESの場合、判断部154は、レーダ通信パルスW12が連続して送信された回数を判断する(ステップS203)。具体的には、レーダ送受信機10からレーダ通信パルスW12が連続してx回送信されていた場合(ステップS203でYES)、判断部154は、指令信号CMとして、レーダ探知パルスW11を送信する信号を、送信波形切替部158へ出力する(ステップS202)。これにより、レーダ送受信機10が通信モードにある最中でも、レーダ送受信機10を探知モードに切り替えることができる。 When YES is determined in the step S201, the determination unit 154 determines the number of times the radar communication pulse W12 is continuously transmitted (step S203). Specifically, if the radar communication pulse W12 from radar transceiver 10 has been continuously transmitted x 1 time (YES in step S203), the determination unit 154 as a command signal CM, transmits the radar detection pulse W11 The signal is output to the transmission waveform switching unit 158 (step S202). Thereby, the radar transceiver 10 can be switched to the detection mode even while the radar transceiver 10 is in the communication mode.
 一方、レーコン通信パルスW22の連続送信回数が、xスイープ回未満である場合(ステップS203でNO)、判断部154は、指令信号CMとして、レーダ通信パルスW12を送信する信号を、送信波形切替部158へ出力する(ステップS204)。 On the other hand, the continuous transmission number of racons communication pulse W22 is is less than x 1 sweep times (NO in step S203), the determination unit 154 as a command signal CM, the signal to be transmitted radar communication pulse W12, transmission waveform switching The data is output to the unit 158 (step S204).
 尚、上記の定数xは、自然数であり、本実施形態では、x=2に設定されている。xの設定値は、レーダ探知パルスW11の送信頻度が低下することに起因する、レーダ映像表示器16のPPI画面161の表示の劣化度合いと、レーダ通信パルスW12によるデータ送信レートとの関係に基づいて決定される。上記の表示の劣化度合いと、データ通信レートとは、トレードオフの関係にある。以上が、判断部154での処理の一例である。次に、判断部154での判断によって実現される状態を説明する。 The constant x 1 is a natural number and is set to x 1 = 2 in the present embodiment. set value of x 1 is due to the transmission frequency of the radar detecting pulse W11 is decreased, the degree of deterioration of the display of the PPI screen 161 of the radar video display 16, the relationship between the data transmission rate by radar communication pulse W12 To be determined. The degree of display degradation and the data communication rate are in a trade-off relationship. The above is an example of processing in the determination unit 154. Next, a state realized by the determination by the determination unit 154 will be described.
 図8は、レーダ送受信機10の動作の要点と、レーコン20の動作の要点とを説明するための図である。 FIG. 8 is a diagram for explaining the main points of the operation of the radar transceiver 10 and the main points of the operation of the racon 20.
 図5、図7及び図8に示すように、レーダ送受信機10が、θスイープ目の動作において、通信範囲CA1外に向けてレーダ探知パルスW11を送信した場合(タイミングT1)、レーコン20からは、レーコン応答波W20は送信されない。その後、θスイープ目の動作において、レーダ送受信機10は、通信範囲CA1に向けてレーダ探知パルスW11を送信する(タイミングT2)。その後、レーダ送受信機10は、探知用受信信号R(k)の受信を開始する(タイミングT3)。 As shown in FIGS. 5, 7, and 8, when the radar transceiver 10 transmits the radar detection pulse W <b> 11 to the outside of the communication range CA <b> 1 in the operation of the θ1 sweep (timing T <b> 1), the racon 20 The racon response wave W20 is not transmitted. Thereafter, in the operation of the θ 2 sweep, the radar transceiver 10 transmits the radar detection pulse W11 toward the communication range CA1 (timing T2). Thereafter, the radar transceiver 10 starts receiving the detection reception signal R (k) (timing T3).
 この状態のとき、レーコン20は、レーコン通知パルスW21を、レーダ送受信機10へ送信する(タイミングT4)。このレーコン応答波W20は、レーダ送受信機10で受信される。これにより、レーダ送受信機10は、レーコン20の存在を認識する。 In this state, the racon 20 transmits a racon notification pulse W21 to the radar transceiver 10 (timing T4). The racon response wave W20 is received by the radar transceiver 10. As a result, the radar transceiver 10 recognizes the presence of the racon 20.
 次いで、θスイープ目の動作において、レーダ送受信機10は、レーダ通信パルスW12を送信し(タイミングT5)、その後、レーコン通信パルスW22の受信を開始する(ステップT6)。この状態において、レーダ通信パルスW12を受信したレーコン20は、レーダ通信パルスW12の復調処理を行うことで、レーダ通信情報D10を取得し、このレーダ通信情報D10を、受信情報メモリ27に記憶する。レーコン20は、この記憶動作と並行して、レーコン通信パルスW22を出力する(タイミングT7)。 Then, the theta 2 sweep th operation, radar transceiver 10 transmits a radar communication pulse W12 (timing T5), then starts receiving the racon communication pulse W22 (Step T6). In this state, the racon 20 that has received the radar communication pulse W12 acquires the radar communication information D10 by performing demodulation processing on the radar communication pulse W12, and stores the radar communication information D10 in the reception information memory 27. The racon 20 outputs a racon communication pulse W22 in parallel with this storage operation (timing T7).
 このレーコン通信パルスW22は、レーダ送受信機10で受信され、その結果、レーコン通信情報D20が、通信情報表示器17に表示される。この場合、レーダ通信パルスW12は、x回連続して送信されたわけではない。よって、レーダ送受信機10は、θスイープ目の動作において、再び、レーダ通信パルスW12を送信する(タイミングT8)。その後、レーダ送受信機10は、レーコン通信パルスW22の受信を開始する(タイミングT9)。 The racon communication pulse W22 is received by the radar transceiver 10, and as a result, the racon communication information D20 is displayed on the communication information display 17. In this case, the radar communication pulse W12 is not transmitted continuously x 2 times. Therefore, the radar transceiver 10, the theta 4 sweep th operation, again, sends the radar communication pulse W12 (timing T8). Thereafter, the radar transceiver 10 starts receiving the racon communication pulse W22 (timing T9).
 この状態において、レーダ通信パルスW12を受信したレーコン20は、レーダ探知パルスW11の復調処理を行うことで、レーダ通信情報D10を取得し、このレーダ通信情報D10を、受信情報メモリ27に記憶する。レーコン20は、この記憶動作と並行して、レーコン通信パルスW22を出力する(タイミングT10)。 In this state, the racon 20 that has received the radar communication pulse W12 performs demodulation processing of the radar detection pulse W11, thereby acquiring the radar communication information D10, and stores the radar communication information D10 in the reception information memory 27. The racon 20 outputs a racon communication pulse W22 in parallel with this storage operation (timing T10).
 レーコン通信パルスW22は、レーダ送受信機10で受信され、その結果、レーコン通信情報D20が、通信情報表示器17に表示される。この場合、レーダ通信パルスW12は、xスイープ(2スイープ)連続して送信されている。よって、判断部154は、指令信号CMとして、レーダ探知パルスW11の送信指令を、送信波形切替部158に出力する。これにより、レーダ送受信機10は、θスイープ目の動作において、レーダ探知パルスW11を送信する(タイミングT11)。その後、レーダ送受信機10は、探知用受信信号R(k)の受信を開始する(タイミングT12)。 The racon communication pulse W22 is received by the radar transceiver 10, and as a result, the racon communication information D20 is displayed on the communication information display 17. In this case, radar communications pulse W12 is, x 2 sweeps (2 sweep) is transmitted continuously. Therefore, the determination unit 154 outputs a transmission command of the radar detection pulse W11 to the transmission waveform switching unit 158 as the command signal CM. Thus, the radar transceiver 10, theta 5 in sweep th operation, transmits the radar detection pulse W11 (timing T11). Thereafter, the radar transceiver 10 starts receiving the detection reception signal R (k) (timing T12).
 レーダ送受信機10のレーダ波W10が通信範囲CA1に送信されている間、レーコン20に到達する間、タイミングT2~タイミングT11の動作が繰り返される。即ち、タイミングT11~T20での動作は、タイミングT2~タイミングT11での動作と同じである。 While the radar wave W10 of the radar transceiver 10 is transmitted to the communication range CA1, the operation from timing T2 to timing T11 is repeated while reaching the racon 20. That is, the operation from timing T11 to T20 is the same as the operation from timing T2 to timing T11.
 タイミングT20以降において、アンテナ部11の回転に伴い、レーダ波W10が通信範囲CA1に到達しなくなった場合、レーダ送受信機10は、レーダ探知パルスW11の送信を繰り返す。そして、アンテナ部11の回転に伴い、再び、レーダ波W10が通信範囲CA1に到達した場合、タイミングT2~T11の処理が繰り返される。 After timing T20, when the radar wave W10 does not reach the communication range CA1 with the rotation of the antenna unit 11, the radar transceiver 10 repeats transmission of the radar detection pulse W11. When the radar wave W10 reaches the communication range CA1 again with the rotation of the antenna unit 11, the processes at timings T2 to T11 are repeated.
 このように、レーダ波W10が通信範囲CA1に到達する場合には、レーダ通信パルスW12が繰り返し送信される合間に、レーダ探知パルスW11が送信される。図2、図3及び図5を参照して、上記の構成により、PPI画面161において、通信範囲CA1に相当する範囲PCA1と、それ以外の範囲とで、違和感のない表示が行われる。 Thus, when the radar wave W10 reaches the communication range CA1, the radar detection pulse W11 is transmitted between the time when the radar communication pulse W12 is repeatedly transmitted. 2, 3, and 5, with the above-described configuration, on PPI screen 161, display without a sense of incongruity is performed between range PCA <b> 1 corresponding to communication range CA <b> 1 and other ranges.
 具体的には、PPI画面161において、通信範囲CA1外に相当する範囲PCA1外は、レーダ送受信機10の分解能と同じ方位間隔で、レーダ探知パルスW11が送信されたことによる探知結果を示している。このため、上記範囲PCA1外では、他船3のエコー像P3及び陸地4のエコー像P4は、方位方向C1に連続した像として表示されている。 Specifically, on the PPI screen 161, the outside of the range PCA1 corresponding to outside the communication range CA1 shows a detection result obtained by transmitting the radar detection pulse W11 at the same azimuth interval as the resolution of the radar transceiver 10. . For this reason, outside the range PCA1, the echo image P3 of the other ship 3 and the echo image P4 of the land 4 are displayed as images continuous in the azimuth direction C1.
 一方、通信範囲CA1に相当する範囲PCA1は、レーダ送受信機10の分解能の3倍の方位間隔で、レーダ探知パルスW11が送信されたことによる探知結果を示している。しかしながら、スイープメモリ151における処理(図6に示す処理)の結果、レーダ通信パルスW12が送信された方位の画像は、PPI画面161において、直近のレーダ探知パルスW11の送信による探知結果を用いて表示される。このため、通信範囲CA1に相当する範囲PCA1においても、レーダ探知パルスW11が送信されないことによる、画像の欠けが補われている。 On the other hand, a range PCA1 corresponding to the communication range CA1 indicates a detection result when the radar detection pulse W11 is transmitted at an azimuth interval three times the resolution of the radar transceiver 10. However, as a result of the processing in the sweep memory 151 (the processing shown in FIG. 6), the image of the direction in which the radar communication pulse W12 is transmitted is displayed on the PPI screen 161 using the detection result by the transmission of the latest radar detection pulse W11. Is done. For this reason, also in the range PCA1 corresponding to the communication range CA1, the lack of images due to the fact that the radar detection pulse W11 is not transmitted is compensated.
 但し、通信範囲CA1に相当する範囲PCA1おける一部のエコー像は、過去のスイープ時点での探知用受信信号R(k-1)を用いて表示されている。当該エコー像は、上記範囲PCA1以外におけるエコー像の表示処理とは異なる処理によって、表示されている。そこで、本実施形態の信号処理部15は、通信範囲CA1に相当する範囲PCA1に関するエコー像の表示処理と、上記範囲PCA1以外に関するエコー像の表示処理とが異なることを示すための構成を、有している。 However, a part of the echo image in the range PCA1 corresponding to the communication range CA1 is displayed using the detection reception signal R (k−1) at the past sweep time. The echo image is displayed by a process different from the echo image display process outside the range PCA1. Therefore, the signal processing unit 15 of the present embodiment has a configuration for indicating that the echo image display processing related to the range PCA1 corresponding to the communication range CA1 is different from the echo image display processing related to other than the range PCA1. is doing.
 具体的には、判断部154は、自らが生成した指令信号CMを参照することで、方位方向C1においてレーコン応答波W20が検出された範囲を特定する。判断部154は、この範囲に対応する画素領域の輪郭を破線で示されるように変更する指令信号CMを、画像メモリ152bへ出力する。画像メモリ152bは、この指令信号CMを受けて、画像メモリ152bの対応する画素データG[i,j]を、指令された通りに変更する。この変更処理が行われた後の画素データが、画素データY[i,j]として出力される。 Specifically, the determination unit 154 specifies a range in which the racon response wave W20 is detected in the azimuth direction C1 by referring to the command signal CM generated by itself. The determination unit 154 outputs a command signal CM for changing the contour of the pixel region corresponding to this range as indicated by a broken line to the image memory 152b. In response to this command signal CM, the image memory 152b changes the corresponding pixel data G k [i, j] in the image memory 152b as instructed. The pixel data after this change processing is performed is output as pixel data Y k [i, j].
 これにより、PPI画面161において、通信範囲CA1の輪郭が、点線で示される。 Thereby, on the PPI screen 161, the outline of the communication range CA1 is indicated by a dotted line.
 以上説明したように、レーダ送受信機10によると、通信範囲CA1では、レーダ通信パルスW12が送信される。そして、レーダ通信パルスW12が送信されている間、レーダ探知パルスW11は、送信されない。このため、通信範囲CA1のうち、レーダ探知パルスW11が送信されない領域では、物標は、探知されない。しかしながら、本実施形態では、通信範囲CA1の探知結果を示す画素データY[i,j]を生成するための処理と、通信範囲CA1外の探知結果を示す画素データY[i,j]を生成するための処理と、が異なっている。これにより、通信範囲CA1のうち、レーダ探知パルスW11が送信されなかった領域についても、物標の探知結果を示す画素データG[i,j]を、画像データ生成部152で生成することが可能となる。以上より、データ通信が行われる通信範囲CA1についても、レーダ探知パルスW11を用いた探知結果をPPI画面161に表示できる。 As described above, according to the radar transceiver 10, the radar communication pulse W12 is transmitted in the communication range CA1. Then, while the radar communication pulse W12 is being transmitted, the radar detection pulse W11 is not transmitted. For this reason, the target is not detected in the area where the radar detection pulse W11 is not transmitted in the communication range CA1. However, in the present embodiment, the pixel data Y k [i, j] indicating the detection result of the communication range CA1 and process for generating, pixel data indicating the communication range CA1 outside of the detection results Y k [i, j] This is different from the process for generating. Thereby, the pixel data G k [i, j] indicating the target detection result can be generated by the image data generation unit 152 even in the area where the radar detection pulse W11 is not transmitted in the communication range CA1. It becomes possible. As described above, the detection result using the radar detection pulse W11 can be displayed on the PPI screen 161 for the communication range CA1 in which data communication is performed.
 また、レーダ送受信機10によると、判断部154は、通信範囲CA1におけるレーダ探知パルスW11の送信間隔を、通信範囲CA1外におけるレーダ探知パルスW11の送信間隔よりも大きくする。また、判断部154は、通信範囲CA1において、レーダ探知パルスW11が送信されていないときにレーダ通信パルスW12を送信させる。これにより、レーダ送受信機10は、通信範囲CA1において、レーダ通信情報D10を送信しつつ、物標を探知できる。 Also, according to the radar transceiver 10, the determination unit 154 makes the transmission interval of the radar detection pulse W11 in the communication range CA1 larger than the transmission interval of the radar detection pulse W11 outside the communication range CA1. In addition, the determination unit 154 causes the radar communication pulse W12 to be transmitted when the radar detection pulse W11 is not transmitted in the communication range CA1. Thereby, the radar transceiver 10 can detect the target while transmitting the radar communication information D10 in the communication range CA1.
 また、レーダ送受信機10によると、画像データ生成部152は、探知用受信信号R(k)に加えて、過去の探知用受信信号R(k-1)を用いて、通信範囲CA1の探知結果を示す画素データG[i,j]を生成する。これにより、レーダ送受信機10は、レーダ探知パルスW11を送信していない領域についても、過去の探知結果を用いることで、画素データG[i,j]を生成することができる。 In addition, according to the radar transceiver 10, the image data generation unit 152 uses the past detection reception signal R (k-1) in addition to the detection reception signal R (k) to detect the communication range CA1. To generate pixel data G k [i, j]. Thereby, the radar transceiver 10 can generate the pixel data G k [i, j] by using the past detection result even in the region where the radar detection pulse W11 is not transmitted.
 より具体的には、画像データ生成部152は、スイープメモリ151に記憶されている、過去の探知用受信信号R(k-1)を、過去の探知結果として用いる。即ち、画像データ生成部152は、過去の探知結果として、レーダ探知パルスW11を送信したことにより得られる生データ(raw data)としての探知用受信信号R(k-1)を、用いることができる。これにより、画像データ生成部152は、より精度の高い画素データY[i,j]を生成できる。その結果、画像データ生成部152は、通信範囲CA1における物標の探知結果を、より正確にPPI画面161に表示できる画素データY[i,j]を、生成できる。 More specifically, the image data generation unit 152 uses the past detection reception signal R (k−1) stored in the sweep memory 151 as the past detection result. That is, the image data generation unit 152 can use the detection reception signal R (k−1) as raw data obtained by transmitting the radar detection pulse W11 as a past detection result. . Thereby, the image data generation unit 152 can generate more accurate pixel data Y k [i, j]. As a result, the image data generation unit 152 can generate pixel data Y k [i, j] that can more accurately display the target detection result in the communication range CA1 on the PPI screen 161.
 また、レーダ送受信機10によると、画像データ生成部152は、通信範囲CA1を特定する表示が行われるような画素データG[i,j]を生成する。これにより、PPI画面161を見たオペレータは、通信範囲CA1を認識できる。その結果、通信範囲CA1の探知結果と通信範囲CA1外の探知結果とが、異なる画像処理を経てPPI画面161に表示されていることを、レーダ送受信機10のオペレータに知らせることができる。 Further, according to the radar transceiver 10, the image data generation unit 152 generates pixel data G k [i, j] that can be displayed to specify the communication range CA1. Thereby, the operator who has seen the PPI screen 161 can recognize the communication range CA1. As a result, it is possible to notify the operator of the radar transceiver 10 that the detection result of the communication range CA1 and the detection result outside the communication range CA1 are displayed on the PPI screen 161 through different image processing.
 また、レーダ送受信機10によると、画像データ生成部152は、レーコン20の位置を特定する表示が行われるように画素データY[i,j]を生成する。このような構成によると、PPI画面161の表示を見たオペレータは、レーコン20の位置を知ることができる。即ち、レーダ通信パルスW12が送信される通信範囲CA1内の物標としてのレーコン20のエコー像P20を、PPI画面161に表示できる。 Further, according to the radar transceiver 10, the image data generation unit 152 generates the pixel data Y k [i, j] so that display for specifying the position of the racon 20 is performed. According to such a configuration, the operator who sees the display on the PPI screen 161 can know the position of the racon 20. That is, the echo image P20 of the racon 20 as a target within the communication range CA1 to which the radar communication pulse W12 is transmitted can be displayed on the PPI screen 161.
[第2実施形態]
 以下では、主に第1実施形態と異なる点を、主に説明する。図5を参照して、本発明の第2実施形態が、第1実施形態と異なっている点は、スイープメモリ151における処理、選択部154における処理、及び画像メモリ152bにおける処理である。以下、具体的に説明する。
[Second Embodiment]
In the following, differences from the first embodiment will be mainly described. Referring to FIG. 5, the second embodiment of the present invention is different from the first embodiment in the processing in the sweep memory 151, the processing in the selection unit 154, and the processing in the image memory 152b. This will be specifically described below.
 スイープメモリ151は、レーダ送受信機10から送信されたレーダ波W1が、レーダ探知パルスW11であるか否かに拘わらず、最新のスイープ動作における探知用受信信号R(k)のみを保持する。 The sweep memory 151 holds only the reception signal R (k) for detection in the latest sweep operation regardless of whether or not the radar wave W1 transmitted from the radar transceiver 10 is the radar detection pulse W11.
 図9は、本発明の第2実施形態における判断部154での処理の流れの一例を説明するためのフローチャートである。判断部154は、1スイープ動作毎に、図9に示す処理を行う。図5及び図9に示すように、判断部154は、まず、受信機14で受信されたアンテナ受信波W1に、レーコン通信パルスW22が含まれているかどうかを判断する(ステップ301)。判断部154は、例えば、レーコン通信パルスW22を示すプリアンブルが含まれているか否かにより、レーコン通信パルスW22の有無を判断する。 FIG. 9 is a flowchart for explaining an example of a processing flow in the determination unit 154 according to the second embodiment of the present invention. The determination unit 154 performs the process shown in FIG. 9 for each sweep operation. As shown in FIGS. 5 and 9, the determination unit 154 first determines whether or not the antenna received wave W1 received by the receiver 14 includes the racon communication pulse W22 (step 301). The determination unit 154 determines the presence or absence of the racon communication pulse W22 based on, for example, whether or not a preamble indicating the racon communication pulse W22 is included.
 アンテナ受信波W1にレーコン通信パルスW22が含まれていない場合(ステップS301でNO)、判断部154は、指令信号CMとして、次スキャン時の同じ方位にレーダ探知パルスW11を送信する旨の信号を、送信波形切替部158に送信する(ステップS302)。 If the antenna reception wave W1 does not include the racon communication pulse W22 (NO in step S301), the determination unit 154 transmits a signal indicating that the radar detection pulse W11 is transmitted in the same direction at the next scan as the command signal CM. The waveform is transmitted to the transmission waveform switching unit 158 (step S302).
 一方、判断部154は、アンテナ受信波W1にレーコン通信パルスW22が含まれていると判断した場合(ステップS301でYES)、当該レーコン通信パルスW22が受信された方位において、レーコン通信パルスW22が連続して送信された回数を判断する(ステップS303)。 On the other hand, if determining unit 154 determines that racon communication pulse W22 is included in antenna reception wave W1 (YES in step S301), racon communication pulse W22 continues in the direction in which racon communication pulse W22 is received. The number of times of transmission is determined (step S303).
 具体的には、レーコン通信パルスW22が連続してxスキャン回送信されていた場合(ステップS303でYES)、判断部154は、指令信号CMとして、次スキャン時の同じ方位に、レーダ探知パルスW11を送信する信号を、送信波形切替部158へ出力する(ステップS302)。これにより、レーダ送受信機10が通信モードにある最中でも、レーダ送受信機10を探知モードに切り替えることができる。 Specifically, if the racon communication pulse W22 has been continuously transmitted x 2 scan times (YES in step S303), the determination unit 154 as a command signal CM, the same orientation of the next scan, radar detecting pulse A signal for transmitting W11 is output to transmission waveform switching section 158 (step S302). Thereby, the radar transceiver 10 can be switched to the detection mode even while the radar transceiver 10 is in the communication mode.
 一方、ステップS301でレーコン通信パルスW22が検出された方位において、レーコン通信パルスW22の連続送信回数が、x回未満である場合(ステップS303でNO)、判断部154は、指令信号CMとして、次スキャン時の同じ方位にレーダ通信パルスW12を送信する信号を、送信波形切替部158へ出力する(ステップS304)。 On the other hand, in orientation racon communication pulse W22 it is detected in step S301, the continuous transmission number of racons communication pulse W22 is is less than 2 times x (NO in step S303), determination unit 154, as a command signal CM, A signal for transmitting the radar communication pulse W12 in the same direction at the next scan is output to the transmission waveform switching unit 158 (step S304).
 尚、上記の定数xは、自然数であり、本実施形態では、x=2に設定されている。xの設定値は、レーコン通信パルスW22が検出された各方位に関する、PPI画面161での表示の信頼性の低下度合いと、レーダ通信パルスW12によるデータ送信レートと、の関係に基づいて決定される。上記の信頼性の低下度合いと、データ通信レートとは、トレードオフの関係にある。以上が、本発明の第2実施形態における判断部154での処理の流れの一例である。次に、判断部154での判断によって実現される状態を説明する。 The constant x 2 is a natural number and is set to x 2 = 2 in this embodiment. set value of x 2 is directed to the orientation racon communication pulse W22 is detected, the degree of decrease indication of reliability in PPI screen 161, a data transmission rate by radar communication pulses W12, is determined based on the relationship The The degree of reliability reduction and the data communication rate are in a trade-off relationship. The above is an example of the flow of processing in the determination unit 154 according to the second embodiment of the present invention. Next, a state realized by the determination by the determination unit 154 will be described.
 図10は、本発明の第2実施形態における、レーダ送受信機10の動作の要点と、レーコン20の動作の要点とを説明するための図である。図10では、N-2スキャン時点、N-1スキャン時点、及びNスキャン時点のそれぞれにおける、レーダ送受信機10の動作と、レーコン20の動作と、が示されている。 FIG. 10 is a diagram for explaining the main points of the operation of the radar transceiver 10 and the main points of the operation of the racon 20 in the second embodiment of the present invention. FIG. 10 shows the operation of the radar transceiver 10 and the operation of the racon 20 at each of the N-2 scan time, the N-1 scan time, and the N scan time.
 図5、図9及び図10に示すように、N-2スキャン時点では、レーダ送受信機10は、θスイープ目の動作において、レーダ探知パルスW11を送信している。しかしながら、このθスイープ目では、レーダ波W10は、レーコン20に受信されず、レーコン応答波W20は、レーダ送受信機10に送信されない。 As shown in FIGS. 5, 9 and 10, the N-2 scan time, the radar transceiver 10, the operation of the theta 1 sweep th transmitting the radar detection pulse W11. However, in this θ 1 sweep, the radar wave W10 is not received by the racon 20, and the racon response wave W20 is not transmitted to the radar transceiver 10.
 その後、θスイープ目において、レーダ送受信機10が再びレーダ探知パルスW11を送信すると、レーダ探知パルスW11は、レーコン20で受信される。その結果、レーコン20は、レーダ送受信機10へ向けてレーコン通知パルスW21を送信する。 Thereafter, when the radar transceiver 10 transmits the radar detection pulse W11 again at the θ 2 sweep, the radar detection pulse W11 is received by the racon 20. As a result, the racon 20 transmits a racon notification pulse W21 to the radar transceiver 10.
 この場合、本実施形態では、レーダ送受信機10は、レーコン通信パルスW22を受信していないので、次のN-1スキャン時点のθスイープ動作時に、レーダ探知パルスW11を送信する(ステップS302)。その結果、各スキャン時点において、θスイープ動作時に、レーダ探知パルスW11が送信される。 In this case, in the present embodiment, since the radar transceiver 10 has not received the racon communication pulse W22, the radar detection pulse W11 is transmitted during the θ 2 sweep operation at the next N−1 scan (step S302). . As a result, at each scan time, the radar detection pulse W11 is transmitted during the θ 2 sweep operation.
 次に、θスイープでの動作を説明する。N-2スキャン時点において、θスイープ動作の際、レーダ通信パルスW12が送信されることにより、レーコン通信パルスW22が送信される。この場合、N-2スキャン時、θスイープ動作時点でのレーコン通信パルスW22の送信回数は、まだ1回である(ステップS303でNO)。よって、レーダ送受信機10は、次のN-1スキャン時点でのθスイープ動作時に、レーダ通信パルスW12を送信する(ステップS304)。 Next, the operation in the theta 3 sweeps. In N-2 scan time, when the theta 3 sweep operation, by radar communication pulse W12 is transmitted, racon communication pulse W22 are transmitted. In this case, when N-2 scans, the number of transmissions racons communication pulse W22 in theta 3 sweep operation time is still once (NO at step S303). Therefore, the radar transceiver 10, when the theta 3 sweep operation in the next N-1 scan time, transmits radar communication pulse W12 (step S304).
 これにより、N-1スキャン時点でのθスイープ動作の際、レーコン20からレーコン通信パルスW22が送信される。この場合、レーダ送受信機10は、θスイープ動作時点におけるレーコン通信パルスW22の連続受信回数が、2回に達する(ステップS303でYES)。よって、レーダ送受信機10は、次のNスキャン動作時に、レーダ探知パルスW11を送信する(ステップS302)。 Thus, the racon communication pulse W22 is transmitted from the racon 20 during the θ 3 sweep operation at the N-1 scan time. In this case, the radar transceiver 10, the continuous reception times of racon communication pulse W22 in theta 3 sweep operation time reaches the second time (YES in step S303). Therefore, the radar transceiver 10 transmits the radar detection pulse W11 during the next N scan operation (step S302).
 θスイープ動作、θスイープ動作は、何れも、θスイープ動作における動作と同様である。 Both the θ 4 sweep operation and the θ 5 sweep operation are the same as the operations in the θ 3 sweep operation.
 その結果、N-2スキャン時点では、レーダ送受信機10は、レーコン通知パルスW21を受信した後、通信範囲CA1のθ,θ,θの各スイープ動作時に、レーダ通信パルスW12の送信を繰り返す。同様に、N-1スキャン時点では、レーダ送受信機10は、レーコン通知パルスW21を受信した後、通信範囲CA1のθ,θ,θの各スイープ動作時に、レーダ通信パルスW12の送信を繰り返す。一方、Nスキャン時点では、レーダ送受信機10は、レーコン20からレーコン通知パルスW21を受信しているにも拘わらず、レーダ探知パルスW11の送信を、繰り返す。 As a result, at the N-2 scan time, the radar transceiver 10 receives the racon notification pulse W21 and then transmits the radar communication pulse W12 during each sweep operation of θ 3 , θ 4 , θ 5 in the communication range CA1. repeat. Similarly, at the time of the N-1 scan, the radar transceiver 10 receives the racon notification pulse W21 and then transmits the radar communication pulse W12 during each sweep operation of θ 3 , θ 4 , θ 5 in the communication range CA1. repeat. On the other hand, at the N scan time point, the radar transceiver 10 repeats the transmission of the radar detection pulse W11 even though it receives the racon notification pulse W21 from the racon 20.
 そして、N-2スキャン時点での動作、N-1スキャン時点での動作、及びNスキャン時点での動作が、繰り返し行われる。 Then, the operation at the N-2 scan time, the operation at the N-1 scan time, and the operation at the N scan time are repeatedly performed.
 図5を参照して、次に、本発明の第2実施形態における、画像メモリ152bでの処理を説明する。画像メモリ152bは、1スキャン前の時点の画素データYk-1[i,j]を記憶している。画素データYk-1[i,j]は、本発明の「過去の探知結果を示す過去画像データ」の一例である。画像メモリ152bは、画素毎に、画素データ生成部152aで生成された画素データG[i,j]と、過去の対応する画素データYk-1[i,j]とを用いて、スキャン相関処理を行う。具体的には、画像メモリ152bが出力する画素データのレベルY[i,j]は、下記の演算によって求められる。 Next, processing in the image memory 152b in the second embodiment of the present invention will be described with reference to FIG. The image memory 152b stores pixel data Y k−1 [i, j] at the time point before one scan. The pixel data Y k−1 [i, j] is an example of “past image data indicating a past detection result” in the present invention. The image memory 152b scans for each pixel using the pixel data G k [i, j] generated by the pixel data generation unit 152a and the past corresponding pixel data Y k−1 [i, j]. Perform correlation processing. Specifically, the level Y k [i, j] of the pixel data output from the image memory 152b is obtained by the following calculation.
 Y[i,j]=α×Yk-1[i,j]+β×G[i,j] ここで、α,βは、それぞれ、所定の重み付け係数である。重み付け係数α,βによって、過去の画素データYk-1[i,j]と、最新の画素データG[i,j]と、の配合割合が決定される。重み付け係数α,βの和は、1に設定される。重み付け係数α,βを適宜設定することにより、レーダ送受信機は、時間的に変動するシークラッタ等の不要なエコーを抑圧できる。 Y k [i, j] = α × Y k−1 [i, j] + β × G k [i, j] Here, α and β are predetermined weighting coefficients, respectively. The blending ratio between the past pixel data Y k−1 [i, j] and the latest pixel data G k [i, j] is determined by the weighting coefficients α and β. The sum of the weighting coefficients α and β is set to 1. By appropriately setting the weighting coefficients α and β, the radar transceiver can suppress unnecessary echoes such as sea clutter that fluctuates over time.
 次に、画像メモリ152bが重み付け係数α,βを設定する処理の流れの一例を、説明する。本実施形態では、各画素データY[i,j]について、レーダ探知パルスW11の送信に伴って生成された場合と、レーダ通信パルスW12の送信に伴って生成された場合とで、重み付け係数設定α,βの設定値を異ならせている。 Next, an example of a processing flow in which the image memory 152b sets the weighting coefficients α and β will be described. In the present embodiment, each pixel data Y k [i, j] is weighted by a case where it is generated along with transmission of the radar detection pulse W11 and a case where it is generated along with transmission of the radar communication pulse W12. The setting values α and β are different.
 図11は、画像メモリ152bによる、重み付け係数α,βを設定する処理の流れの一例を説明するためのフローチャートである。図5及び図11を参照して、画像メモリ152bは、判断部154での判断結果を読み出す(ステップS401)。次いで、画像メモリ152bは、最新のスイープ時点でレーダ探知パルスW11が送信されたか否かを、判断する(ステップS402)。 FIG. 11 is a flowchart for explaining an example of a processing flow for setting the weighting coefficients α and β by the image memory 152b. Referring to FIGS. 5 and 11, the image memory 152b reads the determination result in the determination unit 154 (step S401). Next, the image memory 152b determines whether or not the radar detection pulse W11 is transmitted at the latest sweep time (step S402).
 ステップS402でYESである場合、画像メモリ152bは、過去の画素データYk-1[i,j]、及び最新の画素データG[i,j]の双方が反映されるように、各重み付け係数設定α,βを設定する(ステップS403)。本実施形態では、例えば、α=0.8、β=0.2に設定される。 If YES in step S402, the image memory 152b performs weighting so that both the past pixel data Y k-1 [i, j] and the latest pixel data G k [i, j] are reflected. Coefficient settings α and β are set (step S403). In the present embodiment, for example, α = 0.8 and β = 0.2 are set.
 一方、ステップS402でNOである場合、レーダ探知パルスW11は、送信されていない。この場合、スイープメモリ151には、探知用受信信号R(k)が入力されない。この場合、画像メモリ152bは、最新の画素データG[i,j]を考慮しないよう、各重み付け係数設定α,βを設定する(ステップS404)。即ち、画像メモリ152bは、α=1.0、β=0.0を設定する。 On the other hand, if NO in step S402, the radar detection pulse W11 is not transmitted. In this case, the detection reception signal R (k) is not input to the sweep memory 151. In this case, the image memory 152b sets the weighting coefficient settings α and β so as not to consider the latest pixel data G k [i, j] (step S404). That is, the image memory 152b sets α = 1.0 and β = 0.0.
 上述の処理の結果、レーダ通信パルスW12が送信された箇所についても、過去の画素データYk-1[i,j]を用いて、PPI画面161に、レーコン20のエコー像P20等を表示できる。 As a result of the above processing, the echo image P20 of the racon 20 and the like can be displayed on the PPI screen 161 using the past pixel data Y k-1 [i, j] also for the location where the radar communication pulse W12 is transmitted. .
 以上説明したように、本発明の第2実施形態によると、画像メモリ152bは、過去の探知結果を示す画素データを、過去画素データYk-1[i,j]として記憶する。また、画像データ生成部152は、過去画素データYk-1[i,j]を、レーダ探知パルスW11を用いた過去の探知結果として用いる。画素データG[i,j]のデータ量は、生データとしての探知用受信信号R(k)のデータ量と比べて、少ない。よって、レーダ送受信機10に必要なメモリ容量を、少なくできる。 As described above, according to the second embodiment of the present invention, the image memory 152b stores pixel data indicating past detection results as past pixel data Y k-1 [i, j]. Further, the image data generation unit 152 uses the past pixel data Y k−1 [i, j] as a past detection result using the radar detection pulse W11. The data amount of the pixel data G k [i, j] is small compared to the data amount of the detection reception signal R (k) as raw data. Therefore, the memory capacity required for the radar transceiver 10 can be reduced.
 以上説明した本発明の第1実施形態では、レーダ送受信機10は、通信範囲CA1において、レーダ通信パルスW12を送信する合間に、レーダ探知パルスW11を送信した。このような構成では、レーダ通信パルスW12の送信速度が低下してしまう。しかしながら、通信範囲CA1にレーダ探知パルスW11が送信される結果、通信範囲CA1内に存在する物標を、探知することができる。一方、本発明の第2実施形態では、N-2スキャン時点、及びN-1スキャン時点では、通信範囲CA1において、レーダ通信パルスW12を、より多く送信できる。よって、レーダ送受信機10による情報の送信速度を、より高くできる。しかしながら、レーダ探知パルスW11が送信されない箇所については、過去の画素データYk-1[i,j]を利用して、PPI画面161で表示が行われる。よって、レーダ探知パルスW11が送信されていない箇所における物標の有無の検出の正確性に、改善の余地がある。 In the first embodiment of the present invention described above, the radar transceiver 10 transmits the radar detection pulse W11 in the communication range CA1 while transmitting the radar communication pulse W12. In such a configuration, the transmission speed of the radar communication pulse W12 decreases. However, as a result of the radar detection pulse W11 being transmitted to the communication range CA1, it is possible to detect a target existing within the communication range CA1. On the other hand, in the second embodiment of the present invention, more radar communication pulses W12 can be transmitted in the communication range CA1 at the N-2 scan time and the N-1 scan time. Therefore, the transmission speed of information by the radar transceiver 10 can be further increased. However, the portion where the radar detection pulse W11 is not transmitted is displayed on the PPI screen 161 using the past pixel data Y k-1 [i, j]. Therefore, there is room for improvement in the accuracy of detection of the presence / absence of a target at a location where the radar detection pulse W11 is not transmitted.
 そこで、本発明の第3実施形態では、本発明の第1実施形態における動作と、本発明の第2実施形態における動作とを、状況に応じて使い分けることのできる構成が、採用されている。 Therefore, in the third embodiment of the present invention, a configuration that can selectively use the operation in the first embodiment of the present invention and the operation in the second embodiment of the present invention depending on the situation is adopted.
[第3実施形態]
 図12は、本発明の第3実施形態に係るレーダ送受信機10Aの構成を示すブロック図である。図12を参照して、レーダ送受信機10Aは、アンテナ部11と、サーキュレータ12と、送信機13と、受信機14と、信号処理部15Aと、レーダ映像表示器16と、通信情報表示器17と、レーダ通信情報メモリ18と、を有している。
[Third Embodiment]
FIG. 12 is a block diagram showing a configuration of a radar transceiver 10A according to the third embodiment of the present invention. Referring to FIG. 12, a radar transceiver 10A includes an antenna unit 11, a circulator 12, a transmitter 13, a receiver 14, a signal processing unit 15A, a radar video display 16, and a communication information display 17. And a radar communication information memory 18.
 信号処理部15Aは、スイープメモリ151と、画像データ生成部152と、復調処理部153と、判断部154と、レーダ通信情報設定部155と、レーダ通信パルス生成部156と、レーダ探知パルス生成部157と、送信波形切替部158と、制御部159と、を有している。 The signal processing unit 15A includes a sweep memory 151, an image data generation unit 152, a demodulation processing unit 153, a determination unit 154, a radar communication information setting unit 155, a radar communication pulse generation unit 156, and a radar detection pulse generation unit. 157, a transmission waveform switching unit 158, and a control unit 159.
 制御部159は、受信機14、判断部154、及び画素データ生成部152aに接続されている。 The control unit 159 is connected to the receiver 14, the determination unit 154, and the pixel data generation unit 152a.
 次に、制御部159における処理の一例を説明する。図13は、制御部159における処理の流れの一例を説明するためのフローチャートである。図12及び図13を参照して、制御部159は、最新の時点のレーダ波W10の種類を判断する(ステップS501)。制御部159は、判断部154から送信波形切替部158へ出力された指令信号CMを参照することで、上記のレーダ波W10の種類を判断する。 Next, an example of processing in the control unit 159 will be described. FIG. 13 is a flowchart for explaining an example of a process flow in the control unit 159. Referring to FIGS. 12 and 13, control unit 159 determines the type of radar wave W10 at the latest time point (step S501). The control unit 159 determines the type of the radar wave W10 by referring to the command signal CM output from the determination unit 154 to the transmission waveform switching unit 158.
 レーダ波W10がレーダ探知パルスW11である場合(ステップ501で、「レーダ探知パルス」)、制御部159は、スイープバッファ151に記憶されている、最新の探知用受信信号R(k)を読み出す(ステップS502)。 When the radar wave W10 is the radar detection pulse W11 (“radar detection pulse” in step 501), the control unit 159 reads the latest detection reception signal R (k) stored in the sweep buffer 151 ( Step S502).
 一方、最新のレーダ波W10がレーダ通信パルスW12である場合(ステップS501で、「レーダ通信パルス」)、制御部159は、画像メモリ152bに記憶されている、過去の(1スイープ動作前の)画素データYk-1[i,j]を、読み出す(ステップS503)。 On the other hand, when the latest radar wave W10 is the radar communication pulse W12 (“radar communication pulse” in step S501), the control unit 159 stores the past (before one sweep operation) stored in the image memory 152b. Pixel data Y k−1 [i, j] is read (step S503).
 次に、制御部159は、読み出した探知用受信信号R(k)又は画素データYk-1[i,j]を参照する。これにより、制御部159は、レーダ送受信機10Aとレーコン20との間に物標(他船3等)が存在しているか否かを、判断する(ステップS504)。具体的には、制御部159は、レーダ送受信機10Aとレーコン20との間の領域での信号レベルが、所定のしきい値を超えているが否かを判断する。 Next, the control unit 159 refers to the read detection reception signal R (k) or the pixel data Y k−1 [i, j]. Thus, the control unit 159 determines whether or not a target (another ship 3 or the like) exists between the radar transceiver 10A and the racon 20 (step S504). Specifically, the control unit 159 determines whether or not the signal level in the region between the radar transceiver 10A and the racon 20 exceeds a predetermined threshold value.
 上記信号レベルが、上記しきい値を超えている場合、制御部159は、レーダ送受信機10Aとレーコン20との間に物標が存在していると判断する(ステップS504でYES)。この場合、制御部159は、判断部154に対して、第1処理モードを設定させる(ステップS505)。第1処理モードは、本発明の第1実施形態における処理と同様の処理を行うモードである。第1処理モードが設定されている場合、図6及び図7に示すフローチャートの処理と同様の処理が行われる。よって、第1処理モードの詳細な説明は省略する。 When the signal level exceeds the threshold value, the control unit 159 determines that a target exists between the radar transceiver 10A and the racon 20 (YES in step S504). In this case, the control unit 159 causes the determination unit 154 to set the first processing mode (step S505). The first processing mode is a mode for performing processing similar to the processing in the first embodiment of the present invention. When the first processing mode is set, processing similar to the processing in the flowcharts shown in FIGS. 6 and 7 is performed. Therefore, detailed description of the first processing mode is omitted.
 一方、上記信号レベルが、上記しきい値以下である場合、制御部159は、レーダ送受信機10Aとレーコン20との間に物標が存在していない、と判断する(ステップS504でNO)。この場合、制御部159は、判断部154に対して、第2処理モードを設定させる(ステップS506)。第2処理モードは、本発明の第2実施形態における処理と同様の処理を行うモードである。第2処理モードが設定されている場合、図9及び図11に示すフローチャートの処理と同様の処理が行われる。よって、第2処理モードの詳細な説明は省略する。 On the other hand, when the signal level is equal to or lower than the threshold value, the control unit 159 determines that there is no target between the radar transceiver 10A and the racon 20 (NO in step S504). In this case, the control unit 159 causes the determination unit 154 to set the second processing mode (step S506). The second processing mode is a mode for performing processing similar to the processing in the second embodiment of the present invention. When the second processing mode is set, processing similar to the processing in the flowcharts shown in FIGS. 9 and 11 is performed. Therefore, detailed description of the second processing mode is omitted.
 このように、本発明の第3実施形態のレーダ送受信機10Aによると、自船2の近傍に他船3等の物標が存在している場合は、第1処理モードによる処理が行われる。これにより、自船2の近傍に物標が存在している場合、スキャン動作が行われる毎に、レーダ探知パルスW11は、通信範囲CA1に向けて送信される。これにより、レーダ送受信機10Aは、自船2の近傍の物標を、より正確に探知できる。 Thus, according to the radar transceiver 10A of the third embodiment of the present invention, when a target such as the other ship 3 exists in the vicinity of the own ship 2, the process in the first processing mode is performed. Thereby, when the target exists in the vicinity of the own ship 2, the radar detection pulse W11 is transmitted toward the communication range CA1 every time the scanning operation is performed. Thereby, the radar transceiver 10A can detect the target in the vicinity of the ship 2 more accurately.
 また、自船2の近傍に物標が存在していない場合、第2処理モードによる処理が行われる。この場合、過去の画素データYk-1[i,j]を用いて、PPI画面161に、通信範囲CA1に存在する物標のエコー像P3等を表示でき、且つ、レーコン20へ送信できるレーダ通信パルスW12を、より多くできる。これにより、1スキャン動作においてレーコン20へ送信できる情報の総量を、より多くできる。 Moreover, when the target does not exist in the vicinity of the own ship 2, the processing in the second processing mode is performed. In this case, using the past pixel data Y k-1 [i, j], a radar that can display the echo image P3 of the target existing in the communication range CA1 on the PPI screen 161 and transmit it to the racon 20. More communication pulses W12 can be made. Thereby, the total amount of information that can be transmitted to the racon 20 in one scan operation can be increased.
 以上、本発明の実施形態について説明したけれども、本発明は上述の実施の形態に限られない。本発明は、特許請求の範囲に記載した限りにおいて様々な変更が可能である。例えば、次のように変更して実施してもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment. The present invention can be variously modified as long as it is described in the claims. For example, the following modifications may be made.
 (1)上述の各実施形態では、レーダ送受信機10,10Aの信号処理部15,15Aの一例を説明したけれども、この通りでなくてもよい。信号処理部15,15Aは、通信範囲CA1の探知結果を示す画素データY[i,j]の生成処理と、通信範囲CA1外の探知結果を示す画素データY[i,j]の生成処理と、が異なるように構成されていればよい。 (1) In the above-described embodiments, examples of the signal processing units 15 and 15A of the radar transceivers 10 and 10A have been described. However, this need not be the case. The signal processing unit 15,15A the generated pixel data Y k indicating the detection result of the communication range CA1 [i, j] and generation processing, the pixel data Y k indicating the detection results of the outside communication range CA1 [i, j] What is necessary is just to be comprised so that a process may differ.
 (2)上述の各実施形態では、画像データ生成部152が、過去の探知結果(探知用受信信号R(k-1)又は過去画素データYk-1[i,j])を用いて、通信範囲CA1の探知結果を示す画素データY[i,j]を生成する形態を例に説明した。しかしながら、この通りでなくてもよい。例えば、画像データ生成部152は、上記過去の探知結果を用いることなく、画素データY[i,j]を生成してもよい。 (2) In each of the embodiments described above, the image data generation unit 152 uses the past detection result (the detection reception signal R (k−1) or the past pixel data Y k−1 [i, j]), An example in which pixel data Y k [i, j] indicating the detection result of the communication range CA1 is generated has been described. However, this need not be the case. For example, the image data generation unit 152 may generate the pixel data Y k [i, j] without using the past detection result.
 (3)上述の第2実施形態では、信号処理部15は、過去の探知用受信信号R(k-1)を用いない形態を例に説明した。しかしながら、この通りでなくてもよい。例えば、第2実施形態において、過去の探知用受信信号R(k-1)が、スイープメモリ151から画像データ生成部152へ出力されてもよい。 (3) In the second embodiment described above, the signal processing unit 15 has been described as an example in which the past detection reception signal R (k−1) is not used. However, this need not be the case. For example, in the second embodiment, the past detection reception signal R (k−1) may be output from the sweep memory 151 to the image data generation unit 152.
 (4)上述の各実施形態では、画像データ生成部152が、通信範囲CA1を特定するための画素データYk-1[i,j]を生成する形態を例に説明した。しかしながら、この通りでなくてもよい。例えば、画像データ生成部152は、通信範囲CA1を特定する表示(図3の破線の表示)の無い画像の画像データを生成してもよい。 (4) In each of the embodiments described above, an example in which the image data generation unit 152 generates the pixel data Y k-1 [i, j] for specifying the communication range CA1 has been described. However, this need not be the case. For example, the image data generation unit 152 may generate image data of an image without a display that identifies the communication range CA1 (displayed with a broken line in FIG. 3).
 (5)また、上述の各実施形態では、レーダ送受信機10,10Aが、レーコン20と通信する形態を例に説明した。しかしながら、この通りでなくてもよい。例えば、レーダ送受信機10,10Aは、レーコン20以外の通信対象と通信してもよい。 (5) Further, in each of the above-described embodiments, an example in which the radar transceivers 10 and 10A communicate with the racon 20 has been described. However, this need not be the case. For example, the radar transceivers 10 and 10 </ b> A may communicate with a communication target other than the racon 20.
 (6)また、上述の実施形態では、レーダ送受信機10,10Aが、1つのレーダ通信情報D10を繰り返し送信する形態を例に説明した。しかしながら、この通りでなくてもよい。例えば、レーダ送受信10,10Aは、異なる種類のレーダ通信情報を送信してもよい。この場合、異なる種類のレーダ通信情報は、一括して送信されてもよいし、複数のレーダ通信パルスW12によって個別に送信されてもよい。 (6) Further, in the above-described embodiment, the radar transmitter / receiver 10, 10A has been described as an example in which one radar communication information D10 is repeatedly transmitted. However, this need not be the case. For example, the radar transceivers 10 and 10A may transmit different types of radar communication information. In this case, different types of radar communication information may be transmitted in a lump or may be individually transmitted by a plurality of radar communication pulses W12.
3           他船(物標)
10,10A      レーダ送受信機(レーダ装置)
15,15A      信号処理部(信号処理装置)
20          レーコン(通信対象、物標)
151         スイープメモリ
152         画像データ生成部
152b        画像メモリ
154         判断部(通信範囲検出部)
156         レーダ通信パルス生成部(通信信号生成部)
157         レーダ探知パルス生成部(探知信号生成部)
C1          方位方向
CA1         通信範囲
R(K)        探知用受信信号
R(k-1)      探知用受信信号(過去の探知結果)
W11         レーダ探知パルス(探知信号)
W12         レーダ通信パルス(通信信号)
[i,j]     画素データ(探知信号を用いた探知結果を示す画像データ)
k-1[i,j]    画素データ(過去画像データ)
3 Other ships (targets)
10,10A Radar transceiver (radar device)
15, 15A Signal processing unit (signal processing device)
20 Rakon (communication object, target)
151 Sweep Memory 152 Image Data Generation Unit 152b Image Memory 154 Determination Unit (Communication Range Detection Unit)
156 Radar communication pulse generator (communication signal generator)
157 Radar detection pulse generator (detection signal generator)
C1 Azimuth direction CA1 Communication range R (K) Detection reception signal R (k-1) Detection reception signal (past detection result)
W11 Radar detection pulse (detection signal)
W12 Radar communication pulse (communication signal)
Y k [i, j] pixel data (image data indicating a detection result using a detection signal)
Y k-1 [i, j] Pixel data (past image data)

Claims (8)

  1.  レーダ装置に備えられる信号処理装置であって、
     前記レーダ装置の周囲の物標を探知するための探知信号を生成する、探知信号生成部と、
     所定の通信対象と通信するための通信信号を生成する、通信信号生成部と、
     前記レーダ装置の周囲の方位方向において、前記通信対象と通信する通信範囲を検出する、通信範囲検出部と、
     前記探知信号を用いた探知結果を示す画像データを生成する、画像データ生成部と、を備え、
     前記通信範囲の探知結果を示す前記画像データを生成するための処理と、前記通信範囲外の探知結果を示す前記画像データを生成するための処理と、が異なっていることを特徴とする、信号処理装置。
    A signal processing device provided in a radar device,
    A detection signal generator for generating a detection signal for detecting a target around the radar device;
    A communication signal generation unit that generates a communication signal for communicating with a predetermined communication target;
    A communication range detection unit that detects a communication range that communicates with the communication target in an azimuth direction around the radar device;
    An image data generation unit for generating image data indicating a detection result using the detection signal,
    A process for generating the image data indicating the detection result of the communication range is different from a process for generating the image data indicating the detection result outside the communication range. Processing equipment.
  2.  請求項1に記載の信号処理装置であって、
     前記探知信号及び前記通信信号の何れを送信するかを判断する、判断部を更に備え、
     前記判断部は、
     前記通信範囲における前記探知信号の送信間隔を、前記通信範囲外における前記探知信号の送信間隔よりも大きくさせ、且つ、
     前記通信範囲において、前記探知信号が送信されていないときに前記通信信号を送信させることを特徴とする、信号処理装置。
    The signal processing device according to claim 1,
    A judgment unit for judging which of the detection signal and the communication signal is transmitted;
    The determination unit
    The transmission interval of the detection signal in the communication range is larger than the transmission interval of the detection signal outside the communication range; and
    In the communication range, the signal is transmitted when the detection signal is not transmitted.
  3.  請求項1又は請求項2に記載の信号処理装置であって、
     前記画像データ生成部は、過去の探知結果を用いて、前記通信範囲の探知結果を示す前記画像データを生成することを特徴とする、信号処理装置。
    The signal processing device according to claim 1 or 2,
    The signal processing device is characterized in that the image data generation unit generates the image data indicating the detection result of the communication range using a past detection result.
  4.  請求項3に記載の信号処理装置であって、
     スイープメモリを更に備え、
     前記スイープメモリは、前記探知信号の送信後に受信された探知用受信信号を記憶し、
     前記画像データ生成部は、前記スイープメモリに記憶されている前記探知用受信信号を、前記過去の探知結果として用いることが可能であることを特徴とする、信号処理装置。
    The signal processing device according to claim 3,
    A sweep memory,
    The sweep memory stores a detection reception signal received after transmission of the detection signal,
    The signal processing apparatus, wherein the image data generation unit can use the detection reception signal stored in the sweep memory as the past detection result.
  5.  請求項3に記載の信号処理装置であって、
     画像メモリを更に備え、
     前記画像メモリは、過去の探知結果を示す画像データを過去画像データとして記憶し、
     前記画像データ生成部は、前記過去画像データを、前記過去の探知結果として用いることを特徴とする、信号処理装置。
    The signal processing device according to claim 3,
    An image memory,
    The image memory stores image data indicating past detection results as past image data,
    The signal processing apparatus, wherein the image data generation unit uses the past image data as the past detection result.
  6.  請求項1乃至請求項5の何れか1項に記載の信号処理装置であって、
     前記画像データ生成部は、前記通信範囲を特定する表示が行われるように前記画像データを生成することを特徴とする、信号処理装置。
    A signal processing device according to any one of claims 1 to 5,
    The signal processing device is characterized in that the image data generation unit generates the image data so that display specifying the communication range is performed.
  7.  請求項1乃至請求項6の何れか1項に記載の信号処理装置であって、
     前記画像データ生成部は、前記通信対象の位置を特定する表示が行われるように前記画像データを生成することを特徴とする、信号処理装置。
    The signal processing apparatus according to any one of claims 1 to 6,
    The signal processing apparatus, wherein the image data generation unit generates the image data so that display for specifying a position of the communication target is performed.
  8.  レーダ装置における信号処理方法であって、
     前記レーダ装置の周囲の物標を探知するための探知信号を生成する、探知信号生成ステップと、
     所定の通信対象と通信するための通信信号を生成する、通信信号生成ステップと、
     前記レーダ装置の周囲の方位方向において、前記通信対象と通信する通信範囲を検出する、通信範囲検出ステップと、
     前記探知信号を用いた探知結果を示す画像データを生成する、画像データ生成ステップと、を含み、
     前記通信範囲の探知結果を示す前記画像データを生成するための処理と、前記通信範囲外の探知結果を示す前記画像データを生成するための処理と、が異なっていることを特徴とする、信号処理方法。
    A signal processing method in a radar apparatus,
    A detection signal generating step for generating a detection signal for detecting a target around the radar device;
    Generating a communication signal for communicating with a predetermined communication target; and a communication signal generating step;
    A communication range detecting step of detecting a communication range communicating with the communication target in an azimuth direction around the radar device;
    Generating image data indicating a detection result using the detection signal, and an image data generation step,
    A process for generating the image data indicating the detection result of the communication range is different from a process for generating the image data indicating the detection result outside the communication range. Processing method.
PCT/JP2014/052500 2013-02-12 2014-02-04 Signal processing device and signal processing method WO2014125960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-024985 2013-02-12
JP2013024985 2013-02-12

Publications (1)

Publication Number Publication Date
WO2014125960A1 true WO2014125960A1 (en) 2014-08-21

Family

ID=51353968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052500 WO2014125960A1 (en) 2013-02-12 2014-02-04 Signal processing device and signal processing method

Country Status (1)

Country Link
WO (1) WO2014125960A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749560A (en) * 2015-04-20 2015-07-01 南京信息工程大学 Digital signal processor and digital signal processing method for ship-navigation radar
WO2015198753A1 (en) * 2014-06-26 2015-12-30 古野電気株式会社 Signal processing device, transponder device, radar device, and signal processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062349A (en) * 2000-08-24 2002-02-28 Japan Radio Co Ltd Radar
JP2010008069A (en) * 2008-06-24 2010-01-14 Japan Radio Co Ltd System for transmitting radar information and radar device for it
JP2011128069A (en) * 2009-12-18 2011-06-30 Furuno Electric Co Ltd Signal processing device, radar device, and signal processing program
JP2011128057A (en) * 2009-12-18 2011-06-30 Mitsubishi Electric Corp Radar information display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062349A (en) * 2000-08-24 2002-02-28 Japan Radio Co Ltd Radar
JP2010008069A (en) * 2008-06-24 2010-01-14 Japan Radio Co Ltd System for transmitting radar information and radar device for it
JP2011128069A (en) * 2009-12-18 2011-06-30 Furuno Electric Co Ltd Signal processing device, radar device, and signal processing program
JP2011128057A (en) * 2009-12-18 2011-06-30 Mitsubishi Electric Corp Radar information display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198753A1 (en) * 2014-06-26 2015-12-30 古野電気株式会社 Signal processing device, transponder device, radar device, and signal processing method
CN104749560A (en) * 2015-04-20 2015-07-01 南京信息工程大学 Digital signal processor and digital signal processing method for ship-navigation radar

Similar Documents

Publication Publication Date Title
US8730090B2 (en) Signal processing device, radar apparatus and signal processing program
JP5658871B2 (en) Signal processing apparatus, radar apparatus, signal processing program, and signal processing method
JP5415145B2 (en) Radar equipment
US8981988B2 (en) Radar system, transponder device, method for radar processing and computer readable media
JP2014025914A (en) Target detection device and target detection method
WO2015190232A1 (en) Radar device and transmission-signal control method
WO2017204075A1 (en) Signal processing device and radar device
WO2014125960A1 (en) Signal processing device and signal processing method
JP4787400B2 (en) Detecting device
JP2012122736A (en) Underwater detection device and underwater detection system
EP3144697B1 (en) Radar apparatus
CN108713153B (en) Radar device and track display method
CN110780286A (en) Echo signal processing device and system, and echo signal processing method
WO2015198753A1 (en) Signal processing device, transponder device, radar device, and signal processing method
WO2014125959A1 (en) Communication device and communication method
JP6138430B2 (en) Dangerous target detection device
WO2014125957A1 (en) Signal processing device, transponder device, and signal processing method
JP6339074B2 (en) Sea state detection device, radar device, sea state detection method, and program
JP6703798B2 (en) Radar device and radar image generation method
JP2009258050A (en) Pulse radar device, information transmission method using pulse radar device, and information transmission system using the pulse radar device
EP3690486A1 (en) A radar device, a method of generating a radar image, and a radar image generating program
JP5730565B2 (en) Radar signal processing device and radar image processing device
JP2015081889A (en) Signal processor, radar device, signal processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP