WO2014125793A1 - Image display device and lighting device - Google Patents

Image display device and lighting device Download PDF

Info

Publication number
WO2014125793A1
WO2014125793A1 PCT/JP2014/000604 JP2014000604W WO2014125793A1 WO 2014125793 A1 WO2014125793 A1 WO 2014125793A1 JP 2014000604 W JP2014000604 W JP 2014000604W WO 2014125793 A1 WO2014125793 A1 WO 2014125793A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
image
lens
cell
Prior art date
Application number
PCT/JP2014/000604
Other languages
French (fr)
Japanese (ja)
Inventor
三谷 浩
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014125793A1 publication Critical patent/WO2014125793A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133613Direct backlight characterized by the sequence of light sources

Definitions

  • the present disclosure relates to an image display device and an illumination device including a plurality of light sources and a lens that collimates light from each light source.
  • Patent Document 1 discloses an image display device in which a viewer can stereoscopically display a display image with the naked eye without using dedicated glasses.
  • This image display device collimates a plurality of light sources corresponding to the left and right eyes and the light from each light source, and emits the light toward a presumed viewing position (hereinafter also referred to as “viewing assumed position”). It has a plurality of lenses and a liquid crystal panel that displays an image using light emitted from each lens as a backlight. Then, light emission / non-light emission of each light source is switched between when a left-eye image is displayed on the liquid crystal panel and when a right-eye image is displayed.
  • the image for the left eye can be seen only by the left eye
  • the image for the right eye can be seen only by the right eye.
  • the displayed image can be stereoscopically viewed with the naked eye.
  • the lenses have the same optical characteristics. Therefore, by changing the arrangement position of the light source with respect to the optical axis of the lens for each lens, the direction of the light emitted from each lens is adjusted, and the light is emitted from each lens toward the assumed viewing position. Yes. However, as a result, a lens in which light from the light source enters relatively uniformly and a lens in which the light from the light source enters non-uniformly are generated.
  • the light source is arranged at a position relatively close to the optical axis of the lens. Therefore, the light emitted from the light source enters the lens with a relatively uniform intensity.
  • the emitted light needs to be deflected relatively large, so the light source must be arranged at a position relatively distant from the optical axis of the lens.
  • the distance from the light source to the lens is biased, and there is a difference in the intensity of light incident on the lens between the region where the distance from the light source to the lens is relatively close and the region where the distance is relatively far.
  • the light used for the backlight of the liquid crystal panel be as uniform as possible.
  • the intensity of the emitted light will also be non-uniform, and the uniformity of the backlight will be impaired and the quality of the display image will be reduced to the viewer. There is a risk of being recognized.
  • Patent Document 2 discloses a display device including a liquid crystal panel and a cylindrical lens.
  • the backlight is blocked by a wiring part (non-transmission part) provided between the pixels of the liquid crystal panel, and the area is recognized as a black belt-like shadow by the viewer. There is.
  • the display device disclosed in Patent Document 2 has a diffusion mask for reducing the occurrence of shadows. Since the light transmitted through the liquid crystal panel is diffused by the diffusion mask, it is possible to prevent the light from diffusing even in the region where the backlight is blocked by the wiring portion, and to generate a black belt-like shadow.
  • the present disclosure prevents a difference in the intensity of light incident on the lens regardless of the position of the lens, realizes a highly uniform backlight, and is effective in obtaining a high-quality display image.
  • An apparatus and a lighting device are provided.
  • An image display device includes a first light source that emits light for displaying a first image, a second light source that emits light for displaying a second image, a first light source, and a second light source.
  • An illumination unit having a plurality of cells arranged in a plane, and a second image corresponding to the first image signal and the second image.
  • a spatial light modulation panel that modulates light emitted from the illumination unit based on the image signal.
  • the first light source and the second light source are arranged substantially symmetrically with respect to the central axis of the cell, and the light emitted from the cell arranged at the center of the illumination unit and the cell arranged around the illumination unit
  • the emitted light is configured to have a different emission direction when emitted from the illumination unit.
  • FIG. 1 is an external view of the image display apparatus according to the first embodiment.
  • FIG. 2A is a diagram schematically illustrating an example of an assumed viewing position of the image display apparatus in the first embodiment.
  • 2B is a diagram schematically illustrating another example of assumed viewing positions of the image display apparatus according to Embodiment 1.
  • FIG. 3 is an exploded perspective view schematically showing the configuration of the illumination unit of the image display device according to the first embodiment.
  • FIG. 4 is an exploded perspective view schematically showing one of the cells constituting the illumination unit in the first embodiment.
  • FIG. 5 is a partially enlarged view of the light source unit according to Embodiment 1 as viewed from the front.
  • FIG. 6 is a cross-sectional view of the image display apparatus in the first embodiment.
  • FIG. 1 is an external view of the image display apparatus according to the first embodiment.
  • FIG. 2A is a diagram schematically illustrating an example of an assumed viewing position of the image display apparatus in the first embodiment.
  • 2B is a diagram schematically
  • FIG. 7A is a cross-sectional view schematically showing the arrangement position of the light source and the emission direction of the emitted light of the cell arranged near the center of the illumination unit in the first embodiment.
  • FIG. 7B is a cross-sectional view schematically showing the arrangement position of the light sources and the emission direction of the emitted light of the cells arranged around the illumination unit in the first embodiment.
  • FIG. 8A is a diagram schematically showing the intensity of incident light on the lens entrance surface of a cell arranged in the vicinity of the center of the illumination unit in the first embodiment.
  • FIG. 8B is a diagram schematically showing the intensity of incident light on the lens entrance surface of the cell arranged around the illumination unit in the first embodiment.
  • FIG. 9A is a diagram schematically illustrating the lens array in the first embodiment.
  • FIG. 9B is a diagram schematically illustrating an example of the shape of each lens constituting the lens array in the first embodiment.
  • FIG. 10 is an exploded perspective view schematically showing the configuration of the illumination unit in the second embodiment.
  • FIG. 11 is a cross-sectional view of the image display apparatus according to the second embodiment.
  • FIG. 12A is a cross-sectional view schematically showing an arrangement position of a light source and an emission direction of emitted light of a cell arranged near the center of an illumination unit in the second embodiment.
  • FIG. 12B is a cross-sectional view schematically showing the arrangement position of the light sources and the emission direction of the emitted light of the cells arranged around the illumination unit in the second embodiment.
  • FIG. 13A is a diagram schematically illustrating a deflection lens in the second embodiment.
  • FIG. 13B is a diagram schematically showing an example of the shape of a lens constituting the deflection lens in the second embodiment.
  • FIG. 14A is a schematic view of a configuration example of a lens array according to another embodiment viewed from the front.
  • FIG. 14B is a schematic view of another configuration example of a lens array according to another embodiment viewed from the front.
  • FIG. 15 is an exploded perspective view schematically showing a configuration including a diffusing plate in another embodiment.
  • FIG. 16 is an exploded perspective view schematically showing an example of the shape of a cell in another embodiment.
  • FIG. 1 is an external view of an image display device 100 according to the first embodiment.
  • the horizontal direction of the image display device 100 is the X-axis direction
  • the vertical direction is the Y-axis direction
  • the front direction from the center of the image display device 100 for image display.
  • the direction in which the light is emitted is defined as the Z-axis direction.
  • the present disclosure is not limited to this setting.
  • the image display device 100 can alternately display the first image and the second image.
  • the left-eye image constituting the stereoscopic image is set as the first image
  • the right-eye image is set as the second image
  • the images are alternately displayed at a cycle of 120 Hz.
  • the assumed viewing position is as follows.
  • FIG. 2A is a diagram schematically showing an example of an assumed viewing position of the image display apparatus 100 in the first embodiment.
  • 2B is a diagram schematically illustrating another example of assumed viewing positions of the image display apparatus 100 according to Embodiment 1.
  • FIG. 2A is a diagram schematically showing an example of an assumed viewing position of the image display apparatus 100 in the first embodiment.
  • 2B is a diagram schematically illustrating another example of assumed viewing positions of the image display apparatus 100 according to Embodiment 1.
  • FIG. 2A is a diagram schematically showing an example of an assumed viewing position of the image display apparatus 100 in the first embodiment.
  • 2B is a diagram schematically illustrating another example of assumed viewing positions of the image display apparatus 100 according to Embodiment 1.
  • FIG. 2A is a diagram schematically showing an example of an assumed viewing position of the image display apparatus 100 in the first embodiment.
  • 2B is a diagram schematically illustrating another example of assumed viewing positions of the image display apparatus 100 according to Embodiment 1.
  • L1 is about 2 m as shown in FIG. 2A. That is, a position that is about 2 m away from the center of the image display surface of the image display device 100 in the Z-axis direction is set as an assumed viewing position.
  • L2 is set to about 40 cm as shown in FIG. 2B. That is, a position that is about 40 cm away from the center of the image display surface of the image display apparatus 100 in the Z-axis direction is set as an assumed viewing position.
  • the light emission direction and the like are about the average interval between eyes (for example, about 10 cm) and the front-rear direction (Z-axis direction) with respect to the assumed viewing position in the left-right direction (X-axis direction).
  • the range of about one head is set so that autostereoscopic viewing is possible.
  • the size and expected viewing position of the image display device 100 described above are merely examples in the embodiment, and the present embodiment is not limited to these. Further, the first image and the second image are not limited to images for stereoscopic viewing, and may be images independent from each other.
  • FIG. 3 is an exploded perspective view schematically showing the configuration of the illumination unit 110 of the image display apparatus 100 according to the first embodiment.
  • FIG. 3 shows an enlarged part of the illumination unit 110.
  • FIG. 4 is an exploded perspective view showing, in an enlarged manner, one of the cells 111 constituting the illumination unit 110 in the first embodiment.
  • the image display apparatus 100 includes an illumination unit 110, a panel 104 that is a spatial light modulator (SLM), a control circuit for the illumination unit 110 and the panel 104, and a power supply circuit (not shown) inside the casing.
  • SLM spatial light modulator
  • the illumination unit 110 includes a light source unit 101, a light shielding unit 102, and a lens array 103, and is configured by arranging a plurality of cells 111 having these members as components in a planar shape.
  • the light source unit 101 has a plurality of light sources on a plane parallel to the image display surface. Specifically, the light source unit 101 pairs the first light source 101a that emits light for displaying the first image and the second light source 101b that emits light for displaying the second image, They are arranged in a matrix in the X-axis direction and the Y-axis direction. That is, as shown in FIG. 3, each light source includes a line connecting the first light sources 101a and the second light source so that a line connecting the pair of first light sources 101a and second light sources 101b is parallel to the X axis. The lines connecting the 101b are arranged so as to be parallel to the Y axis.
  • each cell 111 has a pair of a first light source 101a and a second light source 101b.
  • the boundary of each cell 111 is indicated by a broken line for convenience.
  • the light source unit 101 can be realized, for example, by mounting light sources such as LEDs in a matrix on a flat substrate.
  • each of the pair of the first light source 101a and the second light source 101b may be a single point light source as shown in FIG. 3, for example, but each may be composed of a plurality of light sources. Or you may comprise so that it may become substantially a pair of 1st light source 101a and 2nd light source 101b by optically isolate
  • the light shielding unit 102 is provided on the front surface (Z-axis positive direction) of the light source unit 101, and is formed by combining a plurality of light shielding walls in a lattice shape.
  • the region surrounded by the light shielding wall has a rectangular cylindrical shape opened in the Z-axis direction.
  • the region surrounded by the light shielding wall forms one cell 111.
  • the light shielding wall is formed for the purpose of preventing light emitted from the first light source 101a and the second light source 101b from leaking into the adjacent cell 111.
  • each cell 111 has a light shielding wall that shields light from the adjacent cell 111.
  • the light shielding wall may be formed of any material such as a metal such as aluminum or resin, but the light emitted from the first light source 101a and the second light source 101b is reflected by the wall surface on the surface of the light shielding wall. In order to prevent the light from entering the lens array 103, a black paint having a low reflectance is applied.
  • the light source unit 101 is fixed in close contact with one opening of the light shielding unit 102, and the lens array 103 is fixed in close contact with the other opening. Therefore, for example, the light shielding wall of the light shielding unit 102 can play a role of separating the light source unit 101 and the lens array 103 by the focal length of the lens 113 included in the lens array 103. In such a configuration, it is desirable that the light shielding portion 102 be formed of a material having sufficient strength to play this role.
  • the light shielding unit 102 is provided. May be formed of a relatively low strength material. Further, as long as the light from the adjacent cells 111 can be shielded, the light source unit 101, the light shielding unit 102, and the lens array 103 need not be in close contact with each other.
  • the lens array 103 is an aggregate of a plurality of lenses 113 having different optical characteristics, and is formed by arranging a plurality of lenses 113 in a matrix in the X-axis direction and the Y-axis direction in parallel with the image display surface. Yes.
  • One lens 113 corresponds to one cell 111, and the lens 113 collimates and emits light emitted from the first light source 101a and the second light source 101b into substantially parallel light.
  • the emission direction of the light emitted from each lens 113 that is, the emission direction of the light emitted from each cell 111 is a viewing position (viewing assumed position) assumed in advance.
  • the light emission of the first light source 101a is emitted from the assumed viewing position toward the left eye of the viewer viewing the display image, and the light emission of the second light source 101b is directed to the right eye of the viewer. Emitted.
  • the lenses constituting the lens array 103 have different deflection angles of the emitted light, and the lens 113 arranged in the peripheral portion is more effective in emitting light than the lens 113 arranged in the central portion of the lens array 103. Large deflection angle.
  • the plurality of lenses 113 constituting the lens array 103 and arranged in each cell 111 are element lenses having different deflection angles.
  • the boundary of each cell 111 is indicated by a broken line for convenience.
  • the panel 104 uses the light emitted from the illumination unit 110 as a backlight, and modulates the light emitted from the illumination unit 110 based on the first image signal corresponding to the first image and the second image signal corresponding to the second image.
  • the first image and the second image are alternately displayed on the image display surface of the panel 104.
  • the panel 104 can be configured using, for example, a generally known liquid crystal display panel.
  • the illumination unit 110 emits the first light source 101 a and emits the second light source 101 b when the first image is displayed on the panel 104, and turns off when the second image is displayed on the panel 104.
  • the two light sources 101b emit light and the first light source 101a is turned off.
  • one cell 111 is set as a region optically shielded by other neighboring cells 111 by a light shielding wall, and includes a pair of first light source 101 a and second light source 101 b, 1 Two lenses 113 are provided.
  • one cell 111 is formed in a square shape having a side of about 20 mm.
  • the cell 111 is not limited to this size and has the shape shown in FIG. It is not limited.
  • each of the pair of the first light source 101a and the second light source 101b is disposed at a position that is substantially symmetric (substantially symmetric) in the X-axis direction with respect to the central axis of each cell 111. Yes.
  • the central axis is a straight line parallel to the Z axis passing through a point where the distance from each vertex in the region of the cell 111 is substantially equal. Alternatively, it may be a straight line parallel to the Z axis passing through a point where lines connecting diagonals in the region of the cell 111 intersect. Alternatively, it may be a straight line parallel to the Z axis passing through the center of gravity of the area of the cell 111.
  • FIG. 4 shows a cell 111 disposed near the center of the illumination unit 110 as an example.
  • the other cell 111 has substantially the same structure as the cell 111 shown in FIG. 4 except that the optical characteristics regarding the deflection angle of the lens 113 are different (for example, the shape of the lens 113 is different). Have.
  • FIG. 5 is a partially enlarged view of the light source unit 101 according to the first embodiment when viewed from the front (Z-axis direction).
  • the boundary of the cell 111 is represented by a solid line, and the intersection of the broken lines represents the central axis of the cell 111.
  • these lines are merely shown for convenience, and these lines are not actually written on the light source unit 101.
  • the pair of the first light source 101a and the second light source 101b are disposed at positions that are substantially symmetrical with respect to the central axis of the cell 111 in the X-axis direction.
  • a difference in light intensity on the incident surface of the lens 113 difference in intensity between light having the highest intensity and light having the lowest intensity on the incident surface of one lens 113. Is within a predetermined range.
  • the first light source 101a and the second light source 101b may be arranged as close to the central axis of the cell 111 as possible.
  • the first light source 101a and the second light source 101b it is desirable that the light emitted from the lens 113 be separated so as to reach the right eye and the left eye of the viewer who views the display image from the expected viewing position.
  • the arrangement positions (arrangement positions in the cells 111) of the pair of the first light source 101 a and the second light source 101 b are in any cell regardless of the arrangement position of the cells 111 in the illumination unit 110. 111 is substantially the same. Therefore, the generation position of light incident on the lens 113 is substantially the same in any cell 111, and no difference (substantial difference) occurs in the incident state of light on the incident surface of the lens 113 in any lens 113. .
  • substantially uniform light is emitted from any cell 111 in the present embodiment. Therefore, in the image display device 100, light with substantially uniform intensity emitted from the illumination unit 110 can be used as the backlight of the panel 104.
  • FIG. 6 is a cross-sectional view of the image display device 100 according to the first embodiment.
  • FIG. 6 is a cross-sectional view taken along line AA shown in FIG.
  • FIG. 6 also shows viewers who view the display image from the assumed viewing position.
  • the generation position of light incident on the lens 113 (the position in the region of the cell 111) is substantially the same in any cell 111.
  • light has to be emitted from each cell 111 toward a presumed viewing position (viewing expected position).
  • the assumed viewing position is a position that is separated from the center of the image display surface of the image display device 100 by a predetermined distance in the Z-axis direction, and therefore has a relatively small deflection angle from the cell 111 disposed in the center of the image display surface. It is necessary to emit light at a relatively large deflection angle from the cells 111 arranged in the peripheral portion.
  • the deflection angle of the emitted light is larger in the lens 113 disposed in the peripheral portion than in the lens 113 disposed in the central portion of the lens array 103.
  • the lens array 103 is configured using the lenses 113 having different optical characteristics regarding the deflection angle of the emitted light so that the light is emitted from the lens 113 at a deflection angle corresponding to the arrangement position of the cell 111.
  • the light emitted from the cell 111 arranged in the center of the illumination unit 110 and the light emitted from the cell 111 arranged around the illumination unit 110 are emitted from the illumination unit 110.
  • the illuminating unit 110 is configured so that the emission direction when the light is emitted is different.
  • FIG. 6 shows, as an example, a state in which the light emitted from the second light source 101b is deflected by the lens array 103 and emitted from the image display device 100 and reaches the right eye of the viewer at the assumed viewing position.
  • the light emitted from the first light source 101a is deflected by the lens array 103 and emitted from the image display device 100, and reaches the viewer's left eye at the assumed viewing position.
  • FIG. 7A is a cross-sectional view schematically showing the arrangement position of the light source and the emission direction of the emitted light of the cell 111 (referred to as “cell 111A”) arranged in the vicinity of the center of the illumination unit 110 in the first embodiment.
  • FIG. 7B is a cross-sectional view schematically showing the arrangement position of the light source and the emission direction of the emitted light of the cell 111 (referred to as “cell 111B”) arranged around the illumination unit 110 in the first exemplary embodiment.
  • FIG. 7A shows an enlarged view of the region 105 indicated by a broken line in FIG. 6, and FIG. 7B shows an enlarged view of the region 106.
  • the center axis of the cell 111 is indicated by a one-dot chain line, and as an example, the optical path of light emitted from the second light source 101b is indicated by a broken line.
  • the lens 113 is referred to as “lens 113A”, and in FIG. 7B, the lens 113 is referred to as “lens 113B”.
  • the light emitted from the second light source 101b is collimated by the lens 113A, and the collimated parallel light is based on the optical characteristics of the lens 113A.
  • the light is emitted with a relatively small deflection angle and proceeds toward the assumed viewing position.
  • the light emitted from the second light source 101b is collimated by the lens 113B, and the collimated parallel light is relative based on the optical characteristics of the lens 113B.
  • the light is emitted with a large deflection angle and travels toward the assumed viewing position.
  • the description with reference to the drawings is omitted, but the light emitted from the first light source 101a and the second light source 101b is collimated by the lens 113, and the collimated light after collimation is the same as described above.
  • the light is emitted at a deflection angle based on the optical characteristics of the lens 113 and travels toward the assumed viewing position.
  • FIG. 8A is a diagram schematically showing the intensity of incident light on the incident surface of the lens 113A of the cell 111A arranged in the vicinity of the center of the illumination unit 110 in the first embodiment.
  • FIG. 8B is a diagram schematically showing the intensity of incident light on the incident surface of the lens 113B of the cell 111B arranged around the illumination unit 110 in the first embodiment.
  • 8A and 8B show the light intensity on the lens incident surface when the second light source 101b emits light.
  • the vertical axis represents the position on the lens incident surface
  • the horizontal axis represents the light intensity on the lens incident surface.
  • the incident light to the lens 113 is a position where the distance from the second light source 101b to the entrance surface of the lens 113 is the closest (position x0 for the lens 113A, position for the lens 113B). x3) is the strongest, and is the weakest at the farthest position (position x2 for the lens 113A and position x5 for the lens 113B).
  • the second light source 101b is disposed in the vicinity of the central axis, the difference between the incident light having the highest intensity and the incident light having the lowest intensity is shown in FIGS. 8A and 8B. In either case, it is suppressed to a predetermined range. As described above, this predetermined range is within 5%, preferably within 1%.
  • the difference in the intensity of the incident light is, for example, a numerical value expressed as a percentage by dividing the difference between the intensity of the incident light having the highest intensity and the intensity of the incident light having the lowest intensity by the intensity of the incident light having the highest intensity.
  • the present embodiment is not limited to this, and the intensity difference may be calculated by another method.
  • the first light source 101a emits light
  • the first light source 101a is arranged symmetrically with the second light source 101b in the X-axis direction with respect to the central axis in any cell 111. Therefore, it is the same as described above except that a difference occurs between the position where the intensity of the incident light is the strongest and the position where the intensity is the weakest.
  • the light emitted from any cell 111 becomes substantially uniform light with the difference in intensity kept within a predetermined range. Therefore, the emitted light from the illumination unit 110 becomes substantially uniform light, and the quality of the display image can be improved by using this light as the backlight of the panel 104.
  • FIG. 9A is a diagram schematically showing the lens array 103 in the first embodiment.
  • FIG. 9B is a diagram schematically illustrating an example of the shape of each lens 113 constituting the lens array 103 in the first embodiment.
  • FIG. 9B shows a front view, a side view, and a top view of the convex lens 114.
  • Each lens 113 constituting the lens array 103 may be any lens as long as it satisfies the above-described optical characteristics, but here, as an example, the objective is based on a commonly used convex lens. An example in which each lens 113 is configured so as to obtain the following optical characteristics will be described.
  • FIG. 9B is only shown for explaining an example of the shape of each lens 113 formed based on the target optical characteristics, and shows that each lens 113 is formed by cutting out from the convex lens 114. is not.
  • the lens array 103 may be manufactured by an appropriate method such as a molding method.
  • FIG. 9A and 9B as a representative example of the lens 113 constituting the lens array 103, the center (shown as position E in FIG. 9A) and the periphery (shown as positions AD and FI in FIG. 9A).
  • positioned is shown.
  • the convex lens 114 is a lens whose focal distance is set to be equal to the separation distance between the light source unit 101 and the lens array 103 in the image display device 100.
  • the lens 113 disposed at the center (position E) of the lens array 103 has a relatively small deflection angle as described above. Accordingly, as shown in FIG. 9B, the lens 113 has a shape obtained by cutting out the vicinity of the center of the convex lens 114, which is a region having a relatively small deflection angle.
  • the lens 113 arranged around the lens array 103 has a relatively large deflection angle as described above. Therefore, as shown in FIG. 9B, these lenses 113 can obtain a deflection angle and a deflection direction corresponding to the arrangement position of the lens 113 in the peripheral region of the convex lens 114, which is a region having a relatively large deflection angle. It has a cut shape.
  • the description of the other lens 113 is omitted, but it is formed so as to obtain a deflection angle and a deflection direction according to the arrangement position of the lens 113, as described above.
  • the image display device 100 receives, for example, an image signal for the right eye and an image signal for the left eye that constitute an image for stereoscopic viewing alternately (for example, at a cycle of 120 Hz).
  • a left-eye image is a first image
  • a right-eye image is a second image.
  • the first light source 101a emits light and the second light source 101b is turned off.
  • the light emitted from the first light source 101a is collimated by the lens 113 and is emitted at a deflection angle corresponding to the arrangement position of the lens 113. That is, the light emission of the first light source 101a collimated with parallel light is emitted from each cell 111 toward the assumed viewing position.
  • each cell 111 passes through the panel 104 and enters only the left eye of the viewer at the assumed viewing position.
  • the image for the left eye based on this image signal is visible to the viewer's left eye.
  • the second light source 101b When the panel 104 is controlled by the image signal for the right eye, in each cell 111 constituting the illumination unit 110, the second light source 101b emits light and the first light source 101a is turned off.
  • the light emitted from the second light source 101b is collimated by the lens 113 and is emitted at a deflection angle corresponding to the arrangement position of the lens 113. That is, the light emitted from the second light source 101b collimated to the parallel light is emitted from each cell 111 toward the assumed viewing position.
  • each cell 111 passes through the panel 104 and enters only the right eye of the viewer at the assumed viewing position.
  • the viewer's right eye Since the light that enters the viewer's right eye is modulated on the panel 104 based on the right eye image signal, the viewer's right eye can see the right eye image based on the image signal.
  • the left-eye image when the left-eye image is displayed to the viewer who views the stereoscopic image displayed on the image display device 100 from the assumed viewing position, the left-eye light source (first Since the light emitted from the light source 101a enters only the left eye, the image for the left eye can be seen only by the left eye.
  • the light emitted from the right-eye light source second light source 101b enters only the right eye, so that the right-eye image can be viewed only with the right eye. it can.
  • the viewer can stereoscopically view the stereoscopic image displayed on the image display device 100 with the naked eye.
  • the arrangement position in 111) is substantially the same.
  • the difference in light intensity at the entrance surface of each lens 113 is suppressed within a predetermined range (5%, preferably 1%).
  • Each lens 113 constituting the lens array 103 for collimating incident light has different optical characteristics regarding the deflection angle depending on the arrangement position of the lens 113, and its emission direction is a presumed viewing position (viewing expected position). is there.
  • each cell 111 constituting the illumination unit 110 emits parallel light having substantially uniform intensity toward the right or left eye of the viewer at the assumed viewing position.
  • the image display device 100 uses the parallel light with substantially uniform intensity emitted from the illumination unit 110 as the backlight, and the first image (for example, the image for the left eye) and the second image (for example, the right eye). Are displayed on the panel 104 alternately. Accordingly, a viewer who views the image display apparatus 100 from the assumed viewing position can display an image with a high-quality backlight with improved intensity uniformity, and the image for the left eye is the image for the right eye only with the left eye. Can be seen only with the right eye. That is, the viewer can stereoscopically view a high-quality stereoscopic image with the naked eye without using dedicated glasses or the like.
  • the image display device 500 according to the second embodiment has substantially the same appearance, configuration, and function as the image display device 100 shown in the first embodiment, and operates substantially the same, and thus detailed description thereof is omitted. . Also, the viewing position (viewing position assumed in advance) when the viewer views the display image is the same as in the first embodiment. However, the illumination unit 510 included in the image display device 500 has a configuration different from that of the illumination unit 110 described in the first embodiment. Hereinafter, this difference will be described.
  • FIG. 10 is an exploded perspective view schematically showing the configuration of the illumination unit 510 in the second embodiment.
  • FIG. 10 shows an enlarged part of the illumination unit 510.
  • the illumination unit 510 includes a light source unit 101, a light shielding unit 102, and a lens array 503, and is configured by arranging a plurality of cells 511 (not shown) having these components as planar elements.
  • the illumination unit 510 includes a deflecting lens 507 that is a deflecting optical element at the subsequent stage of the lens array 503 (between the lens array 503 and the panel 104).
  • the structure of the cell 511 is substantially the same as that of the cell 111 described in Embodiment 1.
  • the lens array 503 is formed by arranging a plurality of lenses 513 in a matrix in the X-axis direction and the Y-axis direction in parallel with the image display surface.
  • the lens 513 collimates the light emitted from the first light source 101a and the second light source 101b into substantially parallel light and emits the light as in the lens 113 constituting the lens array 103.
  • the lens 513 has the same (substantially equal) optical characteristics regarding the deflection angle. Since each cell 511 includes this lens 513, the light emitted from each cell 511 is in the same direction (practically the same).
  • the emission direction is, for example, a direction (front direction) parallel to the Z axis.
  • each cell 511 it is desirable to set the arrangement position of each lens 513 so that the optical axis of the lens 513 overlaps the center axis of the cell 511.
  • the deflection lens 507 receives the light emitted from each lens 513, that is, the light emitted from each cell 511, deflects the light to a presumed viewing position (viewing assumed position), and emits the light.
  • the outgoing direction of the outgoing light from the deflection lens 507 is the direction of the assumed viewing position. Specifically, for example, the light emission of the first light source 101a is emitted toward the left eye of the viewer at the assumed viewing position, and the light emission of the second light source 101b is emitted toward the right eye of the viewer. That is, the deflection lens 507 has the same function as the lens array 103 shown in Embodiment 1 in that incident light is deflected and emitted toward the assumed viewing position.
  • the light emitted from the illumination unit 510 is substantially equal to the light emitted from the illumination unit 110 described in Embodiment 1, and travels toward the right or left eye of the viewer at the assumed viewing position. To do.
  • one cell 511 is formed in a square shape having a side of about 20 mm, as in the first embodiment, but the cell 511 is not limited to this size. There is no limitation to the shape shown in FIG.
  • FIG. 11 is a cross-sectional view of the image display device 500 according to the second embodiment.
  • FIG. 11 is a cross-sectional view similar to FIG.
  • the emission directions of the light emitted from the lens 513 are the same (substantially equal). However, since the illumination unit 510 includes the deflection lens 507 at the subsequent stage of the lens array 503, the light deflected by the deflection lens 507 is emitted from the illumination unit 510 and travels toward the assumed viewing position.
  • FIG. 11 shows a state in which the light emitted from the second light source 101b is deflected by the deflecting lens 507 and reaches the right eye of the viewer at the assumed viewing position. It is deflected by the deflecting lens 507 and reaches the viewer's left eye at the assumed viewing position.
  • FIG. 12A is a cross-sectional view schematically showing the arrangement position of the light source and the emission direction of the emitted light of the cell 511 (referred to as “cell 511A”) arranged near the center of the illumination unit 510 in the second embodiment.
  • FIG. 12B is a cross-sectional view schematically showing the arrangement position of the light source and the emission direction of the emitted light in cell 511 (referred to as “cell 511B”) arranged around illumination unit 510 in the second embodiment.
  • 12A shows an enlarged view of the region 505 indicated by a broken line in FIG. 11, and
  • FIG. 12B shows an enlarged view of the region 506.
  • the cell 511A disposed near the center and the cell 511B disposed near the center are the same as each other (substantially the optical characteristics related to the deflection angle of the lens 513). The same) structure. Although not shown, the same applies to the other cells 511.
  • parallel light is emitted from any cell 511 constituting the illumination unit 510 in the same direction (for example, a direction parallel to the X axis).
  • each cell 511 is deflected by the deflection lens 507 at a deflection angle based on the arrangement position of each cell 511 and is emitted toward the assumed viewing position.
  • the parallel light emitted from the cell 511A arranged in the vicinity of the center is incident near the center of the deflection lens 507. Therefore, the parallel light is relatively based on the optical characteristics of the deflection lens 507 in that region. The light is emitted from the deflecting lens 507 with a small deflection angle and proceeds toward the assumed viewing position.
  • the parallel light emitted from the cell 511 ⁇ / b> B arranged in the periphery enters the vicinity of the periphery of the deflection lens 507. Is emitted from the deflection lens 507 and proceeds toward the assumed viewing position.
  • the intensity of the incident light on the incident surface of the lens 513 is substantially the same as that shown in FIGS. 8A and 8B, and a predetermined range (within 5%, preferably 1% or less). Therefore, the light emitted from any cell 511 is substantially uniform light with the intensity difference kept within a predetermined range.
  • FIG. 13A is a diagram schematically showing the deflection lens 507 in the second embodiment.
  • FIG. 13B is a diagram schematically illustrating an example of the shape of a lens constituting the deflection lens 507 in the second embodiment.
  • FIG. 13B shows a front view, a side view, and a top view of the convex lens 514.
  • the deflecting lens 507 may be any lens that satisfies the above-described optical characteristics, but here, as an example, the objective optical characteristics are obtained based on a commonly used convex lens. An example in which the deflection lens 507 is configured will be described.
  • FIG. 13B is only shown for explaining an example of the shape of the deflection lens 507 formed based on the target optical characteristics, and shows that the deflection lens 507 is formed by cutting out from the convex lens 514. is not.
  • the deflection lens 507 may be manufactured by an appropriate method such as a molding method.
  • the convex lens 514 is a lens in which the focal length is set to be equal to the separation distance from the deflection lens 507 to the position set as the assumed viewing position.
  • the deflection lens 507 has a shape in which the convex lens 514 set in this way is cut out based on the size of the deflection lens 507 so that the optical axis of the convex lens 514 is at the center of the deflection lens 507 as shown in FIG. 13B.
  • the lens array 503 may be formed by arranging, for example, a plurality of lenses having the same shape as the lens 113 shown at the position E in FIGS. 9A and 9B.
  • the parallel light is emitted in substantially the same direction, and the emitted light is deflected by the deflection lens 507 disposed at the subsequent stage of the lens array 503 and emitted toward the assumed viewing position.
  • the illumination unit 510 described in Embodiment 2 is different in configuration from the illumination unit 110 described in Embodiment 1, but its operation and intended effect (ie, emitted light) are different. To increase the uniformity) is substantially the same.
  • the image display device 500 in the second embodiment has no substantial difference in operation as compared with the image display device 100 shown in the first embodiment, and the main effect obtained, that is, the viewer is The effect that a high-quality display image by a highly uniform backlight can be stereoscopically viewed with the naked eye without using dedicated glasses or the like is substantially the same.
  • the lens array 503 in the present embodiment is configured by the lenses 513 having the same optical characteristics regarding the deflection angle, the lens array 503 is more manufactured than the lens array 103 including the lenses 113 having different optical characteristics regarding the deflection angle. The difficulty level can be reduced.
  • Embodiments 1 and 2 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, replacements, additions, omissions, and the like are performed. Moreover, it is also possible to combine each component demonstrated in the said Embodiment 1, 2 and it can be set as a new embodiment.
  • Embodiments 1 and 2 as an example of the lens array, an example in which each lens constituting the lens array is configured by a single lens has been described.
  • the lens array is not limited to this. Any object may be used as long as the desired optical characteristics can be obtained.
  • FIG. 14A is a schematic view of a configuration example of a lens array according to another embodiment viewed from the front (Z-axis direction).
  • FIG. 14B is a schematic view of another configuration example of the lens array according to another embodiment viewed from the front (Z-axis direction).
  • the cell boundary is represented by a solid line, and the intersection of the broken lines represents the central axis of the cell. However, these lines are shown for convenience only, and these lines are not actually marked on the lens array.
  • the lens array 103 shown in Embodiment 1 may be replaced with a lens array 123 configured with a Fresnel lens whose optical characteristics regarding the deflection angle are substantially equal to the lens array 103.
  • the lens array 503 shown in the second embodiment may be replaced with a lens array 523 configured with a Fresnel lens whose optical characteristics regarding the deflection angle are substantially equal to the lens array 503. .
  • the deflection direction of the emitted light is represented by the arrangement position of the ring with respect to the center axis of the cell indicated by the intersection of the broken lines.
  • the deflection lens 507 shown in the second embodiment can also be replaced with a Fresnel lens whose optical characteristics regarding the deflection angle are substantially equal to those of the deflection lens 507.
  • the thickness of the image display device is reduced as compared with the configuration examples described in the first and second embodiments. It can be made thinner.
  • the lens arrays 103 and 503 and the deflection lens 507 may be configured by a combined lens or may be configured by a diffractive lens.
  • the deflection lens 507 may be configured by an assembly of a plurality of lenses having different optical characteristics regarding the deflection angle, like the lens array 103 shown in the first embodiment.
  • the deflection lens 507 is replaced with a deflection plate that is made of glass having a thickness inclined so as to obtain a target deflection angle and that has substantially the same optical characteristics as the deflection lens 507. May be used.
  • the optical characteristics related to the deflection angle of each lens array or deflection lens are set so that parallel light is emitted from the illumination unit toward the assumed viewing position.
  • the assumed viewing position is a position separated from the center of the panel 104 by a predetermined distance in the Z-axis direction.
  • the assumed viewing position is not limited to this position.
  • FIG. 15 is an exploded perspective view schematically showing a configuration including a diffusion plate 124 according to another embodiment.
  • FIG. 15 shows an example of another embodiment of the image display device 100.
  • the image display device 100 may have a configuration in which a diffusion plate 124 is interposed between the illumination unit 110 and the panel 104.
  • a similar diffusing plate 124 may be inserted between the illumination unit 510 and the panel 104 in the image display device 500 shown in Embodiment 2.
  • the diffusion plate 124 diffuses the light emitted from the illumination unit 110 or the illumination unit 510 and enters the panel 104. By providing the diffusion plate 124, the light emitted from the illumination unit 110 or the illumination unit 510 can be made more uniform and used for the backlight of the panel 104.
  • the diffusion plate 124 has a direction in which diffusion in a direction perpendicular to the arrangement direction of the first light source 101a and the second light source 101b (Y-axis direction) is parallel to the arrangement direction of the first light source 101a and the second light source 101b ( It is desirable to be configured to be larger than diffusion in the (X-axis direction). This is due to the following reason.
  • the arrangement direction (X-axis direction) of the first light source 101a and the second light source 101b is the viewer's parallax direction. Therefore, the diffusion of light in the X-axis direction is undesirable because it obstructs the viewer's autostereoscopic vision. On the other hand, since the Y-axis direction is not the viewer's parallax direction, even if light is diffused in this direction, it is unlikely that the viewer is obstructed by stereoscopic vision. From the above, it is desirable that the diffusion plate 124 is configured so that the diffusion in the Y-axis direction is larger than the diffusion in the X-axis direction.
  • the cell may have another shape.
  • FIG. 16 is an exploded perspective view schematically showing an example of the shape of a cell in another embodiment.
  • the illumination part may be configured by forming a light shielding wall so that the shape of the cell when viewed from the Z-axis direction is a hexagon.
  • the six light sources on the extension of the line connecting the first light source 101a and the second light source 101b are arranged.
  • the light shielding wall is arranged so that the quadrangle apex is arranged on the extension of the line connecting the first light source 101a and the second light source 101b. By forming, it can reduce that the light emission of the 1st light source 101a and the 2nd light source 101b is reflected and light-emitted by the light-shielding wall.
  • the left-eye image constituting the stereoscopic image is the first image
  • the right-eye image is the second image
  • the light emission of the first light source 101a is displayed from the assumed viewing position.
  • the right-eye image is the first image
  • the left-eye image is the second image
  • the first light source 101a emits light toward the viewer's right eye
  • the second light source 101b emits light. You may comprise so that it may radiate
  • the period which displays a 1st image and a 2nd image alternately may be numerical values other than 120 Hz, and the structure which alternates irregularly may be sufficient.
  • the first image and the second image may not be the first image and the second image, but the first image and the second image may be independent from each other. It may be an image. Further, the first image and the second image may be either a still image or a moving image.
  • the arrangement positions of the first light source 101a and the second light source 101b may be reversed from the arrangement positions shown in FIGS. 3 to 5.
  • the first light source 101a emits light.
  • the second light source 101b may be turned off, and when the first image is displayed on the panel 104, the second light source 101b may emit light and the first light source 101a may be turned off.
  • the spatial angle distribution of the emitted light of each of the first light source 101a and the second light source 101b is assumed to be isotropic for easy understanding, but the present disclosure
  • the spatial angle distribution of the emitted light of each of the first light source 101a and the second light source 101b is not limited to be isotropic.
  • the spatial angle distribution of the emitted light that reduces the difference in the intensity of the incident light of the lens 113 due to a slight shift between the first light source 101a and the second light source 101b with respect to the central axis in FIG.
  • the uniformity of light intensity as a backlight can be further improved.
  • the present disclosure is applicable to an image display device that alternately displays a first image and a second image.
  • the present disclosure can be applied to a liquid crystal television or the like that can stereoscopically view a stereoscopic image displayed on the image display surface with the naked eye.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

In order to enhance uniformity of backlight in an image display device that is capable of providing naked eye stereoscopic display so as to display high-quality images, an image display device (100) includes: an illumination section (110) in which a plurality of cells are arranged on a flat surface; and a spatial light modulation panel (104) that modulates light emitted from the illumination section based on a first image signal and a second image signal. Each cell includes a first light source, a second light source, and a lens that collimates light from each light source into substantially parallel light. The cells are configured so that the first light source and the second light source of each cell are arranged substantially symmetrically with respect to the center axis of the cell, and that light emitted from a cell located at the center of the illumination section and light emitted from a cell located in a periphery of the illumination section, are emitted from the illumination section in different directions, respectively.

Description

画像表示装置および照明装置Image display device and lighting device
 本開示は、複数の光源と各光源からの光をコリメートするレンズとを備えた画像表示装置および照明装置に関する。 The present disclosure relates to an image display device and an illumination device including a plurality of light sources and a lens that collimates light from each light source.
 特許文献1は、視聴者が専用の眼鏡を用いずに裸眼で表示画像を立体視できる画像表示装置を開示する。 Patent Document 1 discloses an image display device in which a viewer can stereoscopically display a display image with the naked eye without using dedicated glasses.
 この画像表示装置は、左右の眼のそれぞれに対応する複数の光源と、各光源からの光をコリメートし、あらかじめ想定された視聴位置(以下、「視聴想定位置」とも記す)に向かって出射する複数のレンズと、各レンズから出射される光をバックライトにして画像を表示する液晶パネルとを有する。そして、各光源における発光・非発光を、液晶パネルに左眼用の画像を表示するときと右眼用の画像を表示するときとで切り替える。これにより、視聴想定位置から表示画像を視聴する視聴者には、左眼用の画像は左眼だけで見え、右眼用の画像は右眼だけで見えるので、専用の眼鏡を用いずに、表示画像を裸眼で立体視できる。 This image display device collimates a plurality of light sources corresponding to the left and right eyes and the light from each light source, and emits the light toward a presumed viewing position (hereinafter also referred to as “viewing assumed position”). It has a plurality of lenses and a liquid crystal panel that displays an image using light emitted from each lens as a backlight. Then, light emission / non-light emission of each light source is switched between when a left-eye image is displayed on the liquid crystal panel and when a right-eye image is displayed. Thus, for the viewer who views the display image from the assumed viewing position, the image for the left eye can be seen only by the left eye, and the image for the right eye can be seen only by the right eye. The displayed image can be stereoscopically viewed with the naked eye.
 なお、この画像表示装置では、各レンズは互いに等しい光学特性を有する。したがって、レンズの光軸に対する光源の配置位置をレンズ毎に変えることで、各レンズから出射される光の方向を調整し、各レンズから視聴想定位置に向かって光が出射するように構成している。しかし、その結果、光源からの光が比較的均一に入射するレンズと、光源からの光が不均一に入射するレンズとが生じることになる。 In this image display device, the lenses have the same optical characteristics. Therefore, by changing the arrangement position of the light source with respect to the optical axis of the lens for each lens, the direction of the light emitted from each lens is adjusted, and the light is emitted from each lens toward the assumed viewing position. Yes. However, as a result, a lens in which light from the light source enters relatively uniformly and a lens in which the light from the light source enters non-uniformly are generated.
 例えば、画像表示面の中央付近に配置されたレンズでは、出射光を大きく偏向させる必要がないので、光源は、レンズの光軸に比較的近い位置に配置される。そのため、光源が発する光は比較的均一な強度でレンズに入射する。 For example, in a lens arranged near the center of the image display surface, it is not necessary to largely deflect the emitted light, so the light source is arranged at a position relatively close to the optical axis of the lens. Therefore, the light emitted from the light source enters the lens with a relatively uniform intensity.
 一方、画像表示面の周辺に配置されたレンズでは、出射光を比較的大きく偏向させる必要があるため、光源は、レンズの光軸から比較的離れた位置に配置しなければならない。その結果、光源からレンズまでの距離に偏りが生じ、光源からレンズまでの距離が比較的近い領域と比較的遠い領域とで、レンズに入射する光の強度に差が生じることになる。 On the other hand, in the lens arranged around the image display surface, the emitted light needs to be deflected relatively large, so the light source must be arranged at a position relatively distant from the optical axis of the lens. As a result, the distance from the light source to the lens is biased, and there is a difference in the intensity of light incident on the lens between the region where the distance from the light source to the lens is relatively close and the region where the distance is relatively far.
 液晶パネルのバックライトに用いる光はできるだけ均一であることが望ましい。しかし、レンズの入射面において光の強度が不均一になると、出射される光の強度も不均一な状態となってバックライトの均一性が損なわれ、視聴者に表示画像の品質が低下したように認識される恐れがある。 It is desirable that the light used for the backlight of the liquid crystal panel be as uniform as possible. However, if the light intensity is non-uniform on the entrance surface of the lens, the intensity of the emitted light will also be non-uniform, and the uniformity of the backlight will be impaired and the quality of the display image will be reduced to the viewer. There is a risk of being recognized.
 特許文献2は、液晶パネルとシリンドリカルレンズとを備えたディスプレイ装置を開示する。このような構造のディスプレイ装置では、液晶パネルの画素と画素との間に設けた配線部分(非透過部分)によってバックライトが遮られ、その領域が視聴者に黒い帯状の影として認識されることがある。 Patent Document 2 discloses a display device including a liquid crystal panel and a cylindrical lens. In the display device having such a structure, the backlight is blocked by a wiring part (non-transmission part) provided between the pixels of the liquid crystal panel, and the area is recognized as a black belt-like shadow by the viewer. There is.
 特許文献2に開示されたディスプレイ装置は、この影の発生を低減するための拡散マスクを有する。液晶パネルを透過した光はこの拡散マスクによって拡散されるので、配線部分によってバックライトが遮られた領域にも光が拡散し、黒い帯状の影が発生するのを防止することができる。 The display device disclosed in Patent Document 2 has a diffusion mask for reducing the occurrence of shadows. Since the light transmitted through the liquid crystal panel is diffused by the diffusion mask, it is possible to prevent the light from diffusing even in the region where the backlight is blocked by the wiring portion, and to generate a black belt-like shadow.
 しかし、このような拡散マスクを用いても、上述した出射光の強度の不均一性を低減して均一なバックライトを実現することは困難である。 However, even if such a diffusion mask is used, it is difficult to realize a uniform backlight by reducing the unevenness of the intensity of the emitted light described above.
特表平4-504786号公報Japanese National Publication No. 4-504786 特開平6-335030号公報Japanese Patent Laid-Open No. 6-33030
 本開示は、レンズの配置場所にかかわらずレンズに入射する光の強度に差が生じることを防止して均一性が高いバックライトを実現し、品質の良い表示画像を得るのに有効な画像表示装置および照明装置を提供する。 The present disclosure prevents a difference in the intensity of light incident on the lens regardless of the position of the lens, realizes a highly uniform backlight, and is effective in obtaining a high-quality display image. An apparatus and a lighting device are provided.
 本開示の画像表示装置は、第1画像を表示するための光を発光する第1光源と、第2画像を表示するための光を発光する第2光源と、第1光源および第2光源からの光を実質的に平行な光にコリメートするレンズと、を有するセルを、複数個平面状に配置した照明部と、第1画像に対応する第1画像信号および第2画像に対応する第2画像信号に基づいて、照明部から発せられる光を変調する空間光変調パネルと、を備える。そして、第1光源と第2光源とはセルの中心軸に対して実質的に対称に配置され、照明部の中央に配置されたセルから出射した光と照明部の周囲に配置されたセルから出射した光とでは、照明部から出射するときの出射方向が異なるように構成されている。 An image display device according to the present disclosure includes a first light source that emits light for displaying a first image, a second light source that emits light for displaying a second image, a first light source, and a second light source. An illumination unit having a plurality of cells arranged in a plane, and a second image corresponding to the first image signal and the second image. A spatial light modulation panel that modulates light emitted from the illumination unit based on the image signal. The first light source and the second light source are arranged substantially symmetrically with respect to the central axis of the cell, and the light emitted from the cell arranged at the center of the illumination unit and the cell arranged around the illumination unit The emitted light is configured to have a different emission direction when emitted from the illumination unit.
図1は、実施の形態1における画像表示装置の外観図である。FIG. 1 is an external view of the image display apparatus according to the first embodiment. 図2Aは、実施の形態1における画像表示装置の視聴想定位置の一例を概略的に示す図である。FIG. 2A is a diagram schematically illustrating an example of an assumed viewing position of the image display apparatus in the first embodiment. 図2Bは、実施の形態1における画像表示装置の視聴想定位置の他の一例を概略的に示す図である。2B is a diagram schematically illustrating another example of assumed viewing positions of the image display apparatus according to Embodiment 1. FIG. 図3は、実施の形態1における画像表示装置の照明部の構成を概略的に示す分解斜視図である。FIG. 3 is an exploded perspective view schematically showing the configuration of the illumination unit of the image display device according to the first embodiment. 図4は、実施の形態1における照明部を構成するセルの1つを概略的に示す分解斜視図である。FIG. 4 is an exploded perspective view schematically showing one of the cells constituting the illumination unit in the first embodiment. 図5は、実施の形態1における光源部を正面から見た部分拡大図である。FIG. 5 is a partially enlarged view of the light source unit according to Embodiment 1 as viewed from the front. 図6は、実施の形態1における画像表示装置の断面図である。FIG. 6 is a cross-sectional view of the image display apparatus in the first embodiment. 図7Aは、実施の形態1における照明部の中央付近に配置されたセルの光源の配置位置と出射光の出射方向を概略的に示す断面図である。FIG. 7A is a cross-sectional view schematically showing the arrangement position of the light source and the emission direction of the emitted light of the cell arranged near the center of the illumination unit in the first embodiment. 図7Bは、実施の形態1における照明部の周辺に配置されたセルの光源の配置位置と出射光の出射方向を概略的に示す断面図である。FIG. 7B is a cross-sectional view schematically showing the arrangement position of the light sources and the emission direction of the emitted light of the cells arranged around the illumination unit in the first embodiment. 図8Aは、実施の形態1における照明部の中央付近に配置されたセルのレンズ入射面における入射光の強度を概略的に示す図である。FIG. 8A is a diagram schematically showing the intensity of incident light on the lens entrance surface of a cell arranged in the vicinity of the center of the illumination unit in the first embodiment. 図8Bは、実施の形態1における照明部の周辺に配置されたセルのレンズ入射面における入射光の強度を概略的に示す図である。FIG. 8B is a diagram schematically showing the intensity of incident light on the lens entrance surface of the cell arranged around the illumination unit in the first embodiment. 図9Aは、実施の形態1におけるレンズアレイを模式的に示す図である。FIG. 9A is a diagram schematically illustrating the lens array in the first embodiment. 図9Bは、実施の形態1におけるレンズアレイを構成する各レンズの形状の一例を模式的に示す図である。FIG. 9B is a diagram schematically illustrating an example of the shape of each lens constituting the lens array in the first embodiment. 図10は、実施の形態2における照明部の構成を概略的に示す分解斜視図である。FIG. 10 is an exploded perspective view schematically showing the configuration of the illumination unit in the second embodiment. 図11は、実施の形態2における画像表示装置の断面図である。FIG. 11 is a cross-sectional view of the image display apparatus according to the second embodiment. 図12Aは、実施の形態2における照明部の中央付近に配置されたセルの光源の配置位置と出射光の出射方向を概略的に示す断面図である。FIG. 12A is a cross-sectional view schematically showing an arrangement position of a light source and an emission direction of emitted light of a cell arranged near the center of an illumination unit in the second embodiment. 図12Bは、実施の形態2おける照明部の周辺に配置されたセルの光源の配置位置と出射光の出射方向を概略的に示す断面図である。FIG. 12B is a cross-sectional view schematically showing the arrangement position of the light sources and the emission direction of the emitted light of the cells arranged around the illumination unit in the second embodiment. 図13Aは、実施の形態2における偏向レンズを模式的に示す図である。FIG. 13A is a diagram schematically illustrating a deflection lens in the second embodiment. 図13Bは、実施の形態2における偏向レンズを構成するレンズの形状の一例を模式的に示す図である。FIG. 13B is a diagram schematically showing an example of the shape of a lens constituting the deflection lens in the second embodiment. 図14Aは、他の実施の形態におけるレンズアレイの一構成例を正面から見た模式図である。FIG. 14A is a schematic view of a configuration example of a lens array according to another embodiment viewed from the front. 図14Bは、他の実施の形態におけるレンズアレイの他の構成例を正面から見た模式図である。FIG. 14B is a schematic view of another configuration example of a lens array according to another embodiment viewed from the front. 図15は、他の実施の形態における拡散板を備えた構成を概略的に示す分解斜視図である。FIG. 15 is an exploded perspective view schematically showing a configuration including a diffusing plate in another embodiment. 図16は、他の実施の形態におけるセルの形状の一例を概略的に示す分解斜視図である。FIG. 16 is an exploded perspective view schematically showing an example of the shape of a cell in another embodiment.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
 (実施の形態1)
 以下、図1~図9を用いて、実施の形態1を説明する。
(Embodiment 1)
The first embodiment will be described below with reference to FIGS.
 [1-1.構成]
 図1は、実施の形態1における画像表示装置100の外観図である。なお、以下の説明では、図1に示すように、便宜的に、画像表示装置100の水平方向をX軸方向、垂直方向をY軸方向、正面方向(画像表示装置100の中央から画像表示用の光が出射される方向)をZ軸方向とする。しかし、本開示は何らこの設定に限定されるものではない。
[1-1. Constitution]
FIG. 1 is an external view of an image display device 100 according to the first embodiment. In the following description, as shown in FIG. 1, for the sake of convenience, the horizontal direction of the image display device 100 is the X-axis direction, the vertical direction is the Y-axis direction, and the front direction (from the center of the image display device 100 for image display). The direction in which the light is emitted is defined as the Z-axis direction. However, the present disclosure is not limited to this setting.
 画像表示装置100は、第1画像と第2画像とを交互に表示することができる。例えば、立体視用の画像を構成する左眼用の画像を第1画像とし右眼用の画像を第2画像とし、各画像を120Hzの周期で交互に表示する。詳細は後述するが、視聴者はあらかじめ想定された視聴位置(視聴想定位置)から画像表示装置100の画像表示面を見ると、左眼用の画像は左眼だけで見え、右眼用の画像は右眼だけで見える。これにより、視聴者は、立体視のための眼鏡等を用いずに、裸眼で表示画像を立体視できる。この視聴想定位置の一例は以下の通りである。 The image display device 100 can alternately display the first image and the second image. For example, the left-eye image constituting the stereoscopic image is set as the first image, the right-eye image is set as the second image, and the images are alternately displayed at a cycle of 120 Hz. Although details will be described later, when the viewer looks at the image display surface of the image display apparatus 100 from a presumed viewing position (assumed viewing position), the image for the left eye can be seen only by the left eye, and the image for the right eye Is visible only with the right eye. Thus, the viewer can stereoscopically display the display image with the naked eye without using glasses for stereoscopic viewing. An example of the assumed viewing position is as follows.
 図2Aは、実施の形態1における画像表示装置100の視聴想定位置の一例を概略的に示す図である。図2Bは、実施の形態1における画像表示装置100の視聴想定位置の他の一例を概略的に示す図である。 FIG. 2A is a diagram schematically showing an example of an assumed viewing position of the image display apparatus 100 in the first embodiment. 2B is a diagram schematically illustrating another example of assumed viewing positions of the image display apparatus 100 according to Embodiment 1. FIG.
 例えば、画像表示装置100が50インチサイズの大きさであれば、図2Aに示すように、L1を約2mとする。すなわち、画像表示装置100の画像表示面の中央からZ軸方向に約2m離間した位置を視聴想定位置とする。 For example, if the image display device 100 is 50 inches in size, L1 is about 2 m as shown in FIG. 2A. That is, a position that is about 2 m away from the center of the image display surface of the image display device 100 in the Z-axis direction is set as an assumed viewing position.
 また、画像表示装置100が、視聴者が保持できる程度の20インチサイズの大きさであれば、図2Bに示すように、L2を約40cmとする。すなわち、画像表示装置100の画像表示面の中央からZ軸方向に約40cm離間した位置を視聴想定位置とする。 Further, if the image display device 100 is 20 inches in size that can be held by the viewer, L2 is set to about 40 cm as shown in FIG. 2B. That is, a position that is about 40 cm away from the center of the image display surface of the image display apparatus 100 in the Z-axis direction is set as an assumed viewing position.
 なお、画像表示装置100において光の出射方向等は、視聴想定位置に対して、左右方向(X軸方向)に関しては平均的な両目の間隔程度(例えば、10cm程度)、前後方向(Z軸方向)に関しては頭1つ程度(例えば、30cm程度)の範囲は裸眼立体視が可能であるように設定されている。 In the image display device 100, the light emission direction and the like are about the average interval between eyes (for example, about 10 cm) and the front-rear direction (Z-axis direction) with respect to the assumed viewing position in the left-right direction (X-axis direction). ), The range of about one head (for example, about 30 cm) is set so that autostereoscopic viewing is possible.
 なお、上述した画像表示装置100の大きさや視聴想定位置は実施の形態における一例に過ぎず、本実施の形態は、何らこれらに限定されるものではない。また、第1画像と第2画像も、何ら立体視用の画像に限定されるものではなく、互いに独立した画像であってもよい。 Note that the size and expected viewing position of the image display device 100 described above are merely examples in the embodiment, and the present embodiment is not limited to these. Further, the first image and the second image are not limited to images for stereoscopic viewing, and may be images independent from each other.
 図3は、実施の形態1における画像表示装置100の照明部110の構成を概略的に示す分解斜視図である。図3には、照明部110の一部を拡大して示す。図4は、実施の形態1における照明部110を構成するセル111の1つを拡大して示す分解斜視図である。 FIG. 3 is an exploded perspective view schematically showing the configuration of the illumination unit 110 of the image display apparatus 100 according to the first embodiment. FIG. 3 shows an enlarged part of the illumination unit 110. FIG. 4 is an exploded perspective view showing, in an enlarged manner, one of the cells 111 constituting the illumination unit 110 in the first embodiment.
 画像表示装置100は筐体内部に、照明部110、空間光変調パネル(Spatial Light Modulator:SLM)であるパネル104、照明部110およびパネル104の制御回路および電源回路(図示せず)を有する。 The image display apparatus 100 includes an illumination unit 110, a panel 104 that is a spatial light modulator (SLM), a control circuit for the illumination unit 110 and the panel 104, and a power supply circuit (not shown) inside the casing.
 照明部110は、光源部101、遮光部102、レンズアレイ103を備え、これらの部材を構成要素とする複数のセル111を平面状に配置して構成されている。 The illumination unit 110 includes a light source unit 101, a light shielding unit 102, and a lens array 103, and is configured by arranging a plurality of cells 111 having these members as components in a planar shape.
 光源部101は、画像表示面と平行な平面上に複数の光源を有する。具体的には、光源部101は、第1画像を表示するための光を発光する第1光源101aと、第2画像を表示するための光を発光する第2光源101bとを対にして、X軸方向とY軸方向とにマトリクス状に配置している。すなわち、各光源は、図3に示すように、一対の第1光源101aと第2光源101bとを結ぶ線がX軸に平行になるように、第1光源101a同士を結ぶ線および第2光源101b同士を結ぶ線がそれぞれY軸に平行になるように、配置されている。 The light source unit 101 has a plurality of light sources on a plane parallel to the image display surface. Specifically, the light source unit 101 pairs the first light source 101a that emits light for displaying the first image and the second light source 101b that emits light for displaying the second image, They are arranged in a matrix in the X-axis direction and the Y-axis direction. That is, as shown in FIG. 3, each light source includes a line connecting the first light sources 101a and the second light source so that a line connecting the pair of first light sources 101a and second light sources 101b is parallel to the X axis. The lines connecting the 101b are arranged so as to be parallel to the Y axis.
 照明部110において各セル111は、それぞれ一対の第1光源101aおよび第2光源101bを有する。図3の照明部110には、便宜的に、各セル111の境界を破線で示す。 In the illumination unit 110, each cell 111 has a pair of a first light source 101a and a second light source 101b. In the illumination unit 110 of FIG. 3, the boundary of each cell 111 is indicated by a broken line for convenience.
 光源部101は、例えば、平面状に形成された基板にLED等の光源をマトリクス状に実装することで実現できる。 The light source unit 101 can be realized, for example, by mounting light sources such as LEDs in a matrix on a flat substrate.
 なお、一対の第1光源101aと第2光源101bとは、例えば図3に示すように、それぞれが1つの点光源であってもよいが、それぞれが複数の光源で構成されてもよい。あるいは、1つの光源が発する光を光学的に分離する等して実質的に一対の第1光源101aと第2光源101bとなるように構成してもよい。 Note that each of the pair of the first light source 101a and the second light source 101b may be a single point light source as shown in FIG. 3, for example, but each may be composed of a plurality of light sources. Or you may comprise so that it may become substantially a pair of 1st light source 101a and 2nd light source 101b by optically isolate | separating the light which one light source emits.
 遮光部102は、光源部101の前面(Z軸正方向)に設けられ、複数の遮光壁を格子状に組み合わせて形成されている。遮光壁で囲まれた領域はZ軸方向が開口した四角い筒状の形状であり、照明部110では遮光壁で囲まれた領域が1つのセル111を形成する。遮光壁は、第1光源101aおよび第2光源101bが発する光が隣接するセル111に漏れこむことを防止する目的で形成したものである。このように、各セル111は、隣接するセル111からの光を遮光する遮光壁を有する。 The light shielding unit 102 is provided on the front surface (Z-axis positive direction) of the light source unit 101, and is formed by combining a plurality of light shielding walls in a lattice shape. The region surrounded by the light shielding wall has a rectangular cylindrical shape opened in the Z-axis direction. In the illumination unit 110, the region surrounded by the light shielding wall forms one cell 111. The light shielding wall is formed for the purpose of preventing light emitted from the first light source 101a and the second light source 101b from leaking into the adjacent cell 111. Thus, each cell 111 has a light shielding wall that shields light from the adjacent cell 111.
 遮光壁は、アルミニウム等の金属、あるいは樹脂等、どのような材料で形成されていてもよいが、遮光壁の表面には、第1光源101aおよび第2光源101bが発する光が壁面で反射してレンズアレイ103に入射することを防止するために、反射率が低い黒色塗料を塗布する。 The light shielding wall may be formed of any material such as a metal such as aluminum or resin, but the light emitted from the first light source 101a and the second light source 101b is reflected by the wall surface on the surface of the light shielding wall. In order to prevent the light from entering the lens array 103, a black paint having a low reflectance is applied.
 なお、本実施の形態では、遮光部102の一方の開口部に光源部101を密着して固定し、他方の開口部にレンズアレイ103を密着して固定する。したがって、例えば、レンズアレイ103が有するレンズ113の焦点距離だけ光源部101とレンズアレイ103との間を離間させる役割を遮光部102の遮光壁に担わすこともできる。このような構成では、遮光部102は、この役割を担うための十分な強度を有する材料で形成されることが望ましい。 In the present embodiment, the light source unit 101 is fixed in close contact with one opening of the light shielding unit 102, and the lens array 103 is fixed in close contact with the other opening. Therefore, for example, the light shielding wall of the light shielding unit 102 can play a role of separating the light source unit 101 and the lens array 103 by the focal length of the lens 113 included in the lens array 103. In such a configuration, it is desirable that the light shielding portion 102 be formed of a material having sufficient strength to play this role.
 なお、画像表示装置100の筐体に固定する等して光源部101とレンズアレイ103との間が遮光部102に拠ることなく安定した状態で必要な距離だけ離間していれば、遮光部102は相対的に強度の低い材料で形成されてもよい。また、隣接するセル111からの光を遮光することができれば、必ずしも光源部101と遮光部102とレンズアレイ103とを互いに密着させなくともよい。 If the light source unit 101 and the lens array 103 are separated from each other by a necessary distance in a stable state without depending on the light shielding unit 102, for example, by fixing to the housing of the image display device 100, the light shielding unit 102 is provided. May be formed of a relatively low strength material. Further, as long as the light from the adjacent cells 111 can be shielded, the light source unit 101, the light shielding unit 102, and the lens array 103 need not be in close contact with each other.
 レンズアレイ103は、光学的特性が互いに異なる複数のレンズ113の集合体であり、画像表示面と平行に複数のレンズ113をX軸方向とY軸方向とにマトリクス状に配置して形成されている。1つのセル111には1つのレンズ113が対応しており、レンズ113は、第1光源101aおよび第2光源101bが発する光を実質的に平行な光にコリメートして出射する。各レンズ113が出射する光の出射方向、すなわち、各セル111が出射する光の出射方向は、あらかじめ想定された視聴位置(視聴想定位置)である。具体的には、例えば、第1光源101aの発光は、視聴想定位置から表示画像を視聴する視聴者の左眼に向かって出射され、第2光源101bの発光は視聴者の右眼に向かって出射される。そのために、レンズアレイ103を構成する各レンズは出射光の偏向角が互いに異なり、レンズアレイ103の中央部に配置されたレンズ113よりも、周辺部に配置されたレンズ113の方が出射光の偏向角が大きい。 The lens array 103 is an aggregate of a plurality of lenses 113 having different optical characteristics, and is formed by arranging a plurality of lenses 113 in a matrix in the X-axis direction and the Y-axis direction in parallel with the image display surface. Yes. One lens 113 corresponds to one cell 111, and the lens 113 collimates and emits light emitted from the first light source 101a and the second light source 101b into substantially parallel light. The emission direction of the light emitted from each lens 113, that is, the emission direction of the light emitted from each cell 111 is a viewing position (viewing assumed position) assumed in advance. Specifically, for example, the light emission of the first light source 101a is emitted from the assumed viewing position toward the left eye of the viewer viewing the display image, and the light emission of the second light source 101b is directed to the right eye of the viewer. Emitted. For this reason, the lenses constituting the lens array 103 have different deflection angles of the emitted light, and the lens 113 arranged in the peripheral portion is more effective in emitting light than the lens 113 arranged in the central portion of the lens array 103. Large deflection angle.
 このように、本実施の形態において、レンズアレイ103を構成するとともに各セル111に配置された複数のレンズ113は、偏向角がそれぞれ異なる要素レンズである。なお、図3のレンズアレイ103には、便宜的に、各セル111の境界を破線で示す。 Thus, in the present embodiment, the plurality of lenses 113 constituting the lens array 103 and arranged in each cell 111 are element lenses having different deflection angles. In the lens array 103 in FIG. 3, the boundary of each cell 111 is indicated by a broken line for convenience.
 パネル104は、照明部110が出射する光をバックライトとし、第1画像に対応する第1画像信号および第2画像に対応する第2画像信号にもとづき照明部110が出射する光を変調して、第1画像と第2画像とを交互にパネル104の画像表示面に表示する。パネル104は、例えば一般に知られた液晶ディスプレイパネルを用いて構成することができる。 The panel 104 uses the light emitted from the illumination unit 110 as a backlight, and modulates the light emitted from the illumination unit 110 based on the first image signal corresponding to the first image and the second image signal corresponding to the second image. The first image and the second image are alternately displayed on the image display surface of the panel 104. The panel 104 can be configured using, for example, a generally known liquid crystal display panel.
 なお、照明部110は、第1画像がパネル104に表示されているときは第1光源101aが発光して第2光源101bは消灯し、第2画像がパネル104に表示されているときは第2光源101bが発光して第1光源101aは消灯する。 The illumination unit 110 emits the first light source 101 a and emits the second light source 101 b when the first image is displayed on the panel 104, and turns off when the second image is displayed on the panel 104. The two light sources 101b emit light and the first light source 101a is turned off.
 1つのセル111は、図4に示すように、隣接する他のセル111と遮光壁によって光学的に遮られた領域として設定されており、一対の第1光源101aおよび第2光源101bと、1つのレンズ113を有する。本実施の形態では、1つのセル111は、一辺が約20mmの正方形の形状で形成されているが、セル111は何らこの大きさに限定されるものではなく、また、図4に示す形状に限定されるものでもない。 As shown in FIG. 4, one cell 111 is set as a region optically shielded by other neighboring cells 111 by a light shielding wall, and includes a pair of first light source 101 a and second light source 101 b, 1 Two lenses 113 are provided. In the present embodiment, one cell 111 is formed in a square shape having a side of about 20 mm. However, the cell 111 is not limited to this size and has the shape shown in FIG. It is not limited.
 そして、光源部101では、一対の第1光源101aと第2光源101bのそれぞれは、各セル111の中心軸に対してX軸方向に略対称(実質的に対称)となる位置に配置されている。 In the light source unit 101, each of the pair of the first light source 101a and the second light source 101b is disposed at a position that is substantially symmetric (substantially symmetric) in the X-axis direction with respect to the central axis of each cell 111. Yes.
 なお、中心軸とは、セル111の領域における各頂点からの距離が実質的に等しくなる点を通るZ軸に平行な直線のことである。または、セル111の領域における対角を結ぶ線が交差する点を通るZ軸に平行な直線であってもよい。あるいは、セル111の領域の重心点を通るZ軸に平行な直線であってもよい。 Note that the central axis is a straight line parallel to the Z axis passing through a point where the distance from each vertex in the region of the cell 111 is substantially equal. Alternatively, it may be a straight line parallel to the Z axis passing through a point where lines connecting diagonals in the region of the cell 111 intersect. Alternatively, it may be a straight line parallel to the Z axis passing through the center of gravity of the area of the cell 111.
 なお、図4には一例として、照明部110の中央付近に配置されたセル111を示している。他のセル111については、図示はしないが、レンズ113の偏向角に関する光学特性が異なる(例えば、レンズ113の形状が異なる等)点を除き、図4に示すセル111と実質的に同じ構造を有する。 Note that FIG. 4 shows a cell 111 disposed near the center of the illumination unit 110 as an example. Although not shown, the other cell 111 has substantially the same structure as the cell 111 shown in FIG. 4 except that the optical characteristics regarding the deflection angle of the lens 113 are different (for example, the shape of the lens 113 is different). Have.
 図5は、実施の形態1における光源部101を正面(Z軸方向)から見た部分拡大図である。なお、図5では、セル111の境界を実線で表し、破線の交点がセル111の中心軸を表す。しかし、これらの線は便宜的に示したものに過ぎず、これらの線が光源部101に実際に記されているわけではない。 FIG. 5 is a partially enlarged view of the light source unit 101 according to the first embodiment when viewed from the front (Z-axis direction). In FIG. 5, the boundary of the cell 111 is represented by a solid line, and the intersection of the broken lines represents the central axis of the cell 111. However, these lines are merely shown for convenience, and these lines are not actually written on the light source unit 101.
 上述したように、一対の第1光源101aと第2光源101bとは、セル111の中心軸に対してX軸方向に実質的に対称となる位置に配置されている。これにより、照明部110では、どのセル111においても、レンズ113の入射面における光の強度の差(1つのレンズ113の入射面における強度が最も高い光と強度が最も低い光の強度の差)を所定の範囲内に収めている。 As described above, the pair of the first light source 101a and the second light source 101b are disposed at positions that are substantially symmetrical with respect to the central axis of the cell 111 in the X-axis direction. Thereby, in any of the cells 111 in the illumination unit 110, a difference in light intensity on the incident surface of the lens 113 (difference in intensity between light having the highest intensity and light having the lowest intensity on the incident surface of one lens 113). Is within a predetermined range.
 この強度の差が5%以下になるように、より望ましくは1%以下になるように、第1光源101aと第2光源101bの配置位置を設定することが望ましい。 It is desirable to set the arrangement positions of the first light source 101a and the second light source 101b so that the difference in intensity is 5% or less, more preferably 1% or less.
 なお、この強度の差を低減するためには、第1光源101aと第2光源101bをできるだけセル111の中心軸に近い位置に配置すればよいが、第1光源101aと第2光源101bとの間は、レンズ113から出射される光が、視聴想定位置から表示画像を視聴する視聴者の右眼と左眼とにそれぞれ適切に分離して届くように離間させることが望ましい。 In order to reduce the difference in intensity, the first light source 101a and the second light source 101b may be arranged as close to the central axis of the cell 111 as possible. However, the first light source 101a and the second light source 101b In the meantime, it is desirable that the light emitted from the lens 113 be separated so as to reach the right eye and the left eye of the viewer who views the display image from the expected viewing position.
 さらに、図5に示すように、一対の第1光源101aと第2光源101bのそれぞれの配置位置(セル111内の配置位置)は、照明部110におけるセル111の配置位置にかかわらず、どのセル111においても実質的に同じである。したがって、どのセル111においてもレンズ113に入射する光の発生位置は実質的に同じであり、どのレンズ113においてもレンズ113の入射面における光の入射状態に差(実質的な差)は生じない。 Further, as shown in FIG. 5, the arrangement positions (arrangement positions in the cells 111) of the pair of the first light source 101 a and the second light source 101 b are in any cell regardless of the arrangement position of the cells 111 in the illumination unit 110. 111 is substantially the same. Therefore, the generation position of light incident on the lens 113 is substantially the same in any cell 111, and no difference (substantial difference) occurs in the incident state of light on the incident surface of the lens 113 in any lens 113. .
 これにより、本実施の形態では、どのセル111からも実質的に均等な光が出射される。したがって、画像表示装置100では、照明部110が出射する強度が実質的に均一な光をパネル104のバックライトとして用いることができる。 Thereby, substantially uniform light is emitted from any cell 111 in the present embodiment. Therefore, in the image display device 100, light with substantially uniform intensity emitted from the illumination unit 110 can be used as the backlight of the panel 104.
 図6は、実施の形態1における画像表示装置100の断面図である。図6には、図1に示したA-A線の断面図を示す。また、図6には、視聴想定位置から表示画像を視聴する視聴者を併せて示す。 FIG. 6 is a cross-sectional view of the image display device 100 according to the first embodiment. FIG. 6 is a cross-sectional view taken along line AA shown in FIG. FIG. 6 also shows viewers who view the display image from the assumed viewing position.
 上述したように、照明部110では、レンズ113に入射する光の発生位置(セル111の領域内における位置)は、どのセル111においても実質的に等しい。しかし、各セル111からは、あらかじめ想定された視聴位置(視聴想定位置)に向かって光が出射されなければならない。視聴想定位置は、画像表示装置100の画像表示面の中央からZ軸方向に所定の距離だけ離間した位置であるため、画像表示面の中央部に配置されたセル111からは比較的小さい偏向角で光を出射し、周辺部に配置されたセル111からは比較的大きい偏向角で光を出射する必要がある。 As described above, in the illumination unit 110, the generation position of light incident on the lens 113 (the position in the region of the cell 111) is substantially the same in any cell 111. However, light has to be emitted from each cell 111 toward a presumed viewing position (viewing expected position). The assumed viewing position is a position that is separated from the center of the image display surface of the image display device 100 by a predetermined distance in the Z-axis direction, and therefore has a relatively small deflection angle from the cell 111 disposed in the center of the image display surface. It is necessary to emit light at a relatively large deflection angle from the cells 111 arranged in the peripheral portion.
 そこで、本実施の形態では、図6に示すように、レンズアレイ103の中央部に配置されたレンズ113よりも、周辺部に配置されたレンズ113の方が出射光の偏向角が大きくなるように、すなわち、セル111の配置位置に応じた偏向角でレンズ113から光が出射されるように、出射光の偏向角に関する光学特性が互いに異なるレンズ113を用いてレンズアレイ103を構成する。 Therefore, in the present embodiment, as shown in FIG. 6, the deflection angle of the emitted light is larger in the lens 113 disposed in the peripheral portion than in the lens 113 disposed in the central portion of the lens array 103. In other words, the lens array 103 is configured using the lenses 113 having different optical characteristics regarding the deflection angle of the emitted light so that the light is emitted from the lens 113 at a deflection angle corresponding to the arrangement position of the cell 111.
 このように、本実施の形態では、照明部110の中央に配置されたセル111から出射した光と、照明部110の周辺に配置されたセル111から出射した光とでは、照明部110から出射するときの出射方向が異なるように照明部110を構成している。 As described above, in the present embodiment, the light emitted from the cell 111 arranged in the center of the illumination unit 110 and the light emitted from the cell 111 arranged around the illumination unit 110 are emitted from the illumination unit 110. The illuminating unit 110 is configured so that the emission direction when the light is emitted is different.
 なお、図6には一例として、第2光源101bの発光がレンズアレイ103によって偏向されて画像表示装置100から出射され、視聴想定位置にいる視聴者の右眼に届く様子を示している。第1光源101aの発光は、図示はしないが、これと同様に、レンズアレイ103によって偏向されて画像表示装置100から出射され、視聴想定位置の視聴者の左眼に届く。 FIG. 6 shows, as an example, a state in which the light emitted from the second light source 101b is deflected by the lens array 103 and emitted from the image display device 100 and reaches the right eye of the viewer at the assumed viewing position. Although not shown, the light emitted from the first light source 101a is deflected by the lens array 103 and emitted from the image display device 100, and reaches the viewer's left eye at the assumed viewing position.
 図7Aは、実施の形態1における照明部110の中央付近に配置されたセル111(「セル111A」と記す)の光源の配置位置と出射光の出射方向を概略的に示す断面図である。図7Bは、実施の形態1における照明部110の周辺に配置されたセル111(「セル111B」と記す)の光源の配置位置と出射光の出射方向を概略的に示す断面図である。図7Aには、図6に破線で示した領域105の拡大図を示し、図7Bには領域106の拡大図を示す。 FIG. 7A is a cross-sectional view schematically showing the arrangement position of the light source and the emission direction of the emitted light of the cell 111 (referred to as “cell 111A”) arranged in the vicinity of the center of the illumination unit 110 in the first embodiment. FIG. 7B is a cross-sectional view schematically showing the arrangement position of the light source and the emission direction of the emitted light of the cell 111 (referred to as “cell 111B”) arranged around the illumination unit 110 in the first exemplary embodiment. FIG. 7A shows an enlarged view of the region 105 indicated by a broken line in FIG. 6, and FIG. 7B shows an enlarged view of the region 106.
 なお、図7A、7Bでは、セル111の中心軸を一点鎖線で示し、一例として第2光源101bから出射される光の光路を破線で示す。また、図7Aではレンズ113を「レンズ113A」と記し、図7Bではレンズ113を「レンズ113B」と記す。 7A and 7B, the center axis of the cell 111 is indicated by a one-dot chain line, and as an example, the optical path of light emitted from the second light source 101b is indicated by a broken line. In FIG. 7A, the lens 113 is referred to as “lens 113A”, and in FIG. 7B, the lens 113 is referred to as “lens 113B”.
 照明部110の中央付近に配置されたセル111Aでは、図7Aに示すように、第2光源101bから出射される光はレンズ113Aによってコリメートされ、コリメート後の平行光はレンズ113Aの光学特性にもとづき相対的に小さい偏向角で出射されて視聴想定位置に向かって進行する。図示しないが、第1光源101aから出射される光も同様である。 In the cell 111A disposed near the center of the illumination unit 110, as shown in FIG. 7A, the light emitted from the second light source 101b is collimated by the lens 113A, and the collimated parallel light is based on the optical characteristics of the lens 113A. The light is emitted with a relatively small deflection angle and proceeds toward the assumed viewing position. Although not shown, the same applies to the light emitted from the first light source 101a.
 照明部110の周辺に配置されたセル111Bでは、図7Bに示すように、第2光源101bから出射される光はレンズ113Bによってコリメートされ、コリメート後の平行光はレンズ113Bの光学特性にもとづき相対的に大きい偏向角で出射されて視聴想定位置に向かって進行する。図示しないが、第1光源101aから出射される光も同様である。 In the cell 111B arranged around the illumination unit 110, as shown in FIG. 7B, the light emitted from the second light source 101b is collimated by the lens 113B, and the collimated parallel light is relative based on the optical characteristics of the lens 113B. The light is emitted with a large deflection angle and travels toward the assumed viewing position. Although not shown, the same applies to the light emitted from the first light source 101a.
 他のセル111については、図面を用いての説明は省略するが、上述と同様に、第1光源101aおよび第2光源101bから出射される光はレンズ113によってコリメートされ、コリメート後の平行光はレンズ113の光学特性にもとづく偏向角で出射されて視聴想定位置に向かって進行する。 As for the other cells 111, the description with reference to the drawings is omitted, but the light emitted from the first light source 101a and the second light source 101b is collimated by the lens 113, and the collimated light after collimation is the same as described above. The light is emitted at a deflection angle based on the optical characteristics of the lens 113 and travels toward the assumed viewing position.
 図8Aは、実施の形態1における照明部110の中央付近に配置されたセル111Aのレンズ113Aの入射面における入射光の強度を概略的に示す図である。図8Bは、実施の形態1における照明部110の周辺に配置されたセル111Bのレンズ113Bの入射面における入射光の強度を概略的に示す図である。図8A、8Bには、第2光源101bが発光しているときのレンズ入射面における光の強度を示している。なお、図8A、8Bにおいて、縦軸はレンズ入射面における位置を表し、横軸はレンズ入射面における光の強度を表す。 FIG. 8A is a diagram schematically showing the intensity of incident light on the incident surface of the lens 113A of the cell 111A arranged in the vicinity of the center of the illumination unit 110 in the first embodiment. FIG. 8B is a diagram schematically showing the intensity of incident light on the incident surface of the lens 113B of the cell 111B arranged around the illumination unit 110 in the first embodiment. 8A and 8B show the light intensity on the lens incident surface when the second light source 101b emits light. 8A and 8B, the vertical axis represents the position on the lens incident surface, and the horizontal axis represents the light intensity on the lens incident surface.
 例えば、第2光源101bが発光しているとき、レンズ113への入射光は、第2光源101bからレンズ113の入射面までの距離が最も近くなる位置(レンズ113Aでは位置x0、レンズ113Bでは位置x3)で最も強くなり、最も遠くなる位置(レンズ113Aでは位置x2、レンズ113Bでは位置x5)で最も弱くなる。 For example, when the second light source 101b emits light, the incident light to the lens 113 is a position where the distance from the second light source 101b to the entrance surface of the lens 113 is the closest (position x0 for the lens 113A, position for the lens 113B). x3) is the strongest, and is the weakest at the farthest position (position x2 for the lens 113A and position x5 for the lens 113B).
 しかし、第2光源101bは中心軸の近傍に配置されているので、最も強度が高い入射光と最も強度が低い入射光との差は、図8A、8Bに示すように、セル111A、セル111Bのいずれにおいても、所定の範囲に抑えられている。上述したように、この所定の範囲は5%以内、望ましくは1%以内である。 However, since the second light source 101b is disposed in the vicinity of the central axis, the difference between the incident light having the highest intensity and the incident light having the lowest intensity is shown in FIGS. 8A and 8B. In either case, it is suppressed to a predetermined range. As described above, this predetermined range is within 5%, preferably within 1%.
 なお、この入射光の強度の差とは、例えば、最も強度が高い入射光と最も強度が低い入射光の強度の差を、最も強度が高い入射光の強度で除算して百分率表示した数値であるが、本実施の形態は何らこれに限定されるものではなく、他の手法により強度の差を算出してもよい。 The difference in the intensity of the incident light is, for example, a numerical value expressed as a percentage by dividing the difference between the intensity of the incident light having the highest intensity and the intensity of the incident light having the lowest intensity by the intensity of the incident light having the highest intensity. However, the present embodiment is not limited to this, and the intensity difference may be calculated by another method.
 他のセル111については、説明は省略するが、上述と同様である。 The explanation of the other cells 111 is omitted, but is the same as described above.
 また、第1光源101aが発光しているときの説明も省略するが、第1光源101aは、いずれのセル111においても中心軸に対してX軸方向に第2光源101bと対称に配置されるので、入射光の強度が最も強くなる位置と最も弱くなる位置とに違いが生じる以外は上述と同様である。 Further, although description when the first light source 101a emits light is also omitted, the first light source 101a is arranged symmetrically with the second light source 101b in the X-axis direction with respect to the central axis in any cell 111. Therefore, it is the same as described above except that a difference occurs between the position where the intensity of the incident light is the strongest and the position where the intensity is the weakest.
 これにより、本実施の形態では、どのセル111から出射される光も、強度の差を所定の範囲に抑えた実質的に均等な光となる。したがって、照明部110からの出射光は実質的に均一な光となり、この光をパネル104のバックライトとして用いることで表示画像の品質を高めることができる。 Thereby, in this embodiment, the light emitted from any cell 111 becomes substantially uniform light with the difference in intensity kept within a predetermined range. Therefore, the emitted light from the illumination unit 110 becomes substantially uniform light, and the quality of the display image can be improved by using this light as the backlight of the panel 104.
 次に、レンズアレイ103を構成するレンズ113の形状の一例を説明する。 Next, an example of the shape of the lens 113 constituting the lens array 103 will be described.
 図9Aは、実施の形態1におけるレンズアレイ103を模式的に示す図である。図9Bは、実施の形態1におけるレンズアレイ103を構成する各レンズ113の形状の一例を模式的に示す図である。図9Bには、凸レンズ114の正面図、側面図、上面図を示す。 FIG. 9A is a diagram schematically showing the lens array 103 in the first embodiment. FIG. 9B is a diagram schematically illustrating an example of the shape of each lens 113 constituting the lens array 103 in the first embodiment. FIG. 9B shows a front view, a side view, and a top view of the convex lens 114.
 レンズアレイ103を構成する各レンズ113は、上述した光学特性を満たすものであればどのようなものであってもよいが、ここでは、一例として、一般的に用いられている凸レンズにもとづき、目的とする光学特性を得られるように各レンズ113を構成する例を説明する。 Each lens 113 constituting the lens array 103 may be any lens as long as it satisfies the above-described optical characteristics, but here, as an example, the objective is based on a commonly used convex lens. An example in which each lens 113 is configured so as to obtain the following optical characteristics will be described.
 なお、図9Bは、目的とする光学特性にもとづき形成された各レンズ113の形状の一例を説明するために示したものに過ぎず、凸レンズ114から切り出して各レンズ113を形成することを示したわけではない。レンズアレイ103はモールド法等の適切な手法によって製造すればよい。 FIG. 9B is only shown for explaining an example of the shape of each lens 113 formed based on the target optical characteristics, and shows that each lens 113 is formed by cutting out from the convex lens 114. is not. The lens array 103 may be manufactured by an appropriate method such as a molding method.
 図9A、9Bには、レンズアレイ103を構成するレンズ113の代表例として、レンズアレイ103の中央(図9Aに位置Eとして示す)および周辺(図9Aに位置A~D、F~Iとして示す)に配置されるレンズ113を示す。 9A and 9B, as a representative example of the lens 113 constituting the lens array 103, the center (shown as position E in FIG. 9A) and the periphery (shown as positions AD and FI in FIG. 9A). The lens 113 arrange | positioned is shown.
 凸レンズ114は、焦点距離が、画像表示装置100における光源部101とレンズアレイ103との離間距離に等しくなるように設定されたレンズである。 The convex lens 114 is a lens whose focal distance is set to be equal to the separation distance between the light source unit 101 and the lens array 103 in the image display device 100.
 レンズアレイ103の中央(位置E)に配置するレンズ113は、上述したように、偏向角が相対的に小さい。したがって、このレンズ113は、図9Bに示すように、偏向角が相対的に小さい領域である凸レンズ114のほぼ中央付近を切り出した形状を有する。 The lens 113 disposed at the center (position E) of the lens array 103 has a relatively small deflection angle as described above. Accordingly, as shown in FIG. 9B, the lens 113 has a shape obtained by cutting out the vicinity of the center of the convex lens 114, which is a region having a relatively small deflection angle.
 レンズアレイ103の周辺(位置A~D、F~I)に配置するレンズ113は、上述したように、偏向角が相対的に大きい。したがって、これらのレンズ113は、図9Bに示すように、偏向角が相対的に大きい領域である凸レンズ114の周辺領域を、レンズ113の配置位置に応じた偏向角および偏向方向が得られるように切り出した形状を有する。 The lens 113 arranged around the lens array 103 (positions A to D, F to I) has a relatively large deflection angle as described above. Therefore, as shown in FIG. 9B, these lenses 113 can obtain a deflection angle and a deflection direction corresponding to the arrangement position of the lens 113 in the peripheral region of the convex lens 114, which is a region having a relatively large deflection angle. It has a cut shape.
 他のレンズ113については説明を省略するが、上述と同様に、レンズ113の配置位置に応じた偏向角および偏向方向が得られるように形成する。 The description of the other lens 113 is omitted, but it is formed so as to obtain a deflection angle and a deflection direction according to the arrangement position of the lens 113, as described above.
 [1-2.動作]
 以上のように構成された画像表示装置100について、その動作を以下に説明する。
[1-2. Operation]
The operation of the image display device 100 configured as described above will be described below.
 画像表示装置100には、例えば、立体視用の画像を構成する右眼用の画像信号と左眼用の画像信号が交互に(例えば、120Hz周期で)入力される。本実施の形態では、例えば、左眼用の画像を第1画像とし、右眼用の画像を第2画像とする。 The image display device 100 receives, for example, an image signal for the right eye and an image signal for the left eye that constitute an image for stereoscopic viewing alternately (for example, at a cycle of 120 Hz). In the present embodiment, for example, a left-eye image is a first image, and a right-eye image is a second image.
 パネル104が左眼用の画像信号で制御されているとき、照明部110を構成する各セル111では、第1光源101aが発光し、第2光源101bは消灯する。第1光源101aから出射される光はレンズ113によってコリメートされ、レンズ113の配置位置に応じた偏向角で出射される。すなわち、平行光にコリメートされた第1光源101aの発光は各セル111から視聴想定位置に向かって出射される。 When the panel 104 is controlled by an image signal for the left eye, in each cell 111 constituting the illumination unit 110, the first light source 101a emits light and the second light source 101b is turned off. The light emitted from the first light source 101a is collimated by the lens 113 and is emitted at a deflection angle corresponding to the arrangement position of the lens 113. That is, the light emission of the first light source 101a collimated with parallel light is emitted from each cell 111 toward the assumed viewing position.
 各セル111から出射される光は、パネル104を通り、視聴想定位置にいる視聴者の左眼だけに入る。 The light emitted from each cell 111 passes through the panel 104 and enters only the left eye of the viewer at the assumed viewing position.
 視聴者の左眼に入る光は、パネル104において、左眼用の画像信号にもとづき変調されているので、視聴者の左眼には、この画像信号にもとづく左眼用の画像が見える。 Since the light that enters the viewer's left eye is modulated on the panel 104 based on the image signal for the left eye, the image for the left eye based on this image signal is visible to the viewer's left eye.
 パネル104が右眼用の画像信号で制御されているとき、照明部110を構成する各セル111では、第2光源101bが発光し、第1光源101aは消灯する。第2光源101bから出射される光はレンズ113によってコリメートされ、レンズ113の配置位置に応じた偏向角で出射される。すなわち、平行光にコリメートされた第2光源101bの発光は各セル111から視聴想定位置に向かって出射される。 When the panel 104 is controlled by the image signal for the right eye, in each cell 111 constituting the illumination unit 110, the second light source 101b emits light and the first light source 101a is turned off. The light emitted from the second light source 101b is collimated by the lens 113 and is emitted at a deflection angle corresponding to the arrangement position of the lens 113. That is, the light emitted from the second light source 101b collimated to the parallel light is emitted from each cell 111 toward the assumed viewing position.
 各セル111から出射される光は、図6に示したように、パネル104を通り、視聴想定位置にいる視聴者の右眼だけに入る。 As shown in FIG. 6, the light emitted from each cell 111 passes through the panel 104 and enters only the right eye of the viewer at the assumed viewing position.
 視聴者の右眼に入る光は、パネル104において、右眼用の画像信号にもとづき変調されているので、視聴者の右眼には、この画像信号にもとづく右眼用の画像が見える。 Since the light that enters the viewer's right eye is modulated on the panel 104 based on the right eye image signal, the viewer's right eye can see the right eye image based on the image signal.
 このように、画像表示装置100に表示される立体視用の画像を視聴想定位置から視聴する視聴者には、左眼用の画像が表示されているときは、左眼用の光源(第1光源101a)が発する光が左眼だけに入るので、左眼用の画像を左眼だけで見ることができる。逆に、右眼用画像が表示されているときは、右眼用の光源(第2光源101b)が発する光が右眼だけに入るので、右眼用の画像を右眼だけで見ることができる。こうして視聴者は画像表示装置100に表示される立体視用の画像を裸眼で立体視できる。 As described above, when the left-eye image is displayed to the viewer who views the stereoscopic image displayed on the image display device 100 from the assumed viewing position, the left-eye light source (first Since the light emitted from the light source 101a enters only the left eye, the image for the left eye can be seen only by the left eye. Conversely, when the right-eye image is displayed, the light emitted from the right-eye light source (second light source 101b) enters only the right eye, so that the right-eye image can be viewed only with the right eye. it can. Thus, the viewer can stereoscopically view the stereoscopic image displayed on the image display device 100 with the naked eye.
 [1-3.効果等]
 以上のように、本実施の形態における画像表示装置100の照明部110では、セル111の配置位置にかかわらずどのセル111においても、一対の第1光源101aと第2光源101bの配置位置(セル111内の配置位置)は実質的に同じである。そして、各レンズ113の入射面における光の強度の差は所定の範囲(5%、望ましくは1%)内に抑えられている。
[1-3. Effect]
As described above, in the illumination unit 110 of the image display apparatus 100 according to the present embodiment, the arrangement position (cell) of the pair of the first light source 101a and the second light source 101b in any cell 111 regardless of the arrangement position of the cell 111. The arrangement position in 111) is substantially the same. The difference in light intensity at the entrance surface of each lens 113 is suppressed within a predetermined range (5%, preferably 1%).
 入射光をコリメートするためのレンズアレイ103を構成する各レンズ113は、偏向角に関する光学特性がレンズ113の配置位置に応じて異なり、その出射方向はあらかじめ想定された視聴位置(視聴想定位置)である。 Each lens 113 constituting the lens array 103 for collimating incident light has different optical characteristics regarding the deflection angle depending on the arrangement position of the lens 113, and its emission direction is a presumed viewing position (viewing expected position). is there.
 したがって、照明部110を構成する各セル111は、強度が実質的に均一な平行光を、視聴想定位置にいる視聴者の右眼または左眼に向かって出射する。 Therefore, each cell 111 constituting the illumination unit 110 emits parallel light having substantially uniform intensity toward the right or left eye of the viewer at the assumed viewing position.
 こうして、画像表示装置100は、照明部110から出射される強度が実質的に均一な平行光をバックライトとして、第1画像(例えば、左眼用の画像)と第2画像(例えば、右眼用の画像)とを交互にパネル104に表示する。これにより、視聴想定位置から画像表示装置100を視聴する視聴者は、強度の均一性を高めた品質の高いバックライトによる画像を、左眼用の画像は左眼だけで、右眼用の画像は右眼だけで見ることができる。すなわち、視聴者は、品質の高い立体視用画像を、専用の眼鏡等を用いることなく裸眼で立体視することが可能となる。 In this way, the image display device 100 uses the parallel light with substantially uniform intensity emitted from the illumination unit 110 as the backlight, and the first image (for example, the image for the left eye) and the second image (for example, the right eye). Are displayed on the panel 104 alternately. Accordingly, a viewer who views the image display apparatus 100 from the assumed viewing position can display an image with a high-quality backlight with improved intensity uniformity, and the image for the left eye is the image for the right eye only with the left eye. Can be seen only with the right eye. That is, the viewer can stereoscopically view a high-quality stereoscopic image with the naked eye without using dedicated glasses or the like.
 (実施の形態2)
 以下、図10~図13を用いて、実施の形態2を説明する。
(Embodiment 2)
Hereinafter, the second embodiment will be described with reference to FIGS.
 [2-1.構成]
 実施の形態2における画像表示装置500は、実施の形態1に示した画像表示装置100と実質的に同じ外観、構成、機能であり、実質的に同じ動作をするので、詳細な説明を省略する。また、視聴者が表示画像を視聴するときの視聴位置(あらかじめ想定された視聴位置)も、実施の形態1と同様である。ただし、画像表示装置500が備える照明部510は、実施の形態1に示した照明部110と異なる構成を有する。以下、この差異について説明する。
[2-1. Constitution]
The image display device 500 according to the second embodiment has substantially the same appearance, configuration, and function as the image display device 100 shown in the first embodiment, and operates substantially the same, and thus detailed description thereof is omitted. . Also, the viewing position (viewing position assumed in advance) when the viewer views the display image is the same as in the first embodiment. However, the illumination unit 510 included in the image display device 500 has a configuration different from that of the illumination unit 110 described in the first embodiment. Hereinafter, this difference will be described.
 図10は、実施の形態2における照明部510の構成を概略的に示す分解斜視図である。図10には、照明部510の一部を拡大して示す。 FIG. 10 is an exploded perspective view schematically showing the configuration of the illumination unit 510 in the second embodiment. FIG. 10 shows an enlarged part of the illumination unit 510.
 なお、以下では、実施の形態1に示した構成要素と実質的に同じ動作、機能、構成を有する構成要素については実施の形態1で示した符号と同一の符号を付与し、説明を省略する。 In the following, components having substantially the same operations, functions, and configurations as those shown in the first embodiment are given the same reference numerals as those shown in the first embodiment, and description thereof is omitted. .
 照明部510は、光源部101、遮光部102、レンズアレイ503を備え、これらを構成要素とする複数のセル511(図示せず)を平面状に配置して構成されている。ただし、照明部510は、実施の形態1の照明部110とは異なり、レンズアレイ503の後段(レンズアレイ503とパネル104の間)に、偏向光学素子である偏向レンズ507を備える。 The illumination unit 510 includes a light source unit 101, a light shielding unit 102, and a lens array 503, and is configured by arranging a plurality of cells 511 (not shown) having these components as planar elements. However, unlike the illumination unit 110 of the first embodiment, the illumination unit 510 includes a deflecting lens 507 that is a deflecting optical element at the subsequent stage of the lens array 503 (between the lens array 503 and the panel 104).
 光源部101および遮光部102は、実施の形態1に示した光源部101および遮光部102と実質的に同じであるので説明を省略する。また、セル511の構造も実施の形態1に示したセル111と実質的に同じである。 Since the light source unit 101 and the light shielding unit 102 are substantially the same as the light source unit 101 and the light shielding unit 102 shown in the first embodiment, description thereof is omitted. The structure of the cell 511 is substantially the same as that of the cell 111 described in Embodiment 1.
 レンズアレイ503は、実施の形態1のレンズアレイ103と同様に、画像表示面と平行に複数のレンズ513をX軸方向とY軸方向とにマトリクス状に配置して形成される。レンズ513は、レンズアレイ103を構成するレンズ113と同様に第1光源101aおよび第2光源101bが発する光を実質的に平行な光にコリメートして出射する。ただし、レンズ513は、レンズ113とは異なり、偏向角に関する光学的特性が互いに等しい(実質的に等しい)。各セル511は、このレンズ513を備えているので、各セル511が出射する光は互いに同じ(実施的に同じ)方向となる。この出射方向は、例えばZ軸に平行な方向(正面方向)である。 Similarly to the lens array 103 of the first embodiment, the lens array 503 is formed by arranging a plurality of lenses 513 in a matrix in the X-axis direction and the Y-axis direction in parallel with the image display surface. The lens 513 collimates the light emitted from the first light source 101a and the second light source 101b into substantially parallel light and emits the light as in the lens 113 constituting the lens array 103. However, unlike the lens 113, the lens 513 has the same (substantially equal) optical characteristics regarding the deflection angle. Since each cell 511 includes this lens 513, the light emitted from each cell 511 is in the same direction (practically the same). The emission direction is, for example, a direction (front direction) parallel to the Z axis.
 なお、各セル511においては、レンズ513の光軸がセル511の中心軸と重なるように各レンズ513の配置位置を設定することが望ましい。 In each cell 511, it is desirable to set the arrangement position of each lens 513 so that the optical axis of the lens 513 overlaps the center axis of the cell 511.
 偏向レンズ507は、各レンズ513から出射される光、すなわち、各セル511から出射される光が入射され、その光をあらかじめ想定された視聴位置(視聴想定位置)に偏向して出射する。偏向レンズ507の出射光の出射方向は、視聴想定位置の方向である。具体的には、例えば、第1光源101aの発光は、視聴想定位置にいる視聴者の左眼に向かって出射され、第2光源101bの発光は視聴者の右眼に向かって出射される。すなわち、偏向レンズ507は、入射光を視聴想定位置に向けて偏向して出射するという点に関して、実施の形態1に示したレンズアレイ103と同様の機能を有する。 The deflection lens 507 receives the light emitted from each lens 513, that is, the light emitted from each cell 511, deflects the light to a presumed viewing position (viewing assumed position), and emits the light. The outgoing direction of the outgoing light from the deflection lens 507 is the direction of the assumed viewing position. Specifically, for example, the light emission of the first light source 101a is emitted toward the left eye of the viewer at the assumed viewing position, and the light emission of the second light source 101b is emitted toward the right eye of the viewer. That is, the deflection lens 507 has the same function as the lens array 103 shown in Embodiment 1 in that incident light is deflected and emitted toward the assumed viewing position.
 したがって、照明部510から出射される光は、実施の形態1に示した照明部110から出射される光と実質的に等しく、視聴想定位置にいる視聴者の右眼または左眼に向かって進行する。 Therefore, the light emitted from the illumination unit 510 is substantially equal to the light emitted from the illumination unit 110 described in Embodiment 1, and travels toward the right or left eye of the viewer at the assumed viewing position. To do.
 なお、図10の光源部101およびレンズアレイ503には、便宜的に、各セル511の境界を破線で示す。 Note that, in the light source unit 101 and the lens array 503 in FIG. 10, the boundaries of the cells 511 are indicated by broken lines for convenience.
 なお、本実施の形態では、1つのセル511は、実施の形態1と同様に、一辺が約20mmの正方形の形状で形成されているが、セル511は何らこの大きさに限定されるものではなく、また、図10に示す形状に限定されるものでもない。 In the present embodiment, one cell 511 is formed in a square shape having a side of about 20 mm, as in the first embodiment, but the cell 511 is not limited to this size. There is no limitation to the shape shown in FIG.
 図11は、実施の形態2における画像表示装置500の断面図である。図11には、図6と同様の断面図を示す。 FIG. 11 is a cross-sectional view of the image display device 500 according to the second embodiment. FIG. 11 is a cross-sectional view similar to FIG.
 上述したように、照明部510では、レンズ513が出射する光の出射方向は互いに等しい(実質的に等しい)。しかし、照明部510は、レンズアレイ503の後段に偏向レンズ507を備えるので、この偏向レンズ507によって偏向された光が照明部510から出射され、視聴想定位置に向かって進行する。 As described above, in the illumination unit 510, the emission directions of the light emitted from the lens 513 are the same (substantially equal). However, since the illumination unit 510 includes the deflection lens 507 at the subsequent stage of the lens array 503, the light deflected by the deflection lens 507 is emitted from the illumination unit 510 and travels toward the assumed viewing position.
 なお、図11には、第2光源101bの発光が偏向レンズ507により偏向されて視聴想定位置にいる視聴者の右眼に届く様子を示しているが、第1光源101aの発光は、同様に偏向レンズ507によって偏向されて視聴想定位置の視聴者の左眼に届く。 FIG. 11 shows a state in which the light emitted from the second light source 101b is deflected by the deflecting lens 507 and reaches the right eye of the viewer at the assumed viewing position. It is deflected by the deflecting lens 507 and reaches the viewer's left eye at the assumed viewing position.
 図12Aは、実施の形態2における照明部510の中央付近に配置されたセル511(「セル511A」と記す)の光源の配置位置と出射光の出射方向を概略的に示す断面図である。図12Bは、実施の形態2おける照明部510の周辺に配置されたセル511(「セル511B」と記す)の光源の配置位置と出射光の出射方向を概略的に示す断面図である。図12Aには、図11に破線で示した領域505の拡大図を示し、図12Bには、領域506の拡大図を示す。 FIG. 12A is a cross-sectional view schematically showing the arrangement position of the light source and the emission direction of the emitted light of the cell 511 (referred to as “cell 511A”) arranged near the center of the illumination unit 510 in the second embodiment. FIG. 12B is a cross-sectional view schematically showing the arrangement position of the light source and the emission direction of the emitted light in cell 511 (referred to as “cell 511B”) arranged around illumination unit 510 in the second embodiment. 12A shows an enlarged view of the region 505 indicated by a broken line in FIG. 11, and FIG. 12B shows an enlarged view of the region 506.
 図12A、12Bに示すように、照明部510では、中央付近に配置されたセル511Aと周辺に配置されたセル511Bは、レンズ513の偏向角に関する光学的特性を含め、互いに同じ(実質的に同じ)構造を有する。図示はしないが、他のセル511も同様である。 As shown in FIGS. 12A and 12B, in the illumination unit 510, the cell 511A disposed near the center and the cell 511B disposed near the center are the same as each other (substantially the optical characteristics related to the deflection angle of the lens 513). The same) structure. Although not shown, the same applies to the other cells 511.
 したがって、照明部510を構成するどのセル511からも、同じ方向(例えばX軸に平行な方向)に平行光が出射される。 Therefore, parallel light is emitted from any cell 511 constituting the illumination unit 510 in the same direction (for example, a direction parallel to the X axis).
 そして、各セル511から出射される平行光は、各セル511の配置位置にもとづく偏向角で偏向レンズ507により偏向され視聴想定位置に向かって出射される。 Then, the parallel light emitted from each cell 511 is deflected by the deflection lens 507 at a deflection angle based on the arrangement position of each cell 511 and is emitted toward the assumed viewing position.
 例えば、中央付近に配置されたセル511Aから出射される平行光は、図12Aに示すように、偏向レンズ507のほぼ中央付近に入射するので、偏向レンズ507のその領域における光学特性にもとづき相対的に小さい偏向角で偏向レンズ507から出射され、視聴想定位置に向かって進行する。 For example, as shown in FIG. 12A, parallel light emitted from the cell 511A arranged in the vicinity of the center is incident near the center of the deflection lens 507. Therefore, the parallel light is relatively based on the optical characteristics of the deflection lens 507 in that region. The light is emitted from the deflecting lens 507 with a small deflection angle and proceeds toward the assumed viewing position.
 周辺に配置されたセル511Bから出射される平行光は、図12Bに示すように、偏向レンズ507の周辺付近に入射するので、偏向レンズ507のその領域における光学特性にもとづき相対的に大きい偏向角で偏向レンズ507から出射され、視聴想定位置に向かって進行する。 As shown in FIG. 12B, the parallel light emitted from the cell 511 </ b> B arranged in the periphery enters the vicinity of the periphery of the deflection lens 507. Is emitted from the deflection lens 507 and proceeds toward the assumed viewing position.
 なお、各セル511においてレンズ513の入射面における入射光の強度は、説明は省略するが、図8A、8Bに示したものと実質的に同じであり、所定の範囲(5%以内、望ましくは1%以内)に抑えられている。したがって、どのセル511から出射される光も、強度の差を所定の範囲に抑えた実質的に均等な光となる。 In each cell 511, the intensity of the incident light on the incident surface of the lens 513 is substantially the same as that shown in FIGS. 8A and 8B, and a predetermined range (within 5%, preferably 1% or less). Therefore, the light emitted from any cell 511 is substantially uniform light with the intensity difference kept within a predetermined range.
 次に、偏向レンズ507の一構成例を説明する。 Next, a configuration example of the deflection lens 507 will be described.
 図13Aは、実施の形態2における偏向レンズ507を模式的に示す図である。図13Bは、実施の形態2における偏向レンズ507を構成するレンズの形状の一例を模式的に示す図である。図13Bには、凸レンズ514の正面図、側面図、上面図を示す。 FIG. 13A is a diagram schematically showing the deflection lens 507 in the second embodiment. FIG. 13B is a diagram schematically illustrating an example of the shape of a lens constituting the deflection lens 507 in the second embodiment. FIG. 13B shows a front view, a side view, and a top view of the convex lens 514.
 偏向レンズ507は、上述した光学特性を満たすものであればどのようなものであってもよいが、ここでは、一例として、一般的に用いられている凸レンズにもとづき、目的とする光学特性を得られるように偏向レンズ507を構成する例を説明する。 The deflecting lens 507 may be any lens that satisfies the above-described optical characteristics, but here, as an example, the objective optical characteristics are obtained based on a commonly used convex lens. An example in which the deflection lens 507 is configured will be described.
 なお、図13Bは、目的とする光学特性にもとづき形成された偏向レンズ507の形状の一例を説明するために示したものに過ぎず、凸レンズ514から切り出して偏向レンズ507を形成することを示したわけではない。偏向レンズ507はモールド法等の適切な手法によって製造すればよい。 Note that FIG. 13B is only shown for explaining an example of the shape of the deflection lens 507 formed based on the target optical characteristics, and shows that the deflection lens 507 is formed by cutting out from the convex lens 514. is not. The deflection lens 507 may be manufactured by an appropriate method such as a molding method.
 凸レンズ514は、焦点距離が、偏向レンズ507から視聴想定位置として設置された位置までの離間距離に等しくなるように設定されたレンズである。 The convex lens 514 is a lens in which the focal length is set to be equal to the separation distance from the deflection lens 507 to the position set as the assumed viewing position.
 偏向レンズ507は、このように設定された凸レンズ514を、図13Bに示すように、凸レンズ514の光軸が偏向レンズ507の中心となるように、偏向レンズ507の大きさにもとづいて切り出した形状を有する。 The deflection lens 507 has a shape in which the convex lens 514 set in this way is cut out based on the size of the deflection lens 507 so that the optical axis of the convex lens 514 is at the center of the deflection lens 507 as shown in FIG. 13B. Have
 なお、レンズアレイ503は、例えば図9A、9Bの位置Eに示したレンズ113と同様の形状を有するレンズを複数マトリクス状に配置して形成してもよい。 The lens array 503 may be formed by arranging, for example, a plurality of lenses having the same shape as the lens 113 shown at the position E in FIGS. 9A and 9B.
 [2-2.動作]
 以上のように構成された画像表示装置500の動作は、画像表示装置500が備える照明部510の構成が実施の形態1に示した照明部110と異なる以外は実施の形態1に示した画像表示装置100と実質的に同じであるので、説明を省略する。
[2-2. Operation]
The operation of the image display device 500 configured as described above is the same as the image display shown in Embodiment 1 except that the configuration of the illumination unit 510 included in the image display device 500 is different from that of the illumination unit 110 shown in Embodiment 1. Since it is substantially the same as the apparatus 100, description is abbreviate | omitted.
 [2-3.効果等]
 以上のように構成された画像表示装置500では、実施の形態1と同様に、セル511の配置位置にかかわらずどのセル511においても、一対の第1光源101aと第2光源101bの配置位置(セル511内の配置位置)は実質的に同じである。したがって、各レンズ513の入射面における光の強度の差は所定の範囲(5%、望ましくは1%)内に抑えられ、照明部510を構成する各セル511からは強度が実質的に均一な平行光が出射される。
[2-3. Effect]
In the image display apparatus 500 configured as described above, as in the first embodiment, regardless of the position of the cell 511, the position of the pair of the first light source 101a and the second light source 101b ( The arrangement position in the cell 511) is substantially the same. Therefore, the difference in light intensity at the incident surface of each lens 513 is suppressed within a predetermined range (5%, preferably 1%), and the intensity is substantially uniform from each cell 511 constituting the illumination unit 510. Parallel light is emitted.
 ただし、実施の形態1と異なりその平行光は実質的に同一方向に出射され、その出射光はレンズアレイ503の後段に配置された偏向レンズ507により偏向されて、視聴想定位置に向かって出射される。 However, unlike the first embodiment, the parallel light is emitted in substantially the same direction, and the emitted light is deflected by the deflection lens 507 disposed at the subsequent stage of the lens array 503 and emitted toward the assumed viewing position. The
 このように、実施の形態2に示す照明部510は、実施の形態1に示した照明部110と比較して、構成に違いはあるものの、その動作および目的とする効果(すなわち、出射する光の均一性を高める)は実質的に同じである。 As described above, the illumination unit 510 described in Embodiment 2 is different in configuration from the illumination unit 110 described in Embodiment 1, but its operation and intended effect (ie, emitted light) are different. To increase the uniformity) is substantially the same.
 したがって、実施の形態2における画像表示装置500は、実施の形態1に示した画像表示装置100と比較して、動作に関しての実質的な差はなく、得られる主な効果、すなわち、視聴者は均一性の高いバックライトによる質の高い表示画像を専用の眼鏡等を用いることなく裸眼で立体視できる、という効果も実質的に同じである。 Therefore, the image display device 500 in the second embodiment has no substantial difference in operation as compared with the image display device 100 shown in the first embodiment, and the main effect obtained, that is, the viewer is The effect that a high-quality display image by a highly uniform backlight can be stereoscopically viewed with the naked eye without using dedicated glasses or the like is substantially the same.
 ただし、本実施の形態におけるレンズアレイ503は、偏向角に関する光学特性が互いに等しいレンズ513によって構成されるので、偏向角に関する光学特性が互いに異なるレンズ113によって構成されるレンズアレイ103よりも、製造時の難易度を低減できる。 However, since the lens array 503 in the present embodiment is configured by the lenses 513 having the same optical characteristics regarding the deflection angle, the lens array 503 is more manufactured than the lens array 103 including the lenses 113 having different optical characteristics regarding the deflection angle. The difficulty level can be reduced.
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1、2を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略等を行った実施の形態にも適用できる。また、上記実施の形態1、2で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, Embodiments 1 and 2 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, replacements, additions, omissions, and the like are performed. Moreover, it is also possible to combine each component demonstrated in the said Embodiment 1, 2 and it can be set as a new embodiment.
 そこで、以下、他の実施の形態を例示する。 Therefore, other embodiments will be exemplified below.
 実施の形態1、2ではレンズアレイの一例として、レンズアレイを構成する各レンズを単レンズで構成する例を説明した。しかし、レンズアレイは何らこれに限定されない。目的とする光学特性を得られるのであれば、どのようなものを用いてもよい。 In Embodiments 1 and 2, as an example of the lens array, an example in which each lens constituting the lens array is configured by a single lens has been described. However, the lens array is not limited to this. Any object may be used as long as the desired optical characteristics can be obtained.
 図14Aは、他の実施の形態におけるレンズアレイの一構成例を正面(Z軸方向)から見た模式図である。図14Bは、他の実施の形態におけるレンズアレイの他の構成例を正面(Z軸方向)から見た模式図である。なお、図14A、14Bでは、セルの境界を実線で表し、破線の交点がセルの中心軸を表す。しかし、これらの線は便宜的に示したものに過ぎず、これらの線がレンズアレイに実際に記されているわけではない。 FIG. 14A is a schematic view of a configuration example of a lens array according to another embodiment viewed from the front (Z-axis direction). FIG. 14B is a schematic view of another configuration example of the lens array according to another embodiment viewed from the front (Z-axis direction). In FIGS. 14A and 14B, the cell boundary is represented by a solid line, and the intersection of the broken lines represents the central axis of the cell. However, these lines are shown for convenience only, and these lines are not actually marked on the lens array.
 例えば、実施の形態1に示したレンズアレイ103は、図14Aに示すように、偏向角に関する光学特性がレンズアレイ103と実質的に等しいフレネルレンズで構成されたレンズアレイ123に置き換えてもよい。同様に、実施の形態2に示したレンズアレイ503は、図14Bに示すように、偏向角に関する光学特性がレンズアレイ503と実質的に等しいフレネルレンズで構成されたレンズアレイ523に置き換えてもよい。 For example, as shown in FIG. 14A, the lens array 103 shown in Embodiment 1 may be replaced with a lens array 123 configured with a Fresnel lens whose optical characteristics regarding the deflection angle are substantially equal to the lens array 103. Similarly, as shown in FIG. 14B, the lens array 503 shown in the second embodiment may be replaced with a lens array 523 configured with a Fresnel lens whose optical characteristics regarding the deflection angle are substantially equal to the lens array 503. .
 なお、図14A、14Bでは、出射光の偏向方向を、破線の交点で示すセルの中心軸に対する輪の配置位置で表している。 In FIGS. 14A and 14B, the deflection direction of the emitted light is represented by the arrangement position of the ring with respect to the center axis of the cell indicated by the intersection of the broken lines.
 また、図示はしないが、実施の形態2で示した偏向レンズ507に関しても、偏向角に関する光学特性が偏向レンズ507と実質的に等しいフレネルレンズに置き換えが可能である。 Although not shown, the deflection lens 507 shown in the second embodiment can also be replaced with a Fresnel lens whose optical characteristics regarding the deflection angle are substantially equal to those of the deflection lens 507.
 このように、レンズアレイ103、503や偏向レンズ507を、それらと同等の機能を有するフレネルレンズに置き換えると、実施の形態1、2で説明した構成例と比較して、画像表示装置の厚みを薄くすることが可能となる。 As described above, when the lens arrays 103 and 503 and the deflection lens 507 are replaced with Fresnel lenses having functions equivalent to those, the thickness of the image display device is reduced as compared with the configuration examples described in the first and second embodiments. It can be made thinner.
 特に、偏向レンズ507を同等の機能を有するフレネルレンズに置き換えることは、画像表示装置500の大画面化に有効である。 In particular, replacing the deflection lens 507 with a Fresnel lens having an equivalent function is effective in increasing the screen size of the image display device 500.
 また、図示はしないが、レンズアレイ103、503や偏向レンズ507は、組みレンズで構成されてもよく、あるいは、回折レンズによって構成されてもよい。 Although not shown, the lens arrays 103 and 503 and the deflection lens 507 may be configured by a combined lens or may be configured by a diffractive lens.
 また、偏向レンズ507を、実施の形態1に示したレンズアレイ103と同様に、偏向角に関する光学特性が互いに異なる複数のレンズの集合体によって構成してもよい。 Also, the deflection lens 507 may be configured by an assembly of a plurality of lenses having different optical characteristics regarding the deflection angle, like the lens array 103 shown in the first embodiment.
 あるいは、目的とする偏向角が得られるように厚みが傾斜したガラス等を用いて作成された、偏向角に関する光学特性が偏向レンズ507と実質的に同じになる偏向板を、偏向レンズ507に代えて用いる構成であってもよい。 Alternatively, the deflection lens 507 is replaced with a deflection plate that is made of glass having a thickness inclined so as to obtain a target deflection angle and that has substantially the same optical characteristics as the deflection lens 507. May be used.
 ただし、いずれの場合においても、各レンズアレイまたは偏向レンズの偏向角に関する光学特性は、照明部から視聴想定位置に向かって平行光が出射されるように設定するものとする。なお、実施の形態1、2では、パネル104の中心からZ軸方向に所定の距離だけ離間した位置を視聴想定位置としたが、視聴想定位置は何らこの位置に限定されるものではない。 However, in any case, the optical characteristics related to the deflection angle of each lens array or deflection lens are set so that parallel light is emitted from the illumination unit toward the assumed viewing position. In the first and second embodiments, the assumed viewing position is a position separated from the center of the panel 104 by a predetermined distance in the Z-axis direction. However, the assumed viewing position is not limited to this position.
 また、画像表示装置100、500は拡散板を備えてもよい。図15は、他の実施の形態における拡散板124を備えた構成を概略的に示す分解斜視図である。図15には、画像表示装置100の他の実施の形態の一例を示す。 Further, the image display devices 100 and 500 may include a diffusion plate. FIG. 15 is an exploded perspective view schematically showing a configuration including a diffusion plate 124 according to another embodiment. FIG. 15 shows an example of another embodiment of the image display device 100.
 図15に示すように、例えば、画像表示装置100は照明部110とパネル104との間に拡散板124を間挿した構成としてもよい。図示はしないが、同様の拡散板124を、実施の形態2に示した画像表示装置500において、照明部510とパネル104との間に間挿した構成としてもよい。 As shown in FIG. 15, for example, the image display device 100 may have a configuration in which a diffusion plate 124 is interposed between the illumination unit 110 and the panel 104. Although not shown, a similar diffusing plate 124 may be inserted between the illumination unit 510 and the panel 104 in the image display device 500 shown in Embodiment 2.
 拡散板124は、照明部110または照明部510から出射される光を拡散してパネル104に入射する。この拡散板124を設けることで、照明部110または照明部510から出射される光を、より均一な光にしてパネル104のバックライトに用いることが可能となる。 The diffusion plate 124 diffuses the light emitted from the illumination unit 110 or the illumination unit 510 and enters the panel 104. By providing the diffusion plate 124, the light emitted from the illumination unit 110 or the illumination unit 510 can be made more uniform and used for the backlight of the panel 104.
 拡散板124は、第1光源101aおよび第2光源101bの配置方向に対して垂直な方向(Y軸方向)への拡散が、第1光源101aおよび第2光源101bの配置方向と平行な方向(X軸方向)への拡散よりも大きくなるように構成されることが望ましい。これは以下の理由による。 The diffusion plate 124 has a direction in which diffusion in a direction perpendicular to the arrangement direction of the first light source 101a and the second light source 101b (Y-axis direction) is parallel to the arrangement direction of the first light source 101a and the second light source 101b ( It is desirable to be configured to be larger than diffusion in the (X-axis direction). This is due to the following reason.
 第1光源101aおよび第2光源101bの配置方向(X軸方向)は、視聴者の視差方向である。したがって、X軸方向に光が拡散することは視聴者の裸眼立体視を阻害することになり、望ましくない。一方、Y軸方向は視聴者の視差方向ではないため、この方向へ光を拡散しても視聴者が裸眼立体視を阻害される可能性は低い。以上のことから、拡散板124は、Y軸方向への拡散が、X軸方向への拡散よりも大きくなるように構成されることが望ましい。 The arrangement direction (X-axis direction) of the first light source 101a and the second light source 101b is the viewer's parallax direction. Therefore, the diffusion of light in the X-axis direction is undesirable because it obstructs the viewer's autostereoscopic vision. On the other hand, since the Y-axis direction is not the viewer's parallax direction, even if light is diffused in this direction, it is unlikely that the viewer is obstructed by stereoscopic vision. From the above, it is desirable that the diffusion plate 124 is configured so that the diffusion in the Y-axis direction is larger than the diffusion in the X-axis direction.
 なお、実施の形態1、2ではセルを四角形の形状とする例を説明したが、セルは他の形状であってもよい。 In the first and second embodiments, the example in which the cell has a square shape has been described. However, the cell may have another shape.
 図16は、他の実施の形態におけるセルの形状の一例を概略的に示す分解斜視図である。 FIG. 16 is an exploded perspective view schematically showing an example of the shape of a cell in another embodiment.
 他の実施の形態としては、例えば図16に示すように、Z軸方向から見たときのセルの形状が六角形となるように遮光壁を形成して照明部を構成してもよい。ただし、セル内部において、第1光源101aおよび第2光源101bの発光が遮光壁で反射して出射するのを低減するために、第1光源101aおよび第2光源101bを結ぶ線の延長上に六角形の頂点が配置されるように遮光壁を形成することが望ましい。 As another embodiment, for example, as shown in FIG. 16, the illumination part may be configured by forming a light shielding wall so that the shape of the cell when viewed from the Z-axis direction is a hexagon. However, in order to reduce the light emitted from the first light source 101a and the second light source 101b by being reflected by the light-shielding wall inside the cell, the six light sources on the extension of the line connecting the first light source 101a and the second light source 101b. It is desirable to form the light shielding wall so that the corners of the square are arranged.
 また、Z軸方向から見たときのセルの形状が四角形の場合であっても、第1光源101aおよび第2光源101bを結ぶ線の延長上に四角形の頂点が配置されるように遮光壁を形成することで、第1光源101aおよび第2光源101bの発光が遮光壁で反射して出射するのを低減することができる。 Further, even if the cell shape when viewed from the Z-axis direction is a quadrangle, the light shielding wall is arranged so that the quadrangle apex is arranged on the extension of the line connecting the first light source 101a and the second light source 101b. By forming, it can reduce that the light emission of the 1st light source 101a and the 2nd light source 101b is reflected and light-emitted by the light-shielding wall.
 なお、実施の形態1では、立体視用の画像を構成する左眼用の画像を第1画像、右眼用の画像を第2画像とし、第1光源101aの発光は、視聴想定位置から表示画像を視聴する視聴者の左眼に向かって出射し、第2光源101bの発光は視聴者の右眼に向かって出射する例を説明した。しかし、右眼用の画像を第1画像、左眼用の画像を第2画像とし、第1光源101aの発光を視聴者の右眼に向かって出射し、第2光源101bの発光を視聴者の左眼に向かって出射するように構成してもよい。また、第1画像と第2画像とを交互に表示する周期は、120Hz以外の数値であってもよく、不定期に交番する構成であってもよい。また、立体視用の画像を第1画像、第2画像とするのでははく、第1画像と第2画像とを互いに独立した画像としてもよく、第1画像と第2画像とが互いに同じ画像であってもよい。また、第1画像および第2画像は静止画と動画のどちらでもよい。 In the first embodiment, the left-eye image constituting the stereoscopic image is the first image, the right-eye image is the second image, and the light emission of the first light source 101a is displayed from the assumed viewing position. The example in which the light is emitted toward the left eye of the viewer who views the image and the light emission of the second light source 101b is emitted toward the right eye of the viewer has been described. However, the right-eye image is the first image, the left-eye image is the second image, the first light source 101a emits light toward the viewer's right eye, and the second light source 101b emits light. You may comprise so that it may radiate | emit toward the left eye. Moreover, the period which displays a 1st image and a 2nd image alternately may be numerical values other than 120 Hz, and the structure which alternates irregularly may be sufficient. In addition, the first image and the second image may not be the first image and the second image, but the first image and the second image may be independent from each other. It may be an image. Further, the first image and the second image may be either a still image or a moving image.
 また、第1光源101aと第2光源101bの配置位置を図3~5に示す配置位置と逆にしてもよく、第2画像がパネル104に表示されているときは第1光源101aが発光して第2光源101bは消灯し、第1画像がパネル104に表示されているときは第2光源101bが発光して第1光源101aは消灯するように構成してもよい。 In addition, the arrangement positions of the first light source 101a and the second light source 101b may be reversed from the arrangement positions shown in FIGS. 3 to 5. When the second image is displayed on the panel 104, the first light source 101a emits light. The second light source 101b may be turned off, and when the first image is displayed on the panel 104, the second light source 101b may emit light and the first light source 101a may be turned off.
 なお、上記の説明では第1光源101aと第2光源101bのそれぞれの光源自体の出射光の空間角度分布については理解を容易にするため等方性であることを前提としているが、本開示は第1光源101aと第2光源101bのそれぞれの出射光の空間角度分布について等方性であることに限定するものではない。例えば、図4における中心軸に対する第1光源101aと第2光源101bの僅かな変移に起因するレンズ113の入射光の強度の差を軽減するような出射光の空間角度分布を第1光源101aと第2光源101bに持たせることで、さらにバックライトとしての光の強度の均一性を高めることができる。 In the above description, the spatial angle distribution of the emitted light of each of the first light source 101a and the second light source 101b is assumed to be isotropic for easy understanding, but the present disclosure The spatial angle distribution of the emitted light of each of the first light source 101a and the second light source 101b is not limited to be isotropic. For example, the spatial angle distribution of the emitted light that reduces the difference in the intensity of the incident light of the lens 113 due to a slight shift between the first light source 101a and the second light source 101b with respect to the central axis in FIG. By providing the second light source 101b, the uniformity of light intensity as a backlight can be further improved.
 なお、実施の形態1、2に示した具体的な数値は、単に実施の形態における一例を示したものに過ぎず、本開示はこれらの数値に何ら限定されるものではない。各数値は画像表示装置の仕様等にあわせて最適な値に設定することが望ましい。 It should be noted that the specific numerical values shown in the first and second embodiments are merely examples in the embodiment, and the present disclosure is not limited to these numerical values. It is desirable to set each numerical value to an optimal value according to the specifications of the image display apparatus.
 本開示は、第1画像と第2画像とを交互に表示する画像表示装置に適用可能である。具体的には、画像表示面に表示される立体視用の画像を裸眼で立体視可能な液晶テレビ等に本開示は適用可能である。 The present disclosure is applicable to an image display device that alternately displays a first image and a second image. Specifically, the present disclosure can be applied to a liquid crystal television or the like that can stereoscopically view a stereoscopic image displayed on the image display surface with the naked eye.
 100,500  画像表示装置
 101,131  光源部
 101a  第1光源
 101b  第2光源
 102,132  遮光部
 103,123,133,503,523  レンズアレイ
 104  パネル
 105,106,505,506  領域
 110,510  照明部
 111,111A,111B,511,511A,511B  セル
 113,113A,113B,513,513A,513B  レンズ
 114,514  凸レンズ
 124  拡散板
 507  偏向レンズ
DESCRIPTION OF SYMBOLS 100,500 Image display apparatus 101,131 Light source part 101a 1st light source 101b 2nd light source 102,132 Light-shielding part 103,123,133,503,523 Lens array 104 Panel 105,106,505,506 Area | region 110,510 Illumination part 111, 111A, 111B, 511, 511A, 511B Cell 113, 113A, 113B, 513, 513A, 513B Lens 114, 514 Convex lens 124 Diffusion plate 507 Deflection lens

Claims (7)

  1. 第1画像と第2画像とを交互に表示する画像表示装置であって、
    前記第1画像を表示するための光を発光する第1光源と、前記第2画像を表示するための光を発光する第2光源と、前記第1光源および前記第2光源からの光を実質的に平行な光にコリメートするレンズと、を有するセルを、複数個平面状に配置した照明部と、
    前記第1画像に対応する第1画像信号および前記第2画像に対応する第2画像信号に基づいて、前記照明部から発せられる光を変調する空間光変調パネルと、
    を備え、
    前記第1光源と前記第2光源とは前記セルの中心軸に対して略対称に配置され、
    前記照明部の中央に配置されたセルから出射した光と前記照明部の周囲に配置されたセルから出射した光とでは、前記照明部から出射するときの出射方向が異なるように構成されている、
    画像表示装置。
    An image display device that alternately displays a first image and a second image,
    A first light source that emits light for displaying the first image, a second light source that emits light for displaying the second image, and substantially the light from the first light source and the second light source. A illuminating unit in which a plurality of cells having a collimating lens for collimated light are arranged in a plane,
    A spatial light modulation panel that modulates light emitted from the illumination unit based on a first image signal corresponding to the first image and a second image signal corresponding to the second image;
    With
    The first light source and the second light source are disposed substantially symmetrically with respect to the central axis of the cell,
    The light emitted from the cell arranged in the center of the illumination unit and the light emitted from the cell arranged around the illumination unit are configured so that the emission directions when emitted from the illumination unit are different. ,
    Image display device.
  2. 前記出射方向は、各セルから予め想定された前記画像表示装置の視聴位置への方向である、
    請求項1記載の画像表示装置。
    The emission direction is a direction from each cell to a viewing position of the image display device assumed in advance.
    The image display device according to claim 1.
  3. 前記各セルに配置されたレンズは、偏向角がそれぞれ異なる要素レンズである、
    請求項1または2記載の画像表示装置。
    The lenses arranged in each cell are element lenses having different deflection angles.
    The image display device according to claim 1.
  4. 前記照明部は、前記各セルに配置されたレンズの後段に配置され、前記各セルから出射した光の出射方向を偏向させる偏向光学素子をさらに備える、
    請求項1または2記載の画像表示装置。
    The illumination unit is further provided with a deflecting optical element that is arranged at a rear stage of the lens arranged in each cell and deflects the emission direction of the light emitted from each cell.
    The image display device according to claim 1.
  5. 前記照明部と前記空間光変調パネルとの間に間挿され、前記照明部から出射した光を拡散する拡散板をさらに有し、
    前記拡散板は、前記セルの前記第1光源および前記第2光源の配置方向に対して垂直な方向への拡散が前記配置方向と平行な方向への拡散よりも大きくなるように構成された、
    請求項1または2記載の画像表示装置。
    A diffusion plate that is inserted between the illumination unit and the spatial light modulation panel and diffuses the light emitted from the illumination unit;
    The diffusion plate is configured such that diffusion in the direction perpendicular to the arrangement direction of the first light source and the second light source of the cell is larger than diffusion in a direction parallel to the arrangement direction.
    The image display device according to claim 1.
  6. 前記各セルは隣接するセルからの光を遮光する遮光壁を有する、
    請求項1または2記載の画像表示装置。
    Each of the cells has a light shielding wall that shields light from an adjacent cell.
    The image display device according to claim 1.
  7. 第1画像と第2画像とを交互に表示する画像表示装置に用いる照明装置であって、
    前記第1画像を表示するための光を発光する第1光源と、前記第2画像を表示するための光を発光する第2光源と、前記第1光源および前記第2光源からの光を実質的に平行な光にコリメートするレンズと、を有するセルを、複数個平面状に配置した照明部を備え、
    前記第1光源と前記第2光源とは前記セルの中心軸に対して略対称に配置され、
    前記照明部の中央に配置されたセルから出射した光と前記照明部の周囲に配置されたセルから出射した光とでは、前記照明部から出射するときの出射方向が異なるように構成されている、
    照明装置。
    An illumination device used in an image display device that alternately displays a first image and a second image,
    A first light source that emits light for displaying the first image, a second light source that emits light for displaying the second image, and substantially the light from the first light source and the second light source. And a lighting unit in which a plurality of cells having a lens collimating parallel light are arranged in a plane,
    The first light source and the second light source are disposed substantially symmetrically with respect to the central axis of the cell,
    The light emitted from the cell arranged in the center of the illumination unit and the light emitted from the cell arranged around the illumination unit are configured so that the emission directions when emitted from the illumination unit are different. ,
    Lighting device.
PCT/JP2014/000604 2013-02-12 2014-02-05 Image display device and lighting device WO2014125793A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013023989A JP2016065886A (en) 2013-02-12 2013-02-12 Image display device
JP2013-023989 2013-02-12

Publications (1)

Publication Number Publication Date
WO2014125793A1 true WO2014125793A1 (en) 2014-08-21

Family

ID=51353806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000604 WO2014125793A1 (en) 2013-02-12 2014-02-05 Image display device and lighting device

Country Status (2)

Country Link
JP (1) JP2016065886A (en)
WO (1) WO2014125793A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896518A (en) * 2017-04-11 2017-06-27 中山大学 A kind of bore hole 3D display systems of alternating expression backlight
CN108345122A (en) * 2018-01-29 2018-07-31 中山大学 A kind of determining bore hole 3D display vision area corresponds to the method and system of backlight
US20230028201A1 (en) * 2020-03-26 2023-01-26 Sioptica Gmbh Method and arrangement for influencing light propagation directions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210006894A (en) * 2018-05-04 2021-01-19 하만인터내셔날인더스트리스인코포레이티드 Mirrorless head-up display
JP2022030414A (en) * 2020-08-07 2022-02-18 日本電信電話株式会社 Three-dimensional aerial image display device and method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186107A (en) * 1996-12-20 1998-07-14 Eastman Kodak Co Compact lens array system
JP2005077437A (en) * 2003-08-29 2005-03-24 Olympus Corp Video display device, stereoscopic video display device, and on-vehicle video display device
JP2007518113A (en) * 2003-12-18 2007-07-05 シーリアル、テクノロジーズ、ゲーエムベーハー Autostereoscopic multi-user display
JP2010139855A (en) * 2008-12-12 2010-06-24 Sharp Corp Display device, method for controlling display device, and control program
JP2012022155A (en) * 2010-07-14 2012-02-02 Nikon Corp Display apparatus and light source device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186107A (en) * 1996-12-20 1998-07-14 Eastman Kodak Co Compact lens array system
JP2005077437A (en) * 2003-08-29 2005-03-24 Olympus Corp Video display device, stereoscopic video display device, and on-vehicle video display device
JP2007518113A (en) * 2003-12-18 2007-07-05 シーリアル、テクノロジーズ、ゲーエムベーハー Autostereoscopic multi-user display
JP2010139855A (en) * 2008-12-12 2010-06-24 Sharp Corp Display device, method for controlling display device, and control program
JP2012022155A (en) * 2010-07-14 2012-02-02 Nikon Corp Display apparatus and light source device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896518A (en) * 2017-04-11 2017-06-27 中山大学 A kind of bore hole 3D display systems of alternating expression backlight
CN108345122A (en) * 2018-01-29 2018-07-31 中山大学 A kind of determining bore hole 3D display vision area corresponds to the method and system of backlight
US20230028201A1 (en) * 2020-03-26 2023-01-26 Sioptica Gmbh Method and arrangement for influencing light propagation directions

Also Published As

Publication number Publication date
JP2016065886A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
EP3136159B1 (en) Backlight unit and 3d image display apparatus
KR101897276B1 (en) Light source device and stereoscopic display
JP5545068B2 (en) Light source device and stereoscopic display device
US9507159B2 (en) Light source device and stereoscopic display apparatus
US9274346B2 (en) Multi-view auto-stereoscopic display
US20120306861A1 (en) Light source device and display
US9274345B2 (en) Multiple view display
CN212255878U (en) Head-up display system
CN103032758A (en) Light source device, display apparatus and electronic equipment
WO2013069405A1 (en) Illumination device, display device and electronic device
US20140140094A1 (en) Light source device, display unit, and electronic apparatus
US20120256974A1 (en) Light source device, display, and electronic unit
JP2012237961A (en) Display device and electronic apparatus
WO2014125793A1 (en) Image display device and lighting device
WO2013069406A1 (en) Display device and electronic device
JP2013105005A (en) Light source device, display device, and electronic apparatus
JP2013104915A (en) Light source device, display device, and electronic apparatus
US20120249968A1 (en) Autostereoscopic display
JPWO2013161811A1 (en) Optical path changing element, surface light source device, and liquid crystal display device
WO2013121771A1 (en) Image display device
WO2014148099A1 (en) Light source device, display apparatus, and electronic apparatus
WO2014112258A1 (en) Display device and electronic device
WO2014112374A1 (en) Image display device and illumination device for image display device
WO2017026327A1 (en) Transmission-type screen and head-up display
JP2012252051A (en) Parallax barrier and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP