WO2014123148A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2014123148A1
WO2014123148A1 PCT/JP2014/052653 JP2014052653W WO2014123148A1 WO 2014123148 A1 WO2014123148 A1 WO 2014123148A1 JP 2014052653 W JP2014052653 W JP 2014052653W WO 2014123148 A1 WO2014123148 A1 WO 2014123148A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
gas
chamber
flow direction
direction changing
Prior art date
Application number
PCT/JP2014/052653
Other languages
English (en)
French (fr)
Inventor
大祐 小松
七田 貴史
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to US14/765,422 priority Critical patent/US10069162B2/en
Priority to JP2014527386A priority patent/JP6360794B2/ja
Priority to KR1020157024113A priority patent/KR101841335B1/ko
Priority to EP14748657.5A priority patent/EP2955778B1/en
Priority to CN201480008029.2A priority patent/CN104981932B/zh
Priority to DK14748657.5T priority patent/DK2955778T3/en
Priority to CA2900459A priority patent/CA2900459C/en
Publication of WO2014123148A1 publication Critical patent/WO2014123148A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell.
  • SOFC solid oxide fuel cell
  • a fuel cell a solid oxide fuel cell (hereinafter, also referred to as “SOFC”) using a solid electrolyte (solid oxide) is known.
  • SOFC for example, a single cell in which a fuel electrode and an air electrode are provided on one side and the other side of a solid electrolyte layer is used.
  • a fuel gas (such as hydrogen) and an oxidant gas are supplied to the fuel electrode and the air electrode, respectively, and these gases react to generate electricity.
  • Patent Document 1 a technique for uniformly supplying fuel gas and reliably generating power is disclosed (see Patent Document 1).
  • An inlet buffer portion is provided on the upstream side of the fuel gas flow path, and the fuel gas inlet communication hole and the inlet buffer portion are connected by a plurality of inlet connecting passages.
  • Patent Document 1 does not necessarily have sufficient uniformity in power generation efficiency. That is, the pressure distribution is non-uniform such that the pressure on the gas inlet side in the inlet buffer is high and the pressure away from the inlet is low. If the pressure distribution is non-uniform, the gas distribution in the power generation region becomes non-uniform and the power generation efficiency becomes non-uniform. As a result, the in-plane temperature distribution of the single cell becomes non-uniform, and the single cell may be damaged by thermal stress.
  • An object of the present invention is to provide a fuel cell in which the pressure distribution of the fuel gas can be easily made uniform and the gas distribution in the power generation region can be made uniform.
  • a fuel cell according to an aspect of the present invention is formed between a plate-shaped interconnector having a front surface and a back surface, a single cell having a power generation function, the interconnector, and the single cell.
  • a fuel cell having a gas chamber and one or a plurality of gas inlets for allowing fuel gas to flow into the gas chamber, and having a buffer chamber located between the gas inlet and the gas chamber.
  • a flow direction changing portion formed so as to correspond to the gas inflow port between the buffer chamber and the gas chamber, wherein the flow direction changing portion is at least one of the front surface and the back surface.
  • a fuel gas passage on at least one of the front and back sides of the flow direction changing portion.
  • This fuel cell has a flow direction changing portion formed between the buffer chamber and the gas chamber so as to correspond to the gas inlet.
  • the flow direction changing unit changes the flow direction of the fuel gas from the plurality of gas inlets and flows it into the gas chamber.
  • the gas chamber is configured to flow along the fuel gas passage.
  • the flow direction changing unit may have one side surface facing the plurality of gas inlets.
  • the flow direction changing portion has one side face that faces the plurality of gas inlets, the pressure loss can be increased, so that the buffer effect for evenly distributing the gas from the gas inlets can be improved. It is done.
  • the inlet buffer section has a plurality of embosses (see paragraph 0030). There is no side, and it is difficult to obtain a sufficient buffer function.
  • the one side surface may be substantially perpendicular to the flow direction of the fuel gas from the plurality of gas inlets.
  • the side surface of 1 is substantially perpendicular to the flow direction of the fuel gas, so that the pressure loss can be further increased, so that the buffer effect for evenly distributing the gas from the gas inlet can be improved. .
  • the plurality of gas inlets, the flow direction changing unit, and the current collector may be arranged on substantially the same plane.
  • the pressure loss can be further increased, so that the buffer effect for evenly distributing the gas from the gas inlets can be improved.
  • the fuel cell can be easily reduced in thickness.
  • the flow direction changing portion may be formed integrally with the current collector.
  • the flow direction changing part is formed integrally with the current collector, the number of parts constituting the fuel cell can be reduced and the size can be reduced easily.
  • the current collector is disposed on the first conductive member, a spacer disposed on the first conductive member, and on the spacer, and is electrically connected to the first conductive member.
  • a second conductive member to be connected, and the flow direction changing portion may be formed integrally with the spacer.
  • the number of parts constituting the fuel cell can be reduced and the size can be easily reduced.
  • the spacer itself functions as the flow direction changing portion, the number of parts can be reduced more effectively.
  • the fuel cell has a frame-shaped frame portion,
  • the plurality of gas inlets may be formed in the frame portion.
  • the number of parts constituting the fuel cell can be reduced and the size can be easily reduced.
  • At least a part of the frame portion may be made of metal.
  • the processing accuracy when forming a plurality of gas inlets in the frame part is improved, and the fuel flows into the gas chamber, compared to the case of being made of an insulator such as mica
  • the gas pressure distribution can be made uniform.
  • the flow direction changing portion may be formed integrally with the interconnector.
  • the flow direction changing part is integrated with the interconnector, so that the number of parts constituting the fuel cell can be reduced and the size can be easily reduced. In addition, it becomes easy to form a gap on the single cell, and uniform supply of fuel gas to the single cell is facilitated.
  • FIG. 1 is a perspective view illustrating a fuel cell stack 100 according to a first embodiment.
  • 4 is a perspective view showing a battery unit 103 of the fuel cell stack 100.
  • FIG. 2 is an exploded perspective view showing a battery unit 103 of the fuel cell stack 100.
  • FIG. 4 is a cross-sectional view showing a battery unit 103 of the fuel cell stack 100.
  • FIG. 10 is a perspective view illustrating a current collector 119.
  • FIG. 3 is an exploded perspective view showing a current collector 119.
  • FIG. 2 is a schematic cross-sectional view showing a battery unit 103 of a fuel cell stack 100.
  • FIG. It is a schematic cross section showing the cell unit 103a of the fuel cell stack 100a according to the second embodiment.
  • FIG. 10 is a perspective view of a current collector 219 according to Modification 1.
  • FIG. 12 is an enlarged perspective view of a current collector 219 according to Modification 1.
  • FIG. 12 is a perspective view of a flat metal member 290 according to Modification 1.
  • FIG. 10 is a perspective view of a flat insulating member 250 according to Modification 1.
  • FIG. 12 is a schematic diagram of a battery unit 103b according to Modification 2.
  • FIG. 12 is a schematic diagram of a battery unit 103c according to Modification 3.
  • FIG. 10 is a schematic diagram of a battery unit 103d according to Modification 4.
  • FIG. 12 is a schematic diagram of a battery unit 103e according to Modification 5.
  • FIG. 6 is a cross-sectional view showing the relationship between the height H0 of the fuel chamber 117 and the thickness H1 of the flow direction changer 161.
  • FIG. It is a graph showing the relationship between the height ratio R and the in-plane flow rate distribution error E.
  • FIG. 1 is a perspective view showing a fuel cell stack (fuel cell) 100 according to the first embodiment.
  • the fuel cell stack 100 includes a cell unit 103, an air supply channel 104, an air exhaust channel 105, a fuel supply channel 106, a fuel exhaust channel 107, and a fixing member 109.
  • FIG. 2 to 4 are a perspective view, an exploded perspective view, and a cross-sectional view showing the battery unit 103.
  • FIG. The battery unit 103 is a minimum unit of power generation, and includes interconnectors 112 and 113, a single cell 120, an air chamber 116, a fuel chamber (gas chamber) 117, and current collectors 118 and 119.
  • the interconnectors 112 and 113 are in the form of a square plate in plan view, are made of conductive ferritic stainless steel or the like, and are arranged vertically.
  • the single cell 120 is located approximately in the middle of the interconnectors 112 and 113 and has an electrolyte 102, an air electrode 114, and a fuel electrode 115.
  • An air electrode 114 and a fuel electrode 115 are disposed on the upper and lower surfaces of the electrolyte 102.
  • the electrolyte 102 is made of LaGaO 3 -based ceramic, BaCeO 3 -based ceramic, SrCeO 3 -based ceramic, SrZrO 3 -based ceramic, CaZrO 3 -based ceramic, etc. in addition to ZrO 2 -based ceramic.
  • the material of the fuel electrode 115 is a ceramic such as a ZrO 2 ceramic such as zirconia or a CeO 2 ceramic stabilized by at least one of metals such as Ni and Fe and rare earth elements such as Sc and Y. And a mixture with at least one of the above.
  • the material of the fuel electrode 115 may be a metal such as Pt, Au, Ag, Pb, Ir, Ru, Rh, Ni, and Fe. These metals may be only one kind, or two or more kinds of alloys. Also good. Furthermore, a mixture (including cermet) of these metals and / or alloys and at least one of each of the above ceramics may be mentioned. Moreover, the mixture etc. of metal oxides, such as Ni and Fe, and at least 1 type of each of the said ceramic are mentioned.
  • the material of the air electrode 114 for example, various metals, metal oxides, metal double oxides, and the like can be used.
  • the metal include metals such as Pt, Au, Ag, Pb, Ir, Ru, and Rh, or alloys containing two or more metals.
  • the metal oxide include oxides such as La, Sr, Ce, Co, Mn and Fe (La 2 O 3 , SrO, Ce 2 O 3 , Co 2 O 3 , MnO 2 and FeO). It is done.
  • the double oxide a double oxide containing at least La, Pr, Sm, Sr, Ba, Co, Fe, Mn, etc.
  • the air chamber 116 is a space that is disposed between the interconnector 112 and the air electrode 114 and is supplied with an oxidant gas.
  • the air chamber 116 is formed by the separator 123, the air electrode insulating frame 124, and the interconnector 112.
  • the separator 123 is made of a thin metal having conductivity and is a frame portion having a square frame shape, and the electrolyte 102 is attached to the lower surface thereof.
  • the air electrode insulating frame 124 is a frame-shaped insulating frame that is installed between the separator 123 and the upper interconnector 112 and surrounds the current collector 118.
  • the fuel chamber 117 is a space that is disposed between the interconnector 113 and the fuel electrode 115 and is supplied with fuel gas.
  • the fuel chamber 117 is formed by a combination of the interconnector 113, the fuel electrode insulating frame 121, and the fuel electrode frame 122.
  • the fuel electrode insulating frame 121 is a frame-shaped insulating frame portion that surrounds the current collector 119 and is installed on the lower surface of the lower interconnector 113.
  • the fuel electrode frame 122 is a frame-shaped frame portion installed on the upper surface of the fuel electrode insulating frame 121.
  • a buffer chamber 160 is disposed between the fuel supply communication unit 140 and the current collector 119 (and the fuel chamber 117). That is, in the frame of the interconnector 113, the fuel electrode insulating frame 121, and the fuel electrode frame 122, there is a space where the current collector 119 (and the fuel electrode 115) is not disposed on the fuel supply communication portion (gas inlet) 140 side. This is a buffer chamber 160.
  • the buffer chamber 160 is a space into which the fuel gas supplied from the fuel supply communication unit 140 flows, and the fuel gas supplied from the fuel supply communication unit 140 spreads in the buffer chamber 160, so that the fuel in the fuel chamber 117 is obtained. The gas flow is uniform.
  • the current collector 118 is a connecting member that is disposed inside the air chamber 116 and electrically connects the air electrode 114 and the upper interconnector 112.
  • the current collector 118 on the air chamber 116 side has an elongated rectangular shape, and is formed of a dense conductive member (for example, a stainless material).
  • a plurality of current collectors 118 are in contact with the air electrode 114 on the upper surface of the electrolyte 102 and the lower surface (inner surface) of the upper interconnector 112, and are arranged in parallel and at regular intervals.
  • the current collector 118 on the air chamber 116 side may have the same structure as the current collector 119 on the fuel chamber 117 side.
  • the current collector 119 is a connecting member that is disposed inside the fuel chamber 117 and electrically connects the fuel chamber 117 and the lower interconnector 113.
  • the current collector 119 is configured by combining the flat metal member 190 and the flat insulating member 150. By collecting the flat metal member 190 and the flat plate insulating member 150 and bending the flat metal member 190, the current collector 119 can be created.
  • the flat metal member 190 is, for example, a Ni plate material, and includes a connector contact portion (conductive member) 119a, a single cell contact portion (conductive member) 119b, a connection portion 119c, and a connection portion 119d, which will be described later.
  • a plurality of sets of the connector contact portion 119a, the single cell contact portion 119b, and the connecting portion 119c are connected by the connection portion 119d.
  • the flat insulating member 150 is formed of a material that does not sinter with the flat metal member 190 in the fuel cell operating temperature range.
  • the material of the flat insulating member 150 may be any of mica, alumina, vermiculite, carbon fiber, silicon carbide fiber, and silica, or at least one of them as a main component.
  • the flat insulating member 150 includes a spacer 158 and a flow direction changing portion 161 which will be described later.
  • the current collector 119 includes a connector contact portion (conductive member) 119a, a single cell contact portion (conductive member) 119b, a connecting portion 119c, a spacer 158, and a flow direction changing portion 161.
  • the connector contact portion (conductive member) 119a and the single cell contact portion (conductive member) 119b contact the interconnector 113 and the fuel electrode 115 of the single cell 120, respectively.
  • the connecting portion 119c is a U-shaped member that connects the connector contact portion 119a and the single cell contact portion 119b.
  • the current collector 119 may be formed of, for example, a porous metal made of Ni, a metal mesh, or a wire in addition to the case of being formed of a plate material. Further, the current collector 119 may be formed of a metal resistant to oxidation such as Ni alloy or stainless steel in addition to Ni.
  • the spacer 158 is disposed in the fuel chamber 117 between the single cell 120 and the lower interconnector 113, between the connector contact portion 119a and the single cell contact portion 119b.
  • the flow direction changing portion 161 is a portion that is connected to the spacer 158 and protrudes from the current collector 119 in the flat plate insulating member 150.
  • the flow direction changing unit 161 changes the flow of the fuel gas flowing into the fuel chamber 117 from the buffer chamber 160, and the gas flow of the fuel gas in the fuel chamber 117 becomes uniform. Details of this will be described later.
  • the battery unit 103 includes an air supply unit 125, an air exhaust unit 126, a fuel supply unit 127, and a fuel exhaust unit 128.
  • the air supply unit 125 includes an air supply through hole 129, an air supply communication chamber 130, a partition wall 131, an air supply communication unit 132, and an air supply flow path 104.
  • the air supply through hole 129 is opened in the vertical direction at the center of one side of the square battery unit 103.
  • the air supply communication chamber 130 is a long hole-like space opened in the air electrode insulating frame 124 so as to communicate with the air supply through hole 129.
  • the partition wall 131 partitions the air supply communication chamber 130 and the air chamber 116.
  • the air supply communication unit 132 is formed by recessing a plurality of upper surfaces of the partition wall 131 at equal intervals.
  • the air supply channel 104 is inserted into the air supply hole 129 and supplies air to the air supply communication chamber 130 from the outside.
  • the air exhaust unit 126 includes an air exhaust through hole 133, an air exhaust communication chamber 134, an air exhaust communication unit 136, and an air exhaust channel 105.
  • the air exhaust hole 133 is opened in the vertical direction at the center of one side opposite to the air supply unit 125 of the battery unit 103.
  • the air exhaust communication part 136 is a long hole-shaped section opened in the air electrode insulating frame 124 so as to communicate with the air exhaust through hole 133.
  • the air exhaust communication portion 136 is formed by recessing a plurality of upper surfaces of the partition walls 135 partitioning the air exhaust communication chamber 134 and the air chamber 116 at equal intervals.
  • the air exhaust channel 105 is a tubular channel that is inserted into the air exhaust hole 133 and exhausts air from the air exhaust communication chamber 134 to the outside.
  • the fuel supply unit 127 includes a fuel supply through hole 137, a fuel supply communication chamber 138, a fuel supply communication unit (gas inlet) 140, and a fuel supply channel 106.
  • the fuel supply through hole 137 is opened in the vertical direction at the center of one side of the remaining two sides of the square battery unit 103.
  • the fuel supply communication chamber 138 is a long hole-shaped section opened in the fuel electrode insulating frame 121 so as to communicate with the fuel supply through hole 137.
  • the fuel supply communication portion (gas inlet) 140 is formed by recessing a plurality of upper surfaces of the partition wall 139 partitioning between the fuel supply communication chamber 138 and the buffer chamber 160 at equal intervals.
  • the fuel supply channel 106 is a tubular channel that is inserted into the fuel supply hole 137 and supplies fuel gas from the outside to the fuel supply communication chamber 138.
  • the fuel exhaust unit 128 includes a fuel exhaust passage 107 that exhausts fuel gas from the fuel chamber 117 to the outside.
  • the fuel exhaust unit 128 includes a fuel exhaust passage 141, a fuel exhaust communication chamber 142, a partition wall 143, a fuel exhaust communication unit 144, and a fuel exhaust flow path 107.
  • the fuel exhaust hole 141 is opened in the up-down direction at the center of one side opposite to the fuel supply unit 127 of the battery unit 103.
  • the fuel exhaust communication chamber 142 is a long hole-like space opened in the fuel electrode insulating frame 121 so as to communicate with the fuel exhaust passage hole 141.
  • the partition wall 143 partitions the fuel exhaust communication chamber 142 and the fuel chamber 117.
  • the fuel exhaust communication part 144 is formed by recessing a plurality of upper surfaces of the partition wall 143 at equal intervals.
  • the fuel exhaust passage 107 is inserted into the fuel exhaust passage 141 and discharges fuel gas from the fuel exhaust communication chamber 142 to the outside.
  • the fuel cell stack 100 is configured by stacking a plurality of battery units 103 to form a cell group, and fixing the cell group with a fixing member 109.
  • the interconnector 112 above the battery unit 103 positioned below and the interconnector 113 below the battery unit 103 mounted thereon are integrated into upper and lower battery units.
  • 103 and 103 are shared.
  • the fixing member 109 is a combination of a pair of end plates 145a and 145b and four sets of fastening members 146a to 146d.
  • the pair of end plates 145a and 145b sandwich the top and bottom of the cell group.
  • the fastening members 146a to 146d fasten the end plates 145a and 145b and the cell group with bolts and nuts through the corner holes (not shown) of the end plates 145a and 145b and the corner through holes 147 of the cell group.
  • the material of the fastening members 146a to 146d is, for example, Inconel 601.
  • the air supply flow path 104 is attached to the fuel cell stack 100 so as to penetrate vertically through the through holes (not shown) of the end plates 145a and 145b and the air supply through holes 129 of the cell group.
  • a buffer chamber 160 and a flow direction changing unit 161 are disposed between the fuel supply communication unit 140 and the fuel chamber 117.
  • the pressure distribution in the buffer chamber 160 becomes uniform, and the gas flow of the fuel gas in the fuel chamber 117 becomes uniform. The details will be described below.
  • FIG. 7 is a schematic cross-sectional view showing the battery unit 103.
  • the state cut along AA and BB in FIG. 5 is represented as (A) and (B) in FIG.
  • the battery unit 103 can be divided into regions R1 to R4 along the flow of the fuel gas.
  • Regions R1 to R4 are regions in which a fuel supply communication unit (gas inlet) 140, a buffer chamber 160, a flow direction changing unit 161, and a fuel chamber (gas chamber) 117 are arranged, respectively.
  • the fuel gas flows into the buffer chamber 160 from the plurality of fuel supply communication portions (gas inlets) 140 and spreads in the buffer chamber 160, whereby the pressure distribution in the buffer chamber 160 becomes uniform, and the fuel chamber 117 The gas flow of the fuel gas becomes uniform.
  • the flow direction changing unit 161 is disposed between the buffer chamber 160 and the fuel chamber 117 so as to correspond to the plurality of fuel supply communication units 140.
  • the flow direction changing unit 161 changes the flow direction F of the fuel gas flowing from the plurality of fuel supply communication units 140 through the buffer chamber 160.
  • the pressure distribution in the buffer chamber 160 can be made uniform, and the flow of fuel gas in the fuel chamber 117 can be made uniform.
  • the fuel gas flows in the flow direction F along either AA or BB in FIG. 5 with respect to the current collector 119.
  • the direction changing unit 161 can make the pressure distribution uniform.
  • the flow direction changing unit 161 has one side S that faces the plurality of fuel supply communication units 140.
  • the fuel gas flowing in from the plurality of fuel supply communication units 140 collides with the side surface S, and the flow direction thereof changes.
  • a pressure loss occurs and the pressure is made uniform.
  • This side surface S is substantially perpendicular to the flow direction F of the fuel gas from the plurality of fuel supply communication units 140.
  • the side surface S may be oblique to the flow direction F. However, when the side surface S is substantially perpendicular to the flow direction F, the pressure loss is further increased and the pressure is further uniformized.
  • the plurality of fuel supply communication units 140 and the flow direction changing unit 161 are arranged on substantially the same plane.
  • the pressure loss is further increased, and the pressure is further uniformed.
  • the shape of the spacers 158 forming a row is uneven in a plan view. As shown in FIG. 6, there is a gap between the plurality of spacers 158 connected in a row by the flow direction changing unit 161. That is, the downstream ends of the spacers 158 forming a row are discontinuous. A case where the downstream end portions of the spacers 158 forming a row are continuous will be described later as a first modification.
  • the battery unit 103 has a plurality of fuel supply communication parts (gas inlets) 140 (and a plurality of fuel exhaust communication parts (gas outlets) 144).
  • the case where the battery unit 103 has a single fuel supply communication part (gas inlet) 140 (or a single fuel exhaust communication part (gas outlet) 144) will be described later as modifications 2 to 5.
  • FIG. 8 corresponds to FIG. 4 of the first embodiment and is a schematic cross-sectional view showing the cell unit 103a of the fuel cell stack 100 according to the second embodiment.
  • the current collector 119 does not have the flow direction changing unit 161.
  • the flow direction changing portion 161 a is attached to the interconnector 113 or formed integrally with the interconnector 113.
  • the flow direction changing unit 161a has a thickness larger than that of the flow direction changing unit 161 in the first embodiment, and the area of the side surface Sa of the flow direction changing unit 161 is also increased. For this reason, the fuel gas more reliably collides with the side surface Sa, a larger pressure loss is generated, and the pressure is further uniformized.
  • this gap may not be provided.
  • Modification 1 9 to 12 show the current collector 219 and the like of the fuel cell stack according to the first modification.
  • the downstream end portions of the spacers 258 forming a row are continuous.
  • the current collector 219 can be composed of a flat metal member 290 and a flat insulating member 250.
  • the flat metal member 290 can be formed, for example, by making a cut 219e in a Ni plate material (HV hardness is 200 or less) annealed by heat treatment at 1000 ° C. for 1 hour in a vacuum. Note that the order of annealing and cutting may be reversed.
  • the flat metal member 290 (and the current collector 219) includes a connector contact portion 219 a that contacts the interconnector 113, and a single cell contact portion 219 b that contacts the fuel electrode 115 of the cell body 120.
  • a U-shaped connecting portion 219c that connects the connector contact portion 219a and the single cell contact portion 219b is formed in series.
  • the connector abutting portion 219a and the single cell abutting portion 219b are urged toward the interconnector 113 and the cell body 120 by the elasticity of the bent portion of the connecting portion 219c.
  • the connector abutting portion 219a is on the opposite side of the single cell abutting portion 219b in the drawing, so that the reference numeral 219a is not given in the drawing.
  • the current collector 219 may be formed of, for example, a porous metal made of Ni, a metal mesh, or a wire in addition to the case of forming the plate 219 as described above.
  • the current collector 219 may be formed of a metal resistant to oxidation, such as Ni alloy or stainless steel, in addition to Ni.
  • the current collectors 219 to 219 are provided in the fuel chamber 117 by several tens to hundreds (depending on the size of the fuel chamber).
  • the flat plate insulating member 250 is formed by integrating a spacer 258, a flow direction changing portion 261, and a spacer connecting portion 259.
  • the spacer 258 is disposed between the connector contact portion 219a and the single cell contact portion 219b and has an elastic force in the thickness direction.
  • the downstream ends of the spacers 158 forming a row are discontinuous, whereas in FIG. 12, the downstream ends of the spacers 258 forming a row are continuous and form a straight linear shape. I understand that.
  • the flow direction changing portion 261 is a portion protruding from between the connector contact portion 219a and the single cell contact portion 219b in the flat plate insulating member 250. Similar to the flow direction changing unit 161, the flow direction changing unit 261 changes the flow of the fuel gas flowing into the fuel chamber 117 from the buffer chamber 160, and the gas flow of the fuel gas in the fuel chamber 117 becomes uniform.
  • the spacer connecting portion 259 connects the plurality of spacers 258 to each other to form the flat plate insulating member 250.
  • any one of mica, alumina felt, vermiculite, carbon fiber, silicon carbide fiber, and silica is used from the viewpoint of preventing the connector abutting portion 219a and the single cell abutting portion 219b from sticking.
  • Species or a combination of multiple species can be used.
  • moderate elasticity can be ensured with respect to the load to a lamination direction by making these into the laminated structure of a thin plate-like body like a mica, for example.
  • FIG. 5 13 to 16 are schematic views of fuel cells (cell units 103b to 103e) according to Modifications 2 to 5 of the embodiment of the present invention, respectively.
  • the battery units 103b to 103e of the modified examples 2 to 5 have a single fuel supply communication part (gas inlet) 140 (or a single fuel exhaust communication part (gas outlet) 144).
  • the fuel supply communication unit (gas inlet) 140 is single.
  • the fuel exhaust passage (gas outlet) 141 is single.
  • the flow of the fuel gas flowing from the buffer chamber 160 to the fuel chamber 117 can be reduced even if the fuel supply communication section (gas inlet) 140 (or the fuel exhaust hole (gas outlet) 141) is not plural. It can be changed by the flow direction changing unit 261 and the gas flow of the fuel gas in the fuel chamber 117 can be made uniform.
  • the current collector 219 (having the flow direction changing portion 261) is used as the current collector on the fuel chamber 117 side, but the current collector 119 (having the flow direction changing portion 161) may be used. Absent.
  • Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified.
  • the expanded and modified embodiments are also included in the technical scope of the present invention.
  • the fuel supply communication part (gas inlet) 140 is formed in the fuel electrode insulating frame 121 (insulating frame part).
  • the fuel supply communication part (gas inlet) 140 may be formed in the fuel electrode frame (conductive (metal) frame part).
  • the present application aims to make the gas distribution in the power generation region uniform.
  • the relationship between the height ratio R and the in-plane flow distribution error E was obtained.
  • the current collector 119 connector contact portion 119 a and single cell contact portion 119 b
  • the flow direction changing portion 161 integrated with the spacer 158 are disposed in the fuel chamber 117.
  • the flow path height H0 was 1.2 mm
  • the current collector thickness H2 was 0.7 mm
  • the thickness H1 of the flow direction changer 161 was changed to 0 mm, 0.25 mm, and 0.5 mm.
  • the thickness H3 (not shown) of the gap SP is 0.5 mm, 0.25 mm, and 0 mm
  • the height ratio R is 0, 0.21, and 0.42.
  • the in-plane flow rate distribution error E has a height ratio R dependency. If the height ratio R is too small, the in-plane flow rate distribution error E is large. That is, if the buffer function is too strong, the amount of fuel gas flowing to the end of the unit cell 120 near the fuel supply communication unit 140 increases, and the in-plane flow rate distribution error E tends to increase. On the other hand, when the height ratio R increases to some extent, the in-plane flow distribution error E decreases. When the height ratio R is further increased, the in-plane flow rate distribution error E is somewhat increased, but even when the height ratio R is maximum (the gap thickness H3 is 0), the in-plane flow rate distribution error E is 15%. stay.
  • the in-plane flow distribution error E should be 15% or less. From FIG. 18, it is understood that the height ratio R should be 0.1 or more in order to realize this.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 一態様に係る燃料電池は、表面と裏面とを有する板形状のインターコネクタと、発電機能を有する単セルと、前記インターコネクタと、前記単セルとの間に形成されたガス室と、前記ガス室に、燃料ガスを流入させる1または複数のガス流入口と、を有する燃料電池であって、前記複数のガス流入口と、前記ガス室との間に位置するバッファ室を有し、前記バッファ室と、前記ガス室との間に、前記複数のガス流入口に対応するように形成された流れ方向変更部を有し、前記流れ方向変更部は、表面および裏面のうち、少なくとも一方と、側面とを有し、前記流れ方向変更部の表面側および裏面側のうち、少なくとも一方に、燃料ガス用通路を有する。

Description

燃料電池
(関連出願の相互参照)
 本国際出願は、2013年2月7日に日本国特許庁に出願した日本国特許出願第2013-022357に基づく優先権を主張するものであり、日本国特許出願第2013-022357の全内容を本国際出願に援用する。
 本発明は、燃料電池に関する。
 燃料電池として、固体電解質(固体酸化物)を用いた固体酸化物形燃料電池(以下、「SOFC」とも記す)が知られている。このSOFCでは、例えば、固体電解質層の一方側、他方側それぞれに燃料極および空気極を設けた単セルが使用される。燃料極、空気極それぞれに燃料ガス(水素等)、酸化剤ガスが供給され、これらのガスが反応することで、単セルが発電する。
 ここで、燃料ガスを均一に供給し、発電を確実に行うための技術が公開されている(特許文献1参照)。燃料ガス流路の上流側に、入口バッファ部が設けられ、燃料ガス入口連通孔と入口バッファ部が、複数の入口連結通路により接続される。
特開2011-054404号公報
 しかしながら、特許文献1記載の技術では、必ずしも発電効率の均一性が充分とはいえない。即ち、入口バッファ部でのガス入り口側の圧力が高く、入口より離れた方の圧力が低いといった圧力分布の不均一が生じる。圧力分布の不均一が生じると発電領域のガス配流分布が不均一になって、発電効率が不均一となる。その結果、単セルの面内温度分布が不均一となり、熱応力により単セル等が損傷する畏れもある。
 本発明は、燃料ガスの圧力分布の均一化が容易で、発電領域のガス配流分布を均一にすることが可能な燃料電池を提供することを目的とする。
(1)本発明の一態様に係る燃料電池は、表面と裏面とを有する板形状のインターコネクタと、発電機能を有する単セルと、前記インターコネクタと、前記単セルとの間に形成されたガス室と、前記ガス室に、燃料ガスを流入させる1または複数のガス流入口と、を有する燃料電池であって、前記ガス流入口と、前記ガス室との間に位置するバッファ室を有し、前記バッファ室と、前記ガス室との間に、前記ガス流入口に対応するように形成された流れ方向変更部を有し、前記流れ方向変更部は、表面および裏面のうち、少なくとも一方と、側面とを有し、前記流れ方向変更部の表面側および裏面側のうち、少なくとも一方に、燃料ガス用通路を有する。
 この燃料電池は、バッファ室と、ガス室との間に、前記ガス流入口に対応するように形成された流れ方向変更部を有する。
 流れ方向変更部によって、複数のガス流入口からの燃料ガスの流れ方向を変更し、ガス室に流入させる。
 前記ガス流入口から前記バッファ室に流入した前記燃料ガスの一部は、前記流れ方向変更部の前記側面により遮られた後、前記流れ方向変更部の表面および裏面のうちの少なくとも一方に形成された燃料ガス用通路に沿って、前記ガス室に流入するように構成されている。
 この結果、バッファ室での燃料ガスの圧力分布を均一にすることが可能となり、発電領域のガス配流分布を均一にすることが可能となる。
(2)前記流れ方向変更部が、前記複数のガス流入口と対向する1の側面を有しても良い。
 流れ方向変更部が、前記複数のガス流入口と対向する1の側面を有することで、圧力損失を大きくすることができるため、ガス流入口からのガスを均等に分配するバッファ効果の向上が図られる。
 これに対して、例えば、特許文献1の燃料電池では、入口バッファ部が複数のエンボスを有するが(段落0030参照)、このように分割されたエンボスでは、複数のガス流入口と対向する1の側面を有さず、十分なバッファ機能が得られ難い。
(3)前記1の側面が、前記複数のガス流入口からの燃料ガスの流れ方向に対して、略垂直であっても良い。
 1の側面が、燃料ガスの流れ方向に対して、略垂直であることで、より圧力損失を大きくすることができるため、ガス流入口からのガスを均等に分配するバッファ効果の向上が図られる。
(4)前記ガス室内に配置され、前記インターコネクタおよび前記単セルと電気的に接続される、集電体、をさらに具備し、
 前記複数のガス流入口、前記流れ方向変更部、および前記集電体が、略同一平面上に配置されても良い。
 複数のガス流入口、流れ方向変更部が、略同一平面上に配置されることで、より圧力損失を大きくすることができるため、ガス流入口からのガスを均等に分配するバッファ効果の向上が図られる。
 また、複数のガス流入口、前記流れ方向変更部、および前記集電体が、略同一平面上に配置されることで、燃料電池の薄型化が容易となる。
(5)前記流れ方向変更部が、前記集電体と一体に形成されても良い。
 流れ方向変更部が、前記集電体と一体に形成されることで、燃料電池を構成する部品点数の削減、小型化が容易となる。
(6)前記集電体が、第1の導電性部材と、前記第1の導電性部材上に配置されるスペーサと、前記スペーサ上に配置され、前記第1の導電性部材と電気的に接続される第2の導電性部材と、を有し、前記流れ方向変更部が、前記スペーサと一体に形成されても良い。
 流れ方向変更部が、スペーサと一体に形成されることで、燃料電池を構成する部品点数の削減、小型化が容易となる。
 特に、スペーサ自体を流れ方向変更部として機能させると、より効果的に部品点数を削減できる。
(7)燃料電池が、枠形状のフレーム部を有し、
 前記フレーム部に、前記複数のガス流入口が形成されても良い。
 前記複数のガス流入口を有する枠形状のフレーム部を用いることで、燃料電池を構成する部品点数の削減、小型化が容易となる。
 ここで、前記フレーム部の少なくとも一部が、金属から構成されても良い。
 フレーム部の少なくとも一部を金属から構成すると、マイカ等の絶縁体から構成される場合よりも、フレーム部に複数のガス流入口を形成するときの加工精度が向上し、ガス室に流入する燃料ガスの圧力分布の均一化が図れる。
(8)前記流れ方向変更部が、前記インターコネクタと一体に形成されても良い。
 流れ方向変更部が、インターコネクタと一体であることで、燃料電池を構成する部品点数の削減、小型化が容易となる。また、単セル上での隙間の形成が容易となり、単セルへの燃料ガスの均等な供給が容易となる。
 本発明によれば、接触抵抗の低減が容易な燃料電池およびその製造方法を提供できる。
第1の実施形態に係る燃料電池スタック100を表す斜視図である。 燃料電池スタック100の電池単位103を表す斜視図である。 燃料電池スタック100の電池単位103を表す分解斜視図である。 燃料電池スタック100の電池単位103を表す断面図である。 集電体119を表す斜視図である。 集電体119を表す分解斜視図である。 燃料電池スタック100の電池単位103を表す模式断面図である。 第2の実施形態に係る燃料電池スタック100aの電池単位103aを表す模式断面図である。 変形例1に係る集電体219の斜視図である。 変形例1に係る集電体219の拡大斜視図である。 変形例1に係る平板金属部材290の斜視図である。 変形例1に係る平板絶縁部材250の斜視図である。 変形例2に係る電池単位103bの概略図である。 変形例3に係る電池単位103cの概略図である。 変形例4に係る電池単位103dの概略図である。 変形例5に係る電池単位103eの概略図である。 燃料室117の高さH0と流れ方向変換部161の厚さH1の関係を表す断面図である。 高さ比Rと面内流量配分誤差Eの関係を表すグラフである。
 以下、図面を参照して、本発明の実施の形態を詳細に説明する。
(第1の実施の形態)
 図1は、第1の実施形態に係る燃料電池スタック(燃料電池)100を表す斜視図である。燃料電池スタック100は、電池単位103、空気供給流路104、空気排気流路105、燃料供給流路106、燃料排気流路107、固定部材109から構成される。
 図2~図4は、電池単位103を表す斜視図、分解斜視図、および断面図である。
 電池単位103は、発電の最小単位であり、インターコネクタ112、113、単セル120、空気室116、燃料室(ガス室)117、集電体118、119、を有する。
 インターコネクタ112、113は、平面視で四角い板形態であり、導電性を有するフェライト系ステンレス等で形成され、上下に配置される。
(単セル120)
 単セル120は、インターコネクタ112、113のほぼ中間に位置し、電解質102、空気極114、燃料極115を有する。電解質102の上面、下面に空気極114、燃料極115が配置される。
 電解質102は、ZrO系セラミックの他、LaGaO系セラミック、BaCeO系セラミック、SrCeO系セラミック、SrZrO系セラミック、CaZrO系セラミック等で形成される。
 燃料極115の材質は、Ni及びFe等の金属と、Sc、Y等の希土類元素のうちの少なくとも1種により安定化されたジルコニア等のZrO系セラミック、CeO系セラミック等のセラミックのうちの少なくとも1種との混合物が挙げられる。また、燃料極115の材質は、Pt、Au、Ag、Pb、Ir、Ru、Rh、Ni及びFe等の金属でもよく、これらの金属は1種のみでもよいし、2種以上の合金にしてもよい。さらに、これらの金属及び/又は合金と、上記セラミックの各々の少なくとも1種との混合物(サーメットを含む。)が挙げられる。また、Ni及びFe等の金属の酸化物と、上記セラミックの各々の少なくとも1種との混合物等が挙げられる。
 空気極114の材質は、例えば各種の金属、金属の酸化物、金属の複酸化物等を用いることができる。前記金属としてはPt、Au、Ag、Pb、Ir、Ru及びRh等の金属又は2種以上の金属を含有する合金が挙げられる。さらに、金属の酸化物としては、La、Sr、Ce、Co、Mn及びFe等の酸化物(La、SrO、Ce、Co、MnO及びFeO等)が挙げられる。また、複酸化物としては、少なくともLa、Pr、Sm、Sr、Ba、Co、Fe及びMn等を含有する複酸化物(La1-XSrCoO系複酸化物、La1-XSrFeO系複酸化物、La1-XSrCo1-yFeO系複酸化物、La1-XSrMnO系複酸化物、Pr1-XBaCoO系複酸化物及びSm1-XSrCoO系複酸化物等)が挙げられる。
(空気室116)
 空気室116は、インターコネクタ112と空気極114との間に配置され、酸化剤ガスが供給される空間である。空気室116は、セパレータ123、空気極絶縁フレーム124、 インターコネクタ112によって形成される。
 セパレータ123は、導電性を有する薄い金属製であり、四角い枠形状のフレーム部であって、下面に、電解質102が取着される。
 空気極絶縁フレーム124は、セパレータ123と上のインターコネクタ112との間に設置されて、集電体118の周りを囲う枠形状の絶縁フレームである。
(燃料室(ガス室)117)
 燃料室117は、インターコネクタ113と燃料極115との間に配置され、燃料ガスが供給される空間である。燃料室117は、インターコネクタ113、燃料極絶縁フレーム121、および燃料極フレーム122との組合せによって形成される。
 燃料極絶縁フレーム121は、集電体119の周りを囲い、下のインターコネクタ113の下面に設置された枠形状の絶縁フレーム部である。
 燃料極フレーム122は、燃料極絶縁フレーム121の上面に設置される枠形状のフレーム部である。
(バッファ室160)
 図2~図4に示すように、燃料供給連絡部140と集電体119(および燃料室117)の間にバッファ室160が配置される。即ち、インターコネクタ113、燃料極絶縁フレーム121、および燃料極フレーム122の枠内において、燃料供給連絡部(ガス流入口)140側の、集電体119(および燃料極115)が配置されない空間がバッファ室160である。バッファ室160は、燃料供給連絡部140から供給される燃料ガスが流入する空間であり、燃料供給連絡部140から供給される燃料ガスがバッファ室160で広がることで、燃料室117内での燃料ガスの流れが均一になる。
(集電体118)
 集電体118は、空気室116の内部に配置され、空気極114と上のインターコネクタ112とを電気的に接続する接続部材である。
 空気室116側の集電体118は、細長い角材形状で、緻密な導電部材(例えば、ステンレス材)で形成される。複数本の集電体118が、電解質102の上面の空気極114と上のインターコネクタ112の下面(内面)に当接し、平行に且つ一定の間隔をおいて配設されている。なお、空気室116側の集電体118は、燃料室117側の集電体119と同じ構造にしてもよい。
(集電体119)
 集電体119は、燃料室117の内部に配置され、燃料室117と下のインターコネクタ113とを電気的に接続する接続部材である。
 図5、図6は、集電体119を表す斜視図および分解斜視図である。
 集電体119は、平板金属部材190および平板絶縁部材150を組み合わせて構成される。平板金属部材190および平板絶縁部材150を重ね合わせ、平板金属部材190を折り曲げることで、集電体119を作成できる。
 平板金属部材190は、例えば、Niの板材であり、後述のコネクタ当接部(導電性部材)119a、単セル当接部(導電性部材)119b、連接部119c、接続部119dを有する。コネクタ当接部119a、単セル当接部119b、連接部119cの複数の組が、接続部119dによって接続される。
 平板絶縁部材150は、燃料電池作動温度域で平板金属部材190と焼結しない性質を持った材料で形成されている。平板絶縁部材150の材質としては、マイカ、アルミナ、バーミキュライト、カーボン繊維、炭化珪素繊維、シリカの何れか自体か、或は少なくとも何れか1種を主成分とするものでもよい。また、これらを例えばマイカのような薄い板状体の積層構造にしておけば、積層方向への荷重に対し適度な弾性が付与されるため好ましい。
 平板絶縁部材150は、後述のスペーサ158、および流れ方向変更部161を有する。
 集電体119は、コネクタ当接部(導電性部材)119a、単セル当接部(導電性部材)119b、連接部119c、スペーサ158、流れ方向変更部161を有する。
 コネクタ当接部(導電性部材)119a、単セル当接部(導電性部材)119bはそれぞれ、インターコネクタ113および単セル120の燃料極115に当接する。
 連接部119cは、コネクタ当接部119aと単セル当接部119bとをつなぐU字状の部材である。
 なお、集電体119は、板材で形成する場合の他、例えばNi製の多孔質金属又は金網又はワイヤーで形成するようにしてもよい。また、集電体119は、Niの他、Ni合金やステンレス鋼など酸化に強い金属で形成するようにしてもよい。
 スペーサ158は、単セル120と下のインターコネクタ113の間の燃料室117内に、コネクタ当接部119aと単セル当接部119bの間に配置される。
 流れ方向変更部161は、平板絶縁部材150中、スペーサ158に接続され、集電体119から突き出された部分である。この流れ方向変更部161は、バッファ室160から燃料室に117に流入する燃料ガスの流れを変更し、燃料室117での燃料ガスのガス流れが均一になる。なお、この詳細は後述する。
 また、電池単位103は、空気供給部125、空気排気部126、燃料供給部127、燃料排気部128と、を備えている。
(空気供給部125)
 空気供給部125は、空気供給通孔129、空気供給連絡室130、隔壁131、空気供給連絡部132、空気供給流路104を備える。
 空気供給通孔129は、四角い電池単位103の一辺側中央に上下方向に開設される。
 空気供給連絡室130は、空気供給通孔129に連通するように空気極絶縁フレーム124に開設した長孔状の空間である。
 隔壁131は、空気供給連絡室130と空気室116の間を仕切る。
 空気供給連絡部132は、隔壁131の上面を複数個等間隔に窪ませて形成される。
 空気供給流路104は、空気供給通孔129に挿通して外部から空気供給連絡室130に空気を供給する。
(空気排気部126)
 空気排気部126は、空気排気通孔133、空気排気連絡室134、空気排気連絡部136、空気排気流路105を備える。
 空気排気通孔133は、電池単位103の空気供給部125の反対側の一辺側中央に上下方向に開設される。
 空気排気連絡部136は、空気排気通孔133に連通するように空気極絶縁フレーム124に開設した長孔状の区画である。
 空気排気連絡部136は、空気排気連絡室134と空気室116の間を仕切る隔壁135の上面を複数個等間隔に窪ませて形成される。
 空気排気流路105は、空気排気通孔133に挿通して空気排気連絡室134から外部に空気を排出する管状の流路である。
(燃料供給部127)
 燃料供給部127は、燃料供給通孔137、燃料供給連絡室138、燃料供給連絡部(ガス流入口)140、燃料供給流路106を備える。
 燃料供給通孔137は、四角い電池単位103の残り二辺のうちの一辺側中央に上下方向に開設される。
 燃料供給連絡室138は、燃料供給通孔137に連通するように燃料極絶縁フレーム121に開設した長孔状の区画である。
 燃料供給連絡部(ガス流入口)140は、燃料供給連絡室138とバッファ室160の間を仕切る隔壁139の上面を複数個等間隔に窪ませて形成される。
 燃料供給流路106は、燃料供給通孔137に挿通して外部から前記燃料供給連絡室138に燃料ガスを供給する管状の流路である。
(燃料排気部128)
 燃料排気部128は、燃料室117から燃料ガスを外部に排出する燃料排気流路107を含む。
 燃料排気部128は、燃料排気通孔141、燃料排気連絡室142、隔壁143、燃料排気連絡部144、燃料排気流路107、を備える。
 燃料排気通孔141は、電池単位103の燃料供給部127の反対側の一辺側中央に上下方向に開設される。
 燃料排気連絡室142は、燃料排気通孔141に連通するように燃料極絶縁フレーム121に開設した長孔状の空間である。
 隔壁143は、燃料排気連絡室142と燃料室117の間を仕切る。
 燃料排気連絡部144は、隔壁143の上面を複数個等間隔に窪ませて形成される。
 燃料排気流路107は、燃料排気通孔141に挿通して燃料排気連絡室142から外部に燃料ガスを排出する。
(固定部材109)
 燃料電池スタック100は、前記電池単位103を複数セット積層してセル群となし、該セル群を固定部材109で固定して構成される。
 なお、電池単位103を複数セット積層した場合において、下に位置する電池単位103の上のインターコネクタ112と、その上に載る電池単位103の下のインターコネクタ113は、一体にして上下の電池単位103、103同士で共有する。
 固定部材109は、 一対のエンドプレート145a、145b、四組の締め付け部材146a~146dと、を組み合わせたものである。
 一対のエンドプレート145a、145bは、セル群の上下を挟む。
 締め付け部材146a~146dは、エンドプレート145a、145bとセル群をエンドプレート145a、145bのコーナー孔(図示せず)とセル群の前記コーナー通孔147にボルトを通してナットで締め付ける。締め付け部材146a~146dの材質は、例えばインコネル601である。
 この燃料電池スタック100に対し、空気供給流路104は、エンドプレート145a、145bの通孔(図示せず)とセル群の前記空気供給通孔129を上下に貫く状態にして取り付けられる。
(バッファ室に於ける、燃料ガスの圧力分布の均一化)
 本実施形態では、燃料供給連絡部140と燃料室117の間に、バッファ室160、流れ方向変更部161が配置される。この結果、バッファ室160での圧力分布が、均一になり、燃料室117での燃料ガスのガス流れが、均一になる。以下、この詳細を説明する。
 図7は、電池単位103を表す模式断面図である。ここでは、図5のA-A、B-Bで切断した状態を図7の(A)、(B)として表している。
 電池単位103は、燃料ガスの流れに沿って、領域R1~R4に区分できる。領域R1~R4はそれぞれ、燃料供給連絡部(ガス流入口)140、バッファ室160、流れ方向変更部161、燃料室(ガス室)117が配置される領域である。
 燃料ガスが、複数の燃料供給連絡部(ガス流入口)140からバッファ室160に流入し、バッファ室160内で広がることで、バッファ室160での圧力分布が、均一になり、燃料室117での燃料ガスのガス流れが、均一になる。
 流れ方向変更部161は、バッファ室160と燃料室117の間に、複数の燃料供給連絡部140に対応するように配置される。流れ方向変更部161は、バッファ室160を通って、複数の燃料供給連絡部140から流入する燃料ガスの流れ方向Fを変更する。この結果、バッファ室160での圧力分布を均一にすることができ、燃料室117での燃料ガスの流れを、均一にすることが可能となる。
 図7(A)、(B)に示されるように、集電体119に対して、図5のA-A、B-Bの何れに沿った流れ方向Fの燃料ガスであっても、流れ方向変更部161により、圧力分布の均一化が図れる。
 詳しくは、流れ方向変更部161は、複数の燃料供給連絡部140と対向する1の側面Sを有する。複数の燃料供給連絡部140から流入する燃料ガスは、この側面Sに衝突し、その流れ方向が変化する。燃料ガスがこの側面Sに衝突することで、圧力損失が発生し、圧力の均一化が図られる。この側面Sが複数の燃料供給連絡部140の全てに対向して配置されることで、圧力損失による圧力分布の均一化を向上できる。
 この側面Sは、複数の燃料供給連絡部140からの燃料ガスの流れ方向Fに対して、略垂直である。側面Sが流れ方向Fに対して斜めでも良い。但し、側面Sが流れ方向Fに対して略垂直とすることで、圧力損失をより大きくし、圧力のさらなる均一化が図られる。
 本実施形態では、複数の燃料供給連絡部140と流れ方向変更部161が略同一平面上に配置される。圧力損失をより大きくし、圧力のさらなる均一化が図られる。
 本実施形態では、列をなすスペーサ158の形状が、平面視で凸凹である。図6に示すように、流れ方向変更部161によって、列をなして接続される複数のスペーサ158の間に、間隙が存在する。即ち、列をなすスペーサ158の下流側の端部は、不連続である。
 列をなすスペーサ158の下流側の端部が連続している場合は、変形例1として、後述する。
 本実施形態では、電池単位103が複数の燃料供給連絡部(ガス流入口)140(および複数の燃料排気連絡部(ガス流出口)144)を有している。電池単位103が単一の燃料供給連絡部(ガス流入口)140(または単一の燃料排気連絡部(ガス流出口)144)を有する場合は、変形麗2~5として、後述する。
(第2の実施形態)
 以下、第2の実施形態につき説明する。
 図8は、第1の実施形態の図4に対応し、第2の実施形態に係る燃料電池スタック100の電池単位103aを表す模式断面図である。
 この電池単位103aでは、第1の実施形態と異なり、集電体119は流れ方向変更部161を有しない。流れ方向変更部161aは、インターコネクタ113に取り付けられるか、あるいはインターコネクタ113と一体的に形成される。
 流れ方向変更部161aは、第1の実施形態での流れ方向変更部161よりも厚みを有し、流れ方向変更部161の側面Saの面積も大きくなる。このため、燃料ガスがより確実に側面Saに衝突し、より大きな圧力損失が発生し、圧力のさらなる均一化が図られる。
 なお、集電体119と流れ方向変更部161aの間に、隙間があるが、この隙間は無くとも良い。
 以下、本発明の変形例1~5を説明する。
 変形例1~5では、燃料電池スタックの各種部材の構成についても、上記の実施形態の燃料電池と同様の構成になるため、詳細の説明は省略する。具体的には、変形した箇所以外の構成については、図1から図4などの説明と同様の構成となる。
(変形例1)
 図9~図12は、変形例1に係る燃料電池スタックの集電体219等を表す。ここでは、図12に示すように、列をなすスペーサ258の下流側の端部が連続している。
 集電体219は、平板金属部材290、平板絶縁部材250から構成できる。
 平板金属部材290は、例えば、真空中1000℃で1時間の熱処理をして焼き鈍したNiの板材(HV硬度で200以下)に切り込み219eを入れることで、形成できる。なお、焼き鈍しと、切り込みの順序は、逆でも差し支えない。
 平板金属部材290(および集電体219)は、図4に示したと同様、インターコネクタ113に当接するコネクタ当接部219aと、セル本体120の燃料極115に当接する単セル当接部219bと、コネクタ当接部219aと単セル当接部219bとをつなぐU字状の連接部219cとが一連に形成される。連接部219cのU字に曲がった部分の弾性により、コネクタ当接部219aと単セル当接部219bがそれぞれインターコネクタ113とセル本体120に向けて付勢される。
 尚、図10において、コネクタ当接部219aは、図面上、単セル当接部219bと反対側になるため、図面上は、符号219aを付していない。
 なお、集電体219は、前記のように板材で形成する場合の他、例えばNi製の多孔質金属又は金網又はワイヤーで形成するようにしてもよい。また、集電体219は、Niの他、Ni合金やステンレス鋼など酸化に強い金属で形成するようにしてもよい。
 この集電体219~219は、燃料室117に数十~百個程度設けられる(燃料室の大きさにより異なる)。
 平板絶縁部材250は、図12に示すように、スペーサ258、流れ方向変更部261、スペーサ接続部259が、一体化されて形成されている。
 スペーサ258は、コネクタ当接部219aと単セル当接部219bの間に配置され、厚さ方向に弾性力を有する。図6では、列をなすスペーサ158の下流側の端部が不連続であるのに対し、図12では列をなすスペーサ258の下流側の端部が連続し、ストレートな直線形状をなしていることが判る。
 流れ方向変更部261は、平板絶縁部材250中、コネクタ当接部219aと単セル当接部219b間から突き出された部分である。流れ方向変更部161と同様、流れ方向変更部261は、バッファ室160から燃料室に117に流入する燃料ガスの流れを変更し、燃料室117での燃料ガスのガス流れが均一になる。
 スペーサ接続部259は、複数のスペーサ258を互いに接続して、平板絶縁部材250を形成する。
 平板絶縁部材250の材質としては、コネクタ当接部219aと、単セル当接部219bとの固着を防止する観点から、マイカ、アルミナフェルト、バーミキュライト、カーボン繊維、炭化珪素繊維、シリカの何れか1種か、或は複数種を組み合わせたものを利用できる。また、これらを例えばマイカのような薄い板状体の積層構造とすることで、積層方向への荷重に対し、適度な弾性を確保できる。
(変形例2~5)
 図13~図16は、それぞれ、本発明の実施形態の変形例2~5に係る燃料電池(電池単位103b~103e)の概略図である。変形例2~5の電池単位103b~103eは、単一の燃料供給連絡部(ガス流入口)140(または単一の燃料排気連絡部(ガス流出口)144)を有する。
 図13、図14に示した電池単位103b、103cでは、燃料供給連絡部(ガス流入口)140が単一である。
 また、図15、図16に示した電池単位103d、103eでは、燃料排気通孔(ガス流出口)141が単一である。
 このように、燃料供給連絡部(ガス流入口)140(あるいは、燃料排気通孔(ガス流出口)141)が複数で無くとも、バッファ室160から燃料室に117に流入する燃料ガスの流れを流れ方向変更部261によって変更し、燃料室117での燃料ガスのガス流れを均一とできる。
 ここでは、燃料室117側の集電体として、集電体219(流れ方向変更部261を有する)を用いているが、集電体119(流れ方向変更部161を有する)を用いても差し支えない。
(その他の実施形態)
 本発明の実施形態は上記の実施形態に限られず拡張、変更可能であり、拡張、変更した実施形態も本発明の技術的範囲に含まれる。
 上記実施形態では、燃料供給連絡部(ガス流入口)140は燃料極絶縁フレーム121(絶縁性のフレーム部)に形成される。これに対して、燃料供給連絡部(ガス流入口)140を燃料極フレーム(導電性(金属製)のフレーム部)に形成しても良い。
(実験例)
 以下、本発明の実験例を説明する。既述のように、本願は発電領域のガス流配の均一を図らんとするものである。本実験例では、高さ比Rと面内流量配分誤差Eの関係を求めた。
 ここで、高さ比Rは、燃料室117の高さH0に対する流れ方向変換部161の厚さ(燃料供給連絡部140と対向する1の側面Sの高さ)H1の比R(=H1/H0)を言う。図17に示すように、燃料室117内に、集電体119(コネクタ当接部119a、単セル当接部119b)および流れ方向変換部161(スペーサ158と一体)が配置される。なお、単セル当接部119bとスペーサ158の間に、間隙SP(図示しない)が存在する場合もある。
 このとき、これらの厚さには次の関係がある。
   H0=H1+H21+H22+H3
     =H1+H2+H3
    H0: 燃料室117の高さ
    H1: 流れ方向変換部161の厚さ(燃料供給連絡部140と対向する側面Sの高さ)
    H21: コネクタ当接部119aの厚さ
    H22: 単セル当接部119bの厚さ
    H2(=H21+H22): 集電体119の厚さ
    H3: 間隙SPの厚さ
 本実験例において、流路高さH0を1.2mm、集電体厚さH2を0.7mmとし、流れ方向変換部161の厚さH1を0mm、0.25mm、0.5mmと変化させた。このとき、間隙SPの厚さH3(図示しない)は、0.5mm、0.25mm、0mmとなり、高さ比Rは0、0.21、0.42となる。
 面内流量配分誤差Eは、燃料室117内での流れ方向変換部161の直ぐ上流(具体的には、流れ方向変換部161から0.5mm上流)での流量のバラツキを表し、次のように表される。
  E=(Fmax-Fmin)/Fmin
    Fmax: 流れ方向変換部161の直ぐ上流での最大流量
    Fmin: 流れ方向変換部161の直ぐ上流での最小流量
 図18に示すように、面内流量配分誤差Eには高さ比R依存性がある。高さ比Rが小さすぎると面内流量配分誤差Eは大きい。即ち、バッファ機能が強すぎると燃料供給連絡部140近傍の単セル120の端部に流れる燃料ガスが多くなり、面内流量配分誤差Eが大きくなる傾向がある。一方、ある程度、高さ比Rが大きくなると、面内流量配分誤差Eが小さくなる。高さ比Rがさらに大きくなると、面内流量配分誤差Eは幾分大きくなるが、高さ比Rが最大の場合でも(間隙厚さH3が0)、面内流量配分誤差Eは15%に留まる。
 発電領域のガス流配の均一を確保するには、面内流量配分誤差Eが15%以下とすれば良い。図18から、これを実現するには、高さ比Rが0.1以上であれば良いことが判る。
 100 燃料電池スタック;102 電解質;103 電池単位104 空気供給流路;105 空気排気流路;106 燃料供給流路;107 燃料排気流路;109 固定部材;112、113 インターコネクタ;114 空気極;115 燃料極;116 空気室;117 燃料室;118 集電体;119、219 集電体;119a、219a コネクタ当接部;119b、219b 単セル当接部;119c 連接部;119d 接続部;120 単セル;121 燃料極絶縁フレーム;122 燃料極フレーム;123 セパレータ;124 空気極絶縁フレーム;125 空気供給部;126 空気排気部;127 燃料供給部;128 燃料排気部;129 空気供給通孔;130 空気供給連絡室;131 隔壁;132 空気供給連絡部;133 空気排気通孔;134 空気排気連絡室;135 隔壁;136 空気排気連絡部;137 燃料供給通孔;138 燃料供給連絡室;139 隔壁;140 燃料供給連絡部;141 燃料排気通孔;142 燃料排気連絡室;143 隔壁;144 燃料排気連絡部;145a、145b エンドプレート;146a-146d 締め付け部材;147 コーナー通孔;150、250 平板絶縁部材;158、258 スペーサ;160 バッファ室;161、261 流れ方向変更部;190、290 平板金属部材;219e 切り込み;259 スペーサ接続部。

Claims (6)

  1.  表面と裏面とを有する板形状のインターコネクタと、
     発電機能を有する単セルと、
     前記インターコネクタと、前記単セルとの間に形成されたガス室と、
     前記ガス室に、燃料ガスを流入させる1または複数のガス流入口と、
    を有する燃料電池であって、
     前記ガス流入口と、前記ガス室との間に位置するバッファ室を有し、
     前記バッファ室と、前記ガス室との間に、前記ガス流入口に対応するように形成された流れ方向変更部を有し、
     前記流れ方向変更部は、表面および裏面のうち、少なくとも一方と、側面とを有し、
     前記流れ方向変更部の表面側および裏面側のうち、少なくとも一方に、燃料ガス用通路を有する
    ことを特徴とする燃料電池。
  2.  前記流れ方向変更部が、前記複数のガス流入口と対向する1の側面を有する
    ことを特徴とする請求項1に記載の燃料電池。
  3.  前記1の側面が、前記複数のガス流入口からの燃料ガスの流れ方向に対して、略垂直である請求項2に記載の燃料電池。
  4.  前記ガス室内に配置され、前記インターコネクタおよび前記単セルと電気的に接続される、集電体、をさらに具備し、
     前記複数のガス流入口、前記流れ方向変更部、および前記集電体が、略同一平面上に配置される
    ことを特徴とする請求項1乃至3のいずれか1項に記載の燃料電池。
  5.  前記流れ方向変更部が、前記集電体と一体に形成される
    ことを特徴とする請求項4に記載の燃料電池。
  6.  前記集電体が、
      第1の導電性部材と、
      前記第1の導電性部材上に配置されるスペーサと、
      前記スペーサ上に配置され、前記第1の導電性部材と電気的に接続される第2の導電性部材と、を有し、
     前記流れ方向変更部が、前記スペーサと一体に形成される
    ことを特徴とする請求項5に記載の燃料電池。
PCT/JP2014/052653 2013-02-07 2014-02-05 燃料電池 WO2014123148A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/765,422 US10069162B2 (en) 2013-02-07 2014-02-05 Fuel cell
JP2014527386A JP6360794B2 (ja) 2013-02-07 2014-02-05 燃料電池
KR1020157024113A KR101841335B1 (ko) 2013-02-07 2014-02-05 연료 전지
EP14748657.5A EP2955778B1 (en) 2013-02-07 2014-02-05 Fuel cell
CN201480008029.2A CN104981932B (zh) 2013-02-07 2014-02-05 燃料电池
DK14748657.5T DK2955778T3 (en) 2013-02-07 2014-02-05 FUEL CELL.
CA2900459A CA2900459C (en) 2013-02-07 2014-02-05 Fuel cell providing uniform fuel gas pressure distribution in a power generation region

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-022357 2013-02-07
JP2013022357 2013-02-07

Publications (1)

Publication Number Publication Date
WO2014123148A1 true WO2014123148A1 (ja) 2014-08-14

Family

ID=51299740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052653 WO2014123148A1 (ja) 2013-02-07 2014-02-05 燃料電池

Country Status (8)

Country Link
US (1) US10069162B2 (ja)
EP (1) EP2955778B1 (ja)
JP (1) JP6360794B2 (ja)
KR (1) KR101841335B1 (ja)
CN (1) CN104981932B (ja)
CA (1) CA2900459C (ja)
DK (1) DK2955778T3 (ja)
WO (1) WO2014123148A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170118930A (ko) * 2015-03-31 2017-10-25 니뽄 도쿠슈 도교 가부시키가이샤 평판형 연료 전지
JP2018041570A (ja) * 2016-09-06 2018-03-15 日本特殊陶業株式会社 電気化学反応単位および電気化学反応セルスタック
JP2018181466A (ja) * 2017-04-05 2018-11-15 日本特殊陶業株式会社 電気化学反応単位および電気化学反応セルスタック
JP2019021502A (ja) * 2017-07-18 2019-02-07 日本特殊陶業株式会社 導電性部材、電気化学反応単位、および、電気化学反応セルスタック
JP2019121562A (ja) * 2018-01-10 2019-07-22 本田技研工業株式会社 燃料電池及び燃料電池スタック
JP2021012797A (ja) * 2019-07-05 2021-02-04 森村Sofcテクノロジー株式会社 電気化学反応セルスタック

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6236103B2 (ja) * 2016-03-01 2017-11-22 本田技研工業株式会社 燃料電池スタック
CN106207241B (zh) * 2016-08-03 2018-06-12 华中科技大学 一种固体氧化物燃料电池多堆集成结构
JP6573720B2 (ja) * 2017-02-27 2019-09-11 日本特殊陶業株式会社 電気化学反応単位および電気化学反応セルスタック
JP6573719B2 (ja) * 2017-02-27 2019-09-11 日本特殊陶業株式会社 電気化学反応単位、電気化学反応セルスタック、および、電気化学反応単位の製造方法
GB2576952B (en) * 2018-09-10 2021-11-17 Euro Energy Solutions Ltd Fuel Cells and Components thereof
FR3094843B1 (fr) * 2019-04-02 2021-04-30 Commissariat Energie Atomique Ensemble d’un empilement à oxydes solides de type SOEC/SOFC et d’un système de serrage intégrant un système de distribution de gaz

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021944A (ja) * 1996-07-01 1998-01-23 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JP2009048997A (ja) * 2007-07-20 2009-03-05 Ngk Insulators Ltd 反応装置
JP2010287474A (ja) * 2009-06-12 2010-12-24 Honda Motor Co Ltd 燃料電池
JP2011054404A (ja) 2009-09-01 2011-03-17 Honda Motor Co Ltd 燃料電池
JP2013055042A (ja) * 2011-08-09 2013-03-21 Ngk Spark Plug Co Ltd 燃料電池セル及び燃料電池スタック
JP5346402B1 (ja) * 2012-07-27 2013-11-20 日本特殊陶業株式会社 燃料電池セル及び燃料電池スタック

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933763A (ja) * 1982-08-19 1984-02-23 Matsushita Electric Ind Co Ltd 溶融塩燃料電池
US8048587B2 (en) * 2002-11-27 2011-11-01 Delphi Technologies, Inc. Compliant current collector for fuel cell anode and cathode
CN100521329C (zh) * 2005-01-14 2009-07-29 松下电器产业株式会社 燃料电池用堆栈以及燃料电池
US20060286431A1 (en) * 2005-06-15 2006-12-21 National Central University Flow channel on interconnect of planar solid oxide fuel cell
CN100550500C (zh) * 2007-04-29 2009-10-14 春兰(集团)公司 一种燃料电池组
JP5197995B2 (ja) * 2007-05-24 2013-05-15 本田技研工業株式会社 燃料電池
EP2020696B1 (en) 2007-07-20 2013-10-16 NGK Insulators, Ltd. Reactor
US8236461B2 (en) * 2008-02-26 2012-08-07 Yong Gao Type of fuel cell bipolar plates constructed with multiple pass flow channels that contract, expand, deflect and split reactant flows for improving reactant flow distribution, diffusion and water management
CN201536130U (zh) * 2009-10-28 2010-07-28 苏州万旭电子元件有限公司 扩散接头
WO2011148769A1 (ja) * 2010-05-26 2011-12-01 日本特殊陶業株式会社 固体酸化物形燃料電池
WO2012040253A1 (en) * 2010-09-20 2012-03-29 Nextech Materials, Ltd. Fuel cell repeat unit and fuel cell stack

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021944A (ja) * 1996-07-01 1998-01-23 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JP2009048997A (ja) * 2007-07-20 2009-03-05 Ngk Insulators Ltd 反応装置
JP2010287474A (ja) * 2009-06-12 2010-12-24 Honda Motor Co Ltd 燃料電池
JP2011054404A (ja) 2009-09-01 2011-03-17 Honda Motor Co Ltd 燃料電池
JP2013055042A (ja) * 2011-08-09 2013-03-21 Ngk Spark Plug Co Ltd 燃料電池セル及び燃料電池スタック
JP5346402B1 (ja) * 2012-07-27 2013-11-20 日本特殊陶業株式会社 燃料電池セル及び燃料電池スタック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2955778A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170118930A (ko) * 2015-03-31 2017-10-25 니뽄 도쿠슈 도교 가부시키가이샤 평판형 연료 전지
KR102023324B1 (ko) 2015-03-31 2019-09-20 니뽄 도쿠슈 도교 가부시키가이샤 평판형 연료 전지
JP2018041570A (ja) * 2016-09-06 2018-03-15 日本特殊陶業株式会社 電気化学反応単位および電気化学反応セルスタック
JP2018181466A (ja) * 2017-04-05 2018-11-15 日本特殊陶業株式会社 電気化学反応単位および電気化学反応セルスタック
JP2019021502A (ja) * 2017-07-18 2019-02-07 日本特殊陶業株式会社 導電性部材、電気化学反応単位、および、電気化学反応セルスタック
JP7049781B2 (ja) 2017-07-18 2022-04-07 森村Sofcテクノロジー株式会社 導電性部材、電気化学反応単位、および、電気化学反応セルスタック
JP2019121562A (ja) * 2018-01-10 2019-07-22 本田技研工業株式会社 燃料電池及び燃料電池スタック
JP2021012797A (ja) * 2019-07-05 2021-02-04 森村Sofcテクノロジー株式会社 電気化学反応セルスタック
JP7144368B2 (ja) 2019-07-05 2022-09-29 森村Sofcテクノロジー株式会社 電気化学反応セルスタック

Also Published As

Publication number Publication date
EP2955778A1 (en) 2015-12-16
EP2955778B1 (en) 2017-04-19
CA2900459C (en) 2018-07-10
JP6360794B2 (ja) 2018-07-18
JPWO2014123148A1 (ja) 2017-02-02
EP2955778A4 (en) 2016-08-24
CN104981932A (zh) 2015-10-14
US20150380744A1 (en) 2015-12-31
DK2955778T3 (en) 2017-08-14
CN104981932B (zh) 2017-10-13
KR20150114571A (ko) 2015-10-12
CA2900459A1 (en) 2014-08-14
US10069162B2 (en) 2018-09-04
KR101841335B1 (ko) 2018-03-22

Similar Documents

Publication Publication Date Title
JP6360794B2 (ja) 燃料電池
KR101603449B1 (ko) 연료전지 셀 및 연료전지 스택
EP3279989B1 (en) Flat plate type fuel cell
WO2014017097A1 (ja) 燃料電池セル及び燃料電池スタック
EP3279988B1 (en) Flat plate type fuel cell
US7618735B2 (en) Fuel cell with triangular buffers
JP5696234B2 (ja) 燃料電池セル及び燃料電池スタック
EP2787570B1 (en) Method of fabricating fuel cell stack device
WO2014118866A1 (ja) 燃料電池セル及び燃料電池スタック
JP6072554B2 (ja) 燃料電池
EP1852929B1 (en) Solid oxide fuel cell
JP6022368B2 (ja) 燃料電池
JP2022125885A (ja) 燃料電池セル、及び、燃料電池スタック
JP5722742B2 (ja) 燃料電池
JP5840983B2 (ja) 固体酸化物形燃料電池及び燃料電池ユニット
JP2013225422A (ja) 燃料電池
JP2018200763A (ja) 電気化学反応単位および電気化学反応セルスタック
JP2017123249A (ja) 固体高分子形燃料電池用セパレータ
JP6512749B2 (ja) 燃料電池
JP2018200764A (ja) 電気化学反応単位および電気化学反応セルスタック

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014527386

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748657

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14765422

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014748657

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014748657

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2900459

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157024113

Country of ref document: KR

Kind code of ref document: A