WO2014122937A1 - Organic electroluminescence element - Google Patents

Organic electroluminescence element Download PDF

Info

Publication number
WO2014122937A1
WO2014122937A1 PCT/JP2014/000651 JP2014000651W WO2014122937A1 WO 2014122937 A1 WO2014122937 A1 WO 2014122937A1 JP 2014000651 W JP2014000651 W JP 2014000651W WO 2014122937 A1 WO2014122937 A1 WO 2014122937A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
ring
unsubstituted
carbon atoms
Prior art date
Application number
PCT/JP2014/000651
Other languages
French (fr)
Japanese (ja)
Inventor
江美子 神戸
中村 雅人
由美子 水木
舟橋 正和
Original Assignee
ソニー株式会社
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社, 出光興産株式会社 filed Critical ソニー株式会社
Priority to JP2014560686A priority Critical patent/JPWO2014122937A1/en
Publication of WO2014122937A1 publication Critical patent/WO2014122937A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/18Benzimidazoles; Hydrogenated benzimidazoles with aryl radicals directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic electroluminescence element.
  • Patent Document 1 In order to stabilize the host material constituting the light emitting layer, it has been proposed to use a mixture of two types of host materials (Patent Document 1). In addition, a host material including an electron transporting group and a hole transporting group has been proposed (Patent Document 2). In order to smoothly transfer energy from the host to the phosphorescent dopant in the light emitting layer, a method in which two types of phosphorescent dopants are mixed with the host has been proposed (Patent Document 3). In each of the organic EL elements of Patent Documents 1 to 3, a hole blocking layer and an electron transport layer are laminated adjacent to the light emitting layer.
  • the technique for stabilizing the light-emitting layer disclosed in the above document is insufficient for obtaining stable light emission. Specifically, the charge balance in the light emitting layer is poor, and excitons approach the electron transport layer side. As a result, in order to prevent the absorption of excitons by the electron transport layer, a hole blocking layer having a large energy gap is required adjacent to the light emitting layer. However, since the hole blocking layer has a large energy gap, it is difficult to inject charges and has a low charge transport capability. Therefore, the light emission efficiency was lowered due to an increase in driving voltage and a shortage of charge injected into the light emitting layer.
  • An object of the present invention is to simply provide a phosphorescent light-emitting element having high luminous efficiency, low driving voltage, and long life.
  • the present inventors have used two or more kinds of predetermined host materials for the light emitting layer and laminated a layer containing an electron donating material adjacent to the light emitting layer.
  • the inventors have found that a device having a high light emission efficiency and a low driving voltage and having a long lifetime can be formed, and the present invention has been completed.
  • the following organic EL elements are provided. 1. Having an anode, a light emitting layer, an electron injection layer, and a cathode in this order; The electron injection layer and the light emitting layer are adjacent to each other; The electron injection layer includes a ⁇ electron deficient compound and an electron donating material. The light emitting layer includes at least a first host material, a second host material, and a phosphorescent dopant material. . 2. 2. The organic electroluminescence device according to 1, wherein the first host material and the second host material are selected from materials represented by any of the following formulas (1) to (3). [In Formula (1), Z 1 represents a ring structure represented by the following formula (1-1) or (1-2) condensed at a.
  • Z 2 represents a ring structure represented by the following formula (1-1) or (1-2) condensed at b. However, at least one of Z 1 and Z 2 is represented by the following formula (1-1).
  • M 1 is a substituted or unsubstituted nitrogen-containing heteroaromatic ring having 5 to 30 ring-forming atoms
  • L 1 represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms, and a ring forming carbon number. It represents a 5-30 cycloalkylene group or a group in which these are linked.
  • k represents 1 or 2.
  • c represents condensation in a or b in the formula (1).
  • any one of d, e and f represents condensation in a or b in the general formula (1).
  • X 11 represents a sulfur atom, an oxygen atom, N—R 19 , or C (R 20 ) (R 21 ).
  • R 11 to R 21 each independently represents a hydrogen atom, a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom number of 5 to 30 heterocyclic groups, substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted alkenyl groups having 2 to 30 carbon atoms, substituted or unsubstituted alkynyl groups having 2 to 30 carbon atoms, substituted or An unsubstituted silyl group, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms Represents a group.
  • Adjacent R 11 to R 21 may be bonded to each other to form a ring.
  • Z 11 represents a ring structure represented by the formula (1-1) or (1-2) condensed at a.
  • Z 21 represents a ring structure represented by the formula (1-1) or (1-2) condensed at b. However, at least one of Z 11 and Z 21 is represented by the formula (1-1).
  • M 11 is a substituted or unsubstituted nitrogen-containing heteroaromatic ring having 5 to 30 ring atoms.
  • k 1 represents 1 or 2.
  • a 1 and A 2 each independently represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • a 3 represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms.
  • m represents an integer of 0 to 3.
  • X 1 to X 8 and Y 1 to Y 8 each independently represent N or CR a .
  • R a is independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, a substituted or unsubstituted group. It represents a substituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted silyl group, a halogen atom or a cyano group. When a plurality of R a are present, the plurality of R a may be the same or different. One of X 5 to X 8 and one of Y 1 to Y 4 are bonded via A 3 .
  • At least one of A 1 and A 2 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a heterocycle having 5 to 30 ring atoms substituted with a cyano group. It is a cyclic group.
  • At least one of X 1 to X 4 and Y 5 to Y 8 is CR a , and at least one of R a in X 1 to X 4 and Y 5 to Y 8 is substituted with a cyano group It is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
  • m is an integer of 1 to 3, and at least one of A 3 is substituted with a divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a cyano group And a divalent heterocyclic group having 5 to 30 ring atoms.
  • At least one of X 5 to X 8 and Y 1 to Y 4 is CR a , and at least one of R a in X 5 to X 8 and Y 1 to Y 8 is substituted with a cyano group It is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
  • At least one of X 1 to X 8 and Y 1 to Y 8 is C-CN.
  • the organic electroluminescence device wherein the first host material is a material represented by the formula (2), and the second host material is a material represented by the formula (3). 5. 3. The organic electroluminescence device according to 2, wherein the first host material is a material represented by the formula (1), and the second host material is a material represented by the formula (2). 6). 6. The organic electroluminescence device according to any one of 1 to 5, wherein the ⁇ electron deficient compound is selected from compounds represented by the following formulas (I) to (III).
  • R 1a to R 7a , R 1b to R 7b , and R 1c to R 6c each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, substituted or unsubstituted.
  • L 1a and L 1b are each a single bond or a linking group.
  • Ar 1a , Ar 1b , Ar 1c and Ar 2c are each a substituted or unsubstituted aromatic group having 6 to 60 carbon atoms.
  • n is 1 to 4, and when n is 2 or more, the groups having a phenanthroline skeleton in parentheses may be the same or different.
  • the organic electroluminescence device according to any one of 1 to 7, wherein the content of the first host material with respect to the total of the first host material and the second host material is 30 to 95% by mass. 9. 8. The organic electroluminescence device according to any one of 1 to 7, wherein the content of the first host material is 50 to 95% by mass with respect to the total of the first host material and the second host material. 10. 10. The organic electroluminescence device according to any one of 1 to 9, wherein the content of the electron donating material in the electron injection layer is 20% by mass or less. 11. 11.
  • the organic electroluminescence device according to any one of 1 to 10, wherein the phosphorescent dopant material is an orthometalated complex of a metal atom selected from iridium (Ir), osmium (Os), and platinum (Pt). 12 12.
  • the organic electroluminescence device according to any one of 1 to 11, having only the electron injection layer between the light emitting layer and the cathode.
  • the present invention by laminating layers containing an electron donating material adjacent to each other, it is possible to provide an organic EL device with high luminous efficiency, low driving voltage, and long life.
  • the organic EL device of the present invention has an anode, a light emitting layer, an electron injection layer, and a cathode in this order.
  • FIG. 1 shows an element configuration of an embodiment of an organic light emitting element according to the present invention.
  • the organic EL element 1 has a configuration in which an anode 10, a hole injection layer 20, a hole transport layer 30, a light emitting layer 40, an electron injection layer 50, and a cathode 60 are laminated in this order.
  • the electron injection layer 50 and the light emitting layer 40 are adjacent to each other.
  • the electron injection layer 50 and the light emitting layer 40 each contain the following structural component.
  • the electron injection layer includes a ⁇ electron deficient compound and an electron donating material.
  • the light emitting layer includes at least a first host material, a second host material, and a phosphorescent dopant material.
  • the electron injecting layer and the light emitting layer by using the electron injecting layer and the light emitting layer, the charge balance in the light emitting layer is improved, so that the light emission efficiency is improved. Further, since the light emitting layer becomes stable, the life is improved.
  • the light emitting layer and the cathode intermediate electrode in the case of a stack type organic EL device
  • it is generally formed by laminating two or more electron transport layers, hole blocking layers, and the like.
  • the present invention is excellent in charge balance, high luminous efficiency can be obtained even when only one electron injection layer is formed.
  • the electron injection layer and the light emitting layer which are the features of the present invention, will be described.
  • the electron injection layer of the present invention includes a ⁇ electron deficient compound and an electron donating material.
  • the ⁇ electron deficient compound include compounds capable of coordinating with metal atoms. Specific examples include phenanthroline compounds, benzimidazole compounds, quinolinol, and the like.
  • phenanthroline-based compound compounds represented by the following formulas (I) to (III) are preferable. Of these, compounds represented by the following formula (I) or (II) are preferred.
  • R 1a to R 7a , R 1b to R 7b , and R 1c to R 6c are each independently a hydrogen atom, a substituted or unsubstituted ring-forming carbon number of 6 to 60 Aryl group, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, substituted Or an unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 carbon atoms, a substituted or unsubstituted ring Substituted with an arylthio group having 6 to 50
  • R 1a to R 7a , R 1b to R 7b , or R 1c to R 6c adjacent ones may be bonded to each other to form a ring.
  • the ring include a benzene ring, a naphthalene ring, a pyrazine ring, a pyridine ring, and a furan ring.
  • L 1a and L 1b are each a single bond or a linking group.
  • the linking group include a substituted or unsubstituted aromatic group having 6 to 20 ring carbon atoms, a substituted or unsubstituted alkylene chain having 1 to 8 carbon atoms, and a substituted or unsubstituted heterocyclic ring.
  • a substituted or unsubstituted benzene ring, a substituted or unsubstituted naphthalene ring, a substituted or unsubstituted methylene chain, or a substituted or unsubstituted pyridine ring is preferable.
  • Ar 1a , Ar 1b , Ar 1c and Ar 2c are each a substituted or unsubstituted aromatic group having 6 to 60 carbon atoms.
  • n is 1 to 4, and when n is 2 or more, the groups having a phenanthroline skeleton in parentheses may be the same or different.
  • R 1a to R 7a , R 1b to R 7b , L 1a and L 1b are each represented by the formula (I) And the same group as R 1a to R 7a , R 1b to R 7b , L 1a and L 1b in (II).
  • R 11a to R 20a and R 11b to R 20b are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted quinolyl.
  • substituted or unsubstituted alkyl group having 1 to 50 carbon atoms substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 7 to 50 ring carbon atoms, substituted or unsubstituted Substituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, substituted or unsubstituted arylthio group having 5 to 50 ring carbon atoms, substituted or unsubstituted carbon An alkoxycarbonyl group having 2 to 50 amino acids, an amino group substituted with a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a halogen atom, Anomoto, a nitro group, a hydroxyl group or a carboxyl group.
  • R 11a to R 20a or R 11b to R 20b adjacent ones may be bonded to each other to form a ring.
  • the ring include a benzene ring, a naphthalene ring, a pyrazine ring, a pyridine ring, and a furan ring.
  • the aryl group includes a monocyclic aromatic hydrocarbon ring group and a condensed aromatic hydrocarbon ring group in which a plurality of hydrocarbon rings are condensed, and the heteroaryl group is a monocyclic heteroaromatic group.
  • a hetero-fused aromatic ring group in which a plurality of heteroaromatic rings are condensed and a hetero-fused aromatic ring group in which an aromatic hydrocarbon ring and a heteroaromatic ring are condensed.
  • Ring-forming carbon means a carbon atom constituting an aromatic ring, and ring-forming atom (nuclear atom) constitutes a heterocyclic ring (including a saturated ring, an unsaturated ring and an aromatic heterocyclic ring). Means carbon and heteroatoms.
  • the “carbon number ab” in the expression “substituted or unsubstituted X group having carbon number ab” represents the number of carbons when the X group is unsubstituted, and the X group is substituted. The carbon number of the substituent in the case where it is present is not included.
  • the hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (triuterium), and tritium.
  • the aryl group having 6 to 60 ring carbon atoms preferably has 6 to 30 carbon atoms, particularly preferably 6 to 20 carbon atoms.
  • the aromatic group represented by Ar 1a , Ar 1b , Ar 1c and Ar 2c include the above-described aryl group and a monovalent or divalent or higher group derived by removing a hydrogen atom from the aryl group.
  • R 1a to R 7a and R 1b to R 7b in the formulas (I) and (II) are preferably hydrogen, phenyl, or naphthyl.
  • alkyl group having 1 to 50 carbon atoms there is a linear or branched alkyl group.
  • it has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, and examples thereof include methyl, ethyl, propyl, butyl, pentyl, hexyl and the like.
  • Examples of the cycloalkyl group having 3 to 50 ring carbon atoms include cyclopentyl and cyclohexyl.
  • the aralkyl group having 7 to 50 carbon atoms is represented by —Y—Z.
  • Y include alkylene examples corresponding to the above alkyl groups, and examples of Z include the above aryl groups. It is done.
  • the aryl part of the aralkyl group preferably has 6 to 30 carbon atoms.
  • the alkyl moiety preferably has 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms. For example, benzyl group, phenylethyl group, 2-phenylpropan-2-yl group.
  • An alkoxy group having 1 to 50 carbon atoms is represented as —OY, and examples of Y include the above alkyl groups.
  • the alkoxy group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms, and examples thereof include methoxy, ethoxy, propoxy, butoxy and the like.
  • An aryloxy group having 6 to 50 ring carbon atoms is represented by —OY, and examples of Y include the above aryl groups.
  • the number of carbon atoms is preferably 6 to 20, more preferably 6 to 16, and particularly preferably 6 to 12, and examples thereof include phenyloxy and 2-naphthyloxy.
  • An arylthio group having 6 to 50 ring carbon atoms is represented by —SY, and examples of Y include the above aryl groups. Preferably it has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenylthio.
  • the alkoxycarbonyl group having 2 to 50 carbon atoms preferably has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 12 carbon atoms, and examples thereof include methoxycarbonyl and ethoxycarbonyl.
  • Examples of the amino group substituted with a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms include diarylamino, alkylarylamino, and arylamino.
  • Examples of the alkyl group and aryl group bonded to the nitrogen atom include the above-described aryl group and alkyl group. Preferably it has 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms, particularly preferably 6 carbon atoms, and examples thereof include diphenylamino and the like.
  • halogen atom examples include a fluorine atom, a chlorine atom and a bromine atom, preferably a fluorine atom.
  • Substituents for the above groups are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 2 to 20 carbon atoms, or a ring-forming carbon number of 3
  • aryl group examples include the aryl group, alkyl group, cycloalkyl group, heteroaryl group, alkoxy group, halogen atom, and cyano group. Furthermore, these groups may have a similar substituent.
  • alkenyl group examples include a substituent having an unsaturated bond in the molecule of the alkyl group described above.
  • silyl group having an aryl group examples include a triarylsilyl group, an alkylarylsilyl group, and a trialkylsilyl group.
  • substituents include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, trimethylsilyl, triphenylsilyl.
  • substituents include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, trimethylsilyl, triphenylsilyl.
  • benzimidazole compound examples include benzimidazole derivatives represented by the following formula (IV).
  • a 14 has a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a polycyclic aromatic hydrocarbon group condensed with 3 to 40 aromatic rings, substituted or unsubstituted, An unsubstituted hydrocarbon group having 6 to 60 carbon atoms or a nitrogen-containing heterocyclic group.
  • Specific examples of the halogen atom and the alkyl group having 1 to 20 carbon atoms are the same as those in the above formula (I).
  • the aromatic hydrocarbon group include anthracene, naphthacene, pentacene, pyrene and chrysene.
  • the hydrocarbon group having 6 to 60 carbon atoms include an alkyl group, a cycloalkyl group, and an aryl group. In addition, these specific examples are the same as that of Formula (I) mentioned above.
  • an aryl group is preferable, and among them, a phenyl group, a naphthyl group, a biphenyl group, a terphenyl group, a fluorenyl group, and the like are preferable. These may have a substituent.
  • the nitrogen-containing heterocyclic group include a pyridine ring and triazine.
  • B is a single bond or a substituted or unsubstituted aromatic ring group.
  • aromatic ring group a phenylene group and an anthracenylene group are preferable.
  • R 31 and R 32 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 60 carbon atoms, substituted or unsubstituted An unsubstituted nitrogen-containing heterocyclic group, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • Specific examples of the groups are the above-mentioned formula (I), is the same as A 14.
  • Specific examples of the compound represented by the formula (IV) are shown below.
  • the electron donating material examples include an electron donating metal simple substance, a metal compound, and a metal complex.
  • a layer containing at least one is preferable.
  • alkali metal examples include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) and the like, and those having a work function of 2.9 eV or less are particularly preferable. Of these, Li, K, Rb, and Cs are preferable, Li, Rb, and Cs are more preferable, and Li is most preferable.
  • alkaline earth metal examples include calcium (Ca), magnesium (Mg) strontium (Sr), barium (Ba) and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • rare earth metal examples include scandium (Sc), yttrium (Y), cerium (Ce), terbium (Tb), ytterbium (Yb) and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • preferred metals are particularly high in reducing ability, and by adding a relatively small amount to the electron injection region, it is possible to improve the light emission luminance and extend the life of the organic EL element.
  • alkali metal compound examples include lithium oxide (Li 2 O), cesium oxide (Cs 2 O), alkali oxides such as potassium oxide (K 2 O), lithium fluoride (LiF), sodium fluoride (NaF), fluorine.
  • alkali halides such as cesium fluoride (CsF) and potassium fluoride (KF), and lithium fluoride (LiF), lithium oxide (Li 2 O), and sodium fluoride (NaF) are preferable.
  • alkaline earth metal compound examples include barium oxide (BaO), strontium oxide (SrO), calcium oxide (CaO), and barium strontium oxide (Ba x Sr 1-x O) (0 ⁇ x ⁇ 1), Examples thereof include barium calcium oxide (Ba x Ca 1-x O) (0 ⁇ x ⁇ 1), and BaO, SrO, and CaO are preferable.
  • the rare earth metal compound ytterbium fluoride (YbF 3), scandium fluoride (ScF 3), scandium oxide (ScO 3), yttrium oxide (Y 2 O 3), cerium oxide (Ce 2 O 3), gadolinium fluoride (GdF 3), include such terbium fluoride (TbF 3) is, YbF 3, ScF 3, TbF 3 are preferable.
  • the organometallic complex is not particularly limited as long as it contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion as a metal ion as described above.
  • the ligands include quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl thiadiazole, hydroxydiaryl thiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, ⁇ -diketones, azomethines, and derivatives thereof are preferred, but are not limited thereto.
  • the addition form of the metal, compound and complex it is preferable to form a layer or island in the interface region.
  • a forming method while vapor-depositing at least one of the above metal, compound and complex by resistance heating vapor deposition, an organic material which is a light emitting material or an electron injection material for forming an interface region is simultaneously deposited, and the above metal, A method of dispersing at least one of the compound and the complex is preferable.
  • At least one of the metal, the compound and the complex in a layered form, after forming the light emitting material or the electron injecting material which is an organic layer at the interface in a layered form, at least one of the metal, the compound and the complex is singly used.
  • Vapor deposition is performed by resistance heating vapor deposition, and the layer is preferably formed with a thickness of 0.1 nm to 15 nm.
  • Vapor deposition is performed by a resistance heating vapor deposition method alone, and is preferably formed with an island thickness of 0.05 nm to 1 nm.
  • the ratio is preferably 1: 1 to 1: 1, and more preferably 50: 1 to 4: 1.
  • the thickness of the electron injection layer is preferably from 0.1 nm to 100 nm, particularly preferably from 1 nm to 50 nm.
  • the light-emitting layer is an organic layer having a light-emitting function, and is formed of one layer or a plurality of layers. Among these layers, one layer includes the first host material, the second host material, and the phosphorescent dopant material as described above. contains.
  • the first host material and the second host material are different compounds and have different electron mobility. In the present application, the higher host mobility is the first host material.
  • the content of the first host material with respect to the total of the first host material and the second host material is preferably 30 to 95% by mass, and particularly preferably 50 to 95% by mass. Within this range, it becomes easy to achieve charge balance, low driving voltage, and easy formation of a long-life element.
  • the first host material and the second host material are preferably materials represented by any of the following formulas (1) to (3), for example.
  • Z 1 represents a ring structure represented by the following formula (1-1) or (1-2) condensed at a.
  • Z 2 represents a ring structure represented by the following formula (1-1) or (1-2) condensed at b.
  • at least one of Z 1 and Z 2 is represented by the following formula (1-1).
  • M 1 is a substituted or unsubstituted nitrogen-containing heteroaromatic ring having 5 to 30 ring-forming atoms
  • L 1 represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms, and a ring forming carbon number. It represents a 5-30 cycloalkylene group or a group in which these are linked.
  • k represents 1 or 2.
  • X 11 represents a sulfur atom, an oxygen atom, N—R 19 , or C (R 20 ) (R 21 ).
  • R 11 to R 21 each independently represents a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring formation.
  • Adjacent R 11 to R 21 may be bonded to each other to form a ring.
  • Z 11 , Z 21 , M 11 , and k 1 each represent the same group as Z 1 , Z 2 , M 1 , and k in formula (1).
  • the compound of the formula (2) represents a compound in which L 1 of the formula (1) is a single bond.
  • a 1 and A 2 each independently represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • a 3 represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms.
  • m represents an integer of 0 to 3.
  • X 1 to X 8 and Y 1 to Y 8 each independently represent N or CR a .
  • R a is independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, a substituted or unsubstituted group. It represents a substituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted silyl group, a halogen atom or a cyano group. When a plurality of R a are present, the plurality of R a may be the same or different. One of X 5 to X 8 and one of Y 1 to Y 4 are bonded via A 3 .
  • At least one of A 1 and A 2 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a heterocycle having 5 to 30 ring atoms substituted with a cyano group. It is a cyclic group.
  • At least one of X 1 to X 4 and Y 5 to Y 8 is CR a , and at least one of R a in X 1 to X 4 and Y 5 to Y 8 is substituted with a cyano group It is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
  • m is an integer of 1 to 3, and at least one of A 3 is substituted with a divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a cyano group And a divalent heterocyclic group having 5 to 30 ring atoms.
  • At least one of X 5 to X 8 and Y 1 to Y 4 is CR a , and at least one of R a in X 5 to X 8 and Y 1 to Y 8 is substituted with a cyano group It is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
  • At least one of X 1 to X 8 and Y 1 to Y 8 is C-CN.
  • an aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group and a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group are further represented by cyano You may have substituents other than group.
  • the m is preferably 0 to 2, more preferably 0 or 1. When m is 0, one of X 5 to X 8 and one of Y 1 to Y 4 are bonded through a single bond.
  • the first host material is a material represented by the above formula (1) and the second host material is a material represented by the formula (3)
  • the first host material is represented by the formula (2).
  • the second host material is a material represented by formula (3)
  • the first host material is a material represented by formula (1)
  • the second host material Is preferably a material represented by the formula (2).
  • the nitrogen atom of the carbazole derivative skeleton responsible for injecting and transporting holes and the nitrogen-containing heteroaromatic ring skeleton responsible for injecting and transporting electrons are linked via a linking group (L 1 ). Therefore, the hole injection transport skeleton and the electron injection transport skeleton have little influence on each other, and therefore, it is considered that the charge injection transport effect related to charge transfer is most excellent.
  • the nitrogen atom of the carbazole derivative skeleton responsible for injecting and transporting holes and the nitrogen-containing heteroaromatic ring skeleton responsible for injecting and transporting electrons are directly bonded.
  • the charge injecting and transporting effect tends to be somewhat lower than that of the material represented by the above formula (1). Since the material represented by the above formula (3) has a cyano group, the electron trapping property tends to be improved and the electron mobility tends to be low.
  • the materials represented by the above formulas (1) to (3) tend to have the highest electron mobility in the material of formula (1) and the lowest in the material of formula (3).
  • Z 1 represents a ring structure represented by the general formula (1-1) or (1-2) condensed in a.
  • Z 2 represents a ring structure represented by the general formula (1-1) or (1-2) condensed at b. However, at least one of Z 1 and Z 2 is represented by the general formula (1-1).
  • L 1 has the same meaning as L 1 in Formula (1).
  • X 12 to X 14 are each independently a nitrogen atom, CH, or a carbon atom bonded to R 31 or L 1, and at least one of X 12 to X 14 is a nitrogen atom.
  • Y 11 to Y 13 each independently represent CH or a carbon atom bonded to R 31 or L 1 .
  • Each of R 31 independently represents a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a substituted or unsubstituted silyl group, A substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms.
  • R 31 there are a plurality a plurality of R 31 may be the same or different from each other and, R 31 may be bonded to each other to form a ring adjacent.
  • k represents 1 or 2
  • n represents an integer of 0 to 4.
  • C in the formula (1-1) is condensed in a or b in the general formula (1a); Any one of d, e and f in the general formula (1-2) is condensed in a or b in the general formula (1a).
  • examples of the compound in which the general formulas (1-1) and (2-2) are condensed in a and b in the above formula (1a) include those represented by the following general formula.
  • the compound represented by the above formula (1) is more preferably represented by the following formula (1b), and particularly preferably represented by the following formula (1c).
  • middle L 1 has the same meaning as L 1 in Formula (1).
  • X 12 to X 14 are each independently a nitrogen atom, CH, or a carbon atom bonded to R 31 or L 1, and at least one of X 12 to X 14 is a nitrogen atom.
  • Y 11 to Y 13 each independently represent CH or a carbon atom bonded to R 31 or L 1 .
  • Each of R 31 independently represents a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a substituted or unsubstituted silyl group, A substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms.
  • R 31 there are a plurality a plurality of R 31 may be the same or different from each other and, R 31 may be bonded to each other to form a ring adjacent.
  • n represents an integer of 0 to 4.
  • R 41 to R 48 are each independently a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring formation.
  • Adjacent R 41 to R 48 may be bonded to each other to form a ring.
  • L 1 has the same meaning as L 1 in Formula (1).
  • X 12 to X 14 are each independently a nitrogen atom, CH, or a carbon atom bonded to R 31 or L 1, and at least one of X 12 to X 14 is a nitrogen atom.
  • Y 11 to Y 13 each independently represent CH or a carbon atom bonded to R 31 or L 1 .
  • Each of R 31 independently represents a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a substituted or unsubstituted silyl group, A substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms.
  • R 31 may be bonded to each other to form a ring.
  • n represents an integer of 0 to 4.
  • L 2 and L 3 are each independently a single bond, a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted 2 to 5 ring atom having 2 to 30 ring atoms.
  • a valent heterocyclic group, a cycloalkylene group having 5 to 30 ring carbon atoms, or a group in which these are connected is represented.
  • R 51 to R 54 each independently represent a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • R 51 there are a plurality a plurality of R 51 may be the same or different, and, R 51 may be bonded to each other to form a ring adjacent.
  • R 52 there are a plurality a plurality of R 52 may be the same or different, and, R 52 may be bonded to each other to form a ring adjacent.
  • R 53 there are a plurality a plurality of R 53 may be the same or different, and, R 53 may be bonded to each other to form a ring adjacent.
  • R 54 there are a plurality the plurality of R 54 may be the same or different from each other and, R 54 may be bonded to each other to form a ring adjacent.
  • M 2 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • p and s each independently represent an integer of 0 to 4
  • q and r each independently represents an integer of 0 to 3.
  • examples of the nitrogen-containing heteroaromatic ring represented by M 1 or M 11 include pyridine, pyrimidine, pyrazine, triazine, aziridine, azaindolizine, indolizine, imidazole, indole, Examples thereof include isoindole, indazole, purine, pteridine, ⁇ -carboline, naphthyridine, quinoxaline, terpyridine, bipyridine, acridine, phenanthroline, phenazine, and imidazopyridine, and pyridine, pyrimidine, and triazine are particularly preferable.
  • aromatic hydrocarbon group having 6 to 30 ring carbon atoms examples include a non-condensed aromatic hydrocarbon group and a condensed aromatic hydrocarbon group, and more specifically, phenyl group, naphthyl group, phenanthryl group, biphenyl.
  • heterocyclic group having 5 to 30 ring atoms examples include a non-condensed heterocyclic group and a condensed heterocyclic group, and more specifically, a pyrrole ring, an isoindole ring, a benzofuran ring, an isobenzofuran ring, and a dibenzothiophene.
  • Ring isoquinoline ring, quinoxaline ring, phenanthridine ring, phenanthroline ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, indole ring, quinoline ring, acridine ring, pyrrolidine ring, dioxane ring, piperidine ring, morpho Phosphorus ring, piperazine ring, carbazole ring, furan ring, thiophene ring, oxazole ring, oxadiazole ring, benzoxazole ring, thiazole ring, thiadiazole ring, benzothiazole ring, triazole ring, imidazole ring, benzimidazole ring, pyran ring, Dibenzofuran Benzo [c] dibenzofuran ring and groups formed from these derivatives, and the like, and
  • alkyl group having 1 to 30 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, Examples include n-hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, cyclopropyl group, cyclobutyl group, n
  • Ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, cyclopent Group, a cyclohexyl group is preferred.
  • alkenyl group having 2 to 30 carbon atoms and the alkynyl group having 2 to 30 carbon atoms include the above-described alkyl groups having a double bond or a triple bond.
  • substituted or unsubstituted silyl groups include trimethylsilyl group, triethylsilyl group, tributylsilyl group, dimethylethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, dimethylisopropylsilyl group, Examples include dimethylpropylsilyl group, dimethylbutylsilyl group, dimethyltertiarybutylsilyl group, diethylisopropylsilyl group, phenyldimethylsilyl group, diphenylmethylsilyl group, diphenyltertiarybutylsilyl group, and triphenylsilyl group. , Triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, and propyldimethylsilyl group are preferable.
  • alkoxy group having 1 to 30 carbon atoms examples include groups in which the alkyl moiety is the alkyl group.
  • aralkyl group having 7 to 30 carbon atoms include benzyl group, 2-phenylpropan-2-yl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group and 2-phenylisopropyl group.
  • Examples of the aryloxy group having 6 to 30 ring carbon atoms include groups in which the aryl moiety is the aromatic hydrocarbon group.
  • Examples of the divalent heterocyclic group 30 include groups corresponding to the divalent groups described above for the aromatic hydrocarbon group and heterocyclic group.
  • substituents in the above-mentioned formulas and the formula (3) described later which may be “substituted or unsubstituted” and “may have a substituent”, a halogen atom (fluorine, chlorine, bromine, iodine) ), A cyano group, an alkyl group having 1 to 20 (preferably 1 to 6) carbon atoms, a cycloalkyl group having 3 to 20 (preferably 5 to 12) carbon atoms, and 1 to 20 carbon atoms (preferably 1 to 5).
  • alkyl group having 1 to 20 carbon atoms used as the optional substituent include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t -Butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n -Tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group and the like.
  • cycloalkyl group having 3 to 20 carbon atoms used as the optional substituent include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group, adamantyl group and the like.
  • alkoxy group having 1 to 20 carbon atoms used as the optional substituent include groups in which the alkyl moiety is the alkyl group.
  • haloalkyl group having 1 to 20 carbon atoms used as the optional substituent include groups in which part or all of the hydrogen atoms of the alkyl group are substituted with halogen atoms.
  • haloalkoxy group having 1 to 20 carbon atoms used as the optional substituent include groups in which part or all of the above-described alkoxy groups are substituted with halogen atoms.
  • alkylsilyl group having 1 to 10 carbon atoms used as the optional substituent include trimethylsilyl group, triethylsilyl group, tributylsilyl group, dimethylethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group.
  • Propyldimethylsilyl group dimethylisopropylsilyl group, dimethylpropylsilyl group, dimethylbutylsilyl group, dimethyltertiarybutylsilyl group, diethylisopropylsilyl group and the like.
  • aromatic hydrocarbon group having 6 to 30 ring carbon atoms used as the optional substituent include the same aromatic hydrocarbon groups as those described above for R 11 and the like.
  • aryloxy group having 6 to 30 ring carbon atoms used as the optional substituent include groups in which the aryl moiety is the aromatic hydrocarbon group.
  • arylsilyl group having 6 to 30 carbon atoms used as the optional substituent include a phenyldimethylsilyl group, a diphenylmethylsilyl group, a diphenyl tertiary butylsilyl group, and a triphenylsilyl group.
  • aralkyl group having 7 to 30 carbon atoms used as the optional substituent include the aralkyl groups represented by R 11 and the like.
  • heteroaryl group having 5 to 30 ring atoms used as the optional substituent include the same heterocyclic groups as those described above for R 11 and the like.
  • the optional substituent is preferably a fluorine atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a heteroaryl group having 5 to 30 ring atoms.
  • the above arbitrary substituents may further have a substituent, and specific examples thereof are the same as the above arbitrary substituents.
  • the material represented by the above formula (2) is preferably a material obtained by changing L 1 in the above formulas (1a) to (1c) to a single bond.
  • Examples of the compound represented by the formula (1) or (2) include the following.
  • a bond having no chemical formula (CN, benzene ring, or the like) at its end represents a methyl group.
  • the aromatic hydrocarbon group having 6 to 30 ring carbon atoms represented by A 1 , A 2 and R a is an aromatic hydrocarbon group represented by R 11 or the like in the above formula (1).
  • the same group is mentioned.
  • Examples of the divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms represented by A 3 include groups obtained by divalent groups described above for the aromatic hydrocarbon group having 6 to 30 ring carbon atoms. It is done.
  • Examples of the heterocyclic group having 5 to 30 ring atoms represented by A 1 , A 2 and R a include the same groups as the heterocyclic groups represented by R 11 and the like in the above formula (1).
  • Examples of the divalent heterocyclic group having 5 to 30 ring atoms represented by A 3 include groups obtained by divalent groups mentioned above for the heterocyclic group having 5 to 30 ring atoms.
  • Alkyl group of the R a having 1 to 30 carbon atoms indicated by a substituted or unsubstituted silyl group, examples of the halogen atom, respectively, include the same groups as R 11 or the like shown in the formula (1) described above It is done.
  • R a is preferably a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
  • the groups represented by the above formulas (a) and (b) are represented by X 6- (A 3 ) m -Y 3 , X 6- (A 3 ) m -Y. 2, X 7 - (a 3 ) is preferably attached at either the binding position of m -Y 3. That is, a compound represented by any one of the following formulas (3a), (3b), and (3c) is more preferable.
  • X 1 to X 8 , Y 1 to Y 8 , A 1 to A 3 and m are X 1 to X 8 and Y in the formula (3), respectively. 1 to Y 8 , A 1 to A 3 and m are the same, and the formulas (3a) to (3c) satisfy at least one of the conditions (i) to (v) in the formula (3). Fulfill.
  • the material represented by the above formula (3) satisfies at least one of the above (i) to (v). That is, a cyano group is introduced into a biscarbazole derivative to which groups represented by the above formulas (a) and (b) are linked.
  • This material has improved hole resistance due to introduction of an electron injection / transport cyano group. Therefore, the organic EL device of the present invention containing a material having a cyano group has an effect of extending the lifetime as compared with a conventional organic EL device using a host material having no cyano group.
  • a 3 in the formula (3) is a single bond, a substituted or unsubstituted divalent monocyclic hydrocarbon group having 6 ring-forming carbon atoms, or a substituted or unsubstituted bivalent monocyclic ring having 6 ring atoms. It preferably represents a heterocyclic group.
  • m is 0 and one of X 5 to X 8 and one of Y 1 to Y 4 are bonded via a single bond.
  • a 3 is preferably a substituted or unsubstituted monocyclic hydrocarbon group having 6 ring atoms or a substituted or unsubstituted monocyclic heterocyclic group having 6 ring atoms.
  • the material of the formula (3) preferably satisfies at least one of the following (i) and the following (ii).
  • the material of the formula (3) preferably corresponds to any of the following (1) to (3). (1) The above (i) is satisfied, and the above (ii) to (v) are not satisfied. (2) The above (ii) is satisfied, and the above (i) and (iii) to (v) are not satisfied. (3) Both the above (i) and (ii) are satisfied, and the above (iii) to (v) are not satisfied.
  • the lifetime of the organic EL device of the present invention having a light emitting layer containing a material satisfying at least one of the above (i) and (ii) and a material represented by formula (1) or formula (2) is long.
  • the luminous efficiency of the organic EL element is improved.
  • At least one of the A 1 and the A 2 is a phenyl group substituted with a cyano group, a naphthyl group substituted with a cyano group, a cyano group Phenanthryl group substituted with cyano group, dibenzofuranyl group substituted with cyano group, dibenzothiophenyl group substituted with cyano group, biphenyl group substituted with cyano group, terphenyl group substituted with cyano group, cyano group 9,9-diphenylfluorenyl group substituted with 1,9,9′-spirobi [9H-fluoren] -2-yl group substituted with cyano group, 9,9′-dimethylfluoride substituted with cyano group It is preferably an olenyl group or a triphenylenyl group substituted with a cyano group, a 3′-cyanobiphenyl-2
  • a -2-yl group and a 7-cyanotriphenylene-2-yl group are more preferable.
  • the material of formula (3) is, A 1 is substituted with a cyano group, it is preferred that A 2 is not substituted with a cyano group. Furthermore, in this case, it is more preferable that the material of the formula (3) does not satisfy the condition (ii).
  • At least one of X 1 to X 4 and Y 5 to Y 8 is CR a
  • X 1 to X 4 and Y 5 to At least one of R a in Y 8 is a phenyl group substituted with a cyano group, a naphthyl group substituted with a cyano group, a phenanthryl group substituted with a cyano group, a dibenzofuranyl group substituted with a cyano group, a cyano group Dibenzothiophenyl group substituted with a group, biphenyl group substituted with a cyano group, terphenyl group substituted with a cyano group, 9,9-diphenylfluorenyl group substituted with a cyano group, substituted with a cyano group And 9,9′-spirobi [9H-fluoren] -2-yl group, 9,9′-di
  • the A 1 and the A 2 are preferably different from each other. Among them, it is more preferable that the group which is A 1 is substituted with a cyano group and the group which is A 2 is not substituted with a cyano group. That is, the material of the formula (3) preferably has an asymmetric structure. By such a structure, the material of the formula (3) has good crystallinity and non-crystallinity. Therefore, since the organic EL element using the material of the formula (3) has excellent film quality, for example, high performance can be achieved in organic EL characteristics such as current efficiency.
  • the method for producing the material of the formula (3) is not particularly limited, and may be produced by a known method.
  • the phosphorescent dopant material is a compound that can emit light from the triplet excited state, and is not particularly limited as long as it emits light from the triplet excited state, but Ir, Pt, Os, Au, Cu, Re and An organometallic complex containing at least one metal selected from Ru and a ligand is preferable.
  • the ligand preferably has an ortho metal bond.
  • a metal complex containing a metal atom selected from Ir, Os and Pt is preferred in that the phosphorescent quantum yield is high and the external quantum efficiency of the light emitting device can be further improved, and an iridium complex, an osmium complex, or a platinum complex.
  • iridium complexes and platinum complexes are more preferable, and orthometalated iridium complexes are particularly preferable.
  • the content of the phosphorescent dopant in the light emitting layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 0.1 to 70% by mass, more preferably 1 to 30% by mass. If the phosphorescent dopant content is 0.1% by mass or more, sufficient light emission can be obtained, and if it is 70% by mass or less, concentration quenching can be avoided.
  • a phosphorescent dopant material may be used independently and may use 2 or more types together.
  • the emission wavelength of the phosphorescent dopant material contained in the light emitting layer is not particularly limited, but at least one of the phosphorescent dopant materials contained in the light emitting layer preferably has a peak emission wavelength of 490 nm to 700 nm. More preferably, it is 650 nm or less.
  • the phosphorescent host is a compound having a function of efficiently emitting the phosphorescent dopant by efficiently confining the triplet energy of the phosphorescent dopant in the light emitting layer.
  • compounds other than the first host material and the second host material can be appropriately selected as a phosphorescent host according to the purpose.
  • the first host material, the second host material, and other compounds may be used in combination as a phosphorescent host material in the same light emitting layer.
  • the first host material and the second host material may be used as the phosphorescent host material, and a compound other than the first host material or the second host material may be used as the phosphorescent host material of another light emitting layer.
  • the first host material and the second host material can also be used for organic layers other than the light emitting layer.
  • compounds other than the first host material and the second host material and suitable as a phosphorescent host include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline.
  • pyrazolone derivatives phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds , Porphyrin compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluoresceins Represented by metal complexes of redenemethane derivatives, distyrylpyrazine derivatives, heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, phthalocyanine derivatives, 8-quinolinol derivatives, metal phthalocyanines, metal complexes with benzo
  • metal complexes such as polysilane compounds, poly (N-vinylcarbazole) derivatives, aniline copolymers, thiophene oligomers, conductive polymer oligomers such as polythiophene, polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, polyfluorene derivatives, etc.
  • Phosphorescent hosts other than the first host material and the second host material may be used alone or in combination of two or more. Specific examples include the following compounds.
  • the light emitting layer When the light emitting layer is composed of a plurality of layers and the doping system is employed in addition to the above light emitting layer containing the first host material and the second host material, the light emitting layer includes a host material and a dopant material.
  • the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
  • the host material In the case of a phosphorescent element, the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • the above light emitting layer may adopt a double dopant in which each dopant emits light by adding two or more kinds of dopant materials having a high quantum yield. Specifically, a mode in which yellow emission is realized by co-evaporating a host, a red dopant, and a green dopant to make the light emitting layer common is used.
  • the above light-emitting layer is a laminate in which a plurality of light-emitting layers are stacked, so that electrons and holes are accumulated at the light-emitting layer interface, and the recombination region is concentrated at the light-emitting layer interface to improve quantum efficiency. Can do.
  • the ease of injecting holes into the light emitting layer may be different from the ease of injecting electrons, and the hole transport ability and electron transport ability expressed by the mobility of holes and electrons in the light emitting layer may be different. May be different.
  • a light emitting layer can be formed by well-known methods, such as a vapor deposition method, a spin coat method, LB method, for example.
  • the light emitting layer can also be formed by thinning a solution obtained by dissolving a binder such as a resin and a material compound in a solvent by a spin coating method or the like.
  • the light emitting layer is preferably a molecular deposited film.
  • the molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidifying from a material compound in a solution state or a liquid phase state.
  • the thin film (molecular accumulation film) formed by the LB method can be classified by the difference in the aggregation structure and the higher-order structure, and the functional difference resulting therefrom.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and still more preferably 10 to 50 nm.
  • the thickness is 5 nm or more, it is easy to form a light emitting layer, and when the thickness is 50 nm or less, an increase in driving voltage can be avoided.
  • the organic EL device of the present invention only needs to have a structure in which the electron injection layer and the light emitting layer described above are adjacent to each other. Any member known in the art can be used as appropriate. Hereinafter, examples of the constituent members will be briefly described.
  • the organic EL element of the present invention is produced on a translucent substrate.
  • the light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials.
  • the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
  • the anode of the organic EL element plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to use a material having a work function of 4.5 eV or more.
  • Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, copper, and the like.
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When light emitted from the light emitting layer is extracted from the anode, it is preferable that the transmittance of light in the visible region of the anode is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm.
  • the cathode plays a role of injecting electrons into the electron injection layer, the electron transport layer or the light emitting layer, and is preferably formed of a material having a small work function.
  • the cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.
  • the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering. Moreover, you may take out light emission from the cathode side as needed.
  • Examples of the layer in the hole transport zone include a hole transport layer and a hole injection layer.
  • the hole transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and has a high hole mobility and a small ionization energy of usually 5.5 eV or less.
  • Such a hole transport layer is preferably a material that transports holes to the light-emitting layer with a lower electric field strength, and further has a hole mobility of at least 10 when an electric field of 10 4 to 10 6 V / cm is applied. -4 cm 2 / V ⁇ sec is preferred.
  • the material for the hole transport layer include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives. , Styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, polysilanes, aniline copolymers, conductive polymer oligomers (particularly thiophene oligomers), and the like.
  • an aromatic amine compound for example, an aromatic amine derivative represented by the following formula (4) is preferably used.
  • Ar 31 to Ar 34 are each an aromatic hydrocarbon group having 6 to 50 ring carbon atoms (which may have a substituent), or a condensed aromatic group having 6 to 50 ring carbon atoms.
  • L represents a single bond or a group similar to Ar 31 to Ar 34 .
  • aromatic amine of following formula (5) is also used suitably for formation of a positive hole injection layer or a positive hole transport layer.
  • the hole injection layer is a layer provided to further assist hole injection.
  • the material for the hole injection layer may be the organic EL material of the present invention alone, or may be used in combination with other materials. As other materials, the same materials as the hole transport layer can be used.
  • a porphyrin compound, an aromatic tertiary amine compound, and a styrylamine compound can also be used.
  • HAT or F4TCNQ used in the P layer of the charge generation layer, or a compound represented by the formula (4) can also be used.
  • conductive thiophene oligomers such as arylamine oligomers disclosed in JP-A-8-193191, conductive dendrimers such as arylamine dendrimers, and the like.
  • conductive dendrimers such as arylamine dendrimers, and the like.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection layer.
  • the hole injection layer or the hole transport layer can be formed, for example, by thinning the above-described compound by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • the thickness of the hole injection layer or hole transport layer is not particularly limited, but is usually 1 nm to 5 ⁇ m.
  • Examples of the layer in the electron transport zone include an electron transport layer.
  • the electron transport layer is a layer that helps injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility.
  • the electron transport layer is appropriately selected with a film thickness of several nm to several ⁇ m, but when the film thickness is particularly large, the electron mobility is at least 10 when an electric field of 10 4 to 10 6 V / cm is applied in order to avoid an increase in voltage. It is preferably ⁇ 5 cm 2 / Vs or higher.
  • 8-hydroxyquinoline or a metal complex of its derivative or a nitrogen-containing heterocyclic derivative is preferable.
  • a metal chelate oxinoid compound containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline) such as tris (8-quinolinol) aluminum is injected. It can be used as a material.
  • nitrogen-containing heterocyclic derivative for example, oxazole, thiazole, oxadiazole, thiadiazole, triazole, pyridine, pyrimidine, triazine, phenanthroline, benzimidazole, imidazopyridine and the like are preferable, and among them, benzimidazole derivative, phenanthroline derivative, imidazopyridine derivative Is preferred.
  • a layer made of an insulator or a semiconductor may be provided between the cathode and the electron transport layer.
  • the insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If this layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, LiO, Na 2 S, Na 2 Se, and NaO
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, and BeO. , BaS, and CaSe
  • preferable alkali metal halides include, for example, LiF, NaF, KF, CsF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the semiconductor examples include oxide, nitride, or oxynitride containing at least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn. Or a combination of two or more.
  • the inorganic compound constituting this layer is preferably a microcrystalline or amorphous insulating thin film. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
  • the organic EL device of the present invention high luminous efficiency can be obtained without forming the above-described electron transport layer or the like in the electron transport region.
  • the organic EL device of the present invention can be produced by a known method.
  • the anode and the cathode can be formed by a method such as vapor deposition or sputtering.
  • Each organic thin film layer such as a light-emitting layer can be formed by a method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • the organic EL element of the present invention is not limited to the configuration shown in FIG.
  • the hole transport layer and the hole injection layer are arbitrary layers, they can be omitted, and an electron transport layer or the like can be provided between the electron injection layer and the cathode.
  • the configuration of the organic EL element of the present invention is not limited to the above-described embodiment, and other known configurations can be adopted.
  • it can also be used for an organic EL element (MPE element) having a configuration in which a plurality of light emitting units each composed of an organic layer having at least a light emitting layer are disposed between an anode and a cathode via a charge generation layer.
  • MPE element organic EL element
  • at least one of the plurality of light emitting units only needs to have a structure in which the electron injection layer and the light emitting layer of the present invention are adjacent to each other.
  • FIG. 2 is a schematic cross-sectional view of another embodiment of the organic EL device of the present invention.
  • the organic EL element 2 of this embodiment includes an anode 20, a first light emitting unit 71, a charge generation layer 72, a second light emitting unit 73, and a light transmissive cathode 60 on a substrate 10 in this order.
  • Each of the two light emitting units has a single layer or a stacked structure having at least a light emitting layer.
  • the light emitting unit preferably has a multilayer structure in which a hole transport layer, a light emitting layer, and an electron injection layer are stacked from the anode side.
  • at least one of the two light emitting units has a structure in which the electron injection layer and the light emitting layer of the present invention are adjacent to each other.
  • the organic EL element 2 has the same configuration as the organic EL element 1 shown in FIG. 1 except that two light emitting units are formed.
  • the organic EL element 1 has an element configuration having one light emitting unit including the hole injection layer 20, the hole transport layer 30, the light emitting layer 40, and the electron injection layer 50.
  • an organic EL element that emits white light can be obtained by changing the light emission color of each light emitting unit, that is, by changing the material of the light emitting layer.
  • the organic EL element of the present invention may be a top emission type or a bottom emission type.
  • organic EL devices were produced using the following compounds.
  • Example 1 ITO was formed to a thickness of 240 nm as an anode on a substrate made of a 30 mm ⁇ 30 mm glass plate.
  • a cell for an organic EL element in which a region other than the light emitting region of 2 mm ⁇ 2 mm was masked with an insulating film by SiO 2 vapor deposition was produced.
  • hexanitrile azatriphenylene (the following formula (HAT)) was formed to a thickness of 10 nm by vapor deposition.
  • compound HT-1 was formed to a thickness of 180 nm by vapor deposition.
  • compound HT-2 was formed to a thickness of 20 nm by vapor deposition.
  • compounds H1-1, H2-1, and Ir (PPy) 3 were co-evaporated on the hole transport layer 2 to form a light-emitting layer having a thickness of 30 nm.
  • the ratio (mass ratio) of the host material was 1: 1.
  • the dopant content was 10% (mass ratio).
  • Li and compound E-1 were binary evaporated to form an E-1: Li film (Li 2% (mass ratio)) of 30 nm to form an electron injection layer.
  • organic EL device On the electron injection layer, metal Al was deposited to a thickness of 80 nm to form a cathode, and an organic EL device was produced. The produced organic EL device was measured for voltage (V) and luminance (cd / m 2 ) at a current density of 10 mAcm ⁇ 2 , and luminance half-life when driven at 40 mA / cm 2 .
  • Table 1 shows the host material used in the light emitting layer, the layer structure from the light emitting layer to the cathode, and the evaluation results.
  • Examples 2-5 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds used in the host material and the electron injection layer of the light emitting layer were changed as shown in Table 1. The results are shown in Table 1.
  • Comparative Example 1 The process was the same as in Example 1 until the formation of the light emitting layer. Following the light emitting layer, an Alq3 layer was formed to a thickness of 30 nm, and LiF was formed to a thickness of 0.5 nm. Thereafter, a cathode was formed in the same manner as in Example 1 to produce an organic EL device. The results evaluated in the same manner as in Examples are shown in Table 1.
  • Comparative Example 2 The process was the same as in Example 1 until the formation of the light emitting layer. Subsequent to the light emitting layer, a BAlq layer having a thickness of 20 nm was formed as a hole blocking layer. Subsequently, an Alq3 layer was formed to 10 nm, and LiF was formed to a thickness of 0.5 nm. Thereafter, a cathode was formed in the same manner as in Example 1 to produce an organic EL device. The results evaluated in the same manner as in Examples are shown in Table 1.
  • Comparative Example 3 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that only CBP was used as the host material. The results are shown in Table 1.
  • Comparative Example 4 An organic EL device was prepared and evaluated in the same manner as in Comparative Example 2 except that only CBP was used as the host material. The results are shown in Table 1.
  • Comparative Example 5 The procedure was the same as in Example 1 except that only CBP was used as the host material until formation of the light emitting layer. Thereafter, a BAlq layer having a thickness of 10 nm was formed as a hole blocking layer. Subsequently, an Alq3 layer was formed to 10 nm, and a mixed layer of E-1 and Li (Li: 2%) was formed to a thickness of 10 nm as an electron injection layer. Thereafter, a cathode was formed in the same manner as in Example 1 to produce an organic EL device. The results evaluated in the same manner as in Examples are shown in Table 1.
  • Comparative Example 6 The procedure was the same as in Example 1 except that only CBP was used as the host material until formation of the light emitting layer. Thereafter, a layer made of only E-1 was formed as an electron injection layer with a thickness of 30 nm. Furthermore, LiF was formed with a thickness of 0.5 nm. Thereafter, a cathode was formed in the same manner as in Example 1 to produce an organic EL device. The results evaluated in the same manner as in Examples are shown in Table 1.
  • Comparative Example 7 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that H2-1 was not used as the host material but only H1-1 was used. The results are shown in Table 1.
  • Examples 1 to 5 of the present invention devices with high efficiency, low voltage and long life were obtained.
  • Comparative Examples 1 and 2 since the electron injection layer is not adjacent to the light emitting layer, a high voltage and a short life occurred due to insufficient electron injection into the light emitting layer.
  • Comparative Example 3 since the electron injection layer is adjacent to the light emitting layer, the voltage is lower than that in Comparative Example 4, but the efficiency of the light emitting layer is shortened and the life is shortened due to the poor charge balance of the light emitting layer. .
  • the hole blocking material prevented the exciton loss and compensated for the efficiency, but the use of the hole blocking material having a low charge transporting capability resulted in a high voltage.
  • Comparative Example 6 since the electron transport layer is adjacent to the light emitting layer, the voltage is slightly higher than that in Comparative Example 5. However, the charge balance of the light emitting layer is poor, resulting in lower efficiency and shorter life. did. In Comparative Example 7, since the light emitting layer host was not mixed, the charge balance was insufficient, so that the lifetime was shortened.
  • the organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a copying machine, a printer, a light source such as a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like.
  • a flat light emitter such as a flat panel display of a wall-mounted television, a copying machine, a printer, a light source such as a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Indole Compounds (AREA)

Abstract

An organic electroluminescence element having, in the following order, an anode, a light-emitting layer, an electron injection layer, and a cathode, the electron injection layer and the light-emitting layer being adjacent, the electron injection layer containing a π-electron-deficient compound and an electron-donating material. The light-emitting layer contains at least a first host material, a second host material, and a phosphorescent light-emitting dopant material.

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence element.
 近年、有機エレクトロルミネッセンス(EL)素子においては、高い発光効率を達成させるために燐光発光材料の研究が盛んに行われている。
 燐光発光は、蛍光発光の最大4倍程度の高い効率が期待される。しかしながら、励起の過程で燐光発光は蛍光発光よりも大きなエネルギーが必要となり、発光が不安定になりやすいため、十分な発光効率が得られず、また、素子が短寿命化するという問題が生じた。
In recent years, in organic electroluminescence (EL) devices, research on phosphorescent materials has been actively conducted in order to achieve high luminous efficiency.
Phosphorescence emission is expected to have a high efficiency of up to about 4 times that of fluorescence emission. However, phosphorescence emission requires more energy than fluorescence emission in the process of excitation, and the emission tends to be unstable, so that sufficient emission efficiency cannot be obtained, and the device has a problem of shortening the lifetime. .
 上記課題に対し、発光層を構成するホスト材料の安定化のため、2種類のホスト材料を混合して使用することが提案されている(特許文献1)。
 また、電子輸送性を有する基と正孔輸送性を有する基とを内包したホスト材料が提案されている(特許文献2)。
 また、発光層のホストから燐光ドーパントへのエネルギー移動をスムーズに行わせるために、ホストに対し燐光発光ドーパントを2種類混合させる方式も提案されている(特許文献3)。
 尚、上記特許文献1~3の有機EL素子は、いずれも発光層に隣接して正孔ブロック層と電子輸送層が積層されている。
In order to stabilize the host material constituting the light emitting layer, it has been proposed to use a mixture of two types of host materials (Patent Document 1).
In addition, a host material including an electron transporting group and a hole transporting group has been proposed (Patent Document 2).
In order to smoothly transfer energy from the host to the phosphorescent dopant in the light emitting layer, a method in which two types of phosphorescent dopants are mixed with the host has been proposed (Patent Document 3).
In each of the organic EL elements of Patent Documents 1 to 3, a hole blocking layer and an electron transport layer are laminated adjacent to the light emitting layer.
特許4850521号Japanese Patent No. 4850521 特許4208766号Patent 4208766 特許4039023号Patent 4039023
 上記文献で開示された発光層を安定化させる技術は、安定した発光を得るには不十分であった。具体的に、発光層における電荷のバランスが悪く、励起子が電子輸送層側に寄る。その結果、電子輸送層による励起子のエネルギー吸収を防ぐために、エネルギーギャップの大きな正孔ブロック層が発光層に隣接して必要となった。しかしながら、正孔ブロック層はエネルギーギャップが大きいため、電荷注入がしにくく、電荷輸送能も低い。そのため、駆動電圧の上昇及び発光層への注入電荷の不足により発光効率が低下した。
 また、正孔ブロック層への正孔注入により、ブロック層自体の劣化も生じやすく、燐光発光の短寿命化の原因となった。
 さらに、有機層の積層数が増えたことにより、素子の膜厚設計に課題が生じ、また、製造費用が高くなる原因にもなる。
 本発明の目的は、発光効率が高く、駆動電圧の低く、長寿命な燐光発光素子を簡便に提供することである。
The technique for stabilizing the light-emitting layer disclosed in the above document is insufficient for obtaining stable light emission. Specifically, the charge balance in the light emitting layer is poor, and excitons approach the electron transport layer side. As a result, in order to prevent the absorption of excitons by the electron transport layer, a hole blocking layer having a large energy gap is required adjacent to the light emitting layer. However, since the hole blocking layer has a large energy gap, it is difficult to inject charges and has a low charge transport capability. Therefore, the light emission efficiency was lowered due to an increase in driving voltage and a shortage of charge injected into the light emitting layer.
Moreover, the hole injection into the hole blocking layer is likely to cause deterioration of the blocking layer itself, which causes a shortened life of phosphorescence.
Furthermore, the increase in the number of stacked organic layers causes problems in device thickness design, and also increases the manufacturing cost.
An object of the present invention is to simply provide a phosphorescent light-emitting element having high luminous efficiency, low driving voltage, and long life.
 本発明者らは、上記課題を解決するべく鋭意検討した結果、発光層に2種以上の所定のホスト材料を使用し、かつ、隣接して電子供与性材料を含有する層を積層することにより、発光効率が高く、駆動電圧の低い、長寿命な素子を形成できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above-described problems, the present inventors have used two or more kinds of predetermined host materials for the light emitting layer and laminated a layer containing an electron donating material adjacent to the light emitting layer. The inventors have found that a device having a high light emission efficiency and a low driving voltage and having a long lifetime can be formed, and the present invention has been completed.
 本発明によれば、以下の有機EL素子が提供される。
1.陽極と、発光層と、電子注入層と、陰極とを、この順に有し、
 前記電子注入層と前記発光層は隣接してあり、
 前記電子注入層は、π電子欠乏性化合物と、電子供与性材料と、を含み
 前記発光層は、少なくとも、第1ホスト材料、第2ホスト材料及び燐光発光性ドーパント材料を含む、有機エレクトロルミネッセンス素子。
2.前記第1ホスト材料及び第2ホスト材料が、下記式(1)~(3)のいずれかで表される材料から選択される、1に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000001
[式(1)中、
 Zは、aにおいて縮合している下記式(1-1)又は(1-2)で表される環構造を表す。Zは、bにおいて縮合している下記式(1-1)又は(1-2)で表される環構造を表す。ただし、Z及びZの少なくとも1つは下記式(1-1)で表される。
 Mは、置換もしくは無置換の環形成原子数5~30の窒素含有ヘテロ芳香族環であり、
 Lは、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の2価の複素環基、環形成炭素数5~30のシクロアルキレン基、又は、これらが連結した基を表す。
 kは、1又は2を表す。]
Figure JPOXMLDOC01-appb-C000002
[上記式(1-1)において、
 cは、前記式(1)のa又はbにおいて縮合していることを表す。
 上記(1-2)において、d,e及びfのいずれか1つは、前記一般式(1)のa又はbにおいて縮合していることを表す。
 上記式(1-1)及び(1-2)において、
 X11は、硫黄原子、酸素原子、N-R19、又はC(R20)(R21)を表す。
 R11~R21は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の炭素数7~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 また、隣り合うR11~R21は互いに結合して環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000003
[式(2)中、
 Z11は、aにおいて縮合している前記式(1-1)又は(1-2)で表される環構造を表す。Z21は、bにおいて縮合している前記式(1-1)又は(1-2)で表される環構造を表す。ただし、Z11及びZ21の少なくとも1つは前記式(1-1)で表される。
 M11は、置換もしくは無置換の環形成原子数5~30の窒素含有ヘテロ芳香族環であり、
 kは、1又は2を表す。]
Figure JPOXMLDOC01-appb-C000004
[式(3)中、
 A及びAは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の複素環基を表す。
 Aは、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基を表す。
 mは、0~3の整数を表す。
 X~X及びY~Yは、それぞれ独立に、N又はCRを表す。
 Rは、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換のシリル基、ハロゲン原子又はシアノ基を表す。Rが複数存在する場合、複数のRはそれぞれ同一でも異なっていてもよい。
 X~Xの1つと、Y~Yの1つは、Aを介して結合している。
 さらに、式(3)は、下記(i)~(v)の少なくともいずれかを満たす。
(i)A及びAの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
(ii)X~X及びY~Yの少なくとも1つはCRであり、X~X及びY~YにおけるRの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
(iii)mは1~3の整数であり、Aの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の2価の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の2価の複素環基である。
(iv)X~X及びY~Yの少なくとも1つはCRであり、X~X及びY~YにおけるRの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
(v)X~X及びY~Yの少なくとも1つはC-CNである。]
3.記第1ホスト材料が前記式(1)で表される材料であり、前記第2ホスト材料が、前記式(3)で表される材料である、2に記載の有機エレクトロルミネッセンス素子。
4.記第1ホスト材料が前記式(2)で表される材料であり、前記第2ホスト材料が、前記式(3)で表される材料である、2に記載の有機エレクトロルミネッセンス素子。
5.前記第1ホスト材料が前記式(1)で表される材料であり、前記第2ホスト材料が、前記式(2)で表される材料である、2に記載の有機エレクトロルミネッセンス素子。
6.前記π電子欠乏性化合物が、下記式(I)~(III)で表される化合物から選択される、1~5のいずれかに記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000005
[式中、R1a~R7a、R1b~R7b、R1c~R6cは、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~60のアリール基、置換もしくは無置換のピリジル基、置換もしくは無置換のキノリル基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換の環形成炭素数6~50のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基又はカルボキシル基であり、R1a~R7a、R1b~R7b又はR1c~R6cのうち、隣接するものは互いに結合して環を形成してもよい。
 L1a及びL1bは、それぞれ、単結合又は連結基である。
 Ar1a、Ar1b、Ar1c及びAr2cは、それぞれ、置換もしくは無置換の炭素数6~60の芳香族基である。
 nは、1~4であり、nが2以上の場合、括弧の内のフェナントロリン骨格を有する基は、同一でも異なっていてもよい。]
7.前記電子供与性材料が、アルカリ金属の単体、アルカリ土類金属の単体、希土類金属の単体、希土類金属の化合物及び希土類金属の錯体から選択される少なくとも1つである、1~6のいずれかに記載の有機エレクトロルミネッセンス素子。
8.前記第1ホスト材料と第2ホスト材料の合計に対する第1ホスト材料の含有率が30~95質量%である、1~7のいずれかに記載の有機エレクトロルミネッセンス素子。
9.前記第1ホスト材料と第2ホスト材料の合計に対する第1ホスト材料の含有率が50~95質量%である、1~7のいずれかに記載の有機エレクトロルミネッセンス素子。
10.前記電子注入層における、電子供与性材料の含有率が20質量%以下である、1~9のいずれかに記載の有機エレクトロルミネッセンス素子。
11.前記燐光発光性ドーパント材料が、イリジウム(Ir)、オスミウム(Os)及び白金(Pt)から選択される金属原子のオルトメタル化錯体である1~10のいずれかに記載の有機エレクトロルミネッセンス素子。
12.前記発光層と前記陰極の間に、前記電子注入層のみを有する、1~11のいずれかに記載の有機エレクトロルミネッセンス素子。
According to the present invention, the following organic EL elements are provided.
1. Having an anode, a light emitting layer, an electron injection layer, and a cathode in this order;
The electron injection layer and the light emitting layer are adjacent to each other;
The electron injection layer includes a π electron deficient compound and an electron donating material. The light emitting layer includes at least a first host material, a second host material, and a phosphorescent dopant material. .
2. 2. The organic electroluminescence device according to 1, wherein the first host material and the second host material are selected from materials represented by any of the following formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000001
[In Formula (1),
Z 1 represents a ring structure represented by the following formula (1-1) or (1-2) condensed at a. Z 2 represents a ring structure represented by the following formula (1-1) or (1-2) condensed at b. However, at least one of Z 1 and Z 2 is represented by the following formula (1-1).
M 1 is a substituted or unsubstituted nitrogen-containing heteroaromatic ring having 5 to 30 ring-forming atoms,
L 1 represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms, and a ring forming carbon number. It represents a 5-30 cycloalkylene group or a group in which these are linked.
k represents 1 or 2. ]
Figure JPOXMLDOC01-appb-C000002
[In the above formula (1-1),
c represents condensation in a or b in the formula (1).
In the above (1-2), any one of d, e and f represents condensation in a or b in the general formula (1).
In the above formulas (1-1) and (1-2),
X 11 represents a sulfur atom, an oxygen atom, N—R 19 , or C (R 20 ) (R 21 ).
R 11 to R 21 each independently represents a hydrogen atom, a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom number of 5 to 30 heterocyclic groups, substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted alkenyl groups having 2 to 30 carbon atoms, substituted or unsubstituted alkynyl groups having 2 to 30 carbon atoms, substituted or An unsubstituted silyl group, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms Represents a group.
Adjacent R 11 to R 21 may be bonded to each other to form a ring. ]
Figure JPOXMLDOC01-appb-C000003
[In Formula (2),
Z 11 represents a ring structure represented by the formula (1-1) or (1-2) condensed at a. Z 21 represents a ring structure represented by the formula (1-1) or (1-2) condensed at b. However, at least one of Z 11 and Z 21 is represented by the formula (1-1).
M 11 is a substituted or unsubstituted nitrogen-containing heteroaromatic ring having 5 to 30 ring atoms.
k 1 represents 1 or 2. ]
Figure JPOXMLDOC01-appb-C000004
[In Formula (3),
A 1 and A 2 each independently represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
A 3 represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms.
m represents an integer of 0 to 3.
X 1 to X 8 and Y 1 to Y 8 each independently represent N or CR a .
R a is independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, a substituted or unsubstituted group. It represents a substituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted silyl group, a halogen atom or a cyano group. When a plurality of R a are present, the plurality of R a may be the same or different.
One of X 5 to X 8 and one of Y 1 to Y 4 are bonded via A 3 .
Further, the formula (3) satisfies at least one of the following (i) to (v).
(I) At least one of A 1 and A 2 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a heterocycle having 5 to 30 ring atoms substituted with a cyano group. It is a cyclic group.
(Ii) At least one of X 1 to X 4 and Y 5 to Y 8 is CR a , and at least one of R a in X 1 to X 4 and Y 5 to Y 8 is substituted with a cyano group It is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
(Iii) m is an integer of 1 to 3, and at least one of A 3 is substituted with a divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a cyano group And a divalent heterocyclic group having 5 to 30 ring atoms.
(Iv) At least one of X 5 to X 8 and Y 1 to Y 4 is CR a , and at least one of R a in X 5 to X 8 and Y 1 to Y 8 is substituted with a cyano group It is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
(V) At least one of X 1 to X 8 and Y 1 to Y 8 is C-CN. ]
3. 3. The organic electroluminescence device according to 2, wherein the first host material is a material represented by the formula (1), and the second host material is a material represented by the formula (3).
4). 3. The organic electroluminescence device according to 2, wherein the first host material is a material represented by the formula (2), and the second host material is a material represented by the formula (3).
5. 3. The organic electroluminescence device according to 2, wherein the first host material is a material represented by the formula (1), and the second host material is a material represented by the formula (2).
6). 6. The organic electroluminescence device according to any one of 1 to 5, wherein the π electron deficient compound is selected from compounds represented by the following formulas (I) to (III).
Figure JPOXMLDOC01-appb-C000005
[Wherein, R 1a to R 7a , R 1b to R 7b , and R 1c to R 6c each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, substituted or unsubstituted. Pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, substituted or unsubstituted 7 to 7 carbon atoms 50 aralkyl groups, substituted or unsubstituted alkoxy groups having 1 to 50 carbon atoms, substituted or unsubstituted aryloxy groups having 6 to 50 ring carbon atoms, substituted or unsubstituted arylthio groups having 6 to 50 ring carbon atoms A substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, an amino group substituted with a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, halo Emissions atom, a cyano group, a nitro group, a hydroxyl group or a carboxyl group, R 1a ~ R 7a, of R 1b ~ R 7b or R 1c ~ R 6c, are bonded to each other to form a ring in which adjacent Also good.
L 1a and L 1b are each a single bond or a linking group.
Ar 1a , Ar 1b , Ar 1c and Ar 2c are each a substituted or unsubstituted aromatic group having 6 to 60 carbon atoms.
n is 1 to 4, and when n is 2 or more, the groups having a phenanthroline skeleton in parentheses may be the same or different. ]
7). Any one of 1 to 6, wherein the electron donating material is at least one selected from a simple substance of an alkali metal, a simple substance of an alkaline earth metal, a simple substance of a rare earth metal, a rare earth metal compound, and a rare earth metal complex. The organic electroluminescent element of description.
8). 8. The organic electroluminescence device according to any one of 1 to 7, wherein the content of the first host material with respect to the total of the first host material and the second host material is 30 to 95% by mass.
9. 8. The organic electroluminescence device according to any one of 1 to 7, wherein the content of the first host material is 50 to 95% by mass with respect to the total of the first host material and the second host material.
10. 10. The organic electroluminescence device according to any one of 1 to 9, wherein the content of the electron donating material in the electron injection layer is 20% by mass or less.
11. 11. The organic electroluminescence device according to any one of 1 to 10, wherein the phosphorescent dopant material is an orthometalated complex of a metal atom selected from iridium (Ir), osmium (Os), and platinum (Pt).
12 12. The organic electroluminescence device according to any one of 1 to 11, having only the electron injection layer between the light emitting layer and the cathode.
 本発明によれば、隣接して電子供与性材料を含有する層を積層することにより、発光効率が高く、駆動電圧の低く、長寿命な有機EL素子を提供できる。 According to the present invention, by laminating layers containing an electron donating material adjacent to each other, it is possible to provide an organic EL device with high luminous efficiency, low driving voltage, and long life.
本発明の有機EL素子の一実施形態の層構成を示す図である。It is a figure which shows the layer structure of one Embodiment of the organic EL element of this invention. 本発明の有機EL素子の他の実施形態の層構成を示す図である。It is a figure which shows the layer structure of other embodiment of the organic EL element of this invention.
 本発明の有機EL素子は、陽極と、発光層と、電子注入層と、陰極とを、この順に有する。
 図1に本発明に係る有機発光素子の一実施形態の素子構成を示す。
 有機EL素子1は、陽極10、正孔注入層20、正孔輸送層30、発光層40、電子注入層50及び陰極60を、この順に積層した構成をしている。
 本発明では、電子注入層50と発光層40は隣接してある。また、電子注入層50及び発光層40が、それぞれ、下記の構成成分を含有する。
・電子注入層は、π電子欠乏性化合物と、電子供与性材料を含む。
・発光層は、少なくとも、第1ホスト材料、第2ホスト材料及び燐光発光性ドーパント材料を含む。
The organic EL device of the present invention has an anode, a light emitting layer, an electron injection layer, and a cathode in this order.
FIG. 1 shows an element configuration of an embodiment of an organic light emitting element according to the present invention.
The organic EL element 1 has a configuration in which an anode 10, a hole injection layer 20, a hole transport layer 30, a light emitting layer 40, an electron injection layer 50, and a cathode 60 are laminated in this order.
In the present invention, the electron injection layer 50 and the light emitting layer 40 are adjacent to each other. Moreover, the electron injection layer 50 and the light emitting layer 40 each contain the following structural component.
The electron injection layer includes a π electron deficient compound and an electron donating material.
The light emitting layer includes at least a first host material, a second host material, and a phosphorescent dopant material.
 本発明では、上記の電子注入層と発光層を使用することにより、発光層における電荷のバランスが良好となるため、発光効率が向上する。また、発光層が安定となるため、寿命が向上する。
 さらに、発光層と陰極(スタック型の有機EL素子の場合は、中間電極)の間において、従来の素子では、電子輸送層や正孔ブロック層等を2層以上積層して形成することが一般的であったが、本発明では電荷バランスにすぐれているため上述の電子注入層を1層のみ形成した場合でも、高い発光効率が得られる。
 以下、本発明の特徴である電子注入層及び発光層について説明する。
In the present invention, by using the electron injecting layer and the light emitting layer, the charge balance in the light emitting layer is improved, so that the light emission efficiency is improved. Further, since the light emitting layer becomes stable, the life is improved.
In addition, between the light emitting layer and the cathode (intermediate electrode in the case of a stack type organic EL device), in conventional devices, it is generally formed by laminating two or more electron transport layers, hole blocking layers, and the like. However, since the present invention is excellent in charge balance, high luminous efficiency can be obtained even when only one electron injection layer is formed.
Hereinafter, the electron injection layer and the light emitting layer, which are the features of the present invention, will be described.
1.電子注入層
 本発明の電子注入層は、π電子欠乏性化合物と、電子供与性材料を含む。
 π電子欠乏性化合物としては、例えば、金属原子に配位可能な化合物等が挙げられる。具体的には、フェナントロリン系化合物、ベンゾイミダゾール系化合物、キノリノール等が挙げられる。
1. Electron Injection Layer The electron injection layer of the present invention includes a π electron deficient compound and an electron donating material.
Examples of the π electron deficient compound include compounds capable of coordinating with metal atoms. Specific examples include phenanthroline compounds, benzimidazole compounds, quinolinol, and the like.
 フェナントロリン系化合物としては、下記式(I)~(III)で表される化合物が好ましい。なかでも下記式(I)又は(II)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000006
As the phenanthroline-based compound, compounds represented by the following formulas (I) to (III) are preferable. Of these, compounds represented by the following formula (I) or (II) are preferred.
Figure JPOXMLDOC01-appb-C000006
 上記式(I)~(III)中、R1a~R7a、R1b~R7b、及びR1c~R6cは、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~60のアリール基、置換もしくは無置換のピリジル基、置換もしくは無置換のキノリル基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換の環形成炭素数6~50のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基又はカルボキシル基である。
 R1a~R7a、R1b~R7b、又はR1c~R6cのうち、隣接するものは互いに結合して環を形成してもよい。環の例としては、ベンゼン環、ナフタレン環、ピラジン環、ピリジン環、フラン環等が挙げられる。
 L1a及びL1bは、それぞれ、単結合又は連結基である。連結基としては、置換もしくは無置換の環形成炭素数6~20の芳香族基、置換もしくは無置換の炭素数1~8のアルキレン鎖、置換もしくは無置換の複素環が挙げられる。具体的としては、置換もしくは無置換のベンゼン環、置換もしくは無置換のナフタレン環、置換もしくは無置換のメチレン鎖、又は置換もしくは無置換のピリジン環が好ましい。
 Ar1a、Ar1b、Ar1c及びAr2cは、それぞれ、置換もしくは無置換の炭素数6~60の芳香族基である。
 nは、1~4であり、nが2以上の場合、括弧の内のフェナントロリン骨格を有する基は、同一でも異なっていてもよい。
In the above formulas (I) to (III), R 1a to R 7a , R 1b to R 7b , and R 1c to R 6c are each independently a hydrogen atom, a substituted or unsubstituted ring-forming carbon number of 6 to 60 Aryl group, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, substituted Or an unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 carbon atoms, a substituted or unsubstituted ring Substituted with an arylthio group having 6 to 50 carbon atoms, a substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms Amino group, a halogen atom, a cyano group, a nitro group, a hydroxyl group or a carboxyl group.
Of R 1a to R 7a , R 1b to R 7b , or R 1c to R 6c , adjacent ones may be bonded to each other to form a ring. Examples of the ring include a benzene ring, a naphthalene ring, a pyrazine ring, a pyridine ring, and a furan ring.
L 1a and L 1b are each a single bond or a linking group. Examples of the linking group include a substituted or unsubstituted aromatic group having 6 to 20 ring carbon atoms, a substituted or unsubstituted alkylene chain having 1 to 8 carbon atoms, and a substituted or unsubstituted heterocyclic ring. Specifically, a substituted or unsubstituted benzene ring, a substituted or unsubstituted naphthalene ring, a substituted or unsubstituted methylene chain, or a substituted or unsubstituted pyridine ring is preferable.
Ar 1a , Ar 1b , Ar 1c and Ar 2c are each a substituted or unsubstituted aromatic group having 6 to 60 carbon atoms.
n is 1 to 4, and when n is 2 or more, the groups having a phenanthroline skeleton in parentheses may be the same or different.
 式(I)又は(II)で表される化合物としては、下記式(I-a)、(I-b)、(II-a)又は(II-b)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000007
As the compound represented by the formula (I) or (II), a compound represented by the following formula (Ia), (Ib), (II-a) or (II-b) is preferable.
Figure JPOXMLDOC01-appb-C000007
 フェナントロリン骨格を有する基とアントラセン骨格を有する基を有することにより、電子アクセプターとしての機能と電子輸送層としての輸送能を両立することが可能となる。更には、蒸着安定性や成膜性が向上する。 By having a group having a phenanthroline skeleton and a group having an anthracene skeleton, it is possible to achieve both a function as an electron acceptor and a transport ability as an electron transport layer. Furthermore, deposition stability and film formability are improved.
 式(I-a)、(I-b)、(II-a)及び(II-b)において、R1a~R7a、R1b~R7b、L1a及びL1bは、それぞれ式(I)及び(II)におけるR1a~R7a、R1b~R7b、L1a及びL1bと同様な基を表す。
 R11a~R20a及びR11b~R20bは、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~60のアリール基、置換もしくは無置換のピリジル基、置換もしくは無置換のキノリル基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数7~50のアラルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数5~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換の環形成炭素数6~50のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基又はカルボキシル基である。
 R11a~R20a又はR11b~R20bのうち、隣接するものは互いに結合して環を形成してもよい。環の例としては、ベンゼン環、ナフタレン環、ピラジン環、ピリジン環、フラン環等が挙げられる。
In the formulas (Ia), (Ib), (II-a) and (II-b), R 1a to R 7a , R 1b to R 7b , L 1a and L 1b are each represented by the formula (I) And the same group as R 1a to R 7a , R 1b to R 7b , L 1a and L 1b in (II).
R 11a to R 20a and R 11b to R 20b are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted quinolyl. Group, substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 7 to 50 ring carbon atoms, substituted or unsubstituted Substituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, substituted or unsubstituted arylthio group having 5 to 50 ring carbon atoms, substituted or unsubstituted carbon An alkoxycarbonyl group having 2 to 50 amino acids, an amino group substituted with a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a halogen atom, Anomoto, a nitro group, a hydroxyl group or a carboxyl group.
Of R 11a to R 20a or R 11b to R 20b , adjacent ones may be bonded to each other to form a ring. Examples of the ring include a benzene ring, a naphthalene ring, a pyrazine ring, a pyridine ring, and a furan ring.
 以下、上述した式(I)等の各基の例について説明する。
 尚、本明細書において、アリール基は、単環の芳香族炭化水素環基及び複数の炭化水素環が縮合した縮合芳香族炭化水素環基を含み、ヘテロアリール基は、単環のヘテロ芳香族環基、並びに複数のヘテロ芳香族環が縮合したヘテロ縮合芳香族環基、及び芳香族炭化水素環とヘテロ芳香族環とが縮合したヘテロ縮合芳香族環基を含む。
 環形成炭素(核炭素)とは、芳香環を構成する炭素原子を意味し、環形成原子(核原子)とは複素環(飽和環、不飽和環及び芳香族複素環を含む)を構成する炭素原子及びヘテロ原子を意味する。
 「置換もしくは無置換の炭素数a~bのX基」という表現における「炭素数a~b」は、X基が無置換である場合の炭素数を表すものであり、X基が置換されている場合の置換基の炭素数は含めない。
 本発明において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、三重水素(tritium)、を包含する。
Hereinafter, examples of each group such as the above-described formula (I) will be described.
In the present specification, the aryl group includes a monocyclic aromatic hydrocarbon ring group and a condensed aromatic hydrocarbon ring group in which a plurality of hydrocarbon rings are condensed, and the heteroaryl group is a monocyclic heteroaromatic group. And a hetero-fused aromatic ring group in which a plurality of heteroaromatic rings are condensed, and a hetero-fused aromatic ring group in which an aromatic hydrocarbon ring and a heteroaromatic ring are condensed.
Ring-forming carbon (nuclear carbon) means a carbon atom constituting an aromatic ring, and ring-forming atom (nuclear atom) constitutes a heterocyclic ring (including a saturated ring, an unsaturated ring and an aromatic heterocyclic ring). Means carbon and heteroatoms.
The “carbon number ab” in the expression “substituted or unsubstituted X group having carbon number ab” represents the number of carbons when the X group is unsubstituted, and the X group is substituted. The carbon number of the substituent in the case where it is present is not included.
In the present invention, the hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (triuterium), and tritium.
 環形成炭素数6~60のアリール基は、好ましくは炭素数6~30、特に好ましくは炭素数6~20であり、例えばフェニル、フルオレニル、ナフチル、アントリル、フェナントリル、クリセニル、ピレニル、トリフェニレニル、フルオランテニル等が挙げられる。
 Ar1a、Ar1b、Ar1c及びAr2cが示す芳香族基としては、上述したアリール基、及びアリール基から水素原子を除くことにより導かれる一価又は二価以上の基が挙げられる。
 式(I)及び(II)におけるR1a~R7a及びR1b~R7bとしては、水素、フェニル、ナフチルが好ましい。
The aryl group having 6 to 60 ring carbon atoms preferably has 6 to 30 carbon atoms, particularly preferably 6 to 20 carbon atoms. For example, phenyl, fluorenyl, naphthyl, anthryl, phenanthryl, chrysenyl, pyrenyl, triphenylenyl, fluorane And tenenyl.
Examples of the aromatic group represented by Ar 1a , Ar 1b , Ar 1c and Ar 2c include the above-described aryl group and a monovalent or divalent or higher group derived by removing a hydrogen atom from the aryl group.
R 1a to R 7a and R 1b to R 7b in the formulas (I) and (II) are preferably hydrogen, phenyl, or naphthyl.
 炭素数1~50のアルキル基としては、直鎖状若しくは分岐状のアルキル基がある。好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、例えばメチル、エチル、プロピル、ブチル、ペンチル、ヘキシル等が挙げられる。 As the alkyl group having 1 to 50 carbon atoms, there is a linear or branched alkyl group. Preferably it has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, and examples thereof include methyl, ethyl, propyl, butyl, pentyl, hexyl and the like.
 環形成炭素数3~50のシクロアルキル基としては、シクロペンチル、シクロヘキシル等が挙げられる。 Examples of the cycloalkyl group having 3 to 50 ring carbon atoms include cyclopentyl and cyclohexyl.
 炭素数7~50のアラルキル基は、-Y-Zと表され、Yの例として上記のアルキル基の例に対応するアルキレンの例が挙げられ、Zの例として上記のアリール基の例が挙げられる。アラルキル基のアリール部分は、炭素数が6~30が好ましい。アルキル部分は炭素数1~10が好ましく、特に好ましくは1~6である。例えば、ベンジル基、フェニルエチル基、2-フェニルプロパン-2-イル基である。 The aralkyl group having 7 to 50 carbon atoms is represented by —Y—Z. Examples of Y include alkylene examples corresponding to the above alkyl groups, and examples of Z include the above aryl groups. It is done. The aryl part of the aralkyl group preferably has 6 to 30 carbon atoms. The alkyl moiety preferably has 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms. For example, benzyl group, phenylethyl group, 2-phenylpropan-2-yl group.
 炭素数1~50のアルコキシ基は、-OYと表され、Yの例として上記のアルキル基の例が挙げられる。アルコキシ基は、好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、例えばメトキシ、エトキシ、プロポキシ、ブトキシ等が挙げられる。 An alkoxy group having 1 to 50 carbon atoms is represented as —OY, and examples of Y include the above alkyl groups. The alkoxy group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms, and examples thereof include methoxy, ethoxy, propoxy, butoxy and the like.
 環形成炭素数6~50のアリールオキシ基は、-OYと表され、Yの例として上記のアリール基の例が挙げられる。好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えばフェニルオキシ、2-ナフチルオキシ等が挙げられる。 An aryloxy group having 6 to 50 ring carbon atoms is represented by —OY, and examples of Y include the above aryl groups. The number of carbon atoms is preferably 6 to 20, more preferably 6 to 16, and particularly preferably 6 to 12, and examples thereof include phenyloxy and 2-naphthyloxy.
 環形成炭素数6~50のアリールチオ基は、-SYと表され、Yの例として上記のアリール基の例が挙げられる。好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えばフェニルチオ等が挙げられる。 An arylthio group having 6 to 50 ring carbon atoms is represented by —SY, and examples of Y include the above aryl groups. Preferably it has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenylthio.
 炭素数2~50のアルコキシカルボニル基は、好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~12であり、例えばメトキシカルボニル、エトキシカルボニル等が挙げられる。 The alkoxycarbonyl group having 2 to 50 carbon atoms preferably has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 12 carbon atoms, and examples thereof include methoxycarbonyl and ethoxycarbonyl.
 置換もしくは無置換の環形成炭素数6~50のアリール基で置換されたアミノ基としては、ジアリールアミノ、アルキルアリールアミノ及びアリールアミノが挙げられる。窒素原子に結合するアルキル基及びアリール基の例としては上述のアリール基及びアルキル基が挙げられる。好ましくは炭素数6~20、より好ましくは炭素数6~12、特に好ましくは炭素数6であり、例えば、ジフェニルアミノ等が挙げられる Examples of the amino group substituted with a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms include diarylamino, alkylarylamino, and arylamino. Examples of the alkyl group and aryl group bonded to the nitrogen atom include the above-described aryl group and alkyl group. Preferably it has 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms, particularly preferably 6 carbon atoms, and examples thereof include diphenylamino and the like.
 ハロゲン原子としては、フッ素原子、塩素原子及び臭素原子が挙げられ、好ましくはフッ素原子である。 Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom, preferably a fluorine atom.
 上記各基の置換基としては、それぞれ独立に、炭素数1~20の直鎖状もしくは分岐状のアルキル基、炭素数2~20の直鎖状もしくは分岐状のアルケニル基、環形成炭素数3~20のシクロアルキル基、炭素数1~20のアルキル基を有するトリアルキルシリル基、環形成炭素数6~24のアリール基又はアルキル基を有するシリル基、炭素数1~20のアルキル基及び環形成炭素数6~24のアリール基を有するアルキルアリールシリル基、環形成炭素数6~24のアリール基、環形成原子数5~24のヘテロアリール基、炭素数1~20のアルコキシ基、ハロゲン原子又はシアノ基である。具体的には、上記のアリール基、アルキル基、シクロアルキル基、ヘテロアリール基、アルコキシ基、ハロゲン原子又はシアノ基が挙げられる。さらに、これらの基が同様の置換基を有していてもよい。
 アルケニル基としては、上述したアルキル基の分子内に不飽和結合を有する置換基が挙げられる。
 アリール基を有するシリル基としては、トリアリールシリル基、アルキルアリールシリル基、トリアルキルシリル基がある。
 好適な置換基の例としては、メチル、エチル、プロピル、イソプロピル、ブチル、sec-ブチル、tert-ブチル、シクロヘキシル、フェニル、1-ナフチル、2-ナフチル、トリメチルシリル、トリフェニルシリルが挙げられる。
 以下に式(I)~(III)で表される化合物の具体例を示す。
Substituents for the above groups are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 2 to 20 carbon atoms, or a ring-forming carbon number of 3 A cycloalkyl group having 20 to 20 carbon atoms, a trialkylsilyl group having an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 24 ring carbon atoms or a silyl group having an alkyl group, an alkyl group having 1 to 20 carbon atoms, and a ring An alkylarylsilyl group having an aryl group having 6 to 24 carbon atoms, an aryl group having 6 to 24 ring carbon atoms, a heteroaryl group having 5 to 24 ring atoms, an alkoxy group having 1 to 20 carbon atoms, a halogen atom Or it is a cyano group. Specific examples include the aryl group, alkyl group, cycloalkyl group, heteroaryl group, alkoxy group, halogen atom, and cyano group. Furthermore, these groups may have a similar substituent.
Examples of the alkenyl group include a substituent having an unsaturated bond in the molecule of the alkyl group described above.
Examples of the silyl group having an aryl group include a triarylsilyl group, an alkylarylsilyl group, and a trialkylsilyl group.
Examples of suitable substituents include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, trimethylsilyl, triphenylsilyl.
Specific examples of the compounds represented by formulas (I) to (III) are shown below.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(I)及び(II)で表される化合物の合成については、WO2007/018004、WO2006/64484,WO2006/021982を参照できる。 For the synthesis of the compounds represented by formulas (I) and (II), reference can be made to WO2007 / 018004, WO2006 / 64484, and WO2006 / 021982.
 ベンゾイミダゾール系化合物としては、下記式(IV)で表わされるベンゾイミダゾール誘導体を挙げることができる。
Figure JPOXMLDOC01-appb-C000009
Examples of the benzimidazole compound include benzimidazole derivatives represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000009
 式中、A14は、水素原子、ハロゲン原子、置換もしくは無置換の炭素数1~20のアルキル基、3~40個の芳香族環が縮合した多環芳香族炭化水素基を有する、置換もしくは無置換の炭素数6~60の炭化水素基、又は含窒素複素環基である。
 ハロゲン原子及び炭素数1~20のアルキル基の具体例は、上述した式(I)と同様である。
In the formula, A 14 has a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a polycyclic aromatic hydrocarbon group condensed with 3 to 40 aromatic rings, substituted or unsubstituted, An unsubstituted hydrocarbon group having 6 to 60 carbon atoms or a nitrogen-containing heterocyclic group.
Specific examples of the halogen atom and the alkyl group having 1 to 20 carbon atoms are the same as those in the above formula (I).
 3~40個の芳香族環が縮合した多環芳香族炭化水素基を有する、炭素数6~60の置換もしくは無置換の炭化水素基について、3~40個の芳香族環が縮合した多環芳香族炭化水素基としては、アントラセン、ナフタセン、ペンタセン、ピレン、クリセン等が挙げられる。炭素数6~60の炭化水素基としては、アルキル基、シクロアルキル基、アリール基等が挙げられる。尚、これらの具体例は上述した式(I)と同様である。炭化水素基としてはアリール基が好ましく、なかでも、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フルオレニル基等が好ましい。これらは置換基を有していてもよい。
 含窒素複素環基としては、ピリジン環、トリアジン等が挙げられる。
A polycyclic aromatic hydrocarbon group having 3 to 40 aromatic rings condensed therein and a polycyclic aromatic hydrocarbon group having 6 to 60 carbon atoms and a condensed polycyclic ring having 3 to 40 aromatic rings condensed Examples of the aromatic hydrocarbon group include anthracene, naphthacene, pentacene, pyrene and chrysene. Examples of the hydrocarbon group having 6 to 60 carbon atoms include an alkyl group, a cycloalkyl group, and an aryl group. In addition, these specific examples are the same as that of Formula (I) mentioned above. As the hydrocarbon group, an aryl group is preferable, and among them, a phenyl group, a naphthyl group, a biphenyl group, a terphenyl group, a fluorenyl group, and the like are preferable. These may have a substituent.
Examples of the nitrogen-containing heterocyclic group include a pyridine ring and triazine.
 Bは、単結合、又は置換もしくは無置換の芳香族環基である。芳香族環基としては、フェニレン基、アントラセニレン基が好ましい。
 R31及びR32は、それぞれ独立に、水素原子、ハロゲン原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数6~60の芳香族炭化水素基、置換もしくは無置換の含窒素複素環基、又は、置換もしくは無置換の炭素数1~20のアルコキシ基である。各基の具体例は、上述した式(I)、A14と同様である。
 式(IV)に示した化合物の具体例を以下に示す。
B is a single bond or a substituted or unsubstituted aromatic ring group. As the aromatic ring group, a phenylene group and an anthracenylene group are preferable.
R 31 and R 32 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 60 carbon atoms, substituted or unsubstituted An unsubstituted nitrogen-containing heterocyclic group, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms. Specific examples of the groups are the above-mentioned formula (I), is the same as A 14.
Specific examples of the compound represented by the formula (IV) are shown below.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 キノリノールとしては、8-ヒドロキシキノリンが好ましい。 As the quinolinol, 8-hydroxyquinoline is preferable.
 電子供与性材料としては、電子供与性金属単体、金属化合物及び金属錯体が挙げられる。具体的には、アルカリ金属、アルカリ金属化合物、アルカリ金属を含む有機金属錯体、アルカリ土類金属、アルカリ土類金属化合物、アルカリ土類金属を含む有機金属錯体、希土類金属、希土類金属化合物及び希土類金属を含む有機金属錯体のうち、少なくとも1つを含有する層が好ましい。なかでも、アルカリ金属、アルカリ土類金属、希土類金属の単体、希土類金属の化合物及び希土類金属の錯体のうち、少なくとも1つを含有することが好ましい。 Examples of the electron donating material include an electron donating metal simple substance, a metal compound, and a metal complex. Specifically, alkali metals, alkali metal compounds, organometallic complexes containing alkali metals, alkaline earth metals, alkaline earth metal compounds, organometallic complexes containing alkaline earth metals, rare earth metals, rare earth metal compounds, and rare earth metals Of the organometallic complexes containing, a layer containing at least one is preferable. Among these, it is preferable to contain at least one of an alkali metal, an alkaline earth metal, a rare earth metal, a rare earth metal compound, and a rare earth metal complex.
 アルカリ金属としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち好ましくはLi、K、Rb、Cs、さらに好ましくはLi、Rb又はCsであり、最も好ましくはLiである。
 アルカリ土類金属としては、カルシウム(Ca)、マグネシウム(Mg)ストロンチウム(Sr)、バリウム(Ba)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 希土類金属としては、スカンジウム(Sc)、イットリウム(Y)、セリウム(Ce)、テルビウム(Tb)、イッテルビウム(Yb)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 以上の金属のうち好ましい金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が可能である。
Examples of the alkali metal include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) and the like, and those having a work function of 2.9 eV or less are particularly preferable. Of these, Li, K, Rb, and Cs are preferable, Li, Rb, and Cs are more preferable, and Li is most preferable.
Examples of the alkaline earth metal include calcium (Ca), magnesium (Mg) strontium (Sr), barium (Ba) and the like, and those having a work function of 2.9 eV or less are particularly preferable.
Examples of the rare earth metal include scandium (Sc), yttrium (Y), cerium (Ce), terbium (Tb), ytterbium (Yb) and the like, and those having a work function of 2.9 eV or less are particularly preferable.
Among the above metals, preferred metals are particularly high in reducing ability, and by adding a relatively small amount to the electron injection region, it is possible to improve the light emission luminance and extend the life of the organic EL element.
 アルカリ金属化合物としては、酸化リチウム(LiO)、酸化セシウム(CsO)、酸化カリウム(K2O)等のアルカリ酸化物、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化セシウム(CsF)、フッ化カリウム(KF)等のアルカリハロゲン化物等が挙げられ、フッ化リチウム(LiF)、酸化リチウム(LiO)、フッ化ナトリウム(NaF)が好ましい。
 アルカリ土類金属化合物としては、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化カルシウム(CaO)及びこれらを混合したストロンチウム酸バリウム(BaSr1-xO)(0<x<1)、カルシウム酸バリウム(BaCa1-xO)(0<x<1)等が挙げられ、BaO、SrO、CaOが好ましい。
 希土類金属化合物としては、フッ化イッテルビウム(YbF)、フッ化スカンジウム(ScF)、酸化スカンジウム(ScO)、酸化イットリウム(Y)、酸化セリウム(Ce)、フッ化ガドリニウム(GdF)、フッ化テルビウム(TbF)等が挙げられ、YbF、ScF、TbFが好ましい。
Examples of the alkali metal compound include lithium oxide (Li 2 O), cesium oxide (Cs 2 O), alkali oxides such as potassium oxide (K 2 O), lithium fluoride (LiF), sodium fluoride (NaF), fluorine. Examples thereof include alkali halides such as cesium fluoride (CsF) and potassium fluoride (KF), and lithium fluoride (LiF), lithium oxide (Li 2 O), and sodium fluoride (NaF) are preferable.
Examples of the alkaline earth metal compound include barium oxide (BaO), strontium oxide (SrO), calcium oxide (CaO), and barium strontium oxide (Ba x Sr 1-x O) (0 <x <1), Examples thereof include barium calcium oxide (Ba x Ca 1-x O) (0 <x <1), and BaO, SrO, and CaO are preferable.
The rare earth metal compound, ytterbium fluoride (YbF 3), scandium fluoride (ScF 3), scandium oxide (ScO 3), yttrium oxide (Y 2 O 3), cerium oxide (Ce 2 O 3), gadolinium fluoride (GdF 3), include such terbium fluoride (TbF 3) is, YbF 3, ScF 3, TbF 3 are preferable.
 有機金属錯体としては、上記の通り、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、β-ジケトン類、アゾメチン類、及びそれらの誘導体等が好ましいが、これらに限定されるものではない。 The organometallic complex is not particularly limited as long as it contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion as a metal ion as described above. The ligands include quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl thiadiazole, hydroxydiaryl thiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, β-diketones, azomethines, and derivatives thereof are preferred, but are not limited thereto.
 上記金属、化合物及び錯体の添加形態としては、界面領域に層状又は島状に形成することが好ましい。形成方法としては、抵抗加熱蒸着法により上記金属、化合物及び錯体の少なくともいずれかを蒸着しながら、界面領域を形成する発光材料や電子注入材料である有機物を同時に蒸着させ、有機物中に上記金属、化合物及び錯体の少なくともいずれかを分散する方法が好ましい。分散濃度は通常、膜厚比で有機物(π電子欠乏性化合物):上記金属、化合物及び錯体=1000:1~1:1000であり、好ましくは100:1~1:1である。 As the addition form of the metal, compound and complex, it is preferable to form a layer or island in the interface region. As a forming method, while vapor-depositing at least one of the above metal, compound and complex by resistance heating vapor deposition, an organic material which is a light emitting material or an electron injection material for forming an interface region is simultaneously deposited, and the above metal, A method of dispersing at least one of the compound and the complex is preferable. The dispersion concentration is usually organic matter (π electron deficient compound): metal, compound and complex = 1000: 1 to 1: 1000, preferably 100: 1 to 1: 1, in terms of film thickness ratio.
 上記金属、化合物及び錯体の少なくともいずれかを層状に形成する場合は、界面の有機層である発光材料や電子注入材料を層状に形成した後に、上記金属、化合物及び錯体の少なくともいずれかを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み0.1nm以上15nm以下で形成する。 When forming at least one of the metal, the compound and the complex in a layered form, after forming the light emitting material or the electron injecting material which is an organic layer at the interface in a layered form, at least one of the metal, the compound and the complex is singly used. Vapor deposition is performed by resistance heating vapor deposition, and the layer is preferably formed with a thickness of 0.1 nm to 15 nm.
 上記金属、化合物及び錯体の少なくともいずれかを島状に形成する場合は、界面の有機層である発光材料や電子注入材料を島状に形成した後に、上記金属、化合物及び錯体の少なくともいずれかを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み0.05nm以上1nm以下で形成する。 When forming at least one of the metal, compound, and complex in an island shape, after forming a light emitting material or an electron injection material, which is an organic layer at the interface, in an island shape, at least one of the metal, the compound, and the complex is formed. Vapor deposition is performed by a resistance heating vapor deposition method alone, and is preferably formed with an island thickness of 0.05 nm to 1 nm.
 また、本発明の有機EL素子における、主成分と、上記金属、化合物及び錯体の少なくともいずれかの割合としては、膜厚比で、主成分:電子供与性ドーパント及び/又は有機金属錯体=100:1~1:1であると好ましく、50:1~4:1であるとさらに好ましい。 In the organic EL device of the present invention, the ratio of at least one of the main component and the metal, compound and complex is a film thickness ratio of main component: electron donating dopant and / or organometallic complex = 100: The ratio is preferably 1: 1 to 1: 1, and more preferably 50: 1 to 4: 1.
 電子注入層の膜厚は、0.1nm~100nmが好ましく、特に、1nm~50nmが好ましい。 The thickness of the electron injection layer is preferably from 0.1 nm to 100 nm, particularly preferably from 1 nm to 50 nm.
2.発光層
 発光層は、発光機能を有する有機層であって、1層又は複数層から形成され、このうち1層は上述のように第1ホスト材料、第2ホスト材料及び燐光発光性ドーパント材料を含有する。
 第1ホスト材料及び第2ホスト材料は、それぞれ異なる化合物であり、電子移動度が異なる。本願では、電子移動度が高い方を第1ホスト材料とする。
 第1ホスト材料と第2ホスト材料の合計に対する第1ホスト材料の含有率は30~95質量%であることが好ましく、特に、50~95質量%であることが好ましい。この範囲であれば、電荷バランスがとりやすく、駆動電圧が低く、長寿命な素子が形成しやすくなるとなる。
2. Light-emitting layer The light-emitting layer is an organic layer having a light-emitting function, and is formed of one layer or a plurality of layers. Among these layers, one layer includes the first host material, the second host material, and the phosphorescent dopant material as described above. contains.
The first host material and the second host material are different compounds and have different electron mobility. In the present application, the higher host mobility is the first host material.
The content of the first host material with respect to the total of the first host material and the second host material is preferably 30 to 95% by mass, and particularly preferably 50 to 95% by mass. Within this range, it becomes easy to achieve charge balance, low driving voltage, and easy formation of a long-life element.
 前記第1ホスト材料及び第2ホスト材料は、例えば、下記式(1)~(3)のいずれかで表される材料であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
[式(1)中、
 Zは、aにおいて縮合している下記式(1-1)又は(1-2)で表される環構造を表す。Zは、bにおいて縮合している下記式(1-1)又は(1-2)で表される環構造を表す。ただし、Z及びZの少なくとも1つは下記式(1-1)で表される。
 Mは、置換もしくは無置換の環形成原子数5~30の窒素含有ヘテロ芳香族環であり、
 Lは、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の2価の複素環基、環形成炭素数5~30のシクロアルキレン基、又は、これらが連結した基を表す。
 kは、1又は2を表す。]
Figure JPOXMLDOC01-appb-C000012
[上記式(1-1)において、
 cは、前記式(1)のa又はbにおいて縮合していることを表す。
 上記(1-2)において、d,e及びfのいずれか1つは、前記一般式(1)のa又はbにおいて縮合していることを表す。
 上記式(1-1)及び(1-2)において、
 X11は、硫黄原子、酸素原子、N-R19、又はC(R20)(R21)を表す。
 R11~R21は、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 また、隣り合うR11~R21は互いに結合して環を形成していてもよい。]
The first host material and the second host material are preferably materials represented by any of the following formulas (1) to (3), for example.
Figure JPOXMLDOC01-appb-C000011
[In Formula (1),
Z 1 represents a ring structure represented by the following formula (1-1) or (1-2) condensed at a. Z 2 represents a ring structure represented by the following formula (1-1) or (1-2) condensed at b. However, at least one of Z 1 and Z 2 is represented by the following formula (1-1).
M 1 is a substituted or unsubstituted nitrogen-containing heteroaromatic ring having 5 to 30 ring-forming atoms,
L 1 represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms, and a ring forming carbon number. It represents a 5-30 cycloalkylene group or a group in which these are linked.
k represents 1 or 2. ]
Figure JPOXMLDOC01-appb-C000012
[In the above formula (1-1),
c represents condensation in a or b in the formula (1).
In the above (1-2), any one of d, e and f represents condensation in a or b in the general formula (1).
In the above formulas (1-1) and (1-2),
X 11 represents a sulfur atom, an oxygen atom, N—R 19 , or C (R 20 ) (R 21 ).
R 11 to R 21 each independently represents a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring formation. A heterocyclic group having 5 to 30 atoms, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms A group, a substituted or unsubstituted silyl group, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted ring forming carbon number Represents 6 to 30 aryloxy groups;
Adjacent R 11 to R 21 may be bonded to each other to form a ring. ]
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(2)中、Z11、Z21、M11、及びkは、それぞれ、上記式(1)のZ、Z、M、及びkと同様な基を表す。式(2)の化合物は、式(1)のLが単結合である化合物を表す。 In formula (2), Z 11 , Z 21 , M 11 , and k 1 each represent the same group as Z 1 , Z 2 , M 1 , and k in formula (1). The compound of the formula (2) represents a compound in which L 1 of the formula (1) is a single bond.
Figure JPOXMLDOC01-appb-C000014
[式(3)中、
 A及びAは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の複素環基を表す。
 Aは、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基を表す。
 mは、0~3の整数を表す。
 X~X及びY~Yは、それぞれ独立に、N又はCRを表す。
 Rは、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換のシリル基、ハロゲン原子又はシアノ基を表す。Rが複数存在する場合、複数のRはそれぞれ同一でも異なっていてもよい。
 X~Xの1つと、Y~Yの1つは、Aを介して結合している。
 さらに、式(3)は、下記(i)~(v)の少なくともいずれかを満たす。
(i)A及びAの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
(ii)X~X及びY~Yの少なくとも1つはCRであり、X~X及びY~YにおけるRの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
(iii)mは1~3の整数であり、Aの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の2価の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の2価の複素環基である。
(iv)X~X及びY~Yの少なくとも1つはCRであり、X~X及びY~YにおけるRの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
(v)X~X及びY~Yの少なくとも1つはC-CNである。]
 尚、式(3)中、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、シアノ基で置換された環形成原子数5~30の複素環基は、さらに、シアノ基以外の置換基を有していてもよい。
 また、前記mは好ましくは0~2であり、より好ましくは0又は1である。mが0である場合、X~Xの1つと、Y~Yの1つは、単結合を介して結合する。
Figure JPOXMLDOC01-appb-C000014
[In Formula (3),
A 1 and A 2 each independently represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
A 3 represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms.
m represents an integer of 0 to 3.
X 1 to X 8 and Y 1 to Y 8 each independently represent N or CR a .
R a is independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, a substituted or unsubstituted group. It represents a substituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted silyl group, a halogen atom or a cyano group. When a plurality of R a are present, the plurality of R a may be the same or different.
One of X 5 to X 8 and one of Y 1 to Y 4 are bonded via A 3 .
Further, the formula (3) satisfies at least one of the following (i) to (v).
(I) At least one of A 1 and A 2 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a heterocycle having 5 to 30 ring atoms substituted with a cyano group. It is a cyclic group.
(Ii) At least one of X 1 to X 4 and Y 5 to Y 8 is CR a , and at least one of R a in X 1 to X 4 and Y 5 to Y 8 is substituted with a cyano group It is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
(Iii) m is an integer of 1 to 3, and at least one of A 3 is substituted with a divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a cyano group And a divalent heterocyclic group having 5 to 30 ring atoms.
(Iv) At least one of X 5 to X 8 and Y 1 to Y 4 is CR a , and at least one of R a in X 5 to X 8 and Y 1 to Y 8 is substituted with a cyano group It is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
(V) At least one of X 1 to X 8 and Y 1 to Y 8 is C-CN. ]
In the formula (3), an aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group and a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group are further represented by cyano You may have substituents other than group.
The m is preferably 0 to 2, more preferably 0 or 1. When m is 0, one of X 5 to X 8 and one of Y 1 to Y 4 are bonded through a single bond.
 本発明では、第1ホスト材料が上記式(1)で表される材料であり、第2ホスト材料が、式(3)で表される材料である場合、第1ホスト材料が式(2)で表される材料であり、第2ホスト材料が、式(3)で表される材料である場合、及び、第1ホスト材料が式(1)で表される材料であり、第2ホスト材料が、式(2)で表される材料である場合が好ましい。 In the present invention, when the first host material is a material represented by the above formula (1) and the second host material is a material represented by the formula (3), the first host material is represented by the formula (2). And the second host material is a material represented by formula (3), and the first host material is a material represented by formula (1), and the second host material Is preferably a material represented by the formula (2).
 上記式(1)で表される材料は、正孔の注入輸送を担うカルバゾール誘導体骨格の窒素原子と、電子の注入輸送を担う窒素含有ヘテロ芳香族環骨格が、連結基(L)を介して結合していることから、正孔注入輸送骨格及び電子注入輸送骨格それぞれが、互いへ与える影響が少ないため、電荷移動に関与する電荷注入輸送効果が最も優れると考えられる。
 上記式(2)で表される材料は、正孔の注入輸送を担うカルバゾール誘導体骨格の窒素原子と、電子の注入輸送を担う窒素含有ヘテロ芳香族環骨格が、直接結合していることから、正孔注入輸送骨格及び電子注入輸送骨格それぞれが互いに多少影響を与えるため、電荷注入輸送効果が上記式(1)で表される材料と比較して、多少低くなる傾向にある。
 上記式(3)で表される材料は、シアノ基を有することにより、電子トラップ性が向上し、電子移動度が低くなる傾向にある。
In the material represented by the above formula (1), the nitrogen atom of the carbazole derivative skeleton responsible for injecting and transporting holes and the nitrogen-containing heteroaromatic ring skeleton responsible for injecting and transporting electrons are linked via a linking group (L 1 ). Therefore, the hole injection transport skeleton and the electron injection transport skeleton have little influence on each other, and therefore, it is considered that the charge injection transport effect related to charge transfer is most excellent.
In the material represented by the above formula (2), the nitrogen atom of the carbazole derivative skeleton responsible for injecting and transporting holes and the nitrogen-containing heteroaromatic ring skeleton responsible for injecting and transporting electrons are directly bonded. Since the hole injecting and transporting skeleton and the electron injecting and transporting skeleton have some influence on each other, the charge injecting and transporting effect tends to be somewhat lower than that of the material represented by the above formula (1).
Since the material represented by the above formula (3) has a cyano group, the electron trapping property tends to be improved and the electron mobility tends to be low.
 そのため、上記式(1)~(3)で表される材料では、電子移動度が式(1)の材料が最も高く、式(3)の材料が最も低い傾向がある。上記の組み合わせである場合、正孔及び電子のバランスがとりやすくなり、発光層内単層での電荷バランスがとりやすくなり、高効率長寿命低電圧の素子を実現することが可能となる。 Therefore, the materials represented by the above formulas (1) to (3) tend to have the highest electron mobility in the material of formula (1) and the lowest in the material of formula (3). In the case of the above combination, it becomes easy to balance holes and electrons, and it becomes easy to balance charges in a single layer in the light emitting layer, and it is possible to realize a high-efficiency, long-life, low-voltage element.
 上記式(1)のなかでも下記式(1a)で表されることものが好ましい。
Figure JPOXMLDOC01-appb-C000015
Among the above formulas (1), those represented by the following formula (1a) are preferable.
Figure JPOXMLDOC01-appb-C000015
[式(1a)中、
 Zは、aにおいて縮合している前記一般式(1-1)又は(1-2)で表される環構造を表す。Zは、bにおいて縮合している前記一般式(1-1)又は(1-2)で表される環構造を表す。但し、Z又はZの少なくともいずれか1つは前記一般式(1-1)で表される。
 Lは、前記一般式(1)におけるLと同義である。
 X12~X14は、それぞれ独立に、窒素原子、CH、又は、R31もしくはLと結合する炭素原子であり、X12~X14のうち少なくとも1つは窒素原子である。
 Y11~Y13は、それぞれ独立に、CH、又は、R31もしくはLと結合する炭素原子を表す。
 R31は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 R31が複数存在する場合、複数のR31は互いに同一でも異なっていてもよく、また、隣り合うR31は互いに結合して環を形成していてもよい。
 kは1又は2を表し、nは0~4の整数を表す。
 前記式(1-1)におけるcは、前記一般式(1a)のa又はbにおいて縮合し、
 前記一般式(1-2)におけるd,e及びfのいずれか1つは、前記一般式(1a)のa又はbにおいて縮合する。]
[In Formula (1a),
Z 1 represents a ring structure represented by the general formula (1-1) or (1-2) condensed in a. Z 2 represents a ring structure represented by the general formula (1-1) or (1-2) condensed at b. However, at least one of Z 1 and Z 2 is represented by the general formula (1-1).
L 1 has the same meaning as L 1 in Formula (1).
X 12 to X 14 are each independently a nitrogen atom, CH, or a carbon atom bonded to R 31 or L 1, and at least one of X 12 to X 14 is a nitrogen atom.
Y 11 to Y 13 each independently represent CH or a carbon atom bonded to R 31 or L 1 .
Each of R 31 independently represents a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a substituted or unsubstituted silyl group, A substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms.
If R 31 there are a plurality, a plurality of R 31 may be the same or different from each other and, R 31 may be bonded to each other to form a ring adjacent.
k represents 1 or 2, and n represents an integer of 0 to 4.
C in the formula (1-1) is condensed in a or b in the general formula (1a);
Any one of d, e and f in the general formula (1-2) is condensed in a or b in the general formula (1a). ]
 ここで、上記式(1a)におけるa,bにおいて、上記一般式(1-1)及び(2-2)が縮合している化合物としては、下記一般式で表されるものが挙げられる。 Here, examples of the compound in which the general formulas (1-1) and (2-2) are condensed in a and b in the above formula (1a) include those represented by the following general formula.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記式(1)で表される化合物は、さらに下記式(1b)で表されることがより好ましく、下記式(1c)で表されることが特に好ましい。
Figure JPOXMLDOC01-appb-C000017
The compound represented by the above formula (1) is more preferably represented by the following formula (1b), and particularly preferably represented by the following formula (1c).
Figure JPOXMLDOC01-appb-C000017
[式(1b)中
 Lは、前記式(1)におけるLと同義である。
 X12~X14は、それぞれ独立に、窒素原子、CH、又は、R31もしくはLと結合する炭素原子であり、X12~X14のうち少なくとも1つは窒素原子である。
 Y11~Y13は、それぞれ独立に、CH、又は、R31もしくはLと結合する炭素原子を表す。
 R31は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 R31が複数存在する場合、複数のR31は互いに同一でも異なっていてもよく、また、隣り合うR31は互いに結合して環を形成していてもよい。
 nは、0~4の整数を表す。
 R41~R48は、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 また、隣り合うR41~R48は互いに結合して環を形成していてもよい。]
Expression (1b) middle L 1 has the same meaning as L 1 in Formula (1).
X 12 to X 14 are each independently a nitrogen atom, CH, or a carbon atom bonded to R 31 or L 1, and at least one of X 12 to X 14 is a nitrogen atom.
Y 11 to Y 13 each independently represent CH or a carbon atom bonded to R 31 or L 1 .
Each of R 31 independently represents a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a substituted or unsubstituted silyl group, A substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms.
If R 31 there are a plurality, a plurality of R 31 may be the same or different from each other and, R 31 may be bonded to each other to form a ring adjacent.
n represents an integer of 0 to 4.
R 41 to R 48 are each independently a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring formation. A heterocyclic group having 5 to 30 atoms, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms A group, a substituted or unsubstituted silyl group, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted ring forming carbon number Represents 6 to 30 aryloxy groups;
Adjacent R 41 to R 48 may be bonded to each other to form a ring. ]
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[式(1c)において、
 Lは、前記一般式(1)におけるLと同義である。
 X12~X14は、それぞれ独立に、窒素原子、CH、又は、R31もしくはLと結合する炭素原子であり、X12~X14のうち少なくとも1つは窒素原子である。
 Y11~Y13は、それぞれ独立に、CH、又は、R31もしくはLと結合する炭素原子を表す。
 R31は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 また、隣り合うR31は互いに結合して環を形成していてもよい。
 nは、0~4の整数を表す。
 L及びLは、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の2価の複素環基、環形成炭素数5~30のシクロアルキレン基、又は、これらが連結した基を表す。
 R51~R54は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 R51が複数存在する場合、複数のR51は互いに同一でも異なっていてもよく、また、隣り合うR51は互いに結合して環を形成していてもよい。
 R52が複数存在する場合、複数のR52は互いに同一でも異なっていてもよく、また、隣り合うR52は互いに結合して環を形成していてもよい。
 R53が複数存在する場合、複数のR53は互いに同一でも異なっていてもよく、また、隣り合うR53は互いに結合して環を形成していてもよい。
 R54が複数存在する場合、複数のR54は互いに同一でも異なっていてもよく、また、隣り合うR54は互いに結合して環を形成していてもよい。
 Mは、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の複素環基を表す。
 p及びsは、それぞれ独立に、0~4の整数を表し、q及びrは、それぞれ独立に、0~3の整数を表す。]
[In Formula (1c),
L 1 has the same meaning as L 1 in Formula (1).
X 12 to X 14 are each independently a nitrogen atom, CH, or a carbon atom bonded to R 31 or L 1, and at least one of X 12 to X 14 is a nitrogen atom.
Y 11 to Y 13 each independently represent CH or a carbon atom bonded to R 31 or L 1 .
Each of R 31 independently represents a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a substituted or unsubstituted silyl group, A substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms.
Further, adjacent R 31 may be bonded to each other to form a ring.
n represents an integer of 0 to 4.
L 2 and L 3 are each independently a single bond, a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted 2 to 5 ring atom having 2 to 30 ring atoms. A valent heterocyclic group, a cycloalkylene group having 5 to 30 ring carbon atoms, or a group in which these are connected is represented.
R 51 to R 54 each independently represent a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms. A cyclic group, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a substituted or unsubstituted group A silyl group, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms Represents.
If R 51 there are a plurality, a plurality of R 51 may be the same or different, and, R 51 may be bonded to each other to form a ring adjacent.
If R 52 there are a plurality, a plurality of R 52 may be the same or different, and, R 52 may be bonded to each other to form a ring adjacent.
If R 53 there are a plurality, a plurality of R 53 may be the same or different, and, R 53 may be bonded to each other to form a ring adjacent.
If R 54 there are a plurality, the plurality of R 54 may be the same or different from each other and, R 54 may be bonded to each other to form a ring adjacent.
M 2 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
p and s each independently represent an integer of 0 to 4, and q and r each independently represents an integer of 0 to 3. ]
 以下、上述した式(1)等の各基の例について説明する。
 上記式(1)及び(2)において、M又はM11で表される窒素含有ヘテロ芳香族環としては、ピリジン、ピリミジン、ピラジン、トリアジン、アジリジン、アザインドリジン、インドリジン、イミダゾール、インドール、イソインドール、インダゾール、プリン、プテリジン、β-カルボリン、ナフチリジン、キノキサリン、ターピリジン、ビピリジン、アクリジン、フェナントロリン、フェナジン、イミダゾピリジン等が挙げられ、特に、ピリジン、ピリミジン、トリアジンが好ましい。
Hereinafter, examples of groups such as the above-described formula (1) will be described.
In the above formulas (1) and (2), examples of the nitrogen-containing heteroaromatic ring represented by M 1 or M 11 include pyridine, pyrimidine, pyrazine, triazine, aziridine, azaindolizine, indolizine, imidazole, indole, Examples thereof include isoindole, indazole, purine, pteridine, β-carboline, naphthyridine, quinoxaline, terpyridine, bipyridine, acridine, phenanthroline, phenazine, and imidazopyridine, and pyridine, pyrimidine, and triazine are particularly preferable.
 前記式(1)、(1a)、(1b)、(1c)、(1-1)及び(1-2)において、R11~R21、R31、R41~R48及びR51~R54が表わすハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられ、フッ素が好ましい。 In the formulas (1), (1a), (1b), (1c), (1-1) and (1-2), R 11 to R 21 , R 31 , R 41 to R 48 and R 51 to R Examples of the halogen atom represented by 54 include fluorine, chlorine, bromine, iodine and the like, and fluorine is preferred.
 環形成炭素数6~30の芳香族炭化水素基としては、非縮合芳香族炭化水素基及び縮合芳香族炭化水素基が挙げられ、より具体的には、フェニル基、ナフチル基、フェナントリル基、ビフェニル基、ターフェニル基、クォーターフェニル基、フルオランテニル基、トリフェニレニル基、フェナントレニル基、フルオレニル基、スピロフルオレニル基、9,9-ジフェニルフルオレニル基、9,9’-スピロビ[9H-フルオレン]-2-イル基、9,9-ジメチルフルオレニル基、ベンゾ[c]フェナントレニル基、ベンゾ[a]トリフェニレニル基、ナフト[1,2-c]フェナントレニル基、ナフト[1,2-a]トリフェニレニル基、ジベンゾ[a,c]トリフェニレニル基、ベンゾ[b]フルオランテニル基等が挙げられ、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フェナントリル基、トリフェニレニル基、フルオレニル基、スピロビフルオレニル基、フルオランテニル基が好ましく、フェニル基、1-ナフチル基、2-ナフチル基、ビフェニル-2-イル基、ビフェニル-3-イル基、ビフェニル-4-イル基、フェナントレン-9-イル基、フェナントレン-3-イル基、フェナントレン-2-イル基、トリフェニレン-2-イル基、9,9-ジメチルフルオレン-2-イル基、フルオランテン-3-イル基がさらに好ましい。 Examples of the aromatic hydrocarbon group having 6 to 30 ring carbon atoms include a non-condensed aromatic hydrocarbon group and a condensed aromatic hydrocarbon group, and more specifically, phenyl group, naphthyl group, phenanthryl group, biphenyl. Group, terphenyl group, quarterphenyl group, fluoranthenyl group, triphenylenyl group, phenanthrenyl group, fluorenyl group, spirofluorenyl group, 9,9-diphenylfluorenyl group, 9,9'-spirobi [9H-fluorene ] -2-yl group, 9,9-dimethylfluorenyl group, benzo [c] phenanthrenyl group, benzo [a] triphenylenyl group, naphtho [1,2-c] phenanthrenyl group, naphtho [1,2-a] And triphenylenyl group, dibenzo [a, c] triphenylenyl group, benzo [b] fluoranthenyl group, and the like. Group, naphthyl group, biphenyl group, terphenyl group, phenanthryl group, triphenylenyl group, fluorenyl group, spirobifluorenyl group, fluoranthenyl group are preferable, phenyl group, 1-naphthyl group, 2-naphthyl group, biphenyl- 2-yl group, biphenyl-3-yl group, biphenyl-4-yl group, phenanthren-9-yl group, phenanthren-3-yl group, phenanthren-2-yl group, triphenylene-2-yl group, 9,9 -Dimethylfluoren-2-yl group and fluoranthen-3-yl group are more preferable.
 環形成原子数5~30の複素環基としては、非縮合複素環基及び縮合複素環基が挙げられ、より具体的には、ピロール環、イソインドール環、ベンゾフラン環、イソベンゾフラン環、ジベンゾチオフェン環、イソキノリン環、キノキサリン環、フェナントリジン環、フェナントロリン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、インドール環、キノリン環、アクリジン環、ピロリジン環、ジオキサン環、ピペリジン環、モルフォリン環、ピペラジン環、カルバゾール環、フラン環、チオフェン環、オキサゾール環、オキサジアゾール環、ベンゾオキサゾール環、チアゾール環、チアジアゾール環、ベンゾチアゾール環、トリアゾール環、イミダゾール環、ベンゾイミダゾール環、ピラン環、ジベンゾフラン環、ベンゾ[c]ジベンゾフラン環及びこれらの誘導体から形成される基等が挙げられ、ジベンゾフラン環、カルバゾール環、ジベンゾチオフェン環及びこれらの誘導体から形成される基が好ましく、ジベンゾフラン-2-イル基、ジベンゾフラン-4-イル基、9-フェニルカルバゾール-3-イル基、9-フェニルカルバゾール-2-イル基、ジベンゾチオフェン-2-イル基、ジベンゾチオフェン-4-イル基がさらに好ましい。 Examples of the heterocyclic group having 5 to 30 ring atoms include a non-condensed heterocyclic group and a condensed heterocyclic group, and more specifically, a pyrrole ring, an isoindole ring, a benzofuran ring, an isobenzofuran ring, and a dibenzothiophene. Ring, isoquinoline ring, quinoxaline ring, phenanthridine ring, phenanthroline ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, indole ring, quinoline ring, acridine ring, pyrrolidine ring, dioxane ring, piperidine ring, morpho Phosphorus ring, piperazine ring, carbazole ring, furan ring, thiophene ring, oxazole ring, oxadiazole ring, benzoxazole ring, thiazole ring, thiadiazole ring, benzothiazole ring, triazole ring, imidazole ring, benzimidazole ring, pyran ring, Dibenzofuran Benzo [c] dibenzofuran ring and groups formed from these derivatives, and the like, and dibenzofuran ring, carbazole ring, dibenzothiophene ring and groups formed from these derivatives are preferred, dibenzofuran-2-yl group, dibenzofuran A -4-yl group, a 9-phenylcarbazol-3-yl group, a 9-phenylcarbazol-2-yl group, a dibenzothiophen-2-yl group, and a dibenzothiophen-4-yl group are more preferable.
 炭素数1~30のアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、1-メチルペンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、アダマンチル基等が挙げられ、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基が好ましい。 Examples of the alkyl group having 1 to 30 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, Examples include n-hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group, adamantyl group, and the like. , Ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, cyclopent Group, a cyclohexyl group is preferred.
 炭素数2~30のアルケニル基、及び炭素数2~30のアルキニル基としては、上述したアルキル基で2重結合又は3重結合を有する基が挙げられる。 Examples of the alkenyl group having 2 to 30 carbon atoms and the alkynyl group having 2 to 30 carbon atoms include the above-described alkyl groups having a double bond or a triple bond.
 置換もしくは無置換のシリル基の例としては、トリメチルシリル基、トリエチルシリル基、トリブチルシリル基、ジメチルエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、ジメチルイソプロピルシリル基、ジメチルプロピルシリル基、ジメチルブチルシリル基、ジメチルターシャリーブチルシリル基、ジエチルイソプロピルシリル基、フェニルジメチルシリル基、ジフェニルメチルシリル基、ジフェニルターシャリーブチルシリル基、トリフェニルシリル基等が挙げられ、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基が好ましい。 Examples of substituted or unsubstituted silyl groups include trimethylsilyl group, triethylsilyl group, tributylsilyl group, dimethylethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, dimethylisopropylsilyl group, Examples include dimethylpropylsilyl group, dimethylbutylsilyl group, dimethyltertiarybutylsilyl group, diethylisopropylsilyl group, phenyldimethylsilyl group, diphenylmethylsilyl group, diphenyltertiarybutylsilyl group, and triphenylsilyl group. , Triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, and propyldimethylsilyl group are preferable.
 炭素数1~30のアルコキシ基としては、アルキル部位が前記アルキル基である基が挙げられる。
 炭素数7~30のアラルキル基の具体例としては、ベンジル基、2-フェニルプロパン-2-イル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-アミノベンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基等が挙げられる。
Examples of the alkoxy group having 1 to 30 carbon atoms include groups in which the alkyl moiety is the alkyl group.
Specific examples of the aralkyl group having 7 to 30 carbon atoms include benzyl group, 2-phenylpropan-2-yl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group and 2-phenylisopropyl group. Phenyl-t-butyl group, α-naphthylmethyl group, 1-α-naphthylethyl group, 2-α-naphthylethyl group, 1-α-naphthylisopropyl group, 2-α-naphthylisopropyl group, β-naphthylmethyl Group, 1-β-naphthylethyl group, 2-β-naphthylethyl group, 1-β-naphthylisopropyl group, 2-β-naphthylisopropyl group, 1-pyrrolylmethyl group, 2- (1-pyrrolyl) ethyl group, p -Methylbenzyl group, m-methylbenzyl group, o-methylbenzyl group, p-chlorobenzyl group, m-chlorobenzyl group, o-chlorobenzyl P-bromobenzyl group, m-bromobenzyl group, o-bromobenzyl group, p-iodobenzyl group, m-iodobenzyl group, o-iodobenzyl group, p-hydroxybenzyl group, m-hydroxybenzyl group, o -Hydroxybenzyl group, p-aminobenzyl group, m-aminobenzyl group, o-aminobenzyl group, p-nitrobenzyl group, m-nitrobenzyl group, o-nitrobenzyl group, p-cyanobenzyl group, m-cyano Examples include benzyl group, o-cyanobenzyl group, 1-hydroxy-2-phenylisopropyl group, 1-chloro-2-phenylisopropyl group and the like.
 環形成炭素数6~30のアリールオキシ基としては、アリール部位が前記芳香族炭化水素基である基が挙げられる。 Examples of the aryloxy group having 6 to 30 ring carbon atoms include groups in which the aryl moiety is the aromatic hydrocarbon group.
 前記式(1)、(1a)、(1b)及び(1c)におけるL~Lで表される環形成炭素数6~30の2価の芳香族炭化水素基、環形成原子数5~30の2価の複素環基としては、上述した芳香族炭化水素基及び複素環基で説明した基の2価に相当する基が挙げられる。 A divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms represented by L 1 to L 3 in formulas (1), (1a), (1b) and (1c); Examples of the divalent heterocyclic group 30 include groups corresponding to the divalent groups described above for the aromatic hydrocarbon group and heterocyclic group.
 上記各式及び後述する式(3)等の「置換もしくは無置換」及び「置換基を有していてもよい」という場合の任意の置換基としては、ハロゲン原子(フッ素、塩素、臭素、ヨウ素)、シアノ基、炭素数1~20(好ましくは1~6)のアルキル基、炭素数3~20(好ましくは5~12)のシクロアルキル基、炭素数1~20(好ましくは1~5)のアルコキシ基、炭素数1~20(好ましくは1~5)のハロアルキル基、炭素数1~20(好ましくは1~5)のハロアルコキシ基、炭素数1~10(好ましくは1~5)のアルキルシリル基、環形成炭素数6~30(好ましくは6~18)の芳香族炭化水素基、環形成炭素数6~30(好ましくは6~18)のアリールオキシ基、炭素数6~30(好ましくは6~18)のアリールシリル基、炭素数7~30(好ましくは7~20)のアラルキル基、及び環形成原子数5~30の(好ましくは5~18)ヘテロアリール基が挙げられる。
 上記任意の置換基として用いられる炭素数1~20のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、1-メチルペンチル基等が挙げられる。
 上記任意の置換基として用いられる炭素数3~20のシクロアルキル基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、アダマンチル基等が挙げられる。
 上記任意の置換基として用いられる炭素数1~20のアルコキシ基の具体例としては、アルキル部位が前記アルキル基である基が挙げられる。
 上記任意の置換基として用いられる炭素数1~20のハロアルキル基の具体例としては、前記したアルキル基の一部又は全部の水素原子が、ハロゲン原子で置換された基が挙げられる。
 上記任意の置換基として用いられる炭素数1~20のハロアルコキシ基の具体例としては、前記したアルコキシ基の一部又は全部の水素原子が、ハロゲン原子で置換された基が挙げられる。
 上記任意の置換基として用いられる炭素数1~10のアルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリブチルシリル基、ジメチルエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、ジメチルイソプロピルシリル基、ジメチルプロピルシリル基、ジメチルブチルシリル基、ジメチルターシャリーブチルシリル基、ジエチルイソプロピルシリル基等が挙げられる。
As the optional substituents in the above-mentioned formulas and the formula (3) described later, which may be “substituted or unsubstituted” and “may have a substituent”, a halogen atom (fluorine, chlorine, bromine, iodine) ), A cyano group, an alkyl group having 1 to 20 (preferably 1 to 6) carbon atoms, a cycloalkyl group having 3 to 20 (preferably 5 to 12) carbon atoms, and 1 to 20 carbon atoms (preferably 1 to 5). An alkoxy group, a haloalkyl group having 1 to 20 carbon atoms (preferably 1 to 5), a haloalkoxy group having 1 to 20 carbon atoms (preferably 1 to 5), and a 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms). An alkylsilyl group, an aromatic hydrocarbon group having 6 to 30 (preferably 6 to 18) ring-forming carbon atoms, an aryloxy group having 6 to 30 (preferably 6 to 18) ring-forming carbon atoms, 6 to 30 carbon atoms ( Preferably 6-18) arylsilyl groups 7 to 30 carbon atoms (preferably 7-20) aralkyl group, and ring atoms 5 to 30 (preferably 5 to 18) and the heteroaryl group.
Specific examples of the alkyl group having 1 to 20 carbon atoms used as the optional substituent include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t -Butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n -Tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group and the like.
Specific examples of the cycloalkyl group having 3 to 20 carbon atoms used as the optional substituent include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group, adamantyl group and the like.
Specific examples of the alkoxy group having 1 to 20 carbon atoms used as the optional substituent include groups in which the alkyl moiety is the alkyl group.
Specific examples of the haloalkyl group having 1 to 20 carbon atoms used as the optional substituent include groups in which part or all of the hydrogen atoms of the alkyl group are substituted with halogen atoms.
Specific examples of the haloalkoxy group having 1 to 20 carbon atoms used as the optional substituent include groups in which part or all of the above-described alkoxy groups are substituted with halogen atoms.
Specific examples of the alkylsilyl group having 1 to 10 carbon atoms used as the optional substituent include trimethylsilyl group, triethylsilyl group, tributylsilyl group, dimethylethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group. Propyldimethylsilyl group, dimethylisopropylsilyl group, dimethylpropylsilyl group, dimethylbutylsilyl group, dimethyltertiarybutylsilyl group, diethylisopropylsilyl group and the like.
 上記任意の置換基として用いられる環形成炭素数6~30の芳香族炭化水素基の具体例としては、上述したR11等が示す芳香族炭化水素基と同じものが挙げられる。
 上記任意の置換基として用いられる環形成炭素数6~30のアリールオキシ基の具体例としては、アリール部位が前記芳香族炭化水素基である基が挙げられる。
 上記任意の置換基として用いられる炭素数6~30のアリールシリル基の具体例としては、フェニルジメチルシリル基、ジフェニルメチルシリル基、ジフェニルターシャリーブチルシリル基、トリフェニルシリル基等が挙げられる。
 上記任意の置換基として用いられる炭素数7~30のアラルキル基の具体例としては、上記R11等が示すアラルキル基が挙げられる。
 上記任意の置換基として用いられる環形成原子数5~30のヘテロアリール基の具体例としては、前記R11等が示す複素環基と同じものが挙げられる。
Specific examples of the aromatic hydrocarbon group having 6 to 30 ring carbon atoms used as the optional substituent include the same aromatic hydrocarbon groups as those described above for R 11 and the like.
Specific examples of the aryloxy group having 6 to 30 ring carbon atoms used as the optional substituent include groups in which the aryl moiety is the aromatic hydrocarbon group.
Specific examples of the arylsilyl group having 6 to 30 carbon atoms used as the optional substituent include a phenyldimethylsilyl group, a diphenylmethylsilyl group, a diphenyl tertiary butylsilyl group, and a triphenylsilyl group.
Specific examples of the aralkyl group having 7 to 30 carbon atoms used as the optional substituent include the aralkyl groups represented by R 11 and the like.
Specific examples of the heteroaryl group having 5 to 30 ring atoms used as the optional substituent include the same heterocyclic groups as those described above for R 11 and the like.
 上記任意の置換基としては、フッ素原子、シアノ基、炭素数1~20のアルキル基、環形成炭素数6~30の芳香族炭化水素基、環形成原子数5~30のヘテロアリール基が好ましく、フッ素原子、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フェナントリル基、トリフェニレニル基、フルオレニル基、スピロビフルオレニル基、フルオランテニル基、ジベンゾフラン環、カルバゾール環、ジベンゾチオフェン環及びこれらの誘導体から形成される基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基がより好ましい。
 上記任意の置換基は、さらに置換基を有していてもよく、その具体例は上記任意の置換基と同様である。
The optional substituent is preferably a fluorine atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a heteroaryl group having 5 to 30 ring atoms. , Fluorine atom, phenyl group, naphthyl group, biphenyl group, terphenyl group, phenanthryl group, triphenylenyl group, fluorenyl group, spirobifluorenyl group, fluoranthenyl group, dibenzofuran ring, carbazole ring, dibenzothiophene ring and these A group formed from a derivative, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, cyclopentyl group, and cyclohexyl group are more preferable.
The above arbitrary substituents may further have a substituent, and specific examples thereof are the same as the above arbitrary substituents.
 上記式(2)で表される材料としては、上記式(1a)~(1c)のLを単結合に変更したものが好ましい。
 上記式(1)又は(2)で表される化合物の例としては、以下が挙げられる。尚、以下の構造式中、その端に化学式(CN、ベンゼン環等)が記載されていない結合は、メチル基を表すものである。
The material represented by the above formula (2) is preferably a material obtained by changing L 1 in the above formulas (1a) to (1c) to a single bond.
Examples of the compound represented by the formula (1) or (2) include the following. In addition, in the following structural formulas, a bond having no chemical formula (CN, benzene ring, or the like) at its end represents a methyl group.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記式(3)において、A、A及びRの示す環形成炭素数6~30の芳香族炭化水素基としては、上述した式(1)のR11等が示す芳香族炭化水素基と同様な基が挙げられる。
 前記Aの示す環形成炭素数6~30の2価の芳香族炭化水素基としては、上記環形成炭素数6~30の芳香族炭化水素基で挙げた基を2価にした基が挙げられる。
In the above formula (3), the aromatic hydrocarbon group having 6 to 30 ring carbon atoms represented by A 1 , A 2 and R a is an aromatic hydrocarbon group represented by R 11 or the like in the above formula (1). The same group is mentioned.
Examples of the divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms represented by A 3 include groups obtained by divalent groups described above for the aromatic hydrocarbon group having 6 to 30 ring carbon atoms. It is done.
 前記A、A及びRの示す環形成原子数5~30の複素環基としては、上述した式(1)のR11等が示す複素環基と同様な基が挙げられる。
 前記Aの示す環形成原子数5~30の2価の複素環基としては、上記環形成原子数5~30の複素環基で挙げた基を2価にした基が挙げられる。
Examples of the heterocyclic group having 5 to 30 ring atoms represented by A 1 , A 2 and R a include the same groups as the heterocyclic groups represented by R 11 and the like in the above formula (1).
Examples of the divalent heterocyclic group having 5 to 30 ring atoms represented by A 3 include groups obtained by divalent groups mentioned above for the heterocyclic group having 5 to 30 ring atoms.
 前記Rの示す炭素数1~30のアルキル基、置換もしくは無置換のシリル基、ハロゲン原子の例としては、それぞれ、上述した式(1)のR11等が示す基と同様な基が挙げられる。 Alkyl group of the R a having 1 to 30 carbon atoms indicated by a substituted or unsubstituted silyl group, examples of the halogen atom, respectively, include the same groups as R 11 or the like shown in the formula (1) described above It is done.
 前記Rとしては、水素原子、又は置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基が好ましい。 R a is preferably a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
 上記式(3)で表される材料は、下記式(a)、(b)で表される基が-(A-を介して連結されており、その結合位置は前記X~Xのいずれか1つと前記Y~Yのいずれか1つである。具体的には、X-(A-Y、X-(A-Y、X-(A-Y、X-(A-Y、X-(A-Y、X-(A-Y、X-(A-Y、X-(A-Y、X-(A-Y、X-(A-Y、X-(A-Y、X-(A-Y、X-(A-Y、X-(A-Y、X-(A-Y、X-(A-Yが挙げられる。 In the material represented by the above formula (3), groups represented by the following formulas (a) and (b) are linked via — (A 3 ) m —, and the bonding position is the above described X 5 to Any one of X 8 and any one of Y 1 to Y 4 . Specifically, X 6- (A 3 ) m -Y 3 , X 6- (A 3 ) m -Y 2 , X 6- (A 3 ) m -Y 4 , X 6- (A 3 ) m- Y 1, X 7 - (A 3) m -Y 3, X 5 - (A 3) m -Y 3, X 8 - (A 3) m -Y 3, X 7 - (A 3) m -Y 2 , X 7 - (A 3) m -Y 4, X 7 - (A 3) m -Y 1, X 5 - (A 3) m -Y 2, X 8 - (A 3) m -Y 2, X 8 - (A 3) m -Y 4, X 8 - (A 3) m -Y 1, X 5 - (A 3) m -Y 1, X 5 - (A 3) m -Y 4 and the like.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式(3)で表される材料は、上記式(a)、(b)で表される基が、X-(A-Y、X-(A-Y、X-(A-Yのいずれかの結合位置で結合していることが好ましい。即ち、下記式(3a)、(3b)、(3c)のいずれかで表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000022
(式(3a)~(3c)中、X~X、Y~Y、A~A及びmは、ぞれぞれ、前記式(3)におけるX~X、Y~Y、A~A及びmと同じである。さらに、式(3a)~(3c)は、前記式(3)における前記(i)~(v)の少なくともいずれかの条件を満たす。)
In the material represented by the above formula (3), the groups represented by the above formulas (a) and (b) are represented by X 6- (A 3 ) m -Y 3 , X 6- (A 3 ) m -Y. 2, X 7 - (a 3 ) is preferably attached at either the binding position of m -Y 3. That is, a compound represented by any one of the following formulas (3a), (3b), and (3c) is more preferable.
Figure JPOXMLDOC01-appb-C000022
(In the formulas (3a) to (3c), X 1 to X 8 , Y 1 to Y 8 , A 1 to A 3 and m are X 1 to X 8 and Y in the formula (3), respectively. 1 to Y 8 , A 1 to A 3 and m are the same, and the formulas (3a) to (3c) satisfy at least one of the conditions (i) to (v) in the formula (3). Fulfill.)
 上記式(3)で表される材料は、上記(i)~(v)の少なくともいずれかを満たす。即ち、上記式(a)、(b)で表される基が連結されたビスカルバゾール誘導体に対して、シアノ基が導入されている。
 本材料は、電子注入・輸送性のシアノ基が導入されることにより、正孔耐性が向上している。そのため、シアノ基を有する材料を含有する本発明の有機EL素子は、シアノ基を有さないホスト材料を使用する従来有機EL素子と比較して長寿命化する効果を奏する。
The material represented by the above formula (3) satisfies at least one of the above (i) to (v). That is, a cyano group is introduced into a biscarbazole derivative to which groups represented by the above formulas (a) and (b) are linked.
This material has improved hole resistance due to introduction of an electron injection / transport cyano group. Therefore, the organic EL device of the present invention containing a material having a cyano group has an effect of extending the lifetime as compared with a conventional organic EL device using a host material having no cyano group.
 前記式(3)におけるAは、単結合、置換もしくは無置換の環形成炭素数6の2価の単環炭化水素基、又は置換もしくは無置換の環形成原子数6の2価の単環複素環基を表すことが好ましい。 A 3 in the formula (3) is a single bond, a substituted or unsubstituted divalent monocyclic hydrocarbon group having 6 ring-forming carbon atoms, or a substituted or unsubstituted bivalent monocyclic ring having 6 ring atoms. It preferably represents a heterocyclic group.
 前記式(3)、(3a)、(3b)及び(3c)においては、mが0であってX~Xの1つと、Y~Yの1つが単結合を介して結合しているか、Aが、置換もしくは無置換の環形成炭素数6の単環炭化水素基、又は置換もしくは無置換の環形成原子数6の単環複素環基であることが好ましい。 In the above formulas (3), (3a), (3b) and (3c), m is 0 and one of X 5 to X 8 and one of Y 1 to Y 4 are bonded via a single bond. Or A 3 is preferably a substituted or unsubstituted monocyclic hydrocarbon group having 6 ring atoms or a substituted or unsubstituted monocyclic heterocyclic group having 6 ring atoms.
 式(3)の材料は、下記(i)及び下記(ii)の少なくともいずれかを満たすことが好ましい。
(i)前記A、前記Aの少なくとも1つがシアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
(ii)X~X及びY~Yの少なくとも1つはCRであり、X~X及びY~YにおけるRの少なくとも1つはシアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
 即ち、式(3)の材料は下記(1)~(3)のいずれかに該当することが好ましい。
(1)上記(i)を満たし、上記(ii)~(v)を満たさない。
(2)上記(ii)を満たし、上記(i)、(iii)~(v)を満たさない。
(3)上記(i)及び上記(ii)の両方を満たし、上記(iii)~(v)を満たさない。
The material of the formula (3) preferably satisfies at least one of the following (i) and the following (ii).
(I) an aromatic hydrocarbon group having 6 to 30 ring carbon atoms in which at least one of A 1 and A 2 is substituted with a cyano group, or a complex having 5 to 30 ring atoms substituted with a cyano group; It is a cyclic group.
(Ii) at least one of X 1 ~ X 4 and Y 5 ~ Y 8 is CR a, at least one of R a in the X 1 ~ X 4 and Y 5 ~ Y 8 is substituted with a cyano group ring It is an aromatic hydrocarbon group having 6 to 30 carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
That is, the material of the formula (3) preferably corresponds to any of the following (1) to (3).
(1) The above (i) is satisfied, and the above (ii) to (v) are not satisfied.
(2) The above (ii) is satisfied, and the above (i) and (iii) to (v) are not satisfied.
(3) Both the above (i) and (ii) are satisfied, and the above (iii) to (v) are not satisfied.
 上記(i)、(ii)の少なくともいずれかを満たす材料と、式(1)又は式(2)で表される材料とを含有する発光層を備えた本発明の有機EL素子の寿命が長くなる効果に加えて、当該有機EL素子の発光効率が良好になる。 The lifetime of the organic EL device of the present invention having a light emitting layer containing a material satisfying at least one of the above (i) and (ii) and a material represented by formula (1) or formula (2) is long. In addition to the above effects, the luminous efficiency of the organic EL element is improved.
 式(3)の材料が、前記(i)の条件を満たす場合、前記A及び前記Aの少なくとも1つが、シアノ基で置換されたフェニル基、シアノ基で置換されたナフチル基、シアノ基で置換されたフェナントリル基、シアノ基で置換されたジベンゾフラニル基、シアノ基で置換されたジベンゾチオフェニル基、シアノ基で置換されたビフェニル基、シアノ基で置換されたターフェニル基、シアノ基で置換された9,9-ジフェニルフルオレニル基、シアノ基で置換された9,9’-スピロビ[9H-フルオレン]-2-イル基、シアノ基で置換された9,9’-ジメチルフルオレニル基、又はシアノ基で置換されたトリフェニレニル基であることが好ましく、3’-シアノビフェニル-2-イル基、3’-シアノビフェニル-3-イル基、3’-シアノビフェニル-4-イル基、4’-シアノビフェニル-3-イル基、4’-シアノビフェニル-4-イル基、4’-シアノビフェニル-2-イル基、6-シアノナフタレン-2-イル基、4-シアノナフタレン-1-イル基、7-シアノナフタレン-2-イル基、8-シアノジベンゾフラン-2-イル基、6-シアノジベンゾフラン-4-イル基、8-シアノジベンゾチオフェン-2-イル基、6-シアノジベンゾチオフェン-4-イル基、7-シアノ-9-フェニルカルバゾール-2-イル基、6-シアノ-9-フェニルカルバゾール-3-イル基、7-シアノ-9,9-ジメチルフルオレン-2-イル基、7-シアノトリフェニレン-2-イル基がさらに好ましい。
 また、式(3)の材料は、Aがシアノ基で置換されており、Aがシアノ基で置換されていないことが好ましい。さらにこの場合、式(3)の材料が前記(ii)の条件を満たさないことがより好ましい。
When the material of the formula (3) satisfies the condition (i), at least one of the A 1 and the A 2 is a phenyl group substituted with a cyano group, a naphthyl group substituted with a cyano group, a cyano group Phenanthryl group substituted with cyano group, dibenzofuranyl group substituted with cyano group, dibenzothiophenyl group substituted with cyano group, biphenyl group substituted with cyano group, terphenyl group substituted with cyano group, cyano group 9,9-diphenylfluorenyl group substituted with 1,9,9′-spirobi [9H-fluoren] -2-yl group substituted with cyano group, 9,9′-dimethylfluoride substituted with cyano group It is preferably an olenyl group or a triphenylenyl group substituted with a cyano group, a 3′-cyanobiphenyl-2-yl group, a 3′-cyanobiphenyl-3-yl group, or a 3′-cyano group. Biphenyl-4-yl group, 4′-cyanobiphenyl-3-yl group, 4′-cyanobiphenyl-4-yl group, 4′-cyanobiphenyl-2-yl group, 6-cyanonaphthalen-2-yl group, 4-cyanonaphthalen-1-yl group, 7-cyanonaphthalen-2-yl group, 8-cyanodibenzofuran-2-yl group, 6-cyanodibenzofuran-4-yl group, 8-cyanodibenzothiophen-2-yl group 6-cyanodibenzothiophen-4-yl group, 7-cyano-9-phenylcarbazol-2-yl group, 6-cyano-9-phenylcarbazol-3-yl group, 7-cyano-9,9-dimethylfluorene A -2-yl group and a 7-cyanotriphenylene-2-yl group are more preferable.
The material of formula (3) is, A 1 is substituted with a cyano group, it is preferred that A 2 is not substituted with a cyano group. Furthermore, in this case, it is more preferable that the material of the formula (3) does not satisfy the condition (ii).
 また、式(3)の材料が、前記(ii)の条件を満たす場合、X~X及びY~Yの少なくとも1つはCRであり、X~X及びY~YにおけるRの少なくとも1つは、シアノ基で置換されたフェニル基、シアノ基で置換されたナフチル基、シアノ基で置換されたフェナントリル基、シアノ基で置換されたジベンゾフラニル基、シアノ基で置換されたジベンゾチオフェニル基、シアノ基で置換されたビフェニル基、シアノ基で置換されたターフェニル基、シアノ基で置換された9,9-ジフェニルフルオレニル基、シアノ基で置換された9,9’-スピロビ[9H-フルオレン]-2-イル基、シアノ基で置換された9,9’-ジメチルフルオレニル基、又はシアノ基で置換されたトリフェニレニル基であることが好ましく、3’-シアノビフェニル-2-イル基、3’-シアノビフェニル-3-イル基、3’-シアノビフェニル-4-イル基、4’-シアノビフェニル-3-イル基、4’-シアノビフェニル-4-イル基、4’-シアノビフェニル-2-イル基、6-シアノナフタレン-2-イル基、4-シアノナフタレン-1-イル基、7-シアノナフタレン-2-イル基、8-シアノジベンゾフラン-2-イル基、6-シアノジベンゾフラン-4-イル基、8-シアノジベンゾチオフェン-2-イル基、6-シアノジベンゾチオフェン-4-イル基、7-シアノ-9-フェニルカルバゾール-2-イル基、6-シアノ-9-フェニルカルバゾール-3-イル基、7-シアノ-9,9-ジメチルフルオレン-2-イル基、7-シアノトリフェニレン-2-イル基がさらに好ましい。
 さらに、式(3)の材料が前記(ii)の条件を満たす場合、前記(i)の条件を満たさないことがより好ましい。
When the material of the formula (3) satisfies the condition (ii), at least one of X 1 to X 4 and Y 5 to Y 8 is CR a , and X 1 to X 4 and Y 5 to At least one of R a in Y 8 is a phenyl group substituted with a cyano group, a naphthyl group substituted with a cyano group, a phenanthryl group substituted with a cyano group, a dibenzofuranyl group substituted with a cyano group, a cyano group Dibenzothiophenyl group substituted with a group, biphenyl group substituted with a cyano group, terphenyl group substituted with a cyano group, 9,9-diphenylfluorenyl group substituted with a cyano group, substituted with a cyano group And 9,9′-spirobi [9H-fluoren] -2-yl group, 9,9′-dimethylfluorenyl group substituted with cyano group, or triphenylenyl group substituted with cyano group. More preferably, 3'-cyanobiphenyl-2-yl group, 3'-cyanobiphenyl-3-yl group, 3'-cyanobiphenyl-4-yl group, 4'-cyanobiphenyl-3-yl group, 4'- Cyanobiphenyl-4-yl group, 4′-cyanobiphenyl-2-yl group, 6-cyanonaphthalen-2-yl group, 4-cyanonaphthalen-1-yl group, 7-cyanonaphthalen-2-yl group, 8 -Cyanodibenzofuran-2-yl group, 6-cyanodibenzofuran-4-yl group, 8-cyanodibenzothiophen-2-yl group, 6-cyanodibenzothiophen-4-yl group, 7-cyano-9-phenylcarbazole- 2-yl group, 6-cyano-9-phenylcarbazol-3-yl group, 7-cyano-9,9-dimethylfluoren-2-yl group, 7-cyanotriphenylene-2-yl group A further preferred.
Furthermore, when the material of Formula (3) satisfies the condition (ii), it is more preferable that the condition (i) is not satisfied.
 前記式(3)及び(3a)~(3c)において、前記Aと前記Aは、互いに異なっていることが好ましい。中でも、前記Aである基がシアノ基で置換されており、且つ前記Aである基がシアノ基で置換されていなことがさらに好ましい。即ち、式(3)の材料は非対称な構造であることが好ましく、このような構造であることにより、式(3)の材料は良好な結晶性、非結晶性を有する。そのため、式(3)の材料を用いた有機EL素子は、優れた膜質となるので、例えば、電流効率等の有機EL特性において、高性能を達成できる。 In the formulas (3) and (3a) to (3c), the A 1 and the A 2 are preferably different from each other. Among them, it is more preferable that the group which is A 1 is substituted with a cyano group and the group which is A 2 is not substituted with a cyano group. That is, the material of the formula (3) preferably has an asymmetric structure. By such a structure, the material of the formula (3) has good crystallinity and non-crystallinity. Therefore, since the organic EL element using the material of the formula (3) has excellent film quality, for example, high performance can be achieved in organic EL characteristics such as current efficiency.
 式(3)の材料の製造方法は、特に限定されず、公知の方法で製造すればよく、例えば、カルバゾール誘導体と芳香族ハロゲン化化合物に対し、テトラへドロン 40(1984)1435~1456に記載される銅触媒、又はジャーナル オブ アメリカン ケミカル ソサイアティ 123(2001)7727~7729に記載されるパラジウム触媒を用いたカップリング反応で製造することができる。 The method for producing the material of the formula (3) is not particularly limited, and may be produced by a known method. For example, tetrahedron 40 (1984) 1435 to 1456 for carbazole derivatives and aromatic halogenated compounds. Or a coupling reaction using a palladium catalyst described in Journal of American Chemical Society 123 (2001) 7727-7729.
 以下に、式(3)の材料の具体例を記載するが、本発明の化合物は下記化合物に限定されない。
Figure JPOXMLDOC01-appb-C000023
Although the specific example of the material of Formula (3) is described below, the compound of this invention is not limited to the following compound.
Figure JPOXMLDOC01-appb-C000023
 燐光発光性ドーパント材料(燐光ドーパント)は、三重項励起状態から発光することのできる化合物であり、三重項励起状態から発光する限り特に限定されないが、Ir,Pt,Os,Au,Cu,Re及びRuから選択される少なくとも一つの金属と配位子とを含む有機金属錯体であることが好ましい。前記配位子は、オルトメタル結合を有することが好ましい。燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、Ir,Os及びPtから選ばれる金属原子を含有する金属錯体が好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体、特にオルトメタル化錯体がより好ましく、イリジウム錯体及び白金錯体がさらに好ましく、オルトメタル化イリジウム錯体が特に好ましい。 The phosphorescent dopant material (phosphorescent dopant) is a compound that can emit light from the triplet excited state, and is not particularly limited as long as it emits light from the triplet excited state, but Ir, Pt, Os, Au, Cu, Re and An organometallic complex containing at least one metal selected from Ru and a ligand is preferable. The ligand preferably has an ortho metal bond. A metal complex containing a metal atom selected from Ir, Os and Pt is preferred in that the phosphorescent quantum yield is high and the external quantum efficiency of the light emitting device can be further improved, and an iridium complex, an osmium complex, or a platinum complex. Are more preferable, iridium complexes and platinum complexes are more preferable, and orthometalated iridium complexes are particularly preferable.
 燐光ドーパントの発光層における含有量は特に制限はなく目的に応じて適宜選択することができるが、例えば、0.1~70質量%が好ましく、1~30質量%がより好ましい。燐光ドーパントの含有量が0.1質量%以上であると十分な発光が得られ、70質量%以下であると濃度消光を避けることができる。 The content of the phosphorescent dopant in the light emitting layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 0.1 to 70% by mass, more preferably 1 to 30% by mass. If the phosphorescent dopant content is 0.1% by mass or more, sufficient light emission can be obtained, and if it is 70% by mass or less, concentration quenching can be avoided.
 燐光ドーパント
として好ましい有機金属錯体の具体例を、以下に示す。
Figure JPOXMLDOC01-appb-C000024
Specific examples of preferred organometallic complexes as phosphorescent dopants are shown below.
Figure JPOXMLDOC01-appb-C000024
 燐光ドーパント材料は、単独で使用してもよく、また、2種以上を併用してもよい。
 発光層に含まれる燐光ドーパント材料の発光波長は特に限定されないが、発光層に含まれる前記燐光ドーパント材料のうち少なくとも1種は、発光波長のピークが490nm以上700nm以下であることが好ましく、490nm以上650nm以下であることがより好ましい。
A phosphorescent dopant material may be used independently and may use 2 or more types together.
The emission wavelength of the phosphorescent dopant material contained in the light emitting layer is not particularly limited, but at least one of the phosphorescent dopant materials contained in the light emitting layer preferably has a peak emission wavelength of 490 nm to 700 nm. More preferably, it is 650 nm or less.
 燐光ホストは、燐光ドーパントの三重項エネルギーを効率的に発光層内に閉じ込めることにより、燐光ドーパントを効率的に発光させる機能を有する化合物である。本発明の有機EL素子は、上記第1ホスト材料及び第2ホスト材料以外の化合物も、燐光ホストとして、上記目的に応じて適宜選択することができる。
 上記第1ホスト材料及び第2ホスト材料とそれ以外の化合物を同一の発光層内の燐光ホスト材料として併用してもよいし、複数の発光層がある場合には、そのうちの一つの発光層の燐光ホスト材料として上記第1ホスト材料及び第2ホスト材料を用い、別の一つの発光層の燐光ホスト材料として上記第1ホスト材料又は第2ホスト材料以外の化合物を用いてもよい。また、上記第1ホスト材料及び第2ホスト材料は発光層以外の有機層にも使用しうるものである。
The phosphorescent host is a compound having a function of efficiently emitting the phosphorescent dopant by efficiently confining the triplet energy of the phosphorescent dopant in the light emitting layer. In the organic EL device of the present invention, compounds other than the first host material and the second host material can be appropriately selected as a phosphorescent host according to the purpose.
The first host material, the second host material, and other compounds may be used in combination as a phosphorescent host material in the same light emitting layer. When there are a plurality of light emitting layers, one of the light emitting layers The first host material and the second host material may be used as the phosphorescent host material, and a compound other than the first host material or the second host material may be used as the phosphorescent host material of another light emitting layer. The first host material and the second host material can also be used for organic layers other than the light emitting layer.
 上記第1ホスト材料及び第2ホスト材料以外の化合物で、燐光ホストとして好適な化合物の具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。上記第1ホスト材料及び第2ホスト材料以外の燐光ホストは単独で使用しても良いし、2種以上を併用しても良い。具体例としては、以下のような化合物が挙げられる。 Specific examples of compounds other than the first host material and the second host material and suitable as a phosphorescent host include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline. Derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds , Porphyrin compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluoresceins Represented by metal complexes of redenemethane derivatives, distyrylpyrazine derivatives, heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, phthalocyanine derivatives, 8-quinolinol derivatives, metal phthalocyanines, metal complexes with benzoxazole and benzothiazole ligands. Various metal complexes such as polysilane compounds, poly (N-vinylcarbazole) derivatives, aniline copolymers, thiophene oligomers, conductive polymer oligomers such as polythiophene, polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, polyfluorene derivatives, etc. Examples thereof include polymer compounds. Phosphorescent hosts other than the first host material and the second host material may be used alone or in combination of two or more. Specific examples include the following compounds.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 発光層が複数層からなり、上述した第1ホスト材料及び第2ホスト材料を含有する発光層以外について、ドーピングシステムを採用する場合、該発光層はホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。
 燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
When the light emitting layer is composed of a plurality of layers and the doping system is employed in addition to the above light emitting layer containing the first host material and the second host material, the light emitting layer includes a host material and a dopant material. At this time, the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
In the case of a phosphorescent element, the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
 上記発光層は、量子収率の高いドーパント材料を二種類以上入れることによって、それぞれのドーパントが発光するダブルドーパントを採用してもよい。具体的には、ホスト、赤色ドーパント及び緑色ドーパントを共蒸着することによって、発光層を共通化して黄色発光を実現する態様が挙げられる。 The above light emitting layer may adopt a double dopant in which each dopant emits light by adding two or more kinds of dopant materials having a high quantum yield. Specifically, a mode in which yellow emission is realized by co-evaporating a host, a red dopant, and a green dopant to make the light emitting layer common is used.
 上記発光層は、複数の発光層を積層した積層体とすることで、発光層界面に電子と正孔を蓄積させて、再結合領域を発光層界面に集中させて、量子効率を向上させることができる。
 発光層への正孔の注入し易さと電子の注入し易さは異なっていてもよく、また、発光層中での正孔と電子の移動度で表される正孔輸送能と電子輸送能が異なっていてもよい。
The above light-emitting layer is a laminate in which a plurality of light-emitting layers are stacked, so that electrons and holes are accumulated at the light-emitting layer interface, and the recombination region is concentrated at the light-emitting layer interface to improve quantum efficiency. Can do.
The ease of injecting holes into the light emitting layer may be different from the ease of injecting electrons, and the hole transport ability and electron transport ability expressed by the mobility of holes and electrons in the light emitting layer may be different. May be different.
 発光層は、例えば蒸着法、スピンコート法、LB法等の公知の方法により形成することができる。また、樹脂等の結着剤と材料化合物とを溶剤に溶かした溶液をスピンコート法等により薄膜化することによっても、発光層を形成することができる。
 発光層は、分子堆積膜であることが好ましい。分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。
A light emitting layer can be formed by well-known methods, such as a vapor deposition method, a spin coat method, LB method, for example. The light emitting layer can also be formed by thinning a solution obtained by dissolving a binder such as a resin and a material compound in a solvent by a spin coating method or the like.
The light emitting layer is preferably a molecular deposited film. The molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidifying from a material compound in a solution state or a liquid phase state. The thin film (molecular accumulation film) formed by the LB method can be classified by the difference in the aggregation structure and the higher-order structure, and the functional difference resulting therefrom.
 発光層の膜厚は、好ましくは5~50nm、より好ましくは7~50nm、さらに好ましくは10~50nmである。5nm以上であると発光層の形成が容易であり、50nm以下であると駆動電圧の上昇が避けられる。 The thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and still more preferably 10 to 50 nm. When the thickness is 5 nm or more, it is easy to form a light emitting layer, and when the thickness is 50 nm or less, an increase in driving voltage can be avoided.
 本発明の有機EL素子は、上述した電子注入層と発光層が隣接した構造を有しておればよく、他の構成部材である陽極、正孔注入層、正孔輸送層、陰極等は、本技術分野において公知の部材を適宜使用することができる。
 以下、構成部材の例について簡単に説明する。
The organic EL device of the present invention only needs to have a structure in which the electron injection layer and the light emitting layer described above are adjacent to each other. Any member known in the art can be used as appropriate.
Hereinafter, examples of the constituent members will be briefly described.
(基板)
 本発明の有機EL素子は、透光性基板上に作製する。透光性基板は有機EL素子を支持する基板であり、400nm~700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を原料として用いてなるものを挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を原料として用いてなるものを挙げることができる。
(substrate)
The organic EL element of the present invention is produced on a translucent substrate. The light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more. Specifically, a glass plate, a polymer plate, etc. are mentioned. Examples of the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials. Examples of the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
(陽極)
 有機EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、4.5eV以上の仕事関数を有するものを用いることが効果的である。陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛酸化物、金、銀、白金、銅等が挙げられる。陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。発光層からの発光を陽極から取り出す場合、陽極の可視領域の光の透過率を10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は、材料にもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で選択される。
(anode)
The anode of the organic EL element plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to use a material having a work function of 4.5 eV or more. Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, copper, and the like. The anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When light emitted from the light emitting layer is extracted from the anode, it is preferable that the transmittance of light in the visible region of the anode is greater than 10%. The sheet resistance of the anode is preferably several hundred Ω / □ or less. The film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 μm, preferably 10 nm to 200 nm.
(陰極)
 陰極は電子注入層、電子輸送層又は発光層に電子を注入する役割を担うものであり、仕事関数の小さい材料により形成するのが好ましい。陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、アルミニウム-リチウム合金、アルミニウム-スカンジウム-リチウム合金、マグネシウム-銀合金等が使用できる。陰極も、陽極と同様に、蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。また、必要に応じて、陰極側から発光を取り出してもよい。
(cathode)
The cathode plays a role of injecting electrons into the electron injection layer, the electron transport layer or the light emitting layer, and is preferably formed of a material having a small work function. The cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used. Similarly to the anode, the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering. Moreover, you may take out light emission from the cathode side as needed.
(正孔輸送帯域)
 正孔輸送帯域(陽極と発光層の間の領域)の層としては、正孔輸送層や正孔注入層等がある。正孔輸送層は、発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常5.5eV以下と小さい。このような正孔輸送層としてはより低い電界強度で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば10~10V/cmの電界印加時に、少なくとも10-4cm/V・秒であれば好ましい。
(Hole transport zone)
Examples of the layer in the hole transport zone (region between the anode and the light emitting layer) include a hole transport layer and a hole injection layer. The hole transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and has a high hole mobility and a small ionization energy of usually 5.5 eV or less. Such a hole transport layer is preferably a material that transports holes to the light-emitting layer with a lower electric field strength, and further has a hole mobility of at least 10 when an electric field of 10 4 to 10 6 V / cm is applied. -4 cm 2 / V · sec is preferred.
 正孔輸送層の材料の具体例として、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ポリシラン系、アニリン系共重合体、導電性高分子オリゴマー(特にチオフェンオリゴマー)等を挙げることができる。 Specific examples of the material for the hole transport layer include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives. , Styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, polysilanes, aniline copolymers, conductive polymer oligomers (particularly thiophene oligomers), and the like.
 正孔注入層又は正孔輸送層(正孔注入輸送層も含む)には、芳香族アミン化合物、例えば、下記式(4)で表わされる芳香族アミン誘導体が好適に用いられる。
Figure JPOXMLDOC01-appb-C000026
For the hole injection layer or the hole transport layer (including the hole injection transport layer), an aromatic amine compound, for example, an aromatic amine derivative represented by the following formula (4) is preferably used.
Figure JPOXMLDOC01-appb-C000026
 式(4)において、Ar31~Ar34は、環形成炭素数6~50の芳香族炭化水素基(但し、置換基を有しても良い。)、環形成炭素数6~50の縮合芳香族炭化水素基(但し、置換基を有しても良い。)、環形成炭素数2~40の芳香族複素環基(但し、置換基を有しても良い。)環形成炭素数2~40の縮合芳香族複素環基(但し、置換基を有しても良い。)、それら芳香族炭化水素基とそれら芳香族複素環基とを結合させた基、それら芳香族炭化水素基とそれら縮合芳香族複素環基とを結合させた基それら縮合芳香族炭化水素基とそれら芳香族複素環基とを結合させた基、又はそれら縮合芳香族炭化水素基とそれら縮合芳香族複素環基とを結合させた基を表す。
 Lは、単結合又はAr31~Ar34と同様な基を表す。
In the formula (4), Ar 31 to Ar 34 are each an aromatic hydrocarbon group having 6 to 50 ring carbon atoms (which may have a substituent), or a condensed aromatic group having 6 to 50 ring carbon atoms. Group hydrocarbon group (which may have a substituent), an aromatic heterocyclic group having 2 to 40 ring carbon atoms (which may have a substituent) 40 condensed aromatic heterocyclic groups (which may have a substituent), a group obtained by bonding these aromatic hydrocarbon groups and these aromatic heterocyclic groups, these aromatic hydrocarbon groups and these A group in which a fused aromatic heterocyclic group is bonded, a group in which the condensed aromatic hydrocarbon group and the aromatic heterocyclic group are bonded, or a condensed aromatic hydrocarbon group and the condensed aromatic heterocyclic group; Represents a group to which is bonded.
L represents a single bond or a group similar to Ar 31 to Ar 34 .
 また、下記式(5)の芳香族アミンも正孔注入層又は正孔輸送層の形成に好適に用いられる。
Figure JPOXMLDOC01-appb-C000027
Moreover, the aromatic amine of following formula (5) is also used suitably for formation of a positive hole injection layer or a positive hole transport layer.
Figure JPOXMLDOC01-appb-C000027
 式(5)において、Ar31~Ar33の定義は式(4)のAr31~Ar34の定義と同様である。 In the formula (5), the definitions of Ar 31 to Ar 33 are the same as the definitions of Ar 31 to Ar 34 in the formula (4).
 正孔注入層は、さらに正孔の注入を助けるために設けられる層である。正孔注入層の材料としては本発明の有機EL用材料単独でもよいし、他の材料と混合して用いてもよい。他の材料としては正孔輸送層と同様の材料を使用することができる。他に、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物を用いることもできる。さらに、電荷発生層のP層で用いられるHATやF4TCNQ、式(4)で示される化合物を使用する事もできる。 The hole injection layer is a layer provided to further assist hole injection. The material for the hole injection layer may be the organic EL material of the present invention alone, or may be used in combination with other materials. As other materials, the same materials as the hole transport layer can be used. In addition, a porphyrin compound, an aromatic tertiary amine compound, and a styrylamine compound can also be used. Further, HAT or F4TCNQ used in the P layer of the charge generation layer, or a compound represented by the formula (4) can also be used.
 また、含チオフェンオリゴマーや特開平8-193191号公報に開示してある含アリールアミンオリゴマー等の導電性オリゴマー、含アリールアミンデンドリマー等の導電性デンドリマー等も用いることができる。
 さらに、芳香族ジメチリディン系化合物の他、p型Si、p型SiC等の無機化合物も正孔注入層の材料として使用することができる。
Also usable are conductive thiophene oligomers, conductive oligomers such as arylamine oligomers disclosed in JP-A-8-193191, conductive dendrimers such as arylamine dendrimers, and the like.
In addition to aromatic dimethylidin compounds, inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection layer.
 正孔注入層又は正孔輸送層は、例えば、上述した化合物を真空蒸着法、スピンコート法、キャスト法、LB法等の公知の方法により薄膜化することにより形成することができる。正孔注入層、正孔輸送層としての膜厚は特に制限はないが、通常は1nm~5μmである。 The hole injection layer or the hole transport layer can be formed, for example, by thinning the above-described compound by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. The thickness of the hole injection layer or hole transport layer is not particularly limited, but is usually 1 nm to 5 μm.
(電子輸送帯域)
 電子輸送帯域(陰極と電子注入層の間の領域)の層としては、電子輸送層等がある。
 電子輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きい。
 電子輸送層は数nm~数μmの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避けるために、10~10V/cmの電界印加時に電子移動度が少なくとも10-5cm/Vs以上であることが好ましい。
 電子輸送層に用いられる材料としては、8-ヒドロキシキノリン又はその誘導体の金属錯体や含窒素複素環誘導体が好適である。
 上記8-ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8-キノリノール)アルミニウムを電子注入材料として用いることができる。
 含窒素複素環誘導体としては、例えば、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、トリアゾール、ピリジン、ピリミジン、トリアジン、フェナントロリン、ベンズイミダゾール、イミダゾピリジン等が好ましく、中でもベンズイミダゾール誘導体、フェナントロリン誘導体、イミダゾピリジン誘導体が好ましい。
(Electronic transport band)
Examples of the layer in the electron transport zone (the region between the cathode and the electron injection layer) include an electron transport layer.
The electron transport layer is a layer that helps injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility.
The electron transport layer is appropriately selected with a film thickness of several nm to several μm, but when the film thickness is particularly large, the electron mobility is at least 10 when an electric field of 10 4 to 10 6 V / cm is applied in order to avoid an increase in voltage. It is preferably −5 cm 2 / Vs or higher.
As a material used for the electron transport layer, 8-hydroxyquinoline or a metal complex of its derivative or a nitrogen-containing heterocyclic derivative is preferable.
As a specific example of the above-mentioned metal complex of 8-hydroxyquinoline or a derivative thereof, a metal chelate oxinoid compound containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline) such as tris (8-quinolinol) aluminum is injected. It can be used as a material.
As the nitrogen-containing heterocyclic derivative, for example, oxazole, thiazole, oxadiazole, thiadiazole, triazole, pyridine, pyrimidine, triazine, phenanthroline, benzimidazole, imidazopyridine and the like are preferable, and among them, benzimidazole derivative, phenanthroline derivative, imidazopyridine derivative Is preferred.
 また、本発明の一形態においては、陰極と前記電子輸送層との間に絶縁体や半導体で構成される層を設けてもよい。これにより、電流のリークを有効に防止して、電子注入性を向上させることができる。 In one embodiment of the present invention, a layer made of an insulator or a semiconductor may be provided between the cathode and the electron transport layer. As a result, current leakage can be effectively prevented and the electron injection property can be improved.
 前記絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも1つの金属化合物を使用するのが好ましい。この層がこれらのアルカリ金属カルコゲナイド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。 As the insulator, it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If this layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
 具体的に、好ましいアルカリ金属カルコゲナイドとしては、例えば、LiO、LiO、NaS、NaSe及びNaOが挙げられ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、CaO、BaO、SrO、BeO、BaS、及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、CsF,LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgF及びBeFといったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。 Specifically, preferable alkali metal chalcogenides include, for example, Li 2 O, LiO, Na 2 S, Na 2 Se, and NaO, and preferable alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, and BeO. , BaS, and CaSe. Further, preferable alkali metal halides include, for example, LiF, NaF, KF, CsF, LiCl, KCl, and NaCl. Examples of preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
 前記半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。
 また、この層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。
 尚、このような無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。
Examples of the semiconductor include oxide, nitride, or oxynitride containing at least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn. Or a combination of two or more.
The inorganic compound constituting this layer is preferably a microcrystalline or amorphous insulating thin film.
Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
 尚、本発明の有機EL素子では、電子輸送領域において、上述した電子輸送層等を形成しなくとも、高い発光効率が得られる。 In the organic EL device of the present invention, high luminous efficiency can be obtained without forming the above-described electron transport layer or the like in the electron transport region.
 本発明の有機EL素子は、公知の方法によって作製できる。具体的に、陽極や陰極は、蒸着やスパッタリング等の方法により形成できる。発光層等の各有機薄膜層は、真空蒸着法、スピンコート法、キャスト法、LB法等の方法により行うことができる。 The organic EL device of the present invention can be produced by a known method. Specifically, the anode and the cathode can be formed by a method such as vapor deposition or sputtering. Each organic thin film layer such as a light-emitting layer can be formed by a method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
 本発明の有機EL素子は図1に示す構成に限定されない。例えば、正孔輸送層、正孔注入層は任意の層であるため省略することが可能であり、また、電子注入層と陰極の間に電子輸送層等を設けることができる。 The organic EL element of the present invention is not limited to the configuration shown in FIG. For example, since the hole transport layer and the hole injection layer are arbitrary layers, they can be omitted, and an electron transport layer or the like can be provided between the electron injection layer and the cathode.
 本発明の有機EL素子の構成は、上述した実施形態に限定されず、他の公知の構成を採用できる。例えば、陽極と陰極との間に、少なくとも発光層を有する有機層からなる複数の発光ユニットを、電荷発生層を介して重ねて配置した構成を有する有機EL素子(MPE素子)にも使用できる。この場合、複数の発光ユニットの少なくとも1つが、本発明の電子注入層と発光層が隣接した構造を有しておればよい。 The configuration of the organic EL element of the present invention is not limited to the above-described embodiment, and other known configurations can be adopted. For example, it can also be used for an organic EL element (MPE element) having a configuration in which a plurality of light emitting units each composed of an organic layer having at least a light emitting layer are disposed between an anode and a cathode via a charge generation layer. In this case, at least one of the plurality of light emitting units only needs to have a structure in which the electron injection layer and the light emitting layer of the present invention are adjacent to each other.
 図2は、本発明の有機EL素子の他の実施形態の概略断面図である。
 本実施形態の有機EL素子2は、基板10上に、陽極20、第1の発光ユニット71、電荷発生層72、第2の発光ユニット73及び光透過性陰極60を、この順に備える。
 2つの発光ユニットはそれぞれ、少なくとも発光層を有する単層又は積層構造を有する。例えば、発光ユニットは陽極側から、正孔輸送層、発光層及び電子注入層を積層した多層膜構造が好ましい。本発明では2つの発光ユニットの少なくとも1つが、本発明の電子注入層と発光層が隣接した構造を有している。
FIG. 2 is a schematic cross-sectional view of another embodiment of the organic EL device of the present invention.
The organic EL element 2 of this embodiment includes an anode 20, a first light emitting unit 71, a charge generation layer 72, a second light emitting unit 73, and a light transmissive cathode 60 on a substrate 10 in this order.
Each of the two light emitting units has a single layer or a stacked structure having at least a light emitting layer. For example, the light emitting unit preferably has a multilayer structure in which a hole transport layer, a light emitting layer, and an electron injection layer are stacked from the anode side. In the present invention, at least one of the two light emitting units has a structure in which the electron injection layer and the light emitting layer of the present invention are adjacent to each other.
 電荷発生層等、MPE素子の構成部材については、特開2003-45676、特開2003-272860、特開平11-329748、特開2006-24791、特開2004-39617、特開2006-73484、特開2006-173550等を参照できる。 Regarding the constituent members of the MPE element such as the charge generation layer, JP2003-45676, JP2003-272860, JP11-329748, JP2006-24791, JP2004-39617, JP2006-73484, Reference can be made to Japanese Patent Publication No. 2006-173550.
 有機EL素子2は、発光ユニットを2つ形成した他は図1に示す有機EL素子1と同じ構成を有する。換言すれば、有機EL素子1は正孔注入層20、正孔輸送層30、発光層40及び電子注入層50からなる発光ユニットを1つ有する素子構成である。
 本実施形態では、例えば、各発光ユニットの発光色を異ならせること、即ち発光層の材料を変えることにより、白色発光する有機EL素子が得られる。
The organic EL element 2 has the same configuration as the organic EL element 1 shown in FIG. 1 except that two light emitting units are formed. In other words, the organic EL element 1 has an element configuration having one light emitting unit including the hole injection layer 20, the hole transport layer 30, the light emitting layer 40, and the electron injection layer 50.
In the present embodiment, for example, an organic EL element that emits white light can be obtained by changing the light emission color of each light emitting unit, that is, by changing the material of the light emitting layer.
 本発明の有機EL素子は、トップエミッションタイプでもボトムエミッションタイプでもよい。 The organic EL element of the present invention may be a top emission type or a bottom emission type.
 実施例及び比較例では、下記化合物を用いて有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
In Examples and Comparative Examples, organic EL devices were produced using the following compounds.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
実施例1
 30mm×30mmのガラス板からなる基板上に、陽極としてITOを240nmの膜厚で形成した。次に、SiO蒸着により2mm×2mmの発光領域以外を絶縁膜でマスクした有機EL素子用のセルを作製した。
 陽極上に、正孔注入層として、蒸着にてヘキサニトリルアザトリフェニレン(下記式(HAT))を10nmの膜厚で形成した。
 続けて、正孔輸送層1として、蒸着にて化合物HT-1を180nmの膜厚で形成した。この上に、正孔輸送層2として、蒸着にて化合物HT-2を20nmの膜厚で形成した。
 次に、正孔輸送層2の上に、化合物H1-1、H2-1及びIr(PPy)を共蒸着し、厚さ30nmの発光層を形成した。発光層において、ホスト材料の比率(質量比)は1:1とした。また、ドーパントの含有率は10%(質量比)とした。
 発光層に続けて、Liと化合物E-1を二元蒸着させ、E-1:Li膜(Li 2%(質量比))を30nm形成し電子注入層とした。電子注入層上に金属Alを80nm蒸着させ陰極を形成して、有機EL素子を作製した。
 作製した有機EL素子について、10mAcm-2の電流密度における電圧(V)及び輝度(cd/m)、40mA/cm駆動での輝度半減寿命を測定した。
 発光層で使用したホスト材料、発光層から陰極までの層構成及び評価結果を表1に示す。
Example 1
ITO was formed to a thickness of 240 nm as an anode on a substrate made of a 30 mm × 30 mm glass plate. Next, a cell for an organic EL element in which a region other than the light emitting region of 2 mm × 2 mm was masked with an insulating film by SiO 2 vapor deposition was produced.
On the anode, as a hole injection layer, hexanitrile azatriphenylene (the following formula (HAT)) was formed to a thickness of 10 nm by vapor deposition.
Subsequently, as the hole transport layer 1, compound HT-1 was formed to a thickness of 180 nm by vapor deposition. On top of this, as a hole transport layer 2, compound HT-2 was formed to a thickness of 20 nm by vapor deposition.
Next, compounds H1-1, H2-1, and Ir (PPy) 3 were co-evaporated on the hole transport layer 2 to form a light-emitting layer having a thickness of 30 nm. In the light emitting layer, the ratio (mass ratio) of the host material was 1: 1. The dopant content was 10% (mass ratio).
Subsequently to the light emitting layer, Li and compound E-1 were binary evaporated to form an E-1: Li film (Li 2% (mass ratio)) of 30 nm to form an electron injection layer. On the electron injection layer, metal Al was deposited to a thickness of 80 nm to form a cathode, and an organic EL device was produced.
The produced organic EL device was measured for voltage (V) and luminance (cd / m 2 ) at a current density of 10 mAcm −2 , and luminance half-life when driven at 40 mA / cm 2 .
Table 1 shows the host material used in the light emitting layer, the layer structure from the light emitting layer to the cathode, and the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例2~5
 発光層のホスト材料及び電子注入層で使用した化合物を、表1に示すように変更した他は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
Examples 2-5
An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds used in the host material and the electron injection layer of the light emitting layer were changed as shown in Table 1. The results are shown in Table 1.
比較例1
 発光層の形成までは、実施例1と同様にした。
 発光層に続けて、Alq3層を30nm形成し、さらに、LiFを0.5nmの厚さで形成した。その後、実施例1と同様に陰極を形成して、有機EL素子を作製した。実施例と同様に評価した結果を表1に示す。
Comparative Example 1
The process was the same as in Example 1 until the formation of the light emitting layer.
Following the light emitting layer, an Alq3 layer was formed to a thickness of 30 nm, and LiF was formed to a thickness of 0.5 nm. Thereafter, a cathode was formed in the same manner as in Example 1 to produce an organic EL device. The results evaluated in the same manner as in Examples are shown in Table 1.
比較例2
 発光層の形成までは、実施例1と同様にした。
 発光層に続けて、正孔ブロック層としてBAlq層を20nm形成した。続けて、Alq3層を10nm形成し、さらに、LiFを0.5nmの厚さで形成した。その後、実施例1と同様に陰極を形成して、有機EL素子を作製した。実施例と同様に評価した結果を表1に示す。
Comparative Example 2
The process was the same as in Example 1 until the formation of the light emitting layer.
Subsequent to the light emitting layer, a BAlq layer having a thickness of 20 nm was formed as a hole blocking layer. Subsequently, an Alq3 layer was formed to 10 nm, and LiF was formed to a thickness of 0.5 nm. Thereafter, a cathode was formed in the same manner as in Example 1 to produce an organic EL device. The results evaluated in the same manner as in Examples are shown in Table 1.
比較例3
 ホスト材料として、CBPのみを使用した他は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
Comparative Example 3
An organic EL device was prepared and evaluated in the same manner as in Example 1 except that only CBP was used as the host material. The results are shown in Table 1.
比較例4
 ホスト材料として、CBPのみを使用した他は、比較例2と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
Comparative Example 4
An organic EL device was prepared and evaluated in the same manner as in Comparative Example 2 except that only CBP was used as the host material. The results are shown in Table 1.
比較例5
 発光層の形成まで、ホスト材料としてCBPのみを使用した他は、実施例1と同様にした。
 その後、正孔ブロック層としてBAlq層を10nm形成した。続けて、Alq3層を10nm形成し、さらに、電子注入層として、E-1とLiの混合層(Li:2%)を10nmの厚さで形成した。その後、実施例1と同様に陰極を形成して、有機EL素子を作製した。実施例と同様に評価した結果を表1に示す。
Comparative Example 5
The procedure was the same as in Example 1 except that only CBP was used as the host material until formation of the light emitting layer.
Thereafter, a BAlq layer having a thickness of 10 nm was formed as a hole blocking layer. Subsequently, an Alq3 layer was formed to 10 nm, and a mixed layer of E-1 and Li (Li: 2%) was formed to a thickness of 10 nm as an electron injection layer. Thereafter, a cathode was formed in the same manner as in Example 1 to produce an organic EL device. The results evaluated in the same manner as in Examples are shown in Table 1.
比較例6
 発光層の形成まで、ホスト材料としてCBPのみを使用した他は、実施例1と同様にした。
 その後、電子注入層として、E-1のみからなる層を30nmの厚さで形成した。さらに、LiFを0.5nmの厚さで形成した。その後、実施例1と同様に陰極を形成して、有機EL素子を作製した。実施例と同様に評価した結果を表1に示す。
Comparative Example 6
The procedure was the same as in Example 1 except that only CBP was used as the host material until formation of the light emitting layer.
Thereafter, a layer made of only E-1 was formed as an electron injection layer with a thickness of 30 nm. Furthermore, LiF was formed with a thickness of 0.5 nm. Thereafter, a cathode was formed in the same manner as in Example 1 to produce an organic EL device. The results evaluated in the same manner as in Examples are shown in Table 1.
比較例7
 ホスト材料として、H2-1を使用せず、H1-1のみを使用した他は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
Comparative Example 7
An organic EL device was prepared and evaluated in the same manner as in Example 1 except that H2-1 was not used as the host material but only H1-1 was used. The results are shown in Table 1.
 本発明の実施例1~5においては、高効率、低電圧で長寿命な素子が得られた。一方、比較例1及び2は、電子注入層が発光層に隣接していないため発光層への電子注入不足により高電圧化と短寿命化が発生した。
 比較例3は、電子注入層が発光層に隣接しているため、比較例4に比べて低電圧化しているものの、発光層の電荷バランスが悪いために低効率化と短寿命化が発生した。比較例4、5は、正孔ブロック材料で励起子のロスを防ぎ効率を補っているものの、電荷輸送能の低い正孔ブロック材を用いていることで高電圧化が生じた。
 比較例6は、電子輸送層が発光層に隣接しているため、比較例5に比べるとやや高電圧化しているものの、発光層の電荷バランスが悪いために低効率化と短寿命化が発生した。
 比較例7は、発光層ホストを混合していないため電荷バランスが不十分であるため短寿命化が発生した。
In Examples 1 to 5 of the present invention, devices with high efficiency, low voltage and long life were obtained. On the other hand, in Comparative Examples 1 and 2, since the electron injection layer is not adjacent to the light emitting layer, a high voltage and a short life occurred due to insufficient electron injection into the light emitting layer.
In Comparative Example 3, since the electron injection layer is adjacent to the light emitting layer, the voltage is lower than that in Comparative Example 4, but the efficiency of the light emitting layer is shortened and the life is shortened due to the poor charge balance of the light emitting layer. . In Comparative Examples 4 and 5, the hole blocking material prevented the exciton loss and compensated for the efficiency, but the use of the hole blocking material having a low charge transporting capability resulted in a high voltage.
In Comparative Example 6, since the electron transport layer is adjacent to the light emitting layer, the voltage is slightly higher than that in Comparative Example 5. However, the charge balance of the light emitting layer is poor, resulting in lower efficiency and shorter life. did.
In Comparative Example 7, since the light emitting layer host was not mixed, the charge balance was insufficient, so that the lifetime was shortened.
 本発明の有機EL素子は、壁掛けテレビのフラットパネルディスプレイ等の平面発光体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、表示板、標識灯等に利用できる。 The organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a copying machine, a printer, a light source such as a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
All the contents of the Japanese application specification that is the basis of the priority of Paris in this application are incorporated herein.

Claims (12)

  1.  陽極と、発光層と、電子注入層と、陰極とを、この順に有し、
     前記電子注入層と前記発光層は隣接してあり、
     前記電子注入層は、π電子欠乏性化合物と、電子供与性材料と、を含み
     前記発光層は、少なくとも、第1ホスト材料、第2ホスト材料及び燐光発光性ドーパント材料を含む、有機エレクトロルミネッセンス素子。
    Having an anode, a light emitting layer, an electron injection layer, and a cathode in this order;
    The electron injection layer and the light emitting layer are adjacent to each other;
    The electron injection layer includes a π electron deficient compound and an electron donating material. The light emitting layer includes at least a first host material, a second host material, and a phosphorescent dopant material. .
  2.  前記第1ホスト材料及び第2ホスト材料が、下記式(1)~(3)のいずれかで表される材料から選択される、請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000032
    [式(1)中、
     Zは、aにおいて縮合している下記式(1-1)又は(1-2)で表される環構造を表す。Zは、bにおいて縮合している下記式(1-1)又は(1-2)で表される環構造を表す。ただし、Z及びZの少なくとも1つは下記式(1-1)で表される。
     Mは、置換もしくは無置換の環形成原子数5~30の窒素含有ヘテロ芳香族環であり、
     Lは、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の2価の複素環基、環形成炭素数5~30のシクロアルキレン基、又は、これらが連結した基を表す。
     kは、1又は2を表す。]
    Figure JPOXMLDOC01-appb-C000033
    [上記式(1-1)において、
     cは、前記式(1)のa又はbにおいて縮合していることを表す。
     上記(1-2)において、d,e及びfのいずれか1つは、前記一般式(1)のa又はbにおいて縮合していることを表す。
     上記式(1-1)及び(1-2)において、
     X11は、硫黄原子、酸素原子、N-R19、又はC(R20)(R21)を表す。
     R11~R21は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の炭素数7~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
     また、隣り合うR11~R21は互いに結合して環を形成していてもよい。]
    Figure JPOXMLDOC01-appb-C000034
    [式(2)中、
     Z11は、aにおいて縮合している前記式(1-1)又は(1-2)で表される環構造を表す。Z21は、bにおいて縮合している前記式(1-1)又は(1-2)で表される環構造を表す。ただし、Z11及びZ21の少なくとも1つは前記式(1-1)で表される。
     M11は、置換もしくは無置換の環形成原子数5~30の窒素含有ヘテロ芳香族環であり、
     kは、1又は2を表す。]
    Figure JPOXMLDOC01-appb-C000035
    [式(3)中、
     A及びAは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の複素環基を表す。
     Aは、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基を表す。
     mは、0~3の整数を表す。
     X~X及びY~Yは、それぞれ独立に、N又はCRを表す。
     Rは、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換のシリル基、ハロゲン原子又はシアノ基を表す。Rが複数存在する場合、複数のRはそれぞれ同一でも異なっていてもよい。
     X~Xの1つと、Y~Yの1つは、Aを介して結合している。
     さらに、式(3)は、下記(i)~(v)の少なくともいずれかを満たす。
    (i)A及びAの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
    (ii)X~X及びY~Yの少なくとも1つはCRであり、X~X及びY~YにおけるRの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
    (iii)mは1~3の整数であり、Aの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の2価の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の2価の複素環基である。
    (iv)X~X及びY~Yの少なくとも1つはCRであり、X~X及びY~YにおけるRの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
    (v)X~X及びY~Yの少なくとも1つはC-CNである。]
    2. The organic electroluminescence device according to claim 1, wherein the first host material and the second host material are selected from materials represented by any of the following formulas (1) to (3).
    Figure JPOXMLDOC01-appb-C000032
    [In Formula (1),
    Z 1 represents a ring structure represented by the following formula (1-1) or (1-2) condensed at a. Z 2 represents a ring structure represented by the following formula (1-1) or (1-2) condensed at b. However, at least one of Z 1 and Z 2 is represented by the following formula (1-1).
    M 1 is a substituted or unsubstituted nitrogen-containing heteroaromatic ring having 5 to 30 ring-forming atoms,
    L 1 represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms, and a ring forming carbon number. It represents a 5-30 cycloalkylene group or a group in which these are linked.
    k represents 1 or 2. ]
    Figure JPOXMLDOC01-appb-C000033
    [In the above formula (1-1),
    c represents condensation in a or b in the formula (1).
    In the above (1-2), any one of d, e and f represents condensation in a or b in the general formula (1).
    In the above formulas (1-1) and (1-2),
    X 11 represents a sulfur atom, an oxygen atom, N—R 19 , or C (R 20 ) (R 21 ).
    R 11 to R 21 each independently represents a hydrogen atom, a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom number of 5 to 30 heterocyclic groups, substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted alkenyl groups having 2 to 30 carbon atoms, substituted or unsubstituted alkynyl groups having 2 to 30 carbon atoms, substituted or An unsubstituted silyl group, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms Represents a group.
    Adjacent R 11 to R 21 may be bonded to each other to form a ring. ]
    Figure JPOXMLDOC01-appb-C000034
    [In Formula (2),
    Z 11 represents a ring structure represented by the formula (1-1) or (1-2) condensed at a. Z 21 represents a ring structure represented by the formula (1-1) or (1-2) condensed at b. However, at least one of Z 11 and Z 21 is represented by the formula (1-1).
    M 11 is a substituted or unsubstituted nitrogen-containing heteroaromatic ring having 5 to 30 ring atoms.
    k 1 represents 1 or 2. ]
    Figure JPOXMLDOC01-appb-C000035
    [In Formula (3),
    A 1 and A 2 each independently represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
    A 3 represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms.
    m represents an integer of 0 to 3.
    X 1 to X 8 and Y 1 to Y 8 each independently represent N or CR a .
    R a is independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, a substituted or unsubstituted group. It represents a substituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted silyl group, a halogen atom or a cyano group. When a plurality of R a are present, the plurality of R a may be the same or different.
    One of X 5 to X 8 and one of Y 1 to Y 4 are bonded via A 3 .
    Further, the formula (3) satisfies at least one of the following (i) to (v).
    (I) At least one of A 1 and A 2 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a heterocycle having 5 to 30 ring atoms substituted with a cyano group. It is a cyclic group.
    (Ii) At least one of X 1 to X 4 and Y 5 to Y 8 is CR a , and at least one of R a in X 1 to X 4 and Y 5 to Y 8 is substituted with a cyano group It is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
    (Iii) m is an integer of 1 to 3, and at least one of A 3 is substituted with a divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a cyano group And a divalent heterocyclic group having 5 to 30 ring atoms.
    (Iv) At least one of X 5 to X 8 and Y 1 to Y 4 is CR a , and at least one of R a in X 5 to X 8 and Y 1 to Y 8 is substituted with a cyano group It is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
    (V) At least one of X 1 to X 8 and Y 1 to Y 8 is C-CN. ]
  3.  記第1ホスト材料が前記式(1)で表される材料であり、前記第2ホスト材料が、前記式(3)で表される材料である、請求項2に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 2, wherein the first host material is a material represented by the formula (1), and the second host material is a material represented by the formula (3).
  4.  記第1ホスト材料が前記式(2)で表される材料であり、前記第2ホスト材料が、前記式(3)で表される材料である、請求項2に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to claim 2, wherein the first host material is a material represented by the formula (2), and the second host material is a material represented by the formula (3).
  5.  前記第1ホスト材料が前記式(1)で表される材料であり、前記第2ホスト材料が、前記式(2)で表される材料である、請求項2に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 2, wherein the first host material is a material represented by the formula (1), and the second host material is a material represented by the formula (2).
  6.  前記π電子欠乏性化合物が、下記式(I)~(III)で表される化合物から選択される、請求項1~5のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000036
    [式中、R1a~R7a、R1b~R7b、R1c~R6cは、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~60のアリール基、置換もしくは無置換のピリジル基、置換もしくは無置換のキノリル基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換の環形成炭素数6~50のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基又はカルボキシル基であり、R1a~R7a、R1b~R7b又はR1c~R6cのうち、隣接するものは互いに結合して環を形成してもよい。
     L1a及びL1bは、それぞれ、単結合又は連結基である。
     Ar1a、Ar1b、Ar1c及びAr2cは、それぞれ、置換もしくは無置換の炭素数6~60の芳香族基である。
     nは、1~4であり、nが2以上の場合、括弧の内のフェナントロリン骨格を有する基は、同一でも異なっていてもよい。]
    6. The organic electroluminescent device according to claim 1, wherein the π electron deficient compound is selected from compounds represented by the following formulas (I) to (III).
    Figure JPOXMLDOC01-appb-C000036
    [Wherein, R 1a to R 7a , R 1b to R 7b , and R 1c to R 6c each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, substituted or unsubstituted. Pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, substituted or unsubstituted 7 to 7 carbon atoms 50 aralkyl groups, substituted or unsubstituted alkoxy groups having 1 to 50 carbon atoms, substituted or unsubstituted aryloxy groups having 6 to 50 ring carbon atoms, substituted or unsubstituted arylthio groups having 6 to 50 ring carbon atoms A substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, an amino group substituted with a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, halo Emissions atom, a cyano group, a nitro group, a hydroxyl group or a carboxyl group, R 1a ~ R 7a, of R 1b ~ R 7b or R 1c ~ R 6c, are bonded to each other to form a ring in which adjacent Also good.
    L 1a and L 1b are each a single bond or a linking group.
    Ar 1a , Ar 1b , Ar 1c and Ar 2c are each a substituted or unsubstituted aromatic group having 6 to 60 carbon atoms.
    n is 1 to 4, and when n is 2 or more, the groups having a phenanthroline skeleton in parentheses may be the same or different. ]
  7.  前記電子供与性材料が、アルカリ金属の単体、アルカリ土類金属の単体、希土類金属の単体、希土類金属の化合物及び希土類金属の錯体から選択される少なくとも1つである、請求項1~6のいずれかに記載の有機エレクトロルミネッセンス素子。 The electron-donating material is at least one selected from an alkali metal simple substance, an alkaline earth metal simple substance, a rare earth metal simple substance, a rare earth metal compound, and a rare earth metal complex. An organic electroluminescence device according to any one of the above.
  8.  前記第1ホスト材料と第2ホスト材料の合計に対する第1ホスト材料の含有率が30~95質量%である、請求項1~7のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 7, wherein a content ratio of the first host material with respect to a total of the first host material and the second host material is 30 to 95% by mass.
  9.  前記第1ホスト材料と第2ホスト材料の合計に対する第1ホスト材料の含有率が50~95質量%である、請求項1~7のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 7, wherein a content ratio of the first host material with respect to a total of the first host material and the second host material is 50 to 95% by mass.
  10.  前記電子注入層における、電子供与性材料の含有率が20質量%以下である、請求項1~9のいずれかに記載の有機エレクトロルミネッセンス素子。 10. The organic electroluminescence device according to claim 1, wherein the content of the electron donating material in the electron injection layer is 20% by mass or less.
  11.  前記燐光発光性ドーパント材料が、イリジウム(Ir)、オスミウム(Os)及び白金(Pt)から選択される金属原子のオルトメタル化錯体である請求項1~10のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 10, wherein the phosphorescent dopant material is an orthometalated complex of a metal atom selected from iridium (Ir), osmium (Os), and platinum (Pt). .
  12.  前記発光層と前記陰極の間に、前記電子注入層のみを有する、請求項1~11のいずれかに記載の有機エレクトロルミネッセンス素子。 12. The organic electroluminescence device according to claim 1, wherein only the electron injection layer is provided between the light emitting layer and the cathode.
PCT/JP2014/000651 2013-02-08 2014-02-07 Organic electroluminescence element WO2014122937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014560686A JPWO2014122937A1 (en) 2013-02-08 2014-02-07 Organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013023031 2013-02-08
JP2013-023031 2013-02-08

Publications (1)

Publication Number Publication Date
WO2014122937A1 true WO2014122937A1 (en) 2014-08-14

Family

ID=51299536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000651 WO2014122937A1 (en) 2013-02-08 2014-02-07 Organic electroluminescence element

Country Status (3)

Country Link
JP (1) JPWO2014122937A1 (en)
TW (1) TW201446744A (en)
WO (1) WO2014122937A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9559311B2 (en) 2013-02-22 2017-01-31 Idemitsu Kosan Co., Ltd. Anthracene derivative, organic-electroluminescence-device material, organic electroluminescence device, and electronic equipment
KR20180023625A (en) * 2016-08-26 2018-03-07 삼성에스디아이 주식회사 Composition for organic optoelectric device and organic optoelectric device and display device
WO2022138107A1 (en) * 2020-12-25 2022-06-30 出光興産株式会社 Organic electroluminescent element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102544979B1 (en) 2019-10-04 2023-06-20 삼성디스플레이 주식회사 Organic light-emitting device and apparatus including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098246A1 (en) * 2009-02-27 2010-09-02 新日鐵化学株式会社 Organic electroluminescent element
WO2011132684A1 (en) * 2010-04-20 2011-10-27 出光興産株式会社 Bis-carbazole derivative, material for organic electroluminescent element and organic electroluminescent element using same
WO2011162162A1 (en) * 2010-06-24 2011-12-29 東レ株式会社 Light-emitting device material and light-emitting device
JP2012156499A (en) * 2011-01-05 2012-08-16 Idemitsu Kosan Co Ltd Organic electroluminescent element
WO2013145923A1 (en) * 2012-03-30 2013-10-03 出光興産株式会社 Organic electroluminescent element
WO2013180097A1 (en) * 2012-05-28 2013-12-05 出光興産株式会社 Organic electroluminescent element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5645159B2 (en) * 2010-10-08 2014-12-24 独立行政法人放射線医学総合研究所 Beam measuring apparatus, measuring method therefor, and beam transport system
JP6143407B2 (en) * 2010-12-07 2017-06-07 三菱重工業株式会社 Ship

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098246A1 (en) * 2009-02-27 2010-09-02 新日鐵化学株式会社 Organic electroluminescent element
WO2011132684A1 (en) * 2010-04-20 2011-10-27 出光興産株式会社 Bis-carbazole derivative, material for organic electroluminescent element and organic electroluminescent element using same
WO2011162162A1 (en) * 2010-06-24 2011-12-29 東レ株式会社 Light-emitting device material and light-emitting device
JP2012156499A (en) * 2011-01-05 2012-08-16 Idemitsu Kosan Co Ltd Organic electroluminescent element
WO2013145923A1 (en) * 2012-03-30 2013-10-03 出光興産株式会社 Organic electroluminescent element
WO2013180097A1 (en) * 2012-05-28 2013-12-05 出光興産株式会社 Organic electroluminescent element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9559311B2 (en) 2013-02-22 2017-01-31 Idemitsu Kosan Co., Ltd. Anthracene derivative, organic-electroluminescence-device material, organic electroluminescence device, and electronic equipment
KR20180023625A (en) * 2016-08-26 2018-03-07 삼성에스디아이 주식회사 Composition for organic optoelectric device and organic optoelectric device and display device
KR102015405B1 (en) * 2016-08-26 2019-08-28 삼성에스디아이 주식회사 Composition for organic optoelectric device and organic optoelectric device and display device
WO2022138107A1 (en) * 2020-12-25 2022-06-30 出光興産株式会社 Organic electroluminescent element

Also Published As

Publication number Publication date
JPWO2014122937A1 (en) 2017-01-26
TW201446744A (en) 2014-12-16

Similar Documents

Publication Publication Date Title
JP5898683B2 (en) Material for organic electroluminescence device and organic electroluminescence device
WO2013084885A1 (en) Organic electroluminescent element
US10573823B2 (en) Organic electroluminescent device
CN105431407B (en) Organic electroluminescent element and electronic device
WO2014027676A1 (en) Organic electroluminescence element
WO2013145923A1 (en) Organic electroluminescent element
KR102297602B1 (en) Organic light emitting diode device
WO2013180097A1 (en) Organic electroluminescent element
WO2012108389A1 (en) Biscarbazole derivative and organic electroluminescent element using same
KR20150099750A (en) Organic electroluminescent element and electronic device
WO2014122933A1 (en) Organic electroluminescent element
TWI567069B (en) Organic electroluminescent device
KR20160061406A (en) Material for organic electroluminescent element and organic electroluminescent element using the same
KR20160095175A (en) Material for organic electroluminescent elements, and organic electroluminescent element using same
WO2014051004A1 (en) Material for organic electroluminescent elements, and organic electroluminescent element
WO2014122937A1 (en) Organic electroluminescence element
WO2014021280A1 (en) Organic electroluminescent element
KR20160135357A (en) Organic-electroluminescent-element material and organic electroluminescent element using same
US20160308130A1 (en) Material for organic electroluminescent elements, and organic electroluminescent element using same
WO2014054263A1 (en) Material for organic electroluminescent element, and organic electroluminescent element produced using same
KR20160130860A (en) Organic-electroluminescent-element material and organic electroluminescent element using same
US8941099B2 (en) Organic light emitting device and materials for use in same
KR20170131357A (en) Organic electroluminescent device material and organic electroluminescent device using the same
KR102339946B1 (en) Organic light emitting diode device
EP4124619A1 (en) Compound, material for an organic electroluminescence device and an organic electroluminescence device comprising the compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749442

Country of ref document: EP

Kind code of ref document: A1