WO2014122705A1 - Solar cell panel monitoring program, solar cell panel monitoring apparatus, and method for monitoring solar cell panel - Google Patents

Solar cell panel monitoring program, solar cell panel monitoring apparatus, and method for monitoring solar cell panel Download PDF

Info

Publication number
WO2014122705A1
WO2014122705A1 PCT/JP2013/006525 JP2013006525W WO2014122705A1 WO 2014122705 A1 WO2014122705 A1 WO 2014122705A1 JP 2013006525 W JP2013006525 W JP 2013006525W WO 2014122705 A1 WO2014122705 A1 WO 2014122705A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
panel
cell panel
state information
solar
Prior art date
Application number
PCT/JP2013/006525
Other languages
French (fr)
Japanese (ja)
Inventor
徳幸 斉藤
大塚 潔
浩 本庄
明忠 連
Original Assignee
株式会社日立アドバンストデジタル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立アドバンストデジタル filed Critical 株式会社日立アドバンストデジタル
Publication of WO2014122705A1 publication Critical patent/WO2014122705A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell panel monitoring program, a solar cell panel monitoring device, and a solar cell panel monitoring method, for example, a solar cell panel monitoring program, a solar cell panel monitoring device, and a solar cell power generation device that generates power using a plurality of solar cell panels. It can be used suitably for a solar cell panel monitoring method.
  • This solar power generation device can increase the amount of power generation by arranging a plurality of solar battery panels in an array and taking a large light receiving area.
  • the amount of power generated by the solar power generation device varies depending on the amount of solar radiation applied to the solar cell panel. For example, even if the same solar cell panel is used, the power generation amount varies if the region is different.
  • the amount of solar radiation varies depending on the area due to the influence of the shadows of the clouds, the shadows of the columns arranged in the vicinity, the shadows of the roof, etc., resulting in variations in the power generation amount.
  • Patent Documents 1 and 2 disclose techniques for detecting defects in solar cell panels.
  • Patent Document 1 the output amount of each energy conversion device is classified into a group based on a database that holds group information for grouping each energy conversion device according to the enjoyment state of solar energy. And in patent document 1, the output amount of the energy conversion apparatus which belongs to the same group is compared, the similarity of the output amount of each energy conversion apparatus is calculated
  • Patent Document 2 is a monitoring system for a photovoltaic power generation system that aggregates outputs from a plurality of solar cell panels and sends them to a power converter, and a connection box in which output electric paths from the plurality of solar cell panels are aggregated.
  • a measuring device is provided to measure the amount of power generated by each solar cell panel.
  • measurement data is transmitted by power line communication between a PLC modem of a slave unit connected to a measurement device and a PLC modem of a master unit provided on the power conversion device side. Collect measurement data for each battery panel.
  • the management device determines the presence or absence of abnormality based on the difference in the amount of power generated at the same time for each solar cell panel based on the measurement data for each solar cell panel. For example, an average value of the power generation amount of all the solar battery panels is obtained, and it is determined that it is normal if the difference from the average value is equal to or less than a predetermined threshold value, and abnormal if it is a low power generation amount that exceeds the threshold. . Furthermore, in Patent Document 2, when there is a relatively large difference in power generation between panels as a whole, an average value of power generation is obtained for each area where the sunshine conditions are approximated, and the difference exceeds the threshold in comparison with this. If the power generation amount is low, it is considered abnormal.
  • One aspect of the present invention is a solar cell panel monitoring program that is executed by a solar cell panel monitoring device that includes a calculation unit that executes a program and a storage unit that holds state information of the solar cell panel.
  • Status information acquisition processing for acquiring status information of a battery panel for each of the solar cell panels, storing the status information in the storage unit in association with a measurement time and a position of the solar cell panel, and a plurality of the solar cell panels At least one reference solar cell panel is determined, and the solar cell panels having the state information whose difference from the state information of the reference solar cell panel is within a predetermined range are bundled for each reference solar cell panel
  • failure panel detection processing for detecting the solar cell panel is larger than the order set threshold value as a failure panel, a solar cell panel monitoring program for.
  • Another aspect of the present invention is a solar cell panel monitoring apparatus that monitors characteristics of each solar cell panel with respect to a plurality of strings each including a plurality of solar cell panels connected in series.
  • a storage unit that stores state information measured for each solar cell panel in association with a measurement time and a position of the solar cell panel, and determines at least one reference solar cell panel from a plurality of the solar cell panels, and the reference Same as the panel group setting unit that generates the same trend panel group for each reference solar cell panel by bundling the solar cell panels having the state information whose difference from the state information of the solar cell panel is within a predetermined range.
  • the solar panel that has a time change of the state information larger than a preset threshold value fails
  • a failure detecting unit that detects a panel, a solar panel monitoring device having a.
  • a solar cell comprising a calculation unit and a storage unit for performing a characteristic monitoring process for each solar cell panel on a plurality of strings including a plurality of solar cell panels each connected in series.
  • a solar cell panel monitoring method implemented using a battery panel monitoring device, wherein state information measured for each solar cell panel is stored in the storage unit in association with a measurement time and the position of the solar cell panel,
  • the calculation unit analyzes the state information stored in the storage unit to determine at least one reference solar cell panel from the plurality of solar cell panels, and a difference from the state information of the reference solar cell panel is determined.
  • FIG. 1 is a block diagram of a photovoltaic power generator according to a first embodiment.
  • 1 is a block diagram of a solar power generation unit according to a first embodiment.
  • 1 is a block diagram of a management device according to a first exemplary embodiment;
  • 3 is a graph illustrating an example of characteristics of the solar cell panel according to the first embodiment. It is the schematic which shows an example of the same tendency panel group in the solar power generation device concerning Embodiment 1.
  • FIG. 3 is a flowchart illustrating an operation procedure of the management apparatus according to the first embodiment.
  • 6 is a flowchart of a first grouping process performed by the management apparatus according to the first embodiment; 6 is a flowchart showing a procedure of second grouping processing of the management apparatus according to the first exemplary embodiment; 6 is a flowchart illustrating a procedure of a failure panel detection process of the management apparatus according to the first embodiment.
  • Embodiment 1 Hereinafter, embodiments will be described with reference to the drawings. Below, embodiment of this invention is described supposing a large-scale power generation facility among photovoltaic power generation devices. However, the present invention can also be applied to a small-scale household solar power generation device.
  • FIG. 1 shows a block diagram of a photovoltaic power generation apparatus 1 according to the first embodiment.
  • the photovoltaic power generation apparatus 1 according to the first embodiment includes power conditioners 101 to 10j (j is an integer indicating the number of power conditioners), panel units 111 to 11k (k is the number of panel units).
  • the management device 20 In the example shown in FIG. 1, it is assumed that the same number of panel units 111 to 11k is provided for each power conditioner.
  • the power conditioners 101 to 10j add up the electric power generated by the corresponding panel units 111 to 11k and output them to the system wiring.
  • Each of the panel units 111 to 11k has a string in which a plurality of solar battery panels are connected in series, and outputs electric power obtained from the string to the power conditioners 101 to 10j. Further, the panel units 111 to 11k output state information measured for each solar cell panel to the management device 20.
  • the management apparatus 20 monitors a characteristic for every said solar cell panel with respect to the some string containing the some solar cell panel each connected in series. More specifically, the management device 20 detects a failure location of the solar cell panel based on the state information output from the panel units 111 to 11k.
  • each component will be described in more detail.
  • FIG. 2 shows a block diagram of the photovoltaic power generation unit according to the first embodiment.
  • the configuration of the power conditioner 101 and the panel units 111 to 11k corresponding to the power conditioner 101, the power conditioners 102 to 10j, and the panel units 111 to 11k corresponding to these are substantially the same. Therefore, in FIG. 2, only the power conditioner 101 and the panel units 111 to 11k corresponding to the power conditioner 101 are shown.
  • the solar power generation unit includes a power conditioner 101 and panel units 111 to 11k.
  • the panel unit 111 includes solar cell panels P11 to P1m (m is an integer indicating the number of solar cell panels), a panel state measuring unit 121, and a connection box 131.
  • the panel unit 112 includes solar cell panels P21 to P2m, a panel state measuring unit 122, and a connection box 132.
  • the panel unit 11k includes solar cell panels Pk1 to Pkm, a panel state measuring unit 12k, and a connection box 13k. Since the panel units 111 to 11k have substantially the same configuration, the panel unit 111 will be described as an example.
  • Solar cell panels P11 to P1m constitute a string connected in series.
  • Panel state measurement unit 121 acquires the output voltage and output current of each solar cell panel in units of panels by a monitor unit provided on the wiring connecting the solar cell panels.
  • the panel state measurement unit 121 generates state information by associating the output voltage and output current with a panel ID that identifies the solar cell panel.
  • the panel state measurement unit 121 outputs the generated state information to the management device 20.
  • the connection box 131 outputs the electric power obtained from the string to the power conditioner 101 and prevents the current from flowing back from the other panel unit 11k.
  • FIG. 3 is a block diagram of the management apparatus 20 according to the first embodiment.
  • the management device 20 is a device capable of arithmetic processing, such as a computer.
  • the management device 20 includes a processing unit 21, an operation unit 22, and a display unit 23.
  • the processing unit 21 performs specific processing related to characteristic monitoring for each solar cell panel.
  • the operation unit 22 is an interface through which a user gives an operation to the processing unit 21.
  • the display unit 23 is an interface for presenting an operation screen of the processing unit 21 or a processing result to the user.
  • the processing unit 21 will be described more specifically. As illustrated in FIG. 3, the processing unit 21 includes a calculation unit 31, an input interface 32, and a storage unit 33.
  • the arithmetic unit 31 performs arithmetic processing such as a CPU (Central Processing Unit), and executes a solar battery panel monitoring program (hereinafter referred to as a monitoring program) that performs specific processing of the present invention.
  • the processing unit 21 includes processing functions such as a status information acquisition unit 311, a panel group setting unit 312, and a failure panel detection unit 313 by executing a monitoring program.
  • the input interface 32 is a communication interface that acquires state information from the panel state measurement units 121 to 12 k and gives the state information to the calculation unit 31.
  • the storage unit 33 stores data such as a monitoring program, individual panel status information, and panel group information.
  • the state information acquisition unit 311 acquires the state information of the solar cell panel for each solar cell panel via the input interface 32. And the status information acquisition part 311 produces
  • the panel group setting unit 312 determines at least one reference solar cell panel from a plurality of solar cell panels, and bundles solar cell panels having state information in which a difference from the state information of the reference solar cell panel is within a predetermined range.
  • the same tendency panel group is generated for each reference solar cell panel. Which solar cell panel is included in one same tendency panel group is stored in the storage unit 33 as panel group information. More specific processing of the panel group setting unit 312 will be described later.
  • the failure panel detection unit 313 detects, as a failure panel, a solar cell panel in which the time change of the state information is greater than a preset threshold among the solar cell panels belonging to the same group. When a failure panel is detected, the failure panel detection unit 313 stores the position information of the solar cell panel determined to be a failure panel in the storage unit 33 and displays it on the display unit 23. More specific processing of the failure panel detection unit 313 will be described later.
  • the solar cell panels are grouped based on the power generation amount for each solar cell panel and the time series information of the power generation tendency, and a failure of the solar cell panel is detected for each group. Therefore, a graph showing an example of the characteristics of the solar cell panel is shown in FIG. In the example shown in FIG. 4, the horizontal axis indicates time, and the vertical axis indicates voltage or current. Moreover, in the example shown in FIG. 4, the characteristic of the two solar cell panels which belong to one string was shown.
  • the solar cell panel has a smaller variation in output voltage than the output current. Further, the output current of the solar cell panel greatly increases and decreases with time. This is because the amount of solar radiation changes with time. That is, the amount of power generated by the solar cell panel greatly depends on the magnitude of the output current. Therefore, in the solar power generation device 1 according to the first exemplary embodiment, the determination threshold value TH is provided for the output current, and a period in which the output current exceeds the determination threshold value TH is used as an effective power generation period.
  • FIG. 5 The schematic of an example of the same tendency panel group of the solar power generation device 1 concerning Embodiment 1 is shown in FIG.
  • the example shown in FIG. 5 has a panel unit of 4 rows and 3 columns, and further has a solar cell panel in which each panel unit is arranged in 5 rows and 5 columns.
  • the same tendency panel group is set according to the power generation tendency of the solar battery panel. Therefore, the solar panel belonging to the same tendency panel group is a panel unit. May exist beyond the boundaries of In the example shown in FIG. 5, PG1 to PG10 are shown as the same trend panel group.
  • the management device 20 of the photovoltaic power generation apparatus 1 acquires state information from the panel state measurement units 121 to 12k and generates individual panel state information with the start of processing.
  • the state information acquisition process in step S1 is a process performed in the state information acquisition unit 311.
  • the state information acquisition unit 311 acquires the state information of the solar cell panel for each solar cell panel, generates information associating the state information with the measurement time and the position of the solar cell panel as individual panel state information, The individual panel state information is stored in the storage unit 33.
  • step S2 when there is an instruction to create the same trend panel group (YES in step S2), the management apparatus 20 creates the same trend panel group by the same trend panel group setting process in steps S3 and S4.
  • the management device 20 when there is no instruction to create the same trend panel group (NO branch of step S2), the management device 20 does not create the same trend panel group, but performs a step based on the already set same trend panel group.
  • the failure panel detection process of S5 is created.
  • the failure panel detection process is performed based on a preset temporary same tendency panel group.
  • the panel group setting process in steps S3 and S4 is repeatedly executed according to preset conditions.
  • the panel group setting unit 312 performs the panel group setting process in steps S3 and S4.
  • the panel group setting process can be divided into a first grouping process (step S3) and a second grouping process (step S4).
  • first grouping process a correlation coefficient of state information between a reference solar battery panel selected from a plurality of solar battery panels and another solar battery panel is obtained, and the same trend panel group is generated based on the correlation coefficient.
  • second grouping process solar cell panels that could not be included in any of the same trend panel groups in the first grouping process are included in any of the same trend panel groups.
  • the panel group setting process in steps S3 and S4 is performed for each power conditioner, and is repeatedly performed until the processes for all power conditioners are completed.
  • a failure panel is detected by comparing the output of a solar cell panel within the same tendency panel group.
  • This failure panel detection process is a process performed by the failure panel detection unit 313.
  • FIG. 7 shows a flowchart showing the processing procedure of the first grouping process in step S3.
  • the first grouping process is performed for each type of solar cell panel specification. Therefore, in the first grouping process, the loop process is performed a number of times according to the number of types of solar cell panel specifications, and the processes of steps S11 to S18 are performed in each loop process. This process is performed in the panel group setting unit 312 of the management apparatus 20.
  • the panel group setting unit 312 registers the solar cell panels having the same specifications in the first temporary panel group PGP (step S11). Subsequently, the panel group setting unit 312 extracts, from the first temporary panel group PGP, a solar cell panel having the maximum power generation amount (hereinafter referred to as the maximum power generation panel MP) as a reference solar cell panel (step S12). Subsequently, the panel group setting unit 312 calculates the correlation coefficient of the panels in the first temporary panel group PGP (step S13).
  • Equations (1) to (3) Is calculated based on the equation.
  • the panel group setting unit 312 determines whether there is a solar cell panel having a correlation coefficient K with the maximum power generation panel MP of 0.95 or more (step S14).
  • step S14 when it is determined that there is a solar cell panel having a correlation coefficient K of 0.95 or more (YES branch of step S14), the solar cell panels having a correlation coefficient K of 0.95 or more are grouped. The same tendency panel group is generated (step S15).
  • step S16 determines whether there is a solar cell panel having a correlation coefficient K with the maximum power generation panel MP of 0.95 or more.
  • the panel group setting unit 312 determines whether there is a solar cell panel having a correlation K with the maximum power generation panel MP of less than 0.95 (step S17).
  • step S17 when it is determined that there is a solar cell panel having a correlation coefficient K with the maximum power generation panel MP of less than 0.95 (YES branch of step S17), the correlation coefficient K is less than 0.95.
  • the first temporary panel group PGP is reconfigured with the panel (step S18), and the process of step S12 is performed again.
  • step S17 determines whether there is a solar cell panel having a correlation coefficient K with the maximum power generation panel MP of less than 0.95.
  • one same tendency panel group is generated by bundling solar cell panels having a correlation coefficient with one reference solar cell panel within a predetermined range.
  • a solar cell panel having the maximum power generation amount is determined as another reference solar cell panel from other solar cell panels that do not belong to the same tendency panel group, and another reference solar cell panel
  • Another same tendency panel group is generated by bundling solar cell panels having state information whose difference from the state information is within a predetermined range.
  • FIG. 8 is a flowchart showing the procedure of the second grouping process of the management apparatus according to the first embodiment.
  • the solar cell panel which became unclassified in the 1st grouping process shall be judged as a failure panel with respect to an unclassified solar cell panel, assuming that the output characteristics are significantly different from other solar cell panels. You can also. In such a case, the second grouping process is not necessarily performed.
  • the panel group setting unit 312 determines whether there is a solar cell panel registered in the second temporary panel group PGN with the start of the second grouping process (step). S21).
  • step S21 when it is determined that there is no solar cell panel registered in the second temporary panel group PGN (NO branch in step S21), the panel group setting unit 312 performs the second grouping process. finish.
  • step S21 when it is determined in step S21 that there is a solar cell panel registered in the second temporary panel group PGN (YES branch in step S21), the panel group setting unit 312 determines that the second panel group PGN is present. Execute loop processing according to the number of panels registered in. This loop process includes the processes of steps S22 to S24.
  • the panel group setting unit 312 extracts a solar cell panel to be processed (hereinafter referred to as a processing target panel) from the second panel group PGN with the start of the loop processing. Subsequently, the panel group setting unit 312 calculates a correlation coefficient K between the processing target panel and the maximum power generation panel of the same trend panel group having the same specification for each maximum power generation panel (step S23). Subsequently, the panel group setting unit 312 registers the processing target panel in the same tendency panel group to which the maximum power generation panel having the largest correlation coefficient belongs. Then, the panel group setting unit 312 ends the second grouping process in response to the completion of the processes in steps S22 to S24 for all the solar battery panels registered in the second temporary panel group PGN. To do.
  • a processing target panel a solar cell panel to be processed
  • a solar panel that does not belong to any of the same trend panel groups is included in the same trend panel group including the reference solar cell panel having the closest state information (the largest correlation coefficient K). Register with.
  • the failure panel detection process is a process performed by the failure panel detection unit 313.
  • FIG. 9 is a flowchart showing a procedure of failure panel detection processing of the management apparatus 20 according to the first embodiment.
  • the failure panel detection unit 313 performs the processes of steps S31 to S36 for each tendency panel group. With the start of the failure panel detection process for one same tendency panel group, the failure panel detection unit 313 continuously outputs the output current for each of the solar panels in the same tendency panel group to be processed as the determination threshold TH or higher. A period is extracted (step S31). Subsequently, the failure panel detection unit 313 calculates a difference in power generation amount between the maximum power generation panel and another solar cell panel for each output continuous period (step S32).
  • the failure panel detection unit 313 verifies the magnitude of the difference in step S32 for each solar cell panel in the same trend panel group to be processed.
  • this verification process first, it is determined whether or not the difference in power generation amount is equal to or greater than a failure threshold (step S33). If it is determined in step S33 that the difference in power generation amount is greater than or equal to the failure threshold (YES in step S33), the verified solar cell panel is registered as a failure panel (step S34). On the other hand, if it is determined in step S33 that the difference in power generation amount is less than the failure threshold (NO branch in step S33), it is determined whether or not the difference in power generation amount is greater than or equal to the output decrease threshold (step S35). ).
  • step S35 If it is determined in step S35 that the difference in power generation amount is equal to or greater than the output decrease threshold (YES in step S35), the verified solar cell panel is registered as an output decrease panel (step S36). On the other hand, if it is determined in step S35 that the difference in power generation amount is less than the output decrease threshold (NO branch in step S35), it is determined that the verified solar cell panel is operating normally, Continue to verify battery panels.
  • the failure panel detection unit 313 determines a solar cell panel in which the difference in power generation amount from the reference solar cell panel is equal to or greater than a first threshold (for example, a failure threshold) as a failure panel, and A solar battery panel in which the difference in power generation amount is equal to or greater than a second threshold (for example, output reduction threshold) that is smaller than the failure threshold is determined as an output reduction panel.
  • a first threshold for example, a failure threshold
  • a second threshold for example, output reduction threshold
  • the failure panel detection unit 313 identifies the same tendency panel group to be verified in response to performing the processing of steps S33 to S36 for all the solar cell panels included in the same tendency panel group to be verified. The same trend panel group. In addition, the failure panel detection unit 313 ends the processing for all the same trend panel groups in response to the end of the processing in steps S31 to S36.
  • the solar power generation device 1 includes a plurality of failure detection targets in the first grouping process (for example, step S3) and the second grouping process (for example, step S4).
  • a reference solar cell panel is selected from the solar cell panels.
  • the solar power generation device 1 sets the solar cell panel which has the status information in which the correlation coefficient K with the status information of a reference
  • the solar term panels having the same power generation tendency are grouped according to the installation state of the solar battery panel or the sunshine condition.
  • a failure panel can be detected with high precision by comparing the power generation amount relatively within the same tendency panel group.
  • the grouping process is performed for each specification of the solar cell panel in the first grouping process.
  • the specification defines the power generation characteristics of the solar panel. If solar panels with different specifications are classified only by the power generation tendency, a slight environmental change (for example, the shadow caused by the flow of clouds). ), The amount of power generation becomes significantly different from that of other panels in the same group, and erroneous detection of a faulty panel may occur. However, such erroneous detection can be reduced by performing the grouping process for each specification of the solar cell panel.
  • the solar power generation device 1 concerning Embodiment 1 registers the solar cell panel which has a high correlation in the same tendency panel group, and determines state information per solar cell panel. Therefore, the solar power generation device 1 can detect a decrease in output due to a change in installation environment. For example, it is possible to detect a decrease in the amount of power generated due to contamination of the solar cell panel. Since the dirt can be removed by cleaning, the output decrease period of the solar cell panel can be shortened by detecting the output decrease due to such a cause.
  • the solar power generation device 1 by performing the second grouping process, all the solar battery panels belong to one of the same tendency panel groups. That is, in the photovoltaic power generation apparatus 1 according to the first embodiment, by performing the second grouping process, there is no solar cell panel on which the determination of whether or not there is a failure alone. Can be detected. For example, even if the installation state is such that only one solar panel is shaded, there is no solar panel that can be used to determine whether or not there is a failure. can do.
  • the solar power generation device 1 concerning Embodiment 1 can reconfigure
  • the solar power generation device 1 is the time of solar radiation amount for the same tendency panel group containing the solar cell panel which shows the same electric power generation amount change tendency. It can be generated in response to transition changes.
  • the photovoltaic power generation apparatus 1 since the photovoltaic power generation apparatus 1 according to the first embodiment generates the same tendency panel group as described above, the photovoltaic power generation apparatus 1 has a high correlation with the power generation tendency of the solar panel registered in the same tendency panel group. Therefore, the solar power generation device 1 can perform failure detection with high accuracy by comparing the power generation amount between the solar battery panels in the same tendency panel group. Moreover, since the failure detection with high accuracy can be performed, not only the failure of the solar battery panel but also the output decrease that is a sign of failure can be detected.
  • the reference solar cell panel having the maximum power generation amount is selected from the first temporary panel group, and the solar cell panels having a high correlation coefficient with the reference solar cell panel are bundled to have the same tendency.
  • An example of setting a panel group has been described.
  • the method for determining the solar cell panel to be registered in the same trend panel group can take other methods.
  • a waveform analysis used in speech recognition technology or the like is applied to a time series graph of power generation amount or a time series graph of output current amount, and a solar cell having a high similarity in power generation tendency using the analysis result
  • a panel can be made into one same tendency panel group.
  • a process such as Fourier transform is applied to the time series graph of the power generation amount or the time series graph of the output current amount, and a solar cell panel having a high similarity in power generation tendency according to the processing result is regarded as one same tendency panel group.
  • the shape of the time series graph of power generation amount or time series graph of output current amount is regarded as a figure, and a solar cell panel having a high similarity in power generation tendency according to the similarity of the figure is made into one same tendency panel group You can also.
  • a power generation amount or output current amount integrated graph is generated as a time series graph of power generation amount or a time series graph of output current amount, and the similarity in power generation tendency is high according to the similarity of the slope of the integrated graph
  • a solar panel can be made into one same tendency panel group.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • Examples of non-transitory computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROM (Read Only Memory) CD-R, CD -R / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (Random Access Memory)).
  • the program may also be supplied to the computer by various types of temporary computer-readable media.
  • Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

Abstract

The following are performed in this solar cell panel monitoring program: a state-information acquisition process for acquiring solar cell panel state information for individual solar cell panels, associating the information with the position of the solar cell panel, and storing the information in a storage unit; a panel group setting process (S11-S18) for determining at least one reference solar cell panel from a plurality of solar cell panels, bundling solar cell panels having state information for which the difference from the state information of the reference solar cell panel is within a prescribed range, and generating a same-trend panel group for each reference solar cell; and a failed-panel detection process for detecting as failed panels, among solar cell panels belonging to the same group, solar cell panels for which the time change in state information is greater than a preset threshold.

Description

太陽電池パネル監視プログラム、太陽電池パネル監視装置及び太陽電池パネル監視方法Solar cell panel monitoring program, solar cell panel monitoring device, and solar cell panel monitoring method
 本発明は太陽電池パネル監視プログラム、太陽電池パネル監視装置及び太陽電池パネル監視方法に関し、例えば、複数の太陽電池パネルにより発電を行う太陽光発電装置における太陽電池パネル監視プログラム、太陽電池パネル監視装置及び太陽電池パネル監視方法に好適に利用できるものである。 The present invention relates to a solar cell panel monitoring program, a solar cell panel monitoring device, and a solar cell panel monitoring method, for example, a solar cell panel monitoring program, a solar cell panel monitoring device, and a solar cell power generation device that generates power using a plurality of solar cell panels. It can be used suitably for a solar cell panel monitoring method.
 近年、太陽電池パネルを用いて発電を行う太陽光発電装置への注目が高まっている。この太陽光発電装置は、複数の太陽電池パネルをアレイ状に配置し、受光面積を広くとることで発電量を高めることができる。しかしながら、太陽光発電装置の発電量は、太陽電池パネルへの日射量の違いによってばらつきが生じる。例えば、同じ太陽電池パネルを利用していても、地域が違えば発電量にばらつきが生じる。また、雲による陰や、付近に配置される支柱の陰、或いは、屋根の陰等の影響により領域毎に日射量に差が生じて発電量にばらつきが生じる。そのため、太陽光発電装置では、一部の太陽電池パネルに不具合が生じた場合であっても、発電量の低下が太陽電池パネルの不具合に起因するのか日射量の違いに起因するのかを特定するのが難しい問題がある。そこで、太陽電池パネルの不具合を検出技術が特許文献1、2に開示されている。 In recent years, attention has been focused on solar power generation devices that generate power using solar cell panels. This solar power generation device can increase the amount of power generation by arranging a plurality of solar battery panels in an array and taking a large light receiving area. However, the amount of power generated by the solar power generation device varies depending on the amount of solar radiation applied to the solar cell panel. For example, even if the same solar cell panel is used, the power generation amount varies if the region is different. In addition, the amount of solar radiation varies depending on the area due to the influence of the shadows of the clouds, the shadows of the columns arranged in the vicinity, the shadows of the roof, etc., resulting in variations in the power generation amount. Therefore, in the solar power generation device, even when a failure occurs in some of the solar battery panels, it is specified whether the decrease in the power generation amount is caused by the solar battery panel failure or the difference in the amount of solar radiation. There is a difficult problem. Therefore, Patent Documents 1 and 2 disclose techniques for detecting defects in solar cell panels.
 特許文献1では、各エネルギー変換機器を太陽光エネルギーの享受状態によってグループ分けするグループ分情報を保有するデータベースに基づいて、各エネルギー変換機器の出力量をグループに分類する。そして、特許文献1では、同一のグループに属するエネルギー変換機器の出力量同士を比較して、各エネルギー変換機器の出力量の類似性を求め、類似性に基づいて、各エネルギー変換機器に対して異常であるか否かを判定する監視装置が開示されている。 In Patent Document 1, the output amount of each energy conversion device is classified into a group based on a database that holds group information for grouping each energy conversion device according to the enjoyment state of solar energy. And in patent document 1, the output amount of the energy conversion apparatus which belongs to the same group is compared, the similarity of the output amount of each energy conversion apparatus is calculated | required, and based on similarity, with respect to each energy conversion apparatus A monitoring device that determines whether or not there is an abnormality is disclosed.
 特許文献2は、複数の太陽電池パネルからの出力を集約して電力変換装置に送り込む太陽光発電システムについての監視システムであって、複数の太陽電池パネルからの出力電路が集約される接続箱に計測装置を設け、各太陽電池パネルの発電量を計測する。また、特許文献2では、計測装置に接続された子機のPLCモデムと、電力変換装置側に設けられる親機のPLCモデムとの間の電力線通信によって計測データを送信し、管理装置は、太陽電池パネル毎の計測データを収集する。 Patent Document 2 is a monitoring system for a photovoltaic power generation system that aggregates outputs from a plurality of solar cell panels and sends them to a power converter, and a connection box in which output electric paths from the plurality of solar cell panels are aggregated. A measuring device is provided to measure the amount of power generated by each solar cell panel. Further, in Patent Document 2, measurement data is transmitted by power line communication between a PLC modem of a slave unit connected to a measurement device and a PLC modem of a master unit provided on the power conversion device side. Collect measurement data for each battery panel.
 また、特許文献2では、管理装置が、太陽電池パネル毎の計測データに基づき、各太陽電池パネルについての、同一時点における発電量の差に基づいて、異常の有無を判定する。例えば、全太陽電池パネルの発電量の平均値を求め、当該平均値との差が所定の閾値以下であれば正常、閾値を超える差となる低い発電量である場合には異常、と判定する。さらに、特許文献2では、全体として発電量のパネル間格差が比較的多い場合には、日照条件が近似したエリア単位で発電量の平均値を求め、これとの比較において閾値を超える差となる低い発電量である場合には異常、とする。 Also, in Patent Document 2, the management device determines the presence or absence of abnormality based on the difference in the amount of power generated at the same time for each solar cell panel based on the measurement data for each solar cell panel. For example, an average value of the power generation amount of all the solar battery panels is obtained, and it is determined that it is normal if the difference from the average value is equal to or less than a predetermined threshold value, and abnormal if it is a low power generation amount that exceeds the threshold. . Furthermore, in Patent Document 2, when there is a relatively large difference in power generation between panels as a whole, an average value of power generation is obtained for each area where the sunshine conditions are approximated, and the difference exceeds the threshold in comparison with this. If the power generation amount is low, it is considered abnormal.
特開2004-138293号公報JP 2004-138293 A 特開2012-205078号公報JP 2012-205078 A
 しかしながら、太陽光発電装置では、装置の設置後に日射条件が変化することがある。そのため、特許文献1のように固定的なデータベースを利用したグルーピングを行う、或いは、特許文献2のように、固定的なエリア設定を行った場合、日射条件の変化による故障の誤検出が発生する問題がある。例えば、時間による日射条件の変化、季節による日射条件の変化、新たな施設の建設、或いは、太陽電池パネルの汚れ等の後天的な原因に起因する日射条件の変化には対応することができない問題がある。 However, in solar power generation devices, the solar radiation conditions may change after the device is installed. Therefore, when grouping using a fixed database is performed as in Patent Document 1, or when fixed area setting is performed as in Patent Document 2, an erroneous detection of a failure due to changes in solar radiation conditions occurs. There's a problem. For example, it is not possible to cope with changes in solar radiation conditions due to changes in solar radiation conditions due to time, changes in solar radiation conditions due to seasons, construction of new facilities, or acquired causes such as contamination of solar battery panels. There is.
 本発明の一態様は、プログラムを実行する演算部と、太陽電池パネルの状態情報を保持する記憶部と、を有する太陽電池パネル監視装置で実行される太陽電池パネル監視プログラムであって、前記太陽電池パネルの状態情報を前記太陽電池パネル毎に取得して前記状態情報を計測時間及び前記太陽電池パネルの位置と対応付けて前記記憶部に格納する状態情報取得処理と、複数の前記太陽電池パネルから少なくとも1つの基準太陽電池パネルを決定し、前記基準太陽電池パネルの前記状態情報との差が所定の範囲内となる前記状態情報を有する前記太陽電池パネルを束ねて前記基準太陽電池パネル毎に同傾向パネルグループを生成するパネルグループ設定処理と、同一グループに属する前記太陽電池パネルのうち前記状態情報の時間変化が予め設定された閾値よりも大きくなる前記太陽電池パネルを故障パネルとして検出する故障パネル検出処理と、を行う太陽電池パネル監視プログラムである。 One aspect of the present invention is a solar cell panel monitoring program that is executed by a solar cell panel monitoring device that includes a calculation unit that executes a program and a storage unit that holds state information of the solar cell panel. Status information acquisition processing for acquiring status information of a battery panel for each of the solar cell panels, storing the status information in the storage unit in association with a measurement time and a position of the solar cell panel, and a plurality of the solar cell panels At least one reference solar cell panel is determined, and the solar cell panels having the state information whose difference from the state information of the reference solar cell panel is within a predetermined range are bundled for each reference solar cell panel A panel group setting process for generating the same trend panel group and a time change of the state information among the solar cell panels belonging to the same group And failure panel detection processing for detecting the solar cell panel is larger than the order set threshold value as a failure panel, a solar cell panel monitoring program for.
 また、本発明の別の態様は、それぞれが直列に接続された複数の太陽電池パネルを含む複数のストリングに対して前記太陽電池パネル毎に特性を監視する太陽電池パネル監視装置であって、前記太陽電池パネル毎に計測された状態情報を計測時間及び前記太陽電池パネルの位置と対応付けて保持する記憶部と、複数の前記太陽電池パネルから少なくとも1つの基準太陽電池パネルを決定し、前記基準太陽電池パネルの前記状態情報との差が所定の範囲内となる前記状態情報を有する前記太陽電池パネルを束ねて前記基準太陽電池パネル毎に同傾向パネルグループを生成するパネルグループ設定部と、同一グループに属する前記太陽電池パネルのうち前記状態情報の時間変化が予め設定された閾値よりも大きくなる前記太陽電池パネルを故障パネルとして検出する故障検出部と、を有する太陽電池パネル監視装置である。 Another aspect of the present invention is a solar cell panel monitoring apparatus that monitors characteristics of each solar cell panel with respect to a plurality of strings each including a plurality of solar cell panels connected in series. A storage unit that stores state information measured for each solar cell panel in association with a measurement time and a position of the solar cell panel, and determines at least one reference solar cell panel from a plurality of the solar cell panels, and the reference Same as the panel group setting unit that generates the same trend panel group for each reference solar cell panel by bundling the solar cell panels having the state information whose difference from the state information of the solar cell panel is within a predetermined range. Among the solar panels belonging to the group, the solar panel that has a time change of the state information larger than a preset threshold value fails A failure detecting unit that detects a panel, a solar panel monitoring device having a.
 また、本発明の別の態様は、それぞれが直列に接続された複数の太陽電池パネルを含む複数のストリングに対して前記太陽電池パネル毎の特性監視処理を、演算部と記憶部とを備える太陽電池パネル監視装置を用いて実施する太陽電池パネル監視方法であって、前記太陽電池パネル毎に計測された状態情報を計測時間及び前記太陽電池パネルの位置と対応付けて前記記憶部に格納し、前記記憶部に格納された前記状態情報を前記演算部で解析して、複数の前記太陽電池パネルから少なくとも1つの基準太陽電池パネルを決定し、前記基準太陽電池パネルの前記状態情報との差が所定の範囲内となる前記状態情報を有する前記太陽電池パネルを束ねて前記基準太陽電池パネル毎に同傾向パネルグループを生成し、前記演算部においてグループ毎に前記状態情報を解析して、同一グループに属する前記太陽電池パネルのうち前記状態情報の時間変化が予め設定された閾値よりも大きくなる前記太陽電池パネルを故障パネルとして検出する太陽電池パネル監視方法である。 In another aspect of the present invention, a solar cell comprising a calculation unit and a storage unit for performing a characteristic monitoring process for each solar cell panel on a plurality of strings including a plurality of solar cell panels each connected in series. A solar cell panel monitoring method implemented using a battery panel monitoring device, wherein state information measured for each solar cell panel is stored in the storage unit in association with a measurement time and the position of the solar cell panel, The calculation unit analyzes the state information stored in the storage unit to determine at least one reference solar cell panel from the plurality of solar cell panels, and a difference from the state information of the reference solar cell panel is determined. Bundling the solar cell panels having the state information within a predetermined range to generate the same trend panel group for each reference solar cell panel, The solar cell panel monitoring method of analyzing the status information and detecting the solar cell panel in which the time change of the status information is greater than a preset threshold among the solar cell panels belonging to the same group as a failure panel It is.
 本発明によれば、日射条件の変化によらず適切な故障パネル検出を行うことができる。 According to the present invention, appropriate failure panel detection can be performed regardless of changes in solar radiation conditions.
実施の形態1にかかる太陽光発電装置のブロック図である。1 is a block diagram of a photovoltaic power generator according to a first embodiment. 実施の形態1にかかる太陽光発電部のブロック図である。1 is a block diagram of a solar power generation unit according to a first embodiment. 実施の形態1にかかる管理装置のブロック図である。1 is a block diagram of a management device according to a first exemplary embodiment; 実施の形態1にかかる太陽電池パネルの特性の一例を示すグラフである。3 is a graph illustrating an example of characteristics of the solar cell panel according to the first embodiment. 実施の形態1にかかる太陽光発電装置における同傾向パネルグループの一例を示す概略図である。It is the schematic which shows an example of the same tendency panel group in the solar power generation device concerning Embodiment 1. FIG. 実施の形態1にかかる管理装置の動作手順を示すフローチャートである。3 is a flowchart illustrating an operation procedure of the management apparatus according to the first embodiment. 実施の形態1にかかる管理装置の第1のグループ化処理の手順を示すフローチャートである。6 is a flowchart of a first grouping process performed by the management apparatus according to the first embodiment; 実施の形態1にかかる管理装置の第2のグループ化処理の手順を示すフローチャートである。6 is a flowchart showing a procedure of second grouping processing of the management apparatus according to the first exemplary embodiment; 実施の形態1にかかる管理装置の故障パネル検出処理の手順を示すフローチャートである。6 is a flowchart illustrating a procedure of a failure panel detection process of the management apparatus according to the first embodiment.
 実施の形態1
 以下、図面を参照して実施の形態について説明する。以下では、太陽光発電装置のうち大規模な発電施設を想定して本発明の実施の形態について説明する。しかし、本発明は、小規模な一般家庭向け太陽光発電装置に対しても適用可能である。
Embodiment 1
Hereinafter, embodiments will be described with reference to the drawings. Below, embodiment of this invention is described supposing a large-scale power generation facility among photovoltaic power generation devices. However, the present invention can also be applied to a small-scale household solar power generation device.
 まず、図1に実施の形態1にかかる太陽光発電装置1のブロック図を示す。図1に示すように、実施の形態1にかかる太陽光発電装置1は、パワーコンディショナー101~10j(jはパワーコンディショナーの個数を示す整数)、パネルユニット111~11k(kは、パネルユニットの個数を示す整数)、管理装置20を有する。また、図1に示す例では、パネルユニット111~11kは、パワーコンディショナー毎に同じ数が設けられているものとする。 First, FIG. 1 shows a block diagram of a photovoltaic power generation apparatus 1 according to the first embodiment. As shown in FIG. 1, the photovoltaic power generation apparatus 1 according to the first embodiment includes power conditioners 101 to 10j (j is an integer indicating the number of power conditioners), panel units 111 to 11k (k is the number of panel units). The management device 20. In the example shown in FIG. 1, it is assumed that the same number of panel units 111 to 11k is provided for each power conditioner.
 パワーコンディショナー101~10jは、対応するパネルユニット111~11kで発電された電力を足し合わせて系統配線に出力する。パネルユニット111~11kは、それぞれ複数の太陽電池パネルが直列に接続されたストリングを有し、当該ストリングから得られた電力をパワーコンディショナー101~10jに出力する。また、パネルユニット111~11kは、太陽電池パネル毎に計測した状態情報を管理装置20に出力する。管理装置20は、それぞれが直列に接続された複数の太陽電池パネルを含む複数のストリングに対して前記太陽電池パネル毎に特性を監視する。より具体的には、管理装置20は、パネルユニット111~11kから出力された状態情報に基づき太陽電池パネルの故障箇所を検出する。以下では、各構成要素についてさらに詳細に説明する。 The power conditioners 101 to 10j add up the electric power generated by the corresponding panel units 111 to 11k and output them to the system wiring. Each of the panel units 111 to 11k has a string in which a plurality of solar battery panels are connected in series, and outputs electric power obtained from the string to the power conditioners 101 to 10j. Further, the panel units 111 to 11k output state information measured for each solar cell panel to the management device 20. The management apparatus 20 monitors a characteristic for every said solar cell panel with respect to the some string containing the some solar cell panel each connected in series. More specifically, the management device 20 detects a failure location of the solar cell panel based on the state information output from the panel units 111 to 11k. Hereinafter, each component will be described in more detail.
 図2に実施の形態1にかかる太陽光発電部のブロック図を示す。パワーコンディショナー101及びパワーコンディショナー101に対応するパネルユニット111~11kと、パワーコンディショナー102~10j及びこれらに対応するパネルユニット111~11kの構成は実質的に同じである。そのため、図2では、パワーコンディショナー101及びパワーコンディショナー101に対応するパネルユニット111~11kのみを示した。 FIG. 2 shows a block diagram of the photovoltaic power generation unit according to the first embodiment. The configuration of the power conditioner 101 and the panel units 111 to 11k corresponding to the power conditioner 101, the power conditioners 102 to 10j, and the panel units 111 to 11k corresponding to these are substantially the same. Therefore, in FIG. 2, only the power conditioner 101 and the panel units 111 to 11k corresponding to the power conditioner 101 are shown.
 図2に示すように、太陽光発電部は、パワーコンディショナー101と、パネルユニット111~11kを有する。また、パネルユニット111は、太陽電池パネルP11~P1m(mは太陽電池パネルの数を示す整数)、パネル状態計測部121、接続箱131を有する。パネルユニット112は、太陽電池パネルP21~P2m、パネル状態計測部122、接続箱132を有する。パネルユニット11kは、太陽電池パネルPk1~Pkm、パネル状態計測部12k、接続箱13kを有する。パネルユニット111~11kは、実質的に同じ構成であるため、パネルユニット111を例にパネルユニットについて説明する。 As shown in FIG. 2, the solar power generation unit includes a power conditioner 101 and panel units 111 to 11k. The panel unit 111 includes solar cell panels P11 to P1m (m is an integer indicating the number of solar cell panels), a panel state measuring unit 121, and a connection box 131. The panel unit 112 includes solar cell panels P21 to P2m, a panel state measuring unit 122, and a connection box 132. The panel unit 11k includes solar cell panels Pk1 to Pkm, a panel state measuring unit 12k, and a connection box 13k. Since the panel units 111 to 11k have substantially the same configuration, the panel unit 111 will be described as an example.
 太陽電池パネルP11~P1mは、直列に接続されたストリングを構成する。パネル状態計測部121は、太陽電池パネルの間を接続する配線上に設けられたモニタ部により各太陽電池パネルの出力電圧及び出力電流をパネル単位で取得する。また、パネル状態計測部121は、この出力電圧及び出力電流を太陽電池パネルを特定するパネルIDと関連付けて状態情報を生成する。パネル状態計測部121は、生成した状態情報を管理装置20に出力する。接続箱131は、ストリングから得られた電力をパワーコンディショナー101に出力すると共に他のパネルユニット11kからの電流の逆流を防止する。 Solar cell panels P11 to P1m constitute a string connected in series. Panel state measurement unit 121 acquires the output voltage and output current of each solar cell panel in units of panels by a monitor unit provided on the wiring connecting the solar cell panels. In addition, the panel state measurement unit 121 generates state information by associating the output voltage and output current with a panel ID that identifies the solar cell panel. The panel state measurement unit 121 outputs the generated state information to the management device 20. The connection box 131 outputs the electric power obtained from the string to the power conditioner 101 and prevents the current from flowing back from the other panel unit 11k.
 図3に、実施の形態1にかかる管理装置20のブロック図を示す。図3に示すように、管理装置20は、例えば、コンピュータ等の演算処理が可能な装置である。管理装置20は、処理部21、操作部22、表示部23を有する。処理部21は、太陽電池パネル毎に特性の監視に関する具体的な処理を行う。操作部22は、利用者が処理部21に対する操作を与えるインタフェースである。表示部23は、処理部21の操作画面、或いは、処理結果を利用者に提示するインタフェースである。 FIG. 3 is a block diagram of the management apparatus 20 according to the first embodiment. As shown in FIG. 3, the management device 20 is a device capable of arithmetic processing, such as a computer. The management device 20 includes a processing unit 21, an operation unit 22, and a display unit 23. The processing unit 21 performs specific processing related to characteristic monitoring for each solar cell panel. The operation unit 22 is an interface through which a user gives an operation to the processing unit 21. The display unit 23 is an interface for presenting an operation screen of the processing unit 21 or a processing result to the user.
 処理部21についてより具体的に説明する。図3に示すように、処理部21は、演算部31、入力インタフェース32、記憶部33を有する。演算部31は、例えばCPU(Central Processing Unit)等の演算処理を行うものであって、本発明の具体的な処理を行う太陽電池パネル監視プログラム(以下、監視プログラムと称す)を実行する。処理部21は、監視プログラムを実行することで、状態情報取得部311、パネルグループ設定部312、故障パネル検出部313等の処理機能を備える。入力インタフェース32は、パネル状態計測部121~12kから状態情報を取得し、演算部31に与える通信インタフェースである。記憶部33は、監視プログラム、個別パネル状態情報、パネルグループ情報等のデータを格納する。 The processing unit 21 will be described more specifically. As illustrated in FIG. 3, the processing unit 21 includes a calculation unit 31, an input interface 32, and a storage unit 33. The arithmetic unit 31 performs arithmetic processing such as a CPU (Central Processing Unit), and executes a solar battery panel monitoring program (hereinafter referred to as a monitoring program) that performs specific processing of the present invention. The processing unit 21 includes processing functions such as a status information acquisition unit 311, a panel group setting unit 312, and a failure panel detection unit 313 by executing a monitoring program. The input interface 32 is a communication interface that acquires state information from the panel state measurement units 121 to 12 k and gives the state information to the calculation unit 31. The storage unit 33 stores data such as a monitoring program, individual panel status information, and panel group information.
 状態情報取得部311は、入力インタフェース32を介して太陽電池パネルの状態情報を太陽電池パネル毎に取得する。そして、状態情報取得部311は、状態情報を計測時間及び太陽電池パネルの位置と対応付けて個別パネル状態情報を生成する。状態情報取得部311は、この個別パネル状態情報を記憶部33に格納する。 The state information acquisition unit 311 acquires the state information of the solar cell panel for each solar cell panel via the input interface 32. And the status information acquisition part 311 produces | generates individual panel status information by matching status information with measurement time and the position of a solar cell panel. The status information acquisition unit 311 stores this individual panel status information in the storage unit 33.
 パネルグループ設定部312は、複数の太陽電池パネルから少なくとも1つの基準太陽電池パネルを決定し、基準太陽電池パネルの状態情報との差が所定の範囲内となる状態情報を有する太陽電池パネルを束ねて基準太陽電池パネル毎に同傾向パネルグループを生成する。1つの同傾向パネルグループにいずれの太陽電池パネルが含まれるかは、パネルグループ情報として記憶部33に格納される。このパネルグループ設定部312のさらに具体的な処理は後述する。 The panel group setting unit 312 determines at least one reference solar cell panel from a plurality of solar cell panels, and bundles solar cell panels having state information in which a difference from the state information of the reference solar cell panel is within a predetermined range. The same tendency panel group is generated for each reference solar cell panel. Which solar cell panel is included in one same tendency panel group is stored in the storage unit 33 as panel group information. More specific processing of the panel group setting unit 312 will be described later.
 故障パネル検出部313は、同一グループに属する太陽電池パネルのうち状態情報の時間変化が予め設定された閾値よりも大きくなる太陽電池パネルを故障パネルとして検出する。故障パネル検出部313は、故障パネルが検出された場合、故障パネルと判断された太陽電池パネルの位置情報を記憶部33に格納すると共に表示部23に表示する。なお、故障パネル検出部313のより具体的な処理については後述する。 The failure panel detection unit 313 detects, as a failure panel, a solar cell panel in which the time change of the state information is greater than a preset threshold among the solar cell panels belonging to the same group. When a failure panel is detected, the failure panel detection unit 313 stores the position information of the solar cell panel determined to be a failure panel in the storage unit 33 and displays it on the display unit 23. More specific processing of the failure panel detection unit 313 will be described later.
 実施の形態1にかかる太陽光発電装置1では、太陽電池パネル毎の発電量及び発電傾向の時系列情報に基づき太陽電池パネルをグループ化し、当該グループ毎に太陽電池パネルの故障を検出する。そこで、太陽電池パネルの特性の一例を示すグラフを図4に示す。図4に示す例では、横軸が時間を示し、縦軸が電圧又は電流を示している。また、図4に示す例では、1つのストリングに属する2つの太陽電池パネルの特性を示した。 In the solar power generation device 1 according to the first exemplary embodiment, the solar cell panels are grouped based on the power generation amount for each solar cell panel and the time series information of the power generation tendency, and a failure of the solar cell panel is detected for each group. Therefore, a graph showing an example of the characteristics of the solar cell panel is shown in FIG. In the example shown in FIG. 4, the horizontal axis indicates time, and the vertical axis indicates voltage or current. Moreover, in the example shown in FIG. 4, the characteristic of the two solar cell panels which belong to one string was shown.
 図4に示すように、太陽電池パネルは、出力電流に比べて出力電圧の変動が小さい。また、太陽電池パネルの出力電流は、時間経過と共に大きく増減する。これは、時間によって日射量が変化するためである。つまり、太陽電池パネルの発電量は、出力電流の大きさに大きく依存する。そのため、実施の形態1にかかる太陽光発電装置1では、出力電流に対して、判定閾値THを設け、判定閾値THを超える出力電流がある期間を有効な発電期間として用いる。 As shown in FIG. 4, the solar cell panel has a smaller variation in output voltage than the output current. Further, the output current of the solar cell panel greatly increases and decreases with time. This is because the amount of solar radiation changes with time. That is, the amount of power generated by the solar cell panel greatly depends on the magnitude of the output current. Therefore, in the solar power generation device 1 according to the first exemplary embodiment, the determination threshold value TH is provided for the output current, and a period in which the output current exceeds the determination threshold value TH is used as an effective power generation period.
 続いて、実施の形態1にかかる太陽光発電装置1における同傾向パネルグループについて説明する。図5に実施の形態1にかかる太陽光発電装置1の同傾向パネルグループの一例の概略図を示す。図5に示す例は、4行3列のパネルユニットを有し、さらに、各パネルユニットが5行5列で配置された太陽電池パネルを有するものである。図5に示すように、実施の形態1にかかる太陽光発電装置1では、太陽電池パネルの発電傾向に従って、同傾向パネルグループを設定するため、同傾向パネルグループに属する太陽電池パネルは、パネルユニットの境界を越えて存在する場合がある。図5に示す例では、同傾向パネルグループとしてPG1~PG10を示した。 Subsequently, the same tendency panel group in the photovoltaic power generation apparatus 1 according to the first embodiment will be described. The schematic of an example of the same tendency panel group of the solar power generation device 1 concerning Embodiment 1 is shown in FIG. The example shown in FIG. 5 has a panel unit of 4 rows and 3 columns, and further has a solar cell panel in which each panel unit is arranged in 5 rows and 5 columns. As shown in FIG. 5, in the solar power generation device 1 according to the first exemplary embodiment, the same tendency panel group is set according to the power generation tendency of the solar battery panel. Therefore, the solar panel belonging to the same tendency panel group is a panel unit. May exist beyond the boundaries of In the example shown in FIG. 5, PG1 to PG10 are shown as the same trend panel group.
 続いて、実施の形態1にかかる太陽光発電装置1の管理装置20の動作手順について具体的に説明する。図6に実施の形態1にかかる太陽光発電装置1の管理装置20の動作手順を示すフローチャートを示す。 Then, the operation | movement procedure of the management apparatus 20 of the solar power generation device 1 concerning Embodiment 1 is demonstrated concretely. The flowchart which shows the operation | movement procedure of the management apparatus 20 of the solar power generation device 1 concerning Embodiment 1 in FIG. 6 is shown.
 図6に示すように、実施の形態1にかかる太陽光発電装置1の管理装置20は、処理の開始に伴い、パネル状態計測部121~12kから状態情報を取得し、個別パネル状態情報を生成する(ステップS1)。このステップS1の状態情報取得処理は、状態情報取得部311において行われる処理である。状態情報取得部311は、太陽電池パネルの状態情報を前記太陽電池パネル毎に取得して前記状態情報を計測時間及び前記太陽電池パネルの位置と対応付けた情報を個別パネル状態情報として生成し、個別パネル状態情報を記憶部33に格納する。 As shown in FIG. 6, the management device 20 of the photovoltaic power generation apparatus 1 according to the first embodiment acquires state information from the panel state measurement units 121 to 12k and generates individual panel state information with the start of processing. (Step S1). The state information acquisition process in step S1 is a process performed in the state information acquisition unit 311. The state information acquisition unit 311 acquires the state information of the solar cell panel for each solar cell panel, generates information associating the state information with the measurement time and the position of the solar cell panel as individual panel state information, The individual panel state information is stored in the storage unit 33.
 続いて、管理装置20は、同傾向パネルグループの作成指示があった場合(ステップS2のYESの枝)、ステップS3、S4の同傾向パネルグループ設定処理によって同傾向パネルグループを作成する。一方、管理装置20は、同傾向パネルグループの作成指示がなかった場合(ステップS2のNOの枝)、同傾向パネルグループの作成は行わずに、すでに設定されている同傾向パネルグループに基づきステップS5の故障パネル検出処理を作成する。なお、一度もステップS2、S3によって同傾向グループが作成されていない場合は、予め設定した仮の同傾向パネルグループに基づき故障パネル検出処理が行われる。また、ステップS2における同傾向パネルグループ作成指示は、利用者による操作により発行する、或いは、タイマにより定期的に発行する等の様々な発行方法がある。つまり、実施の形態1にかかる太陽光発電装置1では、ステップS3、S4のパネルグループ設定処理は、予め設定された条件に応じて繰り返し実行される。なお、ステップS3、S4のパネルグループ設定処理は、パネルグループ設定部312により行われる。 Subsequently, when there is an instruction to create the same trend panel group (YES in step S2), the management apparatus 20 creates the same trend panel group by the same trend panel group setting process in steps S3 and S4. On the other hand, when there is no instruction to create the same trend panel group (NO branch of step S2), the management device 20 does not create the same trend panel group, but performs a step based on the already set same trend panel group. The failure panel detection process of S5 is created. In addition, when the same tendency group has not been created by steps S2 and S3, the failure panel detection process is performed based on a preset temporary same tendency panel group. Further, there are various issuing methods such as issuing the same trend panel group creation instruction in step S2 by an operation by a user, or issuing periodically by a timer. That is, in the solar power generation device 1 according to the first exemplary embodiment, the panel group setting process in steps S3 and S4 is repeatedly executed according to preset conditions. Note that the panel group setting unit 312 performs the panel group setting process in steps S3 and S4.
 また、図6に示すように、パネルグループ設定処理は、第1のグループ化処理(ステップS3)と、第2のグループ化処理(ステップS4)と、に分けることができる。第1のグループ化処理では、複数の太陽電池パネルから選定した基準太陽電池パネルと他の太陽電池パネルとの状態情報の相関係数を求め、当該相関係数に基づき同傾向パネルグループを生成する。また、第2のグループ化処理では、第1のグループ化処理でいずれの同傾向パネルグループにも含めることができなかった太陽電池パネルをいずれかの同傾向パネルグループに含める。なお、ステップS3、S4のパネルグループ設定処理は、パワーコンディショナー単位で行われ、全てのパワーコンディショナーに対する処理が完了するまで繰り返し実行される。そして、実施の形態1にかかる太陽光発電装置1では、ステップS5の故障パネル検出処理において、同傾向パネルグループ内で太陽電池パネルの出力を比較することで故障パネルを検出する。この故障パネル検出処理は、故障パネル検出部313により行われる処理である。以下では、ステップS3~S5の各処理についてより詳細に説明する。 Further, as shown in FIG. 6, the panel group setting process can be divided into a first grouping process (step S3) and a second grouping process (step S4). In the first grouping process, a correlation coefficient of state information between a reference solar battery panel selected from a plurality of solar battery panels and another solar battery panel is obtained, and the same trend panel group is generated based on the correlation coefficient. . In the second grouping process, solar cell panels that could not be included in any of the same trend panel groups in the first grouping process are included in any of the same trend panel groups. The panel group setting process in steps S3 and S4 is performed for each power conditioner, and is repeatedly performed until the processes for all power conditioners are completed. And in the solar power generation device 1 concerning Embodiment 1, in the failure panel detection process of step S5, a failure panel is detected by comparing the output of a solar cell panel within the same tendency panel group. This failure panel detection process is a process performed by the failure panel detection unit 313. Hereinafter, each process of steps S3 to S5 will be described in more detail.
 まず、ステップS3の第1のグループ化処理の処理手順を示すフローチャートを図7に示す。図7に示すように、第1のグループ化処理は、太陽電池パネルの仕様の種類毎に行われる。そのため、第1のグループ化処理では、太陽電池パネルの仕様の種類の数に応じた回数のループ処理を実施し、各ループ処理においてステップS11~S18の処理を実施する。この処理は、管理装置20のパネルグループ設定部312において行われる。 First, FIG. 7 shows a flowchart showing the processing procedure of the first grouping process in step S3. As shown in FIG. 7, the first grouping process is performed for each type of solar cell panel specification. Therefore, in the first grouping process, the loop process is performed a number of times according to the number of types of solar cell panel specifications, and the processes of steps S11 to S18 are performed in each loop process. This process is performed in the panel group setting unit 312 of the management apparatus 20.
 パネルグループ設定部312は、第1の仮パネルグループPGPに同一仕様の太陽電池パネルを登録する(ステップS11)。続いて、パネルグループ設定部312は、第1の仮パネルグループPGPから最大発電量となる太陽電池パネル(以下、最大発電量パネルMPと称す)を基準太陽電池パネルとして抽出する(ステップS12)。続いて、パネルグループ設定部312は、第1の仮パネルグループPGP内のパネルの相関係数を算出する(ステップS13)。 The panel group setting unit 312 registers the solar cell panels having the same specifications in the first temporary panel group PGP (step S11). Subsequently, the panel group setting unit 312 extracts, from the first temporary panel group PGP, a solar cell panel having the maximum power generation amount (hereinafter referred to as the maximum power generation panel MP) as a reference solar cell panel (step S12). Subsequently, the panel group setting unit 312 calculates the correlation coefficient of the panels in the first temporary panel group PGP (step S13).
 この相関係数Kは、例えば、Xiを基準太陽電池パネルの時系列電流値、Yiを相関係数Kの算出対象の太陽電池パネルの時系列電流値とした場合、(1)式~(3)式に基づき算出される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
For example, when the correlation coefficient K is a time series current value of the reference solar cell panel and Yi is a time series current value of the solar cell panel for which the correlation coefficient K is calculated, Equations (1) to (3) ) Is calculated based on the equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 続いて、パネルグループ設定部312は、最大発電量パネルMPとの相関係数Kが0.95以上の太陽電池パネルがあるか否かを判断する(ステップS14)。このステップS14において、相関係数Kが0.95以上の太陽電池パネルがあると判断された場合(ステップS14のYESの枝)、相関係数Kが0.95以上の太陽電池パネルをグループ化して同傾向パネルグループを生成する(ステップS15)。一方、このステップS14において、相関係数Kが0.95以上の太陽電池パネルがないと判断された場合(ステップS14のNOの枝)、最大発電量パネルMPを第2の仮パネルグループPGNに登録する(ステップS16)。 Subsequently, the panel group setting unit 312 determines whether there is a solar cell panel having a correlation coefficient K with the maximum power generation panel MP of 0.95 or more (step S14). In this step S14, when it is determined that there is a solar cell panel having a correlation coefficient K of 0.95 or more (YES branch of step S14), the solar cell panels having a correlation coefficient K of 0.95 or more are grouped. The same tendency panel group is generated (step S15). On the other hand, if it is determined in step S14 that there is no solar cell panel having a correlation coefficient K of 0.95 or more (NO branch of step S14), the maximum power generation panel MP is assigned to the second temporary panel group PGN. Register (step S16).
 続いて、パネルグループ設定部312は、最大発電量パネルMPとの相関関係Kが0.95未満の太陽電池パネルがあるか否かを判断する(ステップS17)。このステップS17において、最大発電量パネルMPとの相関係数Kが0.95未満の太陽電池パネルがあると判断された場合(ステップS17のYESの枝)、相関係数Kが0.95未満のパネルで第1の仮パネルグループPGPを再構成し(ステップS18)、ステップS12の処理を再度実施する。一方、このステップS17において、最大発電量パネルMPとの相関係数Kが0.95未満の太陽電池パネルがないと判断された場合(ステップS17のNOの枝)、別のループ処理が未処理であれば別のループ処理を実施し、未実施のループ処理がないのであれば、第1のグループ化処理を終了する。 Subsequently, the panel group setting unit 312 determines whether there is a solar cell panel having a correlation K with the maximum power generation panel MP of less than 0.95 (step S17). In this step S17, when it is determined that there is a solar cell panel having a correlation coefficient K with the maximum power generation panel MP of less than 0.95 (YES branch of step S17), the correlation coefficient K is less than 0.95. The first temporary panel group PGP is reconfigured with the panel (step S18), and the process of step S12 is performed again. On the other hand, if it is determined in step S17 that there is no solar cell panel having a correlation coefficient K with the maximum power generation panel MP of less than 0.95 (NO branch of step S17), another loop process is not processed. If so, another loop process is performed, and if there is no unexecuted loop process, the first grouping process is terminated.
 つまり、第1のグループ化処理では、一の基準太陽電池パネルとの相関係数が所定の範囲内となる太陽電池パネルを束ねて一の同傾向パネルグループを生成する。また、第1のグループ化処理では、一の同傾向パネルグループに属さない他の太陽電池パネルから最大発電量を有する太陽電池パネルを別の基準太陽電池パネルとして決定し、別の基準太陽電池パネルの状態情報との差が所定の範囲内となる状態情報を有する太陽電池パネルを束ねて別の同傾向パネルグループを生成する。 That is, in the first grouping process, one same tendency panel group is generated by bundling solar cell panels having a correlation coefficient with one reference solar cell panel within a predetermined range. In the first grouping process, a solar cell panel having the maximum power generation amount is determined as another reference solar cell panel from other solar cell panels that do not belong to the same tendency panel group, and another reference solar cell panel Another same tendency panel group is generated by bundling solar cell panels having state information whose difference from the state information is within a predetermined range.
 次いで、第2のグループ化処理の詳細について説明する。この第2のグループ化処理もパネルグループ設定部312で行われる処理である。図8に実施の形態1にかかる管理装置の第2のグループ化処理の手順を示すフローチャートを示す。なお、第1のグループ化処理において未分類となった太陽電池パネルは、他の太陽電池パネルとは大きく出力特性が異なるものとして、未分類の太陽電池パネルに対しては、故障パネルとして判断することもできる。このような場合は第2のグループ化処理は必ずしも実施しなくても良い。 Next, details of the second grouping process will be described. This second grouping process is also performed by the panel group setting unit 312. FIG. 8 is a flowchart showing the procedure of the second grouping process of the management apparatus according to the first embodiment. In addition, the solar cell panel which became unclassified in the 1st grouping process shall be judged as a failure panel with respect to an unclassified solar cell panel, assuming that the output characteristics are significantly different from other solar cell panels. You can also. In such a case, the second grouping process is not necessarily performed.
 図8に示すように、パネルグループ設定部312は、第2のグループ化処理の開始に伴い、第2の仮パネルグループPGNに登録されている太陽電池パネルがあるか否かを判定する(ステップS21)。このステップS21において、第2の仮パネルグループPGNに登録されている太陽電池パネルがないと判断された場合(ステップS21のNOの枝)、パネルグループ設定部312は、第2のグループ化処理を終了する。一方、ステップS21において、第2の仮パネルグループPGNに登録されている太陽電池パネルがあると判断された場合(ステップS21のYESの枝)、パネルグループ設定部312は、第2のパネルグループPGNに登録されているパネルの数に応じたループ処理を実施する。このループ処理は、ステップS22~S24の処理を含む。 As shown in FIG. 8, the panel group setting unit 312 determines whether there is a solar cell panel registered in the second temporary panel group PGN with the start of the second grouping process (step). S21). In step S21, when it is determined that there is no solar cell panel registered in the second temporary panel group PGN (NO branch in step S21), the panel group setting unit 312 performs the second grouping process. finish. On the other hand, when it is determined in step S21 that there is a solar cell panel registered in the second temporary panel group PGN (YES branch in step S21), the panel group setting unit 312 determines that the second panel group PGN is present. Execute loop processing according to the number of panels registered in. This loop process includes the processes of steps S22 to S24.
 パネルグループ設定部312は、ループ処理の開始に伴い、第2のパネルグループPGNから処理対象となる太陽電池パネル(以下、処理対象パネルと称す)を抽出する。続いて、パネルグループ設定部312は、処理対象パネルと、同一仕様の同傾向パネルグループの最大発電量パネルと、の相関係数Kを最大発電量パネル毎に算出する(ステップS23)。続いて、パネルグループ設定部312は、最も大きな相関係数となる最大発電量パネルが属する同傾向パネルグループに処理対象パネルを登録する。そして、パネルグループ設定部312は、第2の仮パネルグループPGNに登録されている全ての太陽電池パネルに対してステップS22~S24の処理が完了したことに応じて第2のグループ化処理を終了する。 The panel group setting unit 312 extracts a solar cell panel to be processed (hereinafter referred to as a processing target panel) from the second panel group PGN with the start of the loop processing. Subsequently, the panel group setting unit 312 calculates a correlation coefficient K between the processing target panel and the maximum power generation panel of the same trend panel group having the same specification for each maximum power generation panel (step S23). Subsequently, the panel group setting unit 312 registers the processing target panel in the same tendency panel group to which the maximum power generation panel having the largest correlation coefficient belongs. Then, the panel group setting unit 312 ends the second grouping process in response to the completion of the processes in steps S22 to S24 for all the solar battery panels registered in the second temporary panel group PGN. To do.
 つまり、第2のグループ化処理では、いずれの同傾向パネルグループにも属さない太陽電池パネルを、最も近い状態情報(最も大きな相関係数K)を有する基準太陽電池パネルが含まれる同傾向パネルグループに登録する。 That is, in the second grouping process, a solar panel that does not belong to any of the same trend panel groups is included in the same trend panel group including the reference solar cell panel having the closest state information (the largest correlation coefficient K). Register with.
 次いで、故障パネル検出処理について説明する。故障パネル検出処理は、故障パネル検出部313により実施される処理である。図9に実施の形態1にかかる管理装置20の故障パネル検出処理の手順を示すフローチャートを示す。 Next, the failure panel detection process will be described. The failure panel detection process is a process performed by the failure panel detection unit 313. FIG. 9 is a flowchart showing a procedure of failure panel detection processing of the management apparatus 20 according to the first embodiment.
 図9に示すように、故障パネル検出部313は、同傾向パネルグループ毎にステップS31~S36の処理を実施する。故障パネル検出部313は、一の同傾向パネルグループに対する故障パネル検出処理の開始に伴い、処理対象の同傾向パネルグループ中の太陽電池パネルのそれぞれについて、出力電流が判定閾値TH以上となる出力連続期間を抽出する(ステップS31)。続いて、故障パネル検出部313は、出力連続期間毎に最大発電量パネルと他の太陽電池パネルとの間の発電量の差分を算出する(ステップS32)。 As shown in FIG. 9, the failure panel detection unit 313 performs the processes of steps S31 to S36 for each tendency panel group. With the start of the failure panel detection process for one same tendency panel group, the failure panel detection unit 313 continuously outputs the output current for each of the solar panels in the same tendency panel group to be processed as the determination threshold TH or higher. A period is extracted (step S31). Subsequently, the failure panel detection unit 313 calculates a difference in power generation amount between the maximum power generation panel and another solar cell panel for each output continuous period (step S32).
 続いて、故障パネル検出部313は、処理対象の同傾向パネルグループの太陽電池パネル毎にステップS32の差分の大きさを検証する。この検証処理では、まず、発電量の差分が故障閾値以上であるか否かを判断する(ステップS33)。このステップS33において、発電量の差分が故障閾値以上であると判断された場合(ステップS33のYESの枝)、検証した太陽電池パネルを故障パネルとして登録する(ステップS34)。一方、ステップS33において、発電量の差分が故障閾値未満であると判断された場合(ステップS33のNOの枝)、発電量の差分が出力低下閾値以上であるか否かを判断する(ステップS35)。このステップS35において、発電量の差分が出力低下閾値以上であると判断された場合(ステップS35のYESの枝)、検証した太陽電池パネルを出力低下パネルとして登録する(ステップS36)。一方、ステップS35において、発電量の差分が出力低下閾値未満であると判断された場合(ステップS35のNOの枝)、検証した太陽電池パネルは正常動作していると判断して、他の太陽電池パネルの検証を続ける。 Subsequently, the failure panel detection unit 313 verifies the magnitude of the difference in step S32 for each solar cell panel in the same trend panel group to be processed. In this verification process, first, it is determined whether or not the difference in power generation amount is equal to or greater than a failure threshold (step S33). If it is determined in step S33 that the difference in power generation amount is greater than or equal to the failure threshold (YES in step S33), the verified solar cell panel is registered as a failure panel (step S34). On the other hand, if it is determined in step S33 that the difference in power generation amount is less than the failure threshold (NO branch in step S33), it is determined whether or not the difference in power generation amount is greater than or equal to the output decrease threshold (step S35). ). If it is determined in step S35 that the difference in power generation amount is equal to or greater than the output decrease threshold (YES in step S35), the verified solar cell panel is registered as an output decrease panel (step S36). On the other hand, if it is determined in step S35 that the difference in power generation amount is less than the output decrease threshold (NO branch in step S35), it is determined that the verified solar cell panel is operating normally, Continue to verify battery panels.
 つまり、故障パネル検出部313は、基準太陽電池パネルとの発電量の差が第1の閾値(例えば、故障閾値)以上となった太陽電池パネルを故障パネルとして判定し、基準太陽電池パネルとの発電量の差が故障閾値よりも小さな第2の閾値(例えば、出力低下閾値)以上となった太陽電池パネルを出力低下パネルとして判定する。 That is, the failure panel detection unit 313 determines a solar cell panel in which the difference in power generation amount from the reference solar cell panel is equal to or greater than a first threshold (for example, a failure threshold) as a failure panel, and A solar battery panel in which the difference in power generation amount is equal to or greater than a second threshold (for example, output reduction threshold) that is smaller than the failure threshold is determined as an output reduction panel.
 そして、故障パネル検出部313は、検証対象の同傾向パネルグループに含まれる太陽電池パネルの全てに対してステップS33~S36の処理を実施したことに応じて、検証対象の同傾向パネルグループを別の同傾向パネルグループとする。また、故障パネル検出部313は、全ての同傾向パネルグループに対して、ステップS31~S36の処理が終了したことに応じて処理を終了する。 Then, the failure panel detection unit 313 identifies the same tendency panel group to be verified in response to performing the processing of steps S33 to S36 for all the solar cell panels included in the same tendency panel group to be verified. The same trend panel group. In addition, the failure panel detection unit 313 ends the processing for all the same trend panel groups in response to the end of the processing in steps S31 to S36.
 上記説明より、実施の形態1にかかる太陽光発電装置1は、第1のグループ化処理(例えば、ステップS3)及び第2のグループ化処理(例えば、ステップS4)において、故障検出対象の複数の太陽電池パネルから基準太陽電池パネルを選定する。そして、太陽光発電装置1は、基準太陽電池パネルの状態情報との相関係数Kが所定の範囲内となる状態情報を有する太陽電池パネルを一の同傾向パネルグループに設定する。つまり、太陽光発電装置1は、パネルユニットの設置場所、設置状況によらず高い相関関係を有する太陽電池パネルを含む同傾向パネルグループを生成することができる。 From the above description, the solar power generation device 1 according to the first exemplary embodiment includes a plurality of failure detection targets in the first grouping process (for example, step S3) and the second grouping process (for example, step S4). A reference solar cell panel is selected from the solar cell panels. And the solar power generation device 1 sets the solar cell panel which has the status information in which the correlation coefficient K with the status information of a reference | standard solar cell panel is in a predetermined | prescribed range to one same tendency panel group. That is, the solar power generation device 1 can generate the same tendency panel group including solar cell panels having a high correlation regardless of the installation location and installation status of the panel unit.
 つまり、実施の形態1にかかる太陽光発電装置1では、第1のグループ化処理を実施することで、太陽電池パネルの設置状況或いは日照条件に応じて発電傾向が同じ太陽項パネルがグループ化される。そして、実施の形態1にかかる太陽光発電装置1では、同傾向パネルグループ内で発電量を相対的に比較することで、高い精度で故障パネルを検出することができる。 That is, in the solar power generation device 1 according to the first exemplary embodiment, by performing the first grouping process, the solar term panels having the same power generation tendency are grouped according to the installation state of the solar battery panel or the sunshine condition. The And in the solar power generation device 1 concerning Embodiment 1, a failure panel can be detected with high precision by comparing the power generation amount relatively within the same tendency panel group.
 また、実施の形態1にかかる太陽光発電装置1では、第1のグループ化処理において、太陽電池パネルの仕様毎にグループ化処理を行う。ここで、仕様とは、太陽電池パネルの発電特性を規定するものであり、異なる仕様の太陽電池パネルを発電傾向のみで分類してしまうと、少しの環境変化(例えば、雲が流れることによる陰の変化)によって、発電量が同一グループ内の他のパネルと大きく異なる値となり、故障パネルの誤検出が発生する場合がある。しかし、太陽電池パネルの仕様毎にグループ化処理を行うことで、このような誤検出を低減することができる。 Moreover, in the solar power generation device 1 according to the first exemplary embodiment, the grouping process is performed for each specification of the solar cell panel in the first grouping process. Here, the specification defines the power generation characteristics of the solar panel. If solar panels with different specifications are classified only by the power generation tendency, a slight environmental change (for example, the shadow caused by the flow of clouds). ), The amount of power generation becomes significantly different from that of other panels in the same group, and erroneous detection of a faulty panel may occur. However, such erroneous detection can be reduced by performing the grouping process for each specification of the solar cell panel.
 また、実施の形態1にかかる太陽光発電装置1は、同傾向パネルグループに高い相関関係を有する太陽電池パネルを登録し、太陽電池パネル単位で状態情報を判定する。そのため、太陽光発電装置1は、設置環境の変化に起因する出力低下を検出することができる。例えば、太陽電池パネルの汚れによる発電量の低下を検出することができる。汚れは清掃により除去できるため、このような原因に起因する出力低下を検出することで、太陽電池パネルの出力低下期間を短縮することができる。例えば、メガソーラー等の大規模な太陽光発電装置では、発電量の低下をパネル単位で管理することで、発電量を限界まで高めることへの要求が大きく太陽光発電装置1によるパネル単位での出力低下の検出は重要である。 Moreover, the solar power generation device 1 concerning Embodiment 1 registers the solar cell panel which has a high correlation in the same tendency panel group, and determines state information per solar cell panel. Therefore, the solar power generation device 1 can detect a decrease in output due to a change in installation environment. For example, it is possible to detect a decrease in the amount of power generated due to contamination of the solar cell panel. Since the dirt can be removed by cleaning, the output decrease period of the solar cell panel can be shortened by detecting the output decrease due to such a cause. For example, in a large-scale solar power generation device such as a mega solar, there is a large demand for increasing the power generation amount to the limit by managing the decrease in the power generation amount in units of panels, and in the unit of panels by the solar power generation device 1 The detection of output drop is important.
 また、実施の形態1にかかる太陽光発電装置1では、第2のグループ化処理を実施することで、全ての太陽電池パネルがいずれかの同傾向パネルグループに属することになる。つまり、実施の形態1にかかる太陽光発電装置1では、第2のグループ化処理を実施することで、単独で故障の有無の判断がなされる太陽電池パネルがなくなるため、高い精度で故障パネルを検出することができる。例えば、一の太陽電池パネルのみに陰がかかってしまうような設置状態となる場合であっても、単独で故障の有無の判断がなされる太陽電池パネルがなくなるため、高い精度で故障パネルを検出することができる。 Moreover, in the solar power generation device 1 according to the first exemplary embodiment, by performing the second grouping process, all the solar battery panels belong to one of the same tendency panel groups. That is, in the photovoltaic power generation apparatus 1 according to the first embodiment, by performing the second grouping process, there is no solar cell panel on which the determination of whether or not there is a failure alone. Can be detected. For example, even if the installation state is such that only one solar panel is shaded, there is no solar panel that can be used to determine whether or not there is a failure. can do.
 また、実施の形態1にかかる太陽光発電装置1は、基準太陽電池パネル及び同傾向パネルグループに含まれる太陽電池パネルをパネルグループ作成指示に応じて再構成することができる。これにより、太陽光発電装置1は、太陽電池パネルの日射量の時間遷移が変化した場合であっても、同じ発電量変化傾向を示す太陽電池パネルを含む同傾向パネルグループを、日射量の時間遷移の変化に応じて生成することができる。 Moreover, the solar power generation device 1 concerning Embodiment 1 can reconfigure | reconfigure the solar cell panel contained in a reference | standard solar cell panel and the same tendency panel group according to a panel group creation instruction | indication. Thereby, even if it is a case where the time transition of the solar radiation amount of a solar cell panel changes, the solar power generation device 1 is the time of solar radiation amount for the same tendency panel group containing the solar cell panel which shows the same electric power generation amount change tendency. It can be generated in response to transition changes.
 また、実施の形態1にかかる太陽光発電装置1は、上記のように同傾向パネルグループを生成するため、同傾向パネルグループに登録される太陽電池パネルの発電傾向に高い相関関係を有する。そのため、太陽光発電装置1は、同傾向パネルグループ内の太陽電池パネルの間で発電量を比較することで高精度な故障検出を行うことができる。また、高い精度の故障検出が行うことができることから、太陽電池パネルの故障のみならず、故障の予兆となる出力低下を検出することができる。 Moreover, since the photovoltaic power generation apparatus 1 according to the first embodiment generates the same tendency panel group as described above, the photovoltaic power generation apparatus 1 has a high correlation with the power generation tendency of the solar panel registered in the same tendency panel group. Therefore, the solar power generation device 1 can perform failure detection with high accuracy by comparing the power generation amount between the solar battery panels in the same tendency panel group. Moreover, since the failure detection with high accuracy can be performed, not only the failure of the solar battery panel but also the output decrease that is a sign of failure can be detected.
 上記実施の形態の説明では、第1の仮パネルグループ中から最大の発電量を有する基準太陽電池パネルを選択し、当該基準太陽電池パネルとの相関係数が高い太陽電池パネルを束ねて同傾向パネルグループを設定する例について説明した。しかし、同傾向パネルグループに登録する太陽電池パネルの決定方法は、他の方法をとることもできる。 In the description of the above embodiment, the reference solar cell panel having the maximum power generation amount is selected from the first temporary panel group, and the solar cell panels having a high correlation coefficient with the reference solar cell panel are bundled to have the same tendency. An example of setting a panel group has been described. However, the method for determining the solar cell panel to be registered in the same trend panel group can take other methods.
 例えば、発電量の時系列グラフ、或いは、出力電流量の時系列グラフに対して音声認識技術等に用いられる波形解析を適用し、当該解析結果を用いて、発電傾向の類似性が高い太陽電池パネルを一の同傾向パネルグループとすることもできる。発電量の時系列グラフ、或いは、出力電流量の時系列グラフに対してフーリエ変換等の処理を加え、処理結果に応じて発電傾向の類似性が高い太陽電池パネルを一の同傾向パネルグループとすることもできる。発電量の時系列グラフ、或いは、出力電流量の時系列グラフの形状を図形として捉え、図形の類似性に応じて発電傾向の類似性が高い太陽電池パネルを一の同傾向パネルグループとすることもできる。発電量の時系列グラフ、或いは、出力電流量の時系列グラフとして発電量、或いは、出力電流量の積算グラフを生成し、当該積算グラフの傾きの類似性に応じて発電傾向の類似性が高い太陽電池パネルを一の同傾向パネルグループとすることもできる。 For example, a waveform analysis used in speech recognition technology or the like is applied to a time series graph of power generation amount or a time series graph of output current amount, and a solar cell having a high similarity in power generation tendency using the analysis result A panel can be made into one same tendency panel group. A process such as Fourier transform is applied to the time series graph of the power generation amount or the time series graph of the output current amount, and a solar cell panel having a high similarity in power generation tendency according to the processing result is regarded as one same tendency panel group. You can also The shape of the time series graph of power generation amount or time series graph of output current amount is regarded as a figure, and a solar cell panel having a high similarity in power generation tendency according to the similarity of the figure is made into one same tendency panel group You can also. A power generation amount or output current amount integrated graph is generated as a time series graph of power generation amount or a time series graph of output current amount, and the similarity in power generation tendency is high according to the similarity of the slope of the integrated graph A solar panel can be made into one same tendency panel group.
 なお、上記説明では、監視プログラムに基づき実現されるハードウェア機能について説明した。この監視プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 In the above description, the hardware functions realized based on the monitoring program have been described. This monitoring program can be stored and supplied to a computer using various types of non-transitory computer-readable media. Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROM (Read Only Memory) CD-R, CD -R / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (Random Access Memory)). The program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 この出願は、2013年2月8日に出願された日本出願特願2013-023662を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2013-023662 filed on Feb. 8, 2013, the entire disclosure of which is incorporated herein.
 1 太陽光発電装置
 101~10j パワーコンディショナー
 111~11k パネルユニット
 20 管理装置
 21 処理部
 22 操作部
 23 表示部
 31 演算部
 32 入力インタフェース
 33 記憶部
 311 状態情報取得部
 312 パネルグループ設定部
 313 故障パネル検出部
 121~12k パネル状態計測部
 131~13k 接続箱
 P11~P1m、P21~P2m、Pk1~Pkm 太陽電池パネル
 PG1~PG10 同傾向パネルグループ
DESCRIPTION OF SYMBOLS 1 Photovoltaic power generation device 101-10j Power conditioner 111-11k Panel unit 20 Management apparatus 21 Processing part 22 Operation part 23 Display part 31 Calculation part 32 Input interface 33 Storage part 311 Status information acquisition part 312 Panel group setting part 313 Fault panel detection Part 121 to 12k Panel state measurement part 131 to 13k Connection box P11 to P1m, P21 to P2m, Pk1 to Pkm Solar panel PG1 to PG10 Same trend panel group

Claims (11)

  1.  プログラムを実行する演算部と、太陽電池パネルの状態情報を保持する記憶部と、を有する太陽電池パネル監視装置で実行される太陽電池パネル監視プログラムであって、
     前記太陽電池パネルの状態情報を前記太陽電池パネル毎に取得して前記状態情報を計測時間及び前記太陽電池パネルの位置と対応付けて前記記憶部に格納する状態情報取得処理と、
     複数の前記太陽電池パネルから少なくとも1つの基準太陽電池パネルを決定し、前記基準太陽電池パネルの前記状態情報との差が所定の範囲内となる前記状態情報を有する前記太陽電池パネルを束ねて前記基準太陽電池パネル毎に同傾向パネルグループを生成するパネルグループ設定処理と、
     同一グループに属する前記太陽電池パネルのうち前記状態情報の時間変化が予め設定された閾値よりも大きくなる前記太陽電池パネルを故障パネルとして検出する故障パネル検出処理と、
     を行う太陽電池パネル監視プログラム。
    A solar cell panel monitoring program that is executed by a solar cell panel monitoring device having a calculation unit that executes a program and a storage unit that holds state information of the solar cell panel,
    State information acquisition processing for acquiring the state information of the solar cell panel for each solar cell panel and storing the state information in the storage unit in association with the measurement time and the position of the solar cell panel;
    At least one reference solar cell panel is determined from a plurality of the solar cell panels, and the solar cell panels having the state information whose difference from the state information of the reference solar cell panel is within a predetermined range are bundled. Panel group setting processing for generating the same trend panel group for each reference solar panel,
    A failure panel detection process for detecting, as a failure panel, the solar cell panel in which the time change of the state information is greater than a preset threshold among the solar cell panels belonging to the same group,
    A solar panel monitoring program.
  2.  前記パネルグループ設定処理は、予め設定された条件に応じて繰り返し実行される請求項1に記載の太陽電池パネル監視プログラム。 The solar cell panel monitoring program according to claim 1, wherein the panel group setting process is repeatedly executed according to preset conditions.
  3.  前記パネルグループ設定処理は、複数の前記太陽電池パネルのうち最大発電量を有する太陽電池パネルを前記基準太陽電池パネルとして決定する請求項1又は2に記載の太陽電池パネル監視プログラム。 The solar cell panel monitoring program according to claim 1 or 2, wherein the panel group setting process determines a solar cell panel having a maximum power generation amount among the plurality of solar cell panels as the reference solar cell panel.
  4.  前記パネルグループ設定処理は、前記同傾向パネルグループに属さない他の太陽電池パネルから最大発電量を有する太陽電池パネルを別の基準太陽電池パネルとして決定し、
     前記別の基準太陽電池パネルの前記状態情報との差が所定の範囲内となる前記状態情報を有する前記太陽電池パネルを束ねて別の同傾向パネルグループを生成する請求項3に記載の太陽電池パネル監視プログラム。
    The panel group setting process determines, as another reference solar cell panel, a solar cell panel having the maximum power generation amount from other solar cell panels not belonging to the same trend panel group,
    4. The solar cell according to claim 3, wherein the solar cell panels having the status information whose difference from the status information of the other reference solar cell panel is within a predetermined range are bundled to generate another same tendency panel group. Panel monitoring program.
  5.  前記パネルグループ設定処理は、いずれの前記同傾向パネルグループにも属さない太陽電池パネルを、最も近い前記状態情報を有する基準太陽電池パネルが含まれる前記同傾向パネルグループに登録する請求項4に記載の太陽電池パネル監視プログラム。 The said panel group setting process registers the solar cell panel which does not belong to any of the said same tendency panel group into the said same tendency panel group in which the reference | standard solar cell panel which has the said nearest state information is contained. Solar panel monitoring program.
  6.  前記パネルグループ設定処理は、前記基準太陽電池パネルの前記状態情報と他の前記太陽電池パネルの前記状態情報との相関係数に基づき前記基準太陽電池パネルと他の前記太陽電池パネルとの差を判定する請求項1乃至5のいずれか1項に記載の太陽電池パネル監視プログラム。 The panel group setting process calculates a difference between the reference solar cell panel and the other solar cell panel based on a correlation coefficient between the state information of the reference solar cell panel and the state information of the other solar cell panel. The solar cell panel monitoring program according to any one of claims 1 to 5.
  7.  前記パネルグループ設定処理は、前記複数の太陽電池パネルの仕様毎に前記同傾向パネルグループの設定処理を行う請求項1乃至6のいずれか1項に記載の太陽電池パネル監視プログラム。 The solar panel monitoring program according to any one of claims 1 to 6, wherein the panel group setting process performs the same tendency panel group setting process for each specification of the plurality of solar panels.
  8.  前記故障パネル検出処理は、前記太陽電池パネルの出力電流が予め設定された判定閾値以上となる出力連続期間における前記太陽電池パネルの発電量に基づき前記故障パネルを検出する請求項1乃至7のいずれか1項に記載の太陽電池パネル監視プログラム。 The said failure panel detection process detects the said failure panel based on the electric power generation amount of the said solar cell panel in the output continuous period when the output current of the said solar cell panel becomes more than the preset determination threshold value. The solar cell panel monitoring program according to claim 1.
  9.  前記故障パネル検出処理は、前記基準太陽電池パネルとの前記発電量の差が第1の閾値以上となった前記太陽電池パネルを前記故障パネルとして判定し、前記基準太陽電池パネルとの前記発電量の差が前記第1の閾値よりも小さな第2の閾値以上となった前記太陽電池パネルを出力低下パネルとして判定する請求項8に記載の太陽電池パネル監視プログラム。 In the failure panel detection process, the solar cell panel in which the difference in the amount of power generation with the reference solar cell panel is equal to or greater than a first threshold is determined as the failure panel, and the power generation amount with the reference solar cell panel The solar cell panel monitoring program according to claim 8, wherein the solar cell panel in which the difference is equal to or greater than a second threshold value that is smaller than the first threshold value is determined as an output reduction panel.
  10.  それぞれが直列に接続された複数の太陽電池パネルを含む複数のストリングに対して前記太陽電池パネル毎に特性を監視する太陽電池パネル監視装置であって、
     前記太陽電池パネル毎に計測された状態情報を計測時間及び前記太陽電池パネルの位置と対応付けて保持する記憶部と、
     複数の前記太陽電池パネルから少なくとも1つの基準太陽電池パネルを決定し、前記基準太陽電池パネルの前記状態情報との差が所定の範囲内となる前記状態情報を有する前記太陽電池パネルを束ねて前記基準太陽電池パネル毎に同傾向パネルグループを生成するパネルグループ設定部と、
     同一グループに属する前記太陽電池パネルのうち前記状態情報の時間変化が予め設定された閾値よりも大きくなる前記太陽電池パネルを故障パネルとして検出する故障検出部と、
     を有する太陽電池パネル監視装置。
    A solar panel monitoring device that monitors characteristics of each solar cell panel with respect to a plurality of strings each including a plurality of solar cell panels connected in series,
    A storage unit that holds state information measured for each solar cell panel in association with a measurement time and the position of the solar cell panel,
    At least one reference solar cell panel is determined from a plurality of the solar cell panels, and the solar cell panels having the state information whose difference from the state information of the reference solar cell panel is within a predetermined range are bundled. A panel group setting unit that generates the same trend panel group for each reference solar panel;
    A failure detection unit that detects the solar cell panel as a failure panel in which time change of the state information is greater than a preset threshold among the solar cell panels belonging to the same group;
    A solar battery panel monitoring device.
  11.  それぞれが直列に接続された複数の太陽電池パネルを含む複数のストリングに対して前記太陽電池パネル毎の特性監視処理を、演算部と記憶部とを備える太陽電池パネル監視装置を用いて実施する太陽電池パネル監視方法であって、
     前記太陽電池パネル毎に計測された状態情報を計測時間及び前記太陽電池パネルの位置と対応付けて前記記憶部に格納し、
     前記記憶部に格納された前記状態情報を前記演算部で解析して、複数の前記太陽電池パネルから少なくとも1つの基準太陽電池パネルを決定し、前記基準太陽電池パネルの前記状態情報との差が所定の範囲内となる前記状態情報を有する前記太陽電池パネルを束ねて前記基準太陽電池パネル毎に同傾向パネルグループを生成し、
     前記演算部においてグループ毎に前記状態情報を解析して、同一グループに属する前記太陽電池パネルのうち前記状態情報の時間変化が予め設定された閾値よりも大きくなる前記太陽電池パネルを故障パネルとして検出する太陽電池パネル監視方法。
    The sun which performs the characteristic monitoring process for every said solar cell panel with respect to several string containing the several solar cell panel each connected in series using a solar cell panel monitoring apparatus provided with a calculating part and a memory | storage part A battery panel monitoring method comprising:
    The state information measured for each solar cell panel is stored in the storage unit in association with the measurement time and the position of the solar cell panel,
    The calculation unit analyzes the state information stored in the storage unit, determines at least one reference solar cell panel from the plurality of solar cell panels, and a difference from the state information of the reference solar cell panel is Bundling the solar cell panels having the state information within a predetermined range to generate the same trend panel group for each reference solar cell panel,
    The arithmetic unit analyzes the state information for each group and detects the solar cell panel in which the time change of the state information is larger than a preset threshold among the solar cell panels belonging to the same group as a failure panel. To monitor solar panel.
PCT/JP2013/006525 2013-02-08 2013-11-05 Solar cell panel monitoring program, solar cell panel monitoring apparatus, and method for monitoring solar cell panel WO2014122705A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-023662 2013-02-08
JP2013023662A JP5607772B2 (en) 2013-02-08 2013-02-08 Solar cell panel monitoring program, solar cell panel monitoring device, and solar cell panel monitoring method

Publications (1)

Publication Number Publication Date
WO2014122705A1 true WO2014122705A1 (en) 2014-08-14

Family

ID=51299321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006525 WO2014122705A1 (en) 2013-02-08 2013-11-05 Solar cell panel monitoring program, solar cell panel monitoring apparatus, and method for monitoring solar cell panel

Country Status (2)

Country Link
JP (1) JP5607772B2 (en)
WO (1) WO2014122705A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158490A (en) * 2014-08-19 2014-11-19 晖保智能科技(上海)有限公司 Photovoltaic power station standard plate energy measuring system
CN104167988A (en) * 2014-09-09 2014-11-26 河海大学常州校区 Method for judging efficiency anomaly alarms of photovoltaic system
CN104201986A (en) * 2014-08-27 2014-12-10 国家电网公司 Photovoltaic power generation and supervisory control integrated device
CN104283512A (en) * 2014-10-28 2015-01-14 上海许继电气有限公司 Method for remotely monitoring and locating faults of set strings in photovoltaic power station system
CN104601107A (en) * 2015-01-30 2015-05-06 武汉大学 Cloud photovoltaic fault diagnosis system
KR101603893B1 (en) 2015-12-21 2016-03-16 부강이엔에스 주식회사 Connection Board of Photovoltaics System having Sensing Function for PV module
WO2017015201A1 (en) * 2015-07-23 2017-01-26 Google Inc. Smart solar tile networks
WO2018028005A1 (en) * 2016-08-11 2018-02-15 苏州瑞得恩自动化设备科技有限公司 Fault detection algorithm for battery panel in large-scale photovoltaic power station
CN108493146A (en) * 2018-04-01 2018-09-04 格润智能光伏南通有限公司 A kind of online storage method of photovoltaic module on-gauge plate
CN111226390A (en) * 2018-09-27 2020-06-02 富士电机株式会社 Power conditioner for solar power generation and solar power generation system
US10720882B2 (en) 2017-05-18 2020-07-21 Arizona Board Of Regents On Behalf Of Arizona State University Solar photovoltaic waterless soiling monitoring systems and methods
WO2021239581A1 (en) * 2020-05-26 2021-12-02 Universite De Chambery - Universite Savoie Mont Blanc System and method for monitoring solar energy systems

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6456123B2 (en) * 2014-11-28 2019-01-23 株式会社ガリレオ Solar panel alarm notification system
JP6014854B2 (en) * 2015-01-23 2016-10-26 紹元 蕗 Solar panel equipment management system
KR101775065B1 (en) * 2016-08-05 2017-09-06 주식회사 해줌 Method, server and system for detecting abnormality of a power plant using solar energy
KR101743485B1 (en) * 2016-11-30 2017-06-05 (주)대은 Diagnosis system of photovoltaic generation using internet of small things
KR102371848B1 (en) * 2017-04-04 2022-03-07 엘에스일렉트릭(주) System for data management of photovoltaic module
JP7173128B2 (en) * 2018-03-29 2022-11-16 住友電気工業株式会社 GENERATING UNIT RELOCATION EQUIPMENT AND OPERATION PROCESSING METHOD
KR102020567B1 (en) * 2019-02-15 2019-09-10 (주)대은 A Diagnosis device of photovoltaic generation using output trend analysis
JP7224640B2 (en) * 2019-06-19 2023-02-20 国立研究開発法人産業技術総合研究所 Abnormality determination method and apparatus for photovoltaic power generation device without using weather information
JP2021040451A (en) * 2019-09-04 2021-03-11 春禾科技股▲分▼有限公司 Device for determining abnormality of power generation efficiency in solar device
JP7330093B2 (en) 2019-12-25 2023-08-21 大阪瓦斯株式会社 Solar power generation facility management system and solar power generation facility management method
KR102400956B1 (en) * 2021-10-28 2022-05-24 (주)대은 A Bidirectional Control System for Power Facility

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138293A (en) * 2002-10-16 2004-05-13 Sharp Corp Abnormality monitoring method, monitoring device, and abnormality monitoring system
JP2004260944A (en) * 2003-02-26 2004-09-16 Sharp Corp Power generation equipment, method and apparatus for controlling the same, communication apparatus, its program, and control system of power generation equipment
JP2010267106A (en) * 2009-05-15 2010-11-25 Ntt Facilities Inc Photovoltaic power generation system and control method
JP2011147340A (en) * 2000-09-11 2011-07-28 Sharp Corp System and method for management of solar power generator
JP2012029389A (en) * 2010-07-21 2012-02-09 Toshiba Corp Electrical power supply-demand matching control system and electrical power supply-demand matching control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147340A (en) * 2000-09-11 2011-07-28 Sharp Corp System and method for management of solar power generator
JP2004138293A (en) * 2002-10-16 2004-05-13 Sharp Corp Abnormality monitoring method, monitoring device, and abnormality monitoring system
JP2004260944A (en) * 2003-02-26 2004-09-16 Sharp Corp Power generation equipment, method and apparatus for controlling the same, communication apparatus, its program, and control system of power generation equipment
JP2010267106A (en) * 2009-05-15 2010-11-25 Ntt Facilities Inc Photovoltaic power generation system and control method
JP2012029389A (en) * 2010-07-21 2012-02-09 Toshiba Corp Electrical power supply-demand matching control system and electrical power supply-demand matching control method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158490A (en) * 2014-08-19 2014-11-19 晖保智能科技(上海)有限公司 Photovoltaic power station standard plate energy measuring system
CN104201986A (en) * 2014-08-27 2014-12-10 国家电网公司 Photovoltaic power generation and supervisory control integrated device
CN104167988A (en) * 2014-09-09 2014-11-26 河海大学常州校区 Method for judging efficiency anomaly alarms of photovoltaic system
CN104283512B (en) * 2014-10-28 2017-02-01 上海许继电气有限公司 Method for remotely monitoring and locating faults of set strings in photovoltaic power station system
CN104283512A (en) * 2014-10-28 2015-01-14 上海许继电气有限公司 Method for remotely monitoring and locating faults of set strings in photovoltaic power station system
CN104601107A (en) * 2015-01-30 2015-05-06 武汉大学 Cloud photovoltaic fault diagnosis system
US9843286B2 (en) 2015-07-23 2017-12-12 Google Inc. Smart solar tile networks
WO2017015201A1 (en) * 2015-07-23 2017-01-26 Google Inc. Smart solar tile networks
CN107852131A (en) * 2015-07-23 2018-03-27 谷歌有限责任公司 Intelligent solar tile network
KR101603893B1 (en) 2015-12-21 2016-03-16 부강이엔에스 주식회사 Connection Board of Photovoltaics System having Sensing Function for PV module
WO2018028005A1 (en) * 2016-08-11 2018-02-15 苏州瑞得恩自动化设备科技有限公司 Fault detection algorithm for battery panel in large-scale photovoltaic power station
US10720882B2 (en) 2017-05-18 2020-07-21 Arizona Board Of Regents On Behalf Of Arizona State University Solar photovoltaic waterless soiling monitoring systems and methods
CN108493146A (en) * 2018-04-01 2018-09-04 格润智能光伏南通有限公司 A kind of online storage method of photovoltaic module on-gauge plate
CN111226390A (en) * 2018-09-27 2020-06-02 富士电机株式会社 Power conditioner for solar power generation and solar power generation system
WO2021239581A1 (en) * 2020-05-26 2021-12-02 Universite De Chambery - Universite Savoie Mont Blanc System and method for monitoring solar energy systems
FR3111031A1 (en) * 2020-05-26 2021-12-03 Universite De Chambery - Universite Savoie Mont Blanc System and method for monitoring solar energy installations

Also Published As

Publication number Publication date
JP2014154728A (en) 2014-08-25
JP5607772B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5607772B2 (en) Solar cell panel monitoring program, solar cell panel monitoring device, and solar cell panel monitoring method
US9292794B2 (en) Voltage-based clustering to infer connectivity information in smart grids
CN108593260B (en) Optical cable line fault positioning and detecting method and terminal equipment
US8290745B2 (en) Systems and methods for identifying faulty sensors within a power generation system
US20150371151A1 (en) Energy infrastructure sensor data rectification using regression models
WO2011104931A1 (en) Fault diagnosis device and fault diagnosis method
US20130262190A1 (en) Apparatus and a method for determining a maintenance plan
KR101327225B1 (en) Fault diagnosis method of grid-connected photovoltaic system and apparatus thereof
JP2012195495A (en) Abnormality diagnosis device, method thereof, and computer program
JP6012874B2 (en) Photovoltaic power generation inspection system and solar power generation inspection method
EP2863509A1 (en) System and method for analyzing oscillatory stability in electrical power transmission systems
JP7289995B2 (en) Method and apparatus for recognizing operating state of photovoltaic string and storage medium
JP2016095751A (en) Abnormality unit identification program, abnormality unit identification method and abnormality unit identification system
JP2017112675A (en) Diagnostic system of photovoltaic power generation system and diagnostic method
JP2017525330A (en) System and method for maximizing the expected utility of signal injection test patterns within a utility grid
KR20190069213A (en) Apparatus and method for operation and management of distributed photovoltaic energy generator based on remote monitoring
JPWO2019130718A1 (en) Judgment device, photovoltaic power generation system, judgment method and judgment program
Livera et al. Failure diagnosis of short-and open-circuit fault conditions in PV systems
US20160146864A1 (en) Power System Monitoring and Control Apparatus, and Power System Monitoring and Control Method
KR20150003174A (en) System and method for estimating performance metrics of conservation voltage reduction (cvr) systems and volt/var optimization systems
CN111245364B (en) Method for determining a corrected current-voltage characteristic of an electrical system
JP2015099858A (en) Abnormality detection device
US20150253797A1 (en) Methods for reducing solar inverter output volatility, and related nodes and solar inverters
JP2018064360A (en) Solar power generation system and solar power generation control system
JP6354946B2 (en) Abnormality diagnosis method for photovoltaic power generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874685

Country of ref document: EP

Kind code of ref document: A1