WO2014122698A1 - Protease, and protease-containing cleaning agent and production method therefor - Google Patents

Protease, and protease-containing cleaning agent and production method therefor Download PDF

Info

Publication number
WO2014122698A1
WO2014122698A1 PCT/JP2013/000724 JP2013000724W WO2014122698A1 WO 2014122698 A1 WO2014122698 A1 WO 2014122698A1 JP 2013000724 W JP2013000724 W JP 2013000724W WO 2014122698 A1 WO2014122698 A1 WO 2014122698A1
Authority
WO
WIPO (PCT)
Prior art keywords
protease
strain
enzyme
seq
reaction
Prior art date
Application number
PCT/JP2013/000724
Other languages
French (fr)
Japanese (ja)
Inventor
大助 杉森
Original Assignee
国立大学法人福島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人福島大学 filed Critical 国立大学法人福島大学
Priority to PCT/JP2013/000724 priority Critical patent/WO2014122698A1/en
Priority to JP2014560535A priority patent/JP6043371B2/en
Publication of WO2014122698A1 publication Critical patent/WO2014122698A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea

Definitions

  • the present invention relates to a novel protease (proteolytic enzyme), a protease-containing detergent containing the protease, and a method for producing the same.
  • a cleaning composition comprising a nonionic surfactant, a protease, a sequestering agent, benzotriazole, and the like is known (for example, see Patent Document 1).
  • a cleaning composition containing a protease, a nonionic surfactant, and an enzyme stabilizer is also known (see, for example, Patent Document 2).
  • alkaline detergents have the highest detergency, but nonetheless have not been able to completely clean medical equipment.
  • the main components of dirt are cells and proteins consisting of blood and body fluids attached at the time of surgery, including infectious prions.
  • steel tools such as scissors and tweezers are frequently reused among medical instruments, so it is essential to clean blood and proteinaceous dirt adhering to these steel accessories before the sterilization process. It has become. Further, if harmful substances such as infectious prions remain in these steel accessories, infection may spread to many surgical patients. Therefore, it is desired to develop a powerful cleaning agent that can completely remove such dirt.
  • the present invention has been made in view of the above points, and provides a protease, a protease-containing detergent, and a method for producing the same, which have a strong ability to degrade proteins, and particularly have a high detergency against protein stains such as blood. It is for the purpose.
  • the protease according to the present invention is a protease obtained by culturing actinomycetes sp. RD001933 strain (NBRC domestic isolate RD strain).
  • the protease according to the present invention is a protease obtained by culturing the actinomycete Actinomadura myaoliensis RD000920 strain (NBRC domestic isolate RD strain).
  • the protease according to the present invention is a protease obtained by co-culturing RD001933 strain belonging to the genus Actinodura sp. Of actinomycetes and RD000920 strain belonging to the genus Actinomadura miaoliensis of actinomycetes. .
  • the protease is a polypeptide described in the following (a1), (a2) or (a3).
  • a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2.
  • a polypeptide comprising an amino acid sequence in which one or more amino acid residues are substituted, inserted, deleted, and / or added in the amino acid sequence set forth in SEQ ID NO: 2.
  • the molecular weight of the protease by SDS-PAGE is preferably about 31,000 Da (31 kDa).
  • polynucleotide encoding the protease includes the polynucleotide described in (b1), (b2) or (b3) below.
  • (B1) A polynucleotide comprising the base sequence set forth in SEQ ID NO: 1.
  • (B2) A polynucleotide that hybridizes with a base sequence complementary to the base sequence described in SEQ ID NO: 1 under stringent conditions.
  • (B3) A polynucleotide having at least 70% sequence identity with the base sequence set forth in SEQ ID NO: 1.
  • the protease according to the present invention contains the protease.
  • the method for producing a protease-containing detergent according to the present invention is produced by culturing RD001933 strain belonging to the genus Actinomadura sp.
  • the method for producing a protease-containing detergent according to the present invention is produced by culturing RD000920 strain belonging to the genus Actinodura miaoliensis of actinomycetes.
  • the method for producing a protease-containing detergent according to the present invention comprises RD001933 strain belonging to the genus Actinodura sp. Of Actinomyces and RD000920 strain belonging to the genus Actinomadura miaoliensis of mixed actinomycetes. To manufacture.
  • the protease according to the present invention can be obtained from two types of highly safe microorganisms (strains belonging to the same), both of which have a strong ability to degrade proteins, and particularly have a high detergency against protein stains such as blood.
  • these protease-containing detergents can wash denatured and fixed blood stains, which were difficult to wash with conventional alkaline detergents, at a low temperature and in a short time.
  • a protease-containing detergent obtained by culturing each of two types of microorganisms has a high cleaning effect, but a protease-containing detergent obtained by mixing and culturing two types of microorganisms has a higher cleaning effect.
  • these protease-containing detergents can be mass-produced easily and inexpensively, and can also be powdered or tableted in addition to being liquid, and can be stored for a long time.
  • protease according to the present invention can be applied to various fields other than the detergent.
  • meat processing squid peeling, and tanning.
  • the protease according to the present invention is a protease obtained by culturing actinomycetes Actinomadura sp. RD001933 strain (NBRC domestic isolate RD strain). From the results of 16S rDNA nucleotide sequence analysis, it is presumed that the belonging classification group of strain RD001933 is Actinomadura sp. Closely related to Actinomadura miaoliensis.
  • the protease according to the present invention is a protease obtained by culturing the actinomycete Actinomadura myaoliensis RD000920 strain (NBRC domestic isolate RD strain). From the results of 16S rDNA nucleotide sequence analysis, it is presumed that the belonging classification group of strain RD000920 is Actinomadura miaoliensis.
  • the protease according to the present invention includes actinomycetes Actinomadura sp. RD001933 (NBRC domestic isolate RD strain) and actinomycetes Actinomadura miaoliensis RD000920 strain (NBRC domestic isolate).
  • RD strain is a protease obtained by mixed culture.
  • proteases exhibit hydrolytic activity on proteins and are not limited to purified enzymes, but also include crude purified products and immobilized products. Purification of the protease can be performed, for example, using a culture solution of microorganisms, using a method such as ammonium sulfate precipitation, ion exchange chromatography, hydrophobic chromatography, or the like. As a result, enzymes having various degrees of purification (including enzymes purified to almost a single level) can be obtained.
  • the microorganism may be any strain such as a wild strain, a mutant strain (for example, induced by ultraviolet irradiation), or a recombinant derived by genetic engineering techniques such as cell fusion or genetic recombination. May be.
  • a genetically engineered microorganism such as a recombinant is used, for example, using a technique described in Molecular Cloning A Laboratory Manual, 2nd edition (Sambrook, J. et al., Cold Spring Harbor Press, 1989). Created easily.
  • the culture solution of microorganisms means both a culture solution containing microbial cells and a culture solution from which microbial cells have been removed by centrifugation or the like. Further, it may be a protease contained in the microbial cells.
  • a protease-containing detergent it is preferable to use at least one of the RD001933 strain-derived protease and the RD000920 strain-derived protease described below as the enzyme.
  • the protease preferably contains the polypeptide described in the following (a1), (a2) or (a3).
  • a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2.
  • a polypeptide comprising an amino acid sequence in which one or more amino acid residues are substituted, inserted, deleted, and / or added in the amino acid sequence set forth in SEQ ID NO: 2.
  • polynucleotide encoding the protease preferably includes the polynucleotide described in (b1), (b2) or (b3) below.
  • (B1) A polynucleotide comprising the base sequence set forth in SEQ ID NO: 1.
  • (B2) A polynucleotide that hybridizes with a base sequence complementary to the base sequence described in SEQ ID NO: 1 under stringent conditions.
  • (B3) A polynucleotide having at least 70%, preferably 75%, more preferably 80% sequence identity with the base sequence set forth in SEQ ID NO: 1.
  • the polynucleotide having the base sequence described in SEQ ID NO: 1 can encode the polypeptide (amino acid sequence) described in SEQ ID NO: 2.
  • the enzyme activity of the protease can be confirmed by the following method. First, 50 ⁇ L of 3% azocasein (final concentration 0.6%) is mixed with 198 ⁇ L of Tris-HCl buffer (pH 7.5, final concentration 80 mM). And 2 microliters of samples which confirm enzyme activity are added, and it is made to react at 65 degreeC for 5 minutes or 10 minutes. After the enzyme reaction, 50 ⁇ L of 20% trichloroacetic acid is added to stop the reaction. After stopping the reaction, the reaction solution is centrifuged, and the absorbance of the supernatant is measured at 340 nm. An enzyme amount of 1 U (unit) is an amount that generates 1 ⁇ mol of an azo dye equivalent per minute.
  • Protease can act at 20 to 80 ° C., for example.
  • the optimum temperature can be within this range. Preferably it is in the range of 60-90 ° C, more preferably in the range of 70-80 ° C, and even more preferably about 75 ° C.
  • Protease can act at a pH of 4.0 to 9.5, for example.
  • the optimum pH can be within this range.
  • the pH is preferably around 7.5, but exhibits an activity of 50% or more at pH 6.0 to 8.8.
  • Protease may vary slightly depending on electrophoresis conditions and the like, but preferably has a molecular weight of about 31,000 Da (31 kDa) by SDS-PAGE.
  • a molecular weight by SDS-PAGE is about 31, 000 Da.
  • protease consists of the amino acid sequence set forth in SEQ ID NO: 2.
  • the protease preferably has an amino acid sequence from position 111 to position 386 of SEQ ID NO: 2 (hereinafter also referred to as “amino acid sequence described in SEQ ID NO: 2”).
  • amino acid sequence from position 1 to position 26 of SEQ ID NO: 2 is a signal sequence
  • amino acid sequence from position 27 to position 110 of SEQ ID NO: 2 is a pro sequence.
  • Protease is an amino acid sequence represented by SEQ ID NO: 2 or an amino acid sequence in which one or more amino acid residues are substituted, deleted, inserted and / or added to the amino acid sequence described in SEQ ID NO: 2. It may be an enzyme. For example, site-directed mutagenesis (Nucleic Acid A Res., 1982, 10, pp. 6487; Methods in Enzymol., 1983, 100, pp. 448; Molecular Cloning: A Laboratory Manual, Second Edition, ColdSpring Laboratories, Cold Spring Harbor, NY, 1989; PCR: APPROCICAL Approach, IRL Press, 1991, pp. 200), etc., by introducing substitutions, deletions, insertions and / or addition mutations as appropriate. The structure of (protein) can be modified.
  • the number of amino acid residues that can be substituted, deleted, inserted and / or added is usually 50 or less, such as 30 or less, or 20 or less, preferably 16 or less, more preferably 5 or less, and even more preferably 0 to 3. is there.
  • Proteases include not only enzymes with artificially mutated amino acid residues but also enzymes with mutated amino acid residues in nature.
  • protease An enzyme having an amino acid sequence having homology to the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence shown in SEQ ID NO: 2 is also included in the protease.
  • the protease preferably has an amino acid sequence of SEQ ID NO: 2 or an amino acid sequence having at least 65%, preferably at least 70%, more preferably at least 80% homology with the amino acid sequence within SEQ ID NO: 2. It has a protein.
  • Protein homology (homology) search for example, databases such as SWISS-PROT, PIR, DAD and other protein amino acid sequences, DNA databases such as DDBJ, EMBL, Gene-Bank, etc., programs such as BLAST and FASTA Can be done through the Internet. The protein activity can be confirmed using the procedure described above.
  • Protease sources are RD001933 strain (accession number: NITE P-1467) belonging to the genus Actinodura sp. Of Actinomycetes and RD000920 strain (trusted) belonging to the genus Actinodura miaoliensis of actinomycetes. Number: NITE P-1468). These have a polynucleotide represented by the base sequence described in SEQ ID NO: 1 in DNA.
  • RD001933 strain (accession number: NITE P-1467) belonging to the genus Actinodura sp. Of actinomycetes, and RD000920 strain (accession number: NITE P) belonging to the genus Actinomadura miaoliensis of actinomycetes In all cases, 1468), the protease is secreted outside the cells by liquid culture in an appropriate nutrient medium, so that the culture supernatant is treated with freeze-drying, salting-out, organic solvent, etc., or this treatment What fixed the thing etc. can be manufactured as an enzyme formulation.
  • the above-mentioned bacteria are cultured in a suitable medium, for example, a medium containing a suitable carbon source, nitrogen source, and inorganic salts to secrete protease.
  • a suitable medium for example, a medium containing a suitable carbon source, nitrogen source, and inorganic salts to secrete protease.
  • the carbon source starch and starch hydrolysate
  • sugars such as glucose and sucrose
  • alcohols such as glycerol and organic acids (for example, acetic acid and citric acid) or salts thereof (for example, sodium salt), etc.
  • concentration of the carbon source is, for example, in the range of 1 to 20% (w / v), preferably 1 to 10% (w / v).
  • the nitrogen source examples include organic nitrogen sources such as yeast extract, peptone, meat extract, corn steep liquor, and soybean powder, and inorganic nitrogen compounds such as ammonium sulfate, ammonium nitrate, and urea.
  • concentration of the nitrogen source is, for example, in the range of 1 to 20% (w / v), preferably 1 to 10% (w / v).
  • inorganic salts include sodium chloride, monopotassium phosphate, magnesium sulfate, manganese chloride, calcium chloride, and ferrous sulfate.
  • the culture temperature is preferably a temperature at which the protease is stable and the cultured microorganism can sufficiently grow, and is preferably 25 to 50 ° C., for example.
  • the culture time is preferably a time during which protease is sufficiently produced, and is preferably about 1 to 7 days, for example. Culturing can be performed preferably under aerobic conditions, for example, with aeration stirring or shaking.
  • Polypeptides contained in proteases are fractionated by protein solubility (precipitation with organic solvents, salting out with ammonium sulfate, etc.); cation exchange, anion exchange, gel filtration, hydrophobic chromatography; chelates, dyes, antibodies, etc. It can be purified by an appropriate combination of methods such as affinity chromatography using. For example, after recovering the culture supernatant of the microorganism, it can be purified by ammonium sulfate precipitation, further anion exchange chromatography, hydrophobic chromatography and / or cation exchange chromatography. Thereby, it can be purified to almost a single band in polyacrylamide gel electrophoresis (SDS-PAGE). That is, the polypeptide constituting the protease can be estimated as a monomer by HPLC analysis and gel filtration chromatography analysis.
  • SDS-PAGE polyacrylamide gel electrophoresis
  • protease can be produced by microorganisms.
  • a polypeptide can be artificially generated from the amino acid sequence information shown in SEQ ID NO: 2 and the base sequence information shown in SEQ ID NO: 1, and obtained by artificial synthesis for the production of a protease-containing detergent.
  • Enzymes polypeptides
  • the above enzyme can be easily obtained.
  • the microorganism is a polynucleotide having the base sequence described in SEQ ID NO: 1, a polynucleotide that hybridizes under stringent conditions with a base sequence complementary to the base sequence described in SEQ ID NO: 1,
  • a microorganism into which at least one polynucleotide selected from polynucleotides having at least 70%, preferably at least 75%, more preferably at least 80% sequence identity with the described base sequence has been introduced.
  • the microorganism into which the above polynucleotide is introduced can be obtained by using a vector or preparing a transformant. For example, by introducing the above-described polynucleotide into a vector and introducing the vector into a host such as Escherichia coli, a transformant having the ability to produce a protease can be produced.
  • a procedure for producing a transformant and construction of a recombinant vector suitable for the host can be performed according to techniques commonly used in the fields of molecular biology, biotechnology, and genetic engineering (for example, Sambrook et al. , Molecular Cloning: Laboratory Manual 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989). In particular, for actinomycetes, it can be performed with reference to “PRACTICAL STREPTOMYCES GENETICS (Kieser et al., John Inns Foundation, 2000)”.
  • this DNA is first introduced into a plasmid vector or a phage vector that is stably present in the microorganism, and the genetic information is transcribed and translated. Therefore, it is preferable to incorporate a promoter corresponding to a unit for controlling transcription / translation 5 'upstream of the DNA strand. Further, it is preferable to incorporate a terminator, which is a unit for controlling transcription / translation, downstream of the 3 ′ side of the DNA strand. More preferably, both the promoter and terminator are incorporated at each site. As the promoter and terminator, promoters and terminators known to function in microorganisms used as hosts are used.
  • the host to be transformed is not particularly limited as long as it is an organism that can be transformed with a vector containing a polynucleotide encoding the enzyme and express the enzyme activity.
  • bacteria, actinomycetes, Bacillus subtilis, Escherichia coli, yeast, mold and the like can be mentioned.
  • genus Escherichia genus Bacillus, genus Pseudomonas, genus Serratia, genus Brevibacterium, genus Corynebacterium, genus Corynebacterium Bacteria for which host vector systems such as Streptococcus and Lactobacillus have been developed; Actinomycetes for which host vector systems such as Rhodococcus and Streptomyces have been developed; Saccharomyces (Saccharomyces) Saccharomyces), Kluyveromyces, Shizosa A genus of the genus Schizosaccharomyces, the genus Zygosaccharomyces, the genus Yarrowia, the genus Trichosporon, the genus Rhodosporidium, the genus Rhodaspodium, and the genus C And yeasts that have been developed for host vector systems such as the genus Neurospora, the
  • insects such as moths (Nature 315, 592-594 (1985)), rapeseed, corn, potatoes, and other plants in large quantities.
  • Systems for expressing heterologous proteins have been developed, and these may be used.
  • the obtained transformant can be used for enzyme production as described above. Specifically, the transformant is liquid-cultured in an appropriate nutrient medium, the expressed polypeptide is secreted outside the cell, and the culture supernatant is lyophilized, salted out, treated with an organic solvent, etc. Can be manufactured.
  • the culture conditions can vary depending on the host cells, the culture can be performed under normal conditions.
  • an actinomycete such as Streptomyces
  • a tryptic soy medium containing thiostrepton for example, Becton Dickinson
  • the enzyme produced by the transformant can be further purified as described above.
  • the protease-containing detergent according to the present invention comprises RD001933 strain belonging to the genus Actinodura sp. Of Actinomycetes and RD000920 strain belonging to the genus Actinomadura miaoliensis, respectively, individually or mixedly. Then, it can be obtained as a crude enzyme by salting out (ammonium sulfate precipitation, acetone precipitation, ethanol precipitation, etc.).
  • a single culture solution or a mixed culture solution is filtered through a filter paper or a filter to obtain a protease-containing detergent as a crude enzyme solution, or centrifuged to obtain a protease-containing detergent as a supernatant (culture supernatant). You can also. Filtration is performed to remove impurities that cause turbidity. If the turbidity is not worrisome, filtration is unnecessary, and a sufficiently transparent protease-containing detergent can be obtained by centrifugation. If necessary, it may be further purified and obtained as a purified enzyme.
  • the protease obtained as described above can be obtained from two types of highly safe microorganisms (strains belonging to the same), both of which have a strong ability to degrade proteins, particularly high washing against protein stains such as blood. Have power.
  • protease-containing detergents containing these proteases can wash denatured and adhered blood stains, which were difficult to wash with conventional alkaline detergents, at a low temperature and in a short time.
  • the protease-containing detergent obtained by culturing each of the two types of microorganisms alone has a strong proteolytic ability and a high cleaning effect. Strong and high cleaning effect.
  • these protease-containing detergents can be mass-produced easily and inexpensively, and can also be powdered or tableted in addition to being liquid, and can be stored for a long time.
  • protease can be applied to various fields other than detergents.
  • meat processing squid peeling, and tanning.
  • squid peeling squid peeling
  • tanning tanning
  • RD001933 strain belonging to the genus Actinodura sp. Of actinomycetes is cultured, and the RD001933 strain is cultured on the culture supernatant using ammonium sulfate fractionation, hydrophobic chromatography, cation exchange chromatography, and anion exchange chromatography. The derived protease was purified. Details are shown below.
  • ISP2 medium yeast extract 0.6%, malt extract 1.4%, glucose 0.68% was prepared, and 70 mL each was dispensed into a 500 mL Erlenmeyer flask. One spring coil was put in this, and steam sterilization was performed at 121 ° C. for 20 minutes. Furthermore, 30 mL of 2.5% skimmed milk that was sterilized separately was added to a final concentration of 0.75%.
  • glycerol stock cells were inoculated into a ⁇ 18 test tube (18 ⁇ 180 mm) containing 5 mL of ISP2 medium, and cultured with shaking at 45 ° C. until good growth was obtained. 1 mL of this culture solution was inoculated into 100 mL of the previously sterilized medium, and cultured with shaking at 45 ° C. for about 96 hours. The supernatant was recovered from this culture using a centrifuge.
  • FIG. 1 is an electrophoretogram showing the results of SDS-PAGE analysis of the eluted fraction.
  • the left lane in FIG. 1 is a protein molecular weight marker (M), and the right lane in FIG. 1 shows a band of the purified enzyme (protease from RD001933 strain) obtained in (e).
  • M protein molecular weight marker
  • FIG. 1 shows a band of the purified enzyme (protease from RD001933 strain) obtained in (e).
  • a single band was observed in the active fraction, and the molecular weight of the purified enzyme (polypeptide) was about 31,000.
  • the unit of molecular weight is Da (Dalton). Therefore, in the kDa notation, the molecular weight of this enzyme is about 31 kDa.
  • Table 1 shows the yield, yield and the like in the purification of protease from RD001933 strain.
  • the enzyme activity of the protease derived from RD001933 strain was measured as follows. First, the reaction liquid shown in Table 2 was allowed to react at 65 ° C. and pH 7.5 for 5 minutes, and then 50 ⁇ L of 20% trichloroacetic acid was added to stop the reaction. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured. The amount of enzyme 1U (unit) was set to an amount capable of producing 1 ⁇ mol of an azo dye corresponding to 1 minute.
  • FIG. 3 is a graph showing enzyme activities at various reaction temperatures as relative activities based on the activity (100%) when the reaction temperature is 75 ° C.
  • the RD001933-derived protease purified enzyme
  • the optimum temperature for the reaction is in the range of 60 to 80 ° C., preferably 70 It was about ⁇ 75 ° C.
  • FIG. 4 is a graph showing specific activities at various reaction temperatures.
  • the buffer solution used is as follows.
  • MES-sodium hydroxide buffer pH 5.5, pH 6 Bis-Tris buffer: pH 6, pH 6.5, pH 7.2 Tris-HCl buffer: pH 7.2, pH 8, pH 8.8 Glycine-NaOH buffer: pH 9, pH 9.5
  • FIG. 5 is a graph showing enzyme activities at various reaction pHs as relative activities based on the enzyme activity when the reaction pH is 7.2 (100%).
  • the RD001933-derived protease purified enzyme
  • FIG. 6 is a graph showing specific activities at various reaction pHs.
  • the additive reagents used were EDTA, PMSF (phenylmethylsulfonyl fluoride) (final concentration 5 mM), ZnCl 2 , MnCl 2 , CaCl 2 , CuCl 2 , CoCl 2 , MgCl 2 (final concentration 1 mM).
  • Table 5 shows the enzyme activity when the additive reagent is added as a relative activity based on the activity (100%) when the additive reagent is not added.
  • RD001933 strain-derived protease purified enzyme
  • Table 5 shows the enzyme activity when the additive reagent is added as a relative activity based on the activity (100%) when the additive reagent is not added.
  • RD001933 strain-derived protease purified enzyme
  • the activity was greatly reduced and activity inhibition was observed.
  • SEQ ID NO: 4 is the sequence shown from position 277 of SEQ ID NO: 2.
  • SEQ ID NO: 5 is the sequence shown from position 331 of SEQ ID NO: 2.
  • SEQ ID NO: 6 is the sequence shown from position 348 of SEQ ID NO: 2.
  • SEQ ID NO: 7 is the sequence shown from position 364 of SEQ ID NO: 2.
  • the RD001933 strain was cultured at 45 ° C. for 3 days using 50 mL of ISP2 medium (yeast extract 0.6%, malt extract 1.4%, glucose 0.6%) and collected.
  • ISP2 medium yeast extract 0.6%, malt extract 1.4%, glucose 0.66%
  • this microbial cell was suspended in 2.5 mL of a solution consisting of 75 mM NaCl, 25 mM EDTA, 20 mM Tris-HCl buffer (pH 7.5) and 1 mg / mL lysozyme, and treated at 37 ° C. for 1 hour.
  • 900 ⁇ L of 10% (w / v) SDS and 3.75 mg of proteinase K were added and treated at 55 ° C. for 2 hours.
  • 2 mL of 5 M NaCl and 5 mL of chloroform were added and stirred, and 5 mL of the aqueous phase was collected by centrifugation.
  • This precipitate was dissolved in 500 ⁇ L of 10 mM Tris-HCl buffer (pH ⁇ 7.5) containing 1 mM EDTA. 500 ⁇ L of a phenol / chloroform mixed solution was added thereto and stirred, and 500 ⁇ L of an aqueous phase was collected by centrifugation.
  • the DNA was rinsed with 70% (v / v) ethanol and then centrifuged to collect the precipitate.
  • the collected precipitate was dried under reduced pressure, and then dissolved in 200 ⁇ L of a solution composed of 10 mM Tris-HCl buffer (pH 8.0) and 1 mM EDTA.
  • the above N-terminal sequence (SEQ ID NO: 3) and the above two internal amino acid sequences (SEQ ID NO: 4 and SEQ ID NO: 5) were picked up.
  • an appropriate sequence in the base sequence encoding these amino acid sequences was used.
  • the N-terminal amino acid sequence information was “Sense primer” and the internal amino acid sequence information was “Antisense primer”.
  • Sense primer For degenerate codons, a codon with high codon usage in the genus Actinomadura was selected and a primer was designed. Also, mixed base primers were used for those with the same codon usage frequency. Also, Leu and Ile, which are difficult to be separated by mass spectrometry, were excluded.
  • degenerate oligonucleotide primer S1 (SEQ ID NO: 8) for PCR was designed as a sense primer (Sense ⁇ ⁇ ⁇ ⁇ primer).
  • Antisense primer “primer A1-1” (SEQ ID NO: 9) designed from SEQ ID NO: 4 and “primer A1-2” (SEQ ID NO: 10) designed from SEQ ID NO: 5 And designed.
  • s in the sequence represents c or g
  • w represents a or t.
  • the composition of the reaction solution for PCR is as follows.
  • Sterile water was added to 100 ng of the template chromosomal DNA obtained in the above [Separation of chromosomal DNA of RD001933 strain], 2 ⁇ MightAmp Buffer 25 ⁇ L, each primer 300 nM, and 0.5 unit of HighAmp DNA Polymerase so that the total amount was 50 ⁇ L.
  • PCR reaction conditions are as follows.
  • Step 1 98 ° C., 2 minutes
  • Step 2 98 ° C., 10 seconds
  • Step 3 80 ° C., 15 seconds
  • Step 4 68 ° C., 1 minute
  • Step 5 68 ° C., 2 minutes.
  • a specific amplification product of about 700 bp was obtained by PCR using the above primers.
  • the PCR reaction solution was subjected to agarose gel electrophoresis, and the target band portion of about 700 bp was cut out and bound to pMD20-T Vector using Mighty TA-cloning Kit (TaKaRa) to transform Escherichia coli.
  • the transformed strain is cultured in an LB medium (tryptone 1%, yeast extract 0.5%, sodium chloride 0.5%, pH 7.5) containing ampicillin 50 ⁇ g / mL, Miniprep method (miniprep method) or High Pure Plasmid.
  • a plasmid for DNA sequencing was extracted and purified using Isolation Kit (Roche).
  • the base sequence of the inserted fragment was determined by an automatic sequencer using T7 primer and SP6 primer derived from a vector (pMD20-T Vector). This base sequence (692 bp) is shown in SEQ ID NO: 11.
  • the PCR reaction solution composition is as follows.
  • Sterile water was added to 25 units of template DNA 25 ng, 2 ⁇ MightAmp Buffer 25 ⁇ L, each primer 300 nM, and LightAmp DNA Polymerase 0.5 unit so that the total amount was 50 ⁇ L.
  • PCR reaction conditions are as follows.
  • Step 1 98 ° C., 2 minutes
  • Step 2 98 ° C., 10 seconds
  • Step 3 62 ° C., 15 seconds
  • Step 4 68 ° C., 3 minutes
  • Step 5 68 ° C., 3 minutes.
  • a specific amplification product of about 3000 bp was obtained by PCR using the above primers.
  • the PCR reaction solution was subjected to agarose gel electrophoresis, and the target band portion of about 3000 bp was cut out and bound to pMD20-T Vector using Mighty TA-cloning Kit (TaKaRa) to transform Escherichia coli.
  • the transformed strain is cultured in an LB medium (tryptone 1%, yeast extract 0.5%, sodium chloride 0.5%, pH 7.5) containing ampicillin 50 ⁇ g / mL, Miniprep method (miniprep method) or High Pure Plasmid.
  • a plasmid for DNA sequencing was extracted and purified using Isolation Kit (Roche).
  • the base sequence of the inserted fragment was determined by an automatic sequencer using SP6 primer and M13M4 primer derived from a vector (pMD20-T Vector).
  • the base sequence (330 bp) shown in SEQ ID NO: 14 was obtained as the base sequence on the N-terminal side (upstream side).
  • This sequence is a signal sequence (78 bp) and a pro sequence (252 bp) from the N-terminal side.
  • the base sequence (139 bp) shown in SEQ ID NO: 15 was obtained as the base sequence on the C-terminal side (downstream side).
  • SEQ ID NO: 1 the base sequence (1161 bp) of the region containing the protease gene derived from the RD001933 strain was determined (SEQ ID NO: 1).
  • SEQ ID NO: 2 is an amino acid sequence corresponding to the codon of this sequence (SEQ ID NO: 1).
  • N-terminal and internal amino acid sequences of the RD001933 strain-derived protease (purified enzyme) determined above were present in the above deduced amino acid sequence and were almost completely identical.
  • RD001933 strain belonging to the genus Actinodura sp. Of actinomycetes was cultured, and a crude enzyme solution was obtained from the culture supernatant by three kinds of precipitation methods. Details are shown below.
  • ISP2 medium yeast extract 0.6%, malt extract 1.4%, glucose 0.68% was prepared, and 70 mL was dispensed into a 500 mL Erlenmeyer flask. One spring coil was put in this, and steam sterilization was performed at 121 ° C. for 20 minutes. Furthermore, 30 mL of 2.5% skimmed milk that was sterilized separately was added to a final concentration of 0.75%.
  • glycerol stock cells were inoculated into a ⁇ 18 test tube (18 ⁇ 180 mm) containing 5 mL of ISP2 medium, and cultured with shaking at 45 ° C. until good growth was obtained. 1 mL of this culture solution was inoculated into 100 mL of the previously sterilized medium, and cultured with shaking at 45 ° C. for about 96 hours. The supernatant was recovered from this culture using a centrifuge.
  • FIG. 7 is a graph showing enzyme activities at various reaction temperatures as relative activities based on the activity (100%) when the reaction temperature is 80 ° C.
  • the RD001933 strain-derived protease (crude enzyme solution) exhibits activity at 50 to 95 ° C., and the optimal temperature for the reaction is in the range of 70 to 85 ° C., preferably It was around 75 to 85 ° C.
  • the buffer solution used is as follows.
  • FIG. 8 is a graph showing enzyme activities at various reaction pHs as relative activities based on the enzyme activity when the reaction pH is 8.0 (100%).
  • the RD001933 strain-derived protease (crude enzyme solution) exhibits activity in a wide range of pH 5.0 to 9.0, and the optimum pH of the reaction is around 7.5 (for example, pH 7.0-8.0).
  • the additive reagents used are CaCl 2 , NaCl, KCl, MgCl 2 , MnCl 2 , FeCl 2 , FeCl 3 , CuCl 2 , ZnCl 2 , CoCl 2 , EDTA.
  • Table 7 shows the enzyme activity when the additive reagent is added as a relative activity based on the activity when the additive reagent is not added (100%).
  • the enzymatic activity at various CaCl 2 final concentration is a graph showing the activity when CaCl 2 final concentration is 0.5mM as a relative activity to the reference (100%).
  • RD000920 strain belonging to the genus Actinomadura miaoliensis of actinomycetes is cultured, and the culture supernatant is derived from the RD000920 strain using ammonium sulfate fractionation, hydrophobic chromatography, cation exchange chromatography, and anion exchange chromatography. Protease was purified. Details are shown below.
  • ISP2 medium yeast extract 0.6%, malt extract 1.4%, glucose 0.68% was prepared, and 70 mL was dispensed into a 500 mL Erlenmeyer flask. One spring coil was put in this, and steam sterilization was performed at 121 ° C. for 20 minutes. Furthermore, 30 mL of 2.5% skimmed milk that was sterilized separately was added to a final concentration of 0.75%.
  • glycerol stock cells were inoculated into a ⁇ 18 test tube (18 ⁇ 180 mm) containing 5 mL of ISP2 medium, and cultured with shaking at 45 ° C. until good growth was obtained. 1 mL of this culture solution was inoculated into 100 mL of the previously sterilized medium, and cultured with shaking at 45 ° C. for about 96 hours. The supernatant was recovered from this culture using a centrifuge.
  • a purified enzyme was obtained from the RD000920 strain belonging to the genus Actinomadura miaoliensis.
  • the single purified enzyme was confirmed by the following (f) SDS-PAGE analysis.
  • FIG. 2 is an electrophoretogram showing the results of SDS-PAGE analysis of the eluted fraction.
  • the left lane in FIG. 2 is the protein molecular weight marker (M), and the right lane in FIG. 2 shows the band of the purified enzyme (protease from RD000920 strain) obtained in (e).
  • M protein molecular weight marker
  • FIG. 2 shows the band of the purified enzyme (protease from RD000920 strain) obtained in (e).
  • a single band was observed in the active fraction, and the molecular weight of the purified enzyme (polypeptide) was about 31,000.
  • the unit of molecular weight is Da (Dalton). Therefore, in the kDa notation, the molecular weight of this enzyme is about 31 kDa.
  • Table 9 shows the yield, yield and the like in the purification of protease from RD000920 strain.
  • the enzyme activity of the RD000920 strain-derived protease was measured in the same manner as the enzyme activity of the RD001933 strain-derived protease.
  • protease derived from RD000920 strain [Properties of protease derived from RD000920 strain] The enzymatic properties of protease (purified enzyme) derived from RD000920 strain were examined.
  • FIG. 3 is a graph showing enzyme activities at various reaction temperatures as relative activities based on the activity (100%) when the reaction temperature is 75 ° C.
  • the RD000920 strain-derived protease purified enzyme
  • the optimum temperature for the reaction is in the range of 60 to 80 ° C., preferably 70 It was about ⁇ 75 ° C.
  • FIG. 4 is a graph showing specific activities at various reaction temperatures.
  • the buffer solution used is as follows.
  • FIG. 5 is a graph showing enzyme activities at various reaction pHs as relative activities based on the enzyme activity when the reaction pH is 7.2 (100%). As can be seen from the graph of FIG. 5, the RD000920 strain-derived protease (purified enzyme) exhibits activity in a wide range of pH 5.5 to 9.0, and the optimum pH of the reaction is around 7.2 (for example, pH 6 0.0 to 8.8).
  • FIG. 6 is a graph showing specific activities at various reaction pHs.
  • the additive reagents used were EDTA, PMSF (phenylmethylsulfonyl fluoride) (final concentration 5 mM), ZnCl 2 , MnCl 2 , CaCl 2 , CuCl 2 , CoCl 2 , MgCl 2 (final concentration 1 mM).
  • Table 10 shows the enzyme activity when the additive reagent is added as a relative activity based on the activity (100%) when the additive reagent is not added.
  • RD000920 strain-derived protease purified enzyme
  • Table 10 shows the enzyme activity when the additive reagent is added as a relative activity based on the activity (100%) when the additive reagent is not added.
  • RD000920 strain-derived protease purified enzyme
  • the activity was greatly reduced and activity inhibition was observed.
  • both enzymes showed slight differences in enzymological properties such as action temperature and action pH.
  • RD000920 strain-derived protease (crude enzyme)
  • the RD000920 strain belonging to the genus Actinodura miaoliensis of actinomycetes was cultured, and a crude enzyme solution was obtained from the culture supernatant by three kinds of precipitation methods. Details are shown below.
  • ISP2 medium yeast extract 0.6%, malt extract 1.4%, glucose 0.68% was prepared, and 70 mL was dispensed into a 500 mL Erlenmeyer flask. One spring coil was put in this, and steam sterilization was performed at 121 ° C. for 20 minutes. Furthermore, 30 mL of 2.5% skimmed milk that was sterilized separately was added to a final concentration of 0.75%.
  • glycerol stock cells were inoculated into a ⁇ 18 test tube (18 ⁇ 180 mm) containing 5 mL of ISP2 medium, and cultured with shaking at 45 ° C. until good growth was obtained. 1 mL of this culture solution was inoculated into 100 mL of the previously sterilized medium, and cultured with shaking at 45 ° C. for about 96 hours. The supernatant was recovered from this culture using a centrifuge.
  • FIG. 10 is a graph showing enzyme activities at various reaction temperatures as relative activities based on the activity (100%) when the reaction temperature is 70 ° C.
  • the RD000920 strain-derived protease (crude enzyme solution) exhibits activity at 50 to 85 ° C., and the optimal temperature for the reaction is in the range of 65 to 80 ° C., preferably It was around 70 to 80 ° C.
  • the buffer solution used is as follows.
  • FIG. 11 is a graph showing enzyme activities at various reaction pHs as relative activities based on the enzyme activity when the reaction pH is 8.0 (100%).
  • the RD000920 strain-derived protease (crude enzyme solution) exhibits activity in a wide range of pH 5.0 to 9.0, and the optimum pH of the reaction is around 7.5 (for example, pH 7.0-8.0).
  • the additive reagents used are CaCl 2 , NaCl, KCl, MgCl 2 , MnCl 2 , FeCl 2 , FeCl 3 , CuCl 2 , ZnCl 2 , CoCl 2 , EDTA.
  • Table 12 shows the enzyme activity when the additive reagent is added as a relative activity based on the activity (100%) when the additive reagent is not added.
  • the enzyme activity at various CaCl 2 final concentration is a graph showing the activity when CaCl 2 final concentration is 0.5mM as a relative activity to the reference (100%).
  • ISP2 medium yeast extract 0.6%, malt extract 1.4%, glucose 0.68% was prepared and placed in a 10 L desktop culture device (manufactured by Maruhishi Bioengineer), 121 ° C. For 20 minutes. Furthermore, 1.8 L of 2.5% skimmed milk that was sterilized separately was added to a final concentration of 0.75%.
  • 500 ⁇ L of two glycerol stock cells were inoculated into 500 mL Erlenmeyer flasks containing 50 mL of ISP2 medium, and cultured with shaking at 45 ° C. until good growth was obtained.
  • 30 mL of each of these two types of culture solutions was inoculated into 6 L of the previously sterilized medium and cultured at 45 ° C., 500 rpm, 1 vvm for 1 to 7 days, preferably 1 to 3 days.
  • the ratio of the two types of culture solutions at the start of the culture is preferably 1: 1, but there is no special provision.
  • the supernatant was recovered from this culture using a centrifuge.
  • proteases (crude enzymes) derived from strains RD001933 and RD000920 were examined.
  • FIG. 13 is a graph showing enzyme activities at various reaction temperatures as relative activities based on the activity (100%) when the reaction temperature is 70 ° C.
  • RD001933 strain and RD000920 strain-derived protease (crude enzyme) exhibit activity at 55 to 85 ° C.
  • the optimal temperature for the reaction is in the range of 65 to 80 ° C. Preferably, it was around 70 ° C.
  • the buffer solution used is as follows.
  • FIG. 14 is a graph showing enzyme activities at various reaction pHs as relative activities based on the enzyme activity when the reaction pH is 8.0 (100%).
  • the proteases (crude enzymes) derived from strains RD001933 and RD000920 exhibit activity in a wide range of pH 5.0 to 9.0, and the optimum pH of the reaction is around 7.5. (For example, pH 7.0 to 8.0).
  • the additive reagents used are CaCl 2 , NaCl, KCl, MgCl 2 , MnCl 2 , FeCl 2 , FeCl 3 , CuCl 2 , ZnCl 2 , CoCl 2 , EDTA.
  • Table 14 shows the enzyme activity when the additive reagent is added as the relative activity based on the activity (100%) when the additive reagent is not added.
  • Figure 15 is an enzyme activity at various CaCl 2 final concentration is a graph showing the activity when CaCl 2 final concentration is 0.5mM as a relative activity to the reference (100%).
  • the enzyme activity of each crude enzyme was measured as follows. First, the reaction solution shown in Table 2 (the crude enzyme solution was diluted 200-fold with tap water, and the freeze-dried product was dissolved in tap water to 1 mg / mL) and left at 65 ° C. for 10 minutes. After the reaction, 50 ⁇ L of 20% trichloroacetic acid was added to stop the reaction. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured. The activity on the first day was taken as the standard (100%).
  • FIG. 16 is a graph showing changes over time in residual activity for each crude enzyme. It can be seen from FIG. 16 that the activity is hardly lowered even when the freeze-dried product is stored at 40 ° C.
  • proteases (crude enzymes) derived from RD001933 and RD000920 strains had the highest cleaning effect, and then the commercially available enzyme thermolysin had the highest cleaning effect.
  • thermolysin Sigma-Aldrich “P1512-1G”
  • protease crude enzyme
  • test piece (NITI-ON, cleaning evaluation indicator “TOSI-Gold”) was set in an instrument decontamination cleaner “WD3060” manufactured by smeg (Italy). Furthermore, protease (crude enzyme) or thermolysin (Sigma-Aldrich “P1512-1G”) derived from RD001933 and RD000920 strains was set as a protease-containing detergent, and the temperature X (° C.) shown in Table 17 in the following steps 1 to 5 was set. And the test piece was washed under the condition of time Y (min). The cleaning result of the test piece was determined visually by the same standard as described above. The results are shown in Table 17.
  • Step 1 pre-washing with tap water, 3 minutes; Step 2: Washing, temperature X (° C.), time Y (min); Step 3: First rinse, 40 ° C., 1 minute; Step 4: Rinse second time, tap water, 1 minute; Process 5: Sterilization, 90 degreeC, 5 minutes.
  • the RD001933 strain and the RD000920 strain-derived protease are considered to have a higher cleaning effect because they show the same cleaning effect with a smaller amount of enzyme than the commercially available enzyme thermolysin.
  • test piece (NITI-ON, cleaning evaluation indicator “TOSI-Gold”) was set in an instrument decontamination cleaner “WD3060” manufactured by smeg (Italy). Further, RD001933 strain and RD000920 strain-derived protease (crude enzyme) were set as protease-containing detergents, and the test pieces were washed in the same steps 1 to 5 as described above. The results are shown in Table 18. The cleaning result of the test piece was determined visually by the same standard as described above.
  • proteases (crude enzymes) derived from RD001933 and RD000920 strains are hard water (European water, etc.) having a high Ca 2+ concentration compared to soft water having a low Ca 2+ concentration (for example, tap water in Japan). ) It was confirmed that the lower one further improved the cleaning power.
  • test piece (NITI-ON, cleaning evaluation indicator “TOSI-Gold”) was set in an instrument decontamination cleaner “WD3060” manufactured by smeg (Italy). Furthermore, set the existing detergent A (alkaline detergent, Borer Chemie's “deconex® 28ALKAONE-X”) and existing detergent B (multienzyme detergent, Borer Chemie ’s “deconex® POWER ZYME”) The test pieces were washed in the same steps 1 to 5 as described above. The results are shown in Table 19. The cleaning result of the test piece was determined visually by the same standard as described above.
  • SEQ ID NO: 1 Protease expression gene
  • SEQ ID NO: 2 Protease (polypeptide)
  • SEQ ID NO: 3 N-terminal sequence of protease
  • SEQ ID NO: 4 Internal sequence of protease
  • SEQ ID NO: 5 Internal sequence of protease
  • SEQ ID NO: 6 Internal sequence of protease
  • SEQ ID NO: 7 Internal sequence of protease
  • SEQ ID NO: 10 Primer A1-2
  • Sequence number 11 Protease expression gene fragment (analysis result)
  • SEQ ID NO: 12 primer (inverse PCR)
  • SEQ ID NO: 13 primer (inverse PCR)
  • SEQ ID NO: 14 Protease-expressed gene fragment (analysis result, 5 ′ end sequence)
  • SEQ ID NO: 15 Protease expression gene fragment (analysis result, 3 ′ end sequence)

Abstract

Provided is a protease exhibiting excellent protein breakdown performance, and excellent detergency, particularly with respect to protein-based stains caused by blood or the like. This protease is: a protease obtained by culturing Actinomadura sp. strain RD001933 (NBRC domestically isolated RD strain) of Actinobacteria; a protease obtained by culturing Actinomadura miaoliensis strain RD000920 (NBRC domestically isolated RD strain) of Actinobacteria; or a protease obtained by mixing and culturing the RD001933 strain and the RD000920 strain.

Description

プロテアーゼ、プロテアーゼ含有洗浄剤及びその製造方法Protease, protease-containing detergent and method for producing the same
 本発明は、新規なプロテアーゼ(タンパク質分解酵素)、このプロテアーゼを含有するプロテアーゼ含有洗浄剤及びその製造方法に関する。 The present invention relates to a novel protease (proteolytic enzyme), a protease-containing detergent containing the protease, and a method for producing the same.
 従来、医療器具の洗浄剤として、非イオン界面活性剤、プロテアーゼ、金属イオン封鎖剤及びベンゾトリアゾール等からなる洗浄剤組成物が知られている(例えば、特許文献1参照)。また、プロテアーゼ、ノニオン界面活性剤、酵素安定剤を含有する洗浄剤組成物も知られている(例えば、特許文献2参照)。 Conventionally, as a cleaning agent for a medical device, a cleaning composition comprising a nonionic surfactant, a protease, a sequestering agent, benzotriazole, and the like is known (for example, see Patent Document 1). A cleaning composition containing a protease, a nonionic surfactant, and an enzyme stabilizer is also known (see, for example, Patent Document 2).
特開平5-279700号公報JP-A-5-279700 特開2001-31999号公報JP 2001-31999 A
 現状ではアルカリ洗浄剤の洗浄力が最も高いとされるが、それでも医療器具の汚れを完全に洗浄するには至っていない。汚れの主な成分は、手術時に付着した血液や体液からなる細胞やタンパク質であり、この中には感染性プリオンも含まれる。特に医療器具の中でも剪刀やピンセット等の鋼製小物は頻繁に再利用されるため、これらの鋼製小物に付着した血液及びタンパク質性の汚れは、滅菌工程の前に洗浄することが必須工程になっている。また、これらの鋼製小物に感染性プリオン等の有害物質が除去されないまま残存していると、多数の手術患者に感染が広がるおそれがある。そのため、このような汚れを完全に洗い落とすことができる強力な洗浄剤の開発が望まれている。 Currently, it is said that alkaline detergents have the highest detergency, but nonetheless have not been able to completely clean medical equipment. The main components of dirt are cells and proteins consisting of blood and body fluids attached at the time of surgery, including infectious prions. In particular, steel tools such as scissors and tweezers are frequently reused among medical instruments, so it is essential to clean blood and proteinaceous dirt adhering to these steel accessories before the sterilization process. It has become. Further, if harmful substances such as infectious prions remain in these steel accessories, infection may spread to many surgical patients. Therefore, it is desired to develop a powerful cleaning agent that can completely remove such dirt.
 本発明は上記の点に鑑みてなされたものであり、タンパク質を分解する能力が強く、特に血液等のタンパク質汚れに対して高い洗浄力を有するプロテアーゼ、プロテアーゼ含有洗浄剤及びその製造方法を提供することを目的とするものである。 The present invention has been made in view of the above points, and provides a protease, a protease-containing detergent, and a method for producing the same, which have a strong ability to degrade proteins, and particularly have a high detergency against protein stains such as blood. It is for the purpose.
 本発明に係るプロテアーゼは、放線菌のアクチノマジュラ・エスピー(Actinomadura sp.)RD001933株(NBRC国内分離RD株)を培養して得られたプロテアーゼである。 The protease according to the present invention is a protease obtained by culturing actinomycetes sp. RD001933 strain (NBRC domestic isolate RD strain).
 本発明に係るプロテアーゼは、放線菌のアクチノマジュラ・マイアオリエンシス(Actinomadura miaoliensis)RD000920株(NBRC国内分離RD株)を培養して得られたプロテアーゼである。 The protease according to the present invention is a protease obtained by culturing the actinomycete Actinomadura myaoliensis RD000920 strain (NBRC domestic isolate RD strain).
 本発明に係るプロテアーゼは、放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株及び放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株を混合培養して得られたプロテアーゼである。 The protease according to the present invention is a protease obtained by co-culturing RD001933 strain belonging to the genus Actinodura sp. Of actinomycetes and RD000920 strain belonging to the genus Actinomadura miaoliensis of actinomycetes. .
 前記プロテアーゼが、以下の(a1)、(a2)又は(a3)に記載のポリペプチドであることが好ましい。 It is preferable that the protease is a polypeptide described in the following (a1), (a2) or (a3).
 (a1)配列番号2に記載のアミノ酸配列からなるポリペプチド。 (A1) A polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2.
 (a2)配列番号2に記載のアミノ酸配列において、1つ又は複数のアミノ酸残基が置換、挿入、欠失、及び/又は付加されたアミノ酸配列からなるポリペプチド。 (A2) A polypeptide comprising an amino acid sequence in which one or more amino acid residues are substituted, inserted, deleted, and / or added in the amino acid sequence set forth in SEQ ID NO: 2.
 (a3)配列番号2に記載のアミノ酸配列と少なくとも65%の相同性を有するポリペプチド。 (A3) A polypeptide having at least 65% homology with the amino acid sequence set forth in SEQ ID NO: 2.
 前記プロテアーゼのSDS-PAGEによる分子量が約31,000Da(31kDa)であることが好ましい。 The molecular weight of the protease by SDS-PAGE is preferably about 31,000 Da (31 kDa).
 前記プロテアーゼをコードするポリヌクレオチドが、以下の(b1)、(b2)又は(b3)に記載のポリヌクレオチドを含むことが好ましい。 It is preferable that the polynucleotide encoding the protease includes the polynucleotide described in (b1), (b2) or (b3) below.
 (b1)配列番号1に記載の塩基配列からなるポリヌクレオチド。 (B1) A polynucleotide comprising the base sequence set forth in SEQ ID NO: 1.
 (b2)配列番号1に記載の塩基配列に相補的な塩基配列とストリンジェントな条件でハイブリダイズするポリヌクレオチド。 (B2) A polynucleotide that hybridizes with a base sequence complementary to the base sequence described in SEQ ID NO: 1 under stringent conditions.
 (b3)配列番号1に記載の塩基配列と少なくとも70%の配列同一性を有するポリヌクレオチド。 (B3) A polynucleotide having at least 70% sequence identity with the base sequence set forth in SEQ ID NO: 1.
 本発明に係るプロテアーゼは、前記プロテアーゼを含有する。 The protease according to the present invention contains the protease.
 本発明に係るプロテアーゼ含有洗浄剤の製造方法は、放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株を培養して製造する。 The method for producing a protease-containing detergent according to the present invention is produced by culturing RD001933 strain belonging to the genus Actinomadura sp.
 本発明に係るプロテアーゼ含有洗浄剤の製造方法は、放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株を培養して製造する。 The method for producing a protease-containing detergent according to the present invention is produced by culturing RD000920 strain belonging to the genus Actinodura miaoliensis of actinomycetes.
 本発明に係るプロテアーゼ含有洗浄剤の製造方法は、放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株及び放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株を混合培養して製造する。 The method for producing a protease-containing detergent according to the present invention comprises RD001933 strain belonging to the genus Actinodura sp. Of Actinomyces and RD000920 strain belonging to the genus Actinomadura miaoliensis of mixed actinomycetes. To manufacture.
 本発明に係るプロテアーゼは、安全性の高い2種類の微生物(同属株)から得ることができ、いずれもタンパク質を分解する能力が強く、特に血液等のタンパク質汚れに対して高い洗浄力を有する。特にこれらのプロテアーゼ含有洗浄剤は、従来のアルカリ洗浄剤では洗浄が困難であった変性固着した血液汚れを低温かつ短時間で洗浄することができる。また2種類の微生物をそれぞれ単独培養して得られるプロテアーゼ含有洗浄剤は洗浄効果が高いが、2種類の微生物を混合培養して得られるプロテアーゼ含有洗浄剤はさらに洗浄効果が高い。またこれらのプロテアーゼ含有洗浄剤は、簡便かつ安価に大量生産することができ、液状のほか粉剤化又は錠剤化することもでき、長期保存も可能である。 The protease according to the present invention can be obtained from two types of highly safe microorganisms (strains belonging to the same), both of which have a strong ability to degrade proteins, and particularly have a high detergency against protein stains such as blood. In particular, these protease-containing detergents can wash denatured and fixed blood stains, which were difficult to wash with conventional alkaline detergents, at a low temperature and in a short time. In addition, a protease-containing detergent obtained by culturing each of two types of microorganisms has a high cleaning effect, but a protease-containing detergent obtained by mixing and culturing two types of microorganisms has a higher cleaning effect. In addition, these protease-containing detergents can be mass-produced easily and inexpensively, and can also be powdered or tableted in addition to being liquid, and can be stored for a long time.
 さらに本発明に係るプロテアーゼは、洗浄剤以外の様々な分野に応用することも可能である。例えば、食肉加工やイカの皮むき、皮なめしなどである。 Furthermore, the protease according to the present invention can be applied to various fields other than the detergent. For example, meat processing, squid peeling, and tanning.
放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株の培養液から得られた精製画分についてのSDS-PAGE解析結果を示す電気泳動写真である。It is an electrophoretic photograph showing the results of SDS-PAGE analysis of a purified fraction obtained from a culture solution of RD001933 strain belonging to the genus Actinomadura sp. 放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株の培養液から得られた精製画分についてのSDS-PAGE解析結果を示す電気泳動写真である。It is an electrophoresis photograph showing the results of SDS-PAGE analysis of a purified fraction obtained from a culture solution of RD000920 strain belonging to the genus Actinomadura miaoliensis. RD001933株由来プロテアーゼ(精製酵素)及びRD000920株由来プロテアーゼ(精製酵素)についての相対活性の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the relative activity about the protease (purified enzyme) derived from RD001933 strain, and the protease (purified enzyme) derived from RD000920 strain. RD001933株由来プロテアーゼ(精製酵素)及びRD000920株由来プロテアーゼ(精製酵素)についての比活性の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the specific activity about protease (purified enzyme) derived from RD001933 strain and protease (purified enzyme) derived from RD000920 strain. RD001933株由来プロテアーゼ(精製酵素)及びRD000920株由来プロテアーゼ(精製酵素)についての相対活性のpH依存性を示すグラフである。It is a graph which shows the pH dependence of the relative activity about the protease (purified enzyme) derived from RD001933 strain, and the protease (purified enzyme) derived from RD000920 strain. RD001933株由来プロテアーゼ(精製酵素)及びRD000920株由来プロテアーゼ(精製酵素)についての比活性のpH依存性を示すグラフである。It is a graph which shows the pH dependence of the specific activity about the protease (purified enzyme) derived from RD001933 strain and the protease (purified enzyme) derived from RD000920 strain. RD001933株由来プロテアーゼ(粗酵素)についての相対活性の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the relative activity about the protease (crude enzyme) derived from RD001933 strain. RD001933株由来プロテアーゼ(粗酵素)についての相対活性のpH依存性を示すグラフである。It is a graph which shows the pH dependency of relative activity about protease (crude enzyme) derived from RD001933 strain. RD001933株由来プロテアーゼ(粗酵素)についての相対活性のCaCl終濃度依存性を示すグラフである。It is a graph showing the CaCl 2 final concentration dependence of the relative activity for RD001933 strain derived protease (crude enzyme). RD000920株由来プロテアーゼ(粗酵素)についての相対活性の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of relative activity about protease (crude enzyme) derived from RD000920 strain. RD000920株由来プロテアーゼ(粗酵素)についての相対活性のpH依存性を示すグラフである。It is a graph which shows the pH dependence of the relative activity about the protease (crude enzyme) derived from RD000920 strain. RD000920株由来プロテアーゼ(粗酵素)についての相対活性のCaCl終濃度依存性を示すグラフである。It is a graph showing the CaCl 2 final concentration dependence of the relative activity for RD000920 strain derived protease (crude enzyme). RD001933株及びRD000920株の混合培養液から得られた粗酵素についての相対活性の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the relative activity about the crude enzyme obtained from the mixed culture solution of RD001933 strain and RD000920 strain. RD001933株及びRD000920株の混合培養液から得られた粗酵素についての相対活性のpH依存性を示すグラフである。It is a graph which shows the pH dependence of the relative activity about the crude enzyme obtained from the mixed culture solution of RD001933 strain and RD000920 strain. RD001933株及びRD000920株の混合培養液から得られた粗酵素についての相対活性のCaCl依存性を示すグラフである。Is a graph showing the CaCl 2 dependence of the relative activity for the crude enzyme obtained from a mixed culture of RD001933 strain and RD000920 strain. RD001933株及びRD000920株の混合培養液から得られた粗酵素についての残存活性の経日変化を示すグラフである。It is a graph which shows the daily change of the residual activity about the crude enzyme obtained from the mixed culture solution of RD001933 strain and RD000920 strain.
 [プロテアーゼ]
 本発明に係るプロテアーゼは、放線菌のアクチノマジュラ・エスピー(Actinomadura sp.)RD001933株(NBRC国内分離RD株)を培養して得られたプロテアーゼである。RD001933株の菌株の帰属分類群は、16SrDNA塩基配列解析結果から、Actinomadura miaoliensisに近縁なActinomadura sp.であると推定される。
[Protease]
The protease according to the present invention is a protease obtained by culturing actinomycetes Actinomadura sp. RD001933 strain (NBRC domestic isolate RD strain). From the results of 16S rDNA nucleotide sequence analysis, it is presumed that the belonging classification group of strain RD001933 is Actinomadura sp. Closely related to Actinomadura miaoliensis.
 また本発明に係るプロテアーゼは、放線菌のアクチノマジュラ・マイアオリエンシス(Actinomadura miaoliensis)RD000920株(NBRC国内分離RD株)を培養して得られたプロテアーゼである。RD000920株の菌株の帰属分類群は、16SrDNA塩基配列解析結果から、Actinomadura miaoliensisであると推定される。 The protease according to the present invention is a protease obtained by culturing the actinomycete Actinomadura myaoliensis RD000920 strain (NBRC domestic isolate RD strain). From the results of 16S rDNA nucleotide sequence analysis, it is presumed that the belonging classification group of strain RD000920 is Actinomadura miaoliensis.
 また本発明に係るプロテアーゼは、放線菌のアクチノマジュラエスピー(Actinomadura sp.)RD001933株(NBRC国内分離RD株)及び放線菌のアクチノマジュラ・マイアオリエンシス(Actinomadura miaoliensis)RD000920株(NBRC国内分離RD株)を混合培養して得られたプロテアーゼである。 The protease according to the present invention includes actinomycetes Actinomadura sp. RD001933 (NBRC domestic isolate RD strain) and actinomycetes Actinomadura miaoliensis RD000920 strain (NBRC domestic isolate). RD strain) is a protease obtained by mixed culture.
 プロテアーゼは、タンパク質に対して加水分解活性を示すものであり、精製酵素に限定されず、粗精製物、固定化物なども含む。プロテアーゼの精製は、例えば、微生物の培養液を用いて、硫安沈澱、イオン交換クロマトグラフィー、疎水クロマトグラフィー等の方法を用いて行うことができる。これにより、種々の精製度の酵素(ほぼ単一までに精製された酵素を含む)が得られる。 Proteases exhibit hydrolytic activity on proteins and are not limited to purified enzymes, but also include crude purified products and immobilized products. Purification of the protease can be performed, for example, using a culture solution of microorganisms, using a method such as ammonium sulfate precipitation, ion exchange chromatography, hydrophobic chromatography, or the like. As a result, enzymes having various degrees of purification (including enzymes purified to almost a single level) can be obtained.
 微生物は、野性株、変異株(例えば、紫外線照射などにより誘導されたもの)、あるいは、細胞融合もしくは遺伝子組換え法などの遺伝子工学的手法により誘導される組換え体などのいずれの株であってもよい。組換え体などの遺伝子操作された微生物は、例えば、Molecular Cloning A Laboratory Manual,第2版(Sambrook,J.ら編、Cold Spring Harbor Laboratory Press,1989)に記載されているような技術を用いて容易に作成される。微生物の培養液とは、微生物菌体を含む培養液及び遠心分離などにより微生物菌体を除いた培養液の両方を意味する。さらに菌体内に含まれるプロテアーゼであってもよい。 The microorganism may be any strain such as a wild strain, a mutant strain (for example, induced by ultraviolet irradiation), or a recombinant derived by genetic engineering techniques such as cell fusion or genetic recombination. May be. A genetically engineered microorganism such as a recombinant is used, for example, using a technique described in Molecular Cloning A Laboratory Manual, 2nd edition (Sambrook, J. et al., Cold Spring Harbor Press, 1989). Created easily. The culture solution of microorganisms means both a culture solution containing microbial cells and a culture solution from which microbial cells have been removed by centrifugation or the like. Further, it may be a protease contained in the microbial cells.
 プロテアーゼ含有洗浄剤を製造するにあたっては、特に以下に説明するRD001933株由来プロテアーゼ及びRD000920株由来プロテアーゼの少なくとも一方を酵素として用いることが好ましい。 In producing a protease-containing detergent, it is preferable to use at least one of the RD001933 strain-derived protease and the RD000920 strain-derived protease described below as the enzyme.
 プロテアーゼは、以下の(a1)、(a2)又は(a3)に記載のポリペプチドを含むことが好ましい。 The protease preferably contains the polypeptide described in the following (a1), (a2) or (a3).
 (a1)配列番号2に記載のアミノ酸配列からなるポリペプチド。 (A1) A polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2.
 (a2)配列番号2に記載のアミノ酸配列において、1つ又は複数のアミノ酸残基が置換、挿入、欠失、及び/又は付加されたアミノ酸配列からなるポリペプチド。 (A2) A polypeptide comprising an amino acid sequence in which one or more amino acid residues are substituted, inserted, deleted, and / or added in the amino acid sequence set forth in SEQ ID NO: 2.
 (a3)配列番号2に記載のアミノ酸配列と少なくとも65%、好ましくは少なくとも70%、より好ましくは少なくとも80%の相同性を有するポリペプチド。 (A3) A polypeptide having at least 65%, preferably at least 70%, more preferably at least 80% homology with the amino acid sequence set forth in SEQ ID NO: 2.
 またプロテアーゼをコードするポリヌクレオチドは、以下の(b1)、(b2)又は(b3)に記載のポリヌクレオチドを含むことが好ましい。 In addition, the polynucleotide encoding the protease preferably includes the polynucleotide described in (b1), (b2) or (b3) below.
 (b1)配列番号1に記載の塩基配列からなるポリヌクレオチド。 (B1) A polynucleotide comprising the base sequence set forth in SEQ ID NO: 1.
 (b2)配列番号1に記載の塩基配列に相補的な塩基配列とストリンジェントな条件でハイブリダイズするポリヌクレオチド。 (B2) A polynucleotide that hybridizes with a base sequence complementary to the base sequence described in SEQ ID NO: 1 under stringent conditions.
 (b3)配列番号1に記載の塩基配列と少なくとも70%、好ましくは75%、より好ましくは80%の配列同一性を有するポリヌクレオチド。 (B3) A polynucleotide having at least 70%, preferably 75%, more preferably 80% sequence identity with the base sequence set forth in SEQ ID NO: 1.
 配列番号1に記載の塩基配列のポリヌクレオチドは、配列番号2に記載のポリペプチド(アミノ酸配列)をコードし得る。 The polynucleotide having the base sequence described in SEQ ID NO: 1 can encode the polypeptide (amino acid sequence) described in SEQ ID NO: 2.
 プロテアーゼの酵素活性は、以下の方法で確認することができる。まず、トリス-塩酸緩衝液(pH7.5、終濃度80mM)198μLに3%アゾカゼイン(終濃度0.6%)50μLを混合させる。そして、酵素活性を確認する試料2μLを添加し、65℃で5分間又は10分間反応させる。酵素反応後、20%トリクロロ酢酸を50μL加えて反応を停止させる。反応停止後、反応液を遠心分離して上清の340nmの吸光度を測定する。酵素量1U(ユニット)は、1μmol相当のアゾ色素を1分間に生成する量とする。 The enzyme activity of the protease can be confirmed by the following method. First, 50 μL of 3% azocasein (final concentration 0.6%) is mixed with 198 μL of Tris-HCl buffer (pH 7.5, final concentration 80 mM). And 2 microliters of samples which confirm enzyme activity are added, and it is made to react at 65 degreeC for 5 minutes or 10 minutes. After the enzyme reaction, 50 μL of 20% trichloroacetic acid is added to stop the reaction. After stopping the reaction, the reaction solution is centrifuged, and the absorbance of the supernatant is measured at 340 nm. An enzyme amount of 1 U (unit) is an amount that generates 1 μmol of an azo dye equivalent per minute.
 プロテアーゼは、例えば、20~80℃で作用し得る。至適温度は、この範囲内にあり得る。好ましくは60~90℃の範囲内にあり、より好ましくは70~80℃の範囲内にあり、さらにより好ましくは約75℃である。 Protease can act at 20 to 80 ° C., for example. The optimum temperature can be within this range. Preferably it is in the range of 60-90 ° C, more preferably in the range of 70-80 ° C, and even more preferably about 75 ° C.
 プロテアーゼは、例えば、pH4.0~9.5で作用し得る。至適pHは、この範囲内にあり得る。好ましくはpH7.5付近であるが、pH6.0~8.8で50%以上の活性を示す。 Protease can act at a pH of 4.0 to 9.5, for example. The optimum pH can be within this range. The pH is preferably around 7.5, but exhibits an activity of 50% or more at pH 6.0 to 8.8.
 プロテアーゼは、電気泳動条件などにより若干変化し得るが、SDS-PAGEによる分子量が約31,000Da(31kDa)であることが好ましい。例えば、放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株及び放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株由来の天然の酵素では、SDS-PAGEによる分子量は約31,000Daである。 Protease may vary slightly depending on electrophoresis conditions and the like, but preferably has a molecular weight of about 31,000 Da (31 kDa) by SDS-PAGE. For example, in a natural enzyme derived from the RD001933 strain belonging to the genus Actinodura sp. Of Actinomyces and the RD000920 strain belonging to the genus Actinomadura miaoliensis of Actinomyces, the molecular weight by SDS-PAGE is about 31, 000 Da.
 プロテアーゼの一態様は、配列番号2に記載のアミノ酸配列からなるものである。プロテアーゼは、好ましくは配列番号2の111位から386位までのアミノ酸配列(以下「配列番号2に記載内のアミノ酸配列」ともいう)を有する。配列番号2の1位から26位までのアミノ酸配列はシグナル配列であり、配列番号2の27位から110位までのアミノ酸配列はプロ配列である。 One embodiment of the protease consists of the amino acid sequence set forth in SEQ ID NO: 2. The protease preferably has an amino acid sequence from position 111 to position 386 of SEQ ID NO: 2 (hereinafter also referred to as “amino acid sequence described in SEQ ID NO: 2”). The amino acid sequence from position 1 to position 26 of SEQ ID NO: 2 is a signal sequence, and the amino acid sequence from position 27 to position 110 of SEQ ID NO: 2 is a pro sequence.
 プロテアーゼは、配列番号2に記載のアミノ酸配列又は配列番号2に記載内のアミノ酸配列に対して、1個若しくは複数個のアミノ酸残基が、置換、欠失、挿入及び/又は付加したアミノ酸配列を有する酵素でもよい。例えば、部位特異的変異導入法(NucleicAcid Res.,1982年,10巻,pp.6487;Methods inEnzymol.,1983年,100巻,pp.448;Molecular Cloning:A Laboratory Manual,第2版,ColdSpring Harbor Laboratory,Cold Spring Harbor,NY.1989年;PCR:APractical Approach,IRL Press,1991年,pp.200)などを用いて、適宜置換、欠失、挿入及び/又は付加変異を導入することにより、酵素(タンパク質)の構造を改変することができる。置換、欠失、挿入及び/又は付加することができるアミノ酸残基数は、通常50以下、例えば30以下、あるいは20以下、好ましくは16以下、より好ましくは5以下、さらに好ましくは0~3である。また、人工的にアミノ酸残基を変異させた酵素のみならず、自然界においてアミノ酸残基が変異した酵素もプロテアーゼに含まれる。 Protease is an amino acid sequence represented by SEQ ID NO: 2 or an amino acid sequence in which one or more amino acid residues are substituted, deleted, inserted and / or added to the amino acid sequence described in SEQ ID NO: 2. It may be an enzyme. For example, site-directed mutagenesis (Nucleic Acid A Res., 1982, 10, pp. 6487; Methods in Enzymol., 1983, 100, pp. 448; Molecular Cloning: A Laboratory Manual, Second Edition, ColdSpring Laboratories, Cold Spring Harbor, NY, 1989; PCR: APPROCICAL Approach, IRL Press, 1991, pp. 200), etc., by introducing substitutions, deletions, insertions and / or addition mutations as appropriate. The structure of (protein) can be modified. The number of amino acid residues that can be substituted, deleted, inserted and / or added is usually 50 or less, such as 30 or less, or 20 or less, preferably 16 or less, more preferably 5 or less, and even more preferably 0 to 3. is there. Proteases include not only enzymes with artificially mutated amino acid residues but also enzymes with mutated amino acid residues in nature.
 配列番号2に記載のアミノ酸配列又は配列番号2に記載内のアミノ酸配列に対して、相同性を有するアミノ酸配列を有する酵素もプロテアーゼに含まれる。プロテアーゼは、好ましくは、配列番号2に記載のアミノ酸配列又は配列番号2に記載内のアミノ酸配列と、少なくとも65%、好ましくは少なくとも70%、より好ましくは少なくとも80%の相同性を有するアミノ酸配列を有するタンパク質である。 An enzyme having an amino acid sequence having homology to the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence shown in SEQ ID NO: 2 is also included in the protease. The protease preferably has an amino acid sequence of SEQ ID NO: 2 or an amino acid sequence having at least 65%, preferably at least 70%, more preferably at least 80% homology with the amino acid sequence within SEQ ID NO: 2. It has a protein.
 タンパク質の相同性の(ホモロジー)検索は、例えばSWISS-PROT、PIR、DADなどのタンパク質のアミノ酸配列に関するデータベース、DDBJ、EMBL、Gene-BankなどのDNAデータベースなどを対象に、BLAST、FASTAなどのプログラムを利用して、インターネットを通じて行うことができる。タンパク質の活性の確認は、上記に記載の手順を利用して行うことができる。 Protein homology (homology) search, for example, databases such as SWISS-PROT, PIR, DAD and other protein amino acid sequences, DNA databases such as DDBJ, EMBL, Gene-Bank, etc., programs such as BLAST and FASTA Can be done through the Internet. The protein activity can be confirmed using the procedure described above.
 プロテアーゼの供給源は、放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株(受託番号:NITE P-1467)、及び放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株(受託番号:NITE P-1468)から得ることができる。これらは、配列番号1に記載の塩基配列で示されるポリヌクレオチドをDNA中に有している。 Protease sources are RD001933 strain (accession number: NITE P-1467) belonging to the genus Actinodura sp. Of Actinomycetes and RD000920 strain (trusted) belonging to the genus Actinodura miaoliensis of actinomycetes. Number: NITE P-1468). These have a polynucleotide represented by the base sequence described in SEQ ID NO: 1 in DNA.
 例えば、放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株(受託番号:NITE P-1467)、及び放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株(受託番号:NITE P-1468)はいずれも、適当な栄養培地で液体培養することにより、プロテアーゼを菌体外に分泌するので、その培養上清を凍結乾燥、塩析、有機溶媒などにより処理したもの、あるいはこの処理物を固定化するなどしたものを酵素製剤として製造することができる。 For example, RD001933 strain (accession number: NITE P-1467) belonging to the genus Actinodura sp. Of actinomycetes, and RD000920 strain (accession number: NITE P) belonging to the genus Actinomadura miaoliensis of actinomycetes In all cases, 1468), the protease is secreted outside the cells by liquid culture in an appropriate nutrient medium, so that the culture supernatant is treated with freeze-drying, salting-out, organic solvent, etc., or this treatment What fixed the thing etc. can be manufactured as an enzyme formulation.
 さらに具体的に説明すると、まず上記の菌を適当な培地、例えば適当な炭素源、窒素源、無機塩類を含む培地中で培養し、プロテアーゼを分泌させる。このとき、放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株を単独で培養してもよいし、放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株を単独で培養してもよいし、これらを混合培養してもよい。 More specifically, first, the above-mentioned bacteria are cultured in a suitable medium, for example, a medium containing a suitable carbon source, nitrogen source, and inorganic salts to secrete protease. At this time, the RD001933 strain belonging to the genus Actinodura sp. Of actinomycetes may be cultivated alone, or the RD000920 strain belonging to the genus Actinomadura miaoliensis is cultivated alone. These may be mixed and cultured.
 ここで、炭素源としては、澱粉及び澱粉加水分解物、グルコース、シュークロースなどの糖類、グリセロールなどのアルコール類及び有機酸(例えば、酢酸及びクエン酸)又はその塩(例えば、ナトリウム塩)などが挙げられる。炭素源の濃度は、例えば1~20%(w/v)、好ましくは1~10%(w/v)の範囲である。 Here, as the carbon source, starch and starch hydrolysate, sugars such as glucose and sucrose, alcohols such as glycerol and organic acids (for example, acetic acid and citric acid) or salts thereof (for example, sodium salt), etc. Can be mentioned. The concentration of the carbon source is, for example, in the range of 1 to 20% (w / v), preferably 1 to 10% (w / v).
 窒素源としては、酵母エキス、ペプトン、肉エキス、コーンスチープリカー、大豆粉などの有機窒素源及び硫酸アンモニウム、硝酸アンモニウム、尿素などの無機窒素化合物が挙げられる。窒素源の濃度は、例えば1~20%(w/v)、好ましくは1~10%(w/v)の範囲である。 Examples of the nitrogen source include organic nitrogen sources such as yeast extract, peptone, meat extract, corn steep liquor, and soybean powder, and inorganic nitrogen compounds such as ammonium sulfate, ammonium nitrate, and urea. The concentration of the nitrogen source is, for example, in the range of 1 to 20% (w / v), preferably 1 to 10% (w / v).
 無機塩類としては、塩化ナトリウム、リン酸一カリウム、硫酸マグネシウム、塩化マンガン、塩化カルシウム、硫酸第一鉄などが挙げられる。 Examples of inorganic salts include sodium chloride, monopotassium phosphate, magnesium sulfate, manganese chloride, calcium chloride, and ferrous sulfate.
 培養温度は、プロテアーゼが安定であり、そして培養される微生物が十分に生育できる温度であることが好ましく、例えば、25~50℃であることが好ましい。培養時間は、プロテアーゼが十分に生産される時間であることが好ましく、例えば、1~7日間程度であることが好ましい。培養は、好ましくは好気的な条件下で、例えば、通気撹拌又は振とうしながら行うことができる。 The culture temperature is preferably a temperature at which the protease is stable and the cultured microorganism can sufficiently grow, and is preferably 25 to 50 ° C., for example. The culture time is preferably a time during which protease is sufficiently produced, and is preferably about 1 to 7 days, for example. Culturing can be performed preferably under aerobic conditions, for example, with aeration stirring or shaking.
 プロテアーゼに含まれるポリペプチドは、タンパク質の溶解度による分画(有機溶媒による沈殿や硫安などによる塩析など);陽イオン交換、陰イオン交換、ゲルろ過、疎水性クロマトグラフィー;キレート、色素、抗体などを用いたアフィニティークロマトグラフィーなどの方法を適当に組み合わせることにより精製することができる。例えば、上記の微生物の培養上清を回収した後、硫安沈殿、さらに陰イオン交換クロマトグラフィー、疎水性クロマトグラフィー及び/又は陽イオン交換クロマトグラフィーを行うことにより精製することができる。これにより、ポリアクリルアミドゲル電気泳動(SDS-PAGE)において、ほぼ単一バンドにまで精製することができる。すなわち、プロテアーゼを構成するポリペプチドは、HPLC分析及びゲル濾過クロマトグラフィー分析により、単量体と推定することができる。 Polypeptides contained in proteases are fractionated by protein solubility (precipitation with organic solvents, salting out with ammonium sulfate, etc.); cation exchange, anion exchange, gel filtration, hydrophobic chromatography; chelates, dyes, antibodies, etc. It can be purified by an appropriate combination of methods such as affinity chromatography using. For example, after recovering the culture supernatant of the microorganism, it can be purified by ammonium sulfate precipitation, further anion exchange chromatography, hydrophobic chromatography and / or cation exchange chromatography. Thereby, it can be purified to almost a single band in polyacrylamide gel electrophoresis (SDS-PAGE). That is, the polypeptide constituting the protease can be estimated as a monomer by HPLC analysis and gel filtration chromatography analysis.
 [微生物]
 プロテアーゼは、微生物によって産生し得るものである。プロテアーゼについては、配列番号2に記載のアミノ酸配列情報や、配列番号1に記載の塩基配列情報から、人工的にポリペプチドを生成することができ、プロテアーゼ含有洗浄剤の製造に人工合成によって得た酵素(ポリペプチド)を用いてもよい。しかしながら、微生物により酵素を産生する場合、容易に上記の酵素を得ることができる。
[Microorganisms]
Proteases can be produced by microorganisms. As for the protease, a polypeptide can be artificially generated from the amino acid sequence information shown in SEQ ID NO: 2 and the base sequence information shown in SEQ ID NO: 1, and obtained by artificial synthesis for the production of a protease-containing detergent. Enzymes (polypeptides) may be used. However, when an enzyme is produced by a microorganism, the above enzyme can be easily obtained.
 微生物としては、放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株、及び放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株を利用することができるが、上記のポリヌクレオチドが導入された微生物を用いてもよい。すなわち、その微生物とは、配列番号1に記載の塩基配列を有するポリヌクレオチド、配列番号1に記載の塩基配列に相補的な塩基配列とストリンジェントな条件でハイブリダイズするポリヌクレオチド、配列番号1に記載の塩基配列と少なくとも70%、好ましくは少なくとも75%、より好ましくは少なくとも80%の配列同一性を有するポリヌクレオチドの中から選ばれる少なくとも1種のポリヌクレオチドが導入された微生物である。上記のポリヌクレオチドが導入された微生物は、ベクターを用いたり形質転換体を作製したりして得ることができる。例えば、上記のポリヌクレオチドをベクターに導入し、このベクターを大腸菌等の宿主に導入することにより、プロテアーゼを産生する能力を保有する形質転換体を作製することができる。 As the microorganism, RD001933 strain belonging to the genus Actinodura sp. Of actinomycetes and RD000920 strain belonging to the genus Actinomadura miaoliensis of actinomycetes can be used. You may use the introduced microorganism. That is, the microorganism is a polynucleotide having the base sequence described in SEQ ID NO: 1, a polynucleotide that hybridizes under stringent conditions with a base sequence complementary to the base sequence described in SEQ ID NO: 1, A microorganism into which at least one polynucleotide selected from polynucleotides having at least 70%, preferably at least 75%, more preferably at least 80% sequence identity with the described base sequence has been introduced. The microorganism into which the above polynucleotide is introduced can be obtained by using a vector or preparing a transformant. For example, by introducing the above-described polynucleotide into a vector and introducing the vector into a host such as Escherichia coli, a transformant having the ability to produce a protease can be produced.
 形質転換体の作製のための手順及び宿主に適合した組換えベクターの構築は、分子生物学、生物工学、遺伝子工学の分野において慣用されている技術に準じて行うことができる(例えば、Sambrookら、Molecular Cloning:ALaboratory Manual第2版、Cold Spring Harbor Laboratory,Cold Spring Harbor,NY,1989年参照)。特に放線菌に関しては、「PRACTICAL STREPTOMYCES GENETICS(Kieserら、John Innes Foundation、2000年)」を参照して行うことができる。 A procedure for producing a transformant and construction of a recombinant vector suitable for the host can be performed according to techniques commonly used in the fields of molecular biology, biotechnology, and genetic engineering (for example, Sambrook et al. , Molecular Cloning: Laboratory Manual 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989). In particular, for actinomycetes, it can be performed with reference to “PRACTICAL STREPTOMYCES GENETICS (Kieser et al., John Inns Foundation, 2000)”.
 微生物中で、上記の酵素をコードするポリヌクレオチドを発現させるためには、まず微生物中で安定に存在するプラスミドベクターやファージベクターにこのDNAを導入し、その遺伝情報を転写・翻訳させる。そのために、転写・翻訳を制御するユニットにあたるプロモーターをDNA鎖の5’側上流に組み込むことが好ましい。また、転写・翻訳を制御するユニットにあたるターミネーターをDNA鎖の3’側下流に組み込むことが好ましい。より好ましくは、上記プロモーターとターミネーターの両方をそれぞれの部位に組み込む。このプロモーター及びターミネーターとしては、宿主として利用される微生物中において機能することが知られているプロモーター及びターミネーターが用いられる。これらの各種微生物において利用可能なベクター、プロモーター、ターミネーターなどに関しては、「微生物学基礎講座8 遺伝子工学、共立出版」、特に放線菌に関しては、「PRACTICAL STREPTOMYCES GENETICS(Kieserら、JohnInnes Foundation、2000年)」などに詳細に記述されており、その方法を利用することが可能である。また、必要に応じてシグナル配列を用いることで細胞外に効率的に分泌生産させることができる。 In order to express a polynucleotide encoding the above enzyme in a microorganism, this DNA is first introduced into a plasmid vector or a phage vector that is stably present in the microorganism, and the genetic information is transcribed and translated. Therefore, it is preferable to incorporate a promoter corresponding to a unit for controlling transcription / translation 5 'upstream of the DNA strand. Further, it is preferable to incorporate a terminator, which is a unit for controlling transcription / translation, downstream of the 3 ′ side of the DNA strand. More preferably, both the promoter and terminator are incorporated at each site. As the promoter and terminator, promoters and terminators known to function in microorganisms used as hosts are used. Regarding the vectors, promoters, and terminators that can be used in these various microorganisms, “Basic Course of Microbiology 8, Genetic Engineering, Kyoritsu Shuppan”, especially regarding actinomycetes, “PRACTICAL STREPTOMYCES GENETICS (Kieser et al., John Inns Foundation, 2000) It is possible to use this method. Moreover, it can be efficiently secreted and produced extracellularly by using a signal sequence as necessary.
 形質転換の対象となる宿主は、上記の酵素をコードするポリヌクレオチドを含むベクターにより形質転換されて、酵素活性を発現することができる生物であれば特に制限はない。例えば、細菌、放線菌、枯草菌、大腸菌、酵母、カビなどが挙げられる。より具体的には、例えば、エシェリヒア(Escherichia)属、バチルス(Bacillus)属、シュードモナス(Pseudomonas)属、セラチア(Serratia)属、ブレビバクテリウム(Brevibacterium)属、コリネバクテリウム(Corynebacterium)属、ストレプトコッカス(Streptococcus)属、ラクトバチルス(Lactobacillus)属など宿主ベクター系の開発がされている細菌;ロドコッカス(Rhodococcus)属、ストレプトマイセス(Streptomyces)属など宿主ベクター系の開発がされている放線菌;サッカロマイセス(Saccharomyces)属、クライベロマイセス(Kluyveromyces)属、シゾサッカロマイセス(Schizosaccharomyces)属、チゴサッカロマイセス(Zygosaccharomyces)属、ヤロウイア(Yarrowia)属、トリコスポロン(Trichosporon)属、ロドスポリジウム(Rhodosporidium)属、ピキア(Pichia)属、キャンディダ(Candida)属などの宿主ベクター系の開発がされている酵母;ノイロスポラ(Neurospora)属、アスペルギルス(Aspergillus)属、セファロスポリウム(Cephalosporium)属、トリコデルマ(Trichoderma)属などの宿主ベクター系の開発がされているカビなどが挙げられる。遺伝子組換えの操作の容易性からは大腸菌が好ましく、遺伝子の発現の容易性からは放線菌が好ましい。 The host to be transformed is not particularly limited as long as it is an organism that can be transformed with a vector containing a polynucleotide encoding the enzyme and express the enzyme activity. For example, bacteria, actinomycetes, Bacillus subtilis, Escherichia coli, yeast, mold and the like can be mentioned. More specifically, for example, genus Escherichia, genus Bacillus, genus Pseudomonas, genus Serratia, genus Brevibacterium, genus Corynebacterium, genus Corynebacterium Bacteria for which host vector systems such as Streptococcus and Lactobacillus have been developed; Actinomycetes for which host vector systems such as Rhodococcus and Streptomyces have been developed; Saccharomyces (Saccharomyces) Saccharomyces), Kluyveromyces, Shizosa A genus of the genus Schizosaccharomyces, the genus Zygosaccharomyces, the genus Yarrowia, the genus Trichosporon, the genus Rhodosporidium, the genus Rhodaspodium, and the genus C And yeasts that have been developed for host vector systems such as the genus Neurospora, the genus Aspergillus, the genus Cephalosporum, the genus Trichoderma, and the like. Escherichia coli is preferred for ease of gene recombination, and actinomycetes are preferred for ease of gene expression.
 また、微生物以外でも、植物、動物において様々な宿主・ベクター系が開発されており、例えば、蚕などの昆虫(Nature315,592-594(1985))や菜種、トウモロコシ、ジャガイモなどの植物中に大量に異種蛋白質を発現させる系が開発されており、これらを利用してもよい。 In addition to microorganisms, various host / vector systems have been developed in plants and animals. For example, insects such as moths (Nature 315, 592-594 (1985)), rapeseed, corn, potatoes, and other plants in large quantities. Systems for expressing heterologous proteins have been developed, and these may be used.
 得られた形質転換体は、上記のように酵素の製造に用いることができる。具体的には、形質転換体を適当な栄養培地で液体培養して、発現したポリペプチドを細胞外に分泌させ、その培養上清を凍結乾燥、塩析、有機溶媒などにより処理して酵素を製造することができる。 The obtained transformant can be used for enzyme production as described above. Specifically, the transformant is liquid-cultured in an appropriate nutrient medium, the expressed polypeptide is secreted outside the cell, and the culture supernatant is lyophilized, salted out, treated with an organic solvent, etc. Can be manufactured.
 宿主細胞に依存して培養条件は変動し得るが、培養は、通常の条件下で行うことができる。例えば、ストレプトマイセス(Streptomyces)属のような放線菌を宿主として用いる場合、チオストレプトンを含むトリプチックソイ培地(例えば、ベクトン・ディッキンソン社製)を用いることができる。形質転換体により産生された酵素は、上述のようにしてさらに精製することができる。 Although the culture conditions can vary depending on the host cells, the culture can be performed under normal conditions. For example, when an actinomycete such as Streptomyces is used as a host, a tryptic soy medium containing thiostrepton (for example, Becton Dickinson) can be used. The enzyme produced by the transformant can be further purified as described above.
 [プロテアーゼ含有洗浄剤]
 本発明に係るプロテアーゼ含有洗浄剤は、放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株、及び放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株をそれぞれ単独培養又は混合培養した後、塩析(硫安沈殿、アセトン沈殿、エタノール沈殿など)により粗酵素として得ることができる。すなわち、目的に応じて単独培養液又は混合培養液を濾紙やフィルターにより濾過して粗酵素液としてプロテアーゼ含有洗浄剤を得たり、遠心分離にかけて上澄み液(培養上清)としてプロテアーゼ含有洗浄剤を得たりすることもできる。濾過は、濁りの原因となる不純物を除去するために行う。濁りが気にならない程度であれば濾過は不要であり、遠心分離により十分に透明度のあるプロテアーゼ含有洗浄剤を得ることができる。必要に応じてさらに精製し、精製酵素として得てもよい。
[Protease-containing detergent]
The protease-containing detergent according to the present invention comprises RD001933 strain belonging to the genus Actinodura sp. Of Actinomycetes and RD000920 strain belonging to the genus Actinomadura miaoliensis, respectively, individually or mixedly. Then, it can be obtained as a crude enzyme by salting out (ammonium sulfate precipitation, acetone precipitation, ethanol precipitation, etc.). That is, depending on the purpose, a single culture solution or a mixed culture solution is filtered through a filter paper or a filter to obtain a protease-containing detergent as a crude enzyme solution, or centrifuged to obtain a protease-containing detergent as a supernatant (culture supernatant). You can also. Filtration is performed to remove impurities that cause turbidity. If the turbidity is not worrisome, filtration is unnecessary, and a sufficiently transparent protease-containing detergent can be obtained by centrifugation. If necessary, it may be further purified and obtained as a purified enzyme.
 上記のようにして得られたプロテアーゼは、安全性の高い2種類の微生物(同属株)から得ることができ、いずれもタンパク質を分解する能力が強く、特に血液等のタンパク質汚れに対して高い洗浄力を有する。特にこれらのプロテアーゼを含有するプロテアーゼ含有洗浄剤は、従来のアルカリ洗浄剤では洗浄が困難であった変性固着した血液汚れを低温かつ短時間で洗浄することができる。また2種類の微生物をそれぞれ単独培養して得られるプロテアーゼ含有洗浄剤はタンパク質分解能力が強く洗浄効果が高いが、2種類の微生物を混合培養して得られるプロテアーゼ含有洗浄剤はさらにタンパク質分解能力が強く洗浄効果が高い。またこれらのプロテアーゼ含有洗浄剤は、簡便かつ安価に大量生産することができ、液状のほか粉剤化又は錠剤化することもでき、長期保存も可能である。 The protease obtained as described above can be obtained from two types of highly safe microorganisms (strains belonging to the same), both of which have a strong ability to degrade proteins, particularly high washing against protein stains such as blood. Have power. In particular, protease-containing detergents containing these proteases can wash denatured and adhered blood stains, which were difficult to wash with conventional alkaline detergents, at a low temperature and in a short time. In addition, the protease-containing detergent obtained by culturing each of the two types of microorganisms alone has a strong proteolytic ability and a high cleaning effect. Strong and high cleaning effect. In addition, these protease-containing detergents can be mass-produced easily and inexpensively, and can also be powdered or tableted in addition to being liquid, and can be stored for a long time.
 さらに上記のプロテアーゼは、洗浄剤以外の様々な分野に応用することも可能である。例えば、食肉加工やイカの皮むき、皮なめしなどである。 Furthermore, the above protease can be applied to various fields other than detergents. For example, meat processing, squid peeling, and tanning.
 [RD001933株由来プロテアーゼの精製]
 放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株を培養し、その培養上清について、硫安分画、疎水クロマトグラフィー、陽イオン交換クロマトグラフィー、陰イオン交換クロマトグラフィーを用いてRD001933株由来プロテアーゼを精製した。以下に詳細を示す。
[Purification of protease from RD001933 strain]
The RD001933 strain belonging to the genus Actinodura sp. Of actinomycetes is cultured, and the RD001933 strain is cultured on the culture supernatant using ammonium sulfate fractionation, hydrophobic chromatography, cation exchange chromatography, and anion exchange chromatography. The derived protease was purified. Details are shown below.
 (a)微生物の培養
 菌体として、放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株(受託番号:NITE P-1467)を使用した。
(A) Culture of microorganism RD001933 strain (accession number: NITE P-1467) belonging to the genus Actinodura sp.
 まず、ISP2培地(酵母エキス0.6%、麦芽エキス1.4%、グルコース0.6%)490mLを調製し、500mL容三角フラスコに70mLずつ分注した。これにスプリングコイルを1個入れ、121℃で20分間蒸気殺菌を行った。さらに別滅菌した2.5%スキムミルク30mLを添加して終濃度を0.75%とした。 First, 490 mL of ISP2 medium (yeast extract 0.6%, malt extract 1.4%, glucose 0.6%) was prepared, and 70 mL each was dispensed into a 500 mL Erlenmeyer flask. One spring coil was put in this, and steam sterilization was performed at 121 ° C. for 20 minutes. Furthermore, 30 mL of 2.5% skimmed milk that was sterilized separately was added to a final concentration of 0.75%.
 そして、グリセロールストックの菌体を50μLとり、ISP2培地5mLを入れたφ18試験管(18×180mm)に植菌し、45℃で良好な生育が得られるまで振とう培養した。この培養液を先の滅菌した培地100mLに1mLずつ植菌し、45℃で96時間程度振とう培養した。遠心分離機を用いて、この培養液から上清を回収した。 Then, 50 μL of glycerol stock cells were inoculated into a φ18 test tube (18 × 180 mm) containing 5 mL of ISP2 medium, and cultured with shaking at 45 ° C. until good growth was obtained. 1 mL of this culture solution was inoculated into 100 mL of the previously sterilized medium, and cultured with shaking at 45 ° C. for about 96 hours. The supernatant was recovered from this culture using a centrifuge.
 (b)アセトン分画(アセトン沈殿)
 上記(a)で回収した培養上清に、60%(v/v)以上となるようにアセトンを添加し、生じた沈殿を遠心分離(10,000rpm、10分、4℃)により回収した。この沈殿を、終濃度1Mの硫酸アンモニウムを含む20mM トリス-塩酸緩衝液(pH8.0)15mLで溶解し、粗酵素液を得た。
(B) Acetone fractionation (acetone precipitation)
Acetone was added to the culture supernatant collected in the above (a) so as to be 60% (v / v) or more, and the resulting precipitate was collected by centrifugation (10,000 rpm, 10 minutes, 4 ° C.). This precipitate was dissolved in 15 mL of 20 mM Tris-HCl buffer (pH 8.0) containing ammonium sulfate having a final concentration of 1 M to obtain a crude enzyme solution.
 (c)Toyopearl Phenyl-650Mカラムクロマトグラフィー
 上記(b)で得られた粗酵素液を、1M硫酸アンモニウムを含む20mM トリス-塩酸緩衝液(pH8.0)であらかじめ平衡化したToyopearl Phenyl-650Mカラム(内径26mm、高さ38mm、東ソー株式会社製)にアプライした。同緩衝液でカラムを洗浄した後、硫酸アンモニウム(1Mから0Mまで)のリニアグラジェントにより、タンパク質を溶出させた。
(C) Toyopearl Phenyl-650M column chromatography The Toyopearl Phenyl-650M column (inner diameter) obtained by previously equilibrating the crude enzyme solution obtained in (b) above with 20 mM Tris-HCl buffer (pH 8.0) containing 1 M ammonium sulfate. 26 mm, height 38 mm, manufactured by Tosoh Corporation). After washing the column with the same buffer, the protein was eluted with a linear gradient of ammonium sulfate (from 1 M to 0 M).
 (d)HiTrap Q HPカラムクロマトグラフィー
 上記(c)で得られた活性画分を集め、20mM トリス-塩酸緩衝液(pH9.0)を用いて透析を行うことによって脱塩した。20mM トリス-塩酸緩衝液(pH9.0)であらかじめ平衡化したHiTrap Q HP(5mL)カラム(GEヘルスケアバイオサイエンス株式会社製)にアプライし、同緩衝液でカラムを洗浄した後、塩化ナトリウム(0Mから1Mまで)のリニアグラジェントにより、タンパク質を溶出させた。
(D) HiTrap Q HP column chromatography The active fractions obtained in (c) above were collected and desalted by dialysis using 20 mM Tris-HCl buffer (pH 9.0). The column was applied to a HiTrap Q HP (5 mL) column (manufactured by GE Healthcare Biosciences) previously equilibrated with 20 mM Tris-HCl buffer (pH 9.0), washed with the same buffer, and then sodium chloride ( The protein was eluted with a linear gradient from 0M to 1M.
 (e)HiTrap SP HPカラムクロマトグラフィー
 上記(d)で得られた活性画分を集め、20mM MES-水酸化ナトリウム緩衝液(pH5.5)を用いて透析を行うことによって脱塩した。これを20mM MES-水酸化ナトリウム緩衝液(pH5.5)であらかじめ平衡化したHiTrap SP(1mL)カラム(GEヘルスケアバイオサイエンス株式会社製)にアプライし、同緩衝液でカラムを洗浄した後、塩化ナトリウム(0Mから1Mまで)のリニアグラジェントにより、タンパク質を溶出させた。
(E) HiTrap SP HP column chromatography The active fractions obtained in (d) above were collected and desalted by dialysis using 20 mM MES-sodium hydroxide buffer (pH 5.5). This was applied to a HiTrap SP (1 mL) column (manufactured by GE Healthcare Biosciences) previously equilibrated with 20 mM MES-sodium hydroxide buffer (pH 5.5), and the column was washed with the same buffer. The protein was eluted with a linear gradient of sodium chloride (0M to 1M).
 以上のようにして、放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株より、精製酵素を得た。なお、精製酵素が単一であることは、以下の(f)SDS-PAGEによる分析で確認した。 As described above, a purified enzyme was obtained from the RD001933 strain belonging to the genus Actinomadura sp. The single purified enzyme was confirmed by the following (f) SDS-PAGE analysis.
 (f)SDS-PAGE
 上記(e)で溶出した活性画分を集めてSDS-PAGE(12%(w/v)ポリアクリルアミドゲル)により分子量を解析した。図1は、この溶出画分のSDS-PAGEによる解析の結果を示す電気泳動写真である。図1の左側のレーンは、タンパク質分子量マーカー(M)であり、図1の右側のレーンは、(e)で得られた精製酵素(RD001933株由来プロテアーゼ)のバンドを示す。図1に示すように、活性画分において、単一のバンドが観察され、精製酵素(ポリペプチド)の分子量は約31,000であった。なお、分子量の単位はDa(ダルトン)である。よって、kDa表記では、この酵素の分子量は約31kDaとなる。
(F) SDS-PAGE
The active fractions eluted in (e) above were collected and analyzed for molecular weight by SDS-PAGE (12% (w / v) polyacrylamide gel). FIG. 1 is an electrophoretogram showing the results of SDS-PAGE analysis of the eluted fraction. The left lane in FIG. 1 is a protein molecular weight marker (M), and the right lane in FIG. 1 shows a band of the purified enzyme (protease from RD001933 strain) obtained in (e). As shown in FIG. 1, a single band was observed in the active fraction, and the molecular weight of the purified enzyme (polypeptide) was about 31,000. The unit of molecular weight is Da (Dalton). Therefore, in the kDa notation, the molecular weight of this enzyme is about 31 kDa.
 表1にRD001933株由来プロテアーゼ精製における収量、収率等を示す。 Table 1 shows the yield, yield and the like in the purification of protease from RD001933 strain.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、RD001933株由来プロテアーゼの酵素活性は、次のようにして測定した。まず表2に示す反応液を65℃、pH7.5で5分間静置して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定した。酵素量1U(ユニット)は、1μmol相当のアゾ色素を1分間に生成する量とした。 In addition, the enzyme activity of the protease derived from RD001933 strain was measured as follows. First, the reaction liquid shown in Table 2 was allowed to react at 65 ° C. and pH 7.5 for 5 minutes, and then 50 μL of 20% trichloroacetic acid was added to stop the reaction. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured. The amount of enzyme 1U (unit) was set to an amount capable of producing 1 μmol of an azo dye corresponding to 1 minute.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [RD001933株由来プロテアーゼの性質]
 RD001933株由来プロテアーゼ(精製酵素)の酵素学的性質について検討した。
[Properties of protease derived from RD001933 strain]
The enzymatic properties of the RD001933-derived protease (purified enzyme) were examined.
 (1)作用温度
 表2に示す反応液を各温度、pH7.5で5分間静置して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(1) Action temperature The reaction liquid shown in Table 2 was allowed to react at each temperature and pH 7.5 for 5 minutes, and then 50 μL of 20% trichloroacetic acid was added to stop the reaction. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured to determine the enzyme activity.
 図3は、種々の反応温度での酵素活性を、反応温度が75℃である場合の活性を基準(100%)とする相対活性として示したグラフである。図3のグラフに示されるように、RD001933株由来プロテアーゼ(精製酵素)は、50~90℃で活性を発揮し、そして反応の至適温度は60~80℃の範囲内であり、好ましくは70~75℃付近であった。なお、図4は、種々の反応温度での比活性を示すグラフである。 FIG. 3 is a graph showing enzyme activities at various reaction temperatures as relative activities based on the activity (100%) when the reaction temperature is 75 ° C. As shown in the graph of FIG. 3, the RD001933-derived protease (purified enzyme) exhibits activity at 50 to 90 ° C., and the optimum temperature for the reaction is in the range of 60 to 80 ° C., preferably 70 It was about ~ 75 ° C. FIG. 4 is a graph showing specific activities at various reaction temperatures.
 (2)作用pH
 表3に示す反応液を各pH、75℃で5分間静置して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(2) Working pH
The reaction liquid shown in Table 3 was allowed to react at each pH and 75 ° C. for 5 minutes, and then the reaction was stopped by adding 50 μL of 20% trichloroacetic acid. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured to determine the enzyme activity.
 使用した緩衝液は次のとおりである。 The buffer solution used is as follows.
 MES-水酸化ナトリウム緩衝液:pH5.5、pH6
 Bis-Tris緩衝液:pH6、pH6.5、pH7.2
 Tris-HCl緩衝液:pH7.2、pH8、pH8.8
 Glycine-NaOH緩衝液:pH9、pH9.5
MES-sodium hydroxide buffer: pH 5.5, pH 6
Bis-Tris buffer: pH 6, pH 6.5, pH 7.2
Tris-HCl buffer: pH 7.2, pH 8, pH 8.8
Glycine-NaOH buffer: pH 9, pH 9.5
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図5は、種々の反応pHでの酵素活性を、反応pHが7.2である場合の酵素活性を基準(100%)とする相対活性として示したグラフである。図5のグラフから分かるように、RD001933株由来プロテアーゼ(精製酵素)は、pH5.5~9.0という広い範囲で活性を発揮し、そして、反応の至適pHは7.2付近(例えばpH6.0~8.8)であった。なお、図6は、種々の反応pHでの比活性を示すグラフである。 FIG. 5 is a graph showing enzyme activities at various reaction pHs as relative activities based on the enzyme activity when the reaction pH is 7.2 (100%). As can be seen from the graph of FIG. 5, the RD001933-derived protease (purified enzyme) exhibits activity in a wide range of pH 5.5 to 9.0, and the optimum pH of the reaction is around 7.2 (for example, pH 6 0.0 to 8.8). FIG. 6 is a graph showing specific activities at various reaction pHs.
 (3)添加試薬の影響
 まず添加試薬を加えた酵素液を30分間、室温でインキュベートした後、表4に示す反応液(ただし、添加試薬、酵素液を除く)を加えて75℃、pH7.5で5分間静置して反応させた。その後、20%トリクロロ酢酸を50μL加えて反応を停止させた。そして、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(3) Effect of added reagent First, the enzyme solution to which the added reagent was added was incubated at room temperature for 30 minutes, and then the reaction solution shown in Table 4 (excluding the added reagent and enzyme solution) was added to 75 ° C, pH 7. 5 and allowed to react for 5 minutes. Thereafter, 50 μL of 20% trichloroacetic acid was added to stop the reaction. And the enzyme activity was calculated | required by centrifuging a reaction liquid and measuring the light absorbency of 340 nm of a supernatant liquid.
 使用した添加試薬は、EDTA、PMSF(フッ化フェニルメチルスルホニル)(終濃度5mM)、ZnCl、MnCl、CaCl、CuCl、CoCl、MgCl(終濃度1mM)である。 The additive reagents used were EDTA, PMSF (phenylmethylsulfonyl fluoride) (final concentration 5 mM), ZnCl 2 , MnCl 2 , CaCl 2 , CuCl 2 , CoCl 2 , MgCl 2 (final concentration 1 mM).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表5は、添加試薬を添加した場合の酵素活性を、添加試薬を添加していない場合の活性を基準(100%)とする相対活性として示したものである。RD001933株由来プロテアーゼ(精製酵素)は、Zn2+、Mn2+、Ca2+、Cu2+、Co2+、Mg2+の存在下では、60%程度の活性を示した。また、EDTA、PMSFの存在下では、活性が大きく低下し、活性阻害が見られた。 Table 5 shows the enzyme activity when the additive reagent is added as a relative activity based on the activity (100%) when the additive reagent is not added. RD001933 strain-derived protease (purified enzyme) showed an activity of about 60% in the presence of Zn 2+ , Mn 2+ , Ca 2+ , Cu 2+ , Co 2+ and Mg 2+ . Further, in the presence of EDTA and PMSF, the activity was greatly reduced and activity inhibition was observed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 [RD001933株由来プロテアーゼ(精製酵素)のN末端アミノ酸配列の解析]
 上記の精製酵素について、SDS-PAGE後、エレクトロブロッティングを行い、目的とする酵素をPVDF(ポリフッ化ビニリデン)膜に転写した。これをプロテインシーケンサーによりN末端アミノ酸配列の解析を行った。解析から、この精製酵素のN末端アミノ酸配列は、配列番号3に示すものであることが確認された。
[Analysis of N-terminal amino acid sequence of protease (purified enzyme) derived from RD001933 strain]
The purified enzyme was electroblotted after SDS-PAGE, and the target enzyme was transferred to a PVDF (polyvinylidene fluoride) membrane. This was analyzed for the N-terminal amino acid sequence by a protein sequencer. From the analysis, it was confirmed that the N-terminal amino acid sequence of this purified enzyme was as shown in SEQ ID NO: 3.
 [RD001933株由来プロテアーゼ(精製酵素)の内部アミノ酸配列の解析]
 上記の精製酵素について、SDS-PAGE後、目的とする酵素を切り出し、トリプシンを用いてゲル内消化を行った。そして、得られたペプチドサンプルについて質量分析計(nanoLC-MS/MS)により内部アミノ酸配列の解析を行った。これにより、内部アミノ酸配列は、配列番号4、5、6、7に示すものであることが確認された。
[Analysis of internal amino acid sequence of protease (purified enzyme) derived from RD001933 strain]
For the purified enzyme, after SDS-PAGE, the target enzyme was excised and digested in gel using trypsin. The obtained peptide sample was analyzed for internal amino acid sequence using a mass spectrometer (nanoLC-MS / MS). Thereby, it was confirmed that the internal amino acid sequences are those shown in SEQ ID NOs: 4, 5, 6, and 7.
 ここで、配列番号4は、配列番号2の277位からに示される配列となっている。また、配列番号5は、配列番号2の331位からに示される配列となっている。また、配列番号6は、配列番号2の348位からに示される配列となっている。また、配列番号7は、配列番号2の364位からに示される配列となっている。なお、nanoLC-MS/MSによるデノボアミノ酸配列解析ではLeuとIleとが判別できないため、これらのアミノ酸が一部一致していない箇所があり得る。 Here, SEQ ID NO: 4 is the sequence shown from position 277 of SEQ ID NO: 2. SEQ ID NO: 5 is the sequence shown from position 331 of SEQ ID NO: 2. SEQ ID NO: 6 is the sequence shown from position 348 of SEQ ID NO: 2. SEQ ID NO: 7 is the sequence shown from position 364 of SEQ ID NO: 2. In addition, since de novo amino acid sequence analysis by nanoLC-MS / MS cannot distinguish Leu and Ile, there may be portions where these amino acids do not partially match.
 [RD001933株の染色体DNAの分離]
 RD001933株をISP2培地(酵母エキス0.6%、麦芽エキス1.4%、グルコース0.6%)50mLを用いて45℃で3日間培養し、集菌した。
[Separation of chromosomal DNA of strain RD001933]
The RD001933 strain was cultured at 45 ° C. for 3 days using 50 mL of ISP2 medium (yeast extract 0.6%, malt extract 1.4%, glucose 0.6%) and collected.
 次いで、この菌体を75mM NaCl、25mM EDTA、20mM トリス-塩酸緩衝液(pH7.5)及び1mg/mLリゾチームからなる溶液2.5mLに懸濁し、37℃で1時間処理した。これに10%(w/v)SDSを900μL、proteinase Kを3.75mg添加し、55℃で2時間処理した。この溶液に5M NaCl2mLとクロロホルム5mLを加えて撹拌し、遠心分離により水相を5mL分取した。 Next, this microbial cell was suspended in 2.5 mL of a solution consisting of 75 mM NaCl, 25 mM EDTA, 20 mM Tris-HCl buffer (pH 7.5) and 1 mg / mL lysozyme, and treated at 37 ° C. for 1 hour. To this, 900 μL of 10% (w / v) SDS and 3.75 mg of proteinase K were added and treated at 55 ° C. for 2 hours. To this solution, 2 mL of 5 M NaCl and 5 mL of chloroform were added and stirred, and 5 mL of the aqueous phase was collected by centrifugation.
 この水相に3mLのイソプロパノールを添加混合してDNA画分を回収し、70%エタノール1mLでリンスした後、遠心分離を行った。この沈殿を回収し、減圧乾燥した後、10mM トリス-塩酸緩衝液(pH8.0)及び1mM EDTAからなる溶液500μLに溶解し55℃で一晩放置した。これにRNaseAを0.1mg/mLとなるように加え、37℃で20分間処理した後、0.8MのNaClを含む13%PEG溶液を500μL加え撹拌し、4℃、1時間静置後、遠心分離により沈殿を回収した。この沈殿を1mMEDTAを含む10mM トリス-塩酸緩衝液(pH 7.5)500μLで溶解した。これにフェノール/クロロホルム混合液500μLを加えて撹拌し、遠心分離により、水相を500μL分取した。 3 mL of isopropanol was added to and mixed with this aqueous phase to recover the DNA fraction, which was rinsed with 1 mL of 70% ethanol and then centrifuged. This precipitate was collected, dried under reduced pressure, and dissolved in 500 μL of a solution composed of 10 mM Tris-HCl buffer (pH 8.0) and 1 mM EDTA, and left at 55 ° C. overnight. RNaseA was added to this so that it might become 0.1 mg / mL, and after processing for 20 minutes at 37 ° C., 500 μL of 13% PEG solution containing 0.8 M NaCl was added and stirred, and after standing at 4 ° C. for 1 hour, The precipitate was collected by centrifugation. This precipitate was dissolved in 500 μL of 10 mM Tris-HCl buffer (pH 緩衝 7.5) containing 1 mM EDTA. 500 μL of a phenol / chloroform mixed solution was added thereto and stirred, and 500 μL of an aqueous phase was collected by centrifugation.
 この水相に3M 酢酸ナトリウム緩衝液(pH5.2)50μL及び100%エタノール1mLを添加混合し、RD001933株の染色体DNAを回収した。 To this aqueous phase, 50 μL of 3M sodium acetate buffer (pH 5.2) and 1 mL of 100% ethanol were added and mixed to recover the chromosomal DNA of RD001933 strain.
 このDNAを70%(v/v)エタノールでリンスした後、遠心分離を行って沈殿を回収した。回収した沈殿を減圧乾燥した後、10mM トリス-塩酸緩衝液(pH8.0)及び1mM EDTAからなる溶液200μLに溶解した。 The DNA was rinsed with 70% (v / v) ethanol and then centrifuged to collect the precipitate. The collected precipitate was dried under reduced pressure, and then dissolved in 200 μL of a solution composed of 10 mM Tris-HCl buffer (pH 8.0) and 1 mM EDTA.
 [RD001933株由来プロテアーゼ遺伝子のコア領域のクローニング]
 アクチノマジュラ由来プロテアーゼに高く保存されているN末端及び内部配列をもとにプライマーを設計した。
[Cloning of core region of protease gene from RD001933 strain]
Primers were designed based on the N-terminal and internal sequences highly conserved in the Actinomadura-derived protease.
 プライマー(primer)の作製にあたっては、上記のN末端配列(配列番号3)及び上記の2つの内部アミノ酸配列(配列番号4及び配列番号5)をピックアップした。プライマー設計にあたっては、これらのアミノ酸配列をコードする塩基配列中の適宜の配列を利用した。 In preparing the primer, the above N-terminal sequence (SEQ ID NO: 3) and the above two internal amino acid sequences (SEQ ID NO: 4 and SEQ ID NO: 5) were picked up. In designing the primer, an appropriate sequence in the base sequence encoding these amino acid sequences was used.
 N末端アミノ酸配列情報を「Sense primer」とし、内部アミノ酸配列情報を「Antisense primer」とした。縮重コドンに関しては、アクチノマジュラ属におけるコドン使用頻度が高いコドンを選択し、プライマー設計を行った。また、コドン使用頻度が同等のものに関しては、混合塩基プライマーとした。また、質量分析では分別が難しいLeuとIleを除外した。これにより、センスプライマー(Sense primer)として、PCR用の縮重オリゴヌクレオチドプライマーS1(配列番号8)を設計した。また、2種のアンチセンスプライマー(Antisense primer)として、配列番号4から設計した「primer A1-1」(配列番号9)と、配列番号5から設計した「primer A1-2」(配列番号10)とを設計した。ここで、配列中のsはc又はgを表し、wはa又はtを表している。 The N-terminal amino acid sequence information was “Sense primer” and the internal amino acid sequence information was “Antisense primer”. For degenerate codons, a codon with high codon usage in the genus Actinomadura was selected and a primer was designed. Also, mixed base primers were used for those with the same codon usage frequency. Also, Leu and Ile, which are difficult to be separated by mass spectrometry, were excluded. Thus, degenerate oligonucleotide primer S1 (SEQ ID NO: 8) for PCR was designed as a sense primer (Sense プ ラ イ マ ー primer). In addition, as two types of antisense primers (Antisense primer), “primer A1-1” (SEQ ID NO: 9) designed from SEQ ID NO: 4 and “primer A1-2” (SEQ ID NO: 10) designed from SEQ ID NO: 5 And designed. Here, s in the sequence represents c or g, and w represents a or t.
 次に上記のプライマーを用いて、PCRを行った。PCRの反応液組成は次のとおりである。 Next, PCR was performed using the above primers. The composition of the reaction solution for PCR is as follows.
 上記[RD001933株の染色体DNAの分離]で得た鋳型染色体DNA100ng、2×MightAmp Buffer 25μL、プライマー各300nM、及びMightAmp DNA Polymerase 0.5ユニットに、滅菌水を全量50μLとなるように添加した。 Sterile water was added to 100 ng of the template chromosomal DNA obtained in the above [Separation of chromosomal DNA of RD001933 strain], 2 × MightAmp Buffer 25 μL, each primer 300 nM, and 0.5 unit of HighAmp DNA Polymerase so that the total amount was 50 μL.
 PCR反応条件は次のとおりである。 PCR reaction conditions are as follows.
 ステップ1:98℃、2分;
 ステップ2:98℃、10秒;
 ステップ3:80℃、15秒;
 ステップ4:68℃、1分;
 ステップ2からステップ4を30サイクル繰り返す;
 ステップ5:68℃、2分。
Step 1: 98 ° C., 2 minutes;
Step 2: 98 ° C., 10 seconds;
Step 3: 80 ° C., 15 seconds;
Step 4: 68 ° C., 1 minute;
Repeat steps 2 to 4 for 30 cycles;
Step 5: 68 ° C., 2 minutes.
 上記のプライマーを用いたPCRによって、約700bpの特異的な増幅産物を得た。 A specific amplification product of about 700 bp was obtained by PCR using the above primers.
 このPCR反応液についてアガロースゲル電気泳動を行い、目的の約700bpのバンド部分を切り出し、Mighty TA-cloning Kit(TaKaRa)を用いて、pMD20-T Vectorに結合させ、大腸菌を形質転換した。形質転換株をアンピシリン50μg/mLを含むLB培地(トリプトン1%、酵母エキス0.5%、塩化ナトリウム0.5%、pH7.5)で培養し、Miniprep法(ミニプレップ法)又はHigh Pure Plasmid Isolation Kit(Roche)を用いてDNAシーケンス用のプラスミドを抽出・精製した。 The PCR reaction solution was subjected to agarose gel electrophoresis, and the target band portion of about 700 bp was cut out and bound to pMD20-T Vector using Mighty TA-cloning Kit (TaKaRa) to transform Escherichia coli. The transformed strain is cultured in an LB medium (tryptone 1%, yeast extract 0.5%, sodium chloride 0.5%, pH 7.5) containing ampicillin 50 μg / mL, Miniprep method (miniprep method) or High Pure Plasmid. A plasmid for DNA sequencing was extracted and purified using Isolation Kit (Roche).
 続いて、ベクター(pMD20-T Vector)に由来するT7プライマー及びSP6プライマーを用いて自動シークエンサーによって、挿入断片の塩基配列を決定した。この塩基配列(692bp)を、配列番号11に示す。 Subsequently, the base sequence of the inserted fragment was determined by an automatic sequencer using T7 primer and SP6 primer derived from a vector (pMD20-T Vector). This base sequence (692 bp) is shown in SEQ ID NO: 11.
 [RD001933株由来プロテアーゼ遺伝子のコア領域の上流側及び下流側のクローニング]
 上記[RD001933株由来プロテアーゼ遺伝子のコア領域のクローニング]で決定した遺伝子配列の周辺領域の配列を明らかにするために、上記で得た染色体DNAをPstI又はSmaIで完全消化し、Ligation high Ver.2(Toyobo社製)を用いて消化断片を自己閉環させた。これを鋳型にして、RD001933株由来プロテアーゼの部分遺伝子配列に基づいて作製した2つのインバースPCRプライマー(配列番号12及び配列番号13)を用いて、PCRを行うことでRD001933株由来プロテアーゼの上流側又は下流側におけるDNA断片を増幅した。
[Cloning upstream and downstream of core region of protease gene from RD001933 strain]
In order to clarify the sequence of the peripheral region of the gene sequence determined in [Cloning of core region of protease gene derived from RD001933 strain] above, the chromosomal DNA obtained above was completely digested with PstI or SmaI, and Ligation high Ver. The digested fragment was self-cyclized using 2 (Toyobo). Using this as a template, PCR was performed using two inverse PCR primers (SEQ ID NO: 12 and SEQ ID NO: 13) prepared based on the partial gene sequence of the protease derived from the RD001933 strain. The DNA fragment on the downstream side was amplified.
 PCRの反応液組成は次のとおりである。 The PCR reaction solution composition is as follows.
 鋳型DNA25ng、2×MightAmp Buffer 25μL、プライマー各300nM、及びMightAmp DNA Polymerase 0.5ユニットに、滅菌水を全量50μLとなるように添加した。 Sterile water was added to 25 units of template DNA 25 ng, 2 × MightAmp Buffer 25 μL, each primer 300 nM, and LightAmp DNA Polymerase 0.5 unit so that the total amount was 50 μL.
 PCR反応条件は次のとおりである。 PCR reaction conditions are as follows.
 ステップ1:98℃、2分;
 ステップ2:98℃、10秒;
 ステップ3:62℃、15秒;
 ステップ4:68℃、3分;
 ステップ2からステップ4を25サイクル繰り返す;
 ステップ5:68℃、3分。
Step 1: 98 ° C., 2 minutes;
Step 2: 98 ° C., 10 seconds;
Step 3: 62 ° C., 15 seconds;
Step 4: 68 ° C., 3 minutes;
Repeat steps 2 to 4 for 25 cycles;
Step 5: 68 ° C., 3 minutes.
 上記のプライマーを用いたPCRによって、約3000bpの特異的な増幅産物を得た。 A specific amplification product of about 3000 bp was obtained by PCR using the above primers.
 このPCR反応液についてアガロースゲル電気泳動を行い、目的の約3000bpのバンド部分を切り出し、Mighty TA-cloning Kit(TaKaRa)を用いて、pMD20-T Vectorに結合させ、大腸菌を形質転換した。形質転換株をアンピシリン50μg/mLを含むLB培地(トリプトン1%、酵母エキス0.5%、塩化ナトリウム0.5%、pH7.5)で培養し、Miniprep法(ミニプレップ法)又はHigh Pure Plasmid Isolation Kit(Roche)を用いてDNAシーケンス用のプラスミドを抽出・精製した。 The PCR reaction solution was subjected to agarose gel electrophoresis, and the target band portion of about 3000 bp was cut out and bound to pMD20-T Vector using Mighty TA-cloning Kit (TaKaRa) to transform Escherichia coli. The transformed strain is cultured in an LB medium (tryptone 1%, yeast extract 0.5%, sodium chloride 0.5%, pH 7.5) containing ampicillin 50 μg / mL, Miniprep method (miniprep method) or High Pure Plasmid. A plasmid for DNA sequencing was extracted and purified using Isolation Kit (Roche).
 続いて、ベクター(pMD20-T Vector)に由来するSP6プライマー及びM13M4プライマーを用いて自動シークエンサーによって、挿入断片の塩基配列を決定した。このシーケンスによって、N末端側(上流側)の塩基配列として、配列番号14に示す塩基配列(330bp)が得られた。この配列は、N末端側からシグナル配列(78bp)及びプロ配列(252bp)である。また、C末端側(下流側)の塩基配列として、配列番号15に示す塩基配列(139bp)が得られた。 Subsequently, the base sequence of the inserted fragment was determined by an automatic sequencer using SP6 primer and M13M4 primer derived from a vector (pMD20-T Vector). By this sequence, the base sequence (330 bp) shown in SEQ ID NO: 14 was obtained as the base sequence on the N-terminal side (upstream side). This sequence is a signal sequence (78 bp) and a pro sequence (252 bp) from the N-terminal side. Moreover, the base sequence (139 bp) shown in SEQ ID NO: 15 was obtained as the base sequence on the C-terminal side (downstream side).
 [RD001933株由来プロテアーゼ遺伝子の塩基配列の決定]
 上記で決定した塩基配列に基づいて、RD001933株由来プロテアーゼ遺伝子を含む領域の塩基配列(1161bp)を決定した(配列番号1)。配列番号2は、この配列(配列番号1)のコドンに対応するアミノ酸配列である。
[Determination of nucleotide sequence of protease gene derived from RD001933 strain]
Based on the base sequence determined above, the base sequence (1161 bp) of the region containing the protease gene derived from the RD001933 strain was determined (SEQ ID NO: 1). SEQ ID NO: 2 is an amino acid sequence corresponding to the codon of this sequence (SEQ ID NO: 1).
 配列解析の結果から、RD001933株由来プロテアーゼをコードする遺伝子は1161bpのヌクレオチドからなり、386残基のアミノ酸をコードしていることが明らかとなった。 From the results of sequence analysis, it was revealed that the gene encoding protease derived from RD001933 strain consists of 1161 bp nucleotides and encodes 386 amino acids.
 上記にて決定したRD001933株由来プロテアーゼ(精製酵素)のN末端及び内部アミノ酸配列が、上記の推定アミノ酸配列中に存在し、ほぼ完全に一致していた。 The N-terminal and internal amino acid sequences of the RD001933 strain-derived protease (purified enzyme) determined above were present in the above deduced amino acid sequence and were almost completely identical.
 [RD001933株由来プロテアーゼ(粗酵素)]
 放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株を培養し、その培養上清から3種の沈殿方法により、粗酵素液を得た。以下に詳細を示す。
[Protease from RD001933 strain (crude enzyme)]
RD001933 strain belonging to the genus Actinodura sp. Of actinomycetes was cultured, and a crude enzyme solution was obtained from the culture supernatant by three kinds of precipitation methods. Details are shown below.
 (a)微生物の培養
 菌体として、放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株(受託番号:NITE P-1467)を使用した。
(A) Culture of microorganism RD001933 strain (accession number: NITE P-1467) belonging to the genus Actinodura sp.
 まず、ISP2培地(酵母エキス0.6%、麦芽エキス1.4%、グルコース0.6%)700mLを調製し、500mL容三角フラスコに70mLずつ分注した。これにスプリングコイルを1個入れ、121℃で20分間蒸気殺菌を行った。さらに別滅菌した2.5%スキムミルク30mLを添加して終濃度を0.75%とした。 First, 700 mL of ISP2 medium (yeast extract 0.6%, malt extract 1.4%, glucose 0.6%) was prepared, and 70 mL was dispensed into a 500 mL Erlenmeyer flask. One spring coil was put in this, and steam sterilization was performed at 121 ° C. for 20 minutes. Furthermore, 30 mL of 2.5% skimmed milk that was sterilized separately was added to a final concentration of 0.75%.
 そして、グリセロールストックの菌体を50μLとり、ISP2培地5mLを入れたφ18試験管(18×180mm)に植菌し、45℃で良好な生育が得られるまで振とう培養した。この培養液を先の滅菌した培地100mLに1mLずつ植菌し、45℃で96時間程度振とう培養した。遠心分離機を用いて、この培養液から上清を回収した。 Then, 50 μL of glycerol stock cells were inoculated into a φ18 test tube (18 × 180 mm) containing 5 mL of ISP2 medium, and cultured with shaking at 45 ° C. until good growth was obtained. 1 mL of this culture solution was inoculated into 100 mL of the previously sterilized medium, and cultured with shaking at 45 ° C. for about 96 hours. The supernatant was recovered from this culture using a centrifuge.
 (b1)アセトン沈殿
 上記(a)で回収した培養上清に、40%、50%、60%、70%、80%(v/v)となるように-20℃アセトンを添加し、各濃度で生じた沈殿を遠心分離(10,000rpm、10分、4℃)により回収した。この沈殿を20mM トリス-塩酸緩衝液(pH9.0)30mLで溶解し、粗酵素液を得た。表6に酵素の回収率を示す。
(B1) Acetone precipitation Acetone at −20 ° C. was added to the culture supernatant collected in (a) so as to be 40%, 50%, 60%, 70%, and 80% (v / v). The precipitate produced in 1 was recovered by centrifugation (10,000 rpm, 10 minutes, 4 ° C.). This precipitate was dissolved in 30 mL of 20 mM Tris-HCl buffer (pH 9.0) to obtain a crude enzyme solution. Table 6 shows enzyme recovery.
 (b2)エタノール沈殿
 上記(a)で回収した培養上清に、40%、50%、60%、70%、80%(v/v)となるように-20℃エタノールを添加し、各濃度で生じた沈殿を遠心分離(10,000rpm、10分、4℃)により回収した。この沈殿を20mM トリス-塩酸緩衝液(pH8.0)30mLで溶解し、粗酵素液を得た。表6に酵素の回収率を示す。
(B2) Ethanol precipitation At −20 ° C. ethanol was added to the culture supernatant collected in (a) above so that it would be 40%, 50%, 60%, 70%, and 80% (v / v). The precipitate produced in 1 was recovered by centrifugation (10,000 rpm, 10 minutes, 4 ° C.). This precipitate was dissolved in 30 mL of 20 mM Tris-HCl buffer (pH 8.0) to obtain a crude enzyme solution. Table 6 shows enzyme recovery.
 (b3)硫安沈殿
 上記(a)で回収した培養上清に、40%、50%、60%、70%、80%飽和量となるように硫酸アンモニウム粉末を添加し、各濃度で生じた沈殿を遠心分離(10,000rpm、10分、4℃)により回収した。この沈殿を20mM トリス-塩酸緩衝液(pH9.0)30mLで溶解し、粗酵素液を得た。表6に酵素の回収率を示す。
(B3) Ammonium sulfate precipitation To the culture supernatant collected in (a) above, ammonium sulfate powder was added so that the saturation amount was 40%, 50%, 60%, 70%, 80%, and the precipitates generated at each concentration were added. It was recovered by centrifugation (10,000 rpm, 10 minutes, 4 ° C.). This precipitate was dissolved in 30 mL of 20 mM Tris-HCl buffer (pH 9.0) to obtain a crude enzyme solution. Table 6 shows enzyme recovery.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 このように、酵素を濃縮回収する場合には3種の沈殿方法を適宜利用することができる。 Thus, when the enzyme is concentrated and recovered, three types of precipitation methods can be used as appropriate.
 次に、RD001933株由来プロテアーゼ(粗酵素液)の酵素学的性質について検討した。 Next, the enzymatic properties of the RD001933-derived protease (crude enzyme solution) were examined.
 (1)作用温度
 表2に示す反応液(酵素液は80%飽和硫安沈殿により得たもの)を各温度、pH7.5で10分間静置して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(1) Working temperature After reacting the reaction solution shown in Table 2 (enzyme solution obtained by 80% saturated ammonium sulfate precipitation) at each temperature and pH 7.5 for 10 minutes, 50 μL of 20% trichloroacetic acid was reacted. In addition, the reaction was stopped. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured to determine the enzyme activity.
 図7は、種々の反応温度での酵素活性を、反応温度が80℃である場合の活性を基準(100%)とする相対活性として示したグラフである。図7のグラフに示されるように、RD001933株由来プロテアーゼ(粗酵素液)は、50~95℃で活性を発揮し、そして反応の至適温度は70~85℃の範囲内であり、好ましくは75~85℃付近であった。 FIG. 7 is a graph showing enzyme activities at various reaction temperatures as relative activities based on the activity (100%) when the reaction temperature is 80 ° C. As shown in the graph of FIG. 7, the RD001933 strain-derived protease (crude enzyme solution) exhibits activity at 50 to 95 ° C., and the optimal temperature for the reaction is in the range of 70 to 85 ° C., preferably It was around 75 to 85 ° C.
 (2)作用pH
 表3に示す反応液(酵素液は80%飽和硫安沈殿により得たもの)を各pH、65℃で10分間静置して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(2) Working pH
The reaction solution shown in Table 3 (enzyme solution obtained by 80% saturated ammonium sulfate precipitation) was allowed to react for 10 minutes at each pH and 65 ° C., and then the reaction was stopped by adding 50 μL of 20% trichloroacetic acid. It was. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured to determine the enzyme activity.
 使用した緩衝液は次のとおりである。 The buffer solution used is as follows.
 酢酸-酢酸Na緩衝液:pH5
 Bis-Tris緩衝液:pH6
 Tris-HCl緩衝液:pH7.2、pH8
 Glycine-NaOH緩衝液:pH9
 図8は、種々の反応pHでの酵素活性を、反応pHが8.0である場合の酵素活性を基準(100%)とする相対活性として示したグラフである。図8のグラフから分かるように、RD001933株由来プロテアーゼ(粗酵素液)は、pH5.0~9.0という広い範囲で活性を発揮し、そして、反応の至適pHは7.5付近(例えばpH7.0~8.0)であった。
Acetic acid-Na acetate buffer: pH 5
Bis-Tris buffer: pH 6
Tris-HCl buffer: pH 7.2, pH 8
Glycine-NaOH buffer: pH 9
FIG. 8 is a graph showing enzyme activities at various reaction pHs as relative activities based on the enzyme activity when the reaction pH is 8.0 (100%). As can be seen from the graph of FIG. 8, the RD001933 strain-derived protease (crude enzyme solution) exhibits activity in a wide range of pH 5.0 to 9.0, and the optimum pH of the reaction is around 7.5 (for example, pH 7.0-8.0).
 (3)添加試薬の影響
 表4に示す反応液(酵素液は80%エタノール沈殿により得たもの)を65℃、pH7.5で10分間静置して反応させた。その後、20%トリクロロ酢酸を50μL加えて反応を停止させた。そして、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(3) Effect of added reagent The reaction solution shown in Table 4 (enzyme solution obtained by 80% ethanol precipitation) was allowed to react at 65 ° C. and pH 7.5 for 10 minutes. Thereafter, 50 μL of 20% trichloroacetic acid was added to stop the reaction. And the enzyme activity was calculated | required by centrifuging a reaction liquid and measuring the light absorbency of 340 nm of a supernatant liquid.
 使用した添加試薬は、CaCl、NaCl、KCl、MgCl、MnCl、FeCl、FeCl、CuCl、ZnCl、CoCl、EDTAである。 The additive reagents used are CaCl 2 , NaCl, KCl, MgCl 2 , MnCl 2 , FeCl 2 , FeCl 3 , CuCl 2 , ZnCl 2 , CoCl 2 , EDTA.
 表7は、添加試薬を添加した場合の酵素活性を、添加試薬を添加していない場合の活性を基準(100%)とする相対活性として示したものである。 Table 7 shows the enzyme activity when the additive reagent is added as a relative activity based on the activity when the additive reagent is not added (100%).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (4)CaCl濃度の依存性
 表8に示す反応液(酵素液は80%エタノール沈殿により得たもの)を65℃で10分間静置して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(4) Dependence on CaCl 2 concentration After reacting the reaction solution shown in Table 8 (enzyme solution obtained by 80% ethanol precipitation) at 65 ° C. for 10 minutes, 50 μL of 20% trichloroacetic acid was added. The reaction was stopped. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured to determine the enzyme activity.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 図9は、種々のCaCl終濃度での酵素活性を、CaCl終濃度が0.5mMである場合の活性を基準(100%)とする相対活性として示したグラフである。 9, the enzymatic activity at various CaCl 2 final concentration is a graph showing the activity when CaCl 2 final concentration is 0.5mM as a relative activity to the reference (100%).
 [RD000920株由来プロテアーゼの精製]
 放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株を培養し、その培養上清について、硫安分画、疎水クロマトグラフィー、陽イオン交換クロマトグラフィー、陰イオン交換クロマトグラフィーを用いてRD000920株由来プロテアーゼを精製した。以下に詳細を示す。
[Purification of protease from RD000920 strain]
The RD000920 strain belonging to the genus Actinomadura miaoliensis of actinomycetes is cultured, and the culture supernatant is derived from the RD000920 strain using ammonium sulfate fractionation, hydrophobic chromatography, cation exchange chromatography, and anion exchange chromatography. Protease was purified. Details are shown below.
 (a)微生物の培養
 菌体として、放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株(受託番号:NITE P-1468)を使用した。
(A) Culture of microorganisms RD000920 strain (accession number: NITE P-1468) belonging to the genus Actinomadura miaoliensis of actinomycetes was used as the cells.
 まず、ISP2培地(酵母エキス0.6%、麦芽エキス1.4%、グルコース0.6%)560mLを調製し、500mL容三角フラスコに70mLずつ分注した。これにスプリングコイルを1個入れ、121℃で20分間蒸気殺菌を行った。さらに別滅菌した2.5%スキムミルク30mLを添加して終濃度を0.75%とした。 First, 560 mL of ISP2 medium (yeast extract 0.6%, malt extract 1.4%, glucose 0.6%) was prepared, and 70 mL was dispensed into a 500 mL Erlenmeyer flask. One spring coil was put in this, and steam sterilization was performed at 121 ° C. for 20 minutes. Furthermore, 30 mL of 2.5% skimmed milk that was sterilized separately was added to a final concentration of 0.75%.
 そして、グリセロールストックの菌体を50μLとり、ISP2培地5mLを入れたφ18試験管(18×180mm)に植菌し、45℃で良好な生育が得られるまで振とう培養した。この培養液を先の滅菌した培地100mLに1mLずつ植菌し、45℃で96時間程度振とう培養した。遠心分離機を用いて、この培養液から上清を回収した。 Then, 50 μL of glycerol stock cells were inoculated into a φ18 test tube (18 × 180 mm) containing 5 mL of ISP2 medium, and cultured with shaking at 45 ° C. until good growth was obtained. 1 mL of this culture solution was inoculated into 100 mL of the previously sterilized medium, and cultured with shaking at 45 ° C. for about 96 hours. The supernatant was recovered from this culture using a centrifuge.
 (b)アセトン分画(アセトン沈殿)
 上記(a)で回収した培養上清に、60%(v/v)以上となるように-20℃アセトンを添加し、生じた沈殿を遠心分離(10,000rpm、10分、4℃)により回収した。この沈殿を、終濃度1Mの硫酸アンモニウムを含む20mM トリス-塩酸緩衝液(pH8.0)15mLで溶解し、粗酵素液を得た。
(B) Acetone fractionation (acetone precipitation)
-20 ° C. acetone is added to the culture supernatant collected in (a) above 60% (v / v) and the resulting precipitate is centrifuged (10,000 rpm, 10 minutes, 4 ° C.). It was collected. This precipitate was dissolved in 15 mL of 20 mM Tris-HCl buffer (pH 8.0) containing ammonium sulfate having a final concentration of 1 M to obtain a crude enzyme solution.
 (c)Toyopearl Phenyl-650Mカラムクロマトグラフィー
 上記(b)で得られた粗酵素液を、1Mの硫酸アンモニウムを含む20mM トリス-塩酸緩衝液(pH8.0)であらかじめ平衡化したToyopearl Phenyl-650Mカラム(内径26mm、高さ38mm、東ソー株式会社製)にアプライした。同緩衝液でカラムを洗浄した後、硫酸アンモニウム(1Mから0Mまで)のリニアグラジェントにより、タンパク質を溶出させた。
(C) Toyopearl Phenyl-650M column chromatography The Toyopearl Phenyl-650M column (equilibrated in advance with 20 mM Tris-HCl buffer (pH 8.0) containing 1 M ammonium sulfate was added to the crude enzyme solution obtained in (b) above. The inner diameter was 26 mm, the height was 38 mm, and manufactured by Tosoh Corporation. After washing the column with the same buffer, the protein was eluted with a linear gradient of ammonium sulfate (from 1 M to 0 M).
 (d)HiTrap Q HPカラムクロマトグラフィー
 上記(c)で得られた活性画分を集め、20mM トリス-塩酸緩衝液(pH9.0)を用いて透析を行うことによって脱塩した。これに、20mMトリス-塩酸緩衝液(pH9.0)を加えた。20mM トリス-塩酸緩衝液(pH9.0)であらかじめ平衡化したHiTrap Q HP(5mL)カラム(GEヘルスケアバイオサイエンス株式会社製)にアプライし、同緩衝液でカラムを洗浄した後、塩化ナトリウム(0Mから1Mまで)のリニアグラジェントにより、タンパク質を溶出させた。
(D) HiTrap Q HP column chromatography The active fractions obtained in (c) above were collected and desalted by dialysis using 20 mM Tris-HCl buffer (pH 9.0). To this, 20 mM Tris-HCl buffer (pH 9.0) was added. The column was applied to a HiTrap Q HP (5 mL) column (manufactured by GE Healthcare Biosciences) previously equilibrated with 20 mM Tris-HCl buffer (pH 9.0), washed with the same buffer, and then sodium chloride ( The protein was eluted with a linear gradient from 0M to 1M.
 (e)HiTrap SP HPカラムクロマトグラフィー
 上記(d)で得られた活性画分を集め、20mM MES-水酸化ナトリウム緩衝液(pH5.5)を用いて透析を行うことによって脱塩した。これに20mM MES-水酸化ナトリウム緩衝液(pH5.5)を加えた。これを20mM MES-水酸化ナトリウム緩衝液(pH5.5)であらかじめ平衡化したHiTrap SP(1mL)カラム(GEヘルスケアバイオサイエンス株式会社製)にアプライし、同緩衝液でカラムを洗浄した後、塩化ナトリウム(0Mから1Mまで)のリニアグラジェントにより、タンパク質を溶出させた。
(E) HiTrap SP HP column chromatography The active fractions obtained in (d) above were collected and desalted by dialysis using 20 mM MES-sodium hydroxide buffer (pH 5.5). To this, 20 mM MES-sodium hydroxide buffer (pH 5.5) was added. This was applied to a HiTrap SP (1 mL) column (manufactured by GE Healthcare Biosciences) previously equilibrated with 20 mM MES-sodium hydroxide buffer (pH 5.5), and the column was washed with the same buffer. The protein was eluted with a linear gradient of sodium chloride (0M to 1M).
 以上のようにして、放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株より、精製酵素を得た。なお、精製酵素が単一であることは、以下の(f)SDS-PAGEによる分析で確認した。 As described above, a purified enzyme was obtained from the RD000920 strain belonging to the genus Actinomadura miaoliensis. The single purified enzyme was confirmed by the following (f) SDS-PAGE analysis.
 (f)SDS-PAGE
 上記(e)で溶出した活性画分を集めてSDS-PAGE(15%(w/v)ポリアクリルアミドゲル)により分子量を解析した。図2は、この溶出画分のSDS-PAGEによる解析の結果を示す電気泳動写真である。図2の左側のレーンは、タンパク質分子量マーカー(M)であり、図2の右側のレーンは、(e)で得られた精製酵素(RD000920株由来プロテアーゼ)のバンドを示す。図2に示すように、活性画分において、単一のバンドが観察され、精製酵素(ポリペプチド)の分子量は約31,000であった。なお、分子量の単位はDa(ダルトン)である。よって、kDa表記では、この酵素の分子量は約31kDaとなる。
(F) SDS-PAGE
The active fractions eluted in (e) above were collected and analyzed for molecular weight by SDS-PAGE (15% (w / v) polyacrylamide gel). FIG. 2 is an electrophoretogram showing the results of SDS-PAGE analysis of the eluted fraction. The left lane in FIG. 2 is the protein molecular weight marker (M), and the right lane in FIG. 2 shows the band of the purified enzyme (protease from RD000920 strain) obtained in (e). As shown in FIG. 2, a single band was observed in the active fraction, and the molecular weight of the purified enzyme (polypeptide) was about 31,000. The unit of molecular weight is Da (Dalton). Therefore, in the kDa notation, the molecular weight of this enzyme is about 31 kDa.
 表9にRD000920株由来プロテアーゼ精製における収量、収率等を示す。 Table 9 shows the yield, yield and the like in the purification of protease from RD000920 strain.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 なお、RD000920株由来プロテアーゼの酵素活性は、RD001933株由来プロテアーゼの酵素活性と同様にして測定した。 The enzyme activity of the RD000920 strain-derived protease was measured in the same manner as the enzyme activity of the RD001933 strain-derived protease.
 [RD000920株由来プロテアーゼの性質]
 RD000920株由来プロテアーゼ(精製酵素)の酵素学的性質について検討した。
[Properties of protease derived from RD000920 strain]
The enzymatic properties of protease (purified enzyme) derived from RD000920 strain were examined.
 (1)作用温度
 表2に示す反応液を各温度、pH7.5で10分間静置して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(1) Working temperature After reacting the reaction liquid shown in Table 2 at each temperature and pH 7.5 for 10 minutes to react, 50 μL of 20% trichloroacetic acid was added to stop the reaction. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured to determine the enzyme activity.
 図3は、種々の反応温度での酵素活性を、反応温度が75℃である場合の活性を基準(100%)とする相対活性として示したグラフである。図3のグラフに示されるように、RD000920株由来プロテアーゼ(精製酵素)は、50~90℃で活性を発揮し、そして反応の至適温度は60~80℃の範囲内であり、好ましくは70~75℃付近であった。なお、図4は、種々の反応温度での比活性を示すグラフである。 FIG. 3 is a graph showing enzyme activities at various reaction temperatures as relative activities based on the activity (100%) when the reaction temperature is 75 ° C. As shown in the graph of FIG. 3, the RD000920 strain-derived protease (purified enzyme) exhibits activity at 50 to 90 ° C., and the optimum temperature for the reaction is in the range of 60 to 80 ° C., preferably 70 It was about ~ 75 ° C. FIG. 4 is a graph showing specific activities at various reaction temperatures.
 (2)作用pH
 表3に示す反応液を各pH、65℃で10分間撹拌して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(2) Working pH
The reaction liquid shown in Table 3 was stirred and reacted at each pH and 65 ° C. for 10 minutes, and then 50 μL of 20% trichloroacetic acid was added to stop the reaction. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured to determine the enzyme activity.
 使用した緩衝液は次のとおりである。 The buffer solution used is as follows.
 MES-水酸化ナトリウム緩衝液:pH5.5、pH6
 Bis-Tris緩衝液:pH6、pH6.5、pH7.2
 Tris-HCl緩衝液:pH7.2、pH8、pH8.8
 Glycine-NaOH緩衝液:pH9、pH9.5
 図5は、種々の反応pHでの酵素活性を、反応pHが7.2である場合の酵素活性を基準(100%)とする相対活性として示したグラフである。図5のグラフから分かるように、RD000920株由来プロテアーゼ(精製酵素)は、pH5.5~9.0という広い範囲で活性を発揮し、そして、反応の至適pHは7.2付近(例えばpH6.0~8.8)であった。なお、図6は、種々の反応pHでの比活性を示すグラフである。
MES-sodium hydroxide buffer: pH 5.5, pH 6
Bis-Tris buffer: pH 6, pH 6.5, pH 7.2
Tris-HCl buffer: pH 7.2, pH 8, pH 8.8
Glycine-NaOH buffer: pH 9, pH 9.5
FIG. 5 is a graph showing enzyme activities at various reaction pHs as relative activities based on the enzyme activity when the reaction pH is 7.2 (100%). As can be seen from the graph of FIG. 5, the RD000920 strain-derived protease (purified enzyme) exhibits activity in a wide range of pH 5.5 to 9.0, and the optimum pH of the reaction is around 7.2 (for example, pH 6 0.0 to 8.8). FIG. 6 is a graph showing specific activities at various reaction pHs.
 (3)添加試薬の影響
 まず添加試薬を加えた酵素液を30分間、室温でインキュベートした後、表4に示す反応液(ただし、添加試薬、酵素液を除く)を加えて75℃、pH7.5で5分間静置して反応させた。その後、20%トリクロロ酢酸を50μL加えて反応を停止させた。そして、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(3) Effect of added reagent First, the enzyme solution to which the added reagent was added was incubated at room temperature for 30 minutes, and then the reaction solution shown in Table 4 (excluding the added reagent and enzyme solution) was added to 75 ° C, pH 7. 5 and allowed to react for 5 minutes. Thereafter, 50 μL of 20% trichloroacetic acid was added to stop the reaction. And the enzyme activity was calculated | required by centrifuging a reaction liquid and measuring the light absorbency of 340 nm of a supernatant liquid.
 使用した添加試薬は、EDTA、PMSF(フッ化フェニルメチルスルホニル)(終濃度5mM)、ZnCl、MnCl、CaCl、CuCl、CoCl、MgCl(終濃度1mM)である。 The additive reagents used were EDTA, PMSF (phenylmethylsulfonyl fluoride) (final concentration 5 mM), ZnCl 2 , MnCl 2 , CaCl 2 , CuCl 2 , CoCl 2 , MgCl 2 (final concentration 1 mM).
 表10は、添加試薬を添加した場合の酵素活性を、添加試薬を添加していない場合の活性を基準(100%)とする相対活性として示したものである。RD000920株由来プロテアーゼ(精製酵素)は、Zn2+、Mn2+、Ca2+、Cu2+、Co2+、Mg2+の存在下では、60%程度の活性を示した。また、EDTA、PMSFの存在下では、活性が大きく低下し、活性阻害が見られた。 Table 10 shows the enzyme activity when the additive reagent is added as a relative activity based on the activity (100%) when the additive reagent is not added. RD000920 strain-derived protease (purified enzyme) showed an activity of about 60% in the presence of Zn 2+ , Mn 2+ , Ca 2+ , Cu 2+ , Co 2+ and Mg 2+ . Further, in the presence of EDTA and PMSF, the activity was greatly reduced and activity inhibition was observed.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 [RD000920株由来プロテアーゼ(精製酵素)のアミノ酸配列の解析]
 RD000920株由来プロテアーゼ(精製酵素)のアミノ酸配列の解析をRD001933株由来プロテアーゼ(精製酵素)の場合と同様に行った。その結果、RD000920株由来プロテアーゼ(精製酵素)のアミノ酸配列は、RD001933株由来プロテアーゼ(精製酵素)のアミノ酸配列とほぼ100%一致したので、両方の酵素は同一のアミノ酸配列からなるものと考えられる。また、RD000920株由来プロテアーゼ遺伝子の塩基配列も、RD001933株由来プロテアーゼ遺伝子の塩基配列とほぼ100%一致したので、両方の遺伝子は同一の塩基配列からなるものと考えられる。
[Analysis of amino acid sequence of protease (purified enzyme) derived from RD000920 strain]
Analysis of the amino acid sequence of the RD000920 strain-derived protease (purified enzyme) was performed in the same manner as in the case of the RD001933 strain-derived protease (purified enzyme). As a result, the amino acid sequence of the RD000920 strain-derived protease (purified enzyme) was almost 100% identical to the amino acid sequence of the RD001933 strain-derived protease (purified enzyme), so it is considered that both enzymes consist of the same amino acid sequence. Moreover, since the base sequence of the protease gene derived from the RD000920 strain was almost 100% identical to the base sequence of the protease gene derived from the RD001933 strain, both genes are considered to have the same base sequence.
 しかし、図3~図6に示すように、両方の酵素は、作用温度及び作用pH等の酵素学的性質にわずかな違いが見られた。 However, as shown in FIGS. 3 to 6, both enzymes showed slight differences in enzymological properties such as action temperature and action pH.
 [RD000920株由来プロテアーゼ(粗酵素)]
 放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株を培養し、その培養上清から3種の沈殿方法により、粗酵素液を得た。以下に詳細を示す。
[RD000920 strain-derived protease (crude enzyme)]
The RD000920 strain belonging to the genus Actinodura miaoliensis of actinomycetes was cultured, and a crude enzyme solution was obtained from the culture supernatant by three kinds of precipitation methods. Details are shown below.
 (a)微生物の培養
 菌体として、放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株(受託番号:NITE P-1468)を使用した。
(A) Culture of microorganisms RD000920 strain (accession number: NITE P-1468) belonging to the genus Actinomadura miaoliensis of actinomycetes was used as the cells.
 まず、ISP2培地(酵母エキス0.6%、麦芽エキス1.4%、グルコース0.6%)700mLを調製し、500mL容三角フラスコに70mLずつ分注した。これにスプリングコイルを1個入れ、121℃で20分間蒸気殺菌を行った。さらに別滅菌した2.5%スキムミルク30mLを添加して終濃度を0.75%とした。 First, 700 mL of ISP2 medium (yeast extract 0.6%, malt extract 1.4%, glucose 0.6%) was prepared, and 70 mL was dispensed into a 500 mL Erlenmeyer flask. One spring coil was put in this, and steam sterilization was performed at 121 ° C. for 20 minutes. Furthermore, 30 mL of 2.5% skimmed milk that was sterilized separately was added to a final concentration of 0.75%.
 そして、グリセロールストックの菌体を50μLとり、ISP2培地5mLを入れたφ18試験管(18×180mm)に植菌し、45℃で良好な生育が得られるまで振とう培養した。この培養液を先の滅菌した培地100mLに1mLずつ植菌し、45℃で96時間程度振とう培養した。遠心分離機を用いて、この培養液から上清を回収した。 Then, 50 μL of glycerol stock cells were inoculated into a φ18 test tube (18 × 180 mm) containing 5 mL of ISP2 medium, and cultured with shaking at 45 ° C. until good growth was obtained. 1 mL of this culture solution was inoculated into 100 mL of the previously sterilized medium, and cultured with shaking at 45 ° C. for about 96 hours. The supernatant was recovered from this culture using a centrifuge.
 (b1)アセトン沈殿
 上記(a)で回収した培養上清に、40%、50%、60%、70%、80%(v/v)となるように-20℃アセトンを添加し、各濃度で生じた沈殿を遠心分離(10,000rpm、10分、4℃)により回収した。この沈殿を20mM トリス-塩酸緩衝液(pH8.0)30mLで溶解し、粗酵素液を得た。表11に酵素の回収率を示す。
(B1) Acetone precipitation Acetone at −20 ° C. was added to the culture supernatant collected in (a) so as to be 40%, 50%, 60%, 70%, and 80% (v / v). The precipitate produced in 1 was recovered by centrifugation (10,000 rpm, 10 minutes, 4 ° C.). This precipitate was dissolved in 30 mL of 20 mM Tris-HCl buffer (pH 8.0) to obtain a crude enzyme solution. Table 11 shows enzyme recovery.
 (b2)エタノール沈殿
 上記(a)で回収した培養上清に、40%、50%、60%、70%、80%(v/v)となるように-20℃エタノールを添加し、各濃度で生じた沈殿を遠心分離(10,000rpm、10分、4℃)により回収した。この沈殿を20mM トリス-塩酸緩衝液(pH8.0)30mLで溶解し、粗酵素液を得た。表11に酵素の回収率を示す。
(B2) Ethanol precipitation At −20 ° C. ethanol was added to the culture supernatant collected in (a) above so that it would be 40%, 50%, 60%, 70%, and 80% (v / v). The precipitate produced in 1 was recovered by centrifugation (10,000 rpm, 10 minutes, 4 ° C.). This precipitate was dissolved in 30 mL of 20 mM Tris-HCl buffer (pH 8.0) to obtain a crude enzyme solution. Table 11 shows enzyme recovery.
 (b3)硫安沈殿
 上記(a)で回収した培養上清に、40%、50%、60%、70%、80%飽和量となるように硫酸アンモニウム粉末を添加し、各濃度で生じた沈殿を遠心分離(10,000rpm、10分、4℃)により回収した。この沈殿を20mM トリス-塩酸緩衝液(pH8.0)30mLで溶解し、粗酵素液を得た。表11に酵素の回収率を示す。
(B3) Ammonium sulfate precipitation To the culture supernatant collected in (a) above, ammonium sulfate powder was added so that the saturation amount was 40%, 50%, 60%, 70%, 80%, and the precipitates generated at each concentration were added. It was recovered by centrifugation (10,000 rpm, 10 minutes, 4 ° C.). This precipitate was dissolved in 30 mL of 20 mM Tris-HCl buffer (pH 8.0) to obtain a crude enzyme solution. Table 11 shows enzyme recovery.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 このように、酵素を濃縮回収する場合には3種の沈殿方法を適宜利用することができる。 Thus, when the enzyme is concentrated and recovered, three types of precipitation methods can be used as appropriate.
 次に、RD000920株由来プロテアーゼ(粗酵素液)の酵素学的性質について検討した。 Next, the enzymatic properties of the RD000920 strain-derived protease (crude enzyme solution) were examined.
 (1)作用温度
 表2に示す反応液(酵素液は80%飽和硫安沈殿により得たもの)を各温度、pH7.5で10分間静置して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(1) Working temperature After reacting the reaction solution shown in Table 2 (enzyme solution obtained by 80% saturated ammonium sulfate precipitation) at each temperature and pH 7.5 for 10 minutes, 50 μL of 20% trichloroacetic acid was reacted. In addition, the reaction was stopped. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured to determine the enzyme activity.
 図10は、種々の反応温度での酵素活性を、反応温度が70℃である場合の活性を基準(100%)とする相対活性として示したグラフである。図10のグラフに示されるように、RD000920株由来プロテアーゼ(粗酵素液)は、50~85℃で活性を発揮し、そして反応の至適温度は65~80℃の範囲内であり、好ましくは70~80℃付近であった。 FIG. 10 is a graph showing enzyme activities at various reaction temperatures as relative activities based on the activity (100%) when the reaction temperature is 70 ° C. As shown in the graph of FIG. 10, the RD000920 strain-derived protease (crude enzyme solution) exhibits activity at 50 to 85 ° C., and the optimal temperature for the reaction is in the range of 65 to 80 ° C., preferably It was around 70 to 80 ° C.
 (2)作用pH
 表3に示す反応液(酵素液は80%飽和硫安沈殿により得たもの)を各pH、65℃で10分間静置して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(2) Working pH
The reaction solution shown in Table 3 (enzyme solution obtained by 80% saturated ammonium sulfate precipitation) was allowed to react for 10 minutes at each pH and 65 ° C., and then the reaction was stopped by adding 50 μL of 20% trichloroacetic acid. It was. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured to determine the enzyme activity.
 使用した緩衝液は次のとおりである。 The buffer solution used is as follows.
 酢酸-酢酸Na緩衝液:pH5
 Bis-Tris緩衝液:pH6
 Tris-HCl緩衝液:pH7.2、pH8
 Glycine-NaOH緩衝液:pH9
 図11は、種々の反応pHでの酵素活性を、反応pHが8.0である場合の酵素活性を基準(100%)とする相対活性として示したグラフである。図11のグラフから分かるように、RD000920株由来プロテアーゼ(粗酵素液)は、pH5.0~9.0という広い範囲で活性を発揮し、そして、反応の至適pHは7.5付近(例えばpH7.0~8.0)であった。
Acetic acid-Na acetate buffer: pH 5
Bis-Tris buffer: pH 6
Tris-HCl buffer: pH 7.2, pH 8
Glycine-NaOH buffer: pH 9
FIG. 11 is a graph showing enzyme activities at various reaction pHs as relative activities based on the enzyme activity when the reaction pH is 8.0 (100%). As can be seen from the graph of FIG. 11, the RD000920 strain-derived protease (crude enzyme solution) exhibits activity in a wide range of pH 5.0 to 9.0, and the optimum pH of the reaction is around 7.5 (for example, pH 7.0-8.0).
 (3)添加試薬の影響
 表4に示す反応液(酵素液は80%エタノール沈殿により得たもの)を65℃、pH7.5で10分間静置して反応させた。その後、20%トリクロロ酢酸を50μL加えて反応を停止させた。そして、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(3) Effect of added reagent The reaction solution shown in Table 4 (enzyme solution obtained by 80% ethanol precipitation) was allowed to react at 65 ° C. and pH 7.5 for 10 minutes. Thereafter, 50 μL of 20% trichloroacetic acid was added to stop the reaction. And the enzyme activity was calculated | required by centrifuging a reaction liquid and measuring the light absorbency of 340 nm of a supernatant liquid.
 使用した添加試薬は、CaCl、NaCl、KCl、MgCl、MnCl、FeCl、FeCl、CuCl、ZnCl、CoCl、EDTAである。 The additive reagents used are CaCl 2 , NaCl, KCl, MgCl 2 , MnCl 2 , FeCl 2 , FeCl 3 , CuCl 2 , ZnCl 2 , CoCl 2 , EDTA.
 表12は、添加試薬を添加した場合の酵素活性を、添加試薬を添加していない場合の活性を基準(100%)とする相対活性として示したものである。 Table 12 shows the enzyme activity when the additive reagent is added as a relative activity based on the activity (100%) when the additive reagent is not added.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 (4)CaCl濃度の依存性
 表8に示す反応液(酵素液は80%エタノール沈殿により得たもの)を65℃で10分間静置して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(4) Dependence on CaCl 2 concentration After reacting the reaction solution shown in Table 8 (enzyme solution obtained by 80% ethanol precipitation) at 65 ° C. for 10 minutes, 50 μL of 20% trichloroacetic acid was added. The reaction was stopped. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured to determine the enzyme activity.
 図12は、種々のCaCl終濃度での酵素活性を、CaCl終濃度が0.5mMである場合の活性を基準(100%)とする相対活性として示したグラフである。 12, the enzyme activity at various CaCl 2 final concentration is a graph showing the activity when CaCl 2 final concentration is 0.5mM as a relative activity to the reference (100%).
 [RD001933株及びRD000920株由来プロテアーゼ(粗酵素)]
 放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株及び放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株を混合培養し、その培養上清から3種の沈殿方法により、粗酵素液を得た。以下に詳細を示す。
[Protease (crude enzyme) derived from RD001933 and RD000920]
The RD001933 strain belonging to the genus Actinodura sp. Of Actinomycetes and the RD000920 strain belonging to the genus Actinomadura miaoliensis of Actinomycetes are mixed and cultured, and three kinds of precipitation methods are used to coarsely prepare the strain. An enzyme solution was obtained. Details are shown below.
 (a)微生物の培養
 菌体として、放線菌のアクチノマジュラ(Actinomadura sp.)属に属するRD001933株(受託番号:NITE P-1467)及び放線菌のアクチノマジュラ(Actinomadura miaoliensis)属に属するRD000920株(受託番号:NITE P-1468)を使用した。
(A) Culture of microorganisms As cells, RD001933 strain (accession number: NITE P-1467) belonging to the genus Actinodura sp. Of actinomycetes and RD000920 belonging to the genus Actinodura miaoliensis of actinomycetes The strain (Accession Number: NITE P-1468) was used.
 まず、ISP2培地(酵母エキス0.6%、麦芽エキス1.4%、グルコース0.6%)4.2Lを調製し、10L容卓上型培養装置(丸菱バイオエンジ製)に入れ、121℃で20分間蒸気殺菌を行った。さらに別滅菌した2.5%スキムミルク1.8Lを添加して終濃度を0.75%とした。 First, 4.2 L of ISP2 medium (yeast extract 0.6%, malt extract 1.4%, glucose 0.6%) was prepared and placed in a 10 L desktop culture device (manufactured by Maruhishi Bioengineer), 121 ° C. For 20 minutes. Furthermore, 1.8 L of 2.5% skimmed milk that was sterilized separately was added to a final concentration of 0.75%.
 そして、グリセロールストックの菌体2種類を500μLとり、ISP2培地50mLを入れた500mL容三角フラスコにそれぞれ植菌し、45℃で良好な生育が得られるまで振とう培養した。先の滅菌した培地6Lにこの2種類の培養液を30mLずつ植菌し、45℃、500rpm、1vvmで1~7日間、好ましくは1~3日間培養した。培養開始時において2種類の培養液の比率は1:1であることが好ましいが、別段の定めはない。遠心分離機を用いて、この培養液から上清を回収した。 Then, 500 μL of two glycerol stock cells were inoculated into 500 mL Erlenmeyer flasks containing 50 mL of ISP2 medium, and cultured with shaking at 45 ° C. until good growth was obtained. 30 mL of each of these two types of culture solutions was inoculated into 6 L of the previously sterilized medium and cultured at 45 ° C., 500 rpm, 1 vvm for 1 to 7 days, preferably 1 to 3 days. The ratio of the two types of culture solutions at the start of the culture is preferably 1: 1, but there is no special provision. The supernatant was recovered from this culture using a centrifuge.
 (b1)アセトン沈殿
 上記(a)で回収した培養上清に、40%、50%、60%、70%、80%(v/v)となるように-20℃アセトンを添加し、各濃度で生じた沈殿を遠心分離(10,000rpm、10分、4℃)により回収した。この沈殿を20mM トリス-塩酸緩衝液(pH8.0)50mLで溶解し、粗酵素液を得た。表13に酵素の回収率を示す。
(B1) Acetone precipitation Acetone at −20 ° C. was added to the culture supernatant collected in (a) so as to be 40%, 50%, 60%, 70%, and 80% (v / v). The precipitate produced in 1 was recovered by centrifugation (10,000 rpm, 10 minutes, 4 ° C.). This precipitate was dissolved in 50 mL of 20 mM Tris-HCl buffer (pH 8.0) to obtain a crude enzyme solution. Table 13 shows enzyme recovery.
 (b2)エタノール沈殿
 上記(a)で回収した培養上清に、40%、50%、60%、70%、80%(v/v)となるようにエタノールを添加し、各濃度で生じた沈殿を遠心分離(10,000rpm、10分、4℃)により回収した。この沈殿を20mM トリス-塩酸緩衝液(pH8.0)50mLで溶解し、粗酵素液を得た。表13に酵素の回収率を示す。
(B2) Ethanol precipitation Ethanol was added to the culture supernatant collected in the above (a) so as to be 40%, 50%, 60%, 70%, 80% (v / v), and it was generated at each concentration. The precipitate was collected by centrifugation (10,000 rpm, 10 minutes, 4 ° C.). This precipitate was dissolved in 50 mL of 20 mM Tris-HCl buffer (pH 8.0) to obtain a crude enzyme solution. Table 13 shows enzyme recovery.
 (b3)硫安沈殿
 上記(a)で回収した培養上清に、40%、50%、60%、70%、80%飽和量となるように硫酸アンモニウム粉末を添加し、各濃度で生じた沈殿を遠心分離(10,000rpm、10分、4℃)により回収した。この沈殿を20mM トリス-塩酸緩衝液(pH8.0)50mLで溶解し、粗酵素液を得た。表13に酵素の回収率を示す。
(B3) Ammonium sulfate precipitation To the culture supernatant collected in (a) above, ammonium sulfate powder was added so that the saturation amount was 40%, 50%, 60%, 70%, 80%, and the precipitates generated at each concentration were added. It was recovered by centrifugation (10,000 rpm, 10 minutes, 4 ° C.). This precipitate was dissolved in 50 mL of 20 mM Tris-HCl buffer (pH 8.0) to obtain a crude enzyme solution. Table 13 shows enzyme recovery.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 このように、酵素を濃縮回収する場合には3種の沈殿方法を適宜利用することができる。 Thus, when the enzyme is concentrated and recovered, three types of precipitation methods can be used as appropriate.
 次に、RD001933株及びRD000920株由来プロテアーゼ(粗酵素)の酵素学的性質について検討した。 Next, the enzymatic properties of proteases (crude enzymes) derived from strains RD001933 and RD000920 were examined.
 (1)作用温度
 表2に示す反応液(酵素液は80%飽和硫安沈殿により得たもの)を各温度、pH7.5で10分間静置して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(1) Working temperature After reacting the reaction solution shown in Table 2 (enzyme solution obtained by 80% saturated ammonium sulfate precipitation) at each temperature and pH 7.5 for 10 minutes, 50 μL of 20% trichloroacetic acid was reacted. In addition, the reaction was stopped. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured to determine the enzyme activity.
 図13は、種々の反応温度での酵素活性を、反応温度が70℃である場合の活性を基準(100%)とする相対活性として示したグラフである。図13のグラフに示されるように、RD001933株及びRD000920株由来プロテアーゼ(粗酵素)は、55~85℃で活性を発揮し、そして反応の至適温度は65~80℃の範囲内であり、好ましくは70℃付近であった。 FIG. 13 is a graph showing enzyme activities at various reaction temperatures as relative activities based on the activity (100%) when the reaction temperature is 70 ° C. As shown in the graph of FIG. 13, RD001933 strain and RD000920 strain-derived protease (crude enzyme) exhibit activity at 55 to 85 ° C., and the optimal temperature for the reaction is in the range of 65 to 80 ° C. Preferably, it was around 70 ° C.
 (2)作用pH
 表3に示す反応液(酵素液は80%飽和硫安沈殿により得たもの)を各pH、65℃で10分間静置して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(2) Working pH
The reaction solution shown in Table 3 (enzyme solution obtained by 80% saturated ammonium sulfate precipitation) was allowed to react for 10 minutes at each pH and 65 ° C., and then the reaction was stopped by adding 50 μL of 20% trichloroacetic acid. It was. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured to determine the enzyme activity.
 使用した緩衝液は次のとおりである。 The buffer solution used is as follows.
 酢酸-酢酸Na緩衝液:pH5
 Bis-Tris緩衝液:pH6
 Tris-HCl緩衝液:pH7.2、pH8
 Glycine-NaOH緩衝液:pH9
 図14は、種々の反応pHでの酵素活性を、反応pHが8.0である場合の酵素活性を基準(100%)とする相対活性として示したグラフである。図14のグラフから分かるように、RD001933株及びRD000920株由来プロテアーゼ(粗酵素)は、pH5.0~9.0という広い範囲で活性を発揮し、そして、反応の至適pHは7.5付近(例えばpH7.0~8.0)であった。
Acetic acid-Na acetate buffer: pH 5
Bis-Tris buffer: pH 6
Tris-HCl buffer: pH 7.2, pH 8
Glycine-NaOH buffer: pH 9
FIG. 14 is a graph showing enzyme activities at various reaction pHs as relative activities based on the enzyme activity when the reaction pH is 8.0 (100%). As can be seen from the graph of FIG. 14, the proteases (crude enzymes) derived from strains RD001933 and RD000920 exhibit activity in a wide range of pH 5.0 to 9.0, and the optimum pH of the reaction is around 7.5. (For example, pH 7.0 to 8.0).
 (3)添加試薬の影響
 表4に示す反応液(酵素液は80%エタノール沈殿により得たもの)を65℃、pH7.5で10分間静置して反応させた。その後、20%トリクロロ酢酸を50μL加えて反応を停止させた。そして、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(3) Effect of added reagent The reaction solution shown in Table 4 (enzyme solution obtained by 80% ethanol precipitation) was allowed to react at 65 ° C. and pH 7.5 for 10 minutes. Thereafter, 50 μL of 20% trichloroacetic acid was added to stop the reaction. And the enzyme activity was calculated | required by centrifuging a reaction liquid and measuring the light absorbency of 340 nm of a supernatant liquid.
 使用した添加試薬は、CaCl、NaCl、KCl、MgCl、MnCl、FeCl、FeCl、CuCl、ZnCl、CoCl、EDTAである。 The additive reagents used are CaCl 2 , NaCl, KCl, MgCl 2 , MnCl 2 , FeCl 2 , FeCl 3 , CuCl 2 , ZnCl 2 , CoCl 2 , EDTA.
 表14は、添加試薬を添加した場合の酵素活性を、添加試薬を添加していない場合の活性を基準(100%)とする相対活性として示したものである。 Table 14 shows the enzyme activity when the additive reagent is added as the relative activity based on the activity (100%) when the additive reagent is not added.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 (4)CaCl濃度の依存性
 表8に示す反応液(酵素液は80%エタノール沈殿により得たもの)を65℃で10分間静置して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定することによって酵素活性を求めた。
(4) Dependence on CaCl 2 concentration After reacting the reaction solution shown in Table 8 (enzyme solution obtained by 80% ethanol precipitation) at 65 ° C. for 10 minutes, 50 μL of 20% trichloroacetic acid was added. The reaction was stopped. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured to determine the enzyme activity.
 図15は、種々のCaCl終濃度での酵素活性を、CaCl終濃度が0.5mMである場合の活性を基準(100%)とする相対活性として示したグラフである。 Figure 15 is an enzyme activity at various CaCl 2 final concentration is a graph showing the activity when CaCl 2 final concentration is 0.5mM as a relative activity to the reference (100%).
 (5)保存安定性
 上記(a)で回収した培養上清に60%飽和量となるように硫酸アンモニウムを添加し、生じた沈殿を遠心分離(10,000rpm、10分、4℃)により回収した。この沈殿を20mM トリス-塩酸緩衝液(pH8.0)で90倍又は18倍に濃縮されるよう溶解し、粗酵素液を得た。90倍に濃縮した粗酵素液は4℃、室温(平均26.0℃)、40℃で静置し、18倍に濃縮した粗酵素液は真空凍結乾燥して凍結乾燥品とし、4℃、40℃で静置した。所定日数経過した後、各粗酵素の酵素活性を次のようにして測定した。まず表2に示す反応液(粗酵素液は水道水により200倍に希釈したものであり、凍結乾燥品は水道水に溶かして1mg/mLとしたもの)を65℃で10分間静置して反応させた後、20%トリクロロ酢酸を50μL加えて反応を停止させた。その後、反応液を遠心分離して上清の340nmの吸光度を測定した。初日の活性を基準(100%)とした。
(5) Storage stability Ammonium sulfate was added to the culture supernatant collected in (a) so as to be 60% saturation, and the resulting precipitate was collected by centrifugation (10,000 rpm, 10 minutes, 4 ° C.). . This precipitate was dissolved with 20 mM Tris-HCl buffer (pH 8.0) so as to be concentrated 90-fold or 18-fold to obtain a crude enzyme solution. The crude enzyme solution concentrated 90 times was allowed to stand at 4 ° C., room temperature (average 26.0 ° C.) and 40 ° C., and the crude enzyme solution concentrated 18 times was lyophilized in vacuo to obtain a lyophilized product at 4 ° C. It left still at 40 degreeC. After a predetermined number of days, the enzyme activity of each crude enzyme was measured as follows. First, the reaction solution shown in Table 2 (the crude enzyme solution was diluted 200-fold with tap water, and the freeze-dried product was dissolved in tap water to 1 mg / mL) and left at 65 ° C. for 10 minutes. After the reaction, 50 μL of 20% trichloroacetic acid was added to stop the reaction. Thereafter, the reaction solution was centrifuged, and the absorbance at 340 nm of the supernatant was measured. The activity on the first day was taken as the standard (100%).
 図16は、各粗酵素についての残存活性の経日変化を示すグラフである。図16から凍結乾燥品を40℃で保存しても活性が低下しにくいことが分かる。 FIG. 16 is a graph showing changes over time in residual activity for each crude enzyme. It can be seen from FIG. 16 that the activity is hardly lowered even when the freeze-dried product is stored at 40 ° C.
 [洗浄効果確認試験]
 (1)滴下試験
 プロテアーゼ含有洗浄剤として、RD001933株由来プロテアーゼ(精製酵素)、RD000920株由来プロテアーゼ(精製酵素)、RD001933株及びRD000920株由来プロテアーゼ(粗酵素)をそれぞれ、疑似血液で汚染された試験片(NITI-ON、洗浄評価インジケーター「TOSI-Gold」)上に滴下し、所定時間ごとに疑似血液を拭き取って洗浄を行った。この洗浄は、65℃で各酵素量を5μL(濃度:約5U/mL)に調製して行った。試験片の洗浄結果は、次の基準で目視により判定した。その結果を表15に示す。
[Cleaning effect confirmation test]
(1) Dropping test As a protease-containing detergent, RD001933-derived protease (purified enzyme), RD000920 strain-derived protease (purified enzyme), RD001933 strain and RD000920 strain-derived protease (crude enzyme) were each contaminated with simulated blood. The solution was dropped on a piece (NITI-ON, washing evaluation indicator “TOSI-Gold”), and the pseudo blood was wiped off every predetermined time for washing. This washing was performed at 65 ° C. by adjusting the amount of each enzyme to 5 μL (concentration: about 5 U / mL). The cleaning result of the test piece was determined visually by the following criteria. The results are shown in Table 15.
 「◎」:完全に洗浄された状態
 「○」:ほとんど洗浄されている状態
 「△」:ごくわずかな残留物(疑似血液汚れ)がある状態
 「×」:残留物(疑似血液汚れ)が残っている状態
“◎”: completely cleaned “○”: almost cleaned “△”: very little residue (pseudo-blood stain) “×”: residue (pseudo-blood stain) remains State
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 (2)フラスコ試験
 洗浄剤として、RD001933株及びRD000920株由来プロテアーゼ(粗酵素)、市販酵素ナットウキナーゼ(和光純薬工業(株)「147-08801」)、市販ストレプトキナーゼ(和光純薬工業(株)「593-20581」)、市販酵素ウロキナーゼ(田辺三菱製薬(株)「873954」)、市販衣類洗剤(花王(株)「アタックNeo」)、市販酵素サーモリシン(シグマ-アルドリッチ「P1512-1G」)を用いた。
(2) Flask test As detergents, RD001933 strain and RD000920 strain-derived protease (crude enzyme), commercially available enzyme nattokinase (Wako Pure Chemical Industries, Ltd. “147-08801”), commercially available streptokinase (Wako Pure Chemical Industries, Ltd.) "593-20581"), commercially available enzyme urokinase (Mitsubishi Tanabe Pharma Corporation "873954"), commercially available clothing detergent (Kao Corporation "Attack Neo"), commercially available enzyme thermolysin (Sigma-Aldrich "P1512-1G") Using.
 上記の洗浄剤をそれぞれ200mL容フラスコに30mLずつ入れ、さらに試験片(NITI-ON、洗浄評価インジケーター「TOSI-Gold」)を入れて浸漬させた。そして、表17に示す温度及び時間の条件で攪拌子により上記のフラスコ内を攪拌した。その後、上記の試験片を取り出して軽く水洗した後、上記と同じ基準で洗浄結果を判定した。その結果を表16に示す。 30 mL of each of the above cleaning agents was put in a 200 mL flask, and further a test piece (NITI-ON, cleaning evaluation indicator “TOSI-Gold”) was added and immersed. And the inside of said flask was stirred with the stirring bar on the conditions of temperature and time shown in Table 17. Then, after taking out said test piece and lightly washing with water, the washing | cleaning result was determined on the same basis as the above. The results are shown in Table 16.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表16から明らかなように、RD001933株及びRD000920株由来プロテアーゼ(粗酵素)は最も洗浄効果が高いと考えられ、次いで市販酵素サーモリシンの洗浄効果が高いことが確認された。 As is clear from Table 16, it was confirmed that proteases (crude enzymes) derived from RD001933 and RD000920 strains had the highest cleaning effect, and then the commercially available enzyme thermolysin had the highest cleaning effect.
 (3)洗浄器試験その1
 市販されている洗浄剤の中では最も洗浄効果が高いと考えられるサーモリシン(シグマ-アルドリッチ「P1512-1G」)と、RD001933株及びRD000920株由来プロテアーゼ(粗酵素)との洗浄効果を次のようにして確認した。
(3) Washer test 1
The cleaning effect of thermolysin (Sigma-Aldrich “P1512-1G”), which is considered to have the highest cleaning effect among commercially available cleaning agents, and protease (crude enzyme) derived from RD001933 and RD000920 strains is as follows. Confirmed.
 smeg社(イタリア)製器具除染用洗浄器「WD3060」に、試験片(NITI-ON、洗浄評価インジケーター「TOSI-Gold」)をセットした。さらにプロテアーゼ含有洗浄剤として、RD001933株及びRD000920株由来プロテアーゼ(粗酵素)又はサーモリシン(シグマ-アルドリッチ「P1512-1G」)をセットし、次の工程1~5で表17に示す温度X(℃)及び時間Y(min)の条件で試験片の洗浄を行った。試験片の洗浄結果は、上記と同じ基準で目視により判定した。その結果を表17に示す。 A test piece (NITI-ON, cleaning evaluation indicator “TOSI-Gold”) was set in an instrument decontamination cleaner “WD3060” manufactured by smeg (Italy). Furthermore, protease (crude enzyme) or thermolysin (Sigma-Aldrich “P1512-1G”) derived from RD001933 and RD000920 strains was set as a protease-containing detergent, and the temperature X (° C.) shown in Table 17 in the following steps 1 to 5 was set. And the test piece was washed under the condition of time Y (min). The cleaning result of the test piece was determined visually by the same standard as described above. The results are shown in Table 17.
 工程1:水道水による予備洗浄、3分;
 工程2:洗浄、温度X(℃)、時間Y(min);
 工程3:すすぎ1回目、40℃、1分;
 工程4:すすぎ2回目、水道水、1分;
 工程5:殺菌、90℃、5分。
Step 1: pre-washing with tap water, 3 minutes;
Step 2: Washing, temperature X (° C.), time Y (min);
Step 3: First rinse, 40 ° C., 1 minute;
Step 4: Rinse second time, tap water, 1 minute;
Process 5: Sterilization, 90 degreeC, 5 minutes.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表17から、RD001933株及びRD000920株由来プロテアーゼ(粗酵素)の方が、市販酵素サーモリシンに比べて少ない酵素量で同等の洗浄効果を示すことから、より洗浄効果が高いと考えられる。 From Table 17, the RD001933 strain and the RD000920 strain-derived protease (crude enzyme) are considered to have a higher cleaning effect because they show the same cleaning effect with a smaller amount of enzyme than the commercially available enzyme thermolysin.
 (4)洗浄器試験その2
 ヨーロッパ等の硬水を想定したCa2+濃度と洗浄力との関係について次のように調べた。
(4) Cleaner test 2
The relationship between Ca 2+ concentration and detergency assuming hard water in Europe and the like was examined as follows.
 smeg社(イタリア)製器具除染用洗浄器「WD3060」に、試験片(NITI-ON、洗浄評価インジケーター「TOSI-Gold」)をセットした。さらにプロテアーゼ含有洗浄剤として、RD001933株及びRD000920株由来プロテアーゼ(粗酵素)をセットして、上記と同じ工程1~5で試験片の洗浄を行った。その結果を表18に示す。試験片の洗浄結果は、上記と同じ基準で目視により判定した。 A test piece (NITI-ON, cleaning evaluation indicator “TOSI-Gold”) was set in an instrument decontamination cleaner “WD3060” manufactured by smeg (Italy). Further, RD001933 strain and RD000920 strain-derived protease (crude enzyme) were set as protease-containing detergents, and the test pieces were washed in the same steps 1 to 5 as described above. The results are shown in Table 18. The cleaning result of the test piece was determined visually by the same standard as described above.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表18から明らかなように、RD001933株及びRD000920株由来プロテアーゼ(粗酵素)は、Ca2+濃度の低い軟水(例えば日本国内の水道水)下に比べてCa2+濃度の高い硬水(ヨーロッパ等の水)下の方がさらに洗浄力が向上することが確認された。 As is apparent from Table 18, proteases (crude enzymes) derived from RD001933 and RD000920 strains are hard water (European water, etc.) having a high Ca 2+ concentration compared to soft water having a low Ca 2+ concentration (for example, tap water in Japan). ) It was confirmed that the lower one further improved the cleaning power.
 (5)洗浄器試験その3
 現在広く使用されているアルカリ洗浄剤の洗浄効果を次のようにして確認した。
(5) Cleaning device test 3
The cleaning effect of the alkaline detergents currently widely used was confirmed as follows.
 smeg社(イタリア)製器具除染用洗浄器「WD3060」に、試験片(NITI-ON、洗浄評価インジケーター「TOSI-Gold」)をセットした。さらに既存洗剤A(アルカリ洗浄剤、Borer Chemie社製「deconex(R)28ALKAONE-X」)、既存洗剤B(多酵素洗浄剤、Borer Chemie社製「deconex(R)POWER ZYME」)をセットして、上記と同じ工程1~5で試験片の洗浄を行った。その結果を表19に示す。試験片の洗浄結果は、上記と同じ基準で目視により判定した。 A test piece (NITI-ON, cleaning evaluation indicator “TOSI-Gold”) was set in an instrument decontamination cleaner “WD3060” manufactured by smeg (Italy). Furthermore, set the existing detergent A (alkaline detergent, Borer Chemie's “deconex® 28ALKAONE-X”) and existing detergent B (multienzyme detergent, Borer Chemie ’s “deconex® POWER ZYME”) The test pieces were washed in the same steps 1 to 5 as described above. The results are shown in Table 19. The cleaning result of the test piece was determined visually by the same standard as described above.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表17及び表18に示すRD001933株及びRD000920株由来プロテアーゼ(粗酵素)の洗浄結果と、表19に示す既存のアルカリ洗浄剤の洗浄結果とを対比すると、RD001933株及びRD000920株由来プロテアーゼ(粗酵素)の方が、既存のアルカリ洗浄剤に比べて洗浄効果が高いことが確認された。 Comparing the washing results of proteases (crude enzymes) derived from RD001933 and RD000920 shown in Table 17 and Table 18 with the washing results of existing alkaline detergents shown in Table 19, proteases from RD001933 and RD000920 (crude enzymes) ) Was confirmed to have a higher cleaning effect than existing alkaline cleaners.
[Actinomadura sp. RD001933株(受託番号:NITE P-1467)]
 受託番号:NITE P-1467
 寄託機関の名称:独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD)
 寄託機関のあて名:日本国 〒292-0818 千葉県木更津市かずさ鎌足2-5-8
 寄託の日付:2012年11月22日。
[Actinomadura miaoliensis RD000920株(受託番号:NITE P-1468)]
 受託番号:NITE P-1468
 寄託機関の名称:独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD)
 寄託機関のあて名:日本国 〒292-0818 千葉県木更津市かずさ鎌足2-5-8
 寄託の日付:2012年11月22日。
[Actinomadura sp. RD001933 strain (Accession number: NITE P-1467)]
Accession Number: NITE P-1467
Name of depositary institution: National Institute for Product Evaluation Technology Patent Microorganism Depositary (NPMD)
Name of depositary institution: Japan 2-5-8 Kazusa Kamashitsu, Kisarazu City, Chiba Prefecture 292-0818, Japan
Date of deposit: November 22, 2012.
[Actinomadura miaoliensis RD000920 strain (Accession number: NITE P-1468)]
Accession Number: NITE P-1468
Name of depositary institution: National Institute for Product Evaluation Technology Patent Microorganism Depositary (NPMD)
Name of depositary institution: Japan 2-5-8 Kazusa Kamashitsu, Kisarazu City, Chiba Prefecture 292-0818, Japan
Date of deposit: November 22, 2012.
配列番号1:プロテアーゼ発現遺伝子
配列番号2:プロテアーゼ(ポリペプチド)
配列番号3:プロテアーゼのN末端配列
配列番号4:プロテアーゼの内部配列
配列番号5:プロテアーゼの内部配列
配列番号6:プロテアーゼの内部配列
配列番号7:プロテアーゼの内部配列
配列番号8:プライマーS1
配列番号9:プライマーA1-1
配列番号10:プライマーA1-2
配列番号11:プロテアーゼ発現遺伝子断片(解析結果)
配列番号12:プライマー(インバースPCR)
配列番号13:プライマー(インバースPCR)
配列番号14:プロテアーゼ発現遺伝子断片(解析結果、5’末端配列)
配列番号15:プロテアーゼ発現遺伝子断片(解析結果、3’末端配列)
SEQ ID NO: 1: Protease expression gene SEQ ID NO: 2: Protease (polypeptide)
SEQ ID NO: 3: N-terminal sequence of protease SEQ ID NO: 4: Internal sequence of protease SEQ ID NO: 5: Internal sequence of protease SEQ ID NO: 6: Internal sequence of protease SEQ ID NO: 7: Internal sequence of protease SEQ ID NO: 8: Primer S1
SEQ ID NO: 9: Primer A1-1
SEQ ID NO: 10: Primer A1-2
Sequence number 11: Protease expression gene fragment (analysis result)
SEQ ID NO: 12: primer (inverse PCR)
SEQ ID NO: 13: primer (inverse PCR)
SEQ ID NO: 14: Protease-expressed gene fragment (analysis result, 5 ′ end sequence)
SEQ ID NO: 15: Protease expression gene fragment (analysis result, 3 ′ end sequence)

Claims (10)

  1.  放線菌のアクチノマジュラ・エスピー(Actinomadura sp.)RD001933株(NBRC国内分離RD株)を培養して得られたプロテアーゼ。 Protease obtained by culturing Actinomycetes sp. RD001933 strain (NBRC domestic isolate RD strain).
  2.  放線菌のアクチノマジュラ・マイアオリエンシス(Actinomadura miaoliensis)RD000920株(NBRC国内分離RD株)を培養して得られたプロテアーゼ。 Protease obtained by cultivating actinomycete Myaoriensis RD000920 strain (NBRC domestic isolate RD strain).
  3.  放線菌のアクチノマジュラ・エスピー(Actinomadura sp.)RD001933株(NBRC国内分離RD株)及び放線菌のアクチノマジュラ・マイアオリエンシス(Actinomadura miaoliensis)RD000920株(NBRC国内分離RD株)を混合培養して得られたプロテアーゼ。 Actinomycetes Actinomadura sp. RD001933 (NBRC domestic isolate RD) and Actinomycetes Actinomadura miaoliensis RD000920 (NBRC domestic isolate RD) are mixed and cultured. Protease obtained.
  4.  前記プロテアーゼが、以下の(a1)、(a2)又は(a3)に記載のポリペプチドを含む請求項1乃至3のいずれか一項に記載のプロテアーゼ。
     (a1)配列番号2に記載のアミノ酸配列からなるポリペプチド。
     (a2)配列番号2に記載のアミノ酸配列において、1つ又は複数のアミノ酸残基が置換、挿入、欠失、及び/又は付加されたアミノ酸配列からなるポリペプチド。
     (a3)配列番号2に記載のアミノ酸配列と少なくとも65%の相同性を有するポリペプチド。
    The protease according to any one of claims 1 to 3, wherein the protease comprises a polypeptide according to the following (a1), (a2), or (a3).
    (A1) A polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 2.
    (A2) A polypeptide comprising an amino acid sequence in which one or more amino acid residues are substituted, inserted, deleted, and / or added in the amino acid sequence set forth in SEQ ID NO: 2.
    (A3) A polypeptide having at least 65% homology with the amino acid sequence set forth in SEQ ID NO: 2.
  5.  前記プロテアーゼのSDS-PAGEによる分子量が約31,000Da(31kDa)である請求項1乃至4のいずれか一項に記載のプロテアーゼ。 The protease according to any one of claims 1 to 4, wherein the protease has a molecular weight of about 31,000 Da (31 kDa) by SDS-PAGE.
  6.  前記プロテアーゼをコードするポリヌクレオチドが、以下の(b1)、(b2)又は(b3)に記載のポリヌクレオチドを含む請求項1乃至5のいずれか一項に記載のプロテアーゼ。
     (b1)配列番号1に記載の塩基配列からなるポリヌクレオチド。
     (b2)配列番号1に記載の塩基配列に相補的な塩基配列とストリンジェントな条件でハイブリダイズするポリヌクレオチド。
     (b3)配列番号1に記載の塩基配列と少なくとも70%の配列同一性を有するポリヌクレオチド。
    The protease according to any one of claims 1 to 5, wherein the polynucleotide encoding the protease comprises the polynucleotide according to the following (b1), (b2) or (b3).
    (B1) A polynucleotide comprising the base sequence set forth in SEQ ID NO: 1.
    (B2) A polynucleotide that hybridizes with a base sequence complementary to the base sequence described in SEQ ID NO: 1 under stringent conditions.
    (B3) A polynucleotide having at least 70% sequence identity to the base sequence set forth in SEQ ID NO: 1.
  7.  請求項1乃至6のいずれか一項に記載のプロテアーゼを含有するプロテアーゼ含有洗浄剤。 A protease-containing detergent containing the protease according to any one of claims 1 to 6.
  8.  放線菌のアクチノマジュラ・エスピー(Actinomadura sp.)RD001933株(NBRC国内分離RD株)を培養して製造するプロテアーゼ含有洗浄剤の製造方法。 A method for producing a protease-containing detergent comprising culturing and producing actinomycetes, Actinomadura sp. RD001933 strain (NBRC domestic isolate RD strain).
  9.  放線菌のアクチノマジュラ・マイアオリエンシス(Actinomadura miaoliensis)RD000920株(NBRC国内分離RD株)を培養して製造するプロテアーゼ含有洗浄剤の製造方法。 A method for producing a protease-containing detergent, which is produced by culturing and producing actinomycetes, Actinomadura miaoliensis RD000920 strain (NBRC domestic isolate RD strain).
  10.  放線菌のアクチノマジュラ・エスピー(Actinomadura sp.)RD001933株(NBRC国内分離RD株)及び放線菌のアクチノマジュラ・マイアオリエンシス(Actinomadura miaoliensis)RD000920株(NBRC国内分離RD株)を混合培養して製造するプロテアーゼ含有洗浄剤の製造方法。 Actinomycetes Actinomadura sp. RD001933 (NBRC domestic isolate RD) and Actinomycetes Actinomadura miaoliensis RD000920 (NBRC domestic isolate RD) are mixed and cultured. A method for producing a protease-containing detergent.
PCT/JP2013/000724 2013-02-08 2013-02-08 Protease, and protease-containing cleaning agent and production method therefor WO2014122698A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/000724 WO2014122698A1 (en) 2013-02-08 2013-02-08 Protease, and protease-containing cleaning agent and production method therefor
JP2014560535A JP6043371B2 (en) 2013-02-08 2013-02-08 Protease, protease-containing detergent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/000724 WO2014122698A1 (en) 2013-02-08 2013-02-08 Protease, and protease-containing cleaning agent and production method therefor

Publications (1)

Publication Number Publication Date
WO2014122698A1 true WO2014122698A1 (en) 2014-08-14

Family

ID=51299316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000724 WO2014122698A1 (en) 2013-02-08 2013-02-08 Protease, and protease-containing cleaning agent and production method therefor

Country Status (2)

Country Link
JP (1) JP6043371B2 (en)
WO (1) WO2014122698A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016062695A1 (en) * 2014-10-21 2016-04-28 Carbios Polypeptide having a polyester degrading activity and uses thereof
WO2019122308A1 (en) * 2017-12-21 2019-06-27 Carbios Novel proteases and uses thereof
US10385183B2 (en) 2014-05-16 2019-08-20 Carbios Process of recycling mixed PET plastic articles
US10508269B2 (en) 2015-03-13 2019-12-17 Carbios Polypeptide having a polyester degrading activity and uses thereof
US10626242B2 (en) 2014-12-19 2020-04-21 Carbios Plastic compound and preparation process
US10717996B2 (en) 2015-12-21 2020-07-21 Carbios Recombinant yeast cells producing polylactic acid and uses thereof
US10723848B2 (en) 2015-06-12 2020-07-28 Carbios Masterbatch composition comprising a high concentration of biological entities
US10767026B2 (en) 2016-05-19 2020-09-08 Carbios Process for degrading plastic products

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303984A (en) * 1993-04-19 1994-11-01 Japan Tobacco Inc Recombinant dna, yeast transformed therewith and production of aqualysin i using the same
JP2006516889A (en) * 2002-10-10 2006-07-13 ダイヴァーサ コーポレイション Protease, nucleic acid encoding the same, and method for producing and using the same
JP2013000099A (en) * 2011-06-21 2013-01-07 National Univ Corp Shizuoka Univ Polylactic acid-degrading enzyme, and microorganism producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303984A (en) * 1993-04-19 1994-11-01 Japan Tobacco Inc Recombinant dna, yeast transformed therewith and production of aqualysin i using the same
JP2006516889A (en) * 2002-10-10 2006-07-13 ダイヴァーサ コーポレイション Protease, nucleic acid encoding the same, and method for producing and using the same
JP2013000099A (en) * 2011-06-21 2013-01-07 National Univ Corp Shizuoka Univ Polylactic acid-degrading enzyme, and microorganism producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUKKHUM S. ET AL.: "A novel poly (L-lactide) degrading actinomycetes isolated from Thai forest soil, phylogenic relationship and the enzyme characterization", J. GEN. APPL. MICROBIOL., vol. 55, no. 6, 2009, pages 459 - 467 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385183B2 (en) 2014-05-16 2019-08-20 Carbios Process of recycling mixed PET plastic articles
CN106852154B (en) * 2014-10-21 2021-07-30 卡比欧斯公司 Polypeptide with polyester degradation activity and application thereof
CN106852154A (en) * 2014-10-21 2017-06-13 卡比欧斯公司 Polypeptide with polyester degrading activity and application thereof
US10287561B2 (en) 2014-10-21 2019-05-14 Carbios Polypeptide having a polyester degrading activity and uses thereof
WO2016062695A1 (en) * 2014-10-21 2016-04-28 Carbios Polypeptide having a polyester degrading activity and uses thereof
EP3778883A1 (en) * 2014-10-21 2021-02-17 Carbios Polypeptide having a polyester degrading activity and uses thereof
US10626242B2 (en) 2014-12-19 2020-04-21 Carbios Plastic compound and preparation process
US10508269B2 (en) 2015-03-13 2019-12-17 Carbios Polypeptide having a polyester degrading activity and uses thereof
US11802185B2 (en) 2015-06-12 2023-10-31 Carbios Masterbatch composition comprising a high concentration of biological entities
US10723848B2 (en) 2015-06-12 2020-07-28 Carbios Masterbatch composition comprising a high concentration of biological entities
US11198767B2 (en) 2015-06-12 2021-12-14 Carbios Process for preparing a biodegradable plastic composition
US10717996B2 (en) 2015-12-21 2020-07-21 Carbios Recombinant yeast cells producing polylactic acid and uses thereof
US10767026B2 (en) 2016-05-19 2020-09-08 Carbios Process for degrading plastic products
US11377533B2 (en) 2016-05-19 2022-07-05 Carbios Process for degrading plastic products
JP2021508455A (en) * 2017-12-21 2021-03-11 キャルビオスCarbios New protease and its use
CN111542603A (en) * 2017-12-21 2020-08-14 卡比奥斯公司 Novel protease and use thereof
US11549105B2 (en) 2017-12-21 2023-01-10 Carbios Proteases and uses thereof
WO2019122308A1 (en) * 2017-12-21 2019-06-27 Carbios Novel proteases and uses thereof
CN111542603B (en) * 2017-12-21 2024-04-02 卡比奥斯公司 Novel protease and use thereof
JP7465391B2 (en) 2017-12-21 2024-04-10 キャルビオス Novel protease and its use

Also Published As

Publication number Publication date
JPWO2014122698A1 (en) 2017-01-26
JP6043371B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6043371B2 (en) Protease, protease-containing detergent and method for producing the same
Annamalai et al. Extraction, purification and application of thermostable and halostable alkaline protease from Bacillus alveayuensis CAS 5 using marine wastes
Elhoul et al. A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650
KR102026497B1 (en) Performance-enhanced and temperature-resistant protease variants
AU2001279614B2 (en) Subtilase enzymes
Ghani et al. Isolation and characterization of different strains of Bacillus licheniformis for the production of commercially significant enzymes
Mechri et al. Identification of a novel protease from the thermophilic Anoxybacillus kamchatkensis M1V and its application as laundry detergent additive
Pathak et al. Alkaline protease production, extraction and characterization from alkaliphilic Bacillus licheniformis KBDL4: a Lonar soda lake isolate
EP1624056A1 (en) Novel Geobacillus microorganism
Mechri et al. Identification of a new serine alkaline peptidase from the moderately halophilic Virgibacillus natechei sp. nov., strain FarD T and its application as bioadditive for peptide synthesis and laundry detergent formulations
Hou et al. Purification and characterization of an alkaline protease from Micrococcus sp. isolated from the South China Sea
JPWO2012036241A1 (en) Novel extracellular secretory nuclease
Rahem et al. Characterization of a novel serine alkaline protease from Bacillus atrophaeus NIJ as a thermophilic hydrocarbonoclastic strain and its application in laundry detergent formulations
CN1891820B (en) Cholesterol oxidase stable in the presence of surfactant
EP2173873B1 (en) Protein and dna sequence encoding a cold adapted subtilisin-like activity
Öztürk et al. Alkaline serine protease from halotolerant Bacillus licheniformis BA17
WO2006054595A1 (en) Novel high alkaline protease and use thereof
US7041486B1 (en) Enzyme having decolorizing activity and method for decolorizing dyes by using the same
JP2016036327A (en) Cleaning composition containing protease and method of stabilizing protease
Çorbacı et al. Streptomyces sp. K47 alkaline proteases: partial purification and analysis by zymography
Salim et al. Characterization and purification of alkaline protease from novel Bacillus subtilus MS1 for detergent additives
Ramakrishnan et al. Partial characterization and cloning of protease from Bacillus
Hong et al. Expression, purification, and enzymatic characterization of an extracellular protease from Halococcus salifodinae
JP5302189B2 (en) Sphingomyelinase
Tanskul et al. An alkaline serine-proteinase from a bacterium isolated from bat feces: purification and characterization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560535

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874483

Country of ref document: EP

Kind code of ref document: A1