WO2014121617A1 - 工程参数的调整方法及系统 - Google Patents
工程参数的调整方法及系统 Download PDFInfo
- Publication number
- WO2014121617A1 WO2014121617A1 PCT/CN2013/084115 CN2013084115W WO2014121617A1 WO 2014121617 A1 WO2014121617 A1 WO 2014121617A1 CN 2013084115 W CN2013084115 W CN 2013084115W WO 2014121617 A1 WO2014121617 A1 WO 2014121617A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- adjustment
- server
- adjustment instruction
- antenna
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
Definitions
- the present invention relates to the field of communications, and in particular, to a method and system for adjusting engineering parameters.
- BACKGROUND OF THE INVENTION At present, the deployment of site sectors in the related art is fixed by using a fixing member, and the sector antenna is fixed on the pole by a roof pole and a metal fixing member. After the network is built, it usually takes a period of time to optimize the network. The optimization process mainly improves the coverage of the sector by adjusting the orientation, downtilt and height of the sector to improve the coverage of the coverage and over-coverage.
- Scene 1 In the case of a surge in capacity, for example, a large-scale event, a gathering, etc. will appear in the stadium. A large number of clusters are concentrated in a small area.
- the connection of the big antenna is that the two antenna feeders are connected in reverse, that is, the antenna feeder of the A cell is connected to the B cell, and the antenna feeder of the B cell is connected to the A cell. If the definition of the neighboring cell is not good, the site will be The handover of the surrounding base stations is affected, and problems affecting the later frequency planning are also generated.
- Scenario 3 The network construction process is very long. The reason is: On the one hand, the wireless network is changing every day. Due to the problem of urban construction, the radio wave propagation path will change frequently; In the network optimization process, manual participation depends on the experience of the optimization engineer, and the station sectors existing in the network are frequently adjusted, and each adjustment involves adjustment of the orientation, height, and downtilt of the sectors.
- the construction workers need to have the construction qualifications of the qualification certificate of the climbing certificate. There are not many personnel who have the skills certification, and the after-sales technicians cannot intervene in the construction of the project. It is difficult to supervise the quality of the project, the quality of the construction and the construction of the project.
- the quality of personnel is closely related; the construction process in the optimization process will be bad due to bad weather: for example: climatic conditions such as rainfall, snowfall, thunderstorms, strong winds, etc., construction workers cannot be on the station and postponed, especially in the northeastern region and the southern rainy areas, engineering The construction will be postponed due to the influence of the weather.
- the adjustment of the equipment such as the antenna installed on the roof of the building will also be affected by the property and the tenants. Every time you go to the station, you need to work with the property and the residents. Full communication, its time is uncontrollable, which leads to uncontrollable construction period; the main reason is that the impact of objective factors will lead to the extension of the overall optimization process, and the increase of human, material and financial resources.
- the present invention provides a method and system for adjusting engineering parameters, so as to at least solve the problem of manually adjusting a coverage area of a base station in a related art, which may cause slow progress of the network optimization process and waste a lot of manpower, material resources and financial resources. The problem.
- a method of adjusting engineering parameters includes: the base station receives an adjustment instruction from the server, where the adjustment instruction is an initial plan corresponding to the base station preset by the server according to the engineering parameter currently used by the base station reported by the base station. After the engineering parameters are compared, the adjustment command is obtained by the server according to the statistical analysis of the currently used engineering parameters reported to the base station multiple times in a preset period; the base station adjusts the currently used engineering parameters according to the adjustment instruction.
- the base station adjusts the currently used engineering parameters according to the adjustment instruction, and the base station determines, according to the adjustment instruction, the antenna orientation of the base station and/or the mechanical downtilt angle of the antenna relative to the pole of the base station; the base station reacquires according to the adjustment result.
- the engineering parameters currently in use comprises: determining, by the base station, a rotation direction of the antenna and an angle to be rotated in the rotation direction according to the adjustment instruction; and the base station adjusts the antenna according to the angle in the rotation direction.
- the determining, by the base station, the adjustment of the mechanical downtilt angle of the antenna relative to the pole of the base station according to the adjustment instruction comprises: determining, by the base station, a variation range of the mechanical downtilt angle according to the adjustment instruction; and determining, by the base station, the antenna according to the variation amplitude.
- the method further includes: the server records the adjusted currently used engineering parameters corresponding to the base station; and the server adopts the recorded engineering parameters to the server after the preset duration
- the currently saved engineering parameters corresponding to the base station are updated, or the recorded engineering parameters are deleted.
- an adjustment system for engineering parameters is provided.
- the system for adjusting the engineering parameters according to the present invention includes: one or more base stations; each of the base stations includes: a receiving module, configured to receive an adjustment instruction from the server, where the adjustment instruction is performed by the server according to the current use of the base station reported by the base station.
- the engineering parameter is generated by comparing the initial planning engineering parameters corresponding to the base station preset on the server, or the adjustment instruction is that the server performs statistical analysis on the currently used engineering parameters that are reported to the base station multiple times in a preset period.
- the obtained module is set to adjust the currently used engineering parameters according to the adjustment instruction.
- the adjustment module includes: an adjusting unit, configured to determine, according to the adjustment instruction, an antenna orientation of the base station and/or a mechanical downtilt angle of the antenna relative to the pole of the base station; and an acquiring unit configured to reacquire the current according to the adjustment result
- the engineering parameters used Preferably, the adjusting unit comprises: a first determining subunit, configured to determine a rotation direction of the antenna and an angle to be rotated in the rotation direction according to the adjustment instruction; the first adjustment subunit is configured to perform the antenna according to the angle in the rotation direction Adjustment.
- the adjusting unit comprises: a second determining subunit, configured to determine a magnitude of change of the mechanical downtilt according to the adjusting instruction; and a second adjusting subunit configured to adjust the antenna according to the varying amplitude.
- the system further includes: a server; the server includes: a recording module, configured to record an adjusted currently used engineering parameter corresponding to the base station; and a processing module configured to use the recorded engineering parameter to the server after a preset duration The currently saved engineering parameters corresponding to the base station are updated, or the recorded engineering parameters are deleted.
- the base station receives the adjustment command from the server, and the adjustment command is generated by the server comparing the engineering parameters currently used by the base station reported by the base station with the initial planning engineering parameters corresponding to the base station preset on the server.
- the adjustment instruction is that the server performs multiple times on the base station according to the preset period.
- the base station Obtained by the statistical analysis of the currently used engineering parameters; the base station adjusts the currently used engineering parameters according to the adjustment instruction, and solves the problem that the network optimization process is progressed slowly by manually adjusting the coverage area of the base station in the related art and It also wastes a lot of manpower, material and financial problems, and through remote automatic adjustment scheme, it can make the base station sector in the network more flexible, reduce engineering construction period, network optimization period and network input cost, and improve network optimization. Efficiency and accuracy of network post-planning.
- FIG. 1 is a flow chart of a method for adjusting engineering parameters according to an embodiment of the present invention
- FIG. 2 is a flow chart of a method for adjusting engineering parameters according to a preferred embodiment of the present invention
- FIG. 5 is a schematic diagram of a modified base station according to an embodiment of the present invention
- BRIEF DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION A schematic diagram of adjusting an antenna sector angle by a hydraulic device
- FIG. 7 is a schematic diagram of a coverage sector change after adjusting an antenna angle on the basis of FIG. 6 according to a preferred embodiment of the present invention
- Step S102 The base station receives an adjustment instruction from the server, where the adjustment instruction is generated by comparing the engineering parameter currently used by the base station reported by the base station with the initial planning engineering parameter corresponding to the base station preset on the server, Alternatively, the adjustment instruction is obtained by the server performing statistical analysis on the currently used engineering parameters that are reported to the base station multiple times in the preset period.
- Step S104 The base station adjusts the currently used engineering parameters according to the adjustment instruction.
- the server uses the method shown in FIG. 1 to generate an adjustment instruction according to the engineering parameters currently used by the base station and the initial planning engineering parameters corresponding to the base station preset on the server after the initial construction phase of the network is generated, or In the network operation phase, the server obtains an adjustment instruction according to statistical analysis of the currently used engineering parameters reported to the base station multiple times in a preset period; the base station receives an adjustment instruction from the server, and adjusts the currently used engineering parameters according to the adjustment instruction.
- the server may issue an instruction to request all base station sectors under its jurisdiction to report its actual engineering parameters, and compare with the engineering parameters planned by the background network management to confirm which base station or base stations occur.
- Abnormalities including: the difference between the actual engineering parameters due to improper construction and the planned engineering parameters is too large, and the actual engineering parameters are too different from the planned engineering parameters due to the incorrect engineering parameters), thereby avoiding the early stage of the network construction.
- Introducing error In the network operation phase, if the engineering parameters of individual base station sectors are seriously changed due to other factors (such as: climatic factors, urban planning factors), the server will provide alarms in time, and the base station that has changed the changes will report multiple times.
- the engineering parameters are statistically analyzed, and the adjustment command is issued to adjust the engineering parameters of the changed base station, thereby realizing the optimization of the network.
- the base station adjusts the currently used engineering parameters according to the adjustment instruction, which may include the following steps: Step S1: determining, by the base station, the antenna orientation of the base station and/or the mechanical mechanism of the antenna relative to the base station according to the adjustment instruction. The downtilt angle is adjusted; Step S2: The base station reacquires the currently used engineering parameters according to the adjustment result.
- step S1 determining, by the base station according to the adjustment instruction, that adjusting the antenna orientation of the base station may include the following operations: Step S11: The base station determines the rotation direction of the antenna and the angle to be rotated in the rotation direction according to the adjustment instruction.
- Step S12 The base station adjusts the antenna according to the angle in the rotation direction.
- the number of people/mobile users appearing in the above-mentioned stadiums for large-scale events, gatherings, etc. is proliferating in a small area. Since the capacity of each cell is limited, exceeding the user capacity will cause the user to make a call. The phenomenon that the call rate is increased or the unserviced user perceives the difference can solve the problem of capacity surge by changing the antenna orientation of the low-user capacity cell existing around the stadium, and also reduces the operating cost of the network.
- the base station determines, according to the adjustment instruction, that the adjustment of the mechanical downtilt angle of the antenna relative to the pole of the base station may include the following operations: Step S13: The base station determines a variation range of the mechanical downtilt angle according to the adjustment instruction; Step S14: Adjust the antenna according to the magnitude of the change.
- Step S13 The base station determines a variation range of the mechanical downtilt angle according to the adjustment instruction
- Step S14 Adjust the antenna according to the magnitude of the change.
- the technical solutions in the related art do not pay much attention to the adjustment of the mechanical downtilt, because some antennas are electrical adjustment antennas that can adjust the antenna phase, but it is not as direct as the antenna from the perspective of cost or control effect.
- the mechanical downtilt is more feasible to control and adjust, and when the phase of the antenna is adjusted to a certain extent, it will not be able to continue to adjust.
- step S104 after the base station adjusts the currently used engineering parameters according to the adjustment instruction, the following processing steps may be further included: Step S3: The server records the adjusted current used engineering parameters corresponding to the base station; Step S4: Server After the preset duration, the recorded engineering parameters are used to update the engineering parameters corresponding to the base station currently saved by the server, or the recorded engineering parameters are deleted.
- the server may record the adjusted currently used engineering parameters corresponding to the base station, and after a preset duration (for example, 5 days), if the base station is found to have a significant improvement after adjustment, the recording may be adopted.
- the engineering parameters update the engineering parameters corresponding to the base station currently saved by the server; if it is found that there is no significant improvement after the adjustment, but the drop is also made, the recorded engineering parameters are deleted.
- Step S202 The network management room sends an instruction for reporting the engineering parameter through the network management platform, and the base station sector responds to the command issued by the network management device and feeds back the current engineering parameter information.
- Step S204 Summary of the network management platform The engineering parameter information of the base station sector of the whole network;
- Step S206 The network management platform can compare the aggregated real-time engineering parameter information with the originally planned engineering parameter information saved in the network management;
- Step S208 For the cell engineering parameter whose error exceeds the preset threshold
- the network management platform may provide an alarm service, indicating that the engineering parameter information of the base station sector is abnormal.
- Step S210 The network management platform analyzes the abnormality of the base station sector, and if it is because of the large connection, the network management system needs to be modified.
- Step S224 By analyzing the cause of the alarm, determining whether there is a situation in which the large-scale connection is reversed, and solving the above problem by modifying the manner of the network management engineering parameter or continuing to adjust the orientation of the sector.
- 3 is a structural block diagram of an adjustment system of an engineering parameter according to an embodiment of the present invention. As shown in FIG.
- the adjustment system of the engineering parameter may include: one or more base stations 10; each base station 10 may include: a receiving module 100, configured to receive an adjustment instruction from a server, where the adjustment instruction is a server According to the comparison between the engineering parameters currently used by the base station and the initial planning engineering parameters corresponding to the base station preset on the server, or the adjustment command is that the server reports the base station multiple times according to the preset period.
- the currently used engineering parameters are obtained by statistical analysis; the adjustment module 102 is configured to adjust the currently used engineering parameters according to the adjustment instruction.
- the following modules may be added to the base station: a Global Positioning System (GPS) module, which is mainly responsible for providing GPS information, altitude and horizontal tilt information of the sector, which may be disposed inside the antenna casing from a process perspective.
- GPS Global Positioning System
- the interface is provided for control at the feeder connection;
- the electronic compass module is mainly responsible for providing antenna orientation and horizontal angle calibration information, which can be set inside the antenna casing from the process point of view, and provides an interface for control at the feeder connection;
- the camera monitoring module is mainly responsible for Monitoring the alarm site in a timely manner, monitoring the damage of the site equipment caused by external damage and natural disasters. From the process point of view, it can be placed on the top of the antenna pole and can be rotated 360 degrees to provide an interface for control at the feeder; Module: Set to return the information of GPS, electronic compass, camera monitoring module. When the remote control command is issued by the background network management, the above information will be returned. It can also be set as the automatic return task. After the preset period, the corresponding parameters are executed.
- the adjustment module 102 may include: an adjustment unit 1020, configured to determine, according to the adjustment instruction, an antenna orientation of the base station and/or a mechanical downtilt angle of the antenna relative to the pole of the base station; the acquiring unit 1022 , set to reacquire the currently used engineering parameters based on the adjustment results.
- FIG. 5 is a schematic diagram of a modified base station in accordance with an embodiment of the present invention. As shown in Fig.
- the position of the antenna in the middle of the antenna can be connected to the pole by a hydraulic or electric drive module, and the mechanical downtilt angle of the antenna can be adjusted by a hydraulic device, for example: a hydraulic rod is mounted on the pole, and the hydraulic pressure is applied.
- a hydraulic device for example: a hydraulic rod is mounted on the pole, and the hydraulic pressure is applied.
- the telescopic expansion of the rod Now the adjustment of the antenna downtilt angle of the antenna; the active steering of the sector antenna and the adjustment of the antenna height can also be realized by the electronically controlled steering module in the lower half of the antenna.
- the mechanical downtilt angle of the sector is adjusted by means of driving control, the cell coverage distance is changed, the sector direction angle is adjusted, the cell coverage area is changed, the problem of network burst capacity is increased, and the network performance is improved by combining service characteristics.
- the adjusting unit 1020 may include: a first determining subunit (not shown) configured to determine a rotation direction of the antenna and an angle to be rotated in the rotation direction according to the adjustment instruction; the first adjustment subunit (in the figure) Not shown), set to adjust the antenna according to the angle in the direction of rotation.
- FIG. 6 is a schematic illustration of adjustment of an antenna sector angle by a hydraulic device in accordance with a preferred embodiment of the present invention. As shown in FIG. 6, the active steering of the sector antenna and the adjustment of the antenna height are realized by the electric motor, and the angle of the antenna can be dynamically changed at any time.
- FIG. 7 is a schematic diagram of overlay sector changes after adjusting the antenna angle on the basis of FIG.
- the adjusting unit 1020 may further include: a second determining subunit (not shown) configured to determine a magnitude of change of the mechanical downtilt according to the adjustment instruction; a second adjusting subunit (not shown), setting The antenna is adjusted to vary the amplitude.
- a second determining subunit (not shown) configured to determine a magnitude of change of the mechanical downtilt according to the adjustment instruction
- a second adjusting subunit (not shown), setting The antenna is adjusted to vary the amplitude.
- the system may further include: a server 20; the server 20 may include: a recording module 200 configured to record an adjusted currently used engineering parameter corresponding to the base station; and the processing module 202 is configured to After the preset duration, the recorded engineering parameters are used to update the engineering parameters corresponding to the base station currently saved by the server, or the recorded engineering parameters are deleted.
- Figure 8 is a schematic illustration of an adjustment system for engineering parameters in accordance with a preferred embodiment of the present invention. As shown in Figure 8, by modifying the site sector antenna, an electronic compass module, a GPS module, a camera monitoring module, a hydraulic or electric drive module, an orientation angle of the station sector, a mechanical downtilt, and a sector antenna are transmitted through the network management.
- the height is controlled remotely; the coverage area can be adjusted by adjusting the orientation of the sector; the adjustment of the height of the sector can extend the coverage distance, and the adjustment of the mechanical downtilt can also achieve the adjustment of the coverage area; It can grasp the changes around the equipment in real time, understand the changes in the environment in time, and propose the processing plan in the first time.
- the background network management can form the most realistic project through its own GPS information and electronic compass information reported by each station sector. Parameters, avoiding engineering parameter errors introduced by human factors, introducing more errors in network planning and optimization, resulting in impact on the existing network, effectively avoiding the situation of large reversal.
- the cost incurred by the current upper station adjustment construction can be minimized, and the adjustment cycle can be shortened, thereby shortening the entire optimization cycle and delivering the boutique network at the fastest speed.
- the above embodiments achieve the following technical effects (it is necessary to explain that these effects are effects that can be achieved by some preferred embodiments):
- the initial construction process in the network By correcting the engineering parameters, it can provide the most realistic network parameters for the later optimization, and eliminate the problem of large error and other errors; in the network optimization process, the sector orientation and height can be corrected in real time during the optimization phase, shortening due to natural and artificial Time waste caused by factors, shortening optimization cycle, saving cost and investment;
- compensation coverage can be provided for some special areas in time to save network investment.
- the base station reports the network engineering parameters in real time to avoid introducing errors in the planning process and reverse the equipment during the construction process, so that the data acquired by the background network management is authentic and reliable, and the sector orientation, the downtilt angle and the height are controlled remotely, accurately, and conveniently.
- the base station sector in the network has higher flexibility, reduces engineering construction period, network optimization period and network input cost, improves network optimization efficiency and network post-planning accuracy, thereby realizing real-time and accuracy of sector adjustment. , convenience, flexibility and high degree of automation.
- INDUSTRIAL APPLICABILITY As described above, an engineering parameter adjustment method and system provided by an embodiment of the present invention have the following beneficial effects: In the initial construction process of the network, the engineering parameters can be corrected to provide the most realistic network parameters for the later optimization.
- the sector orientation and height can be corrected in real time in the optimization stage, shortening the time waste caused by natural and human factors, shortening the optimization period, saving cost and investment; In the course of operation, compensation coverage can be provided for some special areas in time to save network investment.
- the base station reports the network engineering parameters in real time, avoiding the introduction of errors in the planning process and the reverse of the equipment during the construction process, so that the data acquired by the background network management is authentic and reliable, and the sector orientation, the downtilt angle and the height are controlled remotely, accurately, and conveniently.
- the base station sector in the network has higher flexibility, reduces engineering construction period, network optimization period and network input cost, improves network optimization efficiency and network post-planning accuracy, thereby realizing real-time and accuracy of sector adjustment. , convenience, flexibility and high degree of automation.
- modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
- they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种工程参数的调整方法及系统,在上述方法中,基站接收来自于服务器的调整指令,其中,调整指令是服务器根据基站上报的该基站当前使用的工程参数与在服务器上预先设置的与基站对应的初始规划工程参数进行对比后生成的,或者,调整指令是服务器根据在预设周期内对基站多次上报的当前使用的工程参数进行统计分析获得的;基站根据调整指令对当前使用的工程参数进行调整。根据本发明提供的技术方案,可以使网络中的基站扇区具备更高的灵活性,减少工程施工周期、网络优化周期和网络投入成本,提高网络优化效率和网络后期规划的准确性。
Description
工程参数的调整方法及系统
技术领域 本发明涉及通信领域, 具体而言, 涉及一种工程参数的调整方法及系统。 背景技术 目前, 相关技术中的站点扇区的部署均采用固定件加以固定, 通过楼顶抱杆、 金 属固定件, 将扇区天线固定于抱杆上。 而在网络建成之后通常需要一段时间对网络进 行优化, 该优化过程主要是通过调整扇区的朝向、 下倾角以及高度以改变扇区的覆盖 范围从而改善弱覆盖与过覆盖的问题。因此,现有的优化过程需要在进行优化调整时, 由人工上站调整; 然而目前这种通过人工上站调整扇区的方式难以避免会受多方面因 素的影响, 比如: 天气、 物业、 移动陪同人员、 施工人员的熟练程度以及高昂的维护 费用, 上述因素都有可能导致网络优化进程的进展缓慢并且还会导致大量人力、物力、 财力的浪费。 下面结合以下三种场景对站点扇区的部署采用固定件加以固定所产生的问题加以 说明: 场景一、 在容量激增的情况下, 例如: 体育场举办大型活动、 集会等情况会出现 人员 /移动用户大量的聚集在小范围区域, 由于每个小区的用户容量有限, 超出用户容 量将会导致用户拨打电话的掉话率升高或者无服务的用户感知差的现象。 如果按照相 关技术中的技术方案可知, 扇区都是固定安装在抱杆上的, 对于体育场周边存在的低 用户容量小区的天线朝向因为无法动态调整至用户拥挤的区域, 所以目前只能使用临 时扩容设备车辆进行区域的临时扩容, 如此虽然可以解决容量激增的问题, 但是同时 也增加了网络的运行成本。 场景二、 目前在网络建设过程中, 由于施工人员的素质参差不齐, 施工监理过程 中也存在着因人为参与造成误差广泛存在, 从而导致大鸳鸯接反的现象发生。 大鸳鸯 天线接反是指两根天馈线都接反, 即 A小区的天馈线连接到 B小区,而 B小区的天馈 线连接至 A小区, 如果邻区定义不好, 会导致本站点与周边基站的切换受到影响, 还 会产生影响后期频率规划的问题。 场景三、 网络建设过程是十分漫长的, 其原因在于: 一方面无线网络每天都在发 生着变化, 由于存在城市建设的问题, 导致无线电波传播路径会经常发生变化; 另一
方面在网络优化过程中, 人工参与需要依靠优化工程师的经验, 会对网络中存在的站 点扇区进行频繁调整, 而每次调整都会涉及到对扇区的朝向、 高度、 下倾角的调整, 这些都会受到天气、 物业、 移动负责人员以及工程施工人员等因素的影响。 例如: 现 在工程施工人员需要具备登高证专业资质的施工人员, 具备该技能认证的人员本身就 不多, 而售后技术人员无法介入工程施工, 难以对工程质量进行监理, 工程施工的质 量与工程施工人员的素质关系紧密; 优化过程中的工程施工会因为天气恶劣: 例如: 降雨、 降雪、 雷暴、 大风等气候条件, 施工人员无法上站而延期, 特别是东北地区和 南方多降雨地区, 工程的施工会因为天气的影响而推迟的情况时有发生; 而在对楼顶 天面安装的天线等设备进行调整的同时也会受到物业及住户的影响, 每次上站均需要 与物业以及住户进行充分沟通, 其时间不可控, 从而导致优化施工期限不可控; 最主 要的原因在于每次客观因素的影响都会导致整体优化过程的延长, 人力、 物力、 财力 投入的增加。 发明内容 本发明提供了一种工程参数的调整方法及系统, 以至少解决相关技术中通过人工 方式对基站覆盖扇区进行调整易造成网络优化进程的进展缓慢并且还会浪费大量人 力、 物力及财力的问题。 根据本发明的一个方面, 提供了一种工程参数的调整方法。 根据本发明的工程参数的调整方法包括: 基站接收来自于服务器的调整指令, 其 中, 调整指令是服务器根据基站上报的该基站当前使用的工程参数与在服务器上预先 设置的与基站对应的初始规划工程参数进行对比后生成的, 或者, 调整指令是服务器 根据在预设周期内对基站多次上报的当前使用的工程参数进行统计分析获得的; 基站 根据调整指令对当前使用的工程参数进行调整。 优选地, 基站根据调整指令对当前使用的工程参数进行调整包括: 基站根据调整 指令确定对基站的天线朝向和 /或天线相对于基站的抱杆的机械下倾角进行调整; 基站 根据调整结果重新获取当前使用的工程参数。 优选地, 基站根据调整指令确定对基站的天线朝向进行调整包括: 基站根据调整 指令确定天线的转动方向以及在转动方向上待转动的角度; 基站在转动方向上按照角 度对天线进行调整。
优选地, 基站根据调整指令确定天线相对于基站的抱杆的机械下倾角进行调整包 括: 基站根据调整指令确定机械下倾角的变化幅度; 基站按照变化幅度对天线进行调 整。 优选地, 在基站根据调整指令对当前使用的工程参数进行调整之后, 还包括: 服 务器记录与基站对应的调整后的当前使用的工程参数; 服务器在经过预设时长后采用 记录的工程参数对服务器当前保存的与基站对应的工程参数进行更新, 或者, 将记录 的工程参数删除。 根据本发明的另一方面, 提供了一种工程参数的调整系统。 根据本发明的工程参数的调整系统包括: 一个或多个基站; 每个基站均包括: 接 收模块, 设置为接收来自于服务器的调整指令, 其中, 调整指令是服务器根据基站上 报的该基站当前使用的工程参数与在服务器上预先设置的与基站对应的初始规划工程 参数进行对比后生成的, 或者, 调整指令是服务器根据在预设周期内对基站多次上报 的当前使用的工程参数进行统计分析获得的; 调整模块, 设置为根据调整指令对当前 使用的工程参数进行调整。 优选地, 上述调整模块包括: 调整单元, 设置为根据调整指令确定对基站的天线 朝向和 /或天线相对于基站的抱杆的机械下倾角进行调整; 获取单元, 设置为根据调整 结果重新获取当前使用的工程参数。 优选地, 调整单元包括: 第一确定子单元, 设置为根据调整指令确定天线的转动 方向以及在转动方向上待转动的角度; 第一调整子单元, 设置为在转动方向上按照角 度对天线进行调整。 优选地, 调整单元包括: 第二确定子单元, 设置为根据调整指令确定机械下倾角 的变化幅度; 第二调整子单元, 设置为按照变化幅度对天线进行调整。 优选地, 上述系统还包括: 服务器; 服务器包括: 记录模块, 设置为记录与基站 对应的调整后的当前使用的工程参数; 处理模块, 设置为在经过预设时长后采用记录 的工程参数对服务器当前保存的与基站对应的工程参数进行更新, 或者, 将记录的工 程参数删除。 通过本发明, 采用基站接收来自于服务器的调整指令, 调整指令是服务器根据基 站上报的该基站当前使用的工程参数与在服务器上预先设置的与基站对应的初始规划 工程参数进行对比后生成的, 或者, 调整指令是服务器根据在预设周期内对基站多次
上报的当前使用的工程参数进行统计分析获得的; 基站根据调整指令对当前使用的工 程参数进行调整, 解决了相关技术中通过人工方式对基站覆盖扇区进行调整易造成网 络优化进程的进展缓慢并且还会浪费大量人力、 物力及财力的问题, 进而通过远程自 动调整方案, 可以使网络中的基站扇区具备更高的灵活性, 减少工程施工周期、 网络 优化周期和网络投入成本, 提高网络优化效率和网络后期规划的准确性。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据本发明实施例的工程参数的调整方法的流程图; 图 2是根据本发明优选实施例的工程参数的调整方法的流程图; 图 3是根据本发明实施例的工程参数的调整系统的结构框图; 图 4是根据本发明优选实施例的工程参数的调整系统的结构框图; 图 5是根据本发明实施例的改进后的基站的示意图; 图 6 是根据本发明优选实施例的通过液压装置对天线扇区角度进行调整的示意 图; 图 7是根据本发明优选实施例的在图 6的基础上对天线角度进行调整后覆盖扇区 变化的示意图; 图 8是根据本发明优选实施例的工程参数的调整系统的示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 1是根据本发明实施例的工程参数的调整方法的流程图。 如图 1所示, 该方法 可以包括以下处理步骤:
步骤 S102: 基站接收来自于服务器的调整指令, 其中, 调整指令是服务器根据基 站上报的该基站当前使用的工程参数与在服务器上预先设置的与基站对应的初始规划 工程参数进行对比后生成的, 或者, 调整指令是服务器根据在预设周期内对基站多次 上报的当前使用的工程参数进行统计分析获得的; 步骤 S104: 基站根据调整指令对当前使用的工程参数进行调整。 相关技术中, 通过人工方式对基站覆盖扇区进行调整易造成网络优化进程的进展 缓慢并且还会浪费大量人力、 物力及财力。 采用如图 1所示的方法, 在网络初期建设 阶段服务器根据基站上报的该基站当前使用的工程参数与在服务器上预先设置的与基 站对应的初始规划工程参数进行对比后生成调整指令, 或者, 在网络运营阶段服务器 根据在预设周期内对基站多次上报的当前使用的工程参数进行统计分析获得调整指 令; 基站接收来自于服务器的调整指令, 并根据调整指令对当前使用的工程参数进行 调整, 解决了相关技术中通过人工方式对基站覆盖扇区进行调整易造成网络优化进程 的进展缓慢并且还会浪费大量人力、物力及财力的问题,进而通过远程自动调整方案, 可以使网络中的基站扇区具备更高的灵活性, 减少工程施工周期、 网络优化周期和网 络投入成本, 提高网络优化效率和网络后期规划的准确性。 在优选实施例中, 网络在起初建成时, 服务器可以下发指令要求其管辖的全部基 站扇区上报自身的实际工程参数, 并与后台网管规划的工程参数进行对比, 以确认哪 个或者哪些基站发生异常 (包括: 由于施工不当造成的实际工程参数与规划的工程参 数差异过大以及由于规划的工程参数有误造成的实际工程参数与规划的工程参数差异 过大), 进而避免在网络建成初期便引入误差; 在网络运营阶段, 如果个别基站扇区的 工程参数因为其他因素 (例如: 气候因素、 城市规划因素) 导致发生严重变化, 服务 器会及时提供告警, 并综合发生变化的基站多次上报的工程参数进行统计分析, 下达 调整指令对发生变化的基站的工程参数进行调整, 从而实现对网络的优化。 优选地,在步骤 S104中,基站根据调整指令对当前使用的工程参数进行调整可以 包括以下步骤: 步骤 S1 :基站根据调整指令确定对基站的天线朝向和 /或天线相对于基站的抱杆的 机械下倾角进行调整; 步骤 S2: 基站根据调整结果重新获取当前使用的工程参数。 优选地,在步骤 S1中,基站根据调整指令确定对基站的天线朝向进行调整可以包 括以下操作:
步骤 Sll : 基站根据调整指令确定天线的转动方向以及在转动方向上待转动的角 度; 步骤 S12: 基站在转动方向上按照角度对天线进行调整。 在优选实施例中, 对于上述体育场举办大型活动、 集会等情况所出现的人员 /移动 用户在小范围区域内激增, 由于每个小区的用户容量有限, 超出用户容量将会导致用 户拨打电话的掉话率升高或者无服务的用户感知差的现象, 可以通过改变体育场周边 存在的低用户容量小区的天线朝向以解决容量激增的问题, 同时也降低了网络的运行 成本。 优选地,在步骤 S1中,基站根据调整指令确定天线相对于基站的抱杆的机械下倾 角进行调整可以包括以下操作: 步骤 S13: 基站根据调整指令确定机械下倾角的变化幅度; 步骤 S14: 基站按照变化幅度对天线进行调整。 目前, 相关技术中的技术方案不太关注对机械下倾角的调整, 因为有些天线是可 以调整天线相位的电调天线, 但是无论从成本的角度还是从控制效果的角度进行考虑 都不如直接对天线的机械下倾角进行控制调整更加可行, 并且当天线相位调整到一定 程度时将无法继续调整下去, 此时能够灵活的调整天线的机械下倾角, 对于网络覆盖 的距离和范围的改变将会发挥重要的作用, 而且十分灵活方便。 优选地, 在步骤 S104, 基站根据调整指令对当前使用的工程参数进行调整之后, 还可以包括以下处理步骤: 步骤 S3: 服务器记录与基站对应的调整后的当前使用的工程参数; 步骤 S4:服务器在经过预设时长后采用记录的工程参数对服务器当前保存的与基 站对应的工程参数进行更新, 或者, 将记录的工程参数删除。 在优选实施例中, 服务器可以记录与基站对应的调整后的当前使用的工程参数, 并在经过预设时长 (例如: 5 天) 后, 如果发现基站经过调整后有明显改善, 则可以 采用记录的工程参数对服务器当前保存的与基站对应的工程参数进行更新; 如果发现 经过调整后, 不但没有明显改进, 反而还有所下降, 则将记录的工程参数删除。 下面结合图 2所示的优选实施方式对上述优选实施过程做进一步的描述。
图 2是根据本发明优选实施例的工程参数的调整方法的流程图。 如图 2所示, 该 流程可以包括以下步骤: 步骤 S202: 网管机房通过网管平台下达上报工程参数的指令, 基站扇区响应网管 下达的指令并反馈当前的工程参数信息; 步骤 S204: 网管平台汇总全网基站扇区的工程参数信息; 步骤 S206: 网管平台可以将汇总的实时工程参数信息与网管中保存的最初规划的 工程参数信息进行对比; 步骤 S208: 对于误差超过预设阈值的小区工程参数信息, 网管平台可以提供告警 服务, 表示该基站扇区的工程参数信息存在异常; 步骤 S210: 网管平台对发生异常的基站扇区进行分析, 如果是因为大鸳鸯接反, 则需要修改网管中的扇区编号信息; 如果是因为工程参数信息与原始规划存在差异, 则需要通过网管平台下达指令对告警小区的天线进行远程调整; 步骤 S212: 网管机房下达角度及高度调整指令, 基站扇区响应网管下达的指令并 反馈当前扇区的工程参数信息; 步骤 S214: 网管平台确认扇区调整参数, 系统通过计算判断对扇区的调整方式, 角度是顺时针还是逆时针, 机械下倾角是液压杆向前推还是向回收, 并远程下达给需 要调整的扇区; 步骤 S216: 扇区响应调整指令后, 电驱动或液压驱动装置工作, 电子指南针和高 度传感器开始与调整设置值校准; 步骤 S218:当扇区调整至相应的朝向和高度时,电驱动或液压驱动装置停止工作, 整个调整过程结束; 步骤 S220: 网管服务器可以记录此次调整信息备案, 并且可以设置一段时间后自 动恢复至调整前扇区朝向; 步骤 S222: 如果不进行恢复操作, 后台网管可以将被调整扇区上报工程参数信息 修改为当前网络配置信息, 以达到实际工程参数与服务器存储的工程参数保持一致, 如果发现存在不一致的情况, 后台网管会进行告警提示;
步骤 S224: 通过分析告警原因, 判断是否存在大鸳鸯接反的情况, 通过修改网管 工程参数的方式或者继续调整扇区朝向的方式解决以上问题。 图 3是根据本发明实施例的工程参数的调整系统的结构框图。 如图 3所示, 该工 程参数的调整系统可以包括: 一个或多个基站 10; 每个基站 10均可以包括: 接收模 块 100, 设置为接收来自于服务器的调整指令, 其中, 调整指令是服务器根据基站上 报的该基站当前使用的工程参数与在服务器上预先设置的与基站对应的初始规划工程 参数进行对比后生成的, 或者, 调整指令是服务器根据在预设周期内对基站多次上报 的当前使用的工程参数进行统计分析获得的; 调整模块 102, 设置为根据调整指令对 当前使用的工程参数进行调整。 采用如图 3所示的系统, 解决了相关技术中通过人工方式对基站覆盖扇区进行调 整易造成网络优化进程的进展缓慢并且还会浪费大量人力、 物力及财力的问题, 进而 通过远程自动调整方案, 可以使网络中的基站扇区具备更高的灵活性, 减少工程施工 周期、 网络优化周期和网络投入成本, 提高网络优化效率和网络后期规划的准确性。 在优选实施例中, 可以在基站上增加以下模块: 全球定位系统 (GPS ) 模块, 主 要负责提供扇区的 GPS信息、海拔高度和水平倾斜度信息, 从工艺角度看可以设置于 天线外壳内部, 在馈线连接处提供接口进行控制; 电子指南针模块, 主要负责提供天 线朝向、 水平角度校准信息, 从工艺角度看可以设置于天线外壳内部, 在馈线连接处 提供接口进行控制; 摄像监控模块, 主要负责对告警站点进行及时监控, 应对外力人 为破坏和自然灾害所导致的站点设备损坏监控, 从工艺角度看可以设置于天线抱杆顶 部并可以 360度旋转, 在馈线处提供接口进行控制; 信息回传模块: 设置为回传 GPS、 电子指南针、摄像监控模块的信息,在后台网管下达远程控制命令时会回传上述信息, 也可以设置为自动回传任务, 在经过预设周期后进行相应的参数校准任务, 从工艺角 度看在基站侧提供接口与以上模块进行交互获取信息, 回传至后台网管服务器或者查 询客户端进行数据展示、 数据校对及实时监控。 优选地, 如图 4所示, 调整模块 102可以包括: 调整单元 1020, 设置为根据调整 指令确定对基站的天线朝向和 /或天线相对于基站的抱杆的机械下倾角进行调整; 获取 单元 1022, 设置为根据调整结果重新获取当前使用的工程参数。 在优选实施例中, 图 5是根据本发明实施例的改进后的基站的示意图。 如图 5所 示, 可以在天线中间偏上的位置通过液压或电驱动模块与抱杆相连接, 通过液压装置 实现对天线机械下倾角的调整, 例如: 在抱杆上安装液压杆, 通过液压杆的伸缩来实
现对天线机械下倾角的调整; 还可以在天线下半部分通过电控转向模块实现对扇区天 线的方向角主动转向以及天线高度的调整。 通过驱动控制的方式调整扇区的机械下倾角, 改变小区覆盖距离; 调整扇区方向 角, 改变小区覆盖区域, 处理网络突发容量激增的问题, 结合业务特征提升网络性能。 优选地, 调整单元 1020可以包括: 第一确定子单元 (图中未示出), 设置为根据 调整指令确定天线的转动方向以及在转动方向上待转动的角度; 第一调整子单元 (图 中未示出), 设置为在转动方向上按照角度对天线进行调整。 在优选实施例中, 图 6是根据本发明优选实施例的通过液压装置对天线扇区角度 进行调整的示意图。 如图 6所示, 通过电动马达实现对扇区天线的方向角主动转向以 及天线高度的调整, 可以随时动态改变天线的角度。 图 7是根据本发明优选实施例的 在图 6的基础上对天线角度进行调整后覆盖扇区变化的示意图。 如图 7所示, 随着天 线角度的改变, 天线覆盖扇区的范围也随即发生变化。 优选地, 调整单元 1020还可以包括: 第二确定子单元 (图中未示出), 设置为根 据调整指令确定机械下倾角的变化幅度; 第二调整子单元(图中未示出), 设置为按照 变化幅度对天线进行调整。 优选地, 如图 4所示, 上述系统还可以包括: 服务器 20; 服务器 20可以包括: 记录模块 200,设置为记录与基站对应的调整后的当前使用的工程参数;处理模块 202, 设置为在经过预设时长后采用记录的工程参数对服务器当前保存的与基站对应的工程 参数进行更新, 或者, 将记录的工程参数删除。 图 8是根据本发明优选实施例的工程参数的调整系统的示意图。 如图 8所示, 通 过对站点扇区天线的改造, 增加电子指南针模块、 GPS模块、 摄像监控模块、 液压或 电驱动模块, 通过网管对站点扇区的方向角、 机械下倾角及扇区天线高度进行远程控 制; 通过对扇区朝向的调整, 可以调整其覆盖区域; 对扇区高度的调整可以延长覆盖 距离, 对机械下倾角的调整同样也可以达到对覆盖区域的调整; 通过摄像监控模块, 可以实时掌握设备周围情况变化, 及时了解天面环境变化, 第一时间提出处理方案; 同时,后台网管可以通过每个站点扇区上报的自身的 GPS信息以及电子指南针信息来 形成最真实的工程参数, 避免人为因素引入的工程参数误差, 在网络规划、 优化时引 入更多的误差, 导致对现网的影响, 有效避免大鸳鸯接反的情况出现。 通过远程自动 调整方案, 可以最大限度的降低当前上站调整施工所产生的费用, 缩短调整周期, 从 而缩短整个优化周期, 以最快的速度交付精品网络。
从以上的描述中, 可以看出, 上述实施例实现了如下技术效果 (需要说明的是这 些效果是某些优选实施例可以达到的效果): 通过本发明提供的技术方案,在网络初期 建设过程中可以通过校正工程参数, 为后期的优化提供最真实的网络参数, 并且消除 大鸳鸯接反等误差问题;在网络优化过程中可以在优化阶段实时修正扇区朝向及高度, 缩短因为自然和人为因素导致的时间浪费, 缩短优化周期, 节约成本和投入; 在网络 稳定运行过程中对于部分特殊区域可以及时提供补偿覆盖, 节约网络投入。 基站实时 上报网络工程参数, 避免在规划过程中引入误差以及施工过程中的设备接反, 使得后 台网管获取的数据真实可靠, 快速、 准确、 方便地远程控制扇区朝向、 下倾角及高度, 可以使网络中的基站扇区具备更高的灵活性, 减少工程施工周期、 网络优化周期和网 络投入成本, 提高网络优化效率和网络后期规划的准确性, 从而实现扇区调整的实时 性、 准确性、 方便性、 灵活性以及高自动化程度。 工业实用性 如上所述, 本发明实施例提供的一种工程参数的调整方法及系统具有以下有益效 果: 在网络初期建设过程中可以通过校正工程参数, 为后期的优化提供最真实的网络 参数, 并且消除大鸳鸯接反等误差问题; 在网络优化过程中可以在优化阶段实时修正 扇区朝向及高度, 缩短因为自然和人为因素导致的时间浪费, 缩短优化周期, 节约成 本和投入; 在网络稳定运行过程中对于部分特殊区域可以及时提供补偿覆盖, 节约网 络投入。 基站实时上报网络工程参数, 避免在规划过程中引入误差以及施工过程中的 设备接反, 使得后台网管获取的数据真实可靠, 快速、 准确、 方便地远程控制扇区朝 向、下倾角及高度, 可以使网络中的基站扇区具备更高的灵活性, 减少工程施工周期、 网络优化周期和网络投入成本, 提高网络优化效率和网络后期规划的准确性, 从而实 现扇区调整的实时性、 准确性、 方便性、 灵活性以及高自动化程度。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1. 一种工程参数的调整方法, 包括:
基站接收来自于服务器的调整指令, 其中, 所述调整指令是所述服务器根 据所述基站上报的该基站当前使用的工程参数与在所述服务器上预先设置的与 所述基站对应的初始规划工程参数进行对比后生成的, 或者, 所述调整指令是 所述服务器根据在预设周期内对所述基站多次上报的所述当前使用的工程参数 进行统计分析获得的;
所述基站根据所述调整指令对所述当前使用的工程参数进行调整。
2. 根据权利要求 1所述的方法, 其中, 所述基站根据所述调整指令对所述当前使 用的工程参数进行调整包括:
所述基站根据所述调整指令确定对所述基站的天线朝向和 /或所述天线相 对于所述基站的抱杆的机械下倾角进行调整;
所述基站根据调整结果重新获取当前使用的工程参数。
3. 根据权利要求 2所述的方法, 其中, 所述基站根据所述调整指令确定对所述基 站的天线朝向进行调整包括:
所述基站根据所述调整指令确定所述天线的转动方向以及在所述转动方向 上待转动的角度;
所述基站在所述转动方向上按照所述角度对所述天线进行调整。
4. 根据权利要求 2所述的方法, 其中, 所述基站根据所述调整指令确定所述天线 相对于所述基站的抱杆的机械下倾角进行调整包括:
所述基站根据所述调整指令确定所述机械下倾角的变化幅度; 所述基站按照所述变化幅度对所述天线进行调整。
5. 根据权利要求 1至 4中任一项所述的方法, 其中, 在所述基站根据所述调整指 令对所述当前使用的工程参数进行调整之后, 还包括:
所述服务器记录与所述基站对应的调整后的当前使用的工程参数; 所述服务器在经过预设时长后采用记录的工程参数对所述服务器当前保存 的与所述基站对应的工程参数进行更新, 或者, 将所述记录的工程参数删除。
一种工程参数的调整系统, 包括: 一个或多个基站;
每个基站均包括:
接收模块, 设置为接收来自于服务器的调整指令, 其中, 所述调整指令是 所述服务器根据所述基站上报的该基站当前使用的工程参数与在所述服务器上 预先设置的与所述基站对应的初始规划工程参数进行对比后生成的, 或者, 所 述调整指令是所述服务器根据在预设周期内对所述基站多次上报的所述当前使 用的工程参数进行统计分析获得的;
调整模块,设置为根据所述调整指令对所述当前使用的工程参数进行调整。 根据权利要求 6所述的系统, 其中, 所述调整模块包括: 调整单元,设置为根据所述调整指令确定对所述基站的天线朝向和 /或所述 天线相对于所述基站的抱杆的机械下倾角进行调整;
获取单元, 设置为根据调整结果重新获取当前使用的工程参数。 根据权利要求 7所述的系统, 其中, 所述调整单元包括: 第一确定子单元, 设置为根据所述调整指令确定所述天线的转动方向以及 在所述转动方向上待转动的角度;
第一调整子单元, 设置为在所述转动方向上按照所述角度对所述天线进行 调整。 根据权利要求 7所述的系统, 其中, 所述调整单元包括:
第二确定子单元, 设置为根据所述调整指令确定所述机械下倾角的变化幅 度;
第二调整子单元, 设置为按照所述变化幅度对所述天线进行调整。 根据权利要求 6至 9中任一项所述的系统, 其中, 所述系统还包括: 所述服务 器;
所述服务器包括:
记录模块, 设置为记录与所述基站对应的调整后的当前使用的工程参数; 处理模块, 设置为在经过预设时长后采用记录的工程参数对所述服务器当 前保存的与所述基站对应的工程参数进行更新, 或者, 将所述记录的工程参数 删除。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310046106.0 | 2013-02-05 | ||
CN2013100461060A CN103139811A (zh) | 2013-02-05 | 2013-02-05 | 工程参数的调整方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014121617A1 true WO2014121617A1 (zh) | 2014-08-14 |
Family
ID=48498996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/084115 WO2014121617A1 (zh) | 2013-02-05 | 2013-09-24 | 工程参数的调整方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103139811A (zh) |
WO (1) | WO2014121617A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103139811A (zh) * | 2013-02-05 | 2013-06-05 | 中兴通讯股份有限公司 | 工程参数的调整方法及系统 |
CN104936217B (zh) * | 2014-03-17 | 2018-11-23 | 中国移动通信集团陕西有限公司 | 一种移动通信站点基础工程参数核查的方法及系统 |
CN106353607A (zh) * | 2016-08-31 | 2017-01-25 | 福州福光电子有限公司 | 天线工参测试管理系统及其方法 |
CN106991505A (zh) * | 2017-05-15 | 2017-07-28 | 发联(上海)网络科技有限公司 | 用于运维电动医疗设备的管理系统 |
CN114125971A (zh) * | 2021-11-29 | 2022-03-01 | 新华三技术有限公司成都分公司 | 一种自动邻区关系anr更新方法及装置 |
CN114423016B (zh) * | 2021-12-30 | 2024-04-30 | 中国电信股份有限公司 | 一种基站规划参数的确定方法及装置 |
CN115567946A (zh) * | 2022-08-12 | 2023-01-03 | 王赓 | 一种用于山区的自适应调节的通信终端 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101616021A (zh) * | 2008-06-27 | 2009-12-30 | 中兴通讯股份有限公司 | 家庭基站网络优化方法和家庭基站配置服务器 |
CN102509886A (zh) * | 2011-11-03 | 2012-06-20 | 长沙威佳通信科技有限公司 | 基站天线状态自动监控系统 |
US20120188919A1 (en) * | 2008-05-16 | 2012-07-26 | Redline Communications Inc. | Isolation measurement and self oscillation prevention in tdd-ofdm repeater for wireless broadband distribution to shadowed areas |
CN103139811A (zh) * | 2013-02-05 | 2013-06-05 | 中兴通讯股份有限公司 | 工程参数的调整方法及系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102468536A (zh) * | 2010-11-17 | 2012-05-23 | 中国移动通信集团江苏有限公司 | 基站天线角度调整方法及系统 |
-
2013
- 2013-02-05 CN CN2013100461060A patent/CN103139811A/zh active Pending
- 2013-09-24 WO PCT/CN2013/084115 patent/WO2014121617A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120188919A1 (en) * | 2008-05-16 | 2012-07-26 | Redline Communications Inc. | Isolation measurement and self oscillation prevention in tdd-ofdm repeater for wireless broadband distribution to shadowed areas |
CN101616021A (zh) * | 2008-06-27 | 2009-12-30 | 中兴通讯股份有限公司 | 家庭基站网络优化方法和家庭基站配置服务器 |
CN102509886A (zh) * | 2011-11-03 | 2012-06-20 | 长沙威佳通信科技有限公司 | 基站天线状态自动监控系统 |
CN103139811A (zh) * | 2013-02-05 | 2013-06-05 | 中兴通讯股份有限公司 | 工程参数的调整方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN103139811A (zh) | 2013-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014121617A1 (zh) | 工程参数的调整方法及系统 | |
CN103179580B (zh) | 一种自适应覆盖优化方法及装置 | |
US20140045438A1 (en) | Method and system for optimizing wireless network based on antenna feeder apparatus | |
CN103888548A (zh) | 蓝牙信标监控管理系统 | |
CN102468536A (zh) | 基站天线角度调整方法及系统 | |
CN103037388B (zh) | 一种确定用户设备分布的方法及装置 | |
CN105472660A (zh) | 一种负载均衡方法、网络设备及系统 | |
WO2016033963A1 (zh) | 策略调整触发、策略调整方法及装置、策略调整系统 | |
CN102362517B (zh) | 无线电波状态测量系统、无线电波状态测量方法及存储无线电波状态测量程序的存储介质 | |
CN104125594B (zh) | 基于用户感知的无线网络优化方法及系统 | |
CN104219680A (zh) | 一种基站站址确定方法及装置 | |
CN102340785A (zh) | 天线调整方法和基站 | |
CN106788800A (zh) | 一种远端监测天线倾斜角度并校正的系统及其方法 | |
CN108985572A (zh) | 一种基于位置服务的区域配网设备故障抢修方法 | |
CN102904018A (zh) | 一种有源天线自适应调整下倾角的方法及装置 | |
CN105547284B (zh) | 基于485通信的室内定位导航系统及监测方法 | |
CN103596190A (zh) | 小区覆盖集中度的确定方法及装置 | |
CN101374311B (zh) | 一种移动通信小区交叉覆盖管理方法及装置 | |
CN105471640B (zh) | 远程天线工程参数感知方法、系统以及天线 | |
CN106486768A (zh) | 电调天线参数值调整方法及装置 | |
CN203950161U (zh) | 用于天线设备姿态监控的管控主机及监控系统 | |
WO2011079597A1 (zh) | 电调天线的管理系统和管理方法 | |
CN107682863B (zh) | 一种电力基站选择和布局方法 | |
CN104219707A (zh) | 一种获取小区间切换参数的方法、装置和系统 | |
CN113573348B (zh) | 一种基于人机指令实现5g基站参数自动化配置的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13874362 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13874362 Country of ref document: EP Kind code of ref document: A1 |