WO2014121554A1 - 三维曲面翼型的设计方法 - Google Patents

三维曲面翼型的设计方法 Download PDF

Info

Publication number
WO2014121554A1
WO2014121554A1 PCT/CN2013/074018 CN2013074018W WO2014121554A1 WO 2014121554 A1 WO2014121554 A1 WO 2014121554A1 CN 2013074018 W CN2013074018 W CN 2013074018W WO 2014121554 A1 WO2014121554 A1 WO 2014121554A1
Authority
WO
WIPO (PCT)
Prior art keywords
airfoil
airfoil section
coordinate
dimensional
dimensional curved
Prior art date
Application number
PCT/CN2013/074018
Other languages
English (en)
French (fr)
Chinese (zh)
Inventor
陈宇奇
Original Assignee
新疆尚孚新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆尚孚新能源科技有限公司 filed Critical 新疆尚孚新能源科技有限公司
Priority to EA201500723A priority Critical patent/EA029645B1/ru
Publication of WO2014121554A1 publication Critical patent/WO2014121554A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/18Aerodynamic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/467Aerodynamic features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Definitions

  • the invention relates to a design method of a three-dimensional curved airfoil, which is not only for a wind turbine blade of a renewable energy type, but also for various types of aircraft with a rotary wing, a jet engine, a steam/gas turbine and an extra large turbine blade, etc. It can be used as a basic geometric unit for constructing various wings, rotors and blades. Background technique
  • the helicopter is a vertical landing gear with its rotor as its main source of lift. Its vertical takeoff and landing, air hovering and other performances are largely determined by the aerodynamic characteristics of the rotor, which is related to the aerodynamic shape of the rotor blades. Has a very close relationship. Therefore, the rotor airfoil, which is the basic element of the aerodynamic shape of the rotor blade, has an important influence on the flow field and aerodynamic characteristics of the helicopter rotor. It also plays a significant role in improving the maneuverability, cruising speed and noise reduction characteristics of the helicopter. Therefore, the development of advanced helicopter rotor airfoil aerodynamic design research is of great significance to improve rotor performance and improve helicopter performance.
  • the Russian Mi-28N missile gunship adopts the new TsAGI series airfoil, which enables it to continuously complete Nesterov flipping and Yin Maiman flipping in flight. , dead muscles and roll, and these difficult aerobatics can only be completed before the Mi-28N helicopter. It can be seen that the helicopter airfoil performance has reached a high level, mainly in the improvement of lift, the improvement of stall characteristics, and the reduction of noise level. In China, although the aerodynamic design technology of helicopter rotor has made great progress, there is still a big gap between the design of rotor airfoil and advanced countries.
  • Vu 3 ⁇ 4 + y t cos 0,
  • the airfoil envelope diagram can be drawn by coordinates, as shown in Figure 4.
  • the task of the invention is to improve the aerodynamic extraction efficiency of the rotating blade on the basis of the same material and structural arrangement by constructing an optimized three-dimensional curved airfoil and then changing the aerodynamic shape of the blade.
  • the three-dimensional curved airfoil of the present invention is formed from the perspective of kinematics, as shown in Fig. 6.
  • the mining force of the aircraft wing is mainly in the state of translation, and the traction of the helicopter rotor and the wind turbine blade is in the state of rotation.
  • This three-dimensional curved airfoil invention will better conform to and improve the mining function of rotating blades and rotary blades in kinematics and aerodynamics.
  • the present invention is based on the above-described two-dimensional plane envelope (NACA series in the United States, TsAGI series in Russia, FFA series in Europe, and other y-axis ordinate-corrected airfoil series, etc.), and is determined by the radius R of rotation in the blade length direction.
  • the body is attached to the cylinder to generate a three-dimensional curved airfoil.
  • the chord length growth relationship is: tan [ h arctan(
  • a method for designing a three-dimensional curved airfoil comprising the steps of:
  • the above y is still the 2-D airfoil thickness coordinate value, and can also be the y correction value of other airfoil series.
  • its biggest joint advantage is that by constructing an optimized three-dimensional curved airfoil and then changing the aerodynamic shape of the blade, the aerodynamic extraction efficiency of the rotating blade is improved on the basis of the same material and structural arrangement.
  • Figure 1 Structure of an aircraft wing assembled from different two-dimensional planar airfoils
  • Figure 2 A perspective view of the aerodynamic shape of existing wind turbine blades assembled from various 2D planar airfoils; their chord length and torsion angle are all changed according to certain rules.
  • FIG. 3 Schematic representation of existing steam turbine blades and helicopter rotors consisting of specific airfoils; they are all constructed of two-dimensional planar airfoils.
  • Figure 5 Schematic diagram of the growth relationship of the string coordinates along the rotating cylindrical body of the present invention
  • the following table is a three-dimensional coordinate value of the three-dimensional curved airfoil of the present invention on a rotating cylinder (R: 10.26 m), which is a specific embodiment of the present invention.
  • the first three sets of data in each line are the three-dimensional coordinates of the upper arc; the last three sets of data in each line are the three-dimensional coordinates of the lower arc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
PCT/CN2013/074018 2013-02-05 2013-04-10 三维曲面翼型的设计方法 WO2014121554A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EA201500723A EA029645B1 (ru) 2013-02-05 2013-04-10 Способ проектирования трёхмерного изогнутого аэродинамического профиля

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310053925.8A CN103967718B (zh) 2013-02-05 2013-02-05 三维曲面翼型的设计方法
CN201310053925.8 2013-02-05

Publications (1)

Publication Number Publication Date
WO2014121554A1 true WO2014121554A1 (zh) 2014-08-14

Family

ID=51237627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074018 WO2014121554A1 (zh) 2013-02-05 2013-04-10 三维曲面翼型的设计方法

Country Status (3)

Country Link
CN (1) CN103967718B (ru)
EA (1) EA029645B1 (ru)
WO (1) WO2014121554A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113970311A (zh) * 2021-10-12 2022-01-25 中国航空工业集团公司北京长城计量测试技术研究所 一种航空发动机叶片矢量逼近迭代测量方法
CN115544667A (zh) * 2022-10-31 2022-12-30 南京航空航天大学 一种基于叶素动量源耦合cfd的等效盘方法
CN117313235A (zh) * 2023-09-23 2023-12-29 哈尔滨工业大学 一种基于机器学习的特种无人机优化翼型桨叶设计方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104881510B (zh) * 2015-02-13 2018-06-05 南京航空航天大学 一种直升机旋翼/尾桨气动干扰数值仿真方法
CN108100195B (zh) * 2016-11-25 2019-09-17 成都天府新区光启未来技术研究院 用于螺旋桨设计的方法和装置
CN109229417B (zh) * 2018-08-06 2020-08-21 浙江工业大学 一种基于雕翼的仿生组合翼型设计方法
CN109185009B (zh) * 2018-09-07 2020-05-08 杭州江河水电科技有限公司 一种无源自适应往返双向水流的叶轮装置
RU2769545C1 (ru) * 2021-05-14 2022-04-04 Акционерное общество "Национальный центр вертолетостроения им. М.Л. Миля и Н.И. Камова" (АО "НЦВ Миль и Камов") Аэродинамический профиль несущего элемента летательного аппарата

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625459A (en) * 1970-05-18 1971-12-07 Walter C Brown Airfoil design
CN101968821A (zh) * 2009-07-28 2011-02-09 联合船舶设计发展中心 适用多速度域的翼型设计方法与结构
US7941300B1 (en) * 2008-02-29 2011-05-10 Florida Turbine Technologies, Inc. Process for the design of an airfoil
CN101923584B (zh) * 2009-10-30 2012-08-15 重庆大学 风力机专用翼型设计方法及风力机专用翼型
CN102235325B (zh) * 2011-07-01 2012-10-31 重庆大学 基于翼型集成和混合尾缘改型的风力机叶尖翼型设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625459A (en) * 1970-05-18 1971-12-07 Walter C Brown Airfoil design
US7941300B1 (en) * 2008-02-29 2011-05-10 Florida Turbine Technologies, Inc. Process for the design of an airfoil
CN101968821A (zh) * 2009-07-28 2011-02-09 联合船舶设计发展中心 适用多速度域的翼型设计方法与结构
CN101923584B (zh) * 2009-10-30 2012-08-15 重庆大学 风力机专用翼型设计方法及风力机专用翼型
CN102235325B (zh) * 2011-07-01 2012-10-31 重庆大学 基于翼型集成和混合尾缘改型的风力机叶尖翼型设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JI, CAIYUN ET AL.: "Three-dimensional Modelling and Modal Analysis for Blades of 3 MW Offshore Wind Turbine", MACHINERY DESIGN & MANUFACTURE, June 2011 (2011-06-01), pages 192 - 194 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113970311A (zh) * 2021-10-12 2022-01-25 中国航空工业集团公司北京长城计量测试技术研究所 一种航空发动机叶片矢量逼近迭代测量方法
CN115544667A (zh) * 2022-10-31 2022-12-30 南京航空航天大学 一种基于叶素动量源耦合cfd的等效盘方法
CN115544667B (zh) * 2022-10-31 2024-05-10 南京航空航天大学 一种基于叶素动量源耦合cfd的等效盘方法
CN117313235A (zh) * 2023-09-23 2023-12-29 哈尔滨工业大学 一种基于机器学习的特种无人机优化翼型桨叶设计方法

Also Published As

Publication number Publication date
CN103967718B (zh) 2016-10-05
EA201500723A1 (ru) 2015-12-30
EA029645B1 (ru) 2018-04-30
CN103967718A (zh) 2014-08-06

Similar Documents

Publication Publication Date Title
WO2014121554A1 (zh) 三维曲面翼型的设计方法
CN101923584B (zh) 风力机专用翼型设计方法及风力机专用翼型
CN104139849A (zh) 一种具有提高高空桨效率的桨梢小翼及高空桨
CN109969425B (zh) 一种针对复合推力构型直升机的两侧推进螺旋桨优化方法
CN110979682A (zh) 一种变面积鸭式前掠翼变体飞行器
CN106542081A (zh) Nasa ms(1)-0313翼型的一种单缝富勒式襟翼设计
CN108750073B (zh) 一种兼顾亚音速及超音速气动性能的可变机翼前缘
CN103754360B (zh) 一种类飞碟式旋翼机
CN108284943A (zh) 一种用于机翼尾缘柔性变弯的机构
CN104819106A (zh) 一种风力机叶片翼型族
Hall et al. How to improve open rotor aerodynamics at cruise and take-off
JP6856930B2 (ja) ロータ、ドローン及びヘリコプタ
CN106321347A (zh) 一种风力机涡流发生器
CN108502138A (zh) 一种采用前缘支撑翼的前掠翼宽体高亚声速飞行器气动布局
CN101886619B (zh) 风力发电机叶尖专用翼型
CN107016199A (zh) 一种无激波边界层排移鼓包的设计方法
CN107697284B (zh) 一种双段式仿生扑翼无人机机翼
Amato et al. Numerical Analysis of the Influence of Tip Devices on the Power Coefficient of a VAWT
Elfarra et al. A parametric CFD study for the effect of spanwise parabolic chord distribution on the thrust of an untwisted helicopter rotor blade
CN109533314A (zh) 一种轻型无人直升机旋翼桨叶气动外形
CN104494842B (zh) 一种增升翼尖设计方法
CN106800086B (zh) Nasa ms(1)-0317翼型的一种单缝富勒式襟翼设计
CN206129493U (zh) 一种风力机涡流发生器
Gao et al. Numerical simulation to the effect of rotation on blade boundary layer of horizontal axial wind turbine
CN202935572U (zh) 一种双后掠式全动偏转飞机平尾

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201500723

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874695

Country of ref document: EP

Kind code of ref document: A1