WO2014121453A1 - 积木组件及积木系统 - Google Patents

积木组件及积木系统 Download PDF

Info

Publication number
WO2014121453A1
WO2014121453A1 PCT/CN2013/071414 CN2013071414W WO2014121453A1 WO 2014121453 A1 WO2014121453 A1 WO 2014121453A1 CN 2013071414 W CN2013071414 W CN 2013071414W WO 2014121453 A1 WO2014121453 A1 WO 2014121453A1
Authority
WO
WIPO (PCT)
Prior art keywords
visual
building block
positive
negative
code
Prior art date
Application number
PCT/CN2013/071414
Other languages
English (en)
French (fr)
Inventor
李铁才
李西峙
Original Assignee
浙江博望科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江博望科技发展有限公司 filed Critical 浙江博望科技发展有限公司
Priority to PCT/CN2013/071414 priority Critical patent/WO2014121453A1/zh
Publication of WO2014121453A1 publication Critical patent/WO2014121453A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/04Building blocks, strips, or similar building parts
    • A63H33/06Building blocks, strips, or similar building parts to be assembled without the use of additional elements
    • A63H33/08Building blocks, strips, or similar building parts to be assembled without the use of additional elements provided with complementary holes, grooves, or protuberances, e.g. dovetails
    • A63H33/086Building blocks, strips, or similar building parts to be assembled without the use of additional elements provided with complementary holes, grooves, or protuberances, e.g. dovetails with primary projections fitting by friction in complementary spaces between secondary projections, e.g. sidewalls

Definitions

  • the present invention relates to toys, and more particularly to a building block assembly and building block system.
  • the technical problem to be solved by the present invention is to provide a building block and building block system for the defects that the building blocks do not have the recombination simulation capability in the prior art.
  • a building block assembly comprising positive and negative building blocks which are both regular hexahedrons
  • the positive building block is provided with a first set of visual codes; the first set of visual codes comprises a first visual code disposed on each side of the positive building block; a side of each of the positive building blocks The first visual code is different from the first visual code of the other side;
  • the negative building block is provided with a second set of visual codes corresponding to the first set of visual codes; the second set of visual codes comprises a second visual encoding set on each side of the negative building blocks The second visual code of the side of each of the negative bricks is different from the second visual code of the other side;
  • first visual code and the second visual code are used to generate a genetic code representing a stacked sequence of the positive building block and the negative building block;
  • a convex pattern corresponding to the first visible code of the side surface is provided on each side of the positive building block, and the second visual code is provided on the side of the negative building block with the side surface a corresponding concave pattern; the convex pattern corresponding to the concave pattern such that the positive brick and the negative brick are stacked together by the convex pattern embedded in the concave pattern.
  • the first set of visual codes is the same as the second set of visual codes.
  • the first visual code is a visual number or a visual letter or a visual binary code
  • the second visual code is a corresponding to the first visual code Visual digital or visual letters or visual binary code
  • the first visual encoding is a color; and the second visual encoding is a color corresponding to the first visual encoding.
  • one of the positive brick and the negative brick is provided with a permanent magnet, and the other is provided with a magnet.
  • a building block system comprising a plurality of regular blocks of a regular hexahedron, a plurality of negative building blocks of a regular hexahedron, and a plurality of positive building blocks and said plurality of negative building blocks, respectively Electrically connected processor;
  • the positive building block is provided with a first set of visual codes; the first set of visual codes comprises a first visual code disposed on each side of the positive building block; a side of each of the positive building blocks The first visual code is different from the first visual code of the other side;
  • the negative building block is provided with a second set of visual codes corresponding to the first set of visual codes; the second set of visual codes comprises a second visual encoding set on each side of the negative building blocks The second visual code of the side of each of the negative bricks is different from the second visual code of the other side;
  • first visual code and the second visual code are used to generate a genetic code representing a stacked sequence of the positive building block and the negative building block;
  • a convex pattern corresponding to the first visible code of the side surface is provided on each side of the positive building block, and the second visual code is provided on the side of the negative building block with the side surface a corresponding concave pattern; the convex pattern corresponding to the concave pattern, such that the positive brick and the negative brick are stacked together by the convex pattern embedded in the concave pattern;
  • At least two electrodes are disposed thereon to electrically contact adjacent positive building blocks and the negative building blocks during the stacking process;
  • the positive building block and the negative building block are respectively provided with electronic identity cards electrically connected to the respective electrodes;
  • the processor is electrically connected to at least two electrodes of the positive building block and to at least two electrodes of the negative building block to learn that the positive building block is located by detecting an electronic identity card in the positive building block Locating the position in the stacking sequence and ascertaining the position of the negative building block in the stacking sequence by detecting an electronic identity card in the negative building block.
  • the first set of visual codes is the same as the second set of visual codes.
  • the first visual code is a visual number or a visual letter or a visual binary code
  • the second visible code is corresponding to the first visual code Visual digital or visual letters or visual binary code
  • the first visual encoding is a color; and the second visual encoding is a color corresponding to the first visual encoding.
  • one of the positive brick and the negative brick is provided with a permanent magnet, and the other is provided with a magnet.
  • the invention has the beneficial effects that by providing visual coding on the sides of the building block to characterize the side, the visual code can be used to generate a genetic code representing the stacking sequence of the building blocks, and the building blocks used in the stacking of the building blocks can be generated by the genetic code.
  • the total number, total surface area, total weight, stacking process, and stacked structural shapes are digitized.
  • the genetic code can also be sent to a computer as a file for computer simulation and processing, and a large number of new applications are generated.
  • Figure 1 is a block diagram showing the structure of a building block when visually encoded as a sequential number
  • FIG. 2 is a schematic structural diagram of a building block when visually encoding a binary code
  • FIG. 3 is a schematic structural view of a positive building block according to an embodiment of the present invention.
  • Figure 4 is a schematic view showing the structure of a negative building block corresponding to the positive building block of Figure 3;
  • Figure 5a shows a schematic diagram of the stacking process of two positive bricks in Figure 3 and one negative brick in Figure 4;
  • Figure 5b is a schematic view showing the structure of the object formed by stacking the positive and negative blocks in Figure 5a;
  • FIG. 6 is a schematic structural view showing a plurality of positive and negative building blocks stacked in a "mouth" shape according to an embodiment of the present invention
  • FIG. 7 is a schematic structural view showing a plurality of positive and negative building blocks stacked in a "mouth" shape according to an embodiment of the present invention.
  • Figure 8 is a schematic view showing the construction of a large cube by stacking a plurality of positive blocks and a plurality of negative blocks;
  • Figure 9 is a diagram showing an equivalent circuit diagram in which a plurality of bricks are electrically connected to a processor in a building block system in accordance with an embodiment of the present invention.
  • a building block assembly in accordance with an embodiment of the present invention includes positive and negative blocks that are both regular hexahedrons.
  • the positive building block is provided with a first set of visual codes; the first set of visual coding comprises a first visual code set on each side of the positive building block; the first visual coding of the side of each positive building block and the other The first visual code on the side is different.
  • the negative building block is provided with a second set of visual codes corresponding to the first set of visual codes; the second set of visual codes comprises a second visual code set on each side of the negative building block; the side of each negative building block The second visual code is different from the second visual code on the other side.
  • first visual code and the second visual code are used to generate a genetic code representing a stacked sequence of positive and negative building blocks stacked together.
  • Each side of the positive building block is provided with a convex pattern corresponding to the first visible code of the side surface, and each side of the negative building block is provided with a concave pattern corresponding to the second visible code of the side surface;
  • the pattern corresponds to the concave pattern such that the positive and negative blocks are stacked together by the convex pattern embedded in the concave pattern.
  • hard plastics can be used to prepare positive and negative bricks
  • soft plastics can also be used to prepare positive and negative bricks.
  • the preparation of soft plastics is better for positive and negative bricks.
  • hard plastics are usually used to prepare the positive building blocks
  • soft plastics are used to prepare the negative building blocks.
  • one of the positive building blocks and the negative building block is provided with a permanent magnet, and the other is provided with a magnetizer.
  • the permanent magnets may be made of any suitable permanent magnet material available, and the above-described magnetizers may be made of any suitable magnetically permeable material available.
  • the first visual code provided on the side of the positive building block is used to distinguish or identify each side of the positive building block such that each side of the positive building block has an independent code to characterize the side; accordingly, the first side of the negative building block is provided
  • the two visual codes are used to distinguish or identify the various sides of the negative building block such that each side of the negative building block has an independent code to characterize the side.
  • Visually referred to herein means that the user can observe the code from the side of the positive building block.
  • the visual code can be a visual number, a visual letter, a visual binary code, or a color, and the like. Those skilled in the art will appreciate that any character, pattern, color, or combination thereof that can identify the sides of the positive block can be used as the visual code.
  • the first set of visual codes corresponds to the second set of visual codes, which means that the six first visual codes in the first set of codes correspond to the six second visible codes in the second set of codes.
  • the first set of visual codes includes visible Arabic numerals 1, 2, 3, 4, 5, and 6, and the second set of visual codes correspondingly includes visual uppercase numbers one, two, three, four, five, and six;
  • the first set of visual codes includes uppercase letters A, B, C, D, E, and F
  • the second set of visual codes correspondingly include lowercase letters a, b, c, d, e, and f.
  • the correspondence between the first set of visual codes and the second set of visual codes can be arbitrarily set as needed.
  • the first set of visual codes is the same as the second set of visual codes, ie the positive and negative blocks can use the same visual code to identify the sides.
  • the first set of visual codes is the same as the second set of visual codes hereinafter, so the first visual code and the second visual code may be simply referred to as visual coding.
  • this preferred embodiment it is to be understood by those skilled in the art that this preferred embodiment
  • the first visual code of the positive building block shown in Figure 1 is a sequential number, in which case the various sides of the positive building block are characterized by the numbers 1, 2, 3, 4, 5, 6, respectively.
  • the visual coding of the positive building block shown in Fig. 2 is a binary code.
  • the binary codes 000, 001, 010, 011, 100, 101 are respectively used to represent the respective sides of the positive building block.
  • the six sides of the positive brick can also be characterized by six colors of brown, red, orange, yellow, green, and blue, which are not listed here.
  • the visual coding setting of the negative building blocks is the same as that of the positive building blocks, and will not be described here.
  • each of which includes two opposing sides there are three pairs of sides, each of which includes two opposing sides.
  • at least two opposite sides of the positive building block are provided with a convex pattern, that is, a pair of side surfaces are respectively provided with a convex pattern, or two pairs of side walls of the building block are respectively provided with a convex pattern.
  • a protruding pattern is provided on the six sides of the building block.
  • the raised pattern may be a convex square, a cross, a circle, and a combination of various shapes.
  • different convex patterns are provided on each side, that is, one convex pattern corresponds to one visual code.
  • FIG. 3 is a schematic view showing the structure of a positive building block according to an embodiment of the present invention.
  • the positive building block uses continuous numbers as visual codes.
  • a convex pattern is provided on the side of the positive building block, and a convex pattern corresponds to a visible code.
  • the convex pattern of the square corresponds to a visual code of 1
  • the convex pattern of the cross has a visual code of 2.
  • the embossed patterns may also have different gradations or colors for identification and differentiation.
  • Fig. 4 is a schematic view showing the structure of a negative building block corresponding to the positive building block of Fig. 3.
  • the "one-to-one correspondence" described herein means the following aspects:
  • the convex pattern is a cross shape
  • the concave pattern is also a cross shape, and the convex pattern may be embedded in the corresponding concave pattern;
  • the second is that the set positions correspond one-to-one, that is, the concave pattern corresponds to
  • the visual code is the same as the visual code corresponding to the convex pattern. For example, if the square convex pattern corresponds to a visual code of 1, the corresponding square concave pattern corresponds to a visual code of 1.
  • the stacking manner of the positive and negative bricks is no longer singularly reflected from the figure, and may include numbers, letters, and/or colors.
  • the arrangement sequence defining the visual code is a genetic code indicating a stacked sequence in which a plurality of positive and negative building blocks are stacked together.
  • the adjacent positive and negative bricks are stacked together by the convex pattern embedded in the concave pattern, and the corresponding convex pattern and the concave pattern have the same visual code, so that the stacking has the same
  • the side fittings of the code are assembled together.
  • Fig. 5a shows a schematic diagram of the stacking process of two positive bricks in Fig. 3 and one negative brick in Fig. 4, wherein the arrows indicate the stacking direction.
  • the No. 1 surface the side of the visual code is 1
  • the 6th surface of the forward positive building block 510 the side with the visible code of 6
  • the 1st surface the side with the visual code of 1
  • the 6th face of the forward negative building block 520 (the side of the visible code is 6) is assembled, and then the 5th face of the negative building block 520 (the side with the visual code of 5) and the 1st face (the visual code is 1) Side
  • the 5th face of the forward positive building block 530 (the side with a visual code of 5) is assembled.
  • Fig. 5b is a schematic view showing the structure of the object formed by stacking the positive and negative blocks in Fig. 5a.
  • the genetic code of the stacked object is 56 by the splicing method in Fig. 5a.
  • the genetic code representing the stacked sequence is uniquely determined.
  • the genetic code generated by visual coding can only be 56.
  • the building blocks are stacked according to the genetic code of 56, the positive building block 510 and the negative building block 520 are first spliced together by side contacts having a visual code of 5, and then the positive building block 530 and the negative building block 520 are passed.
  • the side codes of the visual code are 6 stitched together to complete the accumulation of the genetic code 56, and the positive and negative blocks stacked together can only be the objects in Fig. 5b.
  • Fig. 6 is a structural schematic view showing a plurality of positive and negative building blocks alternately stacked into a "mouth" shape according to an embodiment of the present invention, wherein arrows indicate a stacking direction.
  • the positive and negative blocks are collectively referred to as building blocks in the following description.
  • the No. 6 surface facing the six-sided volume wood (the side with the visual code of 6) starts to build the next piece of No. 6 area wood, and the No. 2 surface of the two building blocks (the side code visible as 2) Assemble together, record the assembly sequence code "2"; then build the next piece of No.
  • the genetic code generated by visual coding is 252131525313. It can also be written as: 6-252131525313, where "6-" is the same tangent plane of a visual code of a plurality of stacked blocks.
  • Figure 7 is another way of stacking a "mouth” with a regular six-sided volume.
  • the No. 4 surface facing the six-sided volume wood began to build the next No. 4 area wood, and the No. 5 surface of the two building blocks was assembled together, and the assembly order code “5” was recorded; then the next No. 4 area wood was built, and two blocks were built.
  • the 2nd surface is assembled together, and the assembly sequence code "2" is recorded; according to the assembly order of Figure 7, and so on, 12 blocks of No. 4 front facing blocks are built into a "mouth” word, and the genetic code generated by the construction process is generated.
  • Figure 8 is a schematic view showing the construction of a large square body using a plurality of regular six-sided volume wood.
  • the stacking process is: first complete the assembly of the "mouth” word object as shown in Fig. 6, the object has two faces with the same code, respectively 6 and 4, called the cut plane 6 and the cut plane 4; Figure 7 is a compilation of the "mouth” word object.
  • the object also has two faces with the same code, 4 and 6, respectively, called the tangent plane 4 and the tangent plane 6; and then the construction of the "mouth” object as shown in Fig. 6. Assembled; then complete the assembly of the "mouth” object words as shown in Figure 7.
  • the genetic code of the large square object is: 252131525313 plus 525131252313 plus 252131525313 plus 525131252313.
  • the genetic code of the large square object is unique and can be copied, stored, and transmitted to a computer.
  • the large cube object has four identical tangent planes, which are 6, 4, 6, and 4. This information can be used further in computer simulations.
  • the visual code can be used to generate a genetic code representing the stacked sequence of the positive and negative building blocks stacked together.
  • the total number of positive and negative blocks used in the stack, the total surface area, the total weight, the stacking process, and the structural shape formed by the stacking can be digitized by the genetic code.
  • the genetic code can also be sent to a computer as a file for computer simulation and processing, and a large number of new applications are generated.
  • a building block system includes a plurality of regular building blocks of a regular hexahedron, a plurality of negative building blocks of a regular hexahedron, and a processor electrically connected to the plurality of positive building blocks and the plurality of negative building blocks, respectively.
  • the positive and negative bricks have the same outer structure as the positive and negative bricks described above, and therefore, some or all of the above descriptions of the positive and negative bricks are cited herein.
  • the positive building block is provided with a first set of visual codes; the first set of visual coding comprises a first visual code set on each side of the positive building block; a first visual coding of the side of each positive building block; Different from the first visual code on the other side.
  • the negative building block is provided with a second set of visual codes corresponding to the first set of visual codes; the second set of visual codes comprises a second visual code set on each side of the negative building block; the side of each negative building block The second visual code is different from the second visual code on the other side.
  • first visual code and the second visual code are used to generate a genetic code representing a stacked sequence of positive and negative building blocks stacked together.
  • Each side of the positive building block is provided with a convex pattern corresponding to the first visible code of the side surface, and each side of the negative building block is provided with a concave pattern corresponding to the second visible code of the side surface;
  • the pattern corresponds to the concave pattern such that the positive and negative blocks are stacked together by the convex pattern embedded in the concave pattern.
  • it is a positive building block or a negative building block, it has at least two electrodes on it, which can make electrical contact between adjacent positive and negative building blocks during the stacking process, or directly connect the positive building blocks or negative building blocks with the processor through the lead wires. connection.
  • the positive building block is provided with an electronic identity card electrically connected to the electrode, and the electronic identity card stores an ID identity number indicating the unique identity information of the positive building block;
  • the negative building block is provided with an electronic identity electrically connected to the electrode thereof.
  • the electronic identity card stores an ID identification number indicating the unique identification information of the negative building block.
  • the processor is electrically connected to at least two electrodes of the positive building block, and the processor is further electrically connected to at least two electrodes of the negative building block, so that the position of the positive building block in the stacking sequence can be known by detecting the electronic identification card in the positive building block. And by detecting the electronic identity card in the negative building block to know the location of the negative building blocks in the stacking sequence. .
  • any one of the positive or negative building blocks (hereinafter, the positive building blocks and the negative building blocks are collectively referred to as building blocks) can be directly connected to the processor through the electrodes, or through the phase.
  • the adjacent building blocks are electrically connected to the processor, such that the plurality of building blocks and the processor form a network comprising a plurality of nodes, and each building block is located at one of the nodes, and the processor directly or indirectly with the building blocks on the node connection.
  • the processor described herein is electrically coupled to the building block, and more particularly to the processor and the electronic identity card in the building block.
  • Figure 9 shows an equivalent circuit diagram of a plurality of building blocks electrically coupled to the processor.
  • the electronic identity cards in the building blocks are also electrically coupled to the processor when the building blocks 1 - n are electrically coupled to the processor.
  • the processor sends an electrical signal to the building block
  • a response signal is fed back, so that the processor knows that the building block is connected to the stacked building blocks, and is also known.
  • the building block system is very effective in managing a large number of building blocks.

Landscapes

  • Toys (AREA)

Abstract

一种积木组件,包括均为正六面体的正积木(510、530)和负积木(520),正积木(510、530)设有第一组可视编码,其包括在正积木(510、530)的每个侧面上设置的唯一的第一可视编码,负积木(520)设有与第一组可视编码对应的第二组可视编码,其包括在负积木(520)的每个侧面上设置的唯一的第二可视编码。第一可视编码和第二可视编码用于生成表示正积木(510、530)和负积木(520)堆积在一起后的堆积序列的遗传密码。正积木(510、530)的每个侧面上设有与第一可视编码对应的凸出图案,负积木(520)的每个侧面上设有与第二可视编码对应的凹入图案,使得正积木(510、530)和负积木(520)通过凸出图案嵌入凹入图案而堆积在一起。通过可视编码生成的遗传密码可以将堆积中使用的正积木(510、530)和负积木(520)的总数目、堆积过程以及堆积的结构外形数字化。

Description

积木组件及积木系统 技术领域
本发明涉及玩具,尤其涉及一种积木组件及积木系统。
背景技术
目前,传统的积木通过堆积可拼接成不同的形状或物体。但是,对于这种积木而言,只能从图示上获知积木的堆积方式,无法用字符精准地表示积木的堆积序列,例如,无法用数字和/或字母构成的字符串来表示堆积序列。因此,这些积木的功能单一,不具备重构仿真能力,因此无法用于工业、建筑、军事中的半实物仿真。
发明内容
本发明要解决的技术问题在于针对现有技术中积木不具备重构仿真能力的缺陷,提供一种积木及积木系统。
本发明解决其技术问题所采用的技术方案是:依据本发明的一方面,提供了一种积木组件,包括均为正六面体的正积木和负积木;其中,
所述正积木设有第一组可视编码;所述第一组可视编码包括在所述正积木的每个侧面上设置的第一可视编码;每一所述正积木的侧面的所述第一可视编码与其它侧面的所述第一可视编码相异;
所述负积木设有与所述第一组可视编码对应的第二组可视编码;所述第二组可视编码包括在所述负积木的每个侧面上设置的第二可视编码;每一所述负积木的侧面的所述第二可视编码与其它侧面的所述第二可视编码相异;
其中,所述第一可视编码和所述第二可视编码用于生成表示所述正积木和所述负积木堆积在一起后的堆积序列的遗传密码;
所述正积木的每个侧面上设有与该侧面的所述第一可视编码对应的凸出图案,所述负积木的每个侧面上设有与该侧面的所述第二可视编码对应的凹入图案;所述凸出图案与所述凹入图案对应,以使得所述正积木与所述负积木之间通过所述凸出图案嵌入所述凹入图案而堆积在一起。
在依据本发明实施例的积木组件中,所述第一组可视编码与所述第二组可视编码相同。
在依据本发明实施例的积木组件中,所述第一可视编码为可视数字或可视字母或可视二进制码;所述第二可视编码为与所述第一可视编码对应的可视数字或可视字母或可视二进制码。
在依据本发明实施例的积木组件中,所述第一可视编码为颜色;所述第二可视编码为与所述第一可视编码对应的颜色。
在依据本发明实施例的积木组件中,所述正积木和所述负积木中的一个内设有永磁体,另一个内设有导磁体。
依据本发明的另一方面,还提供了一种积木系统,包括多个为正六面体的正积木、多个为正六面体的负积木和分别与所述多个正积木和所述多个负积木电连接的处理器;其中,
所述正积木设有第一组可视编码;所述第一组可视编码包括在所述正积木的每个侧面上设置的第一可视编码;每一所述正积木的侧面的所述第一可视编码与其它侧面的所述第一可视编码相异;
所述负积木设有与所述第一组可视编码对应的第二组可视编码;所述第二组可视编码包括在所述负积木的每个侧面上设置的第二可视编码;每一所述负积木的侧面的所述第二可视编码与其它侧面的所述第二可视编码相异;
其中,所述第一可视编码和所述第二可视编码用于生成表示所述正积木和所述负积木堆积在一起后的堆积序列的遗传密码;
所述正积木的每个侧面上设有与该侧面的所述第一可视编码对应的凸出图案,所述负积木的每个侧面上设有与该侧面的所述第二可视编码对应的凹入图案;所述凸出图案与所述凹入图案对应,以使得所述正积木与所述负积木之间通过所述凸出图案嵌入所述凹入图案而堆积在一起;
无论所述正积木还是所述负积木,其上均设有至少两个电极,以在堆积过程中使得相邻的所述正积木和所述负积木之间电接触;
所述正积木和所述负积木中分别设有与各自的电极电连接的电子身份卡;
所述处理器与所述正积木的至少两个电极电连接以及与所述负积木的至少两个电极电连接,以通过探测所述正积木中的电子身份卡来获知所述正积木在所述堆积序列中的位置,以及通过探测所述负积木中的电子身份卡来获知所述负积木在所述堆积序列中的位置。
在依据本发明实施例的积木系统中,所述第一组可视编码与所述第二组可视编码相同。
在依据本发明实施例的积木系统中,所述第一可视编码为可视数字或可视字母或可视二进制码;所述第二可视编码为与所述第一可视编码对应的可视数字或可视字母或可视二进制码。
在依据本发明实施例的积木系统中,所述第一可视编码为颜色;所述第二可视编码为与所述第一可视编码对应的颜色。
在依据本发明实施例的积木系统中,所述正积木和所述负积木中的一个内设有永磁体,另一个内设有导磁体。
本发明产生的有益效果是:通过在积木的各个侧面上设置表征该侧面的可视编码,可以采用该可视编码生成表示积木堆积序列的遗传密码,通过遗传密码可以将积木堆积中使用的积木的总数目、总表面积、总重量、堆积过程以及堆积的结构外形数字化。这样,只要知晓遗传密码,即可用同样的顺序复现和重构积木物体的堆积过程和积木物体,具有实物仿真能力,具有永久保存和复制的能力。进一步地,还可以将该遗传密码作为文件送计算机进行计算机模拟仿真和加工,产生大量新的应用。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1示出了可视编码为顺序数字时的积木的结构示意图;
图2示出了可视编码为二进制码时的积木的结构示意图;
图3示出了依据本发明实施例的正积木的结构示意图;
图4示出了与图3中的正积木对应的负积木的结构示意图;
图5a示出了两个图3中的正积木和一个图4中的负积木的堆积过程示意图;
图5b是图5a中的正积木和负积木堆积在一起后形成的物体的结构示意图;
图6示出了将多个依据本发明实施例的正积木和负积木堆积成“口”字形的结构示意图;
图7示出了将多个依据本发明实施例的正积木和负积木堆积成“口”字形的结构示意图;
图8是用多个正积木和多个负积木堆积在一起构建一个大正方体的结构示意图;
图9示出了依据本发明实施例的积木系统中多个积木与处理器电连接的等效电路图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
依据本发明实施例的积木组件包括均为正六面体的正积木和负积木。其中,正积木设有第一组可视编码;第一组可视编码包括在正积木的每个侧面上设置的第一可视编码;每一正积木的侧面的第一可视编码与其它侧面的第一可视编码相异。负积木设有与第一组可视编码对应的第二组可视编码;第二组可视编码包括在负积木的每个侧面上设置的第二可视编码;每一负积木的侧面的第二可视编码与其它侧面的第二可视编码相异。其中,第一可视编码和第二可视编码用于生成表示正积木和负积木堆积在一起后的堆积序列的遗传密码。正积木的每个侧面上设有与该侧面的第一可视编码对应的凸出图案,负积木的每个侧面上设有与该侧面的第二可视编码对应的凹入图案;凸出图案与凹入图案对应,以使得正积木与负积木之间通过凸出图案嵌入凹入图案而堆积在一起。
在本发明中,既可以选用硬塑料来制备正积木和负积木,也可选用软塑料来制备正积木和负积木。但是相比而言,软塑料的制备的正积木和负积木的手感更佳。为了使得正积木和负积木的拼接或手感最佳,通常选用硬塑料制备正积木,软塑料制备负积木。
优选地,正积木和负积木中的一个内设有永磁体,另一个内设有导磁体,当正积木与负积木接触到一起后,可通过磁力紧密嵌合在一起,使得堆积形成的物体牢固。可采用现有的任何适合的永磁材料制成永磁体,以及可采用现有的任何适合的导磁材料制成上述导磁体。
正积木的侧面上设置的第一可视编码用于区分或标识正积木的各个侧面,使得正积木的每个侧面具有独立的编码来表征该侧面;相应地,负积木的侧面上设置的第二可视编码用于区分或标识负积木的各个侧面,使得负积木的每个侧面具有独立的编码来表征该侧面。此处所说的可视,指的是使用者可以从正积木的侧面上观测到该编码。该可视编码可以为可视数字、可视字母、可视二进制码、或者颜色等等。本领域的技术人员应当知晓,任何可以标识正积木的侧面的字符、图案、颜色或者其组合均可以用作可视编码。
另外,第一组可视编码与第二组可视编码对应,指的是第一组编码中的六个第一可视编码与第二组编码中的六个第二可视编码一一对应。例如,第一组可视编码包括可视阿拉伯数字1、2、3、4、5和6,第二组可视编码对应地包括可视大写数字一、二、三、四、五和六;或者,第一组可视编码包括大写字母A、B、C、D、E和F,则第二组可视编码对应地包括小写字母a、b、c、d、e和f。当然,第一组可视编码与第二组可视编码之间的对应关系可根据需要任意设置。优选的,第一组可视编码与第二组可视编码相同,即正积木和负积木可采用相同的可视编码来标识各个侧面。为了简化描述,下文中第一组可视编码与第二组可视编码相同,因此可将第一可视编码和第二可视编码简称为可视编码。但是本领域的技术人员应当知晓,采用该优选方式仅用作举例,并不是对本发明的限制。
例如,图1示出的正积木的第一可视编码为顺序数字,此时,分别用数字1、2、3、4、5、6来表征正积木的各个侧面。图2示出的正积木的可视编码为二进制码,此时,分别用二进制码000、001、010、011、100、101来表征正积木的各个侧面。当然,也可以用棕色、红色、橙色、黄色、绿色、蓝色六种颜色来表征正积木的各个侧面,此处不再一一列举。如以上所提及的,负积木的可视编码设置方式与正积木的相同,此处不再赘述。
对于正六面体的正积木而言,共有三对侧面,每对侧面中包括两个相对的侧面。在本发明的实施例中,正积木的至少两个相对的侧面上设有凸出图案,即一对侧面上分别设有凸出图案,或者积木的两对侧面上分别设有凸出图案,或者积木的六个侧面上均设有凸出图案。该凸出图案可以是凸出的正方形、十字形、圆形以及各种形状的组合。与此同时,每个侧面上设置不同的凸出图案,即一种凸出图案对应一个可视编码。
图3示出了依据本发明实施例的正积木的结构示意图,如图3所示,该正积木采用连续的数字作为可视编码。另外,在该正积木的侧面上设有凸出图案,且一种凸出图案对应一个可视编码。例如,正方形的凸出图案对应的可视编码为1,十字形的凸出图案对应的可视编码为2。优选地,凸出图案还可具有不同的灰度或颜色,以供辨认和区分。
相应地,负积木的侧面上设有与正积木的凸出图案一一对应的凹入图案。图4示出了与图3中的正积木对应的负积木的结构示意图,从图3和4可以看出,此处所述的“一一对应”表示以下几个方面:一是图案形状一一对应,例如,如果凸出图案为十字形,则凹入图案也为十字形,而且该凸出图案可以恰好嵌入对应的凹入图案;二是设置的位置一一对应,即凹入图案对应的可视编码与凸出图案对应的可视编码相同,例如,正方形的凸出图案对应的可视编码为1,则对应的正方形的凹入图案对应的可视编码也为1。
在依据本发明实施例的正积木和负积木堆积在一起的堆积过程中,不再是单一地从图形上反映正积木和负积木的堆积方式,还可采用包括数字、字母和/或颜色在内的字符串来表示正积木和负积木的堆积序列。因为正积木和负积木的每个侧面上均设有可视编码,此时,无论是正积木还是负积木,其各个侧面不再是等同的,当多个正积木和多个负积木通过侧面嵌合接触而堆积在一起后,侧面上设置的可视编码的排布序列可反映该多个正积木和多个负积木的堆积序列,因为堆积中的可视编码的排布序列是唯一确定的,因此定义该可视编码的排布序列为表示多个正积木和负积木堆积在一起后的堆积序列的遗传密码。在本发明中,相邻的正积木和负积木通过凸出图案嵌入凹入图案而堆积在一起,而对应的凸出图案和凹入图案具有相同的可视编码,因此堆积中是具有相同可视编码的侧面嵌合拼装在一起。
图5a示出了两个图3中的正积木和一个图4中的负积木的堆积过程示意图,其中箭头表示堆积方向。如图5a所示,1号面(可视编码为1的侧面)向前的正积木510的6号面(可视编码为6的侧面)与1号面(可视编码为1的侧面)向前的负积木520的6号面(可视编码为6的侧面)拼装,然后负积木520的5号面(可视编码为5的侧面)再与1号面(可视编码为1的侧面)向前的正积木530的5号面(可视编码为5的侧面)拼装。图5b是图5a中的正积木和负积木堆积在一起后形成的物体的结构示意图,通过图5a中的拼接方式,该堆积后的物体的遗传密码是56。
表示堆积序列的遗传密码是唯一确定的,一方面,当采用图5a中的方式堆积正积木和负积木时,通过可视编码生成的遗传密码只能是56。另一方面,当按照遗传密码为56的方式堆积积木时,先将正积木510和负积木520通过可视编码均为5的侧面接触拼接在一起,然后再将正积木530与负积木520通过可视编码均为6的侧面嵌合拼接在一起,从而完成遗传密码为56的堆积,而堆积在一起的正积木和负积木也只能是图5b中的物体。
图6示出了将多个依据本发明实施例的正积木与负积木交替堆积成“口”字形的结构示意图,其中箭头表示堆积方向。为简化表述,在以下的描述中将正积木和负积木统称为积木。在该积木堆积过程中,面向正六面体积木的6号面(可视编码为6的侧面)开始搭建下一块6号面积木,将两块积木的2号面(可视编码为2的侧面)拼装在一起,记录拼装顺序码“2”;再搭建下一块6号面积木,将两块积木的5号面(可视编码为5的侧面)拼装在一起,记录拼装顺序码“5”。依次类推,将12块6号面向前的积木搭建成一个“口”字,该搭建过程通过可视编码生成的遗传密码是:252131525313。也可以记为:6-252131525313,其中“6-”是堆积后的多个积木的一个可视编码相同的切平面。
类似地,图7是用正六面体积木搭建一个“口”字的另一堆积方式。面向正六面体积木的4号面开始搭建下一块4号面积木,将两块积木的5号面拼装在一起,记录拼装顺序码“5”;再搭建下一块4号面积木,将两块积木的2号面拼装在一起,记录拼装顺序码“2”;按图7的拼装顺序,依次类推,将12块4号面向前的积木搭建成一个“口”字,该搭建过程产生的遗传密码是:525131252313。也可以记为:4-525131252313,其中“4-”是物体的一个编码相同的切平面。
图8是用多个正六面体积木构建一个大正方体的结构示意图。该堆积过程是:先完成搭建如图6的“口”字物体的拼装,该物体有两个编码相同的面,分别是6和4,称为切平面6和切平面4;接着完成搭建如图7的“口”字物体的拼装,该物体也有两个编码相同的面,分别是4和6,称为切平面4和切平面6;接着再完成搭建如图6的“口”字物体的拼装;接着再完成搭建如图7的“口”物体字的拼装。该大正方体物体的遗传密码是:252131525313加525131252313加252131525313加525131252313。该大正方体物体的遗传密码具有唯一性,可以复制、存储,可以传送到计算机。该大正方体物体有四个编码相同的切平面,分别是6、4、6、4。这些信息可供计算机模拟仿真中进一步使用。
从以上可以看出,通过在正积木和负积木的各个侧面上设置表征该侧面的可视编码,可以采用该可视编码生成表示正积木和负积木堆积在一起后的堆积序列的遗传密码,通过遗传密码可以将堆积中使用的正积木和负积木的总数目、总表面积、总重量、堆积过程以及堆积形成的结构外形数字化。这样,只要知晓遗传密码,即可用同样的顺序复现和重构积木物体的堆积过程和积木物体,具有实物仿真能力,具有永久保存和复制的能力。进一步地,还可以将该遗传密码作为文件送计算机进行计算机模拟仿真和加工,产生大量新的应用。
当堆积的积木数量非常大时,人工管理积木堆积过程的难度增大,由此,可通过采用积木系统来实现电子化管理积木堆积。依据本发明实施例的积木系统包括多个为正六面体的正积木、多个为正六面体的负积木和分别与多个正积木和多个负积木电连接的处理器。
其中,正积木和负积木分别与以上描述的正积木和负积木外形结构相同,因此,此处部分或全部引用以上关于正积木和负积木的描述。具体而言,正积木设有第一组可视编码;第一组可视编码包括在正积木的每个侧面上设置的第一可视编码;每一正积木的侧面的第一可视编码与其它侧面的第一可视编码相异。负积木设有与第一组可视编码对应的第二组可视编码;第二组可视编码包括在负积木的每个侧面上设置的第二可视编码;每一负积木的侧面的第二可视编码与其它侧面的第二可视编码相异。其中,第一可视编码和第二可视编码用于生成表示正积木和负积木堆积在一起后的堆积序列的遗传密码。正积木的每个侧面上设有与该侧面的第一可视编码对应的凸出图案,负积木的每个侧面上设有与该侧面的第二可视编码对应的凹入图案;凸出图案与凹入图案对应,以使得正积木与负积木之间通过凸出图案嵌入凹入图案而堆积在一起。无论正积木还是负积木,其上均设有至少两个电极,可在堆积过程中使得相邻的正积木和负积木之间电接触,或者通过引线使得正积木或负积木与处理器直接电连接。
除此之外,正积木中设有与其电极电连接的电子身份卡,该电子身份卡中存储有表示该正积木唯一身份信息的ID身份号;负积木中设有与其电极电连接的电子身份卡,该电子身份卡中存储有表示该负积木唯一身份信息的ID身份号。
处理器与正积木的至少两个电极电连接,以及该处理器还与负积木的至少两个电极电连接,这样可通过探测正积木中的电子身份卡来获知正积木在堆积序列中的位置,以及通过探测负积木中的电子身份卡来获知负积木在堆积序列中的位置。。
具体而言,在积木系统中,当积木堆积完成后,其中的任意一个正积木或负积木(以下将正积木和负积木统称为积木)可通过电极直接与处理器电连接,或者通过与相邻的积木电接触而与处理器电连接,这样,多个积木和处理器构成包括多个节点的网络,而每个积木位于其中的一个节点上,处理器直接或间接与节点上的积木电连接。此处所说的处理器与积木电连接,更具体地说是处理器与积木中的电子身份卡电连接。
图9示出了多个积木与处理器电连接的等效电路图,如图9所示,当积木1~n与处理器电连接后,积木中的电子身份卡也与处理器电连接。这样,当处理器发出呼叫积木的电信号时,如果积木的电子身份卡与处理器电连接,则会反馈一个应答信号,使得处理器知晓该积木已经连接在堆积的积木中,并且还可获知该积木所在的节点位置。如果处理器没有收到反馈信号,则认为该积木没有在堆积的积木中。通过电子辅助,该积木系统对于管理数量庞大的积木非常有效。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 种积木组件,其特征在于,包括均为正六面体的正积木和负积木;其中,
    所述正积木设有第一组可视编码;所述第一组可视编码包括在所述正积木的每个侧面上设置的第一可视编码;每一所述正积木的侧面的所述第一可视编码与其它侧面的所述第一可视编码相异;
    所述负积木设有与所述第一组可视编码对应的第二组可视编码;所述第二组可视编码包括在所述负积木的每个侧面上设置的第二可视编码;每一所述负积木的侧面的所述第二可视编码与其它侧面的所述第二可视编码相异;
    其中,所述第一可视编码和所述第二可视编码用于生成表示所述正积木和所述负积木堆积在一起后的堆积序列的遗传密码;
    所述正积木的每个侧面上设有与该侧面的所述第一可视编码对应的凸出图案,所述负积木的每个侧面上设有与该侧面的所述第二可视编码对应的凹入图案;所述凸出图案与所述凹入图案对应,以使得所述正积木与所述负积木之间通过所述凸出图案嵌入所述凹入图案而堆积在一起。
  2. 根据权利要求1所述的积木组件,其特征在于,所述第一组可视编码与所述第二组可视编码相同。
  3. 根据权利要求1所述的积木组件,其特征在于,所述第一可视编码为可视数字或可视字母或可视二进制码;所述第二可视编码为与所述第一可视编码对应的可视数字或可视字母或可视二进制码。
  4. 根据权利要求1所述的积木组件,其特征在于,所述第一可视编码为颜色;所述第二可视编码为与所述第一可视编码对应的颜色。
  5. 根据权利要求1所述的积木组件,其特征在于,所述正积木和所述负积木中的一个内设有永磁体,另一个内设有导磁体。
  6. 一种积木系统,其特征在于,包括多个为正六面体的正积木、多个为正六面体的负积木和分别与所述多个正积木和所述多个负积木电连接的处理器;其中,
    所述正积木设有第一组可视编码;所述第一组可视编码包括在所述正积木的每个侧面上设置的第一可视编码;每一所述正积木的侧面的所述第一可视编码与其它侧面的所述第一可视编码相异;
    所述负积木设有与所述第一组可视编码对应的第二组可视编码;所述第二组可视编码包括在所述负积木的每个侧面上设置的第二可视编码;每一所述负积木的侧面的所述第二可视编码与其它侧面的所述第二可视编码相异;
    其中,所述第一可视编码和所述第二可视编码用于生成表示所述正积木和所述负积木堆积在一起后的堆积序列的遗传密码;
    所述正积木的每个侧面上设有与该侧面的所述第一可视编码对应的凸出图案,所述负积木的每个侧面上设有与该侧面的所述第二可视编码对应的凹入图案;所述凸出图案与所述凹入图案对应,以使得所述正积木与所述负积木之间通过所述凸出图案嵌入所述凹入图案而堆积在一起;
    无论所述正积木还是所述负积木,其上均设有至少两个电极,以在堆积过程中使得相邻的所述正积木和所述负积木之间电接触;
    所述正积木和所述负积木中分别设有与各自的电极电连接的电子身份卡;
    所述处理器与所述正积木的至少两个电极电连接以及与所述负积木的至少两个电极电连接,以通过探测所述正积木中的电子身份卡来获知所述正积木在所述堆积序列中的位置,以及通过探测所述负积木中的电子身份卡来获知所述负积木在所述堆积序列中的位置。
  7. 根据权利要求6所述的积木系统,其特征在于,所述第一组可视编码与所述第二组可视编码相同。
  8. 根据权利要求6所述的积木系统,其特征在于,所述第一可视编码为可视数字或可视字母或可视二进制码;所述第二可视编码为与所述第一可视编码对应的可视数字或可视字母或可视二进制码。
  9. 根据权利要求6所述的积木系统,其特征在于,所述第一可视编码为颜色;所述第二可视编码为与所述第一可视编码对应的颜色。
  10. 根据权利要求6所述的积木系统,其特征在于,所述正积木和所述负积木中的一个内设有永磁体,另一个内设有导磁体。
PCT/CN2013/071414 2013-02-06 2013-02-06 积木组件及积木系统 WO2014121453A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071414 WO2014121453A1 (zh) 2013-02-06 2013-02-06 积木组件及积木系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071414 WO2014121453A1 (zh) 2013-02-06 2013-02-06 积木组件及积木系统

Publications (1)

Publication Number Publication Date
WO2014121453A1 true WO2014121453A1 (zh) 2014-08-14

Family

ID=51299167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071414 WO2014121453A1 (zh) 2013-02-06 2013-02-06 积木组件及积木系统

Country Status (1)

Country Link
WO (1) WO2014121453A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106608007A (zh) * 2016-12-27 2017-05-03 上海未来伙伴机器人有限公司 积木机器人正立方体滑块模具组件
WO2020070365A1 (es) * 2018-10-03 2020-04-09 Vuga Stefano Juego modular

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728800A (en) * 1971-09-15 1973-04-24 D Magram Educational apparatus
CN87201374U (zh) * 1987-02-21 1988-01-13 鲁思顺 数学智力玩具
CN2085674U (zh) * 1991-04-05 1991-10-02 张德学 立方体智力组排赛具
CN2154732Y (zh) * 1993-03-29 1994-02-02 陈安吉 益智积木玩具
US20080136099A1 (en) * 2006-12-06 2008-06-12 Alene Frost Puzzle
CN201470120U (zh) * 2009-08-30 2010-05-19 费一烨 一种带磁性附件的磁力棒玩具
CN201815119U (zh) * 2010-10-22 2011-05-04 金华职业技术学院 二十拼块
US7976024B1 (en) * 2008-01-14 2011-07-12 Jonathan Walker Stapleton Tessellating pattern cubes
GB2479073A (en) * 2010-03-25 2011-09-28 Wasif Hasani A set of n seperable members
CN102805945A (zh) * 2011-06-02 2012-12-05 科域半导体有限公司 光通信玩具组合系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728800A (en) * 1971-09-15 1973-04-24 D Magram Educational apparatus
CN87201374U (zh) * 1987-02-21 1988-01-13 鲁思顺 数学智力玩具
CN2085674U (zh) * 1991-04-05 1991-10-02 张德学 立方体智力组排赛具
CN2154732Y (zh) * 1993-03-29 1994-02-02 陈安吉 益智积木玩具
US20080136099A1 (en) * 2006-12-06 2008-06-12 Alene Frost Puzzle
US7976024B1 (en) * 2008-01-14 2011-07-12 Jonathan Walker Stapleton Tessellating pattern cubes
CN201470120U (zh) * 2009-08-30 2010-05-19 费一烨 一种带磁性附件的磁力棒玩具
GB2479073A (en) * 2010-03-25 2011-09-28 Wasif Hasani A set of n seperable members
CN201815119U (zh) * 2010-10-22 2011-05-04 金华职业技术学院 二十拼块
CN102805945A (zh) * 2011-06-02 2012-12-05 科域半导体有限公司 光通信玩具组合系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106608007A (zh) * 2016-12-27 2017-05-03 上海未来伙伴机器人有限公司 积木机器人正立方体滑块模具组件
WO2020070365A1 (es) * 2018-10-03 2020-04-09 Vuga Stefano Juego modular

Similar Documents

Publication Publication Date Title
US20200356085A1 (en) Apparatus and methods for testing circuit elements at one or more manufacturing stages
WO2014121453A1 (zh) 积木组件及积木系统
Klein et al. Theorems for carbon cages
CN103495284B (zh) 多面接触电子积木
ES2050157T3 (es) Medio de interconexion electrica compuesto.
CN111353166B (zh) 一种图片转汉字的加密方法
Lee et al. Spintronic physical unclonable functions based on field‐free spin–orbit‐torque switching
CN103942989A (zh) 一种积木式早教机
CN105140702A (zh) 磁性连接器
Maiellaro et al. Topological squashed entanglement: Nonlocal order parameter for one-dimensional topological superconductors
WO2014121451A1 (zh) 积木及积木系统
WO2014121455A1 (zh) 积木组件
US10819065B2 (en) Electronic building block and building block kit having the same
CN104573781A (zh) 一种二维码编码及解码方法
WO2014121452A1 (zh) 积木组件及积木系统
Kim et al. Studying the continuum limit of the Ising model
Mecke et al. The Poisson Voronoi tessellation I. A basic identity
WO2014021507A1 (ko) 전자기기용 자력식 인터페이스 장치
KR20220020253A (ko) 3차원 퍼즐
CN106330863A (zh) 一种实现多方会议即时在线会签的管理方法及系统
CN203456090U (zh) 一种蜂鸣器
CN204966840U (zh) 磁性连接器
TWI464315B (zh) A key and lock system with permission to automatically change the password
CN111435478A (zh) 一种基于图论的电力cps结构连通脆弱性评估方法
CN112216508B (zh) 一种产生相反地磁化的磁结构的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874528

Country of ref document: EP

Kind code of ref document: A1