WO2014119822A1 - Apparatus and method for power generation diagnosis of solar photovoltaic generation monitoring system - Google Patents

Apparatus and method for power generation diagnosis of solar photovoltaic generation monitoring system Download PDF

Info

Publication number
WO2014119822A1
WO2014119822A1 PCT/KR2013/004485 KR2013004485W WO2014119822A1 WO 2014119822 A1 WO2014119822 A1 WO 2014119822A1 KR 2013004485 W KR2013004485 W KR 2013004485W WO 2014119822 A1 WO2014119822 A1 WO 2014119822A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
unit
solar
power
amount
Prior art date
Application number
PCT/KR2013/004485
Other languages
French (fr)
Korean (ko)
Inventor
박기주
권영복
최정내
Original Assignee
(주)케이디파워
(주)케이디티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130011297A external-priority patent/KR101415163B1/en
Priority claimed from KR20130026001A external-priority patent/KR101485051B1/en
Application filed by (주)케이디파워, (주)케이디티 filed Critical (주)케이디파워
Publication of WO2014119822A1 publication Critical patent/WO2014119822A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a power generation diagnostic apparatus and method of the photovoltaic power generation monitoring system, and more particularly, to a power generation diagnostic apparatus and method of a photovoltaic power generation monitoring system for diagnosing maintenance and generation efficiency of photovoltaic power generation.
  • the photovoltaic power generation system which converts unlimited solar energy directly into electric energy without pollution among new renewable energy, Since the control unit is composed of semiconductor elements and electronic components, there is no mechanical vibration and noise, and the cost of operation and maintenance can be minimized.
  • the photovoltaic power generation system is made by converting solar energy into electrical energy and supplying it to a load to be used, and a grid-connected photovoltaic power generation system supplying DC power generated from the solar cell to a commercial power line in real time through an inverter. And, it is divided into a stand-alone photovoltaic system that stores the direct current generated from solar electronics in the battery through the charger and supplies it to individual loads in the form of alternating current or black so that it can be used even at night when no power is generated.
  • solar cells are manufactured in the form of modules by connecting a plurality of solar cells in series and parallel, and compressing them with filler and glass to protect them from the external environment. It can be used alone or a solar cell array in which a plurality of solar cell modules are connected in series or in parallel for large power generation.
  • the solar cell modules constituting the solar cell array are damaged due to its own pollution, deterioration, and poor wiring, but the solar cell module failed in a large unit complex. It would be difficult to find one, but there was a burden to stop the operation of the solar cell array consisting of a plurality of solar cell modules in order to find and repair the failed solar cells.
  • the solar power generation system has been limited in maintenance because it is installed in many areas instead of only one area.
  • the present invention is to solve the above problems, the power generation diagnostic apparatus of the solar power monitoring system to receive the power generation status of the solar power monitoring system installed in each region through the network to monitor in real time to facilitate the maintenance And to provide a method.
  • the present invention is to calculate and monitor the development status of the photovoltaic power generation monitoring system installed in each region by the tanking of the power generation diagnosis device and method of the solar power monitoring system to induce rapid Daewoong of field managers to increase power generation efficiency
  • the purpose is to provide.
  • an object of the present invention is to provide a power generation diagnostic apparatus and method of the solar power monitoring system to facilitate the maintenance by diagnosing the photovoltaic power generation by comparing the predicted power generation amount and the actual power generation amount according to temperature and solar radiation.
  • the power generation diagnostic apparatus of the solar power monitoring system for achieving the above object is a plurality of photovoltaic power generation unit including a solar cell converting and outputting solar energy into electrical energy, each solar A photovoltaic power generation unit installed in the photovoltaic unit and configured to measure atmospheric temperature, solar cell temperature, horizontal solar radiation, inclined solar radiation, and power generation; and various types of information measured by the solar power measurement unit.
  • Predicting the amount of wealth generated Photovoltaic power generation diagnosis unit that calculates the power generation maintenance rate of the solar power generation unit by comparing the actual power generation, and various types of information diagnosed by the photovoltaic power generation diagnosis unit are transmitted through a network to generate power generation status, monitoring, diagnosis, analysis and report. Characterized in that it comprises a photovoltaic monitoring unit for monitoring.
  • the power generation diagnostic method of the photovoltaic power generation monitoring system comprises the steps of collecting data on the slope, insolation, modal temperature and power generation effect for the place where the photovoltaic power generation unit; Calculating a predicted power generation amount of the solar power generation unit installed on the basis of the collected data; Calculating a power generation maintenance rate by comparing the predicted power generation amount with the actual power generation power generated from the solar power generation unit; Analyzing the calculated power generation maintenance rate, if there is a difference of ⁇ 20% between the predicted power generation and actual power generation, characterized in that it comprises a step of notifying the manager.
  • Power generation diagnostic apparatus and method of the solar power monitoring system according to the present invention has the following effects.
  • FIG. 1 is a schematic view showing a power generation diagnostic apparatus of a solar power monitoring system according to the present invention
  • FIG. 2 is a schematic view showing the solar power measuring unit of FIG. 1.
  • FIG. 3 is a schematic view showing the solar power generation diagnostic unit of FIG.
  • FIG. 4A and 4B are graphs comparing the generation amount prediction unit of FIG. 3 and the actual generation amount measurement unit.
  • FIG. 5 is a schematic view illustrating the solar power generation monitoring unit of FIG. 1.
  • FIGS. 7A to 7C are monitoring screens in the solar power monitoring system according to the present invention.
  • FIGS. 8A and 8B are diagnostic screens in the solar power monitoring system according to the present invention.
  • FIG. 9 is the power generation of the solar power monitoring system according to the present invention.
  • Screen of Diagnostic Device FIG. 10 is a diagram illustrating a relationship between inclined plane insolation, modal temperature, and power generation efficiency in a three-dimensional graph in a power generation diagnostic method of a solar power monitoring system according to the present invention.
  • FIG. 11 is a screen showing filtered data in FIG. 10.
  • FIG. 13 is a flow chart schematically showing a power generation diagnostic method of a photovoltaic power generation monitoring system according to the present invention.
  • FIG. 1 is a schematic view showing a power generation diagnostic apparatus of a solar power monitoring system according to the present invention
  • FIG. 2 is a schematic view showing a photovoltaic power measuring unit of FIG. 1
  • FIG. 3 is a photovoltaic view of FIG. 1. It is a block diagram which shows the power generation diagnosis part schematically.
  • Power generation diagnostic apparatus of the solar power monitoring system converts the solar energy into electrical energy to output A plurality of solar power generation unit (no) comprising a solar cell model 111, and installed in each of the solar power generation unit 110, the atmospheric temperature and solar cell model temperature, the horizontal plane solar radiation and the slope solar radiation, the amount of power generation
  • the photovoltaic power generation unit 120 and the solar power generation unit 110 estimate the amount of power generation on the basis of various information measured by the photovoltaic power generation unit 120 and compare the actual power generation amount.
  • Photovoltaic power generation diagnosis unit 130 for calculating the power generation retention rate of the photovoltaic unit 110 and various types of information diagnosed by the photovoltaic power generation unit 130 are received through a network, and the power generation status, monitoring and diagnosis It is configured to include a solar power monitoring unit 140 to monitor the analysis report.
  • the photovoltaic unit 110 may be installed in the same region, but is configured to produce electrical energy by installing the regions in different regions.
  • the photovoltaic unit 110 is configured of at least one of the fixed, tracking or BIPV.
  • the horizontal surface solar radiation amount means the solar radiation incident on the installation site where the solar power generation unit 110 is installed, and the inclined surface radiation amount means the solar radiation incident on any one of the solar cell modules 111.
  • the horizontal plane solar radiation amount means a general solar radiation amount.
  • the horizontal plane solar radiation amount can be measured by installing a horizontal plane solar radiation sensor at the installation position. This horizontal plane solar radiation sensor always maintains the angle of the incident light face irrespective of the position of the sun over time. This horizontal solar radiation sensor may be positioned between the solar sensor arms. At this time, the horizontal solar radiation sensor may be located in the center of the photovoltaic unit 110.
  • the inclined plane solar radiation amount may be measured by attaching the inclined plane solar radiation sensor to the light incident surface of the solar cell mothers 111.
  • the inclined plane solar radiation sensor may be attached to only one solar cell cap 111, or may be attached to all solar cell caps 111 one by one.
  • each of the solar cell modules 111 since their polar angle and azimuth angle are automatically adjusted according to the time so that their incident surface always follows the direction of the sun, the amount of inclined solar radiation attached to these solar cell caps 111
  • the light incident surface of the sensor also always faces the sun.
  • the solar power generation diagnostic unit 130 presets the amount of insolation, mode temperature, and total power By measuring at regular time intervals, a plurality of slope solar radiations, a plurality of model temperatures and a plurality of total powers, which are divided by time period, are calculated, and the calculated predicted generation amount is compared with the actual generation amount.
  • the power generation maintenance rate of the photovoltaic unit 110 is calculated.
  • the photovoltaic monitoring unit 140 displays a list of statuses, monitoring, diagnosis, analysis, reports, and settings, and the administrator clicks on each list as necessary to display the power generation status of the photovoltaic unit 110. do.
  • the photovoltaic power measuring unit 120 is installed in the photovoltaic unit 110 and the temperature measuring unit 121 for measuring the atmospheric temperature and the module temperature, as shown in FIG.
  • the temperature measuring unit 121 is attached to the solar cell module 111 constituting the photovoltaic unit 110 to measure the temperature and together with the ambient temperature around the solar cell mother 111 Measure and send.
  • the solar radiation measuring unit 122 simultaneously measures the horizontal solar radiation horizontally with the ground along with the inclined solar radiation according to the angle of the solar cell mother 111 and sends it.
  • the generation amount measuring unit 123 measures and sends the amount of power generated from each of the photovoltaic units 110 in real time.
  • the camera unit 124 may be installed above the solar cells so as to monitor the whole area in the region where the solar power generation unit 110 is installed, and monitor various kinds of theft or accidents. .
  • the photovoltaic power generation diagnosis unit 130 includes a generation amount prediction unit 131, a relational expression generation unit 132, a constant extraction unit 133, an actual generation amount generation unit 134, and an efficiency calculation unit. (135).
  • the generation amount predicting unit 131 measures the amount of inclination of the inclined planes, the plurality of the mode temperatures, and the total power of the plurality of slopes divided by each time zone by measuring the inclined plane insolation, the modal temperature, and the total power at predetermined time intervals. Predict.
  • the relationship generator 132 generates a regression equation that defines a relationship between the slope insolation and the modal temperature and the total power based on the predicted power generation amounts from the power generation predictors 131.
  • the constant extractor 133 obtains a value for each of the plurality of constants included in the regression equation through a learning algorithm.
  • the actual power generation unit 134 measures the slope insolation, the modal temperature and the total power at predetermined time intervals during the actual operation period, so that the plurality of slope insolations, the plurality of mode temperatures and the plurality of total powers divided by each time zone Generate real data about the fields.
  • One real data has data on slope insolation, mode temperature and total power at a specific time.
  • the efficiency calculator 135 defines the amount of total power included in any one specific real data from the actual power generation generator 134 as the actual power. Subsequently, the constants from the constant extracting unit 133 are substituted into the regression equation from the relation generating unit 132, and the reference slope is calculated by substituting the specific slope solar radiation amount and the specific model temperature included in the specific real data into the regression equation. . In addition, the calculated maintenance power of the photovoltaic unit 110 is calculated by comparing the calculated reference power with the defined real power.
  • 4A and 4B are graphs comparing the generation amount prediction unit of FIG. 3 with the actual generation amount measurement unit.
  • the generation efficiency data of the power generation prediction unit and the actual power generation measurement unit is a difference for a certain period of time, which is high solar radiation, but the solar radiation is good while the snow accumulated on the previous day on the solar cells, but the solar light It can be seen that the power generation is not normal, so the actual power generation falls.
  • FIG. 5 is a configuration diagram schematically showing the solar power monitoring unit of FIG.
  • the solar power monitoring unit 140 as shown in Figure 5, the generation of electric power to display the day-to-day generation power and current generation power, horizontal and inclined solar radiation, atmospheric and module temperature for each site
  • Status-specific status section 143 for displaying power generation efficiency, power generation counting section 144 for displaying facility capacity, power generation amount and power generation amount of each solar power generation section 110, and each of the photovoltaic power generation sections
  • a tanking display unit 145 for displaying tanking based on the amount of power generation and the maintenance state of the power generator 110;
  • a time transition section 146 is configured.
  • the power generation status unit 141 receives the various information measured by the photovoltaic power generation unit 120 through a communication network to compare and display the amount of power generation and the current generation amount so that the manager can easily grasp. Therefore, the manager recognizes that there is an abnormality in the connection panel and the inverter including the solar cells constituting the photovoltaic unit 110 when there is a big difference in the amount of generation of power generation and today, even though there is no particular difference in weather conditions. And make a diagnosis.
  • the power generation efficiency display unit 142 displays the state of the power generation amount in the form of a graph every hour, and displays the scale with a number that the administrator can visually identify.
  • the site-specific status unit 143 displays the amount of power generated by each site in the region in which the photovoltaic unit 110 is installed, along with the power generation efficiency (%) of the photovoltaic unit 110 installed by site. h) are separated to identify.
  • the power generation unit 144 displays the facility capacity (KWh) of the photovoltaic unit 110 installed at each site, and displays the amount of power generation and the amount of power generation by day, month, and year, thereby allowing the manager to view the amount of power generated at a glance. You can see the amount of development.
  • KWh facility capacity
  • the generation counting unit 144 displays the current generation amount, the current generation amount, this year's generation amount, today's generation amount, this month's generation amount, and this year's generation amount, so that the manager can easily check the generation amount together with the total generation amount.
  • the tanking display unit 145 calculates the power generation time, the number of emergency alarms, and the alarm holding time at weekly intervals, and gives a ranking such as gold, silver, and copper for each site. Managers can be encouraged more quickly. According to site-specific reporting, the number of items included in the tanking can be identified quarterly or yearly to promote awards, which can increase the morale of site managers.
  • the power generation time shifting unit 146 may check the power generation time of each of the photovoltaic power generation units 110 by clicking the data classification part so that the power generation time may be divided into daily, weekly, monthly, and annually.
  • FIG. 1 is an example showing the integrated, site-specific power generation status in the photovoltaic power generation monitoring system according to the present invention is shown in FIG.
  • Figure 6 is a screen showing the current state of power generation in the solar power monitoring system according to the present invention.
  • the site manager or the general manager may monitor the generation total amount and 3 ⁇ 43 ⁇ 4, and the development time trend in real time, including the generation status for each site through the screen.
  • 7a to 7c is a monitoring screen in the solar power monitoring system according to the present invention.
  • the place where the solar power generation unit 110 is installed can be checked at a glance on a map or a satellite, and the site state can be confirmed through the camera unit.
  • the solar cell module capacity, inverter capacity, generation time / number of days of the photovoltaic unit 110 installed for each site can be confirmed by the number, and tanking can be checked in the site list for each site.
  • the map displays a place where the solar power generation unit is installed, and when the solar power generation unit operates normally, an orange caution or a red warning blinks when there is a communication network or a power generation abnormality.
  • the communication state of the current network can be checked including various sensors, operation states of the solar power generation unit, and whether there is an abnormality in the connection panel.
  • the color can be checked directly by the administrator.
  • the monitoring part can monitor the GIS-based information, the measurement information for each facility, and the network status in real time, so if an abnormality occurs, it is necessary to contact the site manager and promptly deal with the power generation efficiency. Can be further improved.
  • 8a and 8b is a diagnostic screen in the solar power monitoring system according to the present invention.
  • the diagnosis part when the diagnosis part is clicked, the place where the solar power generation unit 110 is installed can be checked at a glance on a map or a satellite, and the site state can be confirmed through the camera unit.
  • the solar cell model capacity, inverter capacity, generation time / number of days of the photovoltaic unit 110 installed by site can be confirmed by a similar number, and tanking can be confirmed in the site list for each site.
  • the daily power generation addition the slope solar radiation, the generation power, the module temperature, the generation power, the conversion efficiency, the daily generation amount, the daily generation amount, the daily generation time, and the monthly generation time.
  • the inverter power generation status includes the type of inverter, capacity, operating state,
  • AC / DC power and measurement date and time can be checked.
  • connection panel power generation can check the type of connection panel, equipment capacity, current power, load factor, HS temperature, internal temperature, and measurement date and time.
  • the power generation status of each string can confirm the facility capacity, current power, load rate, and measurement date and time of each string.
  • FIG. 9 is a screen of the power generation diagnostic apparatus of the solar power monitoring system according to the present invention.
  • the predicted generation amount according to the modal temperature of 18.2 0 C and the insolation of the inclined plane of 573W / n is 771kW according to the user's setting including the daily generation amount
  • the actual generation amount is 921kW.
  • the manager is automatically notified of any abnormality among the solar power generation unit, the inverter, and the connection board.
  • the photovoltaic power generation monitoring system it is possible to diagnose the power generation status of each site through the diagnosis screen and to check the power generation status of the inverter, the connection board, and the string, so if there is an abnormality in power generation, contact the site manager. Rapid treatment can improve power generation efficiency.
  • FIG. 10 is a diagram illustrating a relationship between inclined solar radiation, module temperature, and power generation efficiency in a three-dimensional graph in a method for diagnosing power generation of a solar power monitoring system according to the present invention.
  • the relational expression generator 132 of FIG. 3 calculates a regression equation based on the prediction data as shown in FIG. 3, which will be described in more detail as follows.
  • the relation generation unit 132 may include slope insolations (x u , x 12 , .., xm) and modal temperatures (x 21 , x 22 ,..., X included in n prediction data. 2n ) and the total powers (y, y 2 ,.
  • the elements (xll, ⁇ 12, ..., xln) located in the first column mean slope insolation according to time zone
  • the elements (x21, x22, xln) in the second column represent The time zones mean all the temperatures
  • the elements (yl, y2, ... yn) located in column 3 represent the total powers per hour ⁇ .
  • the first prediction data includes the slope insolation for element xll, the modal temperature corresponding to element x21, and the total power for element yl.
  • the relation generation unit 132 generates a regression equation defined by Equation 2 below based on Equation 1 above.
  • the constant extractor 133 obtains a value for each of the constants included in the regression equation using a least square method as a learning algorithm.
  • the constant extractor 133 first obtains an extension matrix defined by Equation 3 below.
  • Equation 4 a determinant defined by Equation 4 below.
  • Equation 4 y in Equation 4 has a determinant defined by Equation 5 below.
  • Equation 5 w in Equation 4 has a determinant defined by Equation 6 below.
  • the constant extractor 133 supplies the values for the constants to the efficiency calculator 135.
  • the efficiency calculator 135 completes the relation by substituting the values of these constants into the regression equation described above.
  • FIG. 11 is a screen illustrating filtered data in FIG. 10
  • FIG. 12 is a screen illustrating prediction data using normal data.
  • abnormal data is filtered using a regression equation.
  • the blue part is normal data and the red part is abnormal data.
  • prediction data is estimated using normal data.
  • the user may input a specific inclined solar radiation amount and a specific model temperature included in specific real data to the efficiency calculator 135 to determine the power generation maintenance rate of the photovoltaic unit 110 during a real operation period.
  • the efficiency calculator 135 calculates the reference power by substituting this specific inclined solar radiation amount and the specific model temperature into the above-described regression equation.
  • the actual electric power actually generated from the photovoltaic part 110 is computed by this specific slope insolation amount and specific model temperature.
  • the calculated maintenance power is calculated by substituting the calculated reference power and real power into Equation 7 below.
  • the power generation maintenance rate is a ratio of actual power that is actually being generated to the reference power to be generated by the solar power generation unit, it is an indicator indicating how well the efficiency of the system is maintained. The lower the efficiency of the system, the lower the maintenance rate.
  • the efficiency calculating unit 135 may periodically calculate the power generation maintenance rate to diagnose the efficiency of the system. When the power generation maintenance rate falls below a predetermined value, the efficiency calculation unit 135 may determine a failure and notify the user.
  • the system model is constructed by considering all the matters of the place where the photovoltaic units 110 are initially installed, the most optimal system model may be constructed at each place. For example, even if the same photovoltaic unit and inverter are installed in place A and B, the power line connecting the photovoltaic unit and the inverter becomes longer or shorter depending on the characteristics of the place. Deviation may occur.
  • the system model most optimized for each location can be set.
  • the present invention can periodically correct the predicted amount of power generation by periodically testing the solar power generation unit.
  • the solar power generation unit is initialized and tested every season to obtain the most optimized predicted power generation for the season. Can be built. That is, a regression equation with different constants can be generated every season.
  • FIG. 13 is a flowchart schematically illustrating a power generation diagnosis method of a solar power monitoring system according to the present invention.
  • the method for diagnosing the power generation of the solar power monitoring system includes a slope insolation, modal temperature and Collecting power generation efficiency data (S110).
  • the predicted power generation amount of the solar power generation unit installed on the basis of the collected data is calculated (S120).
  • the predicted generation amount generates prediction data for slope insolation, a plurality of module temperatures, and a plurality of total powers, and calculates the predicted generation amount based on the generated prediction data.
  • a power generation maintenance rate is calculated by comparing the predicted power generation amount with the actual power generation power generated from the solar power generation unit (S130).
  • the predicted generation amount is calculated by substituting the specific inclined solar radiation amount and the specific model temperature included in the specific real data into the regression equation, and comparing the calculated predicted generation amount with the actual generated generation amount to calculate the generation maintenance rate of the photovoltaic power generation unit. Calculate.
  • the power generation diagnostic apparatus and method of the photovoltaic monitoring system is a solar power generation unit, inverter, connection panel when the amount of solar radiation and silver does not go up as much as desired even if it has the optimal data value for solar power generation It is possible to further improve the power generation efficiency by diagnosing the abnormality in at least one place and processing it more quickly.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to an apparatus and a method for power generation diagnosis of a solar photovoltaic generation monitoring system in which maintenance is facilitated by comparing the estimated amount of power generation according to temperatures and the quantity of solar radiation with the actual amount of power generation and diagnosing solar photovoltaic generation. The apparatus comprises: multiple solar photovoltaic generation units including a solar cell module for converting and outputting solar energy into electrical energy; a solar photovoltaic generation measurement unit installed in each of the solar photovoltaic generation units for measuring the air temperature, the temperature of the solar cell module, the quantity of horizontal solar radiation, the quantity of incident solar radiation, and the amount of power generation; a solar photovoltaic generation diagnosis unit for calculating a power generation operation rate of the solar photovoltaic generation units by estimating the amount of power generation of the solar photovoltaic generation units on the basis of the variety of information measured by the solar photovoltaic generation measurement unit and comparing the estimated amount of power generation with the actual amount of power generation; and a solar photovoltaic generation monitoring unit for receiving the variety of information diagnosed by the solar photovoltaic generation diagnosis unit and monitoring power generation status, observation, diagnosis, analysis, and reports.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
태양광 발전 모니터링 시스템의 발전진단 장치 및 방법 Power generation diagnosis device and method of solar power monitoring system
【기술분야】  Technical Field
본 발명은 태양광 발전 모니터링 시스템의 발전진단 장치 및 방법에 관한 것으로ᅳ 특히 태양광 발전의 유지 관리 및 발전 효을을 진단하도록 한 태양광 발전 모니터링 시스템의 발전진단 장치 및 방법에 관한 것이다. The present invention relates to a power generation diagnostic apparatus and method of the photovoltaic power generation monitoring system, and more particularly, to a power generation diagnostic apparatus and method of a photovoltaic power generation monitoring system for diagnosing maintenance and generation efficiency of photovoltaic power generation.
【배경기술】  Background Art
화석 연료의 고갈과 환경 보호라는 과제 달성을 위해 신 재생에너지에 대한 관심이 증가하고 있고 특히, 신 재생에너지 중 무공해이면서 무한정의 태양광 에너지를 직접 전기에너지로 변환하는 태양광 발전 시스템은 발전부와 제어부가 반도체 소자와 전자 부품으로 구성되어 있기 때문에 기계적인 진동과 소음이 없을 뿐만 아니라, 운전 및 유지 관리에 따른 비용을 최소화할 수 있어 이미 신 재생에너지의 큰 축으로 자리 잡고 있다. In order to achieve the challenge of depleting fossil fuels and protecting the environment, interest in renewable energy is increasing. In particular, the photovoltaic power generation system which converts unlimited solar energy directly into electric energy without pollution among new renewable energy, Since the control unit is composed of semiconductor elements and electronic components, there is no mechanical vibration and noise, and the cost of operation and maintenance can be minimized.
상기 태양광 발전 시스템은 태양에너지를 전기 에너지로 바꾸고 이를 사용하고자 하는 부하에 공급함으로써 이루어지고, 태양전지에서 발생하는 직류전력을 인버터를 통하여 상용 전원선에 실시간으로 공급하는 계통연계형 태양광 발전 시스템과, 전력이 발생하지 않는 야간에도 사용할 수 있도록 태양전자에서 발생하는 직류전력을 충전기를 통해서 축전지에 저장하였다가 직류 흑은 교류의 형태로 개별 부하에 공급하는 독립형 태양광 발전 시스템으로 구분된다. The photovoltaic power generation system is made by converting solar energy into electrical energy and supplying it to a load to be used, and a grid-connected photovoltaic power generation system supplying DC power generated from the solar cell to a commercial power line in real time through an inverter. And, it is divided into a stand-alone photovoltaic system that stores the direct current generated from solar electronics in the battery through the charger and supplies it to individual loads in the form of alternating current or black so that it can be used even at night when no power is generated.
그런데 태양전지는 태양광을 이용해 전기를 일으키는 최소 단위로서, 태양전지로는 적절한 전압과 전류를 얻을 수 없다. However, solar cells are the smallest unit that generates electricity using sunlight, and solar cells cannot obtain proper voltage and current.
따라서 적절한 전압과 전류를 얻어 태양광 발전 시스템에 이용하기 위해서는 다수의 태양전지를 직,병렬로 연결한 후, 외부 환경으로부터 보호하기 위하여 충진재, 유리 등과 함께 압축하여 모들 형태로 태양전지모들을 제작하여 단독으로 이용하거나, 대전력 발전을 위해서 다수의 태양전지모듈을 직렬이나 병렬 연결한 태양전지 어레이를 이용한다. Therefore, in order to obtain proper voltage and current for the photovoltaic power generation system, solar cells are manufactured in the form of modules by connecting a plurality of solar cells in series and parallel, and compressing them with filler and glass to protect them from the external environment. It can be used alone or a solar cell array in which a plurality of solar cell modules are connected in series or in parallel for large power generation.
상기 태양전지 어레이를 구성하는 태양전지모들은 자체의 오염이나 열화, 배선 불량에 의해 고장이 발생하게 되는데 대단위 단지에서 고장난 태양전지모듈 하나를 찾기도 힘들거니와, 상기 고장난 태양전지모들을 찾아 보수나 교체를 위해 다수의 태양전지모듈로 이루어진 태양전지 어레이의 가동을 중지시켜야 하는 부담이 있었다. The solar cell modules constituting the solar cell array are damaged due to its own pollution, deterioration, and poor wiring, but the solar cell module failed in a large unit complex. It would be difficult to find one, but there was a burden to stop the operation of the solar cell array consisting of a plurality of solar cell modules in order to find and repair the failed solar cells.
또한, 태양전지 어레이를 구성하는 다수의 태양전지모들 중 1개가 고장 날 경우 그 원인을 실시간으로 찾기가 어려우며, 태양전지 어레이 전체를 점검해야 하는 비효율성은 사후처리 비용의 상승과 발전량 감소를 초래해 수익성 악화를 불러왔다. In addition, it is difficult to find the cause in real time when one of the solar cell arrays constituting the solar cell array fails, and the inefficiency of inspecting the entire solar cell array increases the post-treatment cost and reduces the amount of generation. This year, profitability worsened.
뿐만 아니라 태양광 발전 시스템은 한 지역에만 설치되지 않고 다수의 지역에 떨어져 설치되고 있기 때문에 유지 관리에 한계가 있었다. In addition, the solar power generation system has been limited in maintenance because it is installed in many areas instead of only one area.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명은 상기와 같은 문제를 해결하기 위한 것으로 각 지역에 설치된 태양광 발전 모니터링 시스템의 발전 현황을 네트워크를 통해 전달받아 실시간으로 모니터링하여 유지 관리를 원활하게 하도록 한 태양광 발전 모니터링 시스템의 발전진단 장치 및 방법을 제공하는데 그 목적이 있다. The present invention is to solve the above problems, the power generation diagnostic apparatus of the solar power monitoring system to receive the power generation status of the solar power monitoring system installed in each region through the network to monitor in real time to facilitate the maintenance And to provide a method.
또한, 본 발명은 각 지역별로 설치된 태양광 발전 모니터링 시스템의 발전 현황을 탱킹으로 산출하여 모니터링함으로써 현장 관리자들의 신속한 대웅을 유도하여 발전 효율을 증대시키도록 한 태양광 발전 모니터링 시스템의 발전진단 장치 및 방법을 제공하는데 목적이 있다. In addition, the present invention is to calculate and monitor the development status of the photovoltaic power generation monitoring system installed in each region by the tanking of the power generation diagnosis device and method of the solar power monitoring system to induce rapid Daewoong of field managers to increase power generation efficiency The purpose is to provide.
또한, 본 발명은 온도 및 일사량에 따른 예측 발전량과 실제 발전량을 비교하여 태양광 발전을 진단함으로써 유지 관리를 원활하게 하도록 한 태양광 발전 모니터링 시스템의 발전진단 장치 및 방법을 제공하는데 그 목적이 있다. In addition, an object of the present invention is to provide a power generation diagnostic apparatus and method of the solar power monitoring system to facilitate the maintenance by diagnosing the photovoltaic power generation by comparing the predicted power generation amount and the actual power generation amount according to temperature and solar radiation.
【기술적 해결방법】  Technical Solution
상기와 같은 목적을 달성하기 위한 본 발명에 의한 태양광 발전 모니터링 시스템의 발전진단 장치는 태양 에너지를 전기 에너지로 변환하여 출력하는 태양전지모들을 포함하여 이루어진 다수의 태양광 발전부와, 상기 각 태양광 발전부에 설치되어 대기온도 및 태양전지모들 온도, 수평면 일사량 및 경사면 일사량, 발전량을 측정하는 태양광 발전 측정부와, 상기 태양광 발전 측정부에서 측정된 각종 정보를 근거로 상기 태양광 발전부의 발전량을 예측함과 더블어 실제 발전량을 비교하여 상기 태양광 발전부의 발전 유지율을 산출하는 태양광 발전 진단부와, 상기 태양광 발전 진단부에서 진단된 각종 정보를 네트워크를 통해 전달받아 발전현황, 감시, 진단, 분석, 보고서를 모니터링하는 태양광 발전 모니터링부를 포함하여 구성되는 것을 특징으로 한다. The power generation diagnostic apparatus of the solar power monitoring system according to the present invention for achieving the above object is a plurality of photovoltaic power generation unit including a solar cell converting and outputting solar energy into electrical energy, each solar A photovoltaic power generation unit installed in the photovoltaic unit and configured to measure atmospheric temperature, solar cell temperature, horizontal solar radiation, inclined solar radiation, and power generation; and various types of information measured by the solar power measurement unit. Predicting the amount of wealth generated Photovoltaic power generation diagnosis unit that calculates the power generation maintenance rate of the solar power generation unit by comparing the actual power generation, and various types of information diagnosed by the photovoltaic power generation diagnosis unit are transmitted through a network to generate power generation status, monitoring, diagnosis, analysis and report. Characterized in that it comprises a photovoltaic monitoring unit for monitoring.
또한, 본 발명에 의한 태양광 발전 모니터링 시스템의 발전진단 방법은 양광 발전부가 설치된 장소에 대한 경사면 일사량, 모들 온도 및 발전효을 데이터를 수집하는 단계; 상기 각 수집된 데이터를 근거로 설치된 태양광 발전부의 예측 발전량을 산출하는 단계; 상기 예측 발전량과 상기 태양광 발전부로부터 발전되는 실제 발전량을 비교하여 발전유지율을 산출하는 단계; 상기 산출된 발전유지율을 분석하여 예측 발전량과 실제 발전량간에 ±20%의 차이가 발생할 경우에는 관리자를 이를 통보하는 단계를 포함하여 이루어진 것을 특징으로 한다. 【유리한 효과】 In addition, the power generation diagnostic method of the photovoltaic power generation monitoring system according to the present invention comprises the steps of collecting data on the slope, insolation, modal temperature and power generation effect for the place where the photovoltaic power generation unit; Calculating a predicted power generation amount of the solar power generation unit installed on the basis of the collected data; Calculating a power generation maintenance rate by comparing the predicted power generation amount with the actual power generation power generated from the solar power generation unit; Analyzing the calculated power generation maintenance rate, if there is a difference of ± 20% between the predicted power generation and actual power generation, characterized in that it comprises a step of notifying the manager. Advantageous Effects
본 발명에 의한 태양광 발전 모니터링 시스템의 발전진단 장치 및 방법은 다음과 같은 효과가 있다. Power generation diagnostic apparatus and method of the solar power monitoring system according to the present invention has the following effects.
첫째, 각 지역에 설치된 태양광 발전 모니터링 시스템의 발전 현황 (발전효율, 감시, 진단 등)을 네트워크를 통해 전달받아 실시간으로 모니터링하여 유지 관리를 원활하게 할 수 있다. First, it is possible to smoothly maintain and monitor the development status (power generation efficiency, monitoring, diagnosis, etc.) of the photovoltaic monitoring system installed in each region through real-time monitoring.
둘째, 각 지역별로 설치된 태양광 발전 모니터링 시스템의 발전 현황을 ¾킹으로 산출하여 모니터링함으로써 현장 관리자들의 신속한 대웅을 유도하여 발전 효율을 증대시킬 수 있다. Second, by calculating and monitoring the development status of the photovoltaic power generation monitoring system installed in each region, it is possible to increase the efficiency of power generation by inducing the prompt Daewoong of field managers.
셋째, 모들 온도 및 경사 일사량에 따른 예측 발전량과 실제 발전량을 비교하여 설치된 태양광 발전을 진단함으로써 유지 관리를 원활하게 할 수 있다. Third, it is possible to facilitate maintenance by diagnosing the installed photovoltaic power generation by comparing the predicted power generation amount according to the modal temperature and the inclined solar radiation amount with the actual power generation amount.
네째, 태양광 발전부들로부터 얻어진 기준 발전량과 실제 발전량을 비교함으로써 태양광 발전부의 효율을 정확하게 파악할 수 있다. Fourth, it is possible to accurately grasp the efficiency of the photovoltaic unit by comparing the actual amount of power generation with the reference power generated from the photovoltaic units.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 본 발명에 의한 태양광 발전 모니터링 시스템의 발전진단 장치를 개략적으로 나타낸 구성도 1 is a schematic view showing a power generation diagnostic apparatus of a solar power monitoring system according to the present invention
도 2는 도 1의 태양광 발전 측정부를 개략적으로 나타낸 구성도 도 3은 도 1의 태양광 발전 진단부를 개략적으로 나타낸 구성도 FIG. 2 is a schematic view showing the solar power measuring unit of FIG. 1. FIG. 3 is a schematic view showing the solar power generation diagnostic unit of FIG.
도 4a 및 도 4b는 도 3의 발전량 예측부와 실제 발전량 측정부를 비교한 그래프 도 5는 도 1의 태양광 발전 모니터링부를 개략적으로 나타낸 구성도 4A and 4B are graphs comparing the generation amount prediction unit of FIG. 3 and the actual generation amount measurement unit. FIG. 5 is a schematic view illustrating the solar power generation monitoring unit of FIG. 1.
도 6은 본 발명에 의한 태양광 발전 모니터링 시스템에서 발전 현황을 나타낸 화면 6 is a screen showing the current state of development in the solar power monitoring system according to the present invention
도 7a 내지 도 7c는 본 발명에 의한 태양광 발전 모니터링 시스템에서 감시 화면 도 8a 및 도 8b는 본 발명에 의한 태양광 발전 모니터링 시스템에서 진단 화면 도 9는 본 발명에 의한 태양광 발전 모니터링 시스템의 발전진단 장치의 화면 도 10은 본 발명에 의한 태양광 발전 모니터링 시스템의 발전진단 방법에서 경사면 일사량, 모들 온도, 발전효율간의 관계를 3차원 그래프로 나타낸 도면 도 11은 도 10에서 필터링된 데이터를 보여주는 화면 7A to 7C are monitoring screens in the solar power monitoring system according to the present invention. FIGS. 8A and 8B are diagnostic screens in the solar power monitoring system according to the present invention. FIG. 9 is the power generation of the solar power monitoring system according to the present invention. Screen of Diagnostic Device FIG. 10 is a diagram illustrating a relationship between inclined plane insolation, modal temperature, and power generation efficiency in a three-dimensional graph in a power generation diagnostic method of a solar power monitoring system according to the present invention. FIG. 11 is a screen showing filtered data in FIG. 10.
도 12는 정상적인 데이터를 활용하여 예측 데이터를 추정한 화면 12 is a screen of estimating prediction data using normal data
도 13은 본 발명에 의한 태양광 발전 모니터링 시스템의 발전진단 방법을 개략적으로 나타낸 순서도 13 is a flow chart schematically showing a power generation diagnostic method of a photovoltaic power generation monitoring system according to the present invention.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
이하, 본 발명의 일 실시예에 따른 태양광 발전 모니터링 시스템의 발전진단 장치 및 방법을 첨부된 도면을 참고하여 상세히 설명한다. 첨부된 도면은 본 발명의 예시적인 형태를 도시한 것으로, 이는 본 발명을 보다 상세히 설명하기 위해 제공되는 것일 뿐, 이에 의해 본 발명의 기술적인 범위가 한정되는 것은 아니다. Hereinafter, a power generation diagnosis apparatus and method of a solar power monitoring system according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. The accompanying drawings show exemplary forms of the present invention, which are provided to explain the present invention in more detail, and the technical scope of the present invention is not limited thereto.
또한, 도면 부호에 관계없이 동일하거나 대웅되는 구성요소는 동일한 참조번호를 부여하고 이에 대한 중복 설명은 생략하기로 하며, 설명의 편의를 위하여 도시된 각 구성 부재의 크기 및 형상은 과장되거나 축소될 수 있다. In addition, irrespective of the reference numerals, the same or grander components will be given the same reference numerals, and redundant description thereof will be omitted. For convenience of description, the size and shape of each component may be exaggerated or reduced. have.
도 1은 본 발명에 의한 태양광 발전 모니터링 시스템의 발전진단 장치를 개략적으로 나타낸 구성도이고, 도 2는 도 1의 태양광 발전 측정부를 개략적으로 나타낸 구성도이며, 도 3은 도 1의 태양광 발전 진단부를 개략적으로 나타낸 구성도이다. 1 is a schematic view showing a power generation diagnostic apparatus of a solar power monitoring system according to the present invention, FIG. 2 is a schematic view showing a photovoltaic power measuring unit of FIG. 1, and FIG. 3 is a photovoltaic view of FIG. 1. It is a block diagram which shows the power generation diagnosis part schematically.
본 발명에 의한 태양광 발전 모니터링 시스템의 발전진단 장치는 도 1에 도시된 바와 같이, 태양 에너지를 전기 에너지로 변환하여 출력하는 태양전지모들 (111)을 포함하여 이루어진 다수의 태양광 발전부 (no)와, 상기 각 태양광 발전부 (110)에 설치되어 대기온도 및 태양전지모들 온도, 수평면 일사량 및 경사면 일사량, 발전량을 측정하는 태양광 발전 측정부 (120)와, 상기 태양광 발전 측정부 (120)에서 측정된 각종 정보를 근거로 상기 태양광 발전부 (110)의 발전량을 예측함과 더불어 실제 발전량을 비교하여 상기 태양광 발전부 (110)의 발전 유지율을 산출하는 태양광 발전 진단부 (130)와, 상기 태양광 발전 진단부 (130)에서 진단된 각종 정보를 네트워크를 통해 전달받아 발전현황, 감시, 진단, 분석 보고서를 모니터링하는 태양광 발전 모니터링부 (140)를 포함하여 구성된다. Power generation diagnostic apparatus of the solar power monitoring system according to the present invention, as shown in Figure 1, converts the solar energy into electrical energy to output A plurality of solar power generation unit (no) comprising a solar cell model 111, and installed in each of the solar power generation unit 110, the atmospheric temperature and solar cell model temperature, the horizontal plane solar radiation and the slope solar radiation, the amount of power generation The photovoltaic power generation unit 120 and the solar power generation unit 110 estimate the amount of power generation on the basis of various information measured by the photovoltaic power generation unit 120 and compare the actual power generation amount. Photovoltaic power generation diagnosis unit 130 for calculating the power generation retention rate of the photovoltaic unit 110 and various types of information diagnosed by the photovoltaic power generation unit 130 are received through a network, and the power generation status, monitoring and diagnosis It is configured to include a solar power monitoring unit 140 to monitor the analysis report.
여기서, 상기 태양광 발전부 (110)는 동일 지역에 설치될 수 있지만, 지역이 다른 지역에 각각 설치되어 전기 에너지를 생산할 수 있도록 구성된다. Here, the photovoltaic unit 110 may be installed in the same region, but is configured to produce electrical energy by installing the regions in different regions.
상기 태양광 발전부 (110)은 고정형, 추적형 또는 BIPV 중에서 적어도 어느 하나로 구성되어 있다. The photovoltaic unit 110 is configured of at least one of the fixed, tracking or BIPV.
상기 수평면 일사량은 태양광 발전부 (110)가 설치된 설치 장소에 입사되는 일사량올 의미하며, 그리고 경사면 일사량은 어느 하나의 태양전지모들 (111)로 입사되는 태양광의 일사량을 의미한다. 여기서 이 수평면 일사량은 일반적인 일사량을 의미하는 것으로 이 수평면 일사량은 수평면 일사량 센서를 상기 설치 위치에 설치함으로써 측정할 수 있다. 이 수평면 일사량 센서는 시간에 따른 태양의 위치에 관계없이 그 입광면의 각이 항상 그대로 유지된다. 이 수평면 일사량 센서는 태양광센서모들들 사이에 위치시킬 수도 있다. 이때, 이 수평면 일사량 센서는 태양광 발전부 (110)의 중심부에 위치할 수 있다. The horizontal surface solar radiation amount means the solar radiation incident on the installation site where the solar power generation unit 110 is installed, and the inclined surface radiation amount means the solar radiation incident on any one of the solar cell modules 111. Here, the horizontal plane solar radiation amount means a general solar radiation amount. The horizontal plane solar radiation amount can be measured by installing a horizontal plane solar radiation sensor at the installation position. This horizontal plane solar radiation sensor always maintains the angle of the incident light face irrespective of the position of the sun over time. This horizontal solar radiation sensor may be positioned between the solar sensor arms. At this time, the horizontal solar radiation sensor may be located in the center of the photovoltaic unit 110.
한편, 경사면 일사량은 태양전지모들 (111)의 입광면에 경사면 일사량 센서를 부착함으로써 측정될 수 있다. 이 경사면일사량센서는 어느 하나의 태양전지모들 (111)에만 부착될 수도 있으며, 또는 모든 태양전지모들 (111)에 하나씩 부착될 수도 있다. 이때 이 태양전지모듈 (111)들 각각은 이들의 입광면이 항상 태양의 방향을 추종하도록 이들의 극각 및 방위각이 시간에 따라 자동적으로 조절되므로, 이들 태양전지모들 (111)에 부착된 경사면 일사량 센서의 입광면 역시 항상 태양을 향하게 된다. Meanwhile, the inclined plane solar radiation amount may be measured by attaching the inclined plane solar radiation sensor to the light incident surface of the solar cell mothers 111. The inclined plane solar radiation sensor may be attached to only one solar cell cap 111, or may be attached to all solar cell caps 111 one by one. At this time, each of the solar cell modules 111, since their polar angle and azimuth angle are automatically adjusted according to the time so that their incident surface always follows the direction of the sun, the amount of inclined solar radiation attached to these solar cell caps 111 The light incident surface of the sensor also always faces the sun.
상기 태양광 발전 진단부 (130)는 일사량, 모들 온도 및 총전력을 미리 설정된 일정 시간마다 측정함으로써 매 시간대별로 구분된 다수의 경사면 일사량들, 다수의 모들 온도들 및 다수의 총전력들에 대한 예측 발전량들을 산출하고, 이 산출된 예측 발전량과 실제 발전되는 발전량을 비교하여 상기 태양광 발전부 (110)의 발전유지율을 산출한다. The solar power generation diagnostic unit 130 presets the amount of insolation, mode temperature, and total power By measuring at regular time intervals, a plurality of slope solar radiations, a plurality of model temperatures and a plurality of total powers, which are divided by time period, are calculated, and the calculated predicted generation amount is compared with the actual generation amount. The power generation maintenance rate of the photovoltaic unit 110 is calculated.
상기 태양광 발전 모니터링부 (140)는 현황, 감시, 진단, 분석, 보고서, 설정의 목록이 디스플레이되고, 관리자는 필요에 따라 각 목록을 클릭하여 상기 태양광 발전부 (110)의 발전현황을 디스플레이한다. The photovoltaic monitoring unit 140 displays a list of statuses, monitoring, diagnosis, analysis, reports, and settings, and the administrator clicks on each list as necessary to display the power generation status of the photovoltaic unit 110. do.
상기 태양광 발전 측정부 (120)는 도 2에서와 같이, 대기온도 및 모듈온도를 측정하는 온도 측정부 (121)와, 상기 태양광 발전부 (110)에 설치되어 수평 일사량과 경사 일사량을 측정하는 일사량 측정부 (122)와, 상기 태양광 발전부 (110)의 발전량을 측정하는 발전량 측정부 (123)와, 상기 태양광 발전부 (110)의 태양전지모들 (111)위에 쌓여진 눈이나 낙엽과 함께 주위를 감시하는 카메라부 (124)를 포함하여 구성된다. The photovoltaic power measuring unit 120 is installed in the photovoltaic unit 110 and the temperature measuring unit 121 for measuring the atmospheric temperature and the module temperature, as shown in FIG. The solar radiation measuring unit 122, the power generation unit 123 for measuring the amount of power generation of the photovoltaic unit 110, and the snow accumulated on the solar cell caps 111 of the photovoltaic unit 110 And a camera unit 124 for monitoring the surroundings with the fallen leaves.
여기서, 상기 온도 측정부 (121)는 상기 태양광 발전부 (110)를 구성하는 태양전지모듈 (111)에 부착되어 온도를 측정함과 더불어 상기 태양전지모들 (111) 주위 즉 대기온도를 함께 측정하여 송부한다. Here, the temperature measuring unit 121 is attached to the solar cell module 111 constituting the photovoltaic unit 110 to measure the temperature and together with the ambient temperature around the solar cell mother 111 Measure and send.
상기 일사량 측정부 (122)는 상기 태양전지모들 (111)의 각도에 따라 경사 일사량과 함께 지면과 수평한 수평 일사량을 동시에 측정하여 송부한다. The solar radiation measuring unit 122 simultaneously measures the horizontal solar radiation horizontally with the ground along with the inclined solar radiation according to the angle of the solar cell mother 111 and sends it.
상기 발전량 측정부 (123)는 상기 각 태양광 발전부 (110)로부터 생산된 발전량을 실시간으로 측정하여 송부한다 . The generation amount measuring unit 123 measures and sends the amount of power generated from each of the photovoltaic units 110 in real time.
상기 카메라부 (124)는 상기 태양광 발전부 (110)가 설치된 지역에서 전체를 감시할 수 있도록 상기 태양전지모들보다 상측에 설치되어 현 상태를 감시함과 더불어 각종 도난이나 사고를 감시할 수 있다. The camera unit 124 may be installed above the solar cells so as to monitor the whole area in the region where the solar power generation unit 110 is installed, and monitor various kinds of theft or accidents. .
상기 태양광 발전 진단부 (130)는 도 3에 도시된 바와 같이 , 발전량 예측부 (131), 관계식 생성부 (132), 상수 추출부 (133), 실제 발전량 생성부 (134) 및 효율 산출부 (135)를 포함한다. As illustrated in FIG. 3, the photovoltaic power generation diagnosis unit 130 includes a generation amount prediction unit 131, a relational expression generation unit 132, a constant extraction unit 133, an actual generation amount generation unit 134, and an efficiency calculation unit. (135).
상기 발전량 예측부 (131)는 경사면 일사량, 모들 온도 및 총전력을 미리 설정된 일정 시간마다 측정함으로써 매 시간대별로 구분된 다수의 경사면 일사량들, 다수의 모들 온도들 및 다수의 총전력들에 대한 발전량을 예측한다. 상기 관계식 생성부 (132)는 상기 발전량 예측부 (131)들로부터의 예측 발전량들에 근거하여, 경사면 일사량 및 모들 온도와 총전력에 대한 관계를 정의하는 회귀방정식을 생성한다. The generation amount predicting unit 131 measures the amount of inclination of the inclined planes, the plurality of the mode temperatures, and the total power of the plurality of slopes divided by each time zone by measuring the inclined plane insolation, the modal temperature, and the total power at predetermined time intervals. Predict. The relationship generator 132 generates a regression equation that defines a relationship between the slope insolation and the modal temperature and the total power based on the predicted power generation amounts from the power generation predictors 131.
상기 상수 추출부 (133)는 학습 알고리즘을 통해 회귀 방정식에 포함된 다수의 상수들 각각에 대한 값을 구한다. The constant extractor 133 obtains a value for each of the plurality of constants included in the regression equation through a learning algorithm.
상기 실제 발전량 생성부 (134)는 실운전기간 동안 경사면 일사량, 모들 온도 및 총전력을 미리 설정된 일정 시간마다 측정함으로써 매 시간대별로 구분된 다수의 경사면 일사량들, 다수의 모들 온도들 및 다수의 총전력들에 대한 실데이터들을 생성한다. 하나의 실데이터는 특정 시간대에서의 경사면 일사량, 모들 온도 및 총전력에 대한 데이터를 갖는다. The actual power generation unit 134 measures the slope insolation, the modal temperature and the total power at predetermined time intervals during the actual operation period, so that the plurality of slope insolations, the plurality of mode temperatures and the plurality of total powers divided by each time zone Generate real data about the fields. One real data has data on slope insolation, mode temperature and total power at a specific time.
상기 효율 산출부 (135)는 상기 실제 발전량 생성부 (134)로부터의 어느 하나의 특정 실데이터에 포함된 총전력에 대한 양을 상기 실전력으로 정의한다. 그리고 상수 추출부 (133)로부터의 상수들을 관계식 생성부 (132)로부터의 회귀방정식에 대입하고, 특정 실데이터에 포함된 특정 경사면 일사량 및 특정 모들 온도를 이 회귀방정식에 대입하여 기준전력을 산출한다. 그리고, 이 산출된 기준전력과 상기 정의된 실전력을 서로 비교하여 태양광 발전부 (110)의 발전유지율을 산출한다. The efficiency calculator 135 defines the amount of total power included in any one specific real data from the actual power generation generator 134 as the actual power. Subsequently, the constants from the constant extracting unit 133 are substituted into the regression equation from the relation generating unit 132, and the reference slope is calculated by substituting the specific slope solar radiation amount and the specific model temperature included in the specific real data into the regression equation. . In addition, the calculated maintenance power of the photovoltaic unit 110 is calculated by comparing the calculated reference power with the defined real power.
도 4a 및 도 4b는 도 3의 발전량 예측부와 실제 발전량 측정부를 비교한 그래프이다. 4A and 4B are graphs comparing the generation amount prediction unit of FIG. 3 with the actual generation amount measurement unit.
도 4a에서와 같이, 발전량 예측부와 실제 발전량 측정부의 발전 효율 데이터가 거의 유사함을 알 수 있다. 여기서, 빨간색은 실제 발전량 데이터, 파란색은 발전량 예측 데이터이다. As shown in FIG. 4A, it can be seen that power generation efficiency data of the power generation amount predicting unit and the actual power generation amount measuring unit are almost similar. Here, red is actual power generation data, and blue is power generation prediction data.
도 4b에서와 같이, 발전량 예측부와 실제 발전량 측정부의 발전 효율 데이터가 일정 기간에 차이가 남을 알 수 있는데, 이는 일사량은 높지만 태양전지모들 위에 전날 내린 눈이 쌓여 있는 동안에 일사량이 양호하지만 태양광 발전이 정상적으로 이루어지지 않아 실제 발전량이 떨어짐을 알 수 있다. As shown in Figure 4b, it can be seen that the generation efficiency data of the power generation prediction unit and the actual power generation measurement unit is a difference for a certain period of time, which is high solar radiation, but the solar radiation is good while the snow accumulated on the previous day on the solar cells, but the solar light It can be seen that the power generation is not normal, so the actual power generation falls.
도 5는 도 1의 태양광 발전 모니터링부를 개략적으로 나타낸 구성도이다. 5 is a configuration diagram schematically showing the solar power monitoring unit of FIG.
상기 태양광 발전 모니터링부 (140)는 도 5에서와 같이, 현장별 전일 발전전력 및 현재발전전력, 수평 및 경사 일사량, 대기 및 모듈 온도를 디스플레이하는 발전 현황부 (141)와, 상기 태양광 발전부 (110)의 발전효율, 현재발전전력, 발전효율 추이를 각각 디스플레이하는 발전효율 표시부 (142)와, 상기 태양광 발전부 (110)가 설치된 현장별 발전효율을 각각 디스플레이하는 현장별 현황부 (143)와, 상기 각 태양광 발전부 (110)의 시설용량, 발전량, 발전금액을 각각 디스플레이하는 발전 집계부 (144)와, 상기 각 태양광 발전부 (110)의 발전량 및 유지 관리 상태를 근거로 탱킹을 표시하는 탱킹 표시부 (145)와, 상기 각 태양광 발전부 (110)의 발전 시간, 최대 발전 시간, 일평균 전력량, 전력량 합계를 디스플레이하는 발전시간 추이부 (146)를 포함하여 구성된다ᅳ The solar power monitoring unit 140, as shown in Figure 5, the generation of electric power to display the day-to-day generation power and current generation power, horizontal and inclined solar radiation, atmospheric and module temperature for each site The status section 141, the power generation efficiency display unit 142 for displaying the power generation efficiency, current power generation, power generation trend of the photovoltaic unit 110, and each site installed with the photovoltaic unit 110 Status-specific status section 143 for displaying power generation efficiency, power generation counting section 144 for displaying facility capacity, power generation amount and power generation amount of each solar power generation section 110, and each of the photovoltaic power generation sections A tanking display unit 145 for displaying tanking based on the amount of power generation and the maintenance state of the power generator 110; A time transition section 146 is configured.
상기 발전 현황부 (141)는 상기 태양광 발전 측정부 (120)로부터 측정된 각종 정보를 통신 네트워크를 통해 전달받아 관리자가 쉽게 파악할 수 있도록 전일 발전량과 현재 발전량을 비교하여 디스플레이한다. 따라서 관리자는 기상상황에 특별하게 차이가 없는데도 전일 발전량과 금일 발전량에 큰 차이가 발생할 경우에는 상기 태양광 발전부 (110)를 구성하는 태양전지모들을 포함하여 접속반, 인버터에 이상이 있다는 것을 인지하고 진단을 실시한다. The power generation status unit 141 receives the various information measured by the photovoltaic power generation unit 120 through a communication network to compare and display the amount of power generation and the current generation amount so that the manager can easily grasp. Therefore, the manager recognizes that there is an abnormality in the connection panel and the inverter including the solar cells constituting the photovoltaic unit 110 when there is a big difference in the amount of generation of power generation and today, even though there is no particular difference in weather conditions. And make a diagnosis.
또한, 상기 발전효율 표시부 (142)는 매시간마다 발전량의 상태를 그래프 형태로 디스플레이함과 더불어 관리자가 육안으로 식별할 수 있도톡 숫자와 함께 눈금으로 디스플레이한다. In addition, the power generation efficiency display unit 142 displays the state of the power generation amount in the form of a graph every hour, and displays the scale with a number that the administrator can visually identify.
상기 현장별 현황부 (143)는 상기 각 태양광 발전부 (110)가 설치된 지역의 현장별 발전량을 디스플레이하는데, 현장별 설치된 태양광 발전부 (110)의 발전효율 (%)과 함께 발전시간 (h)을 확인할 수 있도록 구분되어 있다. The site-specific status unit 143 displays the amount of power generated by each site in the region in which the photovoltaic unit 110 is installed, along with the power generation efficiency (%) of the photovoltaic unit 110 installed by site. h) are separated to identify.
상기 발전 집계부 (144)는 각 현장에 설치된 태양광 발전부 (110)의 시설용량 (KWh)을 디스플레이함과 더블어 발전량과 발전금액을 일, 월, 년으로 디스플레이함으로써 관리자로 하여금 한눈에 발전량과 발전금액을 볼 수 있도록 되어 있다. The power generation unit 144 displays the facility capacity (KWh) of the photovoltaic unit 110 installed at each site, and displays the amount of power generation and the amount of power generation by day, month, and year, thereby allowing the manager to view the amount of power generated at a glance. You can see the amount of development.
즉, 상기 발전 집계부 (144)는 금일 발전량, 금월 발전량, 금년 발전량, 금일 발전금액, 금월 발전금액, 금년 발전금액을 각각 디스플레이하여 관리자가 보다 쉽게 총 발전량과 함께 발전 금액을 확인할 수가 있다. That is, the generation counting unit 144 displays the current generation amount, the current generation amount, this year's generation amount, today's generation amount, this month's generation amount, and this year's generation amount, so that the manager can easily check the generation amount together with the total generation amount.
상기 탱킹 표시부 (145)는 일주일 간격으로 발전시간, 긴급경보 경보수, 경보유지 시간을 산출하여 각 현장별로 금, 은, 동과 같이 랭킹을 부여함으로써 현장 관리자로 하여금 보다 신속한 대웅을 유도할 수가 있다. 현장별 ¾킹에 따라 분기별 또는 년별로 탱킹에 포함된 숫자를 파악하여 우수 포상을 진행함으로써 현장 관리자의 사기를 높여 줄 수 있다. The tanking display unit 145 calculates the power generation time, the number of emergency alarms, and the alarm holding time at weekly intervals, and gives a ranking such as gold, silver, and copper for each site. Managers can be encouraged more quickly. According to site-specific reporting, the number of items included in the tanking can be identified quarterly or yearly to promote awards, which can increase the morale of site managers.
상기 발전시간 추이부 (146)는 상기 각 태양광 발전부 (110)의 발전시간을 일간, 주간, 월간, 연간으로 구분하여 확인할 수 있도록 자료구분 부분을 클릭하여 확인할 수가 있다. The power generation time shifting unit 146 may check the power generation time of each of the photovoltaic power generation units 110 by clicking the data classification part so that the power generation time may be divided into daily, weekly, monthly, and annually.
한편, 이상은 본 발명에 의한 태양광 발전 모니터링 시스템에서 통합, 현장별 발전현황을 보여주는 예를 도 6에 도시하였다. On the other hand, the above is an example showing the integrated, site-specific power generation status in the photovoltaic power generation monitoring system according to the present invention is shown in FIG.
즉, 도 6은 본 발명에 의한 태양광 발전 모니터링 시스템에서 발전 현황을 나타낸 화면이다. That is, Figure 6 is a screen showing the current state of power generation in the solar power monitoring system according to the present invention.
도 6에 도시된 바와 같이, 현장 관리자 또는 총 관리자가 화면을 통해 현장별로 발전현황을 포함하여 발전 집계량 및 ¾¾, 발전시간 추이를 실시간으로 모니터링할 수가 있다. As shown in FIG. 6, the site manager or the general manager may monitor the generation total amount and ¾¾, and the development time trend in real time, including the generation status for each site through the screen.
도 7a 내지 도 7c는 본 발명에 의한 태양광 발전 모니터링 시스템에서 감시 화면이다. 7a to 7c is a monitoring screen in the solar power monitoring system according to the present invention.
도 7a에서와 같이, 감시 화면에서 지도 부분을 클릭하게 되면 태양광 발전부 (110)가 설치된 장소를 지도나 위성에서 한눈으로 확인할 수가 있을 뿐만 아니라 카메라부를 통해 현장 상태를 확인할 수 있다. As shown in FIG. 7A, when the map portion is clicked on the monitoring screen, the place where the solar power generation unit 110 is installed can be checked at a glance on a map or a satellite, and the site state can be confirmed through the camera unit.
또한, 현장별로 설치된 태양광 발전부 (110)의 태양전지모들 용량, 인버터 용량, 발전시간 /일수를 숫자로 확인할 수가 있고, 각 현장별로 현장 목록에서 탱킹을 확인할 수가 있다. In addition, the solar cell module capacity, inverter capacity, generation time / number of days of the photovoltaic unit 110 installed for each site can be confirmed by the number, and tanking can be checked in the site list for each site.
아울러 지도에는 태양광 발전부가 설치된 장소가 표시되고, 상기 태양광 발전부가 정상으로 동작할 때는 녹색, 통신 네트워크나 발전 이상이 있을 때 주황색의 주의 또는 적색의 경고가 깜박이게 된다. In addition, the map displays a place where the solar power generation unit is installed, and when the solar power generation unit operates normally, an orange caution or a red warning blinks when there is a communication network or a power generation abnormality.
또한, 상기 지도상에서 녹색, 주황색, 적색 부분을 각각 클릭하면 현재 운전상태, 발전전력, 경사일사량, 모듈온도를 확인할 수가 있다. In addition, when the green, orange, and red parts are clicked on the map, the current operating state, generated power, inclined solar radiation amount, and module temperature can be checked.
도 7b에서와 같이, 설비 부분을 클릭하면 태양광 발전부가 설치된 모든 현장의 인버터, 수배전반, 메인 및 서브뱅크의 이상 유무를 확인할 수가 있고, 현재 심각, 경계, 주의, 관심 부분이 몇 개인지를 색상을 통해 관리자가 직접 확인할 수가 있다. As shown in Figure 7b, you can see the abnormality of the inverter, switchgear, main and sub-banks in all the sites where the photovoltaic power generation unit is installed, as shown in FIG. Directly by the administrator There is a number.
도 7c에서와 같이, 네트워크 부분을 클릭하면 태양광 발전부의 각종 센서와 동작 상태와 접속반의 이상 유무를 포함하여 현재 네트워크의 통신 상태를 확인할 수가 있고, 현재 심각, 경계, 주의, 관심 부분이 몇 개인지를 색상을 통해 관리자가 직접 확인할 수가 있다. As shown in FIG. 7C, when the network part is clicked, the communication state of the current network can be checked including various sensors, operation states of the solar power generation unit, and whether there is an abnormality in the connection panel. The color can be checked directly by the administrator.
따라서 본 발명에 의한 태양광 발전 모니터링 시스템에서 감시 부분은 GIS 기반 정보, 설비별 계측정보, 네트워크 상태를 관리자가 실시간으로 감시할 수가 있기 때문에 이상이 발생할 경우 현장 관리자에게 연락하여 신속하게 처리함으로써 발전 효율을 한층더 향상시킬 수가 있다. Therefore, in the photovoltaic power generation monitoring system according to the present invention, the monitoring part can monitor the GIS-based information, the measurement information for each facility, and the network status in real time, so if an abnormality occurs, it is necessary to contact the site manager and promptly deal with the power generation efficiency. Can be further improved.
도 8a 및 도 8b는 본 발명에 의한 태양광 발전 모니터링 시스템에서 진단 화면이다 . 8a and 8b is a diagnostic screen in the solar power monitoring system according to the present invention.
도 8a에서와 같이, 진단 부분을 클릭하게 되면 태양광 발전부 (110)가 설치된 장소를 지도나 위성에서 한눈으로 확인할 수가 있을 뿐만 아니라 카메라부를 통해 현장 상태를 확인할 수 있다. As shown in FIG. 8A, when the diagnosis part is clicked, the place where the solar power generation unit 110 is installed can be checked at a glance on a map or a satellite, and the site state can be confirmed through the camera unit.
또한, 현장별로 설치된 태양광 발전부 (110)의 태양전지모들 용량, 인버터 용량, 발전시간 /일수를 슷자로 확인할 수가 있고, 각 현장별로 현장 목록에서 탱킹을 확인할 수가 있다. In addition, the solar cell model capacity, inverter capacity, generation time / number of days of the photovoltaic unit 110 installed by site can be confirmed by a similar number, and tanking can be confirmed in the site list for each site.
또한, 일간 발전량 추기, 경사일사량, 발전전력, 모듈온도, 발전전력, 변환효율, 일 발전량, 일 발전금액, 일 발전시간, 월 발전시간을 확인할 수가 있다. In addition, it is possible to check the daily power generation addition, the slope solar radiation, the generation power, the module temperature, the generation power, the conversion efficiency, the daily generation amount, the daily generation amount, the daily generation time, and the monthly generation time.
뿐만 아니라 태양광 발전부를 구성하는 스트링별로 발전현황을 확인할 수가 있고, 각 인버터 발전현황 및 접속반 발전현황을 확인할 수가 있다. In addition, it is possible to check the power generation status of each string constituting the solar power generation unit, and to check the power generation status of each inverter and the connection panel power generation status.
도 8b에서와 같이, 인버터 발전현황은 인버터의 종류, 설비용량, 운전상태,As shown in FIG. 8B, the inverter power generation status includes the type of inverter, capacity, operating state,
AC/DC전력, 계측일시를 확인할 수가 있다. AC / DC power and measurement date and time can be checked.
또한, 접속반 발전현황은 접속반의 종류, 설비용량, 현재전력, 부하율, HS온도, 내부온도, 계측일시를 확인할 수가 있다. In addition, the status of connection panel power generation can check the type of connection panel, equipment capacity, current power, load factor, HS temperature, internal temperature, and measurement date and time.
또한, 스트링별 발전현황은 각 스트링의 설비용량, 현재전력, 부하율, 계측일시를 확인할 수가 있다. In addition, the power generation status of each string can confirm the facility capacity, current power, load rate, and measurement date and time of each string.
도 9는 본 발명에 의한 태양광 발전 모니터링 시스템의 발전진단 장치의 화면이다. 도 9에서와 같이, 일간 발전량을 포함하여 사용자의 설정에 따라 18.20C의 모들 온도와 573W/n 의 경사면 일사량에 따른 예측 발전량이 771kW일 때 실제 발전량은 921kW을 나타내고 있다. 즉, 발전효율을 상승됨을 알 수 있는 ±20%의 발전량 차이가 발생했을 때 태양광 발전부, 인버터, 접속반 중 어느 하나에 이상이 있음을 관리자에게 자동으로 알려주게 된다. 9 is a screen of the power generation diagnostic apparatus of the solar power monitoring system according to the present invention. As shown in FIG. 9, when the predicted generation amount according to the modal temperature of 18.2 0 C and the insolation of the inclined plane of 573W / n is 771kW according to the user's setting including the daily generation amount, the actual generation amount is 921kW. In other words, when a generation amount difference of ± 20% is known to increase power generation efficiency, the manager is automatically notified of any abnormality among the solar power generation unit, the inverter, and the connection board.
따라서 본 발명에 의한 태양광 발전 모니터링 시스템에서 진단 화면을 통해 현장 별 발전 상태를 진단함과 더불어 인버터와 접속반 및 스트링별 발전 현황을 확인할 수가 있기 때문에 발전에 이상이 발생할 경우에 현장 관리자에게 연락하여 신속한 처리를 통해 발전 효율을 향상시킬 수가 있다. Therefore, in the photovoltaic power generation monitoring system according to the present invention, it is possible to diagnose the power generation status of each site through the diagnosis screen and to check the power generation status of the inverter, the connection board, and the string, so if there is an abnormality in power generation, contact the site manager. Rapid treatment can improve power generation efficiency.
도 10은 본 발명에 의한 태양광 발전 모니터링 시스템의 발전진단 방법에서 경사면 일사량, 모듈 온도, 발전효율간의 관계를 3차원 그래프로 나타낸 도면이다. FIG. 10 is a diagram illustrating a relationship between inclined solar radiation, module temperature, and power generation efficiency in a three-dimensional graph in a method for diagnosing power generation of a solar power monitoring system according to the present invention.
도 3의 관계식 생성부 (132)는 도 3에 도시된 바와 같은 예측 데이터들에 근거하여 회귀방정식을 산출하는 바, 이를 좀 더 구체적으로 설명하면 다음과 같다. The relational expression generator 132 of FIG. 3 calculates a regression equation based on the prediction data as shown in FIG. 3, which will be described in more detail as follows.
먼저, 상기 관계식 생성부 (132)는 n개의 예측 데이터들에 포함된 경사면 일사량들 (xu,x12 ,·.., xm), 모들 온도들 (x21,x22,..., x2n) 및 총전력들 (y ,y2,..., y 을 아래의 수학식 1에 정의된 행렬식으로 나타낸다. First, the relation generation unit 132 may include slope insolations (x u , x 12 , .., xm) and modal temperatures (x 21 , x 22 ,..., X included in n prediction data. 2n ) and the total powers (y, y 2 ,.
【수학식 1】  [Equation 1]
Figure imgf000013_0001
Figure imgf000013_0001
위의 수학식 l에서 제 1 열에 위치한 원소들 (xll, χ12, ... , xln)은 시간대별 경사면 일사량들을 의미하며, 제 2 열에 위치한 원소들 (x21, x22, xln)은 시간대별 모들 온도들을 의미하며, 그리고 제 3 열에.위치한 원소들 (yl, y2, ... yn)은 시 Λ간대별 총전력들을 의미한다. 이 수학식 1로부터 알 수 있듯이, 예를 들어 첫 번째 예측 데이터는 원소 xll에 대웅되는 경사면 일사량, 원소 x21에 대응되는 모들 온도 및 원소 yl에 대웅되는 총전력을 포함한다. In Equation 1, the elements (xll, χ12, ..., xln) located in the first column mean slope insolation according to time zone, and the elements (x21, x22, xln) in the second column represent The time zones mean all the temperatures, and the elements (yl, y2, ... yn) located in column 3 represent the total powers per hour Λ. As can be seen from Equation 1, for example, the first prediction data includes the slope insolation for element xll, the modal temperature corresponding to element x21, and the total power for element yl.
이후, 이 관계식 생성부 (132)는 상기 수학식 1에 근거하여 아래의 수학식 2로 정의되는 회귀방정식을 생성한다. Thereafter, the relation generation unit 132 generates a regression equation defined by Equation 2 below based on Equation 1 above.
【수학식 2】  [Equation 2]
Figure imgf000014_0001
Figure imgf000014_0001
상기 상수 추출부 (133)는 학습 알고리즘으로서 최소제곱법을 이용하여 상기 회귀방정식에 포함된 상수들 각각에 대한 값을 구한다. The constant extractor 133 obtains a value for each of the constants included in the regression equation using a least square method as a learning algorithm.
이를 위해, 상기 상수 추출부 (133)는 먼저 아래와 같은 수학식 3으로 정의되는 확장행렬식을 구한다. To this end, the constant extractor 133 first obtains an extension matrix defined by Equation 3 below.
【수학식 3】  [Equation 3]
Figure imgf000014_0002
Figure imgf000014_0002
rl c λΑ Λ수 추출부 (133)는 아래와 같은 수학식 4로 정의되는 행렬식을 계산한다. rl c λΑ Λ number extracting unit 133 calculates a determinant defined by Equation 4 below.
【수학식 4】
Figure imgf000014_0003
여기서, 수학식 4의 y는 아래와 같은 수학식 5로 정의되는 행렬식을 갖는다. 【수학식 5】
Figure imgf000015_0001
한편, 수학식 4의 w는 아래와 같은 수학식 6으로 정의되는 행렬식을 갖는다.
[Equation 4]
Figure imgf000014_0003
Here, y in Equation 4 has a determinant defined by Equation 5 below. [Equation 5]
Figure imgf000015_0001
Meanwhile, w in Equation 4 has a determinant defined by Equation 6 below.
【수학식 6】
Figure imgf000015_0002
[Equation 6]
Figure imgf000015_0002
이 수학식 3 내지 수학식 6에 의해 상수들 각각에 대한 값이 구해지면ᅳ 상수 추출부 (133)는 이 상수들에 대한 값들을 효율 산출부 (135)로 공급한다. When the values for each of the constants are obtained by the equations (3) to (6), the constant extractor 133 supplies the values for the constants to the efficiency calculator 135.
그러면 상기 효율 산출부 (135)는 상술된 회귀방정식에 이 상수들의 값을 대입하여 관계식을 완성한다. Then, the efficiency calculator 135 completes the relation by substituting the values of these constants into the regression equation described above.
도 11은 도 10에서 필터링된 데이터를 보여주는 화면이고, 도 12는 정상적인 데이터를 활용하여 예측 데이터를 추정한 화면이다. FIG. 11 is a screen illustrating filtered data in FIG. 10, and FIG. 12 is a screen illustrating prediction data using normal data.
도 11에서와 같이, 회귀 방정식을 이용하여 비정상적인 데이터를 필터링한다. 여기서 파란색 부분이 정상적인 데이터이고 빨간색은 비정상적인 데이터를 나타내고 있다. As shown in FIG. 11, abnormal data is filtered using a regression equation. The blue part is normal data and the red part is abnormal data.
또한, 도 12에서와 같이, 정상적인 데이터를 활용하여 예측 데이터를 추정한다. 사용자는 실운전기간 동안 이 태양광 발전부 (110)의 발전유지율을 알아보기 위해 이 효율 산출부 (135)에 특정 실데이터에 포함된 특정 경사면 일사량 및 특정 모들 온도를 입력할 수 있다. 그러면, 이 효율 산출부 (135)는 이 특정 경사면 일사량 및 특정 모들 온도를 상술된 회귀방정식에 대입하여 기준전력을 산출한다. 그리고, 이 특정 경사면 일사량 및 특정 모들 온도에 의해 실제로 태양광 발전부 (110)부터 발전된 실전력을 산출한다. 그리고, 이 산출된 기준전력과 실전력을 다음과 같은 수학식 7에 대입하여 이 태양광 발전부의 발전유지율을 산출한다. In addition, as shown in FIG. 12, prediction data is estimated using normal data. The user may input a specific inclined solar radiation amount and a specific model temperature included in specific real data to the efficiency calculator 135 to determine the power generation maintenance rate of the photovoltaic unit 110 during a real operation period. Then, the efficiency calculator 135 calculates the reference power by substituting this specific inclined solar radiation amount and the specific model temperature into the above-described regression equation. And the actual electric power actually generated from the photovoltaic part 110 is computed by this specific slope insolation amount and specific model temperature. Subsequently, the calculated maintenance power is calculated by substituting the calculated reference power and real power into Equation 7 below.
【수학식 7】
Figure imgf000016_0001
[Equation 7]
Figure imgf000016_0001
여기서, 상기 발전유지율은 태양광 발전부가 발전해야할 기준전력대비 실제 발전되고 있는 실전력의 비율로서, 시스템의 효율이 얼마나 잘 유지되고 있는지를 나타내는 지표이다. 시스템의 효을이 저하될수록 이 발전유지율도 감소하게 된다. Here, the power generation maintenance rate is a ratio of actual power that is actually being generated to the reference power to be generated by the solar power generation unit, it is an indicator indicating how well the efficiency of the system is maintained. The lower the efficiency of the system, the lower the maintenance rate.
본 발명에 따른 효율 산출부 (135)는 이 발전유지율을 주기적으로 산출함으로써 시스템의 효율을 진단하고, 이 발전유지율이 일정 값 이하로 떨어질 경우 고장으로 판단하고 이를 사용자에게 알릴 수 있다. The efficiency calculating unit 135 according to the present invention may periodically calculate the power generation maintenance rate to diagnose the efficiency of the system. When the power generation maintenance rate falls below a predetermined value, the efficiency calculation unit 135 may determine a failure and notify the user.
이와 같이 본 발명에서는 태양광 발전부 (110)들이 최초 설치된 장소의 모든 제반 사항이 고려되어 시스템 모델이 구축되므로 , 각 장소에 가장 최적화된 시스템 모델이 구축될 수 있다. 예를 들어, A장소와 B장소에 동일한 태양광 발전부 및 인버터를 설치한다고 하더라도 그 장소의 특성에 따라 태양광 발전부와 인버터간을 연결하는 전력선이 더 길어지거나 짧아지게 되어 실제 출력되는 전력에 편차가 발생할 수 있다. As described above, in the present invention, since the system model is constructed by considering all the matters of the place where the photovoltaic units 110 are initially installed, the most optimal system model may be constructed at each place. For example, even if the same photovoltaic unit and inverter are installed in place A and B, the power line connecting the photovoltaic unit and the inverter becomes longer or shorter depending on the characteristics of the place. Deviation may occur.
본 발명에서는 예측 발전량을 산출하는 동안 이러한 장소에 의해 발생되는 전력의 편차가 모두 고려되므로, 각 장소에 가장 최적화된 시스템 모델이 설정될 수 있다. In the present invention, since the deviations in power generated by these locations are all considered while calculating the predicted generation amount, the system model most optimized for each location can be set.
한편, 본 발명에서는 태양광 발전부를 주기적으로 시험운전하여 예측 발전량을 계속적으로 보정할 수 있다. 즉, 계절마다 일사량 (수평면 일사량 및 경사면 일사량) 및 온도 (외기 온도 및 모들 온도)의 차이가 있으므로, 이를 고려하여 매 계절마다 태양광 발전부를 초기화하고 시험운전하여 해당 계절에 가장 최적화된 예측 발전량을 구축할 수 있다. 즉, 매 계절마다 서로 다른 상수들을 갖는 회귀방정식이 생성될 수 있다. On the other hand, the present invention can periodically correct the predicted amount of power generation by periodically testing the solar power generation unit. In other words, there is a difference in solar radiation (horizontal solar radiation and inclined solar radiation) and temperature (outer air temperature and modal temperature) for each season.In consideration of this, the solar power generation unit is initialized and tested every season to obtain the most optimized predicted power generation for the season. Can be built. That is, a regression equation with different constants can be generated every season.
도 13은 본 발명에 의한 태양광 발전 모니터링 시스템의 발전진단 방법을 개략적으로 나타낸 순서도이다. 13 is a flowchart schematically illustrating a power generation diagnosis method of a solar power monitoring system according to the present invention.
본 발명에 의한 태양광 발전 모니터링 시스템의 발전진단 방법은 도 13에 도시된 바와 같이, 태양광 발전부가 설치된 장소에 대한 경사면 일사량, 모들 온도 및 발전효율 데이터를 수집한다 (S110). As shown in FIG. 13, the method for diagnosing the power generation of the solar power monitoring system according to the present invention includes a slope insolation, modal temperature and Collecting power generation efficiency data (S110).
이어서, 상기 각 수집된 데이터를 근거로 설치된 태양광 발전부의 예측 발전량을 산출한다 (S120). Subsequently, the predicted power generation amount of the solar power generation unit installed on the basis of the collected data is calculated (S120).
여기서, 상기 예측 발전량은 경사면 일사량들, 다수의 모듈 온도들 및 다수의 총전력들에 대한 예측 데이터들을 생성하고, 이 생성된 예측 데이터들을 근거로 하여 상기 예측 발전량을 산출한다. Here, the predicted generation amount generates prediction data for slope insolation, a plurality of module temperatures, and a plurality of total powers, and calculates the predicted generation amount based on the generated prediction data.
이어서, 상기 예측 발전량과 상기 태양광 발전부로부터 발전되는 실제 발전량을 비교하여 발전유지율을 산출한다 (S130). Subsequently, a power generation maintenance rate is calculated by comparing the predicted power generation amount with the actual power generation power generated from the solar power generation unit (S130).
여기서, 특정 실데이터에 포함된 특정 경사면 일사량 및 특정 모들 온도를 이 회귀방정식에 대입하여 예측 발전량을 산출하고, 이 산출된 예측 발전량과 상기 실제 발전된 발전량을 서로 비교하여 상기 태양광 발전부의 발전유지율을 산출한다. Here, the predicted generation amount is calculated by substituting the specific inclined solar radiation amount and the specific model temperature included in the specific real data into the regression equation, and comparing the calculated predicted generation amount with the actual generated generation amount to calculate the generation maintenance rate of the photovoltaic power generation unit. Calculate.
그리고, 상기 산출된 발전유지율을 분석하여 예측 발전량과 실제 발전량간에 ±20%의 차이가 발생할 경우에는 관리자를 이를 통보한다 (S140). 따라서 본 발명에 의한 태양광 발전 모니터링 시스템의 발전진단 장치 및 방법은 일사량과 은도가 태양광 발전을 하기에 최적의 데이터 값을 가지고 있는데도 발전량이 원하는 만큼 올라가지 않을 때 태양광 발전부, 인버터, 접속반의 적어도 어느 한 곳에 이상이 있다는 것을 진단하여 보다 신속하게 처리함으로써 발전 효율을 한층더 향상시킬 수 있다. In addition, if the difference between the predicted generation amount and the actual generation amount occurs by analyzing the calculated power generation maintenance rate, the manager is notified of this (S140). Therefore, the power generation diagnostic apparatus and method of the photovoltaic monitoring system according to the present invention is a solar power generation unit, inverter, connection panel when the amount of solar radiation and silver does not go up as much as desired even if it has the optimal data value for solar power generation It is possible to further improve the power generation efficiency by diagnosing the abnormality in at least one place and processing it more quickly.
한편, 이상에서 설명한 본 발명은 상술한 실시 예 및 첨부된 도면에 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 종래의 지식을 가진 자에게 있어 명백할 것이다. On the other hand, the present invention described above is not limited to the above-described embodiment and the accompanying drawings, it is possible that various substitutions, modifications and changes within the scope without departing from the technical spirit of the present invention It will be apparent to those skilled in the art.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
태양 에너지를 전기 에너지로 변환하여 출력하는 태양전지모들을 포함하여 이루어진 다수의 태양광 발전부와, A plurality of solar power generation units including solar cells converting solar energy into electrical energy and outputting the same;
상기 각 태양광 발전부에 설치되어 대기온도 및 태양전지모들 온도, 수평면 일사량 및 경사면 일사량, 발전량을 측정하는 태양광 발전 측정부와, Solar power generation unit installed in each of the solar power generation units to measure the air temperature, solar cell temperature, the horizontal surface solar radiation and the slope surface solar radiation, the amount of power generation;
상기 태양광 발전 측정부에서 측정된 각종 정보를 근거로 상기 태양광 발전부의 발전량을 예측함과 더불어 실제 발전량을 비교하여 상기 태양광 발전부의 발전 유지율을 산출하는 태양광 발전 진단부와, A photovoltaic diagnosis unit for predicting the amount of generation of the photovoltaic unit based on various information measured by the photovoltaic generation unit and comparing the actual amount of power generation and calculating a maintenance rate of the photovoltaic unit;
상기 태양광 발전 진단부에서 진단된 각종 정보를 네트워크를 통해 전달받아 발전현황, 감시, 진단, 분석, 보고서를 모니터링하는 태양광 발전 모니터링부를 포함하여 구성되는 것을 특징으로 하는 태양광 발전 모니터링 시스템의 발전진단 장치 . Development of a solar power monitoring system comprising a photovoltaic power monitoring unit configured to receive the various information diagnosed by the photovoltaic power generation diagnosis unit through a network and monitor a power generation status, monitoring, diagnosis, analysis, and report. Diagnostic device.
【청구항 2】  [Claim 2]
제 1 항에 있어서, 상기 태양광 발전 측정부는 The method of claim 1, wherein the solar power measuring unit
대기온도 및 모들온도를 측정하는 온도 측정부와, A temperature measuring unit for measuring the air temperature and the modal temperature;
상기 태양광 발전부에 설치되어 수평 일사량과 경사 일사량을 측정하는 일사량 측정부와, Is installed on the photovoltaic power generation unit and the solar radiation measuring unit for measuring the horizontal solar radiation and the inclined solar radiation amount,
상기 태양광 발전부의 발전량을 측정하는 발전량 측정부와, A power generation amount measuring unit measuring a power generation amount of the solar power generation unit;
상기 태양광 발전부의 태양전지모들위에 쌓여진 눈이나 낙엽과 함께 주위를 감시하는 카메라부를 포함하여 구성되는 것을 특징으로 하는 태양광 발전 모니터링 시스템의 발전진단 장치 . The power generation diagnostic apparatus of the solar power monitoring system, characterized in that it comprises a camera unit for monitoring the surroundings with snow or fallen leaves stacked on the solar cell module of the solar power generation unit.
【청구항 3】  [Claim 3]
제 1 항에 있어서, 상기 태양광 발전 진단부는 The method of claim 1, wherein the solar power diagnostic unit
상기 경사면 일사량, 다수의 모들 온도들 및 다수의 총전력들에 대한 발전량을 근거로 발전량을 예측하는 발전량 예측부와, A generation amount prediction unit for predicting generation amount based on generation amount for the inclined plane solar radiation, a plurality of model temperatures and a plurality of total powers;
상기 발전량 예측부들로부터의 예측 발전량들에 근거하여 경사면 일사량 및 모들 온도와 총전력에 대한 관계를 정의하는 회귀방정식을 생성하는 관계식 생성부와, 학습 알고리즘을 통해 회귀 방정식에 포함된 다수의 상수들 각각에 대한 값을 구하는 상수 추출부와, A relational expression generator for generating a regression equation that defines a relationship between slope insolation and modal temperature and total power based on predicted generation amounts from the generation amount prediction units; A constant extractor that obtains a value for each of a plurality of constants included in the regression equation through a learning algorithm;
상기 다수의 경사면 일사량 다수의 모들 온도 및 다수의 총전력에 대한 실데이터들을 생성하는 실제 발전량 생성부와, An actual power generation unit for generating actual data for the plurality of inclined plane solar radiation, a plurality of model temperatures, and a plurality of total powers;
상기 실제 발전량 생성부로부터 어느 하나의 특정 실데이터에 포함된 총전력에 대한 양올 상기 실전력으로 정의하는 효율 산출부를 포함하여 구성되는 것을 특징으로 하는 태양광 발전 모니터링 시스템의 발전진단 장치 . And an efficiency calculation unit defining an amount of total power included in any one specific real data from the actual power generation unit as the actual power.
【청구항 4]  [Claim 4]
제 1 항에 있어서, 상기 태양광 발전 모니터링부는 발전현황, 발전감시, 발전진단, 분석, 보고서, 설정의 목록이 디스폴레이되고, 관리자는 필요에 따라 각 목록을 클릭하여 상기 태양광 발전부의 발전현황을 디스플레이하는 것을 특징으로 하는 태양광 발전 모니터링 시스템의 발전진단 장치 . According to claim 1, The solar power monitoring unit is a list of power generation status, power generation monitoring, power generation diagnosis, analysis, reports, settings are displayed, the administrator clicks each list as necessary to generate power of the solar power generation unit Power generation diagnostic device for photovoltaic power generation monitoring system, characterized by displaying the current status.
【청구항 5】  [Claim 5]
제 1 항에 있어서, 상기 태양광 발전 모니터링부는 According to claim 1, wherein the solar power monitoring unit
상기 태양광 발전부가 설치된 현장별 전일 발전전력 및 현재발전전력, 수평 및 경사 일사량, 대기 및 모듈 은도를 디스플레이하는 발전 현황부와, Development status section for displaying the full-day power generation and current generation power, horizontal and inclined solar radiation, atmospheric and module silver road by the site where the solar power generation unit is installed,
상기 태양광 발전부의 발전효율, 현재발전전력, 발전효율 추이를 각각 디스플레이하는 발전효율 표시부와, A power generation efficiency display unit displaying power generation efficiency, current power generation, and power generation trends of the solar power generation unit;
상기 태양광 발전부가 설치된 현장별 발전효율을 각각 디스플레이하는 현장별 현황부와, A status sheet for each site displaying power generation efficiency for each site in which the solar power generation unit is installed;
상기 각 태양광 발전부의 시설용량, 발전량, 발전금액을 각각 디스플레이하는 발전 집계부와, A power generation counting unit which displays the facility capacity, power generation amount, and power generation amount of each solar power generation unit;
상기 각 태양광 발전부의 발전량 및 유지 관리 상태를 근거로 탱킹을 표시하는 랭킹 표시부와, A ranking display unit displaying tanks based on the amount of power generation and maintenance state of each of the photovoltaic units;
상기 각 태양광 발전부의 발전 시간, 최대 발전 시간, 일평균 전력량, 전력량 합계를 디스플레이하는 발전시간 추이부를 포함하여 구성되는 것을 특징으로 하는 태양광 발전 모니터링 시스템의 발전진단 장치 . The power generation diagnostic apparatus of the solar power monitoring system, characterized in that it comprises a power generation time transition unit for displaying the power generation time, the maximum power generation time, the daily average amount of power, the sum of the amount of power.
【청구항 6】  [Claim 6]
제 5 항에 있어서, 상기 발전 현황부는 상기 태양광 발전 측정부로부터 측정된 각종 정보를 통신 네트워크를 통해 전달받아 관리자가 쉽게 파악할 수 있도록 전일 발전량과 현재 발전량올 비교하여 디스플레이하는 것을 특징으로 하는 태양광 발전 모니터링 시스템의 발전진단 장치 . The method of claim 5, wherein the power generation status is measured from the photovoltaic power measurement unit Power generation diagnosis device for solar power monitoring system, characterized in that the information received through the communication network to display the comparison between the current generation and the current generation so that the administrator can easily grasp.
【청구항 7]  [Claim 7]
제 5 항에 있어서, 상기 발전 집계부는 각 현장에 설치된 태양광 발전부의 시설용량을 디스플레이함과 더불어 발전량과 발전금액을 일, 월, 년으로 디스플레이하는 것을 특징으로 하는 태양광 발전 모니터링 시스템의 발전진단 장치 . [6] The power generation diagnosis system of claim 5, wherein the power generation counting unit displays facility capacity of the solar power generation unit installed at each site, and displays generation amount and generation amount in days, months, and years. Device .
【청구항 8]  [Claim 8]
제 5 항에 있어서, 상기 랭킹 표시부는 일주일 간격으로 발전시간, 긴급경보 경보수, 경보유지 시간을 산출하여 각 현장별로 금, 은, 동과 같이 랭킹을 부여하는 것을 특징으로 하는 태양광 발전 모니터링 시스템의 발전진단 장치 . The solar power monitoring system according to claim 5, wherein the ranking display unit calculates power generation time, emergency alarm number, and alarm holding time at a weekly interval to give a ranking such as gold, silver, and copper for each site. Power generation diagnostic equipment.
【청구항 9】 [Claim 9]
제 5 항에 있어서, 상기 발전효율 표시부는 매시간마다 발전량의 상태를 그래프 형태로 디스플레이함과 더불어 관리가 육안으로 식별할 수 있도록 숫자와 함께 눈금으로 디스플레이하는 것을 특징으로 하는 태양광 발전 모니터링 시스템의 발전진단 장치 . The power generation display system of claim 5, wherein the power generation efficiency display unit displays the state of power generation in a graph form every hour, and displays the numbers with a scale so that management can visually identify the power generation. Diagnostic device.
【청구항 10]  [Claim 10]
제 5 항에 있어서, 상기 발전시간 추이부는 상기 각 태양광 발전부의 발전시간을 일간, 주간, 월간, 연간으로 구분하여 디스플레이하는 것을 특징으로 하는 태양광 발전 모니터링 시스템의 발전진단 장치 . The power generation diagnostic apparatus of claim 5, wherein the power generation time shifting unit displays the power generation time of each of the photovoltaic power generation units in a daily, weekly, monthly, and yearly manner.
【청구항 11]  [Claim 11]
제 1 항에 있어서, 상기 태양관 발전부는 동일 지역 또는 지역이 다른 지역에 각각 설치되어 전기 에너지를 생산하는 것을 특징으로 하는 태양광 발전 모니터링 시스템의 발전진단 장치 . The apparatus for diagnosing power generation of a solar power monitoring system according to claim 1, wherein the solar tube power generating unit is installed in a same area or a different area to produce electrical energy.
【청구항 12】  [Claim 12]
태양광 발전부가 설치된 장소에 대한 경사면 일사량, 모들 온도 및 발전효율 데이터를 수집하는 단계; Collecting slope insolation, mode temperature and power generation efficiency data for a location where the solar power generation unit is installed;
상기 각 수집된 데이터를 근거로 설치된 태양광 발전부의 예측 발전량을 산출하는 단계; The estimated power generation of the photovoltaic generation unit installed on the basis of the collected data Calculating step;
상기 예측 발전량과 상기 태양광 발전부로부터 발전되는 실제 발전량을 비교하여 발전유지율을 산출하는 단계; Calculating a power generation maintenance rate by comparing the predicted power generation amount with the actual power generation power generated from the solar power generation unit;
상기 산출된 발전유지율을 분석하여 예측 발전량과 실제 발전량간에 ±20%의 차이가 발생할 경우에는 관리자를 이를 통보하는 단계를 포함하여 이루어진 것을 특징으로 하는 태양광 발전 모니터링 시스템의 발전진단 방법. And a step of notifying the manager when a difference of ± 20% is generated between the predicted generation amount and the actual generation amount by analyzing the calculated power generation maintenance rate.
PCT/KR2013/004485 2013-01-31 2013-05-22 Apparatus and method for power generation diagnosis of solar photovoltaic generation monitoring system WO2014119822A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130011297A KR101415163B1 (en) 2013-01-31 2013-01-31 solar power monitoring system
KR10-2013-0011297 2013-01-31
KR10-2013-0026001 2013-03-12
KR20130026001A KR101485051B1 (en) 2013-03-12 2013-03-12 Detection apparatus of photovoltaic power generation system

Publications (1)

Publication Number Publication Date
WO2014119822A1 true WO2014119822A1 (en) 2014-08-07

Family

ID=51262513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004485 WO2014119822A1 (en) 2013-01-31 2013-05-22 Apparatus and method for power generation diagnosis of solar photovoltaic generation monitoring system

Country Status (1)

Country Link
WO (1) WO2014119822A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390642A (en) * 2018-02-14 2018-08-10 广东技术师范学院 Photovoltaic plant data collection site Visualized Monitoring System
CN113572424A (en) * 2021-07-02 2021-10-29 清华大学 Photovoltaic cell state anomaly detection method and device, electronic equipment and storage medium
CN116720631A (en) * 2023-08-09 2023-09-08 深圳市洛丁光电有限公司 Distributed photovoltaic power generation electric quantity analysis and prediction method, system and storage medium
CN117993741A (en) * 2024-04-03 2024-05-07 长江三峡集团实业发展(北京)有限公司 Photovoltaic power generation abnormality diagnosis method, photovoltaic power generation abnormality diagnosis device, computer device, and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060010995A (en) * 2004-07-29 2006-02-03 주식회사 에스에너지 Solar photovoltatic power generation monitoring apparatus and method thereof
KR20080011979A (en) * 2006-08-02 2008-02-11 대덕대학산학협력단 On-line monitoring system and method for solar cell module
KR20110007292A (en) * 2009-07-16 2011-01-24 주식회사 유나티앤이 Monitoring system of solar cell module using sensor network for photovoltaic power genaration and method thereof
KR20110090632A (en) * 2010-02-04 2011-08-10 안창희 Monitoring system for solar power generater
KR101111551B1 (en) * 2011-03-30 2012-02-24 권영복 Photovoltaic power generation system and method of examining efficiency of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060010995A (en) * 2004-07-29 2006-02-03 주식회사 에스에너지 Solar photovoltatic power generation monitoring apparatus and method thereof
KR20080011979A (en) * 2006-08-02 2008-02-11 대덕대학산학협력단 On-line monitoring system and method for solar cell module
KR20110007292A (en) * 2009-07-16 2011-01-24 주식회사 유나티앤이 Monitoring system of solar cell module using sensor network for photovoltaic power genaration and method thereof
KR20110090632A (en) * 2010-02-04 2011-08-10 안창희 Monitoring system for solar power generater
KR101111551B1 (en) * 2011-03-30 2012-02-24 권영복 Photovoltaic power generation system and method of examining efficiency of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390642A (en) * 2018-02-14 2018-08-10 广东技术师范学院 Photovoltaic plant data collection site Visualized Monitoring System
CN113572424A (en) * 2021-07-02 2021-10-29 清华大学 Photovoltaic cell state anomaly detection method and device, electronic equipment and storage medium
CN113572424B (en) * 2021-07-02 2023-02-28 清华大学 Photovoltaic cell state anomaly detection method and device, electronic equipment and storage medium
CN116720631A (en) * 2023-08-09 2023-09-08 深圳市洛丁光电有限公司 Distributed photovoltaic power generation electric quantity analysis and prediction method, system and storage medium
CN116720631B (en) * 2023-08-09 2023-12-19 深圳市洛丁光电有限公司 Distributed photovoltaic power generation electric quantity analysis and prediction method, system and storage medium
CN117993741A (en) * 2024-04-03 2024-05-07 长江三峡集团实业发展(北京)有限公司 Photovoltaic power generation abnormality diagnosis method, photovoltaic power generation abnormality diagnosis device, computer device, and storage medium

Similar Documents

Publication Publication Date Title
KR101485051B1 (en) Detection apparatus of photovoltaic power generation system
JP5856294B2 (en) Photovoltaic power generation monitoring method and solar power generation monitoring system used for the method
US9520826B2 (en) Solar cell module efficacy monitoring system and monitoring method therefor
CN102566435B (en) Performance prediction and fault alarm method for photovoltaic power station
JP2011216811A (en) Solar cell abnormality diagnosis system, solar cell abnormality diagnosis apparatus and solar cell abnormality diagnosis method
KR20190057974A (en) System of monitoring photovoltaic power generation
KR101578675B1 (en) Ranking calculaion apparatus of photovoltaic power generation system
KR101266346B1 (en) Method to monitor electric power generation and detect the trouble of each photovoltaic module
US20110066401A1 (en) System for and method of monitoring and diagnosing the performance of photovoltaic or other renewable power plants
KR101390405B1 (en) Monitoring and control system for photovoltaic power generation device management system
KR101415163B1 (en) solar power monitoring system
KR101111551B1 (en) Photovoltaic power generation system and method of examining efficiency of the same
CN108599724A (en) A kind of photovoltaic module on-line monitoring system and monitoring method
WO2016166991A1 (en) Diagnostic system for photovoltaic power generation equipment, and program
KR102230548B1 (en) Power generation prediction and efficiency diagnosis system of solar power generation facilities using FRBFNN model
KR101297078B1 (en) Photovoltaic monitoring device that can be default diagnosis each module and method of diagnosing Photovoltaic power generator
KR102347238B1 (en) Operation and management system of photovoltaic power plant and method thereof
KR101485052B1 (en) Analysis apparatus of photovoltaic power generation system
KR101699495B1 (en) The monitoring system for photovoltaic power system
WO2014119822A1 (en) Apparatus and method for power generation diagnosis of solar photovoltaic generation monitoring system
JP2012204610A (en) Photovoltaic power generation fault diagnosis system
KR101265573B1 (en) Photovoltaic power generation multifuntion junction box system and the method
CN109830981A (en) A kind of the photovoltaic plant management system and its control method of family grade
KR101489821B1 (en) Monitoring system for solar light generation and monitoring method thereof
JP6619185B2 (en) Photovoltaic power generation diagnostic system and diagnostic method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873444

Country of ref document: EP

Kind code of ref document: A1