WO2014119680A1 - Glass substrate, and device using same - Google Patents

Glass substrate, and device using same Download PDF

Info

Publication number
WO2014119680A1
WO2014119680A1 PCT/JP2014/052152 JP2014052152W WO2014119680A1 WO 2014119680 A1 WO2014119680 A1 WO 2014119680A1 JP 2014052152 W JP2014052152 W JP 2014052152W WO 2014119680 A1 WO2014119680 A1 WO 2014119680A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
glass substrate
metal
alkoxide
substrate according
Prior art date
Application number
PCT/JP2014/052152
Other languages
French (fr)
Japanese (ja)
Inventor
政太郎 大田
賢一 元山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2014559751A priority Critical patent/JP6347214B2/en
Publication of WO2014119680A1 publication Critical patent/WO2014119680A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/256Coating containing TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a glass substrate used for solar cells and displays.
  • Liquid crystal displays are used as display devices for information terminals such as personal computers, mobile phones, and televisions.
  • a liquid crystal display has a structure in which liquid crystal is sealed between a pair of substrates on which transparent electrodes are formed.
  • a glass substrate formed of soda lime glass or non-alkali glass is used as this substrate.
  • the solar cell has a structure in which an electrode layer, a photoelectric conversion layer, a buffer layer, and the like are formed on a glass substrate serving as a base material.
  • the silicon semiconductor is sandwiched between glass substrates via a resin or the like.
  • these solar cells usually use a cover glass substrate to protect the elements that are the main part of the solar cell.
  • a resin such as ethylene vinyl acetate is applied on such an element, and a cover glass substrate is attached thereon.
  • the basic characteristics required for glass substrates widely used for these applications include high flatness and no deterioration, deterioration or distortion even when exposed to high temperatures. Further, the glass substrate is required not to be deteriorated, warped, peeled off or cracked even when used for a long period of time while being exposed to sunlight or moisture in the atmosphere.
  • Patent Document 1 discloses a glass substrate for a solar cell having a novel composition so as to be suitable for manufacturing a glass substrate by an overflow downdraw method in order to provide a glass substrate having excellent flatness.
  • Patent Document 2 includes a titanium oxide that can suppress degradation of components caused by diffusion of alkali metal atoms and the like into the device even when low-cost soda lime glass is used.
  • a solar cell substrate having an insulator layer is disclosed.
  • Whitening is a phenomenon in which an originally transparent glass substrate constituting a white cell is whitened when a solar cell and a display are used. Whitening of a glass substrate occurs when components such as impurities contained in the glass substrate are deposited on the surface of the glass substrate during use, and the glass surface is deteriorated to form fine irregularities, thereby causing light scattering. It is understood to be. Such whitening reduces the light transmittance of the glass substrate, resulting in problems such as a decrease in light conversion efficiency of the solar cell and a decrease in visibility of the display.
  • a glass substrate that suppresses whitening and has improved reliability is demanded.
  • whitening of solar cell substrates and outdoor displays is accelerated in high-temperature and high-humidity environments, but whitening is not accelerated even in such high-temperature and high-humidity environments.
  • an object of the present invention is to provide a glass substrate that is excellent in light resistance and moisture resistance, has suppressed whitening, and has improved reliability, and a solar cell and a display obtained using the glass substrate.
  • the present inventors hydrolyzed a specific metal alkoxide in an organic solvent in the presence of a metal salt on the surface as a glass substrate used for the forefront of various devices. -It discovered that the glass substrate which has the protective film formed from the composition obtained by condensing and adding a precipitation inhibitor further has high reliability which suppressed whitening.
  • the present invention is based on the above findings and has the following gist.
  • a glass substrate used for the forefront of a device which is formed from a composition obtained by hydrolysis / condensation in a solvent and further adding a precipitation inhibitor.
  • M 1 (OR 1 ) n (I) (M 1 is at least one selected from the group consisting of silicon, titanium, tantalum, zirconium, boron, aluminum, magnesium, tin and zinc.
  • R 1 represents an alkyl group having 1 to 5 carbon atoms. Represents the valence of 1.
  • R 2 l M 2 (OR 3 ) 4-1 (II) (M 2 represents silicon.
  • R 2 is substituted with a hydrogen atom or at least one selected from the group consisting of a halogen atom, a vinyl group, a methacryloxy group, an acryloxy group, a styryl group, a phenyl group, and a cyclohexyl group.
  • a hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom or a halogen atom, vinyl group, methacryloxy group, acryloxy group, styryl group, phenyl group or cyclohexyl group.
  • R 3 represents an alkyl group having 1 to 5 carbon atoms, and l represents an integer of 1 to 3.
  • X represents chlorine, nitric acid, sulfuric acid, acetic acid, succinic acid, sulfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate, or a basic salt thereof.
  • M represents the valence of M 3. .
  • R 2 in the formula (II) is substituted with a hydrogen atom or at least one selected from the group consisting of a halogen atom, a vinyl group, a methacryloxy group, an acryloxy group, a styryl group, a phenyl group, and a cyclohexyl group.
  • the glass substrate as described in (1) above which is a hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom.
  • the above precipitation inhibitor is at least one selected from the group consisting of N-methyl-pyrrolidone, ethylene glycol, dimethylformamide, dimethylacetamide, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof.
  • the metal salt includes metal nitrate, metal sulfate, metal acetate, metal chloride, metal oxalate, metal sulfamate, metal sulfonate, metal acetoacetate, metal acetylacetonate and their basicity.
  • M 3 in the formula (III) is at least one selected from the group consisting of aluminum, indium, zinc, zirconium, bismuth, lanthanum, tantalum, yttrium and cerium.
  • the glass substrate in any one.
  • the present invention it becomes possible to provide a glass substrate with reduced whiteness and improved reliability.
  • a highly reliable solar cell and display can be provided.
  • a glass substrate for a solar cell As a glass substrate for a solar cell, a glass substrate with improved reliability and reduced whitening is required.
  • a light-transmitting glass substrate is used for the configuration of the solar cell substrate, and an insulating protective film is disposed on the surface of the glass substrate. That is, the glass substrate of the present invention has an insulating protective film for suppressing whitening on the surface of the glass substrate.
  • the protective film covering the surface of the glass substrate of the present invention is formed using a composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt and further adding a precipitation inhibitor. It is a cured film and an insulating film having a dense structure with a low porosity.
  • the glass substrate of the present invention can suppress whitening even when used in solar cells. In particular, even if the glass substrate of the present invention is exposed to a high-temperature and high-humidity environment, acceleration of whitening can be suppressed.
  • the protective film of the present invention is formed as a cured film by applying the above composition to the surface of a substrate such as glass and baking it.
  • the composition for forming the protective film which covers the surface of the glass substrate of this invention may be called the composition of this invention, or a composition (it is also called coating composition).
  • Metal alkoxide of formula (I) The metal alkoxide that can be used for forming the composition is represented by the following formula (I).
  • the metal alkoxide includes a partial condensate of the metal alkoxide.
  • M 1 (OR 1 ) n (I) M 1 represents a metal, R 1 represents an alkyl group having 1 to 5 carbon atoms, and n represents a valence of M 1.
  • M 1 is at least one selected from the group consisting of silicon, titanium, tantalum, zirconium, boron, aluminum, magnesium, tin, and zinc.
  • the alkyl group of R 1 preferably has 1 to 3 carbon atoms.
  • the n alkyl groups may be a kind of alkyl group or a different alkyl group, but from the viewpoint of easy availability, a kind of alkyl group is preferable.
  • n is preferably an integer of 4 to 8.
  • metal alkoxide silicon alkoxide, titanium alkoxide and the like are preferable, and silicon alkoxide is particularly preferable.
  • silicon alkoxide is particularly preferable.
  • All of the metal alkoxides used in the composition can be silicon alkoxides.
  • all of the metal alkoxides used in the composition can be titanium alkoxides.
  • the metal alkoxide used in the composition preferably contains a mixture of silicon alkoxide and titanium alkoxide.
  • the silicon alkoxide one or a mixture of two or more compounds represented by the following formula (IV) (the partial condensate is preferably a pentamer or less) can be used. Furthermore, all the metal alkoxides can be one or a mixture of two or more compounds represented by the following formula (IV) (partial condensates are preferably pentamers or less).
  • R ′ represents an alkyl group having 1 to 5 carbon atoms.
  • R ′ has the same meaning as R 1 in formula (I), and R ′ may be the same or different. From the viewpoint of synthesis, R ′ is preferably the same from the viewpoint of availability.
  • titanium alkoxide one or a mixture of two or more compounds represented by the following formula (V) can be used.
  • all the metal alkoxides can be titanium alkoxides which are one or a mixture of two or more compounds represented by the following formula (IV).
  • the metal alkoxide is one or a mixture of two or more of the compounds represented by the above formula (IV) (partial condensate is preferably a pentamer or less) and 1 of the compounds represented by the following formula (V). It is also possible to use a mixture with a titanium alkoxide which is a seed or a mixture of two or more.
  • R ′′ has the same meaning as R 1 in formula (I), and R ′′ may be the same or different. From the viewpoint of synthesis, R ′′ is preferably the same from the viewpoint of availability.
  • Metal alkoxide of formula (II) Another metal alkoxide that can be used for forming the composition includes a compound represented by the following formula (II).
  • R 2 l M 2 (OR 3 ) 4-1 (II) M 2 represents silicon.
  • R 2 is selected from the group consisting of a hydrogen atom or a halogen atom (preferably a fluorine atom), a vinyl group, a methacryloxy group, an acryloxy group, a styryl group, a phenyl group, and a cyclohexyl group.
  • a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with at least one kind and may have a hetero atom, or a halogen atom, vinyl group, methacryloxy group, acryloxy group, styryl group, phenyl group Or a cyclohexyl group, R 3 represents an alkyl group having 1 to 5 carbon atoms, and l represents an integer of 1 to 3.
  • the metal alkoxide includes a partial condensate of the metal alkoxide.
  • l represents an integer of 1 to 3.
  • the carbon number of R 2 is preferably 1-20.
  • the hydrocarbon may be branched or linear, but is preferably linear.
  • the plurality of hydrocarbon groups may be one type of hydrocarbon group or different types of hydrocarbon groups, but from the viewpoint of synthesis, one type of hydrocarbon group is preferable.
  • R 3 preferably has 1 to 5 carbon atoms.
  • the plurality of alkyl groups may be one type of alkyl group or different types of alkyl groups, but one type of alkyl group is preferable from the viewpoint of easy availability in the synthesis. .
  • alkoxysilane represented by Formula (II) is not limited to these.
  • metal alkoxide (II) having a hydrocarbon group having a hetero atom metal alkoxides having the following functional groups can be used as long as the effects of the present invention are not impaired.
  • functional groups include amino groups, glycidoxy groups, mercapto groups, isocyanate groups, and ureido groups.
  • metal alkoxide (II) having a functional group include 3- (2-aminoethylaminopropyl) trimethoxysilane, 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethylsilane.
  • the content of the metal alkoxide (II) having a hydrophilic group such as the above functional group is preferably 30 mol% or less, more preferably 25 mol% or less, based on the total amount of the metal alkoxide used (100 mol%).
  • Metal salt of formula (III) Next, as the metal salt used in the composition, one or more of the compounds represented by the following formula (III) can be used.
  • a metal salt represented by the formula (III) is used as the metal salt.
  • M represents the valence of M 3. .
  • metal nitrates, metal chloride salts, metal oxalates and basic salts thereof are particularly preferable.
  • M 3 examples include aluminum, indium, zinc, zirconium, bismuth, lanthanum, tantalum, yttrium, and cerium.
  • aluminum, indium, or cerium is preferable from the viewpoint of availability and storage stability of the prepared composition, and aluminum is particularly preferable.
  • organic solvent examples include alcohols such as methanol, ethanol, propanol and butanol, esters such as ethyl acetate, glycols such as ethylene glycol and ether derivatives thereof, ester derivatives and ethers such as diethyl ether. , Ketones such as acetone, methyl ethyl ketone and cyclohexanone, and aromatic hydrocarbons such as benzene and toluene. These can be used alone or in combination.
  • alcohols such as methanol, ethanol, propanol and butanol
  • esters such as ethyl acetate
  • glycols such as ethylene glycol and ether derivatives thereof
  • ester derivatives and ethers such as diethyl ether.
  • Ketones such as acetone, methyl ethyl ketone and cyclohexanone
  • aromatic hydrocarbons such as benzene and toluene.
  • alkylene glycols or monoethers thereof From the viewpoint of stabilizing the metal alkoxide component comprising a metal such as titanium, tantalum, zirconium, boron, aluminum, magnesium, tin, zinc, etc. to improve the storage stability of the coating composition liquid, alkylene glycols or monoethers thereof It is desirable to include derivatives.
  • alkylene glycols or monoether derivatives thereof include ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, and their monomethyl-, monoethyl-, monopropyl-, monobutyl- or monophenyl ethers. .
  • alkylene glycols or monoether derivatives thereof have a molar ratio of less than 1 with respect to a metal alkoxide composed of a metal such as titanium, tantalum, zirconium, boron, aluminum, magnesium, tin, and zinc.
  • the stability is less effective, and the storage stability of the coating composition is deteriorated.
  • all the organic solvents used in the coating composition may be the above-described alkylene glycols or monoether derivatives thereof.
  • 1 or more are preferable by molar ratio with respect to a metal alkoxide.
  • examples of the alkylene glycol or monoether derivative thereof contained in the organic solvent include ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, and monomethyl thereof. , Monoethyl, monopropyl, monobutyl or monophenyl ether.
  • the molar ratio of the alkylene glycol or the monoether derivative thereof contained in the organic solvent is less than 1 with respect to the titanium alkoxide, the effect of improving the stability of the titanium alkoxide is small, and the storage stability of the composition is deteriorated. .
  • all of the organic solvent may be the above-described alkylene glycol or a monoether derivative thereof.
  • the composition does not contain titanium alkoxide, it is not particularly necessary to contain the above-described alkylene glycol and / or monoether derivative thereof in the organic solvent.
  • the precipitation inhibitor contained in the composition of the present invention has the effect of preventing the metal salt from depositing in the coating film when the coating film of the composition is formed on the glass substrate and the protective film is formed.
  • the precipitation inhibitor include N-methyl-pyrrolidone, dimethylformamide, dimethylacetamide, ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof. These may be used alone or in combination. can do. Of these, hexylene glycol and the like having good coating properties are preferred.
  • the precipitation inhibitor is used at a ratio of (precipitation inhibitor) / (metal oxide) ⁇ 1 (weight ratio) by converting the metal of the metal salt into a metal oxide.
  • this ratio weight ratio
  • the use ratio is preferably 1 or more by weight.
  • the precipitation inhibitor may be added when a metal alkoxide, particularly silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide undergo hydrolysis / condensation reaction in the presence of a metal salt. -It may be added after completion of the condensation reaction.
  • composition The content of each of the main components contained in the composition is 2.5 to 40% by weight, preferably 2.5 to 19% by weight of the metal alkoxide (I) and / or metal alkoxide (II).
  • the metal salt (II) is 0.5 to 45% by weight, preferably 0.5 to 35% by weight, and the organic solvent is 35 to 95% by weight, preferably 45 to 92.5% by weight. It is.
  • the content ratio of the metal alkoxide and the metal salt in the composition of the present invention is the molar ratio between the total metal atoms (M 1 + M 2 ) of the metal alkoxide contained in the composition and the metal atoms (M 3 ) of the metal salt. It is preferable that the ratio satisfies the relationship of 0.01 ⁇ M 3 / (M 1 + M 2 ) ⁇ 0.7. If this molar ratio is less than 0.01, the mechanical strength of the resulting protective film is not sufficient, which is not preferable. On the other hand, when the molar ratio exceeds 0.7, the adhesion of the protective film to the glass substrate is lowered.
  • the chemical resistance of the protective film obtained may be reduced. It is not preferable.
  • the content ratio of the metal alkoxide and the metal salt is preferably 95/5 to 50/50.
  • the composition of the present invention is used as a coating composition for coating on a glass substrate or the like after containing other components shown below.
  • inorganic fine particles other components such as inorganic fine particles, metalloxane oligomers, metalloxane polymers, leveling agents, surfactants and the like are contained in the composition as long as the effects of the present invention are not impaired. May be.
  • the inorganic fine particles fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferable, and those in a colloidal solution state are particularly preferable.
  • This colloidal solution may be a dispersion of inorganic fine particles in a dispersion medium, or a commercially available colloidal solution.
  • the inorganic fine particles preferably have an average particle size of 0.001 to 0.2 ⁇ m, more preferably 0.001 to 0.1 ⁇ m. When the average particle diameter of the inorganic fine particles exceeds 0.2 ⁇ m, the transparency of the cured film formed using the prepared coating liquid may be lowered.
  • the dispersion medium for the inorganic fine particles examples include water and organic solvents.
  • the colloid solution preferably has a pH or pKa adjusted to 1 to 10 from the viewpoint of the stability of the electrode protective film forming agent. More preferably, it is 2-7.
  • organic solvent used for the dispersion medium of the colloidal solution examples include alcohols such as methanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, hexylene glycol, diethylene glycol, dipropylene glycol, and ethylene glycol monopropyl ether; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and ⁇ -butyrolactone; Examples include ethers such as tetrahydrofuran and 1,4-dioxane. Among these, alcohols and ketones are preferable. These organic solvents can be used alone or in admixture of two or more as a dist
  • the solid content concentration in the composition of the present invention is preferably in the range of 0.5 to 20% by weight as the solid content when the metal alkoxide and metal salt described above are converted as metal oxides. 5 to 12% by weight is more preferable.
  • the solid content concentration exceeds 20% by weight, the storage stability of the composition is deteriorated and it is difficult to control the thickness of the protective film to be formed.
  • the solid content concentration is 0.5% by weight or less, the thickness of the protective film to be obtained becomes thin, and it is necessary to form a coating film many times in order to obtain a predetermined film thickness. It becomes complicated.
  • composition for forming a protective film covering the surface of the glass substrate of the present invention is obtained by hydrolyzing and condensing a specific metal alkoxide in an organic solvent in the presence of a metal salt, and further adding a precipitation inhibitor. It is done.
  • composition of the present invention is obtained by hydrolyzing and condensing the above metal alkoxide in an organic solvent in the presence of the above metal salt. That is, the composition of the present invention is obtained using water.
  • the amount of water used for hydrolysis thereof is silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide.
  • the molar ratio is preferably 2 to more than 24 and more preferably 2 to 20 with respect to the total number of moles of the mixture.
  • the molar ratio ((amount of water (mole)) / (total number of moles of silicon alkoxide, etc.)) is 2 or less, hydrolysis of the above alkoxide becomes insufficient, resulting in reduced film formability. This is not preferable because the strength of the protective film obtained is lowered.
  • the same conditions as described above are preferable for the amount of water added.
  • the coexisting metal salt is a hydrate salt
  • the moisture content of the metal salt needs to be taken into consideration with respect to the amount of water used for the hydrolysis because the moisture content is involved in the reaction.
  • the obtained composition has a property that the viscosity gradually increases during storage at room temperature. It is a slight increase in viscosity, and there is no concern that it will be a major problem in practical use. However, if it is necessary to precisely control the thickness of the protective film to be formed, carefully adjust the temperature at the time of storage of the composition. Management is required. Such an increase in the viscosity of the composition becomes more pronounced as the composition ratio of the titanium alkoxide contained increases. This is presumably because titanium alkoxide has a higher hydrolysis rate and faster condensation reaction than silicon alkoxide and the like.
  • a silicon alkoxide is preliminarily hydrolyzed in the presence of a metal salt, and then mixed with a titanium alkoxide solution mixed with an alkylene glycol or a monoether derivative thereof to perform a hydrolysis / condensation reaction to obtain a composition.
  • the production method (1) is effective because when titanium alkoxide is mixed with alkylene glycols or monoether derivatives thereof, heat is generated, so that there is a gap between the alkoxy group of titanium alkoxide and alkylene glycols or monoether derivatives thereof. This is thought to be because the transesterification occurs in order to stabilize the hydrolysis / condensation reaction.
  • the reason why the above production method (2) is effective is considered to be as follows. That is, the hydrolysis reaction of silicon alkoxide is performed at a high rate, but the subsequent condensation reaction is slower than titanium alkoxide. Therefore, when titanium alkoxide is added quickly after finishing the hydrolysis reaction, the silanol group of the hydrolyzed silicon alkoxide and the titanium alkoxide react uniformly. Thereby, it is thought that the hydrolyzed silicon alkoxide stabilizes the condensation reactivity of titanium alkoxide.
  • the method of mixing silicon alkoxide hydrolyzed in advance and titanium alkoxide is a known method.
  • alkylene glycols or monoether derivatives thereof are not contained in the organic solvent used in the reaction, the resulting composition may not exhibit excellent storage stability.
  • the method shown in (2) is also useful when obtaining the composition of the present invention from a metal alkoxide other than titanium alkoxide having a high hydrolysis rate and silicon alkoxide.
  • the glass substrate of the present invention has a glass substrate and a protective film formed on the surface of the glass substrate.
  • the protective film can be formed using the composition of the present invention described above. That is, the protective film contains a metal oxide of a metal alkoxide represented by the above formula (I) and / or formula (II). Preferably, it contains silicon oxide. Moreover, it preferably contains a titanium oxide. Further, the protective film contains a metal component in the metal salt represented by the above formula (III). For example, when aluminum nitrate or the like is used as a preferable metal salt, the protective film contains aluminum derived from aluminum nitrate.
  • the protective film on the glass substrate having such a composition has a dense film structure.
  • the protective film can be formed on the surface of the glass substrate by using a composition of the present invention and applying a known coating method or the like.
  • the protective film is formed by coating the composition of the present invention on a glass substrate to form a coating film.
  • a coating method for example, a dip coating method, a spin coating method, a spray coating method, a brush coating method, a roll transfer method, a screen printing method, an ink jet method, a flexographic printing method and the like can be used.
  • the coating film is dried by heating at a temperature of 50 to 100 ° C., and then 100 ° C. or higher, preferably 100 to 600 ° C., more preferably 300 to 500 ° C., for 0.5 to 2 hours, preferably 0.00. Bake in 5 to 1 hour.
  • the composition of the present invention can provide a protective film having a dense film structure. These heat treatments can be performed using an apparatus such as an oven furnace or a hot plate. The heating at a temperature of 50 to 100 ° C. for drying the coating film can be omitted.
  • the coating film of the composition is irradiated with ultraviolet rays (UV) after being dried by heating at a temperature of 50 to 100 ° C. and before baking at 100 ° C. or higher. It is also possible to irradiate. By irradiating UV, the protective film obtained can have a denser film structure.
  • UV ultraviolet rays
  • a dense cured film using the composition of the present invention is formed on the glass substrate, and using the cured film as a protective film, the glass substrate and the protective film formed on the surface of the glass substrate, A glass substrate of the present invention having the following is obtained. These glass substrates are used as solar cell substrates or display substrates.
  • FIG. 1 is a schematic cross-sectional view showing a first example of the solar cell substrate of the present invention.
  • the solar cell substrate 1 includes a glass substrate 2 and protective films 3 and 3 ′ disposed on both surfaces of the glass substrate 2.
  • the protective films 3 and 3 ′ are protective films formed directly on the surface of the glass substrate 2 using the above-described composition.
  • positioned on the surface of the both sides of the glass substrate 2 have the same composition, and substantially the same thickness.
  • FIG. 2 is a schematic cross-sectional view showing a second example of the solar cell substrate of the present invention.
  • the solar cell substrate 11 includes a glass substrate 12 similar to the glass substrate 2 of the first example described above, and a protective film 13 disposed on one surface of the glass substrate 12.
  • the protective film 13 is a protective film formed directly on the surface of the glass substrate 12 using the composition of the present invention described above.
  • the shape of the glass substrates 2 and 12 used for the solar cell substrates 1 and 11 of the present invention is, for example, a plate shape.
  • Examples of the glass substrates 2 and 12 include soda lime glass, borate glass, aluminosilicate glass, quartz glass, and the like from the classification by composition. Moreover, from the classification based on the alkali component, non-alkali glass and low alkali glass can be mentioned.
  • the content of alkali metal components (for example, Na 2 O, K 2 O, Li 2 O, etc.) of the glass substrates 2 and 12 is preferably 15% by weight or less, more preferably 10% by weight or less.
  • the thickness of the glass substrates 2 and 12 is 0.1 to 3.0 mm, preferably 0.1 to 2.0 mm, more preferably 0.1 to 1.5 mm, and further preferably 0.1 to 0.7 mm. 0.1 to 0.5 mm is particularly preferable. As the plate thickness of the glass substrates 2 and 12 decreases, the glass substrates 2 and 12 can be reduced in weight, and the solar cell can be reduced in weight.
  • the glass substrates 2 and 12 can be formed according to a known method.
  • the glass substrates 2 and 12 are prepared by melting a mixture containing main raw materials such as silica and alumina, an antifoaming agent such as sodium nitrate and antimony oxide, and a reducing agent such as carbon at a temperature of 1400 to 1600 ° C. After forming into a thin plate shape, it is produced by cooling.
  • the thin plate forming method for the glass substrates 2 and 12 include a slot down draw method, a fusion method, and a float method.
  • the glass substrates 2 and 12 formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to reduce the thickness or improve the smoothness.
  • glass substrates 2 and 12 commercially available ones may be used as they are, or a commercially available glass substrate may be polished to have a desired thickness.
  • commercially available glass substrates include “7059”, “1737”, “EAGLE 2000” manufactured by Corning, “AN100” manufactured by Asahi Glass, “NA-35” manufactured by NH Techno Glass, and “OA-” manufactured by Nippon Electric Glass. 10 "and the like.
  • the thickness of the protective layers 3, 3 ', 13 of the solar cell substrates 1 and 11 of the present invention is preferably 10 to 1000 nm, more preferably 80 to 120 nm.
  • the solar cell substrate 11 has the protective films 3, 3 ′, and 13 having such a thickness on the glass substrates 2 and 12, thereby suppressing whitening.
  • the transmittance at a wavelength of 550 nm of the solar cell substrates 1 and 11 of the present invention is preferably 85% or more, and more preferably 90% or more.
  • substrates 1 and 11 for solar cells of this invention can comprise the solar cell of the outstanding light conversion efficiency.
  • the solar cell substrates 1 and 11 of the present invention having the above-described structure are applied to solar cells having various structures configured using a glass substrate. can do.
  • the solar cell substrates 1 and 11 of the present invention have the same structure as the solar cell disclosed in Patent Document 2 described above and the photovoltaic element disclosed in Japanese Unexamined Patent Publication No. 2012-134544. It can be used for the construction of solar cells.
  • the solar cell substrates 1 and 11 of the present invention are not limited to the solar cells disclosed in Patent Document 2 and Japanese Patent Application Laid-Open No. 2012-134544, but are solar cells configured using a glass substrate, It can be used as a glass substrate, and a highly reliable solar cell can be provided.
  • TEOS Tetraethoxysilane
  • AN Aluminum nitrate hexahydrate
  • MPMS Methacryloxypropyltrimethoxysilane
  • TIPT Tetraisopropoxytitanium
  • MeOH Methanol
  • PGME Propylene glycol monomethyl ether
  • HG Hexylene glycol
  • EG Ethylene glycol
  • BCS Ethylene glycol Monobutyl ether
  • GC gas chromatography
  • Example 1 To a four-necked reaction flask equipped with a reflux tube, MeOH (49.17 g) as a solvent (C1) and TEOS (11.25 g) as an alkoxysilane (A1) were added and stirred. Next, a mixture of MeOH (16.39 g) as the solvent (C2), aluminum nitrate hexahydrate (20.27 g) as the aluminum salt (B1), and water (2.92 g) was added dropwise and stirred for 30 minutes. After stirring, the mixture was refluxed for 3 hours and allowed to cool to room temperature to prepare a solution. When this solution was measured by GC according to the measurement method described above, no alkoxysilane monomer was detected.
  • This solution (50 g) was mixed with HG (10 g), BCS (10 g), and PGME (30 g) to obtain a coating composition.
  • Table 1 summarizes each component of the alkoxysilane (A1), aluminum salt (B1), water, and solvent (C1 and C2) used for the preparation of the coating composition together with the amount of addition. Note that “-” in the component column of Table 1 indicates that the component was not used.
  • Example 2 to 5 In the same manner as in Example 1, the coating compositions of Examples 2 to 5 having the compositions shown in Table 1 were obtained.
  • ⁇ A1 liquid> In the flask, 12.7 g of AN and 3.0 g of water were added and stirred to dissolve AN. EG13.1g, HG37.5g, BCS35.7g, and MPMS37.0g were put there and it stirred under room temperature for 30 minutes. ⁇ A2 liquid> 4.7 g of TIPT and 56.3 g of HG were put in the flask, and stirred at room temperature for 30 minutes. ⁇ A1 liquid> and ⁇ A2 liquid> were mixed and stirred at room temperature for 30 minutes to prepare a solution to obtain a coating composition.
  • ⁇ Comparative Example 1> As in Examples 1 to 5, a coating composition of a comparative example having the composition shown in Table 1 was obtained in the same manner as in Example 1 except that HNO 3 was used as the acid without using an aluminum salt. It was.
  • Example 7 Using the coating compositions of Examples 1 to 5 and Comparative Example 1, a coating film was formed on a substrate and heat-cured to form a protective film on the substrate. In addition, about each formed protective film, what was obtained using the coating composition of Example 1 is called the protective film of Example 1 for convenience. Similarly, protective films obtained using the coating compositions of Examples 2 to 5 and Comparative Example 1 are referred to as protective films of Examples 2 to 5 and Comparative Example 1 for convenience. The methods for forming protective films of Examples 1 to 5 and Comparative Example 1, and the evaluation methods and results of the substrates on which these protective films are formed are shown below.
  • each of the coating compositions of Examples 1 to 5 and Comparative Example 1 was applied to both surfaces of 0.7 mm thick soda lime glass to form a coating film, respectively. Then, after drying at 80 ° C. for 3 minutes in a clean oven, heating was performed at 300 ° C. for 30 minutes in the clean oven to cure each coating film, and each of the Examples 1 to 5 having a thickness of 100 nm was formed on each substrate. And the protective film of the comparative example 1 was formed.
  • HAZE value after high temperature and high humidity test Using each of the substrates on which the protective films of Examples 1 to 5 and Comparative Example 1 were formed, the HAZE value (haze value) was measured. As Comparative Example 2, a HAZE measurement was performed using a substrate (only soda lime glass) on which no protective film was formed. The measurement results for Examples 1 to 5 and Comparative Examples 1 and 2 are collectively shown in Table 2 as “HAZE before test”.
  • SH-221 small environmental tester manufactured under the conditions of a temperature of 85 ° C. and a humidity of 85% RH.
  • substrate after a high temperature, high humidity test was performed. The measurement results are shown in Table 2 as “post-test HAZE” for Examples 1 to 5 and Comparative Examples 1 and 2.
  • HAZE measurement The HAZE value was measured using a spectroscopic haze meter (TC-1800H) manufactured by Tokyo Denshoku.
  • the HAZE value was 0.0 in the initial state before the high-temperature and high-humidity test, but the high-temperature and high-humidity test increased the HAZE value to 8.8. It was found that significant whitening occurred.
  • the substrates of Examples 1 to 5 even after the high-temperature and high-humidity test, the HAZE value remained at 0.0 and no whitening occurred as before the test.
  • the substrate of Comparative Example 1 has a HAZE value of 1.9 after the high-temperature and high-humidity test, and has a higher HAZE value than the substrates of Examples 1 to 5, resulting in whitening. I found out.
  • the composition used for forming the protective film of the glass substrate of the present invention can provide a highly weather-resistant glass substrate by applying to the glass substrate, and can provide a solar cell, a liquid crystal display device, and an electroluminescence display element. It is useful as a substrate for a semiconductor device such as a thin film semiconductor device such as a thin film transistor for a liquid crystal display device or a thin film organic electroluminescence display element, or as a substrate for forming an electrode of a thin film type lithium battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Surface Treatment Of Glass (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Paints Or Removers (AREA)

Abstract

Provided is a glass substrate for use as the foremost surface of a device, said glass substrate being formed from a composition obtained by subjecting a metal alkoxide of formula (I) and/or (II) to hydrolytic condensation in an organic solvent in the presence of a metal salt of formula (III), and adding a precipitation inhibitor. Formula (I) M1(OR1)n (M1: At least one selected from Si, Ti, Ta, Zr, B, Al, Mg, Sn and Zn; R1: a C1-C5 alkyl group; n: the valency of M1) Formula (II) R2 IM2(OR)4-1 (M2: Si; R2: a hydrogen atom, or a C1-C20 hydrocarbon group which may be substituted with at least one selected from among a halogen atom, a vinyl group, a methacryloxy group, an acryloxy group, a styryl group, a phenyl group, and a cyclohexyl group, and which may have a heteroatom, or a halogen atom, a vinyl group, a methacryloxy group, an acryloxy group, a styryl group, a phenyl group, or a cyclohexyl group; R3: a C1-C5 alkyl group; I: an integer of 1-3) Formula (III) M3(X)m (M3: a metal; X: chlorine, nitric acid, sulfuric acid, acetic acid, oxalic acid, sulfaminic acid, sulfonic acid, acetoacetic acid, acetylacetonate, or a basic salt of the same; m: the valency of M3)

Description

ガラス基板及びそれを用いたデバイスGlass substrate and device using the same
 本発明は、太陽電池やディスプレイに用いるガラス基板に関する。 The present invention relates to a glass substrate used for solar cells and displays.
 パーソナルコンピュータや携帯電話、テレビのような情報端末の表示装置として、液晶ディスプレイが用いられている。一般に、液晶ディスプレイは透明電極が形成された1対の基板間に液晶が封入された構造を有している。この基板としてはソーダライムガラスや無アルカリガラス等で形成されたガラス基板が用いられている。 Liquid crystal displays are used as display devices for information terminals such as personal computers, mobile phones, and televisions. In general, a liquid crystal display has a structure in which liquid crystal is sealed between a pair of substrates on which transparent electrodes are formed. As this substrate, a glass substrate formed of soda lime glass or non-alkali glass is used.
 また、太陽電池は、薄膜化合物太陽電池の場合、基材となるガラス基板上に電極層、光電変換層、バッファ層等が形成された構造を有している。また、単結晶、多結晶シリコン太陽電池の場合、樹脂等を介して、シリコン半導体をガラス基板で挟み込むような構造を有している。
 また、これらの太陽電池は、太陽電池の要部である素子を保護するためにカバーガラス基板を用いるのが通常である。例えば、薄膜化合物太陽電池ではそうした素子の上にエチレンビニルアセテート等の樹脂を塗布し、その上にカバーガラス基板が貼り付けられている。
In the case of a thin film compound solar cell, the solar cell has a structure in which an electrode layer, a photoelectric conversion layer, a buffer layer, and the like are formed on a glass substrate serving as a base material. In the case of a single crystal or polycrystalline silicon solar cell, the silicon semiconductor is sandwiched between glass substrates via a resin or the like.
Also, these solar cells usually use a cover glass substrate to protect the elements that are the main part of the solar cell. For example, in a thin film compound solar cell, a resin such as ethylene vinyl acetate is applied on such an element, and a cover glass substrate is attached thereon.
 これら用途に広く用いられるガラス基板に要求される基本特性としては、高い平坦性を有していること、高温に晒されることがあっても変質や劣化や歪みを生じないこと等が挙げられる。また、ガラス基板は、太陽光や大気中の湿気等に晒されながらの長期間の使用によっても、劣化を生じないこと、反り、剥がれ、割れを生じないこと等が求められている。 The basic characteristics required for glass substrates widely used for these applications include high flatness and no deterioration, deterioration or distortion even when exposed to high temperatures. Further, the glass substrate is required not to be deteriorated, warped, peeled off or cracked even when used for a long period of time while being exposed to sunlight or moisture in the atmosphere.
 例えば、特許文献1では、平坦性に優れたガラス基板を提供するため、オーバーフローダウンドロー法によるガラス基板の製造に好適となるよう、新規な組成を有する太陽電池用ガラス基板が開示されている。 For example, Patent Document 1 discloses a glass substrate for a solar cell having a novel composition so as to be suitable for manufacturing a glass substrate by an overflow downdraw method in order to provide a glass substrate having excellent flatness.
 また、特許文献2では、低価格のソーダライムガラスが用いられた場合であっても、そのアルカリ金属原子等の成分が素子へと拡散して劣化が生じることを抑制できる、チタン酸化物を含む絶縁物層を備えた太陽電池用基板が開示されている。 Further, Patent Document 2 includes a titanium oxide that can suppress degradation of components caused by diffusion of alkali metal atoms and the like into the device even when low-cost soda lime glass is used. A solar cell substrate having an insulator layer is disclosed.
日本特開2008-282363公報Japanese Unexamined Patent Publication No. 2008-282363 日本特開平6-163955号公報Japanese Unexamined Patent Publication No. 6-163955
 上記のような高機能化が求められるガラス基板においては、新たな課題として、さらに白化の改善が求められている。 In the glass substrate that is required to have high functionality as described above, further improvement of whitening is required as a new problem.
 白化とは、太陽電池及びディスプレイの使用時において、それを構成する元々透明なガラス基板が白色化してしまう現象である。ガラス基板の白化は、その使用時にガラス基板中に含まれる不純物等の成分がガラス基板の表面に析出し、ガラス表面を劣化させて微細な凹凸を形成し、それによって光の散乱が生じて発生するものと解されている。このような白化は、ガラス基板の光透過性を低下させ、その結果、太陽電池の光変換効率低下、ディスプレイの視認性低下等の問題を招来する。 Whitening is a phenomenon in which an originally transparent glass substrate constituting a white cell is whitened when a solar cell and a display are used. Whitening of a glass substrate occurs when components such as impurities contained in the glass substrate are deposited on the surface of the glass substrate during use, and the glass surface is deteriorated to form fine irregularities, thereby causing light scattering. It is understood to be. Such whitening reduces the light transmittance of the glass substrate, resulting in problems such as a decrease in light conversion efficiency of the solar cell and a decrease in visibility of the display.
 そのため、白化を抑え、信頼性を向上したガラス基板が求められている。特に、太陽電池用基板や、屋外設置のディスプレイの白化は、高温高湿の環境下で発生が加速されるが、そうした高温高湿の環境下でも、白化の発生が加速されることのない、高信頼性のガラス基板が求められている。 Therefore, a glass substrate that suppresses whitening and has improved reliability is demanded. In particular, whitening of solar cell substrates and outdoor displays is accelerated in high-temperature and high-humidity environments, but whitening is not accelerated even in such high-temperature and high-humidity environments. There is a need for a highly reliable glass substrate.
 本発明は、以上の知見や検討結果に基づいてなされたものである。
 すなわち、本発明の目的は、耐光性、耐湿性に優れ、白化を抑えた、信頼性の向上されたガラス基板、及びガラス基板を用いて得られる太陽電池及びディスプレイを提供することである。
The present invention has been made based on the above knowledge and examination results.
That is, an object of the present invention is to provide a glass substrate that is excellent in light resistance and moisture resistance, has suppressed whitening, and has improved reliability, and a solar cell and a display obtained using the glass substrate.
 本発明者らは、上記の問題に鑑み、鋭意検討を重ねた結果、各種デバイスの最前面に用いるガラス基板として、表面に、特定の金属アルコキシドを金属塩の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られる組成物から形成された保護膜を有するガラス基板が、白化を抑えた、高い信頼性を有することを見出した。 As a result of intensive studies in view of the above problems, the present inventors hydrolyzed a specific metal alkoxide in an organic solvent in the presence of a metal salt on the surface as a glass substrate used for the forefront of various devices. -It discovered that the glass substrate which has the protective film formed from the composition obtained by condensing and adding a precipitation inhibitor further has high reliability which suppressed whitening.
 本発明は、上記知見に基づくものであり、以下の要旨を有する。
 (1)ガラス基板と該ガラス基板の表面に形成された保護膜とを有するガラス基板であって、
 前記保護膜は、下記式(I)及び/又は(II)で示される金属アルコキシド(金属アルコキシドの部分縮合物も含む。)を、下記式(III)で示される金属塩の存在下に、有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られる組成物から形成されることを特徴とする、デバイスの最前面に用いるガラス基板。
  M(OR         (I)
(Mは珪素、チタン、タンタル、ジルコニウム、ホウ素、アルミニウム、マグネシウム、錫及び亜鉛からなる群から選ばれる少なくとも1種である。Rは炭素数1~5のアルキル基を表す。nはMの価数を表す。)
  R (OR4-1   (II)
(Mは珪素を表す。Rは、水素原子、又は、ハロゲン原子、ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、フェニル基、及びシクロヘキシル基からなる群から選ばれる少なくとも1種で置換されていてもよく、かつヘテロ原子を有していてもよい炭素数1~20の炭化水素基、又は、ハロゲン原子、ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、フェニル基若しくはシクロヘキシル基を表す。Rは、炭素数1~5のアルキル基を表す。lは1~3の整数を表す。)
  M(X)          (III)
(Mは金属を表す。Xは塩素、硝酸、硫酸、酢酸、蓚酸、スルファミン酸、スルホン酸、アセト酢酸、アセチルアセトナート又はこれらの塩基性塩を表す。mはMの価数を表す。)
The present invention is based on the above findings and has the following gist.
(1) A glass substrate having a glass substrate and a protective film formed on the surface of the glass substrate,
The protective film contains a metal alkoxide represented by the following formula (I) and / or (II) (including a partial condensate of a metal alkoxide) in the presence of a metal salt represented by the following formula (III). A glass substrate used for the forefront of a device, which is formed from a composition obtained by hydrolysis / condensation in a solvent and further adding a precipitation inhibitor.
M 1 (OR 1 ) n (I)
(M 1 is at least one selected from the group consisting of silicon, titanium, tantalum, zirconium, boron, aluminum, magnesium, tin and zinc. R 1 represents an alkyl group having 1 to 5 carbon atoms. Represents the valence of 1. )
R 2 l M 2 (OR 3 ) 4-1 (II)
(M 2 represents silicon. R 2 is substituted with a hydrogen atom or at least one selected from the group consisting of a halogen atom, a vinyl group, a methacryloxy group, an acryloxy group, a styryl group, a phenyl group, and a cyclohexyl group. And a hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom or a halogen atom, vinyl group, methacryloxy group, acryloxy group, styryl group, phenyl group or cyclohexyl group. R 3 represents an alkyl group having 1 to 5 carbon atoms, and l represents an integer of 1 to 3.)
M 3 (X) m (III)
(M 3 represents a metal. X represents chlorine, nitric acid, sulfuric acid, acetic acid, succinic acid, sulfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate, or a basic salt thereof. M represents the valence of M 3. .)
 (2)前記式(II)におけるRは、水素原子、又は、ハロゲン原子、ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、フェニル基、及びシクロヘキシル基からなる群から選ばれる少なくとも1種で置換されていてもよく、かつヘテロ原子を有していてもよい炭素数1~20の炭化水素基である上記(1)に記載のガラス基板。
 (3)前記金属アルコキシドが、シリコンアルコキシドを含有するか、又は全てシリコンアルコキシドである上記(1)又は(2)に記載のガラス基板。
 (4)前記金属アルコキシドが、チタンアルコキシドを含有する上記(1)又は(2)に記載のガラス基板。
 (5)前記金属アルコキシドが、シリコンアルコキシドとチタンアルコキシドとの混合物である上記(1)、(2)又は(4)に記載のガラス基板。
 (6)前記金属アルコキシドが、全てチタンアルコキシドである上記(1)に記載のガラス基板。
(2) R 2 in the formula (II) is substituted with a hydrogen atom or at least one selected from the group consisting of a halogen atom, a vinyl group, a methacryloxy group, an acryloxy group, a styryl group, a phenyl group, and a cyclohexyl group. The glass substrate as described in (1) above, which is a hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom.
(3) The glass substrate according to (1) or (2), wherein the metal alkoxide contains silicon alkoxide or is all silicon alkoxide.
(4) The glass substrate according to (1) or (2), wherein the metal alkoxide contains titanium alkoxide.
(5) The glass substrate according to (1), (2) or (4), wherein the metal alkoxide is a mixture of silicon alkoxide and titanium alkoxide.
(6) The glass substrate according to (1), wherein the metal alkoxides are all titanium alkoxides.
 (7)前記析出防止剤が、N-メチル-ピロリドン、エチレングリコール、ジメチルホルムアミド、ジメチルアセトアミド、ジエチレングリコール、プロピレングリコール、ヘキシレングリコール及びこれらの誘導体からなる群より選択された少なくとも1つである上記(1)~(6)のいずれかに記載のガラス基板。 (7) The above precipitation inhibitor is at least one selected from the group consisting of N-methyl-pyrrolidone, ethylene glycol, dimethylformamide, dimethylacetamide, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof. 1) The glass substrate according to any one of (6).
 (8)前記組成物中に含まれる、金属アルコキシドの金属原子の合計(M+M)と金属塩の金属原子(M)とのモル比が下記の式を満たす上記(1)~(7)のいずれかに記載のガラス基板。
  0.01≦M/(M+M)≦0.7
(8) The above (1) to (1), wherein the molar ratio of the total metal atoms (M 1 + M 2 ) of the metal alkoxide and the metal atoms (M 3 ) of the metal salt contained in the composition satisfies the following formula: The glass substrate according to any one of 7).
0.01 ≦ M 3 / (M 1 + M 2 ) ≦ 0.7
 (9)前記金属塩は、金属硝酸塩、金属硫酸塩、金属酢酸塩、金属塩化物、金属蓚酸塩、金属スルファミン酸塩、金属スルホン酸塩、金属アセト酢酸塩、金属アセチルアセトナート及びそれら塩基性塩からなる群より選択された少なくとも1種である上記(1)~(8)のいずれかに記載のガラス基板。
 (10)式(III)のMが、アルミニウム、インジウム、亜鉛、ジルコニウム、ビスマス、ランタン、タンタル、イットリウム及びセリウムからなる群より選択された少なくとも1種である上記(1)~(9)のいずれかに記載のガラス基板。
(9) The metal salt includes metal nitrate, metal sulfate, metal acetate, metal chloride, metal oxalate, metal sulfamate, metal sulfonate, metal acetoacetate, metal acetylacetonate and their basicity. The glass substrate according to any one of (1) to (8), which is at least one selected from the group consisting of salts.
(10) In the above (1) to (9), M 3 in the formula (III) is at least one selected from the group consisting of aluminum, indium, zinc, zirconium, bismuth, lanthanum, tantalum, yttrium and cerium. The glass substrate in any one.
 (11)前記有機溶媒が、アルキレングリコール類又はそのモノエーテル誘導体を含む上記(4)~(6)のいずれかに記載のガラス基板。
 (12)上記(1)~(11)のいずれかに記載のガラス基板を用いる太陽電池用ガラス基板。
 (13)上記(1)~(11)のいずれかに記載のガラス基板を用いるディスプレイ用ガラス基板。
 (14)上記(12)に記載のガラス基板を用いる太陽電池。
 (15)上記(13)に記載のガラス基板を用いるディスプレイ。
(11) The glass substrate according to any one of (4) to (6), wherein the organic solvent contains alkylene glycols or monoether derivatives thereof.
(12) A glass substrate for a solar cell using the glass substrate according to any one of (1) to (11).
(13) A glass substrate for display using the glass substrate according to any one of (1) to (11) above.
(14) A solar cell using the glass substrate according to (12).
(15) A display using the glass substrate according to (13).
 本発明によれば、白化を抑え、信頼性の向上されたガラス基板を提供することが可能となり、該ガラス基板を用いることにより、信頼性の高い太陽電池及びディスプレイを提供することができる。 According to the present invention, it becomes possible to provide a glass substrate with reduced whiteness and improved reliability. By using the glass substrate, a highly reliable solar cell and display can be provided.
本発明の太陽電池用基板の第1例を示す模式的な断面図である。It is typical sectional drawing which shows the 1st example of the board | substrate for solar cells of this invention. 本発明の太陽電池用基板の第2例を示す模式的な断面図である。It is typical sectional drawing which shows the 2nd example of the board | substrate for solar cells of this invention.
 太陽電池用のガラス基板としては、白化を抑えた、信頼性の向上されたガラス基板が求められている。本発明においては、太陽電池用基板の構成に光透過性のガラス基板を用いるとともに、そのガラス基板の表面上に、絶縁性の保護膜を配置して構成する。
 すなわち、本発明のガラス基板は、白化を抑制するための、絶縁性の保護膜を、ガラス基板の表面に有している。
As a glass substrate for a solar cell, a glass substrate with improved reliability and reduced whitening is required. In the present invention, a light-transmitting glass substrate is used for the configuration of the solar cell substrate, and an insulating protective film is disposed on the surface of the glass substrate.
That is, the glass substrate of the present invention has an insulating protective film for suppressing whitening on the surface of the glass substrate.
 本発明のガラス基板の表面を覆う保護膜は、金属アルコキシドを金属塩の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られる組成物を用いて形成される硬化膜であり、空隙率の低い緻密な構造の絶縁膜である。このような緻密な膜構造を有する保護膜をガラス基板の表面に有することで、本発明のガラス基板は、太陽電池に用いられた場合でも、白化を抑えることができる。特に、本発明のガラス基板は、高温高湿の環境下に晒されても、白化の加速を抑えることができる。 The protective film covering the surface of the glass substrate of the present invention is formed using a composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt and further adding a precipitation inhibitor. It is a cured film and an insulating film having a dense structure with a low porosity. By having a protective film having such a dense film structure on the surface of the glass substrate, the glass substrate of the present invention can suppress whitening even when used in solar cells. In particular, even if the glass substrate of the present invention is exposed to a high-temperature and high-humidity environment, acceleration of whitening can be suppressed.
<保護膜>
 以下に、本発明の保護膜を形成するために用いられる組成物を構成する各成分について説明する。
 本発明の保護膜は、上記組成物をガラスなどの基板の表面に塗布し、焼成して硬化膜として形成される。
 なお、本発明のガラス基板の表面を覆う保護膜を形成するための組成物を、本発明の組成物、又は、組成物(コーティング用組成物ともいう。)と称することがある。
<Protective film>
Below, each component which comprises the composition used in order to form the protective film of this invention is demonstrated.
The protective film of the present invention is formed as a cured film by applying the above composition to the surface of a substrate such as glass and baking it.
In addition, the composition for forming the protective film which covers the surface of the glass substrate of this invention may be called the composition of this invention, or a composition (it is also called coating composition).
 (式(I)の金属アルコキシド)
 組成物の形成に用いることが可能な金属アルコキシドは、下記の式(I)で表わされる。ここで、金属アルコキシドとは、当該金属アルコキシドの部分縮合物も含むものとする。
  M(OR         (I)
(Mは金属を表し、Rは炭素数1~5のアルキル基を表す。nはMの価数を表す。)
(Metal alkoxide of formula (I))
The metal alkoxide that can be used for forming the composition is represented by the following formula (I). Here, the metal alkoxide includes a partial condensate of the metal alkoxide.
M 1 (OR 1 ) n (I)
(M 1 represents a metal, R 1 represents an alkyl group having 1 to 5 carbon atoms, and n represents a valence of M 1. )
 Mとしては、珪素、チタン、タンタル、ジルコニウム、ホウ素、アルミニウム、マグネシウム、錫及び亜鉛からなる群から選ばれる少なくとも1種である。
 Rのアルキル基の炭素数1~3が好ましい。また、n個のアルキル基は、一種のアルキル基であっても、異なるアルキル基であってもかまわないが、合成上、入手の容易性の観点からは、一種のアルキル基が好ましい。nは、4~8の整数が好ましい。
M 1 is at least one selected from the group consisting of silicon, titanium, tantalum, zirconium, boron, aluminum, magnesium, tin, and zinc.
The alkyl group of R 1 preferably has 1 to 3 carbon atoms. The n alkyl groups may be a kind of alkyl group or a different alkyl group, but from the viewpoint of easy availability, a kind of alkyl group is preferable. n is preferably an integer of 4 to 8.
 金属アルコキシドとしては、シリコンアルコキシド、チタンアルコキシド等が好ましく、シリコンアルコキシドが特に好ましい。
 また、組成物の形成には、チタンアルコキシドを含む金属アルコキシドの使用が好ましい。
As the metal alkoxide, silicon alkoxide, titanium alkoxide and the like are preferable, and silicon alkoxide is particularly preferable.
For the formation of the composition, it is preferable to use a metal alkoxide containing a titanium alkoxide.
 組成物に用いる金属アルコキシドとして、全てをシリコンアルコキシドとすることが可能である。
 また、組成物に用いる金属アルコキシドとして、全てをチタンアルコキシドとすることが可能である。
All of the metal alkoxides used in the composition can be silicon alkoxides.
In addition, all of the metal alkoxides used in the composition can be titanium alkoxides.
 さらに、組成物に用いる金属アルコキシドとしては、シリコンアルコキシドとチタンアルコキシドとの混合物を含むことが好ましい。 Furthermore, the metal alkoxide used in the composition preferably contains a mixture of silicon alkoxide and titanium alkoxide.
 シリコンアルコキシドには、下記式(IV)で示される化合物の1種若しくは2種以上の混合物(部分縮合物は5量体以下が好ましい。)を用いることができる。さらに、全ての金属アルコキシドが、下記式(IV)で示される化合物の1種若しくは2種以上の混合物(部分縮合物は5量体以下が好ましい。)とすることも可能である。 As the silicon alkoxide, one or a mixture of two or more compounds represented by the following formula (IV) (the partial condensate is preferably a pentamer or less) can be used. Furthermore, all the metal alkoxides can be one or a mixture of two or more compounds represented by the following formula (IV) (partial condensates are preferably pentamers or less).
 Si(OR’)   (IV)
(R’は炭素数1~5のアルキル基を表す。)
 R’は、式(I)のRと同義であり、R’としては、同一でも異なってもよい。合成上、入手の容易性の観点からは、R’は同一が好ましい。
Si (OR ') 4 (IV)
(R ′ represents an alkyl group having 1 to 5 carbon atoms.)
R ′ has the same meaning as R 1 in formula (I), and R ′ may be the same or different. From the viewpoint of synthesis, R ′ is preferably the same from the viewpoint of availability.
 また、チタンアルコキシドとして、下記式(V)で示される化合物の1種又は2種以上の混合物を用いることができる。さらに、全ての金属アルコキシドが、下記式(IV)で示される化合物の1種又は2種以上の混合物であるチタンアルコキシドとすることも可能である。 Further, as the titanium alkoxide, one or a mixture of two or more compounds represented by the following formula (V) can be used. Furthermore, all the metal alkoxides can be titanium alkoxides which are one or a mixture of two or more compounds represented by the following formula (IV).
 また、金属アルコキシドが、上記式(IV)で示される化合物の1種若しくは2種以上の混合物(部分縮合物は5量体以下が好ましい。)と、下記式(V)で示される化合物の1種又は2種以上の混合物であるチタンアルコキシドとの混合物とすることも可能である。
 Ti(OR”)   (V)
(R”は炭素数1~5のアルキル基を表す。)
 R”は、式(I)のRと同義であり、R”としては、同一でも異なってもよい。合成上、入手の容易性の観点からは、R”は同一が好ましい。
Further, the metal alkoxide is one or a mixture of two or more of the compounds represented by the above formula (IV) (partial condensate is preferably a pentamer or less) and 1 of the compounds represented by the following formula (V). It is also possible to use a mixture with a titanium alkoxide which is a seed or a mixture of two or more.
Ti (OR ″) 4 (V)
(R ″ represents an alkyl group having 1 to 5 carbon atoms.)
R ″ has the same meaning as R 1 in formula (I), and R ″ may be the same or different. From the viewpoint of synthesis, R ″ is preferably the same from the viewpoint of availability.
 (式(II)の金属アルコキシド)
 組成物の形成に用いることが可能な、もう一つの金属アルコキシドとしては、下記の式(II)で表す化合物が挙げられる。
  R (OR4-1   (II)
(Mは珪素を表す。Rは、水素原子、又は、ハロゲン原子(好ましくはフッ素原子)、ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、フェニル基、及びシクロヘキシル基からなる群から選ばれる少なくとも1種で置換されていてもよく、かつヘテロ原子を有していてもよい炭素数1~20の炭化水素基、又は、ハロゲン原子、ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、フェニル基若しくはシクロヘキシル基を表す。Rは、炭素数1~5のアルキル基を表す。lは1~3の整数を表す。)
ここで、金属アルコキシドは、当該金属アルコキシドの部分縮合物も含む。
(Metal alkoxide of formula (II))
Another metal alkoxide that can be used for forming the composition includes a compound represented by the following formula (II).
R 2 l M 2 (OR 3 ) 4-1 (II)
(M 2 represents silicon. R 2 is selected from the group consisting of a hydrogen atom or a halogen atom (preferably a fluorine atom), a vinyl group, a methacryloxy group, an acryloxy group, a styryl group, a phenyl group, and a cyclohexyl group. A hydrocarbon group having 1 to 20 carbon atoms which may be substituted with at least one kind and may have a hetero atom, or a halogen atom, vinyl group, methacryloxy group, acryloxy group, styryl group, phenyl group Or a cyclohexyl group, R 3 represents an alkyl group having 1 to 5 carbon atoms, and l represents an integer of 1 to 3.)
Here, the metal alkoxide includes a partial condensate of the metal alkoxide.
 lは、1~3整数を表す。 Rの炭素数としては、1~20が好ましい。
また、炭化水素としては、分岐状でも直鎖状でもかまわないが、好ましくは直鎖状である。
 さらに、複数の炭化水素基は、一種類の炭化水素基であっても、異なる種類の炭化水素基であってもかまわないが、合成上の観点からは、一種類の炭化水素基が好ましい。Rとしては、炭素数1~5が好ましい。
 また、複数のアルキル基は、一種類のアルキル基であっても、異なる種類のアルキル基であってもかまわないが、合成上、入手の容易性の観点からは、一種類のアルキル基が好ましい。
l represents an integer of 1 to 3. The carbon number of R 2 is preferably 1-20.
Further, the hydrocarbon may be branched or linear, but is preferably linear.
Further, the plurality of hydrocarbon groups may be one type of hydrocarbon group or different types of hydrocarbon groups, but from the viewpoint of synthesis, one type of hydrocarbon group is preferable. R 3 preferably has 1 to 5 carbon atoms.
Further, the plurality of alkyl groups may be one type of alkyl group or different types of alkyl groups, but one type of alkyl group is preferable from the viewpoint of easy availability in the synthesis. .
 式(II)で表されるアルコキシシランの具体例を挙げるが、これらに限定されるものではでない。例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、アクリロキシエチルトリメトキシシラン、アクリロキシエチルトリエトキシシラン、スチリルエチルトリメトキシシラン、スチリルエチルトリエトキシシラン、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリメトキシシラン、p-スチリルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、クロロプロピルトリエトキシシラン、ブロモプロピルトリエトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラントリメチルエトキシシラン、トリメチルメトキシシラン等が挙げられる。 Although the specific example of the alkoxysilane represented by Formula (II) is given, it is not limited to these. For example, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxy Silane, acryloxyethyltrimethoxysilane, acryloxyethyltriethoxysilane, styrylethyltrimethoxysilane, styrylethyltriethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, p-styryl Trimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, trifluoropropyltrimethoxysilane, chloropropyltriethoxysilane, bromopropyltri Tokishishiran, dimethyl diethoxy silane, dimethyl dimethoxy silane, diethyl diethoxy silane, diethyl dimethoxy silane, diphenyl dimethoxy silane, diphenyl diethoxy silane trimethyl silane, trimethyl methoxy silane, and the like.
 ヘテロ原子を有する炭化水素基を有する金属アルコキシド(II)としては、本発明の効果を損なわない限りにおいて、以下の官能基を有する金属アルコキシドを用いることが出来る。官能基としてはアミノ基、グリシドキシ基、メルカプト基、イソシアネート基、ウレイド基などが挙げられる。
 上記官能基を有する金属アルコキシド(II)としては、例えば、3-(2-アミノエチルアミノプロピル)トリメトキシシラン、3-(2-アミノエチルアミノプロピル)トリエトキシシラン、2-アミノエチルアミノメチルトリメトキシシラン、2-(2-アミノエチルチオエチル)トリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3―アミノプロピルジメチルエトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリプロポキシシラン等が挙げられる。
As the metal alkoxide (II) having a hydrocarbon group having a hetero atom, metal alkoxides having the following functional groups can be used as long as the effects of the present invention are not impaired. Examples of functional groups include amino groups, glycidoxy groups, mercapto groups, isocyanate groups, and ureido groups.
Examples of the metal alkoxide (II) having a functional group include 3- (2-aminoethylaminopropyl) trimethoxysilane, 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethylsilane. Methoxysilane, 2- (2-aminoethylthioethyl) triethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxy Silane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-mercaptopro Examples include pyrtrimethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane, γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, and γ-ureidopropyltripropoxysilane.
 上記官能基などの親水性基を有する金属アルコキシド(II)の含有量は、用いた金属アルコキシドの全量中(100モル%)、30モル%以下が好ましく、さらに好ましくは25モル%以下である。 The content of the metal alkoxide (II) having a hydrophilic group such as the above functional group is preferably 30 mol% or less, more preferably 25 mol% or less, based on the total amount of the metal alkoxide used (100 mol%).
 (式(III)の金属塩)
 次に、組成物に用いられる金属塩は、下記式(III)で示される化合物の1種又は2種以上を用いることができる。
(Metal salt of formula (III))
Next, as the metal salt used in the composition, one or more of the compounds represented by the following formula (III) can be used.
 金属塩としては、式(III)で示される金属塩が使用される。
  M(X)   (III)
(Mは金属を表し、Xは塩素、硝酸、硫酸、酢酸、蓚酸、スルファミン酸、スルホン酸、アセト酢酸、アセチルアセトナート又はこれらの塩基性塩を表す。mはMの価数を表す。)
As the metal salt, a metal salt represented by the formula (III) is used.
M 3 (X) m (III)
(M 3 represents a metal, and X represents chlorine, nitric acid, sulfuric acid, acetic acid, succinic acid, sulfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate, or a basic salt thereof. M represents the valence of M 3. .)
 上記式(III)で示される化合物のうち、特に、金属硝酸塩、金属塩化物塩、金属蓚酸塩及びその塩基性塩が好ましい。 Among the compounds represented by the above formula (III), metal nitrates, metal chloride salts, metal oxalates and basic salts thereof are particularly preferable.
 Mとしては、アルミニウム、インジウム、亜鉛、ジルコニウム、ビスマス、ランタン、タンタル、イットリウム、セリウム等を挙げることができる。これらのうち、入手の容易性と、調製される組成物の貯蔵安定性の点から、アルミニウム、インジウム、又はセリウム好ましく、特に、アルミニウムが好ましい。 Examples of M 3 include aluminum, indium, zinc, zirconium, bismuth, lanthanum, tantalum, yttrium, and cerium. Among these, aluminum, indium, or cerium is preferable from the viewpoint of availability and storage stability of the prepared composition, and aluminum is particularly preferable.
 (有機溶媒)
 本発明で使用される有機溶媒としては、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、酢酸エチルエステルなどのエステル類、エチレングリコールなどのグリコール類及びそのエーテル誘導体、エステル誘導体、ジエチルエーテルなどのエーテル類、アセトン、メチルエチルケトン及びシクロヘキサノンなどのケトン類、ベンゼン、トルエンなどの芳香族炭化水素類などが挙げられる。これらは単独又は組み合わせて用いることができる。
(Organic solvent)
Examples of the organic solvent used in the present invention include alcohols such as methanol, ethanol, propanol and butanol, esters such as ethyl acetate, glycols such as ethylene glycol and ether derivatives thereof, ester derivatives and ethers such as diethyl ether. , Ketones such as acetone, methyl ethyl ketone and cyclohexanone, and aromatic hydrocarbons such as benzene and toluene. These can be used alone or in combination.
 チタン、タンタル、ジルコニウム、ホウ素、アルミニウム、マグネシウム、錫、亜鉛などの金属から成る金属アルコキシド成分を、安定化してコーティング用組成物液の貯蔵安定性をよくする観点から、アルキレングリコール類又はそのモノエーテル誘導体を含むことが望ましい。そのようなアルキレングリコール類又はそのモノエーテル誘導体としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ヘキシレングリコール、それらのモノメチル‐、モノエチル‐、モノプロピル‐、モノブチル‐若しくはモノフェニルエーテルなどが挙げられる。 From the viewpoint of stabilizing the metal alkoxide component comprising a metal such as titanium, tantalum, zirconium, boron, aluminum, magnesium, tin, zinc, etc. to improve the storage stability of the coating composition liquid, alkylene glycols or monoethers thereof It is desirable to include derivatives. Examples of such alkylene glycols or monoether derivatives thereof include ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, and their monomethyl-, monoethyl-, monopropyl-, monobutyl- or monophenyl ethers. .
 これらのアルキレングリコール類又はそのモノエーテル誘導体は、チタン、タンタル、ジルコニウム、ホウ素、アルミニウム、マグネシウム、錫、亜鉛などの金属から成る金属アルコキシドに対してモル比が1未満であると、これら金属アルコキシドの安定性に効果が少なく、コーティング用組成物の貯蔵安定性が悪くなる。一方、アルキレングリコール類又はそのモノエーテル誘導体を多量に用いることは問題ではない。例えば、コーティング用組成物に用いられる有機溶媒の全てが、上述のアルキレングリコール類又はそのモノエーテル誘導体であっても差支えない。
 アルキレングリコール類又はそのモノエーテル誘導体の使用量は、金属アルコキシドに対してモル比で1以上が好ましい。
These alkylene glycols or monoether derivatives thereof have a molar ratio of less than 1 with respect to a metal alkoxide composed of a metal such as titanium, tantalum, zirconium, boron, aluminum, magnesium, tin, and zinc. The stability is less effective, and the storage stability of the coating composition is deteriorated. On the other hand, it is not a problem to use a large amount of alkylene glycols or monoether derivatives thereof. For example, all the organic solvents used in the coating composition may be the above-described alkylene glycols or monoether derivatives thereof.
As for the usage-amount of alkylene glycol or its monoether derivative, 1 or more are preferable by molar ratio with respect to a metal alkoxide.
 組成物中に、チタンアルコシドを金属アルコキシド成分として含む場合、有機溶媒中に含まれるアルキレングリコール類又はそのモノエーテル誘導体としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ヘキシレングリコール、それらのモノメチル、モノエチル、モノプロピル、モノブチル又はモノフェニルエーテル等が挙げられる。 When the titanium alkoxide is contained as a metal alkoxide component in the composition, examples of the alkylene glycol or monoether derivative thereof contained in the organic solvent include ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, and monomethyl thereof. , Monoethyl, monopropyl, monobutyl or monophenyl ether.
 有機溶媒に含まれるアルキレングリコール類又はそのモノエーテル誘導体は、チタンアルコキシドに対してモル比が1未満であると、チタンアルコキシドの安定性を向上させる効果が少なく、組成物の貯蔵安定性が悪くなる。一方、アルキレングリコール類又はそのモノエーテル誘導体を多量に用いることは何ら問題でない。例えば、有機溶媒の全てが、上述のアルキレングリコール類又はそのモノエーテル誘導体であってもよい。
 しかしながら、組成物がチタンアルコキシドを含まない場合には、有機溶媒中に、上述したアルキレングリコール及び/又はそのモノエーテル誘導体を、含む必要は特にはない。
When the molar ratio of the alkylene glycol or the monoether derivative thereof contained in the organic solvent is less than 1 with respect to the titanium alkoxide, the effect of improving the stability of the titanium alkoxide is small, and the storage stability of the composition is deteriorated. . On the other hand, it is not a problem to use a large amount of alkylene glycols or monoether derivatives thereof. For example, all of the organic solvent may be the above-described alkylene glycol or a monoether derivative thereof.
However, when the composition does not contain titanium alkoxide, it is not particularly necessary to contain the above-described alkylene glycol and / or monoether derivative thereof in the organic solvent.
 (析出防止剤)
 本発明の組成物に含まれる析出防止剤は、ガラス基板上に組成物の塗膜を形成し、保護膜を形成する際に、その塗膜中に金属塩が析出するのを防止する効果を有する。
 析出防止剤としては、N-メチル-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、エチレングリコール、ジエチレングリコール、プロピレングリコール、ヘキシレングリコール、それらの誘導体等が挙げられ、これらを1種又は2種以上混合して使用することができる。中でも塗布性が良好であるヘキシレングリコール等が好ましい。
(Precipitating agent)
The precipitation inhibitor contained in the composition of the present invention has the effect of preventing the metal salt from depositing in the coating film when the coating film of the composition is formed on the glass substrate and the protective film is formed. Have.
Examples of the precipitation inhibitor include N-methyl-pyrrolidone, dimethylformamide, dimethylacetamide, ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof. These may be used alone or in combination. can do. Of these, hexylene glycol and the like having good coating properties are preferred.
 析出防止剤は、金属塩の金属を金属酸化物に換算して、(析出防止剤)/(金属酸化物)≧1(重量比)の比率で用いられる。この比率(重量比)が1未満であると、塗膜を形成時における金属塩の析出防止効果が小さくなる。一方、析出防止剤を多量に用いることは、組成物に何ら影響を与えない。使用比率は、重量比で1以上が好ましい。 The precipitation inhibitor is used at a ratio of (precipitation inhibitor) / (metal oxide) ≧ 1 (weight ratio) by converting the metal of the metal salt into a metal oxide. When this ratio (weight ratio) is less than 1, the effect of preventing precipitation of the metal salt at the time of forming the coating film is reduced. On the other hand, the use of a large amount of a precipitation inhibitor has no effect on the composition. The use ratio is preferably 1 or more by weight.
 析出防止剤は、金属アルコキシド、特に、シリコンアルコキシド、チタンアルコキシド、又は、シリコンアルコキシドとチタンアルコキシドが、金属塩の存在下で加水分解・縮合反応する際に添加されていても良く、それらの加水分解・縮合反応の終了後に添加されていても良い。 The precipitation inhibitor may be added when a metal alkoxide, particularly silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide undergo hydrolysis / condensation reaction in the presence of a metal salt. -It may be added after completion of the condensation reaction.
(組成物)
 組成物中に含まれる上記の主たる各成分の含有量は、金属アルコキシド(I)及び/又は金属アルコキシド(II)が2.5~40重量%であり、好ましくは2.5~19重量%であり、金属塩(II)が0.5~45重量%であり、好ましくは0.5~35重量%であり、有機溶媒が35~95重量%であり、好ましくは45~92.5重量%である。
(Composition)
The content of each of the main components contained in the composition is 2.5 to 40% by weight, preferably 2.5 to 19% by weight of the metal alkoxide (I) and / or metal alkoxide (II). The metal salt (II) is 0.5 to 45% by weight, preferably 0.5 to 35% by weight, and the organic solvent is 35 to 95% by weight, preferably 45 to 92.5% by weight. It is.
 本発明の組成物中の金属アルコキシドと金属塩の含有比率は、組成物中に含まれる金属アルコキシドの金属原子の合計(M+M)と、金属塩の金属原子(M)とのモル比が、0.01≦M/(M+M)≦0.7の関係を満たすことが好ましい。このモル比が0.01より小さいと、得られる保護膜の機械的強度が充分でないため好ましくない。一方、このモル比が0.7を越えると、ガラス基板に対する保護膜の密着性が低下する。
 さらに、上記の含有比率を超えた組成物の塗膜を450℃以下の低温で焼成して、ガラス基板上に保護膜を形成した場合、得られる保護膜の耐薬品性が低下することがあり、好ましくない。
 金属アルコキシドと金属塩の含有比率は、好ましくは95/5~50/50である。
 本発明の組成物は、下記に示すその他の成分を含有させた後、ガラス基板などに塗布するためのコーティング用組成物として使用される。
The content ratio of the metal alkoxide and the metal salt in the composition of the present invention is the molar ratio between the total metal atoms (M 1 + M 2 ) of the metal alkoxide contained in the composition and the metal atoms (M 3 ) of the metal salt. It is preferable that the ratio satisfies the relationship of 0.01 ≦ M 3 / (M 1 + M 2 ) ≦ 0.7. If this molar ratio is less than 0.01, the mechanical strength of the resulting protective film is not sufficient, which is not preferable. On the other hand, when the molar ratio exceeds 0.7, the adhesion of the protective film to the glass substrate is lowered.
Furthermore, when a coating film of a composition exceeding the above content ratio is baked at a low temperature of 450 ° C. or lower to form a protective film on a glass substrate, the chemical resistance of the protective film obtained may be reduced. It is not preferable.
The content ratio of the metal alkoxide and the metal salt is preferably 95/5 to 50/50.
The composition of the present invention is used as a coating composition for coating on a glass substrate or the like after containing other components shown below.
 本発明においては、本発明の効果を損なわない限り、他の成分、例えば、無機微粒子、メタロキサンオリゴマー、メタロキサンポリマー、レベリング剤、界面活性剤等の成分が、上記組成物中に含まれていてもよい。
 無機微粒子としては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、フッ化マグネシウム微粒子等の微粒子が好ましく、特にコロイド溶液の状態にあるものが好ましい。このコロイド溶液は、無機微粒子を分散媒に分散したものでもよいし、市販品のコロイド溶液であってもよい。本発明においては、無機微粒子を含有させることにより、形成される硬化被膜の表面形状及び屈折率の調整、その他の機能を付与することが可能となる。
 無機微粒子としては、その平均粒子径が0.001~0.2μmであることが好ましく、更に好ましくは0.001~0.1μmである。無機微粒子の平均粒子径が0.2μmを超える場合には、調製される塗布液を用いて形成される硬化被膜の透明性が低下する場合がある。
In the present invention, other components such as inorganic fine particles, metalloxane oligomers, metalloxane polymers, leveling agents, surfactants and the like are contained in the composition as long as the effects of the present invention are not impaired. May be.
As the inorganic fine particles, fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferable, and those in a colloidal solution state are particularly preferable. This colloidal solution may be a dispersion of inorganic fine particles in a dispersion medium, or a commercially available colloidal solution. In the present invention, by containing inorganic fine particles, it is possible to adjust the surface shape and refractive index of the formed cured film and to provide other functions.
The inorganic fine particles preferably have an average particle size of 0.001 to 0.2 μm, more preferably 0.001 to 0.1 μm. When the average particle diameter of the inorganic fine particles exceeds 0.2 μm, the transparency of the cured film formed using the prepared coating liquid may be lowered.
 無機微粒子の分散媒としては、水及び有機溶剤を挙げることができる。コロイド溶液としては、電極保護膜形成剤の安定性の観点から、pH又はpKaが1~10に調整されていることが好ましい。より好ましくは2~7である。
 コロイド溶液の分散媒に用いる有機溶剤としては、メタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキシレングリコール、ジエチレングリコール、ジプロピレングリコール、エチレングリコールモノプロピルエーテル等のアルコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル類;テトラヒドロフラン、1,4-ジオキサン等のエ-テル類を挙げることができる。これらの中で、アルコール類、ケトン類が好ましい。これら有機溶剤は、単独で又は2種以上を混合して分散媒として使用することができる
Examples of the dispersion medium for the inorganic fine particles include water and organic solvents. The colloid solution preferably has a pH or pKa adjusted to 1 to 10 from the viewpoint of the stability of the electrode protective film forming agent. More preferably, it is 2-7.
Examples of the organic solvent used for the dispersion medium of the colloidal solution include alcohols such as methanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, hexylene glycol, diethylene glycol, dipropylene glycol, and ethylene glycol monopropyl ether; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and γ-butyrolactone; Examples include ethers such as tetrahydrofuran and 1,4-dioxane. Among these, alcohols and ketones are preferable. These organic solvents can be used alone or in admixture of two or more as a dispersion medium.
 本発明の組成物中の固形分濃度については、上述した金属アルコキシドと金属塩を金属酸化物として換算した場合、固形分としては0.5~20重量%の範囲であることが好ましく、0.5~12重量%がより好ましい。固形分濃度が20重量%を越えると、組成物の貯蔵安定性が悪くなるうえ、形成される保護膜の膜厚制御が困難になる。一方、固形分濃度が0.5重量%以下では、得られる保護膜の厚みが薄くなり、所定の膜厚を得るために多数回の塗膜形成が必要となって、保護膜の製造工程が煩雑となってしまう。
 本発明のガラス基板の表面を覆う保護膜を形成するための組成物は、特定の金属アルコキシドを金属塩の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られる。
The solid content concentration in the composition of the present invention is preferably in the range of 0.5 to 20% by weight as the solid content when the metal alkoxide and metal salt described above are converted as metal oxides. 5 to 12% by weight is more preferable. When the solid content concentration exceeds 20% by weight, the storage stability of the composition is deteriorated and it is difficult to control the thickness of the protective film to be formed. On the other hand, when the solid content concentration is 0.5% by weight or less, the thickness of the protective film to be obtained becomes thin, and it is necessary to form a coating film many times in order to obtain a predetermined film thickness. It becomes complicated.
The composition for forming a protective film covering the surface of the glass substrate of the present invention is obtained by hydrolyzing and condensing a specific metal alkoxide in an organic solvent in the presence of a metal salt, and further adding a precipitation inhibitor. It is done.
 (組成物の製造方法)
 本発明の組成物は、上述した金属アルコキシドを上述した金属塩の存在下に有機溶媒中で加水分解・縮合して得られるものである。すなわち、本発明の組成物は水を用いて得られる。
(Method for producing composition)
The composition of the present invention is obtained by hydrolyzing and condensing the above metal alkoxide in an organic solvent in the presence of the above metal salt. That is, the composition of the present invention is obtained using water.
 金属アルコキシドが、シリコンアルコキシド、チタンアルコキシド、又は、シリコンアルコキシドとチタンアルコキシドとの混合物である場合、それらの加水分解に用いられる水の量は、シリコンアルコキシド、チタンアルコキシド、又は、シリコンアルコキシドとチタンアルコキシドとの混合物の総モル数に対して、モル比換算で2~24より多くすることが好ましく、2~20がより好ましい。モル比((水の量(モル))/(シリコンアルコキシド等の総モル数))が2以下の場合には、上述のアルコキシドの加水分解が不充分となって、成膜性を低下させたり、得られる保護膜の強度を低下させたりするため好ましくない。 When the metal alkoxide is silicon alkoxide, titanium alkoxide, or a mixture of silicon alkoxide and titanium alkoxide, the amount of water used for hydrolysis thereof is silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide. The molar ratio is preferably 2 to more than 24 and more preferably 2 to 20 with respect to the total number of moles of the mixture. When the molar ratio ((amount of water (mole)) / (total number of moles of silicon alkoxide, etc.)) is 2 or less, hydrolysis of the above alkoxide becomes insufficient, resulting in reduced film formability. This is not preferable because the strength of the protective film obtained is lowered.
 他の金属アルコキシドを用いた場合においても、水の添加量については、上記と同様の条件が好ましい。
 また、共存する金属塩が含水塩の場合には、その含水分が反応に関与するため、加水分解に用いる水の量に対して金属塩の含水分を考慮する必要がある。
Even when other metal alkoxides are used, the same conditions as described above are preferable for the amount of water added.
Further, when the coexisting metal salt is a hydrate salt, the moisture content of the metal salt needs to be taken into consideration with respect to the amount of water used for the hydrolysis because the moisture content is involved in the reaction.
 本発明の組成物を、金属アルコキシドにチタンアルコキシドだけを用いて場合は、得られた組成物は、室温保存下で徐々に粘度が上昇するという性質を有する。軽微な粘度の上昇であり、実用上の大きな問題となる懸念は無いが、形成される保護膜の厚みを精密に制御する必要がある場合には、組成物の保存時の温度等で、慎重な管理が必要となる。このような組成物の粘度の上昇は、含有するチタンアルコキシドの組成比率が大きくなるにしたがって顕著となる。これは、チタンアルコキシドは、シリコンアルコキシド等と比較して加水分解速度が大きく、縮合反応が速いためと考えられる。 In the case where the composition of the present invention uses only titanium alkoxide as the metal alkoxide, the obtained composition has a property that the viscosity gradually increases during storage at room temperature. It is a slight increase in viscosity, and there is no concern that it will be a major problem in practical use. However, if it is necessary to precisely control the thickness of the protective film to be formed, carefully adjust the temperature at the time of storage of the composition. Management is required. Such an increase in the viscosity of the composition becomes more pronounced as the composition ratio of the titanium alkoxide contained increases. This is presumably because titanium alkoxide has a higher hydrolysis rate and faster condensation reaction than silicon alkoxide and the like.
 チタンアルコキシドを含む金属アルコキシドを用いて組成物を得る場合においては、その粘度上昇をより小さくするためには、次の(1)及び(2)の製造方法が有効である。 In the case of obtaining a composition using a metal alkoxide containing titanium alkoxide, the following production methods (1) and (2) are effective for further reducing the increase in viscosity.
 (1)チタンアルコキシドを金属塩の存在下、加水分解する際に、あらかじめアルキレングリコール類又はそのモノエーテル誘導体とチタンアルコキシドを充分混合した後、必要に応じて、シリコンアルコキシドと混合し、有機溶媒の存在下で加水分解・縮合反応させる。   (1) When hydrolyzing titanium alkoxide in the presence of a metal salt, after sufficiently mixing alkylene glycol or its monoether derivative and titanium alkoxide in advance, if necessary, mixed with silicon alkoxide, Hydrolysis and condensation reaction in the presence. *
 (2)予めシリコンアルコキシドを金属塩の存在下で加水分解反応させた後、アルキレングリコール類又はそのモノエーテル誘導体と混合したチタンアルコキシド溶液に混合して加水分解・縮合反応を行い、組成物を得る。  (2) A silicon alkoxide is preliminarily hydrolyzed in the presence of a metal salt, and then mixed with a titanium alkoxide solution mixed with an alkylene glycol or a monoether derivative thereof to perform a hydrolysis / condensation reaction to obtain a composition. . *
 上記(1)の製法が有効なのは、チタンアルコキシドをアルキレングリコール類又はそのモノエーテル誘導体と混合した際に発熱があることから、チタンアルコキシドのアルコキシ基と、アルキレングリコール類又はそのモノエーテル誘導体との間でエステル交換反応が起こり、加水分解・縮合反応に対して安定化されるためと考えられる。 The production method (1) is effective because when titanium alkoxide is mixed with alkylene glycols or monoether derivatives thereof, heat is generated, so that there is a gap between the alkoxy group of titanium alkoxide and alkylene glycols or monoether derivatives thereof. This is thought to be because the transesterification occurs in order to stabilize the hydrolysis / condensation reaction.
 上記(2)の製法が有効なのは、次の理由によると考えられる。すなわち、シリコンアルコキシドの加水分解反応は速い速度で行われるが、その後の縮合反応はチタンアルコキシドに比較して遅い。そのため、加水分解反応を終えた後、速やかにチタンアルコキシドを加えると、加水分解反応したシリコンアルコキシドのシラノール基と、チタンアルコキシドとが均一に反応する。これにより、チタンアルコキシドの縮合反応性を、加水分解されたシリコンアルコキシドが安定化させると考えられる。 The reason why the above production method (2) is effective is considered to be as follows. That is, the hydrolysis reaction of silicon alkoxide is performed at a high rate, but the subsequent condensation reaction is slower than titanium alkoxide. Therefore, when titanium alkoxide is added quickly after finishing the hydrolysis reaction, the silanol group of the hydrolyzed silicon alkoxide and the titanium alkoxide react uniformly. Thereby, it is thought that the hydrolyzed silicon alkoxide stabilizes the condensation reactivity of titanium alkoxide.
 予め加水分解されたシリコンアルコキシドと、チタンアルコキシドとを混合する方法は、既に知られた方法である。しかし、反応に用いられる有機溶媒にアルキレングリコール類又はそのモノエーテル誘導体が含まれていない場合には、得られる組成物が、優れた貯蔵安定性を示さないことがある。
 (2)に示した方法は、大きな加水分解速度を有する、チタンアルコキシド以外の他の金属アルコキシドと、シリコンアルコキシドとから、本発明の組成物を得る場合にも有用である。
The method of mixing silicon alkoxide hydrolyzed in advance and titanium alkoxide is a known method. However, when alkylene glycols or monoether derivatives thereof are not contained in the organic solvent used in the reaction, the resulting composition may not exhibit excellent storage stability.
The method shown in (2) is also useful when obtaining the composition of the present invention from a metal alkoxide other than titanium alkoxide having a high hydrolysis rate and silicon alkoxide.
<保護膜>
 本発明のガラス基板は、ガラス基板とそのガラス基板の表面に形成された保護膜とを有する。保護膜は、上述した本発明の組成物を用いて形成することができる。
 すなわち、保護膜は、上記式(I)及び/又は式(II)で示される金属アルコキシドの金属酸化物を含有する。好ましくは、シリコン酸化物を含有する。また、好ましくは、チタン酸化物を含有する。
 さらに、保護膜は、上記式(III)で示される金属塩中の金属成分を含有する。例えば、好ましい金属塩としてアルミニウムの硝酸塩等を用いた場合、保護膜は硝酸アルミニウムに由来するアルミニウムを含有する。このような組成を有するガラス基板上の保護膜は、緻密な膜構造を有する。
<Protective film>
The glass substrate of the present invention has a glass substrate and a protective film formed on the surface of the glass substrate. The protective film can be formed using the composition of the present invention described above.
That is, the protective film contains a metal oxide of a metal alkoxide represented by the above formula (I) and / or formula (II). Preferably, it contains silicon oxide. Moreover, it preferably contains a titanium oxide.
Further, the protective film contains a metal component in the metal salt represented by the above formula (III). For example, when aluminum nitrate or the like is used as a preferable metal salt, the protective film contains aluminum derived from aluminum nitrate. The protective film on the glass substrate having such a composition has a dense film structure.
 ガラス基板表面への保護膜の形成は、本発明の組成物を用い、公知の塗布法等を適用して行うことができる。
 保護膜の形成は、先ず、ガラス基板上に本発明の組成物を塗布し、塗膜を形成する。塗布法としては、例えば、ディップコート法、スピンコート法、スプレーコート法、刷毛塗り法、ロール転写法、スクリーン印刷法、インクジェット法、フレキソ印刷法等を用いることができる。
The protective film can be formed on the surface of the glass substrate by using a composition of the present invention and applying a known coating method or the like.
First, the protective film is formed by coating the composition of the present invention on a glass substrate to form a coating film. As the coating method, for example, a dip coating method, a spin coating method, a spray coating method, a brush coating method, a roll transfer method, a screen printing method, an ink jet method, a flexographic printing method and the like can be used.
 その後、50~100℃の温度で加熱して、塗膜を乾燥した後、100℃以上、好ましくは100~600℃、より好ましくは300~500℃で0.5~2時間、好ましくは0.5~1時間で焼成する。本発明の組成物を用いた保護膜の形成では、焼成温度を100~500℃の低温焼成とすることも可能である。このような低温の焼成であっても、本発明の組成物は、緻密な膜構造の保護膜を提供することができる。
 これらの加熱処理は、オーブン炉、ホットプレート等の装置を用いて行うことができる。
 なお、塗膜を乾燥するための50~100℃の温度での加熱は、省略することも可能である。
Thereafter, the coating film is dried by heating at a temperature of 50 to 100 ° C., and then 100 ° C. or higher, preferably 100 to 600 ° C., more preferably 300 to 500 ° C., for 0.5 to 2 hours, preferably 0.00. Bake in 5 to 1 hour. In the formation of the protective film using the composition of the present invention, it is possible to perform low-temperature baking at a baking temperature of 100 to 500 ° C. Even with such low-temperature firing, the composition of the present invention can provide a protective film having a dense film structure.
These heat treatments can be performed using an apparatus such as an oven furnace or a hot plate.
The heating at a temperature of 50 to 100 ° C. for drying the coating film can be omitted.
 また、組成物が、金属アルコキシドとしてチタンアルコキシドを含む場合は、50~100℃の温度で加熱して乾燥した後、100℃以上で行う焼成の前に、組成物の塗膜に紫外線(UV)を照射することも可能である。UVを照射することで、得られる保護膜をより緻密な膜構造とすることができる。 When the composition contains titanium alkoxide as the metal alkoxide, the coating film of the composition is irradiated with ultraviolet rays (UV) after being dried by heating at a temperature of 50 to 100 ° C. and before baking at 100 ° C. or higher. It is also possible to irradiate. By irradiating UV, the protective film obtained can have a denser film structure.
 以上のようにして、ガラス基板上で、本発明の組成物を用いた緻密な硬化膜が形成され、該硬化膜を保護膜として、ガラス基板とそのガラス基板の表面に形成された保護膜とを有する本発明のガラス基板が得られる。これらのガラス基板は、太陽電池用基板、あるいはディスプレイ用基板として利用される。 As described above, a dense cured film using the composition of the present invention is formed on the glass substrate, and using the cured film as a protective film, the glass substrate and the protective film formed on the surface of the glass substrate, A glass substrate of the present invention having the following is obtained. These glass substrates are used as solar cell substrates or display substrates.
<太陽電池用基板>
 図1は、本発明の太陽電池用基板の第1例を示す模式的な断面図である。
 太陽電池用基板1は、ガラス基板2と、ガラス基板2の両側の表面に配置された保護膜3及び3’とを備える。保護膜3及び3’は、上述した組成物を用いて、ガラス基板2の表面に直接に形成された保護膜である。本発明の第1例の太陽電池用基板1は、このような構成を有することにより、透明性に優れるとともに白化が抑制される。
<Substrates for solar cells>
FIG. 1 is a schematic cross-sectional view showing a first example of the solar cell substrate of the present invention.
The solar cell substrate 1 includes a glass substrate 2 and protective films 3 and 3 ′ disposed on both surfaces of the glass substrate 2. The protective films 3 and 3 ′ are protective films formed directly on the surface of the glass substrate 2 using the above-described composition. By having such a configuration, the solar cell substrate 1 of the first example of the present invention has excellent transparency and suppresses whitening.
 尚、ガラス基板2の両側の表面に配置された保護膜3と保護膜3’は、同一の組成を有し、且つ、略同一の厚みを有することが好ましい。 In addition, it is preferable that the protective film 3 and protective film 3 'arrange | positioned on the surface of the both sides of the glass substrate 2 have the same composition, and substantially the same thickness.
 図2は、本発明の太陽電池用基板の第2例を示す模式的な断面図である。
 太陽電池用基板11は、上述した第1例のガラス基板2と同様のガラス基板12と、ガラス基板12の片側の表面に配置された保護膜13とを備える。保護膜13は、上述した本発明の組成物を用いて、ガラス基板12の表面に直接に形成された保護膜である。本発明の第2例の太陽電池用基板11は、このような構成を有することにより、透明性に優れるとともに白化が抑制される。
FIG. 2 is a schematic cross-sectional view showing a second example of the solar cell substrate of the present invention.
The solar cell substrate 11 includes a glass substrate 12 similar to the glass substrate 2 of the first example described above, and a protective film 13 disposed on one surface of the glass substrate 12. The protective film 13 is a protective film formed directly on the surface of the glass substrate 12 using the composition of the present invention described above. By having such a configuration, the solar cell substrate 11 of the second example of the present invention is excellent in transparency and whitening is suppressed.
 本発明の太陽電池用基板1、及び11に用いられるガラス基板2及び12の形状は、例えば、板状である。 The shape of the glass substrates 2 and 12 used for the solar cell substrates 1 and 11 of the present invention is, for example, a plate shape.
 ガラス基板2及び12としては、組成による分類から、例えば、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラス等が挙げられる。また、アルカリ成分による分類からは、無アルカリガラス、低アルカリガラスが挙げられる。ガラス基板2及び12のアルカリ金属成分(例えば、NaO、KO、LiOなど)の含有量は、好ましくは15重量%以下であり、より好ましくは10重量%以下である。 Examples of the glass substrates 2 and 12 include soda lime glass, borate glass, aluminosilicate glass, quartz glass, and the like from the classification by composition. Moreover, from the classification based on the alkali component, non-alkali glass and low alkali glass can be mentioned. The content of alkali metal components (for example, Na 2 O, K 2 O, Li 2 O, etc.) of the glass substrates 2 and 12 is preferably 15% by weight or less, more preferably 10% by weight or less.
 ガラス基板2及び12の板厚は0.1~3.0mmであり、0.1~2.0mmが好ましく、0.1~1.5mmがより好ましく、0.1~0.7mmがさらに好ましく、0.1~0.5mmが特に好ましい。ガラス基板2及び12の板厚は、薄い程、ガラス基板2、及び12を軽量化することができ、太陽電池を軽量化することができる。 The thickness of the glass substrates 2 and 12 is 0.1 to 3.0 mm, preferably 0.1 to 2.0 mm, more preferably 0.1 to 1.5 mm, and further preferably 0.1 to 0.7 mm. 0.1 to 0.5 mm is particularly preferable. As the plate thickness of the glass substrates 2 and 12 decreases, the glass substrates 2 and 12 can be reduced in weight, and the solar cell can be reduced in weight.
 ガラス基板2及び12の成形は、公知の方法に従って行うことができる。例えば、ガラス基板2及び12は、シリカやアルミナ等の主原料と、芒硝や酸化アンチモン等の消泡剤と、カーボン等の還元剤とを含む混合物を、1400~1600℃の温度で溶融し、薄板状に成形した後、冷却して作製される。
 ガラス基板2及び12の薄板成形方法としては、例えば、スロットダウンドロー法、フュージョン法、フロート法等が挙げられる。これらの方法によって板状に成形されたガラス基板2及び12は、薄板化したり、平滑性を高めたりするために、必要に応じて、フッ酸等の溶剤により化学研磨されてもよい。
The glass substrates 2 and 12 can be formed according to a known method. For example, the glass substrates 2 and 12 are prepared by melting a mixture containing main raw materials such as silica and alumina, an antifoaming agent such as sodium nitrate and antimony oxide, and a reducing agent such as carbon at a temperature of 1400 to 1600 ° C. After forming into a thin plate shape, it is produced by cooling.
Examples of the thin plate forming method for the glass substrates 2 and 12 include a slot down draw method, a fusion method, and a float method. The glass substrates 2 and 12 formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to reduce the thickness or improve the smoothness.
 ガラス基板2及び12は、市販のものをそのまま用いてもよく、市販のガラス基板を所望の厚みになるように研磨して用いてもよい。
 市販のガラス基板としては、例えば、コーニング社製「7059」、「1737」、「EAGLE2000」、旭硝子社製「AN100」、NHテクノグラス社製「NA-35」、日本電気硝子社製「OA-10」等が挙げられる。
As the glass substrates 2 and 12, commercially available ones may be used as they are, or a commercially available glass substrate may be polished to have a desired thickness.
Examples of commercially available glass substrates include “7059”, “1737”, “EAGLE 2000” manufactured by Corning, “AN100” manufactured by Asahi Glass, “NA-35” manufactured by NH Techno Glass, and “OA-” manufactured by Nippon Electric Glass. 10 "and the like.
 本発明の太陽電池用基板1、11の保護層3、3’、13の厚さは、10~1000nmであることが好ましく、80~120nmがより好ましい。太陽電池用基板11は、ガラス基板2、12上に、このような厚さの保護膜3、3’、13を有することにより、白化が抑制される。 The thickness of the protective layers 3, 3 ', 13 of the solar cell substrates 1 and 11 of the present invention is preferably 10 to 1000 nm, more preferably 80 to 120 nm. The solar cell substrate 11 has the protective films 3, 3 ′, and 13 having such a thickness on the glass substrates 2 and 12, thereby suppressing whitening.
 また、本発明の太陽電池用基板1、11の波長550nmにおける透過率は、好ましくは85%以上であり、より好ましくは90%以上である。このような透過率を有することで、本発明の太陽電池用基板1、11は、優れた光変換効率の太陽電池を構成することができる。 Moreover, the transmittance at a wavelength of 550 nm of the solar cell substrates 1 and 11 of the present invention is preferably 85% or more, and more preferably 90% or more. By having such a transmittance | permeability, the board | substrates 1 and 11 for solar cells of this invention can comprise the solar cell of the outstanding light conversion efficiency.
 上記のような構造の本発明の太陽電池用基板1、11は、ガラス基板を用いて構成される多様な構造の太陽電池に適用され、そのガラス基板を代替し、本発明の太陽電池として提供することができる。 The solar cell substrates 1 and 11 of the present invention having the above-described structure are applied to solar cells having various structures configured using a glass substrate. can do.
 例えば、本発明の太陽電池用基板1、11は、上述した特許文献2に開示された太陽電池や、日本特開2012-134544号公報に開示された、光起電力素子と同様の構造を有する太陽電池の構成に用いることができる。
 さらに、本発明の太陽電池用基板1、11は、特許文献2及び日本特開2012-134544号公報に開示された太陽電池に限らず、ガラス基板を用いて構成される太陽電池であれば、ガラス基板として代替することができ、信頼性の高い太陽電池を提供することができる。
For example, the solar cell substrates 1 and 11 of the present invention have the same structure as the solar cell disclosed in Patent Document 2 described above and the photovoltaic element disclosed in Japanese Unexamined Patent Publication No. 2012-134544. It can be used for the construction of solar cells.
Furthermore, the solar cell substrates 1 and 11 of the present invention are not limited to the solar cells disclosed in Patent Document 2 and Japanese Patent Application Laid-Open No. 2012-134544, but are solar cells configured using a glass substrate, It can be used as a glass substrate, and a highly reliable solar cell can be provided.
 以下、本発明を具体的に説明するが、本発明は、これらの実施例等に制限して解釈されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not construed as being limited to these examples.
[化合物の略称]
 以下で用いられる化合物の略称は、次のとおりである。
TEOS:テトラエトキシシラン
AN:硝酸アルミニウム・6水和物
MPMS:メタクリロキシプロピルトリメトキシシラン
TIPT:テトライソプロポキシチタン
MeOH:メタノール
PGME:プロピレングリコールモノメチルエーテル
HG:ヘキシレングリコール
EG:エチレングリコール
BCS:エチレングリコールモノブチルエーテル
[Abbreviation of compound]
Abbreviations of the compounds used below are as follows.
TEOS: Tetraethoxysilane AN: Aluminum nitrate hexahydrate MPMS: Methacryloxypropyltrimethoxysilane TIPT: Tetraisopropoxytitanium MeOH: Methanol PGME: Propylene glycol monomethyl ether HG: Hexylene glycol EG: Ethylene glycol BCS: Ethylene glycol Monobutyl ether
[残存アルコキシシランモノマーの測定法]
 実施例等において形成される反応溶液中に残存する、残存アルコキシシランモノマーはガスクロマトグラフィー(以下、GCと称す。)で測定した。
 GC測定は、島津製作所社製 Shimadzu GC-14Bを用い、下記の条件で測定した。
 カラム:キャピラリーカラム CBP1-W25-100(長さ25mm、直径0.53mm、肉厚1μm)
 カラム温度:開始温度50℃から15℃/分で昇温して到達温度290℃(保持時間3分)とした。
 サンプル注入量:1μL、インジェクション温度:240℃、検出器温度:290℃、キャリヤーガス:窒素(流量30mL/分)、検出方法:FID法。
[Measurement method of residual alkoxysilane monomer]
Residual alkoxysilane monomer remaining in the reaction solution formed in Examples and the like was measured by gas chromatography (hereinafter referred to as GC).
The GC measurement was performed using Shimadzu GC-14B manufactured by Shimadzu Corporation under the following conditions.
Column: Capillary column CBP1-W25-100 (length 25 mm, diameter 0.53 mm, wall thickness 1 μm)
Column temperature: The temperature was raised from a starting temperature of 50 ° C. at 15 ° C./min to reach an ultimate temperature of 290 ° C. (holding time 3 minutes).
Sample injection volume: 1 μL, injection temperature: 240 ° C., detector temperature: 290 ° C., carrier gas: nitrogen (flow rate 30 mL / min), detection method: FID method.
<実施例1>
 還流管を備えつけた4つ口反応フラスコに、溶媒(C1)としてMeOH(49.17g)、アルコキシシラン(A1)としてTEOS(11.25g)を投入し、攪拌した。次いで溶媒(C2)としてMeOH(16.39g)、アルミニウム塩(B1)として硝酸アルミニウム・6水和物(20.27g)、及び水(2.92g)の混合物を滴下し、30分攪拌した。攪拌後、3時間還流し、室温まで放冷し、溶液を調製した。この溶液を上述した測定方法によりGCで測定したところ、アルコキシシランモノマーは検出されなかった。
<Example 1>
To a four-necked reaction flask equipped with a reflux tube, MeOH (49.17 g) as a solvent (C1) and TEOS (11.25 g) as an alkoxysilane (A1) were added and stirred. Next, a mixture of MeOH (16.39 g) as the solvent (C2), aluminum nitrate hexahydrate (20.27 g) as the aluminum salt (B1), and water (2.92 g) was added dropwise and stirred for 30 minutes. After stirring, the mixture was refluxed for 3 hours and allowed to cool to room temperature to prepare a solution. When this solution was measured by GC according to the measurement method described above, no alkoxysilane monomer was detected.
 この溶液(50g)をHG(10g)、BCS(10g)、及びPGME(30g)と混合することでコーティング用組成物を得た。このコーティング用組成物の調製に用いた、アルコキシシラン(A1)、アルミニウム塩(B1)、水、及び溶媒(C1及びC2)の各成分を添加量とともに表1にまとめて示す。
 尚、表1中の成分欄における「-」記載は、当該成分が使用されなかったことを示す。
This solution (50 g) was mixed with HG (10 g), BCS (10 g), and PGME (30 g) to obtain a coating composition. Table 1 summarizes each component of the alkoxysilane (A1), aluminum salt (B1), water, and solvent (C1 and C2) used for the preparation of the coating composition together with the amount of addition.
Note that “-” in the component column of Table 1 indicates that the component was not used.
<実施例2~5>
 実施例1と同様な方法で、表1に示す組成の実施例2~5のコーティング用組成物を得た。
<Examples 2 to 5>
In the same manner as in Example 1, the coating compositions of Examples 2 to 5 having the compositions shown in Table 1 were obtained.
<実施例6>
 <A1液>
 フラスコ中にAN12.7g、及び水3.0gを加えて攪拌し、ANを溶解した。そこに、EG13.1g、HG37.5g、BCS35.7g、及びMPMS37.0gを入れ、室温下で30分攪拌した。
<A2液>
 フラスコ中にTIPT4.7g、及びHG56.3gを入れ、室温下で30分攪拌した。
<A1液>と<A2液>を混合し、室温下で30分攪拌して溶液を調製し、コーティング用組成物を得た。
<Example 6>
<A1 liquid>
In the flask, 12.7 g of AN and 3.0 g of water were added and stirred to dissolve AN. EG13.1g, HG37.5g, BCS35.7g, and MPMS37.0g were put there and it stirred under room temperature for 30 minutes.
<A2 liquid>
4.7 g of TIPT and 56.3 g of HG were put in the flask, and stirred at room temperature for 30 minutes.
<A1 liquid> and <A2 liquid> were mixed and stirred at room temperature for 30 minutes to prepare a solution to obtain a coating composition.
<比較例1>
 実施例1~5のようにアルミニウム塩を使用せず、酸としてHNOを使用し、それ以外は実施例1と同様な方法で、表1に示す組成の比較例のコーティング用組成物を得た。
<Comparative Example 1>
As in Examples 1 to 5, a coating composition of a comparative example having the composition shown in Table 1 was obtained in the same manner as in Example 1 except that HNO 3 was used as the acid without using an aluminum salt. It was.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例7>
 実施例1~5及び比較例1のコーティング用組成物を用い、基板上に塗膜を形成して加熱硬化を行い、基板上に保護膜の形成を行った。尚、形成された各保護膜について、実施例1のコーティング用組成物を用いて得られたものを、便宜上、実施例1の保護膜と言う。同様に、実施例2~5及び比較例1のコーティング用組成物を用いて得られた保護膜を、それぞれ便宜上、実施例2~5及び比較例1の保護膜と言う。
 実施例1~5及び比較例1の保護膜の形成方法と、それら保護膜の形成された基板の評価方法及び結果について、以下に示す。
<Example 7>
Using the coating compositions of Examples 1 to 5 and Comparative Example 1, a coating film was formed on a substrate and heat-cured to form a protective film on the substrate. In addition, about each formed protective film, what was obtained using the coating composition of Example 1 is called the protective film of Example 1 for convenience. Similarly, protective films obtained using the coating compositions of Examples 2 to 5 and Comparative Example 1 are referred to as protective films of Examples 2 to 5 and Comparative Example 1 for convenience.
The methods for forming protective films of Examples 1 to 5 and Comparative Example 1, and the evaluation methods and results of the substrates on which these protective films are formed are shown below.
[保護膜形成方法]
 ディップコーターを用い、実施例1~5及び比較例1のコーティング用組成物をそれぞれ、厚さ0.7mmのソーダライムガラスの両面に塗布し、それぞれ塗膜を形成した。その後、クリーンオーブンで80℃、3分間の乾燥を行った後、クリーンオーブン中、300℃で30分間加熱し、各塗膜を硬化させ、各基板上に、厚さ100nmの実施例1~5及び比較例1の保護膜を形成した。
[Protective film forming method]
Using a dip coater, each of the coating compositions of Examples 1 to 5 and Comparative Example 1 was applied to both surfaces of 0.7 mm thick soda lime glass to form a coating film, respectively. Then, after drying at 80 ° C. for 3 minutes in a clean oven, heating was performed at 300 ° C. for 30 minutes in the clean oven to cure each coating film, and each of the Examples 1 to 5 having a thickness of 100 nm was formed on each substrate. And the protective film of the comparative example 1 was formed.
[膜評価:高温高湿試験後のHAZE値]
 実施例1~5及び比較例1の保護膜の形成された各基板を用い、そのHAZE値(ヘイズ値)測定を行った。
 比較例2として、いずれの保護膜も形成されていない、基板(ソーダライムガラスのみ)を用い、そのHAZE測定を行った。
 測定結果は、実施例1~5及び比較例1~2について、「試験前 HAZE」として表2にまとめて示した。
[Film evaluation: HAZE value after high temperature and high humidity test]
Using each of the substrates on which the protective films of Examples 1 to 5 and Comparative Example 1 were formed, the HAZE value (haze value) was measured.
As Comparative Example 2, a HAZE measurement was performed using a substrate (only soda lime glass) on which no protective film was formed.
The measurement results for Examples 1 to 5 and Comparative Examples 1 and 2 are collectively shown in Table 2 as “HAZE before test”.
 次に、実施例1~5及び比較例1の保護膜の形成された各基板、及び、比較例2として、いずれの保護膜も形成されていない基板(ソーダライムガラスのみ)を用い、エスペック社製の小型環境試験器(SH-221)にて、温度85℃、湿度85%RHの条件で、1000時間の高温高湿試験を実施した。その後、高温高湿試験後の各基板のHAZE測定を行った。
 測定結果は、実施例1~5及び比較例1~2について、「試験後 HAZE」として表2にまとめて示した。
Next, each substrate on which the protective film of Examples 1 to 5 and Comparative Example 1 was formed and, as Comparative Example 2, a substrate on which no protective film was formed (soda lime glass only) was used. A high-temperature and high-humidity test for 1000 hours was performed using a small environmental tester (SH-221) manufactured under the conditions of a temperature of 85 ° C. and a humidity of 85% RH. Then, the HAZE measurement of each board | substrate after a high temperature, high humidity test was performed.
The measurement results are shown in Table 2 as “post-test HAZE” for Examples 1 to 5 and Comparative Examples 1 and 2.
[HAZE測定]
 HAZE値の測定は、東京電色社製の分光ヘーズメーター(TC-1800H)を用いて行った。
[HAZE measurement]
The HAZE value was measured using a spectroscopic haze meter (TC-1800H) manufactured by Tokyo Denshoku.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、比較例2の基板では、高温高湿試験前の初期状態においてHAZE値が0.0であったが、高温高湿試験により、HAZE値が8.8に上昇し、顕著な白化が生じることがわかった。 As shown in Table 2, in the substrate of Comparative Example 2, the HAZE value was 0.0 in the initial state before the high-temperature and high-humidity test, but the high-temperature and high-humidity test increased the HAZE value to 8.8. It was found that significant whitening occurred.
 一方、実施例1~5の基板では、高温高湿試験を実施した後でも、試験前と同様に、HAZE値は0.0のままであって、白化は生じていないことがわかった。
 これに比較し、比較例1の基板では、高温高湿試験を実施した後にHAZE値が1.9となり、実施例1~5の基板の場合よりも、高いHAZE値を示して白化が生じていることがわかった。
On the other hand, in the substrates of Examples 1 to 5, even after the high-temperature and high-humidity test, the HAZE value remained at 0.0 and no whitening occurred as before the test.
In comparison, the substrate of Comparative Example 1 has a HAZE value of 1.9 after the high-temperature and high-humidity test, and has a higher HAZE value than the substrates of Examples 1 to 5, resulting in whitening. I found out.
 本発明のガラス基板の保護膜形成に用いられる組成物は、ガラス基板に塗布するにより、高耐候性のガラス基板を提供することが可能であり、太陽電池や、液晶表示装置、エレクトロルミネッセンス表示素子等の半導体装置用の基板、特に、液晶表示装置用薄膜トランジスタ、薄膜有機エレクトロルミネッセンス表示素子等の薄膜半導体装置用の基板として、また、薄膜型リチウム電池の電極形成用基板として有用である。 The composition used for forming the protective film of the glass substrate of the present invention can provide a highly weather-resistant glass substrate by applying to the glass substrate, and can provide a solar cell, a liquid crystal display device, and an electroluminescence display element. It is useful as a substrate for a semiconductor device such as a thin film semiconductor device such as a thin film transistor for a liquid crystal display device or a thin film organic electroluminescence display element, or as a substrate for forming an electrode of a thin film type lithium battery.
 なお、2013年1月31日に出願された日本特許出願2013-016730号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-016730 filed on January 31, 2013 are cited herein as disclosure of the specification of the present invention. Incorporated.
 1、11  太陽電池用基板
 2、12  ガラス基板
 3、3’、13  保護膜
1, 11 Solar cell substrate 2, 12 Glass substrate 3, 3 ', 13 Protective film

Claims (15)

  1.  ガラス基板と該ガラス基板の表面に形成された保護膜とを有するガラス基板であって、
     前記保護膜は、下記式(I)及び/又は(II)で示される金属アルコキシド(金属アルコキシドの部分縮合物も含む。)を、下記式(III)で示される金属塩の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られる組成物を用いて形成されることを特徴とする、デバイスの最前面に用いるガラス基板。
      M(OR         (I)
    (Mは珪素、チタン、タンタル、ジルコニウム、ホウ素、アルミニウム、マグネシウム、錫及び亜鉛からなる群から選ばれる少なくとも1種を表す。Rは炭素数1~5のアルキル基を表す。nはMの価数を表す。)
      R (OR4-1   (II)
    (Mは珪素を表す。Rは、水素原子、又は、ハロゲン原子、ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、フェニル基、及びシクロヘキシル基からなる群から選ばれる少なくとも1種で置換されていてもよく、かつヘテロ原子を有していてもよい炭素数1~20の炭化水素基、又は、ハロゲン原子、ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、フェニル基若しくはシクロヘキシル基を表す。Rは、炭素数1~5のアルキル基を表す。lは1~3の整数を表す。)
      M(X)          (III)
    (Mは金属を表す。Xは塩素、硝酸、硫酸、酢酸、蓚酸、スルファミン酸、スルホン酸、アセト酢酸、アセチルアセトナート又はこれらの塩基性塩を表す。mはMの価数を表す。)
    A glass substrate having a glass substrate and a protective film formed on the surface of the glass substrate,
    The protective film contains a metal alkoxide represented by the following formula (I) and / or (II) (including a partial condensate of a metal alkoxide) in the presence of a metal salt represented by the following formula (III). A glass substrate used for the forefront of a device, wherein the glass substrate is formed using a composition obtained by hydrolysis / condensation in the mixture and further adding a precipitation inhibitor.
    M 1 (OR 1 ) n (I)
    (M 1 represents at least one selected from the group consisting of silicon, titanium, tantalum, zirconium, boron, aluminum, magnesium, tin and zinc. R 1 represents an alkyl group having 1 to 5 carbon atoms. N represents M. Represents the valence of 1. )
    R 2 l M 2 (OR 3 ) 4-1 (II)
    (M 2 represents silicon. R 2 is substituted with a hydrogen atom or at least one selected from the group consisting of a halogen atom, a vinyl group, a methacryloxy group, an acryloxy group, a styryl group, a phenyl group, and a cyclohexyl group. And a hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom or a halogen atom, vinyl group, methacryloxy group, acryloxy group, styryl group, phenyl group or cyclohexyl group. R 3 represents an alkyl group having 1 to 5 carbon atoms, and l represents an integer of 1 to 3.)
    M 3 (X) m (III)
    (M 3 represents a metal. X represents chlorine, nitric acid, sulfuric acid, acetic acid, succinic acid, sulfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate, or a basic salt thereof. M represents the valence of M 3. .)
  2.  前記式(II)におけるRは、水素原子、又は、ハロゲン原子、ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、フェニル基、及びシクロヘキシル基からなる群から選ばれる少なくとも1種で置換されていてもよく、かつヘテロ原子を有していてもよい炭素数1~20の炭化水素基である請求項1に記載のガラス基板。 R 2 in the formula (II) is substituted with a hydrogen atom or at least one selected from the group consisting of a halogen atom, a vinyl group, a methacryloxy group, an acryloxy group, a styryl group, a phenyl group, and a cyclohexyl group. The glass substrate according to claim 1, which is a hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom.
  3.  前記金属アルコキシドが、シリコンアルコキシドを含有するか、又は全てシリコンアルコキシドである請求項1又は2に記載のガラス基板。 The glass substrate according to claim 1 or 2, wherein the metal alkoxide contains silicon alkoxide or is all silicon alkoxide.
  4.  前記金属アルコキシドが、チタンアルコキシドを含有する請求項1又は2に記載のガラス基板。 The glass substrate according to claim 1 or 2, wherein the metal alkoxide contains titanium alkoxide.
  5.  前記金属アルコキシドが、シリコンアルコキシドとチタンアルコキシドとの混合物である請求項1、2又は4に記載のガラス基板。 The glass substrate according to claim 1, 2, or 4, wherein the metal alkoxide is a mixture of silicon alkoxide and titanium alkoxide.
  6.  前記金属アルコキシドが、全てチタンアルコキシドである請求項1に記載のガラス基板。 The glass substrate according to claim 1, wherein all of the metal alkoxides are titanium alkoxides.
  7.  前記析出防止剤が、N-メチル-ピロリドン、エチレングリコール、ジメチルホルムアミド、ジメチルアセトアミド、ジエチレングリコール、プロピレングリコール、ヘキシレングリコール及びこれらの誘導体からなる群より選択された少なくとも1つである請求項1~6のいずれか1項に記載のガラス基板。 The precipitation inhibitor is at least one selected from the group consisting of N-methyl-pyrrolidone, ethylene glycol, dimethylformamide, dimethylacetamide, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof. The glass substrate of any one of these.
  8.  前記組成物中に含まれる、金属アルコキシドの金属原子の合計(M+M)と金属塩の金属原子(M)とのモル比が以下の式を満たす請求項1~7のいずれか1項に記載のガラス基板。
    0.01≦M/(M+M≦0.7
    The molar ratio of the total metal atoms (M 1 + M 2 ) of the metal alkoxide and metal atoms (M 3 ) of the metal salt contained in the composition satisfies the following formula: The glass substrate according to item.
    0.01 ≦ M 3 / (M 1 + M 2 ≦ 0.7
  9.  前記金属塩は、金属硝酸塩、金属硫酸塩、金属酢酸塩、金属塩化物、金属蓚酸塩、金属スルファミン酸塩、金属スルホン酸塩、金属アセト酢酸塩、金属アセチルアセトナート及びそれら塩基性塩からなる群より選択された少なくとも1種である請求項1~8のいずれか1項に記載のガラス基板。 The metal salt is composed of metal nitrate, metal sulfate, metal acetate, metal chloride, metal oxalate, metal sulfamate, metal sulfonate, metal acetoacetate, metal acetylacetonate, and their basic salts. The glass substrate according to any one of claims 1 to 8, wherein the glass substrate is at least one selected from the group.
  10.  式(III)のMが、アルミニウム、インジウム、亜鉛、ジルコニウム、ビスマス、ランタン、タンタル、イットリウム及びセリウムからなる群より選択された少なくとも1種である請求項1~9のいずれか1項に記載のガラス基板。 The M 3 in the formula (III) is at least one selected from the group consisting of aluminum, indium, zinc, zirconium, bismuth, lanthanum, tantalum, yttrium and cerium. Glass substrate.
  11.  前記有機溶媒が、アルキレングリコール類又はそのモノエーテル誘導体を含む請求項4~6のいずれか1項に記載のガラス基板。 The glass substrate according to any one of claims 4 to 6, wherein the organic solvent contains an alkylene glycol or a monoether derivative thereof.
  12.  請求項1~11いずれか1項に記載のガラス基板を用いる太陽電池用ガラス基板。 A glass substrate for a solar cell using the glass substrate according to any one of claims 1 to 11.
  13.  請求項1~11いずれか1項に記載のガラス基板を用いるディスプレイ用ガラス基板。 A glass substrate for display using the glass substrate according to any one of claims 1 to 11.
  14.  請求項12に記載のガラス基板を用いる太陽電池。 A solar cell using the glass substrate according to claim 12.
  15.  請求項13に記載のガラス基板を用いるディスプレイ。 A display using the glass substrate according to claim 13.
PCT/JP2014/052152 2013-01-31 2014-01-30 Glass substrate, and device using same WO2014119680A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014559751A JP6347214B2 (en) 2013-01-31 2014-01-30 Glass substrate and device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013016730 2013-01-31
JP2013-016730 2013-01-31

Publications (1)

Publication Number Publication Date
WO2014119680A1 true WO2014119680A1 (en) 2014-08-07

Family

ID=51262387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052152 WO2014119680A1 (en) 2013-01-31 2014-01-30 Glass substrate, and device using same

Country Status (3)

Country Link
JP (1) JP6347214B2 (en)
TW (1) TWI617520B (en)
WO (1) WO2014119680A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127129A (en) * 2014-12-26 2016-07-11 株式会社マテリアル・コンセプト Solar battery protection glass and manufacturing method for the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258646A (en) * 1988-12-15 1990-10-19 Nissan Chem Ind Ltd Coating composition and production thereof
JP2000281384A (en) * 1999-03-30 2000-10-10 Asahi Glass Co Ltd Coating liquid for colored film forming, colored film, glass article with colored film and its production
JP2003522092A (en) * 2000-02-11 2003-07-22 デングラス テクノロジーズ エルエルシー. Anti-reflective UV blocking multilayer coating with cerium oxide film
JP2005263620A (en) * 2004-02-18 2005-09-29 Nippon Shokubai Co Ltd Metal oxide particle and its use

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3825813B2 (en) * 1992-07-17 2006-09-27 日産化学工業株式会社 Coating liquid for forming high refractive index insulating coating for liquid crystal display
JP3517890B2 (en) * 1993-02-18 2004-04-12 日産化学工業株式会社 Coating liquid for insulating film formation for liquid crystal display element
JPH11106934A (en) * 1997-09-30 1999-04-20 Fuji Photo Film Co Ltd Production of metal oxide thin film and metal oxide thin film
JP2002161262A (en) * 2000-11-27 2002-06-04 Nippon Sheet Glass Co Ltd Surface-treating agent, method for producing thin film, substrate having thin film and solar battery panel
WO2007020781A1 (en) * 2005-08-19 2007-02-22 Nissan Chemical Industries, Ltd. Method for producing coating liquid for film formation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258646A (en) * 1988-12-15 1990-10-19 Nissan Chem Ind Ltd Coating composition and production thereof
JP2000281384A (en) * 1999-03-30 2000-10-10 Asahi Glass Co Ltd Coating liquid for colored film forming, colored film, glass article with colored film and its production
JP2003522092A (en) * 2000-02-11 2003-07-22 デングラス テクノロジーズ エルエルシー. Anti-reflective UV blocking multilayer coating with cerium oxide film
JP2005263620A (en) * 2004-02-18 2005-09-29 Nippon Shokubai Co Ltd Metal oxide particle and its use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127129A (en) * 2014-12-26 2016-07-11 株式会社マテリアル・コンセプト Solar battery protection glass and manufacturing method for the same

Also Published As

Publication number Publication date
JP6347214B2 (en) 2018-06-27
TWI617520B (en) 2018-03-11
TW201446685A (en) 2014-12-16
JPWO2014119680A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
US9605159B2 (en) Low refractive index film-forming composition and method of forming low refractive index film using the same
JP5019014B2 (en) Antireflection film, method of forming antireflection film, and antireflection glass
JP6813553B2 (en) A coating composition and a coating layer comprising the coating composition that enhances light transmittance.
TWI704050B (en) Suitable for glass substrates such as protective glass for mobile display devices
US9505888B2 (en) Composite of metal oxide nanoparticles and silsesquioxane polymer, method for producing same, and composite material produced using composite thereof
JP6360836B2 (en) Anti-reflective coating composition containing siloxane compound, and anti-reflection film having surface energy controlled using the same
EP3289394B1 (en) Optical functional film and method for producing the same
JP6347214B2 (en) Glass substrate and device using the same
JP5910494B2 (en) Coating liquid for anti-reflection coating for spray coating
KR102188211B1 (en) Composition for forming a thin layer of low refractive index, manufacturing method thereof, and manufacturing method of a thin layer of low refractive index
JP6152799B2 (en) Coating liquid for forming a metal oxide film for protecting molybdenum-containing metals
JP2012148952A (en) Coating solution for formation of low-reflective film, method for preparation thereof, and low-reflective member produced by using the same
TWI642541B (en) Glass substrate with protective film
WO2014203951A1 (en) Composition for forming metal oxide film, and metal oxide film
JP5742519B2 (en) Ceramic porous body
JP2005330172A (en) Glass sheet, its production method, low reflective transparent glass sheet, low reflective transparent electroconductive substrate, its production method, and photoelectric transfer element using low reflective transparent electroconductive substrate
JP2012150425A (en) Coating liquid for forming low reflective film, preparation method for the same and low reflective member using the same
JP2016037579A (en) Metal oxide transparent molding
TW202101033A (en) Anti-glare coating film formation coating liquid, anti-glare coating film, and laminate including anti-glare coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559751

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746784

Country of ref document: EP

Kind code of ref document: A1