WO2014119516A1 - Diaphorase composition - Google Patents

Diaphorase composition Download PDF

Info

Publication number
WO2014119516A1
WO2014119516A1 PCT/JP2014/051680 JP2014051680W WO2014119516A1 WO 2014119516 A1 WO2014119516 A1 WO 2014119516A1 JP 2014051680 W JP2014051680 W JP 2014051680W WO 2014119516 A1 WO2014119516 A1 WO 2014119516A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphorase
enzyme
amino acid
activity
acid sequence
Prior art date
Application number
PCT/JP2014/051680
Other languages
French (fr)
Japanese (ja)
Inventor
幸夫 岩井
誠嗣 竹嶋
柳谷 周作
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2014119516A1 publication Critical patent/WO2014119516A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates

Definitions

  • the present invention relates to a composition containing diaphorase. *
  • Diaphorase [EC. 1.6.99. -] Plays an important role in the electron transport system in vivo. Diaphorase has been studied for in vitro use in various technical fields, and a part of it has been put into practical use. Such technical fields include production of useful substances, production of energy-related substances, measurement or analysis, environmental conservation, medical care, and the like. For example, in the field of clinical diagnostics, diaphorase takes advantage of the property that it uses reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) as a substrate. Used in diagnostic reagents. Diaphorase is also used in an enzyme battery which is a kind of fuel cell (Non-patent Document 1).
  • NADH nicotinamide adenine dinucleotide
  • NADPH nicotinamide adenine dinucleotide phosphate
  • Non-patent Document 2 those isolated and purified from microorganisms belonging to the genus Clostridium (Non-patent Document 2) or the genus Bacillus (Patent Document 1, Patent Document 2) are commercially available.
  • the Bacillus stearothermophilus as producing diaphorase described in Patent Document 1 and Patent Document 2 was reclassified as Geobacillus stearothermophilus in 2001 (Geobacillus stearothermophilus).
  • Non-patent document 3 Known from Geobacillus stearothermophilus, or modified ones thereof, and their gene sequence, amino acid sequence and physicochemical properties have been investigated (Patent Document 2, Patent Document 3, Non-Patent Document 1).
  • the raw material enzymes used for reagents and sensors are distributed as dried products (for example, powders) (dry products).
  • dry products for example, powders
  • the product is light and small in volume, so that it can be easily stored and transported, and since it is dry, there is no risk of spoilage due to microbial contamination.
  • the dissolution concentration of the enzyme can be freely adjusted according to the purpose of use, and the type of buffer solution for dissolution can be arbitrarily selected, so that it can be developed for various uses.
  • the enzyme activity can be stably maintained for a long time in a dry state rather than in a solution state.
  • a method of precipitating the target enzyme from a solution containing enzyme protein with an organic solvent such as acetone or alcohol and collecting it to obtain a dry powder For example, a method of precipitating the target enzyme from a solution containing enzyme protein with an organic solvent such as acetone or alcohol and collecting it to obtain a dry powder.
  • the enzyme if the enzyme is inadvertently dried, problems such as loss of activity due to protein denaturation and turbidity generation during re-dissolution often occur. It is essential to add a stabilizer to prevent this.
  • the stabilizer added to the enzyme product must not only prevent denaturation and deactivation of the enzyme protein due to drying, but also have the ability to prevent loss of activity during storage and distribution. *
  • An object of the present invention is a diaphorase that uses a stabilizer that is easily available, has a uniform quality, and does not affect the appearance, performance, and quality of an enzyme product or a composition containing an enzyme, as a stabilizer for diaphorase. It is to provide a composition.
  • the present inventors examined various substances in order to improve the storage stability of a diaphorase composition in a dry state. As a result, the inventors have found that the stability of diaphorase is improved by coexisting one or more compounds of saccharides, sugar alcohols, and amino acids, and the present invention has been completed.
  • Item 1 A composition containing any one or more compounds selected from the group consisting of diaphorase, (b) saccharides, sugar alcohols and amino acids.
  • Item 2. Item 2. The composition according to Item 1, wherein the compound (b) is at least one selected from the group consisting of mannitol, inositol, xylitol, trehalose, sorbitol, and sodium L-glutamate.
  • Item 3. Item 3. The composition according to Item 1 or Item 2, wherein the compound (b) is contained in an amount of 30 to 70% (w / w) based on the amount of diaphorase protein.
  • Item 4. Item 4.
  • composition according to any one of Items 1-3 wherein the diaphorase is any one of the following proteins: (A) a protein having the amino acid sequence described in SEQ ID NO: 1 (b) a protein having an amino acid sequence in which one or several amino acids are deleted, inserted, added or substituted in the amino acid sequence described in SEQ ID NO: 1 A protein having diaphorase activity (C) a protein having the amino acid sequence of SEQ ID NO: 2 (d) a protein having an amino acid sequence in which one or several amino acids are deleted, inserted, added or substituted in the amino acid sequence of SEQ ID NO: 2 A protein having diaphorase activity Item 5.
  • Item 6. A method for stabilizing diaphorase in a diaphorase composition, wherein any one or more compounds selected from the group consisting of diaphorase, (b) saccharides, sugar alcohols and amino acids are allowed to coexist.
  • the stability of a dried diaphorase product can be secured, and inactivation of the enzyme can be prevented even during long-term storage.
  • Geobacillus thermodenitificans NG80-2 derived wild-type diaphorase (Sequence Listing 1) and Geobacillus sp. Amino acid sequence alignment of wild type diaphorase derived from Y4.1MC1 (Sequence Listing 2)
  • Diaphorase 1-1 Diaphorase activity “Diaphorase” is an activity that catalyzes a reaction of oxidizing NADH or NADPH with a dye such as potassium ferricyanide, methylene blue, 2,6-dichloroindophenol (DCPIP), tetrazolium salt (ie, diaphorase activity). It is an enzyme with a wide distribution from microorganisms such as bacteria and yeast to mammals.
  • This diaphorase plays an important role in the in vivo electron transport system, and NADH or NADPH produced by the dehydrogenation reaction from the substrate by NAD or NADP-dependent dehydrogenases by this diaphorase is an electron acceptor. The electron acceptor becomes a reduced form.
  • Diaphorase activity can be measured by a known method. For example, using DCPIP as an electron acceptor, the activity can be measured using the change in absorbance of the sample at a wavelength of 600 nm before and after the reaction as an index. More specifically, the activity can be measured using the following reagents and measurement conditions.
  • the reaction mixture is prepared by mixing 2.4 mL of distilled water, 0.3 mL of Tris-HCl buffer, and 0.1 mL of NADH aqueous solution and pre-warming at 25 ° C. for 5 minutes.
  • diaphorase activity is determined according to the following formula.
  • 1 unit (U) in the diaphorase activity is the amount of enzyme that reduces the absorbance at 600 nm by 1.0 under the above measurement conditions for 1 minute.
  • Activity (U / mL) ⁇ -( ⁇ OD TEST - ⁇ OD BLANK ) ⁇ dilution ratio ⁇ / (1.0 ⁇ 0.1)
  • 1.0 represents the unit absorbance at 600 nm determined based on the activity definition
  • 0.1 represents the volume (mL) of the enzyme solution.
  • enzyme activity is measured according to the measurement method described above.
  • the diaphorase applied to the present invention is preferably an isolated diaphorase or a purified diaphorase.
  • the diaphorase applied to the present invention may exist in a state dissolved in a solution suitable for storage or in a lyophilized state (for example, in a powder form).
  • isolated when used in relation to the enzyme (diaphorase) applied to the present invention means that components other than the enzyme (for example, contaminating proteins derived from host cells, other components, culture fluid, etc.) Not included).
  • the isolated enzyme applied to the present invention has a contaminating protein content of less than about 20% by weight, preferably less than about 10%, more preferably less than about 5%. Even more preferably, it is less than about 1%.
  • the diaphorase applied to the present invention may be present in a solution (for example, a buffer) suitable for storage or measurement of enzyme activity.
  • polypeptide The diaphorase applied to the present invention is preferably composed of any of the following polypeptides (a) to (c).
  • A a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2
  • B a polyamino acid sequence consisting of an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted, added and / or inverted in the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 and having diaphorase activity peptide
  • C A polypeptide comprising an amino acid sequence having an identity of 80% or more with the amino acid sequence shown in SEQ ID NO: 1 or 2 and having diaphorase activity.
  • the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 is an amino acid sequence of diaphorase derived from the genus Geobacillus as shown in Example 5.
  • the amino acid sequence shown in SEQ ID NO: 1 is the amino acid sequence of wild-type diaphorase derived from Geobacillus thermodenitificans NG80-2.
  • the amino acid sequence set forth in SEQ ID NO: 2 is Geobacillus sp. It is the amino acid sequence of wild type diaphorase derived from Y4.1MC1.
  • polypeptide (b) above one or several amino acid residues are substituted, deleted, inserted and / or added (hereinafter referred to as these) in the amino acid shown in SEQ ID NO: 1 as long as the diaphorase activity is retained.
  • mutations. A polypeptide comprising an amino acid sequence.
  • “several” is not limited as long as the diaphorase activity is maintained, for example, a number corresponding to less than about 20% of all amino acids, preferably a number corresponding to less than about 15%, The number is preferably less than about 10%, more preferably less than about 5%, and most preferably less than about 1%.
  • the number of amino acid residues to be mutated is, for example, 2 to 127, preferably 2 to 96, more preferably 2 to 64, still more preferably 2 to 32, and even more.
  • the number is preferably 2 to 20, more preferably 2 to 15, even more preferably 2 to 10, and particularly preferably 2 to 5.
  • One or several mutations may be introduced into the DNA encoding the diaphorase of the present invention using a known method such as restriction enzyme treatment, treatment with exonuclease or DNA ligase, position-directed mutagenesis or random mutagenesis. It can be carried out by introducing mutations.
  • Variant diaphorase can also be obtained by other methods such as ultraviolet irradiation.
  • Variant diaphorase includes naturally occurring variants (for example, single nucleotide polymorphisms are also included) based on individual differences in microorganisms that retain diaphorase, differences in species or genera, and the like.
  • the mutation is present at a site that does not affect the active site or substrate binding site of diaphorase.
  • the polypeptide (c) is a polypeptide comprising an amino acid sequence having an identity of 80% or more compared to the amino acid sequence shown in SEQ ID NO: 1 as long as it retains diaphorase activity.
  • the identity between the amino acid sequence of the diaphorase of the present invention and the amino acid sequence shown in SEQ ID NO: 1 is 85% or more, more preferably 88% or more, still more preferably 90% or more, and still more preferably 93% or more, more preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more.
  • Such a polypeptide comprising an amino acid sequence having a certain identity or more can be prepared based on the known genetic engineering techniques as described above.
  • the identity of amino acid sequences can be calculated using analysis tools that are commercially available or available through telecommunication lines (Internet). For example, the homology algorithm BLAST (Basic local alignment) of the National Center for Biotechnology Information (NCBI) search tool) http: // www. ncbi. nlm. nih. It can be calculated by using default (initial setting) parameters in gov / BLAST /. In this application, this method is used to calculate the identity of amino acid sequences.
  • NCBI National Center for Biotechnology Information
  • Isolation sources may be those derived from microorganisms that grow in a low temperature environment, a high temperature environment such as a volcano, an oxygen-free / high-pressure / light-free environment such as the deep sea, and a special environment such as an oil field.
  • the diaphorase applied to the present invention includes not only a diaphorase directly isolated from a microorganism, but also an isolated diaphorase whose amino acid sequence has been modified by a protein engineering method, or a genetic engineering method. Is also included.
  • a modified enzyme obtained from a microorganism classified into the genus Geobacillus as described above may be used.
  • the method for producing diaphorase applied to the present invention is not particularly limited. For example, it can be produced by culturing a microorganism expressing diaphorase and purifying the obtained culture solution.
  • a method for producing a target protein by culturing a microorganism that expresses the protein and purifying the obtained culture solution has already been established in the art. Therefore, those skilled in the art can apply the knowledge to produce diaphorase, and the embodiment is not particularly limited.
  • the method for constructing the diaphorase expression system is not particularly limited.
  • a microorganism having an ability to produce diaphorase may be used as an expression system as it is.
  • a gene recombinant also referred to as a transformant
  • a genetic recombinant prepared by introducing DNA encoding diaphorase into an appropriate host vector system may be used as the expression system. From an industrial viewpoint, it is preferable to use a genetic recombinant for reasons such as easy control and higher safety.
  • microorganisms capable of producing diaphorase include those derived from the hyperthermophilic archaeon such as the aforementioned Geobacillus genus.
  • diaphorase-encoding DNA can be easily prepared using standard genetic engineering techniques (Molecular Cloning 2d Ed, Cold Spring Harbor Lab. Press (1989); Chemistry experiment course "gene research method I, II, III", Japan Biochemical Society edition (1986) etc.).
  • a cDNA library is prepared according to a conventional method from the above-mentioned appropriate source microorganism in which the diaphorase applied to the present invention is expressed, and an appropriate sequence peculiar to the DNA sequence of the diaphorase is prepared from the library. This can be performed by selecting a desired clone using a probe or an antibody.
  • Isolation of total RNA from the above microorganisms, isolation and purification of mRNA, acquisition and cloning of cDNA, determination of base sequence, etc. can all be carried out according to conventional methods.
  • the method for screening the DNA of the present invention from a cDNA library is not particularly limited, and can be performed according to a usual method.
  • a method for selecting a corresponding cDNA clone by immunoscreening using the polypeptide-specific antibody, a plaque high using a probe that selectively binds to a target nucleotide sequence Hybridization, colony hybridization, etc., and combinations thereof can be selected as appropriate.
  • a PCR method or a modified DNA or RNA amplification method thereof can be suitably used.
  • Primers used in the PCR method can also be appropriately designed and synthesized based on the base sequence determined above.
  • isolation and purification of the amplified DNA or RNA fragment can be carried out according to a conventional method as described above, for example, by gel electrophoresis, hybridization or the like.
  • the DNA encoding diaphorase can be incorporated into an appropriate expression vector.
  • the type and structure of the expression vector are not particularly limited as long as the DNA can be replicated in an appropriate host cell and can be expressed.
  • the type of vector is appropriately selected in consideration of the type of host cell.
  • Specific examples of the vector include a plasmid vector, a cosmid vector, a phage vector, a virus vector (an adenovirus vector, an adeno-associated virus vector, a retrovirus vector, a herpes virus vector, etc.) and the like. It is also possible to use a vector suitable for self-cloning.
  • An expression vector in which DNA encoding diaphorase is incorporated can be introduced into an appropriate host cell to be a transformant having the ability to produce the diaphorase.
  • the host cell is not particularly limited as long as it can express the DNA and produce diaphorase.
  • prokaryotic cells such as Escherichia coli and Bacillus subtilis
  • molds such as yeast and filamentous fungi
  • eukaryotic cells such as insect cells, cultured plant cells, and mammalian cells can be used.
  • Escherichia coli, Bacillus subtilis and filamentous fungi are preferable.
  • E. coli is more preferred.
  • exogenous DNA is usually present in the host cell, but a transformant obtained by so-called self-cloning using the microorganism from which the DNA is derived as a host is also a preferred embodiment.
  • the transformant is preferably prepared by transfection or transformation using the expression vector shown above. Transformation may be transient or stable. Transfection and transformation can be performed using calcium phosphate coprecipitation method, electroporation, lipofection, microinjection, Hanahan method, lithium acetate method, protoplast-polyethylene glycol method, and the like.
  • the diaphorase applied to the present invention can be produced by culturing a gene recombinant that expresses diaphorase and purifying the obtained culture solution.
  • the culture method and culture conditions are not particularly limited as long as diaphorase is produced. That is, on the condition that diaphorase is produced, a method and conditions suitable for the growth of the microorganism to be used can be appropriately set.
  • the culture supernatant is filtered and centrifuged to remove insoluble matters, and then an ultrafiltration membrane is used.
  • the diaphorase can be obtained by separating and purifying by appropriately combining the concentration by the above, salting out such as ammonium sulfate precipitation, dialysis, and various chromatography.
  • the microbial cells are crushed by pressure treatment, ultrasonic treatment, mechanical method, or a method using an enzyme such as lysozyme, and if necessary, such as EDTA.
  • the enzyme can be obtained by solubilizing diaphorase by adding a chelating agent and a surfactant, separating and collecting it as an aqueous solution, separating and purifying it. After the cells are collected from the culture solution in advance by filtration, centrifugation, or the like, the above series of steps (crushing, separating, and purifying the cells) may be performed.
  • Purification includes, for example, concentration under reduced pressure, membrane concentration, salting-out treatment such as ammonium sulfate and sodium sulfate, or precipitation treatment by a fractional precipitation method using a hydrophilic organic solvent such as methanol, ethanol, acetone, etc., heat treatment or isoelectric point treatment.
  • adsorbent or a gel filtration agent adsorption chromatography, ion exchange chromatography, affinity chromatography, and the like can be combined as appropriate.
  • the purified enzyme preparation is preferably purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
  • any one or more of diaphorase activity, thermal stability, etc. may be used as an index.
  • this enzyme is obtained as a recombinant protein, various modifications are possible. For example, if a DNA encoding this enzyme and other appropriate DNA are inserted into the same vector and a recombinant protein is produced using the vector, the peptide consists of a recombinant protein linked to any peptide or protein. This enzyme can be obtained. In addition, modification may be performed so that addition of sugar chain and / or lipid, or processing of N-terminal or C-terminal may occur. By the modification as described above, extraction of recombinant protein, simplification of purification, addition of biological function, and the like are possible.
  • amino acids includes oligopeptides and proteins.
  • sugar alcohols include inositol, sorbitol, arabitol, xylitol, glucitol, Ribitol, D-mannitol, amino acids alanine, serine, threonine, asparagine, glutamine, valine, leucine, isoleucine, oligopeptides are glycylglycine, alanylglutamine, glycylglutamine, glutathione, and proteins are bovine serum albumin ( BSA) and sericin. More preferably, any one or more selected from the group consisting of mannitol, inositol, xylitol, trehalose, sorbito
  • the concentration of each compound to be coexisted is not particularly limited, but the preferable lower limit is 2% by weight, more preferably 20% by weight, and further preferably 30% by weight.
  • the upper limit is preferably 300% by weight, more preferably 100% by weight, and still more preferably 70% by weight because of the risk of bringing in foreign substances.
  • these addition concentrations are represented by weight% with respect to the diaphorase enzyme protein.
  • the added compound has a protective action even when the enzyme is in a solution state, and contributes to stable retention of the enzyme activity in the solution.
  • the composition of the buffer solution used for the diaphorase extraction / purification / drying and stability test described above is not particularly limited, but any buffer solution having a buffer capacity in the range of pH 4-9 is preferable.
  • Buffers such as hydrochloric acid and potassium phosphate, and good buffers such as ACES, BES, Bicine, Bis-Tris, CHES, EPPS, HEPES, HEPPSO, MES, MOPS, MOPSO, PIPES, POPSO, TAPS, TAPSO, TES, Tricine Is mentioned. Mention may also be made of buffers based on dicarboxylic acids, such as phthalic acid, maleic acid, glutaric acid and the like.
  • a chelating agent such as EDTA and / or a surfactant may be contained in the buffer as necessary.
  • concentration of these additives is not particularly limited as long as it has a buffer capacity, but the preferable upper limit is 100 mM or less, more preferably 50 mM or less. A preferred lower limit is 5 mM or more.
  • the content of the buffer in the dry powder or lyophilized product is not particularly limited, but is preferably 0.1% (weight ratio) or more, particularly preferably 0.1-80% (weight). Ratio). For these, various commercially available reagents can be used.
  • the concentration of the enzyme solution used in the drying step is adjusted so that the protein concentration is preferably 5 g / L or more, more preferably 10 g / L or more, and still more preferably 20 g / L or more. If the enzyme used in the drying process is too dilute, the recovery rate often decreases in the drying process, and the resulting dried product often has a shape that is difficult to handle. In addition, when the concentration is excessively high, drying may take time.
  • composition of the present invention comprises the above-mentioned 1.
  • the diaphorase described in 1. and 2.
  • a composition comprising any one or more compounds selected from the group consisting of saccharides, sugar alcohols, and amino acids described in 1. above.
  • the form of the composition of the present invention is not particularly limited. Either a dry state such as freeze-drying or powder, or a liquid state may be used. Methods for producing such compositions have already been established in the art. Therefore, those skilled in the art can apply the knowledge to produce the composition of the present invention, and the embodiment is not particularly limited.
  • the diaphorase stabilization method of the present invention is characterized in that any one or more compounds selected from the group consisting of (a) diaphorase, (b) saccharides, sugar alcohols and amino acids coexist. .
  • Other components may coexist other than the above (a) and (b), and the composition is not particularly limited.
  • diaphorase for example, the use exemplified in “5. Product” described later
  • what components are required in addition to (a) and (b) have already been established in the art. . Therefore, those skilled in the art can apply the knowledge without being limited by the embodiment to construct the stabilization method of the present invention, and can produce a composition for realizing the method.
  • the improvement in stability means that after the diaphorase is stored at 37 ° C. for 4 weeks, the residual ratio (%) of the diaphorase maintained is higher than when no stabilizer is added. Or at least maintained.
  • the stability was determined as follows.
  • the diaphorase activity value per dry product weight after drying (a) and the dry product weight after storage at a constant temperature for a certain period of time The diaphorase activity value (b) was measured, and the relative value ((b) / (a) ⁇ 100) with respect to the measured value (a) as 100 was determined. This relative value was defined as the residual rate.
  • the presence or absence of the addition of the compound was compared, and when the residual ratio increased by the addition, it was judged that the stability was improved.
  • product containing diaphorase Another aspect of the present invention is the above-mentioned 3.
  • product means a product that constitutes part or all of a set used by a user for the purpose of carrying out a certain application, and that includes the diaphorase composition of the present invention. .
  • the product of the present invention can be applied to various uses and is not particularly limited, but typically, one using one of the following two principles can be exemplified.
  • A Measuring a substrate such as NADH by diaphorase.
  • B generating an electric current by an enzymatic reaction with diaphorase;
  • Examples of using the principle (a) include in vitro diagnostic applications (for example, measurement of various biological components). These biological component measurement methods have already been established in the art. Therefore, according to a known method, the amount or concentration of the biological component in various samples can be measured using the diaphorase of the present invention.
  • the form is not particularly limited as long as the concentration or amount of the biological component is measured using the diaphorase of the present invention.
  • LDH lactate dehydrogenase
  • CK creatine kinase
  • TG neutral fat
  • bile Various forms such as reagents, kits, and sensors for measuring biological components such as acids and total branched chain amino acids (BCAA) can be exemplified.
  • BCAA total branched chain amino acids
  • NADH generated by the GDH reaction reduces the electron acceptor such as DCPIP via diaphorase and returns to NAD itself, and the difference in absorbance caused by the change in the structure of DCPIP. Can be determined colorimetrically to determine the glucose concentration.
  • the sample containing glucose is not particularly limited, and examples thereof include blood, beverages, and foods.
  • the composition for measuring glucose may be in the form of a kit.
  • the kit contains, for example, diaphorase in an amount sufficient for at least one assay, and typically includes buffers, mediators, glucose standard solutions for generating calibration curves, and usage guidelines necessary for the assay. Including.
  • the diaphorase of the invention can be provided in various forms, for example, as a lyophilized reagent or as a solution in a suitable storage solution.
  • the measurement of the glucose concentration in the form of a sensor can be performed, for example, as follows. Put buffer in constant temperature cell and maintain at constant temperature. As the mediator, potassium ferricyanide, phenazine methosulfate, or the like can be used. An electrode on which the diaphorase of the present invention is immobilized is used as a working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used. After a constant voltage is applied to the carbon electrode and the current becomes steady, a sample containing glucose is added and the increase in current is measured. The glucose concentration in the sample can be calculated according to a calibration curve prepared with a standard concentration glucose solution.
  • Immobilization methods include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a photocrosslinkable polymer, a conductive polymer, a redox polymer, etc., or ferrocene or a derivative thereof. It may be fixed in a polymer or adsorbed and fixed on an electrode together with a representative electron mediator, or a combination of these may be used.
  • diaphorase is immobilized on a carbon electrode using glutaraldehyde and then treated with a reagent having an amine group to block glutaraldehyde.
  • Examples of using the principle of (b) include various forms such as an enzyme electrode (may be an immobilized electrode), an enzyme sensor, a fuel cell, and an electronic device having one or more fuel cells. It can be illustrated. *
  • a fuel cell that uses glucose dehydrogenase and diaphorase to extract electrons by the oxidation reaction of glucose has already been established in the art. Therefore, according to a known method, a fuel cell can be produced and operated using the diaphorase of the present invention. As long as the fuel cell is produced and operated using the diaphorase of the present invention, its mode is not particularly limited. For example, it can be operated as a battery by the following means.
  • the diaphorase of the present invention is immobilized with an electron mediator such as GDH or an osmium complex in a negative electrode of a biofuel cell, and on the other hand, an oxidation-reduction selected from bilirubin oxidase (BOD), laccase, ascorbate oxidase and the like at the positive electrode Immobilize enzyme and mediator such as hexacyanoferrate ion.
  • an electron mediator such as GDH or an osmium complex in a negative electrode of a biofuel cell
  • BOD bilirubin oxidase
  • laccase laccase
  • ascorbate oxidase and the like at the positive electrode
  • Immobilize enzyme and mediator such as hexacyanoferrate ion.
  • a structure is constructed in which the negative electrode and the positive electrode are opposed to each other via an electrolyte layer that does not have electron conductivity and conducts only protons.
  • glucose supplied as fuel is decomposed by an enzyme to extract electrons and protons (H +
  • H + glucose supplied as fuel
  • water is generated by protons transported from the negative electrode through the electrolyte layer, electrons sent from the negative electrode through an external circuit, and oxygen in the air, for example.
  • the fuel containing glucose is not particularly limited, and examples thereof include blood, beverages, and foods.
  • the fuel cell of the present invention can be used for anything that requires electric power, and can be of any size. Specifically, this fuel cell is used for, for example, an electronic device, a moving body (automobile, motorcycle, aircraft, rocket, spacecraft, etc.), power unit, construction machine, machine tool, power generation system, cogeneration system, etc. Can do.
  • a moving body autonomous, motorcycle, aircraft, rocket, spacecraft, etc.
  • power unit construction machine, machine tool, power generation system, cogeneration system, etc.
  • Example 1 Acquisition of Transformant An alignment of the polypeptide of SEQ ID NO: 1 and the polypeptide of SEQ ID NO: 2 used in the present invention is shown in FIG.
  • a structural gene encoding the polypeptide of SEQ ID NO: 1 was synthesized by GenScript.
  • the synthetic gene was inserted downstream of the LacZ promoter of the plasmid pUC57. Therefore, the plasmid into which the synthetic gene was inserted was used as an expression vector as it was, and this was designated as a recombinant expression plasmid pUC-DI-1.
  • the retained expression plasmid was transformed into Escherichia coli DH5 ⁇ strain competent cell (manufactured by Toyobo), pre-cultured at 37 ° C.
  • Escherichia coli DH5 ⁇ (pUC-DI-4).
  • Escherichia coli DH5 ⁇ (pUC-DI-1) was obtained.
  • Example 2 Preparation of Enzyme A colony of the transformant Escherichia coli DH5 ⁇ (pUC-DI-4) obtained in Example 1 was inoculated into a 5 ml LB-amp liquid medium in one platinum ear test tube, and 30 ° C. For 16 hours. This was used as seed culture. Next, TB liquid medium (tryptone 1.2%, yeast extract 2.4%, glycerol 0.4%, KH 2 PO 4 0.23%, K 2 HPO 4 1.25%, pH 7.0) was added. It put into the test tube and sterilized by the autoclave, and it was set as the culture medium of the main culture medium.
  • TB liquid medium tryptone 1.2%, yeast extract 2.4%, glycerol 0.4%, KH 2 PO 4 0.23%, K 2 HPO 4 1.25%, pH 7.0
  • TB medium 500 mL of TB medium was placed in a 2 L Sakaguchi flask and sterilized by autoclaving to obtain a main culture medium. 5 mL of the seed culture solution was inoculated into the main culture medium, and cultured with shaking at a culture temperature of 30 ° C. and 180 rpm for 24 hours. Thereafter, the cells were collected by centrifugation, and the cells were collected. The obtained bacterial cells were suspended in 20 mM potassium phosphate buffer (pH 7.5). The same operation was performed for Escherichia coli DH5 ⁇ (pUC-DI-1).
  • the suspension was fed to a French press (manufactured by Niro Soavi) at a flow rate of 160 mL / min and crushed at 700 to 1000 bar. Subsequently, a 5% polyethyleneimine solution (pH 7.5) prepared by adjusting ethyleneimine (polymer) (Nacalai Tesque Co., Ltd.) so as to have a polyethyleneimine content of 5% was prepared. %, And the mixture was stirred at room temperature for 30 minutes, and then excess precipitate was removed using a filter aid.
  • a 5% polyethyleneimine solution pH 7.5
  • ethyleneimine (polymer) Nacalai Tesque Co., Ltd.
  • ammonium sulfate (manufactured by Sumitomo Chemical Co., Ltd.) is gradually added to reach 0.5 saturation, ammonium sulfate fractionation is performed, and a protein having NAD-dependent glucose dehydrogenase activity is precipitated and recovered.
  • the precipitate was suspended in 20 mM potassium phosphate buffer (pH 7.5). The suspension was then desalted using a Sephadex G-25 gel.
  • Example 3 Screening of compounds having a stabilizing effect on diaphorase powder Using purified enzyme derived from Escherichia coli DH5 ⁇ (pUC-DI-4), mannitol, inositol, xylitol, trehalose, sorbitol, sodium L-glutamate, L- It was examined whether serine and L-threonine have a stabilizing effect. At the same time, the stabilizer concentrations of 30%, 50% and 70% were examined in order to see the concentration at which the stabilizer exerts its effect. Table 1 shows the effects of Geobacillus thermodenitificans NG80-2 derived wild-type diaphorase, stabilizer and concentration.
  • the preparation obtained in Example 2 contains about 70 mg / ml diaphorase protein in 20 mM potassium phosphate buffer (pH 7.5). Examination of the 30% concentration stabilizer was carried out by dissolving 21 mg of the stabilizer in an enzyme solution containing 70 mg of diaphorase to obtain a 30% concentration, and measuring the activity. For the study of the 50% concentration stabilizer, 35 mg of the stabilizer was dissolved in an enzyme solution containing 70 mg of diaphorase to obtain a 50% concentration, and the activity was measured. In the examination of the 70% concentration stabilizer, 49 mg of the stabilizer was dissolved in an enzyme solution containing 70 mg of diaphorase to obtain a 70% concentration, and the activity was measured.
  • each of the tare weight was dispensed into a measured vial. Moreover, what did not add a stabilizer was prepared for control. This was freeze-dried (FDR) to completely evaporate the water, and the weight of the vial was measured. The weight of the powder obtained by subtracting the tare weight was calculated. Thereafter, about 10 mg of powder was accurately weighed into a spitz roll, (1) immediately measured for activity, and (2) stored for 4 weeks at 37 ° C. and then measured for activity, and the activity per weight of powder was calculated. The activity remaining ratio was calculated by calculating the ratio of activity per powder weight of each sample after 37 ° C.
  • Example 4 Next, the stabilization effect of the compound that showed a stabilization effect in Example 3 was verified using a purified enzyme derived from Escherichia coli DH5 ⁇ (pUC-DI-1). Table 2 shows that Geobacillus sp. The influence of Y4.1MC1-derived wild type diaphorase, stabilizer and concentration is shown.
  • composition produced according to the present invention can be supplied as a raw material for a reagent for measuring blood glucose level, a blood glucose sensor, and a glucose concentration determination kit.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

[Problem] To provide a diaphorase composition, in which a stabilizing agent that is readily available, has uniform quality and does not affect the appearance, performance and quality of an enzyme preparation or an enzyme-containing composition is used as a stabilizing agent for diaphorase. [Solution] A composition characterized by comprising (a) diaphorase and (b) at least one compound selected from the group consisting of a sugar, a sugar alcohol and an amino acid.

Description

ジアホラーゼ組成物Diaphorase composition
 本発明は、ジアホラーゼを含む組成物に関するものである。  The present invention relates to a composition containing diaphorase. *
 ジアホラーゼ[EC.1.6.99.-]は、生体内では電子伝達系において重要な役割を果たしている。
 ジアホラーゼは、様々な技術分野において、その生体外での利用が検討され、一部が実用化されている。そのような技術分野としては、有用物質の生産、エネルギー関連物質の生産、測定又は分析、環境保全、医療などが挙げられる。例えば、臨床診断の分野では、ジアホラーゼは、それが還元型ニコチンアミドアデニンジヌクレオチド(NADH)または還元型ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)を基質とするという特性を利用して、種々の体外診断用試薬に使用されている。また、ジアホラーゼは、燃料電池の一種である酵素電池にも使用されている(非特許文献1)。
Diaphorase [EC. 1.6.99. -] Plays an important role in the electron transport system in vivo.
Diaphorase has been studied for in vitro use in various technical fields, and a part of it has been put into practical use. Such technical fields include production of useful substances, production of energy-related substances, measurement or analysis, environmental conservation, medical care, and the like. For example, in the field of clinical diagnostics, diaphorase takes advantage of the property that it uses reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) as a substrate. Used in diagnostic reagents. Diaphorase is also used in an enzyme battery which is a kind of fuel cell (Non-patent Document 1).
 ジアホラーゼは、クロストリジウム(Clostridium)属(非特許文献2)、または、バチルス(Bacillus)属(特許文献1、特許文献2)に属する微生物から単離・精製されたものが市販されている。特許文献1および特許文献2で記載のジアホラーゼを生産するバチルス・ステアロサーモフィラスアス(Bacillus・stearothermophilus)は、2001年にゲオバチルス・ステアロサーモフィラスアス(Geobacillus stearothermophilus)として再分類された(非特許文献3)。ゲオバチルス・ステアロサーモフィラスアス(Geobacillus stearothermophilus)由来のもの、あるいは、それらを改変したものなどが知られており、その遺伝子配列、アミノ酸配列および理化学的特性が調べられている(特許文献2、特許文献3、非特許文献1)。 As diaphorase, those isolated and purified from microorganisms belonging to the genus Clostridium (Non-patent Document 2) or the genus Bacillus (Patent Document 1, Patent Document 2) are commercially available. The Bacillus stearothermophilus as producing diaphorase described in Patent Document 1 and Patent Document 2 was reclassified as Geobacillus stearothermophilus in 2001 (Geobacillus stearothermophilus). Non-patent document 3). Known from Geobacillus stearothermophilus, or modified ones thereof, and their gene sequence, amino acid sequence and physicochemical properties have been investigated (Patent Document 2, Patent Document 3, Non-Patent Document 1).
一方、試薬やセンサに用いられる原料酵素はそのほとんどが乾燥状態(例えば粉末)の製品(乾燥品)として流通している。その理由としては、製品が軽く体積が小さいため、保管や輸送といった取り扱いが容易であり、乾燥しているため微生物汚染による腐敗の心配のないことが挙げられる。また、酵素の溶解濃度を使用目的に応じて自由に調整でき、溶解するための緩衝液の種類も任意に選定できるため、様々な用途に展開できる。さらに、一般的に乾燥状態である方が、溶液状態であるよりも酵素活性が安定的に長期間保持できる。  On the other hand, most of the raw material enzymes used for reagents and sensors are distributed as dried products (for example, powders) (dry products). The reason for this is that the product is light and small in volume, so that it can be easily stored and transported, and since it is dry, there is no risk of spoilage due to microbial contamination. In addition, the dissolution concentration of the enzyme can be freely adjusted according to the purpose of use, and the type of buffer solution for dissolution can be arbitrarily selected, so that it can be developed for various uses. Furthermore, in general, the enzyme activity can be stably maintained for a long time in a dry state rather than in a solution state. *
 酵素を乾燥状態にする手段は様々である。例えば、酵素タンパク質を含む溶液中からアセトンやアルコール等の有機溶媒によって目的酵素を析出させ、これを回収して乾燥粉末とする方法、酵素を含む溶液を噴霧し熱風を当てて乾燥させるスプレードライ法、酵素を含む溶液を凍結させ、減圧して乾燥するフリーズドライ法などがある。  There are various means for drying the enzyme. For example, a method of precipitating the target enzyme from a solution containing enzyme protein with an organic solvent such as acetone or alcohol and collecting it to obtain a dry powder. A spray drying method of spraying a solution containing the enzyme and applying hot air to dry the solution. There is a freeze drying method in which a solution containing an enzyme is frozen and dried under reduced pressure. *
 いずれの条件にしても、酵素を不用意に乾燥させた場合、タンパク質変性による活性の損失や再溶解時の濁質生成等の問題が発生することが多いため、酵素タンパク質を保護し変性失活を防ぐための安定化剤の添加が不可欠である。酵素製品に添加する安定化剤は、単に製品化時、乾燥による酵素タンパク質の変性失活を防止するだけでなく、保存中や流通過程での活性損失を防止する能力も具備する必要がある。  Regardless of the conditions, if the enzyme is inadvertently dried, problems such as loss of activity due to protein denaturation and turbidity generation during re-dissolution often occur. It is essential to add a stabilizer to prevent this. The stabilizer added to the enzyme product must not only prevent denaturation and deactivation of the enzyme protein due to drying, but also have the ability to prevent loss of activity during storage and distribution. *
昭60-156381Sho 60-156381 特許3953578号Japanese Patent No. 3953578 特開2007-143493JP2007-143493
本発明の目的は、ジアホラーゼの安定化剤として、入手が容易で、品質が均一であり、酵素製品や酵素を含む組成物の外観や性能、品質に影響を与えない安定化剤を使用したジアホラーゼ組成物を提供することである。  An object of the present invention is a diaphorase that uses a stabilizer that is easily available, has a uniform quality, and does not affect the appearance, performance, and quality of an enzyme product or a composition containing an enzyme, as a stabilizer for diaphorase. It is to provide a composition. *
本発明者らは、乾燥状態のジアホラーゼ組成物の保存安定性を向上させるべく、種々の物質を検討した。その結果、糖類、糖アルコール類、アミノ酸類のいずれか1つ以上の化合物を共存させることによってジアホラーゼの安定性が向上することを見出し、本発明を完成するに至った。 The present inventors examined various substances in order to improve the storage stability of a diaphorase composition in a dry state. As a result, the inventors have found that the stability of diaphorase is improved by coexisting one or more compounds of saccharides, sugar alcohols, and amino acids, and the present invention has been completed.
すなわち、本発明は以下に関する。
 項1.(a)ジアホラーゼ、(b)糖類、糖アルコール類およびアミノ酸類よりなる群から選ばれるいずれか1つ以上の化合物を含有することを特徴とする組成物。 
 項2.(b)の化合物がマンニトール、イノシトール、キリシトール、トレハロース、ソルビトールおよびL-グルタミン酸ナトリウムよりなる群から選ばれるいずれか1つ以上である項1に記載の組成物。 
 項3.(b)の化合物がジアホラーゼタンパク質量に対し、30~70%(w/w)含まれる項1または項2の組成物。 
項4.ジアホラーゼが下記のいずれかのタンパク質である項1-3のいずれかに記載の組成物。 
 (a)配列番号1に記載のアミノ酸配列を有するタンパク質
 (b)配列番号1に記載のアミノ酸配列において1または数個のアミノ酸が欠失、挿入、付加もしくは置換されているアミノ酸配列を有するタンパク質であって、ジアホラーゼ活性を有するタンパク質 
(c)配列番号2に記載のアミノ酸配列を有するタンパク質
 (d)配列番号2に記載のアミノ酸配列において1または数個のアミノ酸が欠失、挿入、付加もしくは置換されているアミノ酸配列を有するタンパク質であって、ジアホラーゼ活性を有するタンパク質 
項5.項1-4のいずれかに記載の組成物を含むプロダクト。
項6.(a)ジアホラーゼ、(b)糖類、糖アルコール類およびアミノ酸類よりなる群から選ばれるいずれか1つ以上の化合物を共存させることを特徴とするジアホラーゼ組成物中のジアホラーゼの安定化法。 
That is, the present invention relates to the following.
Item 1. (A) A composition containing any one or more compounds selected from the group consisting of diaphorase, (b) saccharides, sugar alcohols and amino acids.
Item 2. Item 2. The composition according to Item 1, wherein the compound (b) is at least one selected from the group consisting of mannitol, inositol, xylitol, trehalose, sorbitol, and sodium L-glutamate.
Item 3. Item 3. The composition according to Item 1 or Item 2, wherein the compound (b) is contained in an amount of 30 to 70% (w / w) based on the amount of diaphorase protein.
Item 4. Item 4. The composition according to any one of Items 1-3, wherein the diaphorase is any one of the following proteins:
(A) a protein having the amino acid sequence described in SEQ ID NO: 1 (b) a protein having an amino acid sequence in which one or several amino acids are deleted, inserted, added or substituted in the amino acid sequence described in SEQ ID NO: 1 A protein having diaphorase activity
(C) a protein having the amino acid sequence of SEQ ID NO: 2 (d) a protein having an amino acid sequence in which one or several amino acids are deleted, inserted, added or substituted in the amino acid sequence of SEQ ID NO: 2 A protein having diaphorase activity
Item 5. Item 10. A product comprising the composition according to any one of Items 1-4.
Item 6. (A) A method for stabilizing diaphorase in a diaphorase composition, wherein any one or more compounds selected from the group consisting of diaphorase, (b) saccharides, sugar alcohols and amino acids are allowed to coexist.
本発明により、ジアホラーゼの乾燥品、特に凍結乾燥製品の安定性を確保し、長期間の保存においても酵素の失活を防止することができる。  According to the present invention, the stability of a dried diaphorase product, particularly a freeze-dried product, can be secured, and inactivation of the enzyme can be prevented even during long-term storage. *
Geobacillus thermodenitrificans NG80-2由来野生型ジアホラーゼ(配列表1)とGeobacillus sp. Y4.1MC1由来野生型ジアホラーゼ(配列表2)のアミノ酸配列アライメントGeobacillus thermodenitificans NG80-2 derived wild-type diaphorase (Sequence Listing 1) and Geobacillus sp. Amino acid sequence alignment of wild type diaphorase derived from Y4.1MC1 (Sequence Listing 2)
以下、本発明を詳細に説明する。
1.ジアホラーゼ
1-1.ジアホラーゼ活性
「ジアホラーゼ(Diaphorase)」は、NADH又はNADPHをフェリシアン化カリウム、メチレンブルー、2,6-ジクロルインドフェノール(DCPIP)、テトラゾリウム塩等の色素で酸化する反応を触媒する活性(即ち、ジアホラーゼ活性)を持つ酵素であり、細菌、酵母等の微生物から哺乳類動物まで広く分布する。このジアホラーゼは、生体内の電子伝達系において重要な役割を果たし、このジアホラーゼによって、NAD又はNADP依存性の脱水素酵素類による基質からの脱水素反応により生成されるNADH又はNADPHは、電子受容体で酸化され、電子受容体は還元型となる。
Hereinafter, the present invention will be described in detail.
1. Diaphorase 1-1. Diaphorase activity “Diaphorase” is an activity that catalyzes a reaction of oxidizing NADH or NADPH with a dye such as potassium ferricyanide, methylene blue, 2,6-dichloroindophenol (DCPIP), tetrazolium salt (ie, diaphorase activity). It is an enzyme with a wide distribution from microorganisms such as bacteria and yeast to mammals. This diaphorase plays an important role in the in vivo electron transport system, and NADH or NADPH produced by the dehydrogenation reaction from the substrate by NAD or NADP-dependent dehydrogenases by this diaphorase is an electron acceptor. The electron acceptor becomes a reduced form.
ジアホラーゼ活性は、公知の方法で測定することができる。例えば、DCPIPを電子受容体として用い、反応前後における600nmの波長における試料の吸光度の変化を指標に活性を測定することができる。より具体的には、下記の試薬及び測定条件を用いて活性を測定することができる。 Diaphorase activity can be measured by a known method. For example, using DCPIP as an electron acceptor, the activity can be measured using the change in absorbance of the sample at a wavelength of 600 nm before and after the reaction as an index. More specifically, the activity can be measured using the following reagents and measurement conditions.
 ジアホラーゼ活性の測定方法
<試薬>
蒸留水
200mM Tris-HCl緩衝液pH7.5
6.0mM NADH水溶液
1.2mM 2,6-ジクロロフェノールインドフェノール(DCPIP)溶液
酵素希釈溶液 0.1%牛血清アルブミンを含む200mM Tris-HCl緩衝液pH7.5
<手順1>
ジアホラーゼ溶液を、予め氷冷した上記酵素希釈溶液で0.4~0.8U/mlに希釈し、氷冷保存したものを酵素溶液とする。
<手順2>
上記蒸留水2.4mL、Tris-HCl緩衝液0.3mL、NADH水溶液0.1mLを混合し、25℃にて5分間予備加温したものを反応混液とする。
Method for measuring diaphorase activity <Reagent>
Distilled water 200 mM Tris-HCl buffer pH 7.5
6.0 mM NADH aqueous solution 1.2 mM 2,6-dichlorophenolindophenol (DCPIP) solution enzyme diluted solution 200 mM Tris-HCl buffer pH 7.5 containing 0.1% bovine serum albumin
<Procedure 1>
The diaphorase solution is diluted to 0.4 to 0.8 U / ml with the above enzyme-diluted solution that has been ice-cooled in advance, and the solution that has been ice-cooled is used as the enzyme solution.
<Procedure 2>
The reaction mixture is prepared by mixing 2.4 mL of distilled water, 0.3 mL of Tris-HCl buffer, and 0.1 mL of NADH aqueous solution and pre-warming at 25 ° C. for 5 minutes.
<測定条件>
 反応混液2.8mLに、酵素溶液0.1mL、DCPIP溶液0.1mLの順番で添加しゆるやかに混和後、水を対照に25℃に制御された分光光度計(光路長1.0cm)で、600nmの吸光度変化を2~3分間記録し、その後直線部分から(即ち、反応速度が一定になってから)1分間あたりの吸光度変化(ΔODTEST)を測定する。盲検は酵素溶液の代わりにジアホラーゼを溶解する酵素希釈溶液とDCPIP溶液を反応混液に加えて同様に1分間あたりの吸光度変化(ΔODBLANK)を測定する。これらの値から次の式に従ってジアホラーゼ活性を求める。ここでジアホラーゼ活性における1単位(U)とは、上記の測定条件で1分間に600nmの吸光度を1.0減少させる酵素量である。
 
活性(U/mL)=
{-(ΔODTEST-ΔODBLANK)×希釈倍率}/(1.0×0.1)
 
なお、式中の1.0は活性定義に基いて定められた600nmにおける単位吸光度、0.1は酵素溶液の液量(mL)を示す。本書においては、別段の表示しない限り、酵素活性は上記の測定方法に従って、測定される。
<Measurement conditions>
To the reaction mixture 2.8 mL, add 0.1 mL of the enzyme solution and 0.1 mL of the DCPIP solution in order, and mix gently. Then, with a spectrophotometer (optical path length 1.0 cm) controlled at 25 ° C. with water as a control, The absorbance change at 600 nm is recorded for 2 to 3 minutes, and then the absorbance change per minute (ΔOD TEST ) is measured from the linear portion (ie, after the reaction rate becomes constant). In the blind test, an enzyme dilution solution that dissolves diaphorase and a DCPIP solution are added to the reaction mixture instead of the enzyme solution, and the change in absorbance per minute (ΔOD BLANK ) is similarly measured. From these values, diaphorase activity is determined according to the following formula. Here, 1 unit (U) in the diaphorase activity is the amount of enzyme that reduces the absorbance at 600 nm by 1.0 under the above measurement conditions for 1 minute.

Activity (U / mL) =
{-(ΔOD TEST -ΔOD BLANK ) × dilution ratio} / (1.0 × 0.1)

In the formula, 1.0 represents the unit absorbance at 600 nm determined based on the activity definition, and 0.1 represents the volume (mL) of the enzyme solution. In this document, unless otherwise indicated, enzyme activity is measured according to the measurement method described above.
 本発明に適用されるジアホラーゼは、単離されたジアホラーゼ又は精製されたジアホラーゼであることが好ましい。また、本発明に適用されるジアホラーゼは、保存に適した溶液中に溶解した状態又は凍結乾燥された状態(例えば、粉末状)で存在してもよい。本発明に適用される酵素(ジアホラーゼ)に関して使用する場合の「単離された」とは、当該酵素以外の成分(例えば、宿主細胞に由来する夾雑タンパク質、他の成分、培養液等)を実質的に含まない)状態をいう。具体的には例えば、本発明に適用される単離された酵素は、夾雑タンパク質の含有量が重量換算で全体の約20%未満、好ましくは約10%未満、更に好ましくは約5%未満、より一層好ましくは約1%未満である。一方で、本発明に適用されるジアホラーゼは、保存又は酵素活性の測定に適した溶液(例えば、バッファー)中に存在してもよい。 The diaphorase applied to the present invention is preferably an isolated diaphorase or a purified diaphorase. Moreover, the diaphorase applied to the present invention may exist in a state dissolved in a solution suitable for storage or in a lyophilized state (for example, in a powder form). “Isolated” when used in relation to the enzyme (diaphorase) applied to the present invention means that components other than the enzyme (for example, contaminating proteins derived from host cells, other components, culture fluid, etc.) Not included). Specifically, for example, the isolated enzyme applied to the present invention has a contaminating protein content of less than about 20% by weight, preferably less than about 10%, more preferably less than about 5%. Even more preferably, it is less than about 1%. On the other hand, the diaphorase applied to the present invention may be present in a solution (for example, a buffer) suitable for storage or measurement of enzyme activity.
1-2.ポリペプチド
 本発明に適用されるジアホラーゼは、下記(a)~(c)のいずれかのポリペプチドで構成されることが好ましい。
(a)配列番号1または配列番号2に示されるアミノ酸配列からなるポリペプチド;
(b)配列番号1または配列番号2に示されるアミノ酸配列において、1若しくは数個のアミノ酸残基が置換、欠失、挿入、付加および/または逆位したアミノ酸配列からなり、ジアホラーゼ活性を有するポリペプチド;
(c)配列番号1または配列番号2に示されるアミノ酸配列との同一性が80%以上であるアミノ酸配列からなり、ジアホラーゼ活性を有するポリペプチド。
1-2. Polypeptide The diaphorase applied to the present invention is preferably composed of any of the following polypeptides (a) to (c).
(A) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2;
(B) a polyamino acid sequence consisting of an amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted, added and / or inverted in the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 and having diaphorase activity peptide;
(C) A polypeptide comprising an amino acid sequence having an identity of 80% or more with the amino acid sequence shown in SEQ ID NO: 1 or 2 and having diaphorase activity.
 配列番号1または配列番号2で示されるアミノ酸配列とは、実施例5に示される通り、Geobacillus属に由来するジアホラーゼのアミノ酸配列である。
 配列番号1に記載のアミノ酸配列は、Geobacillus thermodenitrificans NG80-2由来の野生型ジアホラーゼのアミノ酸配列である。
配列番号2に記載のアミノ酸配列は、Geobacillus sp. Y4.1MC1由来の野生型ジアホラーゼのアミノ酸配列である。
The amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 is an amino acid sequence of diaphorase derived from the genus Geobacillus as shown in Example 5.
The amino acid sequence shown in SEQ ID NO: 1 is the amino acid sequence of wild-type diaphorase derived from Geobacillus thermodenitificans NG80-2.
The amino acid sequence set forth in SEQ ID NO: 2 is Geobacillus sp. It is the amino acid sequence of wild type diaphorase derived from Y4.1MC1.
 上記(b)のポリペプチドは、ジアホラーゼ活性を保持する限度で、配列番号1に示されるアミノ酸において、1若しくは数個のアミノ酸配残基が置換、欠失、挿入及び/又は付加(以下、これらを纏めて「変異」とする場合がある。)されたアミノ酸配列からなるポリペプチドである。ここで「数個」とは、ジアホラーゼ活性が維持される限り制限されないが、例えば、全アミノ酸の約20%未満に相当する数であり、好ましくは約15%未満に相当する数であり、さらに好ましくは約10%未満に相当する数であり、より一層好ましくは約5%未満に相当する数であり、最も好ましくは約1%未満に相当する数である。より具体的には、変異されるアミノ酸残基の個数は、例えば、2~127個、好ましくは2~96個、より好ましくは2~64個、更に好ましくは2~32個であり、より更に好ましくは2~20個、一層好ましくは2~15個、より一層好ましくは2~10個、特に好ましくは2~5個である。 In the polypeptide (b) above, one or several amino acid residues are substituted, deleted, inserted and / or added (hereinafter referred to as these) in the amino acid shown in SEQ ID NO: 1 as long as the diaphorase activity is retained. Are collectively referred to as “mutations.”) A polypeptide comprising an amino acid sequence. Here, “several” is not limited as long as the diaphorase activity is maintained, for example, a number corresponding to less than about 20% of all amino acids, preferably a number corresponding to less than about 15%, The number is preferably less than about 10%, more preferably less than about 5%, and most preferably less than about 1%. More specifically, the number of amino acid residues to be mutated is, for example, 2 to 127, preferably 2 to 96, more preferably 2 to 64, still more preferably 2 to 32, and even more. The number is preferably 2 to 20, more preferably 2 to 15, even more preferably 2 to 10, and particularly preferably 2 to 5.
一又は数個の変異は、制限酵素処理、エキソヌクレアーゼやDNAリガーゼ等による処理、位置指定突然変異導入法やランダム突然変異導入法など公知の手法を利用して本発明のジアホラーゼをコードするDNAに変異を導入することによって実施することが可能である。また、紫外線照射など他の方法によってもバリアントジアホラーゼを得ることができる。バリアントジアホラーゼには、ジアホラーゼを保持する微生物の個体差、種や属の違いに基づく場合などの天然に生じるバリアント(例えば、一塩基多型も含まれる。) One or several mutations may be introduced into the DNA encoding the diaphorase of the present invention using a known method such as restriction enzyme treatment, treatment with exonuclease or DNA ligase, position-directed mutagenesis or random mutagenesis. It can be carried out by introducing mutations. Variant diaphorase can also be obtained by other methods such as ultraviolet irradiation. Variant diaphorase includes naturally occurring variants (for example, single nucleotide polymorphisms are also included) based on individual differences in microorganisms that retain diaphorase, differences in species or genera, and the like.
 また、ジアホラーゼの活性を維持するという観点からは、ジアホラーゼの活性部位又は基質結合部位に影響を与えない部位において上記変異が存在することが好ましい。 In addition, from the viewpoint of maintaining the activity of diaphorase, it is preferable that the mutation is present at a site that does not affect the active site or substrate binding site of diaphorase.
上記(c)のポリペプチドは、ジアホラーゼ活性を保持することを限度で、配列番号1に示されるアミノ酸配列と比較した同一性が80%以上であるアミノ酸配列からなるポリペプチドである。好ましくは、本発明のジアホラーゼが有するアミノ酸配列と配列番号1に示されるアミノ酸配列との同一性は、85%以上であり、より好ましくは88%以上、更に好ましくは90%以上、より更に好ましくは93%以上、一層好ましくは95%以上、特に好ましくは98%以上、最も好ましくは99%以上である。このような一定以上の同一性を有するアミノ酸配列からなるポリペプチドは、上述するような公知の遺伝子工学的手法に基づいて作成することができる。 The polypeptide (c) is a polypeptide comprising an amino acid sequence having an identity of 80% or more compared to the amino acid sequence shown in SEQ ID NO: 1 as long as it retains diaphorase activity. Preferably, the identity between the amino acid sequence of the diaphorase of the present invention and the amino acid sequence shown in SEQ ID NO: 1 is 85% or more, more preferably 88% or more, still more preferably 90% or more, and still more preferably 93% or more, more preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more. Such a polypeptide comprising an amino acid sequence having a certain identity or more can be prepared based on the known genetic engineering techniques as described above.
アミノ酸配列の同一性は、市販の又は電気通信回線(インターネット)を通じて利用可能な解析ツールを用いて算出することができ、例えば、全米バイオテクノロジー情報センター(NCBI)の相同性アルゴリズムBLAST(Basic local alignment search tool)http://www.ncbi.nlm.nih.gov/BLAST/ においてデフォルト(初期設定)のパラメーターを用いることにより、算出することができる。本願ではアミノ酸配列の同一性の計算にこの方法を用いる。 The identity of amino acid sequences can be calculated using analysis tools that are commercially available or available through telecommunication lines (Internet). For example, the homology algorithm BLAST (Basic local alignment) of the National Center for Biotechnology Information (NCBI) search tool) http: // www. ncbi. nlm. nih. It can be calculated by using default (initial setting) parameters in gov / BLAST /. In this application, this method is used to calculate the identity of amino acid sequences.
本発明に適用されるジアホラーゼの別の由来として、例えば、土壌や河川・湖沼などの水系又は海洋に存在する微生物や各種動植物の表面または内部に常在する微生物等を挙げることができる。低温環境、火山などの高温環境、深海などの無酸素・高圧・無光環境、油田など特殊な環境に生育する微生物に由来するものを単離源としてもよい。 As another origin of diaphorase applied to the present invention, for example, microorganisms present in water systems such as soil, rivers, lakes and marshes or in the ocean, microorganisms resident on the surface or inside various animals and plants, and the like can be mentioned. Isolation sources may be those derived from microorganisms that grow in a low temperature environment, a high temperature environment such as a volcano, an oxygen-free / high-pressure / light-free environment such as the deep sea, and a special environment such as an oil field.
本発明に適用されるジアホラーゼには、微生物から直接単離されるジアホラーゼだけでなく、単離されたジアホラーゼを蛋白質工学的な方法によりアミノ酸配列等を改変したものや、遺伝子工学的手法により改変したものも含まれる。例えば、前述の、ゲオバチルス属に分類される微生物等から取得した酵素を改変したものであってもよい。 The diaphorase applied to the present invention includes not only a diaphorase directly isolated from a microorganism, but also an isolated diaphorase whose amino acid sequence has been modified by a protein engineering method, or a genetic engineering method. Is also included. For example, a modified enzyme obtained from a microorganism classified into the genus Geobacillus as described above may be used.
1-3.ジアホラーゼの製造方法
本発明に適用されるジアホラーゼを製造する方法は特に限定されないが、例えば、ジアホラーゼを発現する微生物を培養し、得られた培養液を精製することによって製造することができる。
一般に、目的の蛋白質を、該蛋白質を発現する微生物を培養し、得られた培養液を精製することによって製造する方法は既に当該技術分野において確立されている。よって、当業者はその知見を適用してジアホラーゼを製造することができ、その態様は特に制限されない。
1-3. Method for Producing Diaphorase The method for producing diaphorase applied to the present invention is not particularly limited. For example, it can be produced by culturing a microorganism expressing diaphorase and purifying the obtained culture solution.
In general, a method for producing a target protein by culturing a microorganism that expresses the protein and purifying the obtained culture solution has already been established in the art. Therefore, those skilled in the art can apply the knowledge to produce diaphorase, and the embodiment is not particularly limited.
本発明に適用されるジアホラーゼの製造方法において、ジアホラーゼの発現系を構築する方法は特に限定されない。例えば、ジアホラーゼの生産能を有する微生物をそのまま発現系として用いればよい。あるいは、ジアホラーゼをコードするDNAを適当な宿主ベクター系に導入して作製した遺伝子組み換え体(形質転換体とも言う)を発現系としてもよい。産業上は、制御がしやすい、安全性がより高い、等の理由で遺伝子組み換え体を用いることが好ましい。 In the method for producing diaphorase applied to the present invention, the method for constructing the diaphorase expression system is not particularly limited. For example, a microorganism having an ability to produce diaphorase may be used as an expression system as it is. Alternatively, a gene recombinant (also referred to as a transformant) prepared by introducing DNA encoding diaphorase into an appropriate host vector system may be used as the expression system. From an industrial viewpoint, it is preferable to use a genetic recombinant for reasons such as easy control and higher safety.
ジアホラーゼの生産能を有する微生物としては、上述のゲオバチルス属などの超好熱性始原菌に由来するもの等が挙げられる。 Examples of microorganisms capable of producing diaphorase include those derived from the hyperthermophilic archaeon such as the aforementioned Geobacillus genus.
遺伝子組み換え体を作製する場合、ジアホラーゼをコードするDNAは、標準的な遺伝子工学的手法を用いて容易に調製することができる(Molecular Cloning 2d Ed, Cold Spring Harbor Lab. Press (1989);続生化学実験講座「遺伝子研究法I、II、III」、日本生化学会編(1986)等参照)。具体的には、上述の、本発明に適用されるジアホラーゼが発現される適当な起源微生物より、常法に従ってcDNAライブラリーを調製し、該ライブラリーから、前記ジアホラーゼのDNA配列に特有の適当なプローブや抗体を用いて所望クローンを選択することにより実施できる。 In the case of producing a recombinant, diaphorase-encoding DNA can be easily prepared using standard genetic engineering techniques (Molecular Cloning 2d Ed, Cold Spring Harbor Lab. Press (1989); Chemistry experiment course "gene research method I, II, III", Japan Biochemical Society edition (1986) etc.). Specifically, a cDNA library is prepared according to a conventional method from the above-mentioned appropriate source microorganism in which the diaphorase applied to the present invention is expressed, and an appropriate sequence peculiar to the DNA sequence of the diaphorase is prepared from the library. This can be performed by selecting a desired clone using a probe or an antibody.
上記の微生物からの全RNAの分離、mRNAの分離や精製、cDNAの取得とそのクローニング、塩基配列の決定等は、いずれも常法に従って実施することができる。本発明のDNAをcDNAライブラリーからスクリーニングする方法も、特に制限されず、通常の方法に従うことができる。例えば、cDNAによって産生されるポリペプチドに対して、該ポリペプチド特異抗体を使用した免疫的スクリーニングにより対応するcDNAクローンを選択する方法、目的のヌクレオチド配列に選択的に結合するプローブを用いたプラークハイブリダイゼーション、コロニーハイブリダイゼーション等やこれらの組合せ等を適宜選択して実施することができる。 Isolation of total RNA from the above microorganisms, isolation and purification of mRNA, acquisition and cloning of cDNA, determination of base sequence, etc. can all be carried out according to conventional methods. The method for screening the DNA of the present invention from a cDNA library is not particularly limited, and can be performed according to a usual method. For example, for a polypeptide produced by cDNA, a method for selecting a corresponding cDNA clone by immunoscreening using the polypeptide-specific antibody, a plaque high using a probe that selectively binds to a target nucleotide sequence Hybridization, colony hybridization, etc., and combinations thereof can be selected as appropriate.
DNAの取得に際しては、PCR法またはその変法によるDNA若しくはRNA増幅法が好適に利用できる。PCR法に使用されるプライマーも上記で決定した塩基配列に基づいて適宜設計し合成することができる。尚、増幅させたDNA若しくはRNA断片の単離精製は、前記の通り常法に従うことができ、例えばゲル電気泳動法、ハイブリダイゼーション法等によることができる。 In obtaining DNA, a PCR method or a modified DNA or RNA amplification method thereof can be suitably used. Primers used in the PCR method can also be appropriately designed and synthesized based on the base sequence determined above. In addition, isolation and purification of the amplified DNA or RNA fragment can be carried out according to a conventional method as described above, for example, by gel electrophoresis, hybridization or the like.
ジアホラーゼをコードするDNAは、適当な発現ベクターに組み込むことができる。発現ベクターは、適当な宿主細胞内で該DNAを複製可能であり、且つ、その発現が可能である限り、その種類や構造は特に限定されない。ベクターの種類は、宿主細胞の種類を考慮して適当に選択される。ベクターの具体例としては、プラスミドベクター、コスミドベクター、ファージベクター、ウイルスベクター(アデノウイルスベクター、アデノ随伴ウイルスベクター、レトロウイルスベクター、ヘルペスウイルスベクター等)等を挙げることができる。また、セルフクローニングに適したベクターを使用することも可能である。 The DNA encoding diaphorase can be incorporated into an appropriate expression vector. The type and structure of the expression vector are not particularly limited as long as the DNA can be replicated in an appropriate host cell and can be expressed. The type of vector is appropriately selected in consideration of the type of host cell. Specific examples of the vector include a plasmid vector, a cosmid vector, a phage vector, a virus vector (an adenovirus vector, an adeno-associated virus vector, a retrovirus vector, a herpes virus vector, etc.) and the like. It is also possible to use a vector suitable for self-cloning.
ジアホラーゼをコードするDNAが組み込まれた発現ベクターは、適当な宿主細胞に導入され、該ジアホラーゼを産生する能力を有する形質転換体とすることができる。宿主細胞は、そのDNAを発現してジアホラーゼを生産することが可能である限り、特に制限されない。具体的には、大腸菌、枯草菌等の原核細胞や、酵母、糸状菌などのカビ、昆虫細胞、植物培養細胞、哺乳動物細胞等の真核細胞等を使用することができる。中でも大腸菌、枯草菌、糸状菌が好ましい。大腸菌がさらに好ましい。 An expression vector in which DNA encoding diaphorase is incorporated can be introduced into an appropriate host cell to be a transformant having the ability to produce the diaphorase. The host cell is not particularly limited as long as it can express the DNA and produce diaphorase. Specifically, prokaryotic cells such as Escherichia coli and Bacillus subtilis, molds such as yeast and filamentous fungi, eukaryotic cells such as insect cells, cultured plant cells, and mammalian cells can be used. Of these, Escherichia coli, Bacillus subtilis and filamentous fungi are preferable. E. coli is more preferred.
また、形質転換体では、通常、外来性のDNAが宿主細胞中に存在するが、DNAが由来する微生物を宿主とするいわゆるセルフクローニングによって得られる形質転換体も好適な実施形態である。 In the transformant, exogenous DNA is usually present in the host cell, but a transformant obtained by so-called self-cloning using the microorganism from which the DNA is derived as a host is also a preferred embodiment.
上記の形質転換体は、好ましくは、上記に示される発現ベクターを用いたトランスフェクション乃至はトランスフォーメーションによって調製される。形質転換は、一過性であっても安定的な形質転換であってもよい。トランスフェクション及びトランスフォーメーションはリン酸カルシウム共沈降法、エレクトロポーレーション、リポフェクション、マイクロインジェクション、Hanahanの方法、酢酸リチウム法、プロトプラスト-ポリエチレングリコール法、等を利用して実施することができる。 The transformant is preferably prepared by transfection or transformation using the expression vector shown above. Transformation may be transient or stable. Transfection and transformation can be performed using calcium phosphate coprecipitation method, electroporation, lipofection, microinjection, Hanahan method, lithium acetate method, protoplast-polyethylene glycol method, and the like.
本発明に適用されるジアホラーゼは、ジアホラーゼを発現する遺伝子組換え体を培養し、得られた培養液を精製することにより製造することができる。培養方法及び培養条件は、ジアホラーゼが生産される限り特に限定されない。即ち、ジアホラーゼが生産されることを条件として、使用する微生物の生育に適合した方法及び条件を適宜設定できる。 The diaphorase applied to the present invention can be produced by culturing a gene recombinant that expresses diaphorase and purifying the obtained culture solution. The culture method and culture conditions are not particularly limited as long as diaphorase is produced. That is, on the condition that diaphorase is produced, a method and conditions suitable for the growth of the microorganism to be used can be appropriately set.
得られた培養液を回収する方法としては、ジアホラーゼを菌体外に分泌する微生物を用いる場合は、例えば培養上清をろ過、遠心処理等することによって不溶物を除去した後、限外ろ過膜による濃縮、硫安沈殿等の塩析、透析、各種クロマトグラフィーなどを適宜組み合わせて分離、精製を行うことによりジアホラーゼを得ることができる。 As a method for recovering the obtained culture solution, in the case of using a microorganism that secretes diaphorase to the outside of the cell body, for example, the culture supernatant is filtered and centrifuged to remove insoluble matters, and then an ultrafiltration membrane is used. The diaphorase can be obtained by separating and purifying by appropriately combining the concentration by the above, salting out such as ammonium sulfate precipitation, dialysis, and various chromatography.
他方、菌体内から回収する場合には、例えば菌体を加圧処理、超音波処理、機械的手法、又はリゾチーム等の酵素を利用した手法等によって破砕した後、必要に応じて、EDTA等のキレート剤及び界面活性剤を添加してジアホラーゼを可溶化し、水溶液として分離採取し、分離、精製を行うことにより本酵素を得ることができる。ろ過、遠心処理などによって予め培養液から菌体を回収した後、上記一連の工程(菌体の破砕、分離、精製)を行ってもよい。 On the other hand, when recovering from the microbial cells, for example, the microbial cells are crushed by pressure treatment, ultrasonic treatment, mechanical method, or a method using an enzyme such as lysozyme, and if necessary, such as EDTA. The enzyme can be obtained by solubilizing diaphorase by adding a chelating agent and a surfactant, separating and collecting it as an aqueous solution, separating and purifying it. After the cells are collected from the culture solution in advance by filtration, centrifugation, or the like, the above series of steps (crushing, separating, and purifying the cells) may be performed.
精製は、例えば、減圧濃縮、膜濃縮、さらに硫酸アンモニウム、硫酸ナトリウムなどの塩析処理、あるいは親水性有機溶媒、例えばメタノール、エタノール、アセトンなどによる分別沈殿法により沈殿処理、加熱処理や等電点処理、吸着剤あるいはゲルろ過剤などによるゲルろ過、吸着クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー等を適宜組み合わせて実施することができる。 Purification includes, for example, concentration under reduced pressure, membrane concentration, salting-out treatment such as ammonium sulfate and sodium sulfate, or precipitation treatment by a fractional precipitation method using a hydrophilic organic solvent such as methanol, ethanol, acetone, etc., heat treatment or isoelectric point treatment. In addition, gel filtration using an adsorbent or a gel filtration agent, adsorption chromatography, ion exchange chromatography, affinity chromatography, and the like can be combined as appropriate.
該精製酵素標品は、電気泳動(SDS-PAGE)的に単一のバンドを示す程度に純化されていることが好ましい。 The purified enzyme preparation is preferably purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
なお、培養液からのジアホラーゼ活性を有するタンパク質の採取(抽出、精製など)にあたっては、ジアホラーゼ活性、熱安定性などのうちいずれか1つ以上を指標に行ってもよい。 In collecting (extracting, purifying, etc.) a protein having diaphorase activity from the culture solution, any one or more of diaphorase activity, thermal stability, etc. may be used as an index.
組換えタンパク質として本酵素を得ることにすれば種々の修飾が可能である。例えば、本酵素をコードするDNAと他の適当なDNAとを同じベクターに挿入し、当該ベクターを用いて組換えタンパク質の生産を行えば、任意のペプチドないしタンパク質が連結された組換えタンパク質からなる本酵素を得ることができる。また、糖鎖及び/又は脂質の付加や、あるいはN末端若しくはC末端のプロセッシングが生ずるような修飾を施してもよい。以上のような修飾により、組換えタンパク質の抽出、精製の簡便化、又は生物学的機能の付加等が可能である。 If this enzyme is obtained as a recombinant protein, various modifications are possible. For example, if a DNA encoding this enzyme and other appropriate DNA are inserted into the same vector and a recombinant protein is produced using the vector, the peptide consists of a recombinant protein linked to any peptide or protein. This enzyme can be obtained. In addition, modification may be performed so that addition of sugar chain and / or lipid, or processing of N-terminal or C-terminal may occur. By the modification as described above, extraction of recombinant protein, simplification of purification, addition of biological function, and the like are possible.
なお、上記1-3.に記載の方法で製造するまでもなく、市販品として上記1-2.に記載の(a)~(c)のいずれかのポリペプチドを満たすものがあれば、それを本発明に適用しても差し支えない。 The above 1-3. The above-mentioned 1-2. If there is one that satisfies any of the polypeptides (a) to (c) described in (1), it may be applied to the present invention.
2.糖類、糖アルコール類およびアミノ酸類よりなる群から選ばれるいずれか1つ以上の化合物
本発明に適用される糖類、糖アルコール類およびアミノ酸類よりなる群から選ばれるいずれか1つ以上の化合物は特に限定されない。なお本願において「アミノ酸類」にはオリゴペプチド類および蛋白質類が含まれる。
好ましいものとして、糖類ではシュークロース、ガラクトース、アラビノース、リボース、メリビオース、メレジトース、デキストリン、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン、糖アルコール類ではイノシトール、ソルビトール、アラビトール、キシリトール、グルシトール、リビトール、D-マンニトール、アミノ酸類ではアラニン、セリン、スレオニン、アスパラギン、グルタミン、バリン、ロイシン、イソロイシン、オリゴペプチド類ではグリシルグリシン、アラニルグルタミン、グリシルグルタミン、グルタチオン、タンパク質類では牛血清アルブミン(BSA)、セリシンなどがある。より好ましくは、マンニトール、イノシトール、キリシトール、トレハロース、ソルビトールおよびL-グルタミン酸ナトリウムよりなる群から選ばれるいずれか1つ以上、を挙げることができる。 
2. Any one or more compounds selected from the group consisting of saccharides, sugar alcohols and amino acids Any one or more compounds selected from the group consisting of saccharides, sugar alcohols and amino acids applied to the present invention are particularly It is not limited. In the present application, “amino acids” includes oligopeptides and proteins.
As sugars, sucrose, galactose, arabinose, ribose, melibiose, melezitose, dextrin, α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin, sugar alcohols include inositol, sorbitol, arabitol, xylitol, glucitol, Ribitol, D-mannitol, amino acids alanine, serine, threonine, asparagine, glutamine, valine, leucine, isoleucine, oligopeptides are glycylglycine, alanylglutamine, glycylglutamine, glutathione, and proteins are bovine serum albumin ( BSA) and sericin. More preferably, any one or more selected from the group consisting of mannitol, inositol, xylitol, trehalose, sorbitol and sodium L-glutamate can be mentioned.
 これらの化合物は、安定化剤として、酵素の乾燥製品化の工程で酵素タンパク質を保護し工程での回収率を向上させ、乾燥製品の保存期間中の失活を防止する目的であるから、その目的を達成し得る範囲で適宜添加量を設定できる。したがってこれらの共存させる各化合物の濃度は特に限定されるものではないが、好ましい下限は2重量%、更に好ましくは20重量%、更に好ましくは30重量%である。夾雑物の持込の危険性から、好ましい上限は300重量%、更に好ましくは100重量%、更に好ましくは70重量%である。なお、これらの添加濃度は、ジアホラーゼ酵素タンパク質に対する重量%で表している。例えば、40mg/mlのジアホラーゼに対して50重量%の安定化剤を添加したとすると、1mlあたり20mg安定化剤を溶解したことになる。また、添加された化合物は酵素が溶液の状態であっても保護作用を有し、溶液中酵素活性の安定的な保持に寄与する。 These compounds are used as stabilizers to protect the enzyme protein in the process of making the enzyme dry product, to improve the recovery rate in the process, and to prevent inactivation during the storage period of the dry product. The addition amount can be appropriately set within a range in which the object can be achieved. Therefore, the concentration of each compound to be coexisted is not particularly limited, but the preferable lower limit is 2% by weight, more preferably 20% by weight, and further preferably 30% by weight. The upper limit is preferably 300% by weight, more preferably 100% by weight, and still more preferably 70% by weight because of the risk of bringing in foreign substances. In addition, these addition concentrations are represented by weight% with respect to the diaphorase enzyme protein. For example, if 50 wt% stabilizer is added to 40 mg / ml diaphorase, 20 mg stabilizer is dissolved per ml. In addition, the added compound has a protective action even when the enzyme is in a solution state, and contributes to stable retention of the enzyme activity in the solution.
 上記に示すジアホラーゼの抽出・精製・乾燥化、および安定性試験に用いる緩衝液の組成は特に限定しないが、好ましくはpH4-9の範囲で緩衝能を有するものであればよく例えばホウ酸、トリス塩酸、リン酸カリウム等の緩衝剤や、ACES、BES、Bicine、Bis-Tris,CHES、EPPS、HEPES、HEPPSO、MES、MOPS、MOPSO、PIPES、POPSO、TAPS、TAPSO、TES、Tricineといったグッド緩衝剤が挙げられる。また、フタル酸、マレイン酸、グルタル酸などのような、ジカルボン酸をベースとした緩衝剤も挙げることができる。これらのうち1種のみを適用してもよいし、2種以上を用いてもよい。更には上記以外を含む1種以上の複合組成であってもよい。また、必要に応じて緩衝液中にEDTA等のキレート剤、および、または、界面活性剤を含んでいてもよい。
また、これらの添加濃度としては、緩衝能を持つ範囲であれば特に限定されないが、好ましい上限は100mM以下、より好ましくは50mM以下である。好ましい下限は5mM以上である。
乾燥粉末あるいは凍結乾燥物などの中においては緩衝剤の含有量は、特に限定されるものではないが、好ましくは0.1%(重量比)以上、特に好ましくは0.1-80%(重量比)の範囲で使用される。 
 これらは、種々の市販の試薬を用いることができる。 
The composition of the buffer solution used for the diaphorase extraction / purification / drying and stability test described above is not particularly limited, but any buffer solution having a buffer capacity in the range of pH 4-9 is preferable. Buffers such as hydrochloric acid and potassium phosphate, and good buffers such as ACES, BES, Bicine, Bis-Tris, CHES, EPPS, HEPES, HEPPSO, MES, MOPS, MOPSO, PIPES, POPSO, TAPS, TAPSO, TES, Tricine Is mentioned. Mention may also be made of buffers based on dicarboxylic acids, such as phthalic acid, maleic acid, glutaric acid and the like. Of these, only one type may be applied, or two or more types may be used. Furthermore, one or more composite compositions including those other than the above may be used. Further, a chelating agent such as EDTA and / or a surfactant may be contained in the buffer as necessary.
In addition, the concentration of these additives is not particularly limited as long as it has a buffer capacity, but the preferable upper limit is 100 mM or less, more preferably 50 mM or less. A preferred lower limit is 5 mM or more.
The content of the buffer in the dry powder or lyophilized product is not particularly limited, but is preferably 0.1% (weight ratio) or more, particularly preferably 0.1-80% (weight). Ratio).
For these, various commercially available reagents can be used.
 乾燥工程に供する酵素液は、好ましくはタンパク質濃度として5g/L以上、より好ましくは10g/L以上、更に好ましくは20g/L以上であるように濃度を調整する。乾燥工程に供する酵素があまりに希薄な場合、乾燥工程で回収率が低下することが多く、得られた乾燥製品が取り扱いにくい形状となることが多い。また、過度に高濃度である場合、乾燥に時間がかかることがある。 The concentration of the enzyme solution used in the drying step is adjusted so that the protein concentration is preferably 5 g / L or more, more preferably 10 g / L or more, and still more preferably 20 g / L or more. If the enzyme used in the drying process is too dilute, the recovery rate often decreases in the drying process, and the resulting dried product often has a shape that is difficult to handle. In addition, when the concentration is excessively high, drying may take time.
3.組成物
 本発明の組成物は、上記1.で説明したジアホラーゼ、および、上記2.で説明した糖類、糖アルコール類およびアミノ酸類よりなる群から選ばれるいずれか1つ以上の化合物を含むことを特徴とする組成物である。
 本発明の組成物の形態は特に限定されない。凍結乾燥や粉末などの乾燥状態および液体状態のどちらでもよい。そのような組成物の製造方法は既に当該技術分野において確立されている。よって、当業者はその知見を適用して本発明の組成物を製造することができ、その態様は特に制限されない。
3. Composition The composition of the present invention comprises the above-mentioned 1. The diaphorase described in 1., and 2. A composition comprising any one or more compounds selected from the group consisting of saccharides, sugar alcohols, and amino acids described in 1. above.
The form of the composition of the present invention is not particularly limited. Either a dry state such as freeze-drying or powder, or a liquid state may be used. Methods for producing such compositions have already been established in the art. Therefore, those skilled in the art can apply the knowledge to produce the composition of the present invention, and the embodiment is not particularly limited.
4.安定化法
本発明のジアホラーゼの安定化法は、(a)ジアホラーゼ、(b)糖類、糖アルコール類およびアミノ酸類よりなる群から選ばれるいずれか1つ以上の化合物を共存させることを特徴とする。
上記(a)(b)以外に他の成分が共存していても良く、その組成は特に限定されない。ジアホラーゼの用途(例えば後述の「5.プロダクト」に例示された用途)に応じて、(a)(b)のほかにどのような成分が必要かについては、既に当該技術分野において確立されている。よって、当業者は態様に制限を受けることなくその知見を適用して、本発明の安定化法を構築することが出来、また、その方法を実現するための組成物を製造することが出来る。
4). Stabilization method The diaphorase stabilization method of the present invention is characterized in that any one or more compounds selected from the group consisting of (a) diaphorase, (b) saccharides, sugar alcohols and amino acids coexist. .
Other components may coexist other than the above (a) and (b), and the composition is not particularly limited. Depending on the use of diaphorase (for example, the use exemplified in “5. Product” described later), what components are required in addition to (a) and (b) have already been established in the art. . Therefore, those skilled in the art can apply the knowledge without being limited by the embodiment to construct the stabilization method of the present invention, and can produce a composition for realizing the method.
 本発明でいう安定性の向上とは、ジアホラーゼを37℃で4週間保存した後、維持されているジアホラーゼの残存率(%)が安定化剤を何も添加しない場合に比して増大するか、もしくは少なくとも維持されることを意味する。 In the present invention, the improvement in stability means that after the diaphorase is stored at 37 ° C. for 4 weeks, the residual ratio (%) of the diaphorase maintained is higher than when no stabilizer is added. Or at least maintained.
 具体的に、安定性が向上しているかどうかの判断は、次のように行った。 
 後述のジアホラーゼ酵素活性の測定方法に記載の活性測定法において、乾燥化を行った後の乾燥品重量あたりのジアホラーゼ活性値(a)と、一定温度で一定期間保存した後の乾燥品重量あたりのジアホラーゼ活性値(b)を測定し、測定値(a)を100とした場合に対する相対値((b)/(a)×100)を求めた。この相対値を残存率とした。そして、該化合物の添加の有無を比較して、添加により残存率が増大した場合、安定性が向上したと判断した。 
Specifically, whether or not the stability is improved was determined as follows.
In the activity measurement method described in the measurement method of diaphorase enzyme activity described below, the diaphorase activity value per dry product weight after drying (a) and the dry product weight after storage at a constant temperature for a certain period of time The diaphorase activity value (b) was measured, and the relative value ((b) / (a) × 100) with respect to the measured value (a) as 100 was determined. This relative value was defined as the residual rate. And the presence or absence of the addition of the compound was compared, and when the residual ratio increased by the addition, it was judged that the stability was improved.
なお、本発明の組成物の構成を満たしているだけでも、安定性が向上していると推定する。 In addition, it is estimated that the stability is improved only by satisfying the composition of the composition of the present invention.
5.ジアホラーゼを含むプロダクト
本発明の別の態様は、上記の3.で説明したジアホラーゼ組成物を含むプロダクトである。
本明細書において「プロダクト」とは、使用者が或る用途を実行する目的で用いる1セットのうち一部または全部を構成する製品であって、本発明のジアホラーゼ組成物を含むものを意味する。
5. Product containing diaphorase Another aspect of the present invention is the above-mentioned 3. A product containing the diaphorase composition described in 1.
As used herein, “product” means a product that constitutes part or all of a set used by a user for the purpose of carrying out a certain application, and that includes the diaphorase composition of the present invention. .
本発明のプロダクトは、種々の用途に適用することができ、特に限定されるものではないが、典型的には以下の2つの原理のうちいずれかを利用するものが例示できる。
(a)ジアホラーゼによりNADHなどの基質を測定すること。
(b)ジアホラーゼによる酵素反応により電流を発生させること。
The product of the present invention can be applied to various uses and is not particularly limited, but typically, one using one of the following two principles can be exemplified.
(A) Measuring a substrate such as NADH by diaphorase.
(B) generating an electric current by an enzymatic reaction with diaphorase;
上記の(a)の原理を用いるものとしては、体外診断の用途(例えば種々の生体成分の測定)が挙げられる。これらの生体成分測定方法は既に当該技術分野において確立されている。よって、公知の方法に従い、本発明のジアホラーゼを用いて、各種試料中の生体成分の量又は濃度を測定することができる。
本発明のジアホラーゼを用いて生体成分の濃度又は量を測定する限り、その態様は特に制限されないが、例えば、グルコース、ラクテートデヒドロゲナーゼ(LDH)、クレアチンキナーゼ(CK)、中性脂肪(TG)、胆汁酸および総分岐鎖アミノ酸(BCAA)などの生体成分等を測定するための試薬、キット、センサなど種々の形態が例示できる。
以下、グルコースを測定する場合を例にとり、説明する。
Examples of using the principle (a) include in vitro diagnostic applications (for example, measurement of various biological components). These biological component measurement methods have already been established in the art. Therefore, according to a known method, the amount or concentration of the biological component in various samples can be measured using the diaphorase of the present invention.
The form is not particularly limited as long as the concentration or amount of the biological component is measured using the diaphorase of the present invention. For example, glucose, lactate dehydrogenase (LDH), creatine kinase (CK), neutral fat (TG), bile Various forms such as reagents, kits, and sensors for measuring biological components such as acids and total branched chain amino acids (BCAA) can be exemplified.
Hereinafter, the case of measuring glucose will be described as an example.
グルコース測定用組成物の場合は、GDH反応により生じたNADHが、ジアホラーゼを介して、DCPIPなどの電子受容体を還元させて自身はNADに戻り、DCPIPの構造が変化することによって生じる吸光度の差を比色定量することにより、グルコースの濃度を求めることができる。グルコースを含有する試料は、特に制限されないが、例えば、血液、飲料、食品等を挙げることができる。 In the case of the composition for measuring glucose, NADH generated by the GDH reaction reduces the electron acceptor such as DCPIP via diaphorase and returns to NAD itself, and the difference in absorbance caused by the change in the structure of DCPIP. Can be determined colorimetrically to determine the glucose concentration. The sample containing glucose is not particularly limited, and examples thereof include blood, beverages, and foods.
グルコース測定用組成物は、キットの形態であってもよい。該キットは、例えば、ジアホラーゼを少なくとも1回のアッセイに十分な量で含み、典型的には、アッセイに必要な緩衝液、メディエータ、キャリブレーションカーブ作製のためのグルコース標準溶液、ならびに使用の指針を含む。本発明のジアホラーゼは種々の形態で、例えば、凍結乾燥された試薬として、または適切な保存溶液中の溶液として提供することができる。 The composition for measuring glucose may be in the form of a kit. The kit contains, for example, diaphorase in an amount sufficient for at least one assay, and typically includes buffers, mediators, glucose standard solutions for generating calibration curves, and usage guidelines necessary for the assay. Including. The diaphorase of the invention can be provided in various forms, for example, as a lyophilized reagent or as a solution in a suitable storage solution.
センサの形態でのグルコース濃度の測定は、例えば、以下のようにして実施することができる。恒温セルに緩衝液を入れ、一定温度に維持する。メディエータとしては、フェリシアン化カリウム、フェナジンメトサルフェートなどを用いることができる。作用電極として本発明のジアホラーゼを固定化した電極を用い、対極(例えば白金電極)および参照電極(例えばAg/AgCl電極)を用いる。カーボン電極に一定の電圧を印加して、電流が定常になった後、グルコースを含む試料を加えて電流の増加を測定する。標準濃度のグルコース溶液により作製したキャリブレーションカーブに従い、試料中のグルコース濃度を計算することができる。 The measurement of the glucose concentration in the form of a sensor can be performed, for example, as follows. Put buffer in constant temperature cell and maintain at constant temperature. As the mediator, potassium ferricyanide, phenazine methosulfate, or the like can be used. An electrode on which the diaphorase of the present invention is immobilized is used as a working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used. After a constant voltage is applied to the carbon electrode and the current becomes steady, a sample containing glucose is added and the increase in current is measured. The glucose concentration in the sample can be calculated according to a calibration curve prepared with a standard concentration glucose solution.
電極としては、カーボン電極、金電極、白金電極などを用い、この電極上に本発明の酵素を固定化する。固定化方法としては、架橋試薬を用いる方法、高分子マトリックス中に封入する方法、透析膜で被覆する方法、光架橋性ポリマー、導電性ポリマー、酸化還元ポリマーなどがあり、あるいはフェロセンあるいはその誘導体に代表される電子メディエータとともにポリマー中に固定あるいは電極上に吸着固定してもよく、またこれらを組み合わせて用いてもよい。典型的には、ジアホラーゼを、グルタルアルデヒドを用いてカーボン電極上に固定化した後、アミン基を有する試薬で処理してグルタルアルデヒドをブロッキングする。 As the electrode, a carbon electrode, a gold electrode, a platinum electrode or the like is used, and the enzyme of the present invention is immobilized on this electrode. Immobilization methods include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a photocrosslinkable polymer, a conductive polymer, a redox polymer, etc., or ferrocene or a derivative thereof. It may be fixed in a polymer or adsorbed and fixed on an electrode together with a representative electron mediator, or a combination of these may be used. Typically, diaphorase is immobilized on a carbon electrode using glutaraldehyde and then treated with a reagent having an amine group to block glutaraldehyde.
上記の(b)の原理を用いるものとしては、酵素電極(固定化電極であっても良い)、酵素センサ、燃料電池、さらには一つまたは複数の燃料電池を有する電子機器など種々の形態が例示できる。  Examples of using the principle of (b) include various forms such as an enzyme electrode (may be an immobilized electrode), an enzyme sensor, a fuel cell, and an electronic device having one or more fuel cells. It can be illustrated. *
グルコースデヒドロゲナーゼおよびジアホラーゼを用いた、グルコースの酸化反応により電子を取り出す燃料電池は既に当該技術分野において確立されている。よって、公知の方法に従い、本発明のジアホラーゼを用いて、燃料電池を作製し稼動させることができる。
本発明のジアホラーゼを用いて燃料電池を作製し稼動させる限り、その態様は特に制限されないが、例えば、以下のような手段により電池として稼動させることができる。まず、本発明のジアホラーゼをバイオ燃料電池の負極において、GDH、オスミウム錯体などの電子メディエータなどとともに固定化し、一方、正極において、ビリルビンオキシダーゼ(BOD)、ラッカーゼ、アスコルビン酸オキシダーゼなどから選択される酸化還元酵素と、ヘキサシアノ鉄酸イオンなどのメディエータを固定化する。さらに、負極と正極とを電子伝導性を持たずプロトンのみ伝導する電解質層を介して対向した構造を構築し、負極では、燃料として供給されたグルコースを酵素により分解し電子を取り出すとともにプロトン(H+)を発生させ、正極では、負極から電解質層を通って輸送されたプロトンと負極から外部回路を通って送られた電子と例えば空気中の酸素とにより水を生成させる。
グルコースを含有する燃料は、特に制限されないが、例えば、血液、飲料、食品等を挙げることができる。
A fuel cell that uses glucose dehydrogenase and diaphorase to extract electrons by the oxidation reaction of glucose has already been established in the art. Therefore, according to a known method, a fuel cell can be produced and operated using the diaphorase of the present invention.
As long as the fuel cell is produced and operated using the diaphorase of the present invention, its mode is not particularly limited. For example, it can be operated as a battery by the following means. First, the diaphorase of the present invention is immobilized with an electron mediator such as GDH or an osmium complex in a negative electrode of a biofuel cell, and on the other hand, an oxidation-reduction selected from bilirubin oxidase (BOD), laccase, ascorbate oxidase and the like at the positive electrode Immobilize enzyme and mediator such as hexacyanoferrate ion. Further, a structure is constructed in which the negative electrode and the positive electrode are opposed to each other via an electrolyte layer that does not have electron conductivity and conducts only protons. In the negative electrode, glucose supplied as fuel is decomposed by an enzyme to extract electrons and protons (H + In the positive electrode, water is generated by protons transported from the negative electrode through the electrolyte layer, electrons sent from the negative electrode through an external circuit, and oxygen in the air, for example.
The fuel containing glucose is not particularly limited, and examples thereof include blood, beverages, and foods.
本発明の燃料電池は電力が必要なものであれば何にでも用いることができ、また、大きさも問わない。具体的には、この燃料電池は、例えば、電子機器、移動体(自動車、二輪車、航空機、ロケット、宇宙船など)、動力装置、建設機械、工作機械、発電システム、コージェネレーションシステムなどに用いることができる。 The fuel cell of the present invention can be used for anything that requires electric power, and can be of any size. Specifically, this fuel cell is used for, for example, an electronic device, a moving body (automobile, motorcycle, aircraft, rocket, spacecraft, etc.), power unit, construction machine, machine tool, power generation system, cogeneration system, etc. Can do.
以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to a following example.
 実施例1 形質転換体の取得
本発明にもちいた、配列番号1のポリペプチドと配列番号2のポリペプチドのアライメントを図1に示す。
配列番号1のポリペプチドをコードする構造遺伝子をGenScript社により合成した。合成遺伝子はプラスミドであるpUC57のLacZプロモーター下流に挿入されていた。そこで、合成遺伝子が挿入されていたプラスミドをそのまま発現ベクターとして用いることとし、これを組換え発現プラスミドpUC-DI-1と命名した。保持する発現プラスミドをエシェリヒア・コリー(Escherichia coli)DH5α株コンピテントセル(東洋紡製)に形質転換し、SOC培地中で1hr、37℃で前培養後、LB-amp寒天培地に展開し、コロニーである該形質転換体を取得した。得られた形質転換体を、エシェリヒア・コリーDH5α(pUC-DI-4)と命名した。配列番号2も同様な手法により、エシェリヒア・コリーDH5α(pUC-DI-1)を得た。
Example 1 Acquisition of Transformant An alignment of the polypeptide of SEQ ID NO: 1 and the polypeptide of SEQ ID NO: 2 used in the present invention is shown in FIG.
A structural gene encoding the polypeptide of SEQ ID NO: 1 was synthesized by GenScript. The synthetic gene was inserted downstream of the LacZ promoter of the plasmid pUC57. Therefore, the plasmid into which the synthetic gene was inserted was used as an expression vector as it was, and this was designated as a recombinant expression plasmid pUC-DI-1. The retained expression plasmid was transformed into Escherichia coli DH5α strain competent cell (manufactured by Toyobo), pre-cultured at 37 ° C. for 1 hr in SOC medium, and then developed on LB-amp agar medium. A certain transformant was obtained. The obtained transformant was named Escherichia coli DH5α (pUC-DI-4). In the same manner as for SEQ ID NO: 2, Escherichia coli DH5α (pUC-DI-1) was obtained.
実施例2 酵素の準備
実施例1にて取得した形質転換体、エシェリヒア・コリーDH5α(pUC-DI-4)のコロニーを一白金耳試験管5mlのLB-amp液体培地に植菌し、30℃で16時間培養した。これを、種培養とした。
次に、TB液体培地(トリプトン1.2%、イーストイクストラクト2.4%、グリセロール0.4%、KHPO 0.23%、KHPO 1.25%、pH7.0)を試験管に入れ、オートクレーブで滅菌し、本培養培地の培地とした。
TB培地500mLを2L坂口フラスコに入れ、オートクレーブで滅菌し、本培養培地とした。5mLの種培養液を本培養培地に植菌し、培養温度30℃、180rpmで24時間振とう培養した。その後、菌体を遠心分離により集菌し、菌体を回収した。得られた菌体を20mMリン酸カリウム緩衝液(pH7.5)に懸濁した。
エシェリヒア・コリーDH5α(pUC-DI-1)に対しても、同様な操作を行った。
Example 2 Preparation of Enzyme A colony of the transformant Escherichia coli DH5α (pUC-DI-4) obtained in Example 1 was inoculated into a 5 ml LB-amp liquid medium in one platinum ear test tube, and 30 ° C. For 16 hours. This was used as seed culture.
Next, TB liquid medium (tryptone 1.2%, yeast extract 2.4%, glycerol 0.4%, KH 2 PO 4 0.23%, K 2 HPO 4 1.25%, pH 7.0) was added. It put into the test tube and sterilized by the autoclave, and it was set as the culture medium of the main culture medium.
500 mL of TB medium was placed in a 2 L Sakaguchi flask and sterilized by autoclaving to obtain a main culture medium. 5 mL of the seed culture solution was inoculated into the main culture medium, and cultured with shaking at a culture temperature of 30 ° C. and 180 rpm for 24 hours. Thereafter, the cells were collected by centrifugation, and the cells were collected. The obtained bacterial cells were suspended in 20 mM potassium phosphate buffer (pH 7.5).
The same operation was performed for Escherichia coli DH5α (pUC-DI-1).
懸濁液をフレンチプレス(Niro Soavi製)に流速160mL/分で送液し、700~1000barで破砕した。続いて、エチレンイミン(ポリマー)(ナカライテスク株式会社)をポリエチレンイミン含有量5%になるように調整した5%ポリエチレンイミン溶液(pH7.5)を準備し、破砕液へ破砕液量に対し5%になるように徐々に添加して、室温で30分間攪拌した後、ろ過助剤を用いて余分な沈殿を除去した。次に0.5飽和になるように硫酸アンモニウム(住友化学(株)製)を徐々に添加し、硫安分画を行い、NAD依存型グルコースデヒドロゲナーゼ活性を持つタンパク質を沈殿させ回収し、回収したタンパク質の沈殿を20mMリン酸カリウム緩衝液(pH7.5)に懸濁した。次に、懸濁液をSephadex G-25のゲルを用いて脱塩した。その後、予め20mMリン酸カリウム緩衝液(pH7.5)で平衡化した400mLのDEAEセファロースFastFlow(GEヘルスケア製)カラムにかけ、0.5M NaClを含む20mMリン酸カリウム緩衝液(pH7.5)のリニアグラジエントで溶出させた。そして、溶出されたNAD依存型グルコースデヒドロゲナーゼ画分を分画分子量10,000の中空糸膜(スペクトラムラボラトリーズ製)で濃縮した。濃縮液をSephadex G-25のゲルを用いて脱塩し、精製酵素を得た。
エシェリヒア・コリーDH5α(pUC-DI-1)に対しても、同様な操作を行った。
The suspension was fed to a French press (manufactured by Niro Soavi) at a flow rate of 160 mL / min and crushed at 700 to 1000 bar. Subsequently, a 5% polyethyleneimine solution (pH 7.5) prepared by adjusting ethyleneimine (polymer) (Nacalai Tesque Co., Ltd.) so as to have a polyethyleneimine content of 5% was prepared. %, And the mixture was stirred at room temperature for 30 minutes, and then excess precipitate was removed using a filter aid. Next, ammonium sulfate (manufactured by Sumitomo Chemical Co., Ltd.) is gradually added to reach 0.5 saturation, ammonium sulfate fractionation is performed, and a protein having NAD-dependent glucose dehydrogenase activity is precipitated and recovered. The precipitate was suspended in 20 mM potassium phosphate buffer (pH 7.5). The suspension was then desalted using a Sephadex G-25 gel. Thereafter, it is applied to a 400 mL DEAE Sepharose FastFlow (manufactured by GE Healthcare) column previously equilibrated with 20 mM potassium phosphate buffer (pH 7.5), and 20 mM potassium phosphate buffer (pH 7.5) containing 0.5 M NaCl is added. Elute with a linear gradient. Then, the eluted NAD-dependent glucose dehydrogenase fraction was concentrated with a hollow fiber membrane (manufactured by Spectrum Laboratories) having a fractional molecular weight of 10,000. The concentrated solution was desalted using Sephadex G-25 gel to obtain a purified enzyme.
The same operation was performed for Escherichia coli DH5α (pUC-DI-1).
実施例3 ジアホラーゼ粉末の安定化効果を有する化合物のスクリーニング
エシェリヒア・コリーDH5α(pUC-DI-4)由来の精製酵素を用いて、マンニトール、イノシトール、キリシトール、トレハロース、ソルビトール、L-グルタミン酸ナトリウム、L-セリン、L-スレオニンが安定化効果を持つかを検討した。同時に、安定化剤が効果を発揮する濃度をみるため、30%、50%、70%の安定化剤濃度を検討した。表1に、Geobacillus thermodenitrificans NG80-2由来野生型ジアホラーゼと安定化剤および濃度の影響を示す。
Example 3 Screening of compounds having a stabilizing effect on diaphorase powder Using purified enzyme derived from Escherichia coli DH5α (pUC-DI-4), mannitol, inositol, xylitol, trehalose, sorbitol, sodium L-glutamate, L- It was examined whether serine and L-threonine have a stabilizing effect. At the same time, the stabilizer concentrations of 30%, 50% and 70% were examined in order to see the concentration at which the stabilizer exerts its effect. Table 1 shows the effects of Geobacillus thermodenitificans NG80-2 derived wild-type diaphorase, stabilizer and concentration.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例2で取得した標品は20mMリン酸カリウム緩衝液(pH7.5)中に約70mg/mlのジアホラーゼタンパク質を含んでいる。30%濃度の安定化剤の検討は、70mgのジアホラーゼを含有する酵素液に対して、21mgの安定化剤を溶解し、30%濃度とし、活性測定を行った。50%濃度の安定化剤の検討は、70mgのジアホラーゼを含有する酵素液に対して、35mgの安定化剤を溶解し、50%濃度とし、活性測定を行った。70%濃度の安定化剤の検討は、70mgのジアホラーゼを含有する酵素液に対して、49mgの安定化剤を溶解し、70%濃度とし、活性測定を行った。各種安定化剤を添加した酵素溶液から正確に2mlずつ、風袋重量を測定済みのバイアルに分取した。また、コントロールには、安定化剤を添加しないものを用意した。これを凍結真空乾燥(FDR)して、水分を完全に蒸発させた後、バイアルの重量を測定し、風袋重量を差し引いて得られた粉末重量を算出した。その後に約10mgの粉末をスピッツロールに正確に計量し、(1)直ちに活性測定、(2)37℃で4週間保存してから活性測定、を行い粉末重量あたりの活性を計算した。活性残存率は、FDR直後の粉末重量あたりの活性を100%として、37℃処理後の各サンプルの粉末重量あたりの活性の割合を算出した。その結果、糖類、糖アルコール類、アミノ酸類、タンパク質類の多くで何も添加しない場合と比較して安定性の向上が見られた(表1)。 
具体的には安定化剤を入れない無添加の場合、37℃で4週間保存すると残存活性が74.6%であった。安定化剤としてマンニトール、イノシトール、トレハロース、ソルビトールを加えると、37℃で4週間保存すると残存活性74.6%を上回り、安定化効果を確認することができた。マンニトール、イノシトール、トレハロース、ソルビトールはすべての濃度範囲で安定化効果を持つことが分かった。キシリトールは70%濃度加えると、残存活性80.8%となり、安定化効果を示した。L-グルタミン酸ナトリウムは30%濃度で残存活性77.0%となり安定化効果を示した。L-セリン、L-スレオニンを加えた場合、すべての濃度で残存活性74.6%を下回り、安定化効果が無いことが分かった。
The preparation obtained in Example 2 contains about 70 mg / ml diaphorase protein in 20 mM potassium phosphate buffer (pH 7.5). Examination of the 30% concentration stabilizer was carried out by dissolving 21 mg of the stabilizer in an enzyme solution containing 70 mg of diaphorase to obtain a 30% concentration, and measuring the activity. For the study of the 50% concentration stabilizer, 35 mg of the stabilizer was dissolved in an enzyme solution containing 70 mg of diaphorase to obtain a 50% concentration, and the activity was measured. In the examination of the 70% concentration stabilizer, 49 mg of the stabilizer was dissolved in an enzyme solution containing 70 mg of diaphorase to obtain a 70% concentration, and the activity was measured. From the enzyme solution to which various stabilizers were added, exactly 2 ml each of the tare weight was dispensed into a measured vial. Moreover, what did not add a stabilizer was prepared for control. This was freeze-dried (FDR) to completely evaporate the water, and the weight of the vial was measured. The weight of the powder obtained by subtracting the tare weight was calculated. Thereafter, about 10 mg of powder was accurately weighed into a spitz roll, (1) immediately measured for activity, and (2) stored for 4 weeks at 37 ° C. and then measured for activity, and the activity per weight of powder was calculated. The activity remaining ratio was calculated by calculating the ratio of activity per powder weight of each sample after 37 ° C. treatment, assuming that the activity per weight of powder immediately after FDR was 100%. As a result, an improvement in stability was observed compared to the case where nothing was added in many sugars, sugar alcohols, amino acids and proteins (Table 1).
Specifically, when no stabilizer was added, the residual activity was 74.6% when stored at 37 ° C. for 4 weeks. When mannitol, inositol, trehalose or sorbitol was added as a stabilizer, the residual activity exceeded 74.6% when stored at 37 ° C. for 4 weeks, and the stabilizing effect could be confirmed. Mannitol, inositol, trehalose and sorbitol were found to have a stabilizing effect in all concentration ranges. When 70% concentration of xylitol was added, the residual activity was 80.8%, indicating a stabilizing effect. Sodium L-glutamate showed a stabilizing effect with a residual activity of 77.0% at a concentration of 30%. When L-serine and L-threonine were added, the residual activity was less than 74.6% at all concentrations, indicating that there was no stabilizing effect.
実施例4 
次に、実施例3で安定化効果が見られた化合物に対して、エシェリヒア・コリーDH5α(pUC-DI-1)由来の精製酵素を用いて、安定化効果を検証した。表2に、Geobacillus sp. Y4.1MC1由来野生型ジアホラーゼと安定化剤および濃度の影響を示す。
Example 4
Next, the stabilization effect of the compound that showed a stabilization effect in Example 3 was verified using a purified enzyme derived from Escherichia coli DH5α (pUC-DI-1). Table 2 shows that Geobacillus sp. The influence of Y4.1MC1-derived wild type diaphorase, stabilizer and concentration is shown.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
具体的には安定化剤を入れない無添加の場合、37℃で4週間保存すると残存活性が88.9%であった。安定化剤としてマンニトール、イノシトール、トレハロースを加えると、37℃で4週間保存すると残存活性88.9%を上回り、安定化効果を確認することができた。マンニトール、イノシトール、トレハロースはすべての濃度範囲で安定化効果を持つことが分かった。
図1が示すように、配列番号1と配列番号2はアミノ酸配列が異なるにもかかわらず、マンニトール、イノシトール、トレハロースが共通して、顕著な安定化効果を持つことが分かる。つまり、ゲオバチルス属由来ジアホラーゼに対し、マンニトール、イノシトール、トレハロースは有用な安定化剤であるといえる。
Specifically, when no stabilizer was added, the residual activity was 88.9% when stored at 37 ° C. for 4 weeks. When mannitol, inositol and trehalose were added as stabilizers, the residual activity exceeded 88.9% when stored at 37 ° C. for 4 weeks, and the stabilizing effect could be confirmed. Mannitol, inositol and trehalose were found to have a stabilizing effect in all concentration ranges.
As shown in FIG. 1, it can be seen that SEQ ID NO: 1 and SEQ ID NO: 2 have a remarkable stabilizing effect in common with mannitol, inositol, and trehalose even though the amino acid sequences are different. That is, it can be said that mannitol, inositol, and trehalose are useful stabilizers against diaphorase derived from the genus Geobacillus.
本発明により製造した組成物は、血糖値測定用試薬、血糖センサー並びにグルコース濃度定量キットの原料としての供給が可能である。 The composition produced according to the present invention can be supplied as a raw material for a reagent for measuring blood glucose level, a blood glucose sensor, and a glucose concentration determination kit.

Claims (6)

  1. (a)ジアホラーゼ、(b)糖類、糖アルコール類およびアミノ酸類よりなる群から選ばれるいずれか1つ以上の化合物を含有することを特徴とする組成物。  (A) A composition containing any one or more compounds selected from the group consisting of diaphorase, (b) saccharides, sugar alcohols and amino acids. *
  2. (b)の化合物がマンニトール、イノシトール、キリシトール、トレハロース、ソルビトールおよびL-グルタミン酸ナトリウムよりなる群から選ばれるいずれか1つ以上である請求項1に記載の組成物。  The composition according to claim 1, wherein the compound (b) is at least one selected from the group consisting of mannitol, inositol, xylitol, trehalose, sorbitol and sodium L-glutamate. *
  3. (b)の化合物がジアホラーゼタンパク質量に対し、30~70%(w/w)含まれる請求項1または請求項2の組成物。  The composition according to claim 1 or 2, wherein the compound (b) is contained in an amount of 30 to 70% (w / w) based on the amount of diaphorase protein. *
  4. ジアホラーゼが下記のいずれかのタンパク質である請求項1-3のいずれかに記載の組成物。 
    (a)配列番号1に記載のアミノ酸配列を有するタンパク質
    (b)配列番号1に記載のアミノ酸配列において1または数個のアミノ酸が欠失、挿入、付加もしくは置換されているアミノ酸配列を有するタンパク質であって、ジアホラーゼ活性を有するタンパク質 
    (c)配列番号2に記載のアミノ酸配列を有するタンパク質 
    (d)配列番号2に記載のアミノ酸配列において1または数個のアミノ酸が欠失、挿入、付加もしくは置換されているアミノ酸配列を有するタンパク質であって、ジアホラーゼ活性を有するタンパク質 
    The composition according to any one of claims 1 to 3, wherein the diaphorase is one of the following proteins.
    (A) a protein having the amino acid sequence shown in SEQ ID NO: 1 (b) a protein having an amino acid sequence in which one or several amino acids are deleted, inserted, added or substituted in the amino acid sequence shown in SEQ ID NO: 1 A protein having diaphorase activity
    (C) a protein having the amino acid sequence of SEQ ID NO: 2
    (D) a protein having an amino acid sequence in which one or several amino acids are deleted, inserted, added or substituted in the amino acid sequence shown in SEQ ID NO: 2 and having diaphorase activity
  5. 請求項1-4のいずれかに記載の組成物を含むプロダクト。 A product comprising the composition according to any one of claims 1-4.
  6. (a)ジアホラーゼ、(b)糖類、糖アルコール類およびアミノ酸類よりなる群から選ばれるいずれか1つ以上の化合物を共存させることを特徴とするジアホラーゼ組成物中のジアホラーゼの安定化法。 
     
     
    (A) A method for stabilizing diaphorase in a diaphorase composition, wherein any one or more compounds selected from the group consisting of diaphorase, (b) saccharides, sugar alcohols and amino acids are allowed to coexist.

PCT/JP2014/051680 2013-01-29 2014-01-27 Diaphorase composition WO2014119516A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013014062A JP6160094B2 (en) 2013-01-29 2013-01-29 Diaphorase composition
JP2013-014062 2013-01-29

Publications (1)

Publication Number Publication Date
WO2014119516A1 true WO2014119516A1 (en) 2014-08-07

Family

ID=51262231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051680 WO2014119516A1 (en) 2013-01-29 2014-01-27 Diaphorase composition

Country Status (2)

Country Link
JP (1) JP6160094B2 (en)
WO (1) WO2014119516A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6521238B2 (en) * 2015-04-23 2019-05-29 東洋紡株式会社 Modified diaphorase

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293662A (en) * 1985-10-18 1987-04-30 Fuji Photo Film Co Ltd Dry analytical element containing oxidizing type coenzyme
JPS62111686A (en) * 1985-11-08 1987-05-22 Toyobo Co Ltd Stable guanase composition
JPH07227282A (en) * 1993-12-24 1995-08-29 Wako Pure Chem Ind Ltd Method for stabilizing l-methionine-gamma-lyase
JPH09168397A (en) * 1995-12-21 1997-06-30 Marukin Shoyu Kk Determination of sulfuric acid included bile acid and its kit
JPH10309192A (en) * 1997-05-09 1998-11-24 Unitika Ltd Thermostable diaphorase gene
JPH1169973A (en) * 1997-08-29 1999-03-16 Kao Corp Stabilization of enzyme
JP2005245315A (en) * 2004-03-04 2005-09-15 Kikkoman Corp Method for stabilizing fructosyl peptide oxidase
JP2007143493A (en) * 2005-11-29 2007-06-14 Sony Corp Variant protein having diaphorase activity
JP2008154573A (en) * 2006-03-31 2008-07-10 Toyobo Co Ltd Method for enhancing stability of composition comprising soluble glucose dehydrogenase (gdh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253193A (en) * 1997-12-19 1999-09-21 Unitika Ltd Test piece for assaying creatine kinase activity

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293662A (en) * 1985-10-18 1987-04-30 Fuji Photo Film Co Ltd Dry analytical element containing oxidizing type coenzyme
JPS62111686A (en) * 1985-11-08 1987-05-22 Toyobo Co Ltd Stable guanase composition
JPH07227282A (en) * 1993-12-24 1995-08-29 Wako Pure Chem Ind Ltd Method for stabilizing l-methionine-gamma-lyase
JPH09168397A (en) * 1995-12-21 1997-06-30 Marukin Shoyu Kk Determination of sulfuric acid included bile acid and its kit
JPH10309192A (en) * 1997-05-09 1998-11-24 Unitika Ltd Thermostable diaphorase gene
JPH1169973A (en) * 1997-08-29 1999-03-16 Kao Corp Stabilization of enzyme
JP2005245315A (en) * 2004-03-04 2005-09-15 Kikkoman Corp Method for stabilizing fructosyl peptide oxidase
JP2007143493A (en) * 2005-11-29 2007-06-14 Sony Corp Variant protein having diaphorase activity
JP2008154573A (en) * 2006-03-31 2008-07-10 Toyobo Co Ltd Method for enhancing stability of composition comprising soluble glucose dehydrogenase (gdh)

Also Published As

Publication number Publication date
JP6160094B2 (en) 2017-07-12
JP2014143942A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP6460152B2 (en) Novel glucose dehydrogenase
JP6212852B2 (en) Novel glucose dehydrogenase
EP2003199B1 (en) Glucose dehydrogenase
JP5176045B2 (en) Method for improving the stability of a composition comprising soluble glucose dehydrogenase (GDH)
JP5435180B1 (en) Novel glucose dehydrogenase
WO2013022074A1 (en) Novel glucose dehydrogenase
EP2753690B1 (en) Penicillium amagasakiense glucose oxidase mutants
JP6465156B2 (en) Novel glucose dehydrogenase
JP5593689B2 (en) Lactate oxidase composition
JP2010054503A (en) Electrochemical measuring method of glucose using glucose dehydrogenase
JP6160094B2 (en) Diaphorase composition
JP6127496B2 (en) Diaphorase
JP2014143943A (en) Nad-dependent glucose dehydrogenase composition
JP7283469B2 (en) Ethanolamine phosphate lyase composition
WO2017002896A1 (en) Flavin-binding glucose dehydrogenase
JP6036826B2 (en) NAD-dependent glucose dehydrogenase and method for producing the same
JP2006217811A (en) Modified product of pqq (pyrroloquinoline quinone)-dependent glucose dehydrogenase having excellent substrate specificity
JP2014097050A (en) Diaphorase
JP2006034165A (en) Method for producing pqqgdh
JP2014180223A (en) Aldohexose dehydrogenase and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746287

Country of ref document: EP

Kind code of ref document: A1