JP2007143493A - Variant protein having diaphorase activity - Google Patents

Variant protein having diaphorase activity Download PDF

Info

Publication number
JP2007143493A
JP2007143493A JP2005343605A JP2005343605A JP2007143493A JP 2007143493 A JP2007143493 A JP 2007143493A JP 2005343605 A JP2005343605 A JP 2005343605A JP 2005343605 A JP2005343605 A JP 2005343605A JP 2007143493 A JP2007143493 A JP 2007143493A
Authority
JP
Japan
Prior art keywords
diaphorase
amino acid
acid sequence
mutant protein
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005343605A
Other languages
Japanese (ja)
Other versions
JP4946019B2 (en
Inventor
Yoshio Goto
義夫 後藤
Hiroki Sugiyama
太喜 杉山
Yuichi Tokita
裕一 戸木田
Hideyuki Kumita
英之 汲田
Jusuke Shimura
重輔 志村
Hideki Sakai
秀樹 酒井
Takashi Tomita
尚 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005343605A priority Critical patent/JP4946019B2/en
Priority to US11/563,983 priority patent/US20070196899A1/en
Publication of JP2007143493A publication Critical patent/JP2007143493A/en
Priority to US12/123,357 priority patent/US7785851B2/en
Application granted granted Critical
Publication of JP4946019B2 publication Critical patent/JP4946019B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variant protein having diaphorase activities and heat-resistant degree of diaphorase at a prescribed level or more. <P>SOLUTION: The variant protein comprises a specific natural amino acid sequence having an amino acid sequence wherein at least one or more acid residues are deleted, substituted, added or inserted residues from, with or to, and has the diaphorase activities having an enzyme activity of ≥245. Preferably, the thermostable variant protein has an enzyme activity of ≥245 and residual ratio of the enzyme activity after heat treatment of ≥41%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ジアホラーゼ活性を有する変異型タンパク質に関する。より詳しくは、酵素活性、さらには耐熱性の程度が所定レベル以上のジアホラーゼ活性を有する変異型タンパク質に関する。   The present invention relates to a mutant protein having diaphorase activity. More specifically, the present invention relates to a mutant protein having diaphorase activity having a predetermined level or more of enzyme activity, and further, the degree of heat resistance.

酵素は、生命の維持に係わる多くの反応を生体内の温和な条件下で円滑に進める生体内触媒である。この酵素は、生体内で代謝回転し、生体内で必要に応じて生産されて、その触媒機能を発揮する。   Enzymes are in-vivo catalysts that smoothly carry out many reactions related to the maintenance of life under mild conditions in the living body. This enzyme turns over in vivo and is produced in vivo as necessary to exert its catalytic function.

現在、この酵素を生体外で利用する技術が、既に実用化されたり、あるいは実用化に向けた検討が行われたりしている。例えば、有用物質の生産、エネルギー関連物質の生産、測定又は分析、環境保全、医療などの様々な技術分野において、酵素の利用技術が進展している。比較的近年では、燃料電池の一種である酵素電池(例えば、特許文献1参照)、酵素電極、酵素センサー(酵素反応を利用して化学物質を計測するセンサー)などの技術も提案されている。   Currently, a technique for utilizing this enzyme in vitro has already been put into practical use, or studies for practical use have been conducted. For example, enzyme utilization technologies are progressing in various technical fields such as production of useful substances, production of energy-related substances, measurement or analysis, environmental conservation, and medical treatment. In recent years, technologies such as an enzyme battery (see, for example, Patent Document 1), an enzyme electrode, and an enzyme sensor (a sensor that measures a chemical substance using an enzyme reaction), which are a type of fuel cell, have been proposed.

この酵素の化学的本体はタンパク質であるので、酵素は、熱やpHの程度によって変性する性質を有する。このため、酵素は、金属触媒などの他の化学的触媒に比べて生体外での安定性が低い。従って、酵素を生体外で利用する場合は、環境の変化に対して酵素をより安定的に働かせて、その活性を持続させるようにすることが重要である。   Since the chemical body of this enzyme is a protein, the enzyme has the property of being denatured by the degree of heat and pH. For this reason, the enzyme is less stable in vitro than other chemical catalysts such as metal catalysts. Therefore, when the enzyme is used in vitro, it is important to make the enzyme work more stably against environmental changes so as to maintain its activity.

酵素を生体外で利用する場合、酵素自体の性質や機能を人工的に改変させる方法や酵素の働く場所の環境を工夫する方法などのアプローチが採用されることになる。前者の方法では、タンパク質をコードする遺伝子の塩基配列を人工的に変化させ、この変化させた遺伝子を大腸菌等の生物の中で発現させることによって人工的に変異したタンパク質を作製し、そして、利用目的にあった機能や性質を備える変異型タンパク質を選別(スクリーニング)することが一般的に行われている(例えば、特許文献2参照)。
特開2004−71559号公報。 特開2004−298185号公報。
When the enzyme is used in vitro, approaches such as a method of artificially modifying the properties and functions of the enzyme itself and a method of devising the environment where the enzyme works are adopted. In the former method, an artificially mutated protein is produced by artificially changing the base sequence of a gene encoding a protein, and expressing the changed gene in an organism such as Escherichia coli, and using it. In general, screening (mutation) of mutant proteins having functions and properties suitable for the purpose is performed (see, for example, Patent Document 2).
JP-A-2004-71559. JP 2004-298185A.

本発明は、ジアホラーゼの生体外での広範な利用可能性を視野に入れ、ジアホラーゼの活性やその耐熱性の程度が所定レベル以上の変異型タンパク質を提供することを主な目的とする。   The main object of the present invention is to provide a mutant protein having a diaphorase activity and a degree of heat resistance exceeding a predetermined level in view of wide applicability of diaphorase in vitro.

本発明では、配列番号1の天然型アミノ酸配列(アミノ酸残基数211)おいて、少なくとも一つ以上のアミノ酸残基が、欠失、置換、付加若しくは挿入されたアミノ酸配列からなり、酵素活性値245以上のジアホラーゼ活性を有する変異型タンパク質を提供し、さらには、酵素活性値245以上であって、かつ、加熱処理後の残存酵素活性率27%以上、さらに好適には、加熱処理後の残存酵素活性率41%以上のジアホラーゼ活性を有する変異型タンパク質を提供する。   In the present invention, in the natural amino acid sequence of SEQ ID NO: 1 (the number of amino acid residues 211), it comprises an amino acid sequence in which at least one amino acid residue is deleted, substituted, added or inserted, and the enzyme activity value A mutant protein having a diaphorase activity of 245 or more, an enzyme activity value of 245 or more, and a residual enzyme activity rate of 27% or more after heat treatment, more preferably remaining after heat treatment Provided is a mutant protein having a diaphorase activity with an enzyme activity rate of 41% or more.

また、配列番号1の天然型アミノ酸配列において、少なくとも一つ以上のアミノ酸残基が、欠失、置換、付加若しくは挿入されたアミノ酸配列からなり、酵素活性値170以上のジアホラーゼ活性を有し、かつ、加熱処理後の前記残存酵素活性率が41%以上である変異型タンパク質を提供する。   Further, in the natural amino acid sequence of SEQ ID NO: 1, it comprises an amino acid sequence in which at least one amino acid residue is deleted, substituted, added or inserted, has a diaphorase activity with an enzyme activity value of 170 or more, and Provided is a mutant protein having a residual enzyme activity rate of 41% or more after heat treatment.

これらの変異型タンパク質は、例えば、好熱性バチルス属細菌、特にバチルスステアロサーモフィラス(Bacillus stearothermophilus)由来のジアホラーゼ活性を有するタンパク質の変異型タンパク質であり、より具体的には、配列番号2〜7のアミノ酸配列を有する変異型タンパク質を挙げることができる。   These mutant proteins are, for example, mutant proteins of a protein having a diaphorase activity derived from a thermophilic Bacillus genus bacterium, particularly Bacillus stearothermophilus, and more specifically, SEQ ID NO: 2 Mention may be made of mutant proteins having an amino acid sequence of 7.

なお、配列番号2のアミノ酸配列は、配列番号1の天然型アミノ酸配列のN末端から139番位置のリシン(Lysine)がアスパラギン(Asparagine)に置換されているとともに、N末端から187番位置のアラニン(Alanine)がグルタミン酸(Glutamic asid)に置換されている(以下、略記号K139N/A187E)。配列番号3のアミノ酸配列は、配列番号1の天然型アミノ酸配列のN末端から105番目位置のフェニルアラニン(Phenylalanine)がロイシン(Luecine)に置換されている(以下、略記号F105L)。配列番号4のアミノ酸配列は、配列番号1の天然型アミノ酸配列のN末端から122番位置のグリシン(Glycine)がアスパラギン酸(Aspartic acid)に置換されている(以下、略記号G122D)。配列番号5のアミノ酸配列は、配列番号1の天然型アミノ酸配列のN末端から131番位置のグリシン(Glycine)がグルタミン酸(Glutamic asid )に置換されている(以下、略記号G131E)。配列番号6のアミノ酸配列は、配列番号1の天然型アミノ酸配列のN末端から146番位置のアラニン(Alanine)がグリシン(Glycine)に置換されている(以下、略記号A146G)。配列番号7のアミノ酸配列は、配列番号1の天然型アミノ酸配列のN末端から147番位置のアルギニン(Arginine)がヒスチジン(Histidine)に置換されている(以下、略記号R147H)。   In the amino acid sequence of SEQ ID NO: 2, lysine (Lysine) at position 139 from the N-terminus of the natural amino acid sequence of SEQ ID NO: 1 is replaced with asparagine, and alanine at position 187 from the N-terminus. (Alanine) is replaced by glutamic acid (hereinafter abbreviated symbol K139N / A187E). In the amino acid sequence of SEQ ID NO: 3, phenylalanine at the 105th position from the N-terminal of the natural amino acid sequence of SEQ ID NO: 1 is substituted with leucine (hereinafter abbreviated symbol F105L). In the amino acid sequence of SEQ ID NO: 4, glycine (Glycine) at position 122 from the N-terminal of the natural amino acid sequence of SEQ ID NO: 1 is substituted with aspartic acid (hereinafter abbreviated symbol G122D). In the amino acid sequence of SEQ ID NO: 5, glycine (Glycine) at position 131 from the N-terminal of the natural amino acid sequence of SEQ ID NO: 1 is replaced with glutamic acid (hereinafter abbreviated symbol G131E). In the amino acid sequence of SEQ ID NO: 6, alanine at position 146 from the N-terminal of the natural amino acid sequence of SEQ ID NO: 1 is replaced with glycine (hereinafter abbreviated symbol A146G). In the amino acid sequence of SEQ ID NO: 7, arginine at position 147 from the N-terminal of the natural amino acid sequence of SEQ ID NO: 1 is replaced with histidine (hereinafter abbreviated symbol R147H).

ここで、本発明に関連する主たる技術用語について説明する。   Here, main technical terms related to the present invention will be described.

「ジアホラーゼ(Diaphorase)」は、NADH又はNADPHをフェリシアン化カリウム、メチレンブルー、2,6-ジクロルインドフェノール、テトラゾリウム塩等の色素で酸化する反応を触媒する活性(即ち、ジアホラーゼ活性)を持つ酵素であり、細菌、酵母等の微生物から哺乳類動物まで広く分布する。このジアホラーゼは、生体内の電子伝達系において重要な役割を果たし、このジアホラーゼによって、NAD+又はNADP+依存性の脱水素酵素類による基質からの脱水素反応により生成されるNADH又はNADPHは、電子受容体で酸化され、電子受容体は還元型となる。 “Diaphorase” is an enzyme having an activity that catalyzes a reaction of oxidizing NADH or NADPH with a dye such as potassium ferricyanide, methylene blue, 2,6-dichloroindophenol, tetrazolium salt (ie, diaphorase activity). It is widely distributed from microorganisms such as bacteria and yeast to mammals. This diaphorase plays an important role in the in vivo electron transport system, and NADH or NADPH produced by the diaphorase by the dehydrogenation reaction from the substrate by NAD + or NADP + dependent dehydrogenases is an electron. Oxidized at the acceptor, the electron acceptor is reduced.

「変異型タンパク質」とは、タンパク質を構成するアミノ酸配列をコードするDNAの塩基の並び順を人工的に変えることにより得られた遺伝子から発現させたタンパク質である。   A “mutant protein” is a protein expressed from a gene obtained by artificially changing the sequence of DNA bases encoding the amino acid sequence constituting the protein.

「酵素活性値」とは、一般には、ある定まった条件におけるある反応の触媒反応速度のことを意味する。本発明においては、Nicotinamide dinucleotide, reduced form (NADH)による2-amino-1,4-naphthoquinone(ANQ)の還元反応により、Nicotinamide dinucleotide, oxidized form (NAD+)及び2-amino-1,4-dihidroxynaphtheneを生じる反応の触媒反応速度であり、具体的には、25℃、アルゴン雰囲気下ないしは窒素雰囲気下、0.1 M リン酸カリウム緩衝液中、0.3 mM ANQ、40 mM NADH存在下において単位時間当たり1 molの酵素が触媒する反応によって生じる生成物のmol数(したがって単位はsec-1)である。なお、酵素活性値245以上は、バチルスステアロサーモフィラス(Bacillus stearothermophilus)由来のジアホラーゼ活性を有する天然型タンパク質の約1.5倍以上に相当する。   The “enzyme activity value” generally means a catalytic reaction rate of a certain reaction under a certain condition. In the present invention, Nicotinamide dinucleotide, oxidized form (NAD +) and 2-amino-1,4-dihidroxynaphthene are obtained by reduction reaction of 2-amino-1,4-naphthoquinone (ANQ) with Nicotinamide dinucleotide, reduced form (NADH). The reaction rate of the resulting reaction, specifically, 1 mol per unit time in the presence of 0.3 mM ANQ and 40 mM NADH in 0.1 M potassium phosphate buffer at 25 ° C. in an argon or nitrogen atmosphere. The number of moles of product produced by the enzyme-catalyzed reaction (hence the unit is sec-1). The enzyme activity value of 245 or more corresponds to about 1.5 times or more of the natural protein having diaphorase activity derived from Bacillus stearothermophilus.

「加熱処理後の残存酵素活性率(residual activity)」は、「酵素活性残存率」、あるいは「酵素活性維持率」と称してもよく、酵素に対して所定の加熱処理を施したときに、その前後で活性がどのように変化するかを表した値である。すなわち、加熱処理の前後において、同一条件で酵素活性測定を行い、加熱処理後の活性値が処理前に比べてどれだけ存在するかを百分率で表した値である。本発明においては、前記「加熱処理」は、緩衝液中80℃での10分間静置処理であり、この加熱処理前後における、前記酵素活性値の比を百分率で表している。なお、加熱処理後の残存酵素活性率41%以上は、バチルスステアロサーモフィラス(Bacillus stearothermophilus)由来のジアホラーゼ活性を有する天然型タンパク質の約1.5倍以上に相当する。   “Residual activity after heat treatment (residual activity)” may be referred to as “enzyme activity remaining rate” or “enzyme activity maintenance rate”. When the enzyme is subjected to a predetermined heat treatment, It is a value representing how the activity changes before and after that. That is, the enzyme activity measurement is performed under the same conditions before and after the heat treatment, and the percentage value indicates how much activity value after the heat treatment is present before the heat treatment. In the present invention, the “heat treatment” is a stationary treatment at 80 ° C. for 10 minutes in a buffer solution, and the ratio of the enzyme activity values before and after the heat treatment is expressed as a percentage. The residual enzyme activity rate of 41% or more after the heat treatment corresponds to about 1.5 times or more of the natural protein having diaphorase activity derived from Bacillus stearothermophilus.

本発明に係る変異型タンパク質は、ジアホラーゼの活性又はその耐熱性、あるいはその両方の程度が所定レベル以上である。   In the mutant protein according to the present invention, the degree of diaphorase activity and / or heat resistance thereof is at a predetermined level or more.

(実施例1)。
バチルスステアロサーモフィラス(Bacillus stearothermophilus)由来のジアホラーゼ(Diaphorase)のクローニングと発現及び精製。
(Example 1).
Cloning, expression and purification of diaphorase from Bacillus stearothermophilus.

(1-1)Bacillus stearothermophilusからゲノムDNAの単離・精製。
Bacillus stearothermophilusは、理化学研究所微生物系統保存施設(JCM)から分譲を受けた(JCM No.2501,NCBIのdiaphorase geneのaccession number:AF112858)。Bacillus stearothermophilusの凍結乾燥体を寒天培地A上、55℃で一晩培養した。
(1-1) Isolation and purification of genomic DNA from Bacillus stearothermophilus.
Bacillus stearothermophilus was purchased from RIKEN Microbial System Storage Facility (JCM) (JCM No.2501, NCBI diaphorase gene accession number: AF112858). The lyophilized product of Bacillus stearothermophilus was cultured overnight on agar medium A at 55 ° C.

このようにして得られたコロニーを新しい寒天培地A上にて同様に培養して、清浄なコロニーとして、ここから一部を取り出して液体培地A中55℃で一晩培養した。遠心分離により集菌し、Wizard Genomic DNA Purification Kit (Promega社)を使用して、ゲノムDNAを単離した(方法の詳細は製品添付の取扱説明書)。なお、培地Aの組成は次の「表1」のとおり(1L中、pH 7.0-7.2に調整)。   The colonies thus obtained were cultured in the same manner on a new agar medium A, and a part thereof was taken out as a clean colony and cultured overnight at 55 ° C. in liquid medium A. Bacteria were collected by centrifugation, and genomic DNA was isolated using Wizard Genomic DNA Purification Kit (Promega). The composition of medium A is as shown in the following “Table 1” (adjusted to pH 7.0-7.2 in 1 L).

(1-2)ジアホラーゼ(Diaphorase)遺伝子のクローニング。
前記(1-1)で得られたゲノムDNAからPCRによりジアホラーゼ遺伝子をクローニングした。DNA polymeraseにはPfu DNA polymerase (Stratagene社)を使用し、プライマーとしては、は以下の「表2」の配列のものを使用した。
(1-2) Cloning of diaphorase gene.
The diaphorase gene was cloned from the genomic DNA obtained in (1-1) by PCR. Pfu DNA polymerase (Stratagene) was used as the DNA polymerase, and primers having the sequences shown in Table 2 below were used.

次に、PCR産物のジアホラーゼ遺伝子をPCR Cleanup Kit(Qiagen社)を使って精製し、アガロース電気泳動により確認した。また、DNAシーケンサーにより塩基配列の確認を行った。   Next, the diaphorase gene of the PCR product was purified using PCR Cleanup Kit (Qiagen) and confirmed by agarose electrophoresis. In addition, the base sequence was confirmed with a DNA sequencer.

(1-3)ジアホラーゼ遺伝子のベクターへの導入。
ジアホラーゼ遺伝子のクローニングした断片をBamH IとNde Iにより処理し、PCR Cleanup Kit(Qiagen社)を使って精製した。また、ベクターpET12a (Novagen社)をBamH IとNde Iにより処理し、同様に精製した。これら2種類の断片をT4 ligaseによりligationし、産物によってXL1-blue electrocompetent cell (Stratagene社)を形質転換してLB-amp培地で培養を行い、増産した。
(1-3) Introduction of a diaphorase gene into a vector.
The cloned fragment of the diaphorase gene was treated with BamH I and Nde I and purified using PCR Cleanup Kit (Qiagen). The vector pET12a (Novagen) was treated with BamH I and Nde I and purified in the same manner. These two types of fragments were ligated with T4 ligase, and XL1-blue electrocompetent cells (Stratagene) were transformed with the product and cultured in LB-amp medium to increase production.

得られたプラスミドをBss Iで処理し、アガロース電気泳動でジアホラーゼ遺伝子の挿入を確認し、塩基配列を測定・解析した。すると、データベース(NCBI)の塩基配列との間に若干の際があった。これは、理化学研究所の微生物系統保存施設より取得した株とデータベースの株に若干の違いがあったために、クローニングしたDIとデータベースのDIの遺伝子配列に不一致があったためと思われる。遺伝型(塩基配列)については11箇所、そのうち表現型(アミノ酸配列)において2残基にて不一致があった(表3参照)。   The obtained plasmid was treated with Bss I, insertion of the diaphorase gene was confirmed by agarose electrophoresis, and the nucleotide sequence was measured and analyzed. Then, there was a slight difference between the nucleotide sequence of the database (NCBI). This seems to be because there was a discrepancy between the gene sequence of the cloned DI and the database DI because there was a slight difference between the strain obtained from the microbial strain storage facility of RIKEN and the database strain. There were 11 genotypes (base sequences), of which 2 residues in the phenotype (amino acid sequence) were inconsistent (see Table 3).

そこで、この2箇所のアミノ酸残基をデータベースのもの同様に修正した遺伝子を、Quick Change Site-Directed Mutagenesis Kit (Stratagene社)を使って作成した。なお、この遺伝子を「pET12a-BsDI」と命名した。   Therefore, a gene in which these two amino acid residues were corrected in the same manner as in the database was prepared using the Quick Change Site-Directed Mutagenesis Kit (Stratagene). This gene was named “pET12a-BsDI”.

(1-4)大腸菌の形質転換。
前記pET12a-BsDIをE. coli BL21 (DE3) (Novagen社)にヒートショック法により導入、形質転換を行った。SOC中で1hr、37℃で前培養後、LB-amp寒天培地に展開、コロニーの一部を液体培養し、ジアホラーゼの発現をSDS-pageで確認した。
(1-4) Transformation of E. coli.
The pET12a-BsDI was introduced into E. coli BL21 (DE3) (Novagen) by the heat shock method and transformed. After pre-culturing at 37 ° C for 1 hr in SOC, the cells were developed on an LB-amp agar medium, a part of the colonies were liquid-cultured, and the expression of diaphorase was confirmed by SDS-page.

(1-5)形質転換体の凍結保存サンプル。
前記(1-4)で得られた形質転換体培養液3mLを遠心分離し、大腸菌ペレットに2XYT培地を加えて分散させて-80℃で保存した。
(1-5) A cryopreserved sample of the transformant.
The transformant culture solution (3 mL) obtained in the above (1-4) was centrifuged, and 2XYT medium was added to the Escherichia coli pellet, dispersed, and stored at -80 ° C.

(1-6)大量培養とタンパク質精製。
BL21 (DE3)/pET12a-BsDIの凍結サンプルから、LB-amp agar培地に展開し、コロニーをピックアップして100mL LB-ampでOD600が1程度になるまで前培養し、これを18 LのLB-ampに展開して、37℃でOD600が2程度で飽和するまでしんとう培養した。この培養液から菌体を遠心分離(5 kG)により回収した(ウェットで収量20 g)。菌体ペレットを-80℃で凍結した後溶解し、0℃で200mLの50mM Tris-HCl, pH 7.8, 1 mM EDTA, 1 mM DTT, 1 mM PMSF溶液中で超音波処理して溶菌し、遠心分離(9.5 kG)により溶液画分を回収した。
(1-6) Mass culture and protein purification.
From a frozen sample of BL21 (DE3) / pET12a-BsDI, develop it into LB-amp agar medium, pick up the colonies, pre-culture them with 100mL LB-amp until OD600 is around 1, and add 18 L of LB- The amp was developed and cultured at 37 ° C. until the OD600 was saturated at about 2. The cells were collected from this culture by centrifugation (5 kG) (wet yield 20 g). The cell pellet is frozen at -80 ° C, lysed, lysed by sonication in 200 mL of 50 mM Tris-HCl, pH 7.8, 1 mM EDTA, 1 mM DTT, 1 mM PMSF at 0 ° C, and centrifuged. The solution fraction was collected by separation (9.5 kG).

次に、硫安沈殿法による精製を行った。35%飽和溶液になるまで撹拌しながら徐々に粉状の硫酸アンモニウムを添加し、一晩静置した。沈殿物を遠心分離(9.5 kG)により取り除き、透析膜チューブを使って脱塩処理した(最終溶液:5 mM Tris-HCl, pH 7.8)。限外濾過法で濃縮したサンプル50 mLを陰イオン交換カラム(Sepharose Q FastFlow, Amersham Bioscience)にかけ、diaphorase含有画分を回収して限外濾過法で濃縮した(溶液量20 mL、Centriplus 遠心式フィルターユニット YM-30、Millipore)。次いで、このサンプルをゲル濾過カラム(Sephacryl S-200, Amersham Bioscience)にかけ、diaphorase含有画分を集めた。   Next, purification by an ammonium sulfate precipitation method was performed. While stirring until a 35% saturated solution was obtained, powdered ammonium sulfate was gradually added and allowed to stand overnight. The precipitate was removed by centrifugation (9.5 kG) and desalted using a dialysis membrane tube (final solution: 5 mM Tris-HCl, pH 7.8). A 50 mL sample concentrated by ultrafiltration was applied to an anion exchange column (Sepharose Q FastFlow, Amersham Bioscience), and the diaphorase-containing fraction was collected and concentrated by ultrafiltration (solution volume 20 mL, Centriplus centrifugal filter) Unit YM-30, Millipore). The sample was then applied to a gel filtration column (Sephacryl S-200, Amersham Bioscience) and the diaphorase-containing fraction was collected.

(実施例2)。
Bacillus stearothermophilus由来のジアホラーゼのランダムミューテーションによる変異体ライブラリーの作成と耐熱性変異体のスクリーニング。
(Example 2).
Creation of mutant library by random mutation of diaphorase from Bacillus stearothermophilus and screening of thermostable mutant.

まず、本実施例2で行った実験の流れを図1に示す。Error-prone PCRによるdiaphoraseミュータントの遺伝子ライブラリー作成を行い、この遺伝子をベクターDNAに導入して大腸菌中で発現させた。このライブラリーを耐熱性スクリーニングにかけ、目的とする耐熱性diaphorase変異体を抽出した。   First, FIG. 1 shows a flow of an experiment performed in the second embodiment. A gene library of diaphorase mutants was prepared by error-prone PCR, and this gene was introduced into vector DNA and expressed in E. coli. This library was subjected to heat resistance screening, and the target heat-resistant diaphorase mutant was extracted.

(2-1)GeneMorph(登録商標)によるError-Prone PCR。
「Error-prone PCR法」とは、PCRによるDNA断片複製反応の際に、DNA polymeraseが塩基配列の読み間違いを起こすことを利用して、複製されたDNA断片に変異をランダムに起こす方法である。種々の方法が報告されているが、ここでは製品化されているものの中から、Stratagene社のGeneMorph(登録商標)を選択した。Template DNAは、Bacillus stearothermophilusのジアホラーゼ遺伝子を組み込んだ上記pET12a-BsDIを用いた。プライマーもこの遺伝子のクローニングに用いたものを使用した。
(2-1) Error-Prone PCR by GeneMorph (registered trademark).
The "Error-prone PCR method" is a method of randomly causing mutations in a replicated DNA fragment by utilizing the fact that DNA polymerase misreads the base sequence during a DNA fragment replication reaction by PCR. . Although various methods have been reported, Stratagene's GeneMorph (registered trademark) was selected from those commercially available. As the template DNA, the above-described pET12a-BsDI into which a diaphorase gene of Bacillus stearothermophilus was incorporated was used. The primer used for the cloning of this gene was also used.

プライマーの配列は、以下の「表4」に示すとおりであり、codingの5’端にNde I配列を、complementaryの5’端にBamH I配列をそれぞれ有している(下線部)ため、error-prone PCR産物をこれら制限酵素処理によりpET12aのマルチクローニングサイトに挿入することができる(天然型ジアホラーゼのクローニングと同様)。   The primer sequences are as shown in “Table 4” below, and have an Nde I sequence at the 5 ′ end of the coding and a BamH I sequence at the 5 ′ end of the complementary (underlined portion). -prone PCR products can be inserted into the multiple cloning site of pET12a by these restriction enzyme treatments (similar to cloning of natural diaphorase).

GeneMorph(登録商標)のマニュアルにしたがって、以下の「表5」に示すような反応液の調製、温調サイクルに基づいてPCRを行った。   According to the GeneMorph (registered trademark) manual, PCR was performed based on the preparation of the reaction solution and the temperature control cycle as shown in Table 5 below.

(2-2)ベクターへのジアホラーゼ遺伝子の導入。
Error-prone PCR産物はアガロースゲル電気泳動に用いた分以外全量をNde IとBamH Iによる制限酵素処理に用いた。37℃で2時間反応を行ったのち、反応生成物をQiaquick PCR purification Kit(Qiagen社)により精製した。一方、ベクターはpET12aをPCR産物同様、Nde IとBamH Iによる制限酵素処理した(37℃で2時間)。
(2-2) Introduction of a diaphorase gene into a vector.
The entire amount of Error-prone PCR product was used for restriction enzyme treatment with Nde I and BamH I except for the amount used for agarose gel electrophoresis. After performing the reaction at 37 ° C. for 2 hours, the reaction product was purified by Qiaquick PCR purification Kit (Qiagen). On the other hand, as for the vector, pET12a was treated with Nde I and BamH I for restriction enzyme treatment (at 37 ° C. for 2 hours) like the PCR product.

これら制限酵素処理反応産物を低融点アガロースゲル電気泳動により分離し、対応する開環状態のベクターDNAをQiaquick Gel Extraction Kit(Qiagen)を使用して精製した。次いで、精製したベクターの制限酵素処理産物をアルカリフォスファターゼで処理することにより、5’末端を脱リン酸化した。反応生成物をQiaquick PCR purification Kit(Qiagen社)により精製した。このようにして得られたerror-prone PCR産物(即ち、ジアホラーゼ変異体遺伝子ライブラリー)を制限酵素・脱リン酸化処理されたベクターにライゲーションした。ライゲーション反応はLigation Kit Mighty Mix(タカラバイオ社)を使用した。反応生成物は、エタノール沈殿法により精製した。   These restriction enzyme-treated reaction products were separated by low-melting point agarose gel electrophoresis, and the corresponding circularly open vector DNA was purified using Qiaquick Gel Extraction Kit (Qiagen). Subsequently, the 5 'end was dephosphorylated by treating the restriction enzyme-treated product of the purified vector with alkaline phosphatase. The reaction product was purified by Qiaquick PCR purification Kit (Qiagen). The error-prone PCR product (that is, the diaphorase mutant gene library) thus obtained was ligated to a restriction enzyme / dephosphorylated vector. Ligation Kit Mighty Mix (Takara Bio Inc.) was used for the ligation reaction. The reaction product was purified by ethanol precipitation.

(2-3)Competent Cellの作成と形質転換。
Competent Cellは自前で調製したBL21(DE3)のelectrocompetent cell (competency 〜108/ng)を用いた。40 μLのcompetent cell凍結サンプルを氷上にて融解し、1 μg/μL程度の濃度のDNAサンプルを0.5μL混合し、0.1 cmギャップのelelctroporation cuvetteに全量をセットし、1800 kVの電圧を印加することにより形質転換した。これに960μLのSOC培地を加え、1時間37℃でしんとうして前培養を行い、この培養液を5〜50 μL LB-amp寒天培地へ植菌し、37℃で一晩インキュベーションを行った。
(2-3) Production and transformation of competent cells.
Competent cells used were BL21 (DE3) electrocompetent cells (competency ˜10 8 / ng) prepared in-house. Thaw a frozen sample of 40 μL of competent cell on ice, mix 0.5 μL of a DNA sample with a concentration of about 1 μg / μL, set the entire volume in a 0.1 cm gap eleltroporation cuvette, and apply a voltage of 1800 kV. Was transformed. To this, 960 μL of SOC medium was added, and preculture was performed at 37 ° C. for 1 hour. This culture was inoculated into 5-50 μL LB-amp agar medium, and incubated at 37 ° C. overnight.

(2-4)スクリーニング方法。
前記(2-3)で得られた寒天培地上のシングルコロニーをそれぞれ96ウェルプレートのLB-amp液体培地(150 μL)に爪楊枝を使って植菌した。2ウェルを、野生型を産生する大腸菌株に当てた。ウェルプレート上面をガスパーマブル粘着シート(ABgene)でシールし、さらに付属のふたをして37℃で一晩(〜14時間)しんとう培養を行った。この培養液25μLずつを新しいウェルプレートで同量の0.2N NaOH aq(あらかじめ分注)とピペッティングによりよく混合した後プレートにふたをし、37℃で15分インキュベーション(インキュベーター)することにより溶菌した。
(2-4) Screening method.
Single colonies on the agar medium obtained in the above (2-3) were inoculated into a LB-amp liquid medium (150 μL) in a 96-well plate using a toothpick. Two wells were applied to the E. coli strain producing the wild type. The upper surface of the well plate was sealed with a gas-permable adhesive sheet (ABgene), and the attached lid was put on, followed by incubation at 37 ° C. overnight (˜14 hours). 25 μL of this culture solution was mixed in a new well plate with the same amount of 0.2N NaOH aq (previously dispensed) by pipetting, then the plate was covered and incubated for 15 minutes at 37 ° C. (incubator) for lysis .

次に室温で100 μLの0.1 M K-pi, pH 6.8を加え、液を中和した。このとき非加熱のコントロールサンプルとして野生型のサンプル2つのうち1つをマイクロチューブに取り分けて室温でとりおいた。プレートを市販のOPPテープでシールし、80℃で75分加熱処理を行い(恒温器)、室温に静置して冷まして取り分けておいた野生型のサンプルをプレートに戻した。各サンプルに10μLの20mM anthraquinone sulfonic acid(AQS) 20% DMSO溶液、直前に調製した80 mM NADH水溶液を50 μLを順次加え、プレートをOPPテープでシールしてvortex mixerで5秒攪拌した。顕色する様子をカメラで記録し、野生型サンプルと比較して前記AQSの還元による発色が強いものを耐熱性候補として選択した。   Next, 100 μL of 0.1 M K-pi, pH 6.8 was added at room temperature to neutralize the solution. At this time, one of two wild-type samples as an unheated control sample was placed in a microtube and stored at room temperature. The plate was sealed with a commercially available OPP tape, heat-treated at 80 ° C. for 75 minutes (incubator), allowed to cool at room temperature, and the wild-type sample that had been separated was returned to the plate. To each sample, 10 μL of 20 mM anthraquinone sulfonic acid (AQS) 20% DMSO solution and 50 μL of the 80 mM NADH aqueous solution prepared immediately before were sequentially added, the plate was sealed with OPP tape, and stirred with a vortex mixer for 5 seconds. The state of color development was recorded with a camera, and those having strong color development due to the reduction of the AQS compared to the wild type sample were selected as heat resistance candidates.

(2-5)サンプル保存。
スクリーニングをくぐり抜けた検体については、96ウェルプレートに残っている培養液の一部を4.5mLのLB培地に植菌して1晩培養しプラスミドを精製し冷凍庫で保存した。また、別途4mLのLB培地に植菌してO.D.600が0.4程度にまで培養し、遠心分離により集菌し、2 mLの2xYT培地に懸濁させて液体窒素により凍結して-80℃で保存した。
(2-5) Sample storage.
For the specimens that passed the screening, a part of the culture solution remaining in the 96-well plate was inoculated into 4.5 mL of LB medium, cultured overnight, the plasmid was purified, and stored in a freezer. Separately, inoculate into 4 mL of LB medium and incubate until OD 600 reaches about 0.4, collect by centrifugation, suspend in 2 mL of 2xYT medium, freeze with liquid nitrogen, and store at -80 ° C. did.

(2-6)ジアホラーゼ変異体の大量発現と精製。
ジアホラーゼ変異体の大量発現と精製は以前に報告した方法により行った。ただし、大量発現におけるE.coliの培養は1 L LB-ampで行い、培養スケールに合わせて、その後の精製の各段階における容積等を調整した。
(2-6) Mass expression and purification of diaphorase mutants.
Large-scale expression and purification of diaphorase mutants was carried out by previously reported methods. However, E. coli in large-scale expression was cultured with 1 L LB-amp, and the volume in each subsequent purification step was adjusted according to the culture scale.

(2-7)活性評価試験。
ジアホラーゼ変異体の活性評価を以下の条件で行った。反応溶液は100mM K-pi, pH 8.0で、[ANQ] = 0.3 mM、[NADH] = 40 mM、[diaphorase] = 48 nMである。測定前にアルゴンバブリングにより十分除酸素を行い、反応はアルゴン雰囲気で行った。ジアホラーゼの添加により反応を開始し、反応進行を520nmにおけるANQの吸光度(モル吸光係数680M-1cm-1)の減少によりモニターし、反応速度を算出した。
(2-7) Activity evaluation test.
The activity of the diaphorase mutant was evaluated under the following conditions. The reaction solution is 100 mM K-pi, pH 8.0, [ANQ] = 0.3 mM, [NADH] = 40 mM, [diaphorase] = 48 nM. Prior to the measurement, oxygen was sufficiently removed by argon bubbling, and the reaction was performed in an argon atmosphere. The reaction was started by the addition of diaphorase, and the reaction progress was monitored by a decrease in the absorbance of ANQ at 520 nm (molar extinction coefficient 680 M −1 cm −1 ) to calculate the reaction rate.

(2-8)耐熱性試験。
精製したジアホラーゼ変異体サンプルの5 0mM Tris-HCl, pH 7.8, 300 mM NaCl溶液を限外濾過法による濃縮/バッファー交換を行って、0.1 M K-pi, pH 8.0溶液とした。この溶液を適宜薄めてジアホラーゼの460 nm の吸光度が0.1となるように調製した(酵素濃度8.3μMの溶液となる)。この溶液をアルミブロックヒーター等で、80℃・10分インキュベートし、すぐに氷上で冷却し、十分冷ましてから活性測定を行った。また、前記インキュベーションを行わなかったサンプルで対照実験を行った。
(2-8) Heat resistance test.
A 50 mM Tris-HCl, pH 7.8, 300 mM NaCl solution of the purified diaphorase mutant sample was concentrated / buffer exchanged by an ultrafiltration method to obtain a 0.1 M K-pi, pH 8.0 solution. This solution was appropriately diluted so that the absorbance at 460 nm of diaphorase was 0.1 (the solution having an enzyme concentration of 8.3 μM). This solution was incubated at 80 ° C. for 10 minutes with an aluminum block heater or the like, immediately cooled on ice, and cooled down to measure the activity. In addition, a control experiment was performed using a sample that was not incubated.

(2−9)結果。
総計約8000コロニーを上記の方法にそってスクリーニングにかけた。結果43検体が陽性として抽出された。実際例としてウェルプレートの写真の一部を図2に示す。なお、図2には、スクリーニングにおける活性を維持しているジアホラーゼの検出例が示されており、矢印(A、A)がこのプレートで検出された耐熱性変異体候補の検体、対照実験として矢印(B)が野生型検体、矢印(C)が加熱処理を行っていない野生型検体をそれぞれ示している。
(2-9) Results.
A total of about 8000 colonies were screened according to the above method. Results 43 samples were extracted as positive. As a practical example, a part of a photograph of a well plate is shown in FIG. FIG. 2 shows an example of detection of diaphorase that maintains the activity in screening. Arrows (A, A) are samples of thermostable mutant candidates detected on this plate, and arrows are used as control experiments. (B) shows the wild type specimen, and arrow (C) shows the wild type specimen not subjected to the heat treatment.

プレート間の誤差、株間のジアホラーゼ発現量の違いなど、可能性のある誤差を考慮して、選択された検体を一度にまとめて再スクリーニングを行った。即ち、凍結保存した大腸菌サンプルをLB寒天培地上に画線培養し、得られたコロニーを96ウェルプレートに植菌して同様に加熱実験を行った。但し、誤差を極力小さくするために、一つの検体につき、8つのコロニーを取り上げスクリーニングにかけた。   In consideration of possible errors such as differences between plates and diaphorase expression levels between strains, the selected specimens were collected and rescreened at once. That is, the cryopreserved Escherichia coli sample was streaked on LB agar medium, and the obtained colonies were inoculated into a 96-well plate, and a heating experiment was similarly performed. However, in order to minimize the error, eight colonies were picked up for each specimen and screened.

このダブルチェック実験の結果の写真の一部を図3に示す。この図3は、縦列に同一の変異体サンプルを配置し、参照として、列番号11及び24の上4ウェルが熱処理後の野生型、列番号12及び24の下4ウェルが熱処理を加えていない野生型サンプルである。この図3に示す写真の例では、列番号7、14、17、19、20、21を陽性として、耐熱性変異体候補として選出した。   A part of a photograph of the result of this double check experiment is shown in FIG. In FIG. 3, the same mutant sample is placed in the column, and as a reference, the upper 4 wells of the column numbers 11 and 24 are the wild type after the heat treatment, and the lower 4 wells of the column numbers 12 and 24 are not subjected to the heat treatment. It is a wild type sample. In the example of the photograph shown in FIG. 3, column numbers 7, 14, 17, 19, 20, and 21 were selected as positive and selected as heat-resistant mutant candidates.

このようにして再現性を確保した14サンプルを抽出された耐熱性ジアホラーゼ変異体候補とした。これら14変異体の遺伝子配列を解析すると、添付した図4(図面代用表)に示すとおりの結果になった。14のサンプルのうち3つが同じ変異体G149Dと重複しており、また一つのサンプルについては野生型であった。従って最終的に抽出された耐熱性変異体候補は10個になった。   Thus, 14 samples that ensured reproducibility were used as extracted thermostable diaphorase mutant candidates. When the gene sequences of these 14 variants were analyzed, the results were as shown in the attached FIG. 4 (drawing substitute table). Three of the 14 samples overlapped with the same mutant G149D, and one sample was wild type. Therefore, the number of thermostable mutant candidates finally extracted was 10.

上で得た耐熱性ジアホラーゼ変異体候補について耐熱性試験を行った結果を図5(図面代用グラフ)に示す。なお、図5においては、耐熱性ジアホラーゼ変異体候補の熱処理前後の活性(反応速度、左)および熱処理による残存酵素活性率(右)、グラフ中の点線はそれぞれの値における野生型の値を示している。図5中の「Amano」は、天野エンザイム製のジアホラーゼであり、WTと同じ配列のものである。   FIG. 5 (drawing substitute graph) shows the results of the heat resistance test conducted on the thermostable diaphorase mutant candidates obtained above. In FIG. 5, the activity (reaction rate, left) of the thermostable diaphorase mutant candidate before and after heat treatment, the residual enzyme activity rate by heat treatment (right), and the dotted line in the graph indicate the wild-type value at each value. ing. “Amano” in FIG. 5 is a diaphorase manufactured by Amano Enzyme, which has the same sequence as WT.

その結果、変異型タンパク質の加熱処理後の酵素残存活性率は、F105L(47.7%)、K139N/A187E(53.3%)が野生型(WT)よりも特に優れており、G131E(28.1%)、G122D(27.7%)は野生型(WT、25.3%)よりもやや優れていた(図5参照)。その他は野生型と同等かそれ以下であった。従って、スクリーニングでは、耐熱性の向上した変異体だけでなく、残存酵素活性率がそれほど向上しなくても通常の活性が向上した変異体も選択されていたことがわかる。しかしながら、これら多くの変異体において活性の向上が確認され、特に、K139N/A187Eは野生型の2倍以上の活性を示した。いずれにしても、本実験系では、目的とする耐熱性の向上したジアホラーゼ変異体を得ることに成功した。よって、今回用いたerror-prone PCRによるランダムミューテーションで生じさせた変異体ライブラリーの作成と熱処理によるスクリーニングのための方法が実際に有効であるということが確認できた。   As a result, the enzyme residual activity rate after heat treatment of the mutant protein is particularly superior to that of the wild type (WT) in F105L (47.7%) and K139N / A187E (53.3%), G131E (28.1%), G122D (27.7%) was slightly better than the wild type (WT, 25.3%) (see FIG. 5). Others were less than or equal to the wild type. Therefore, it can be seen that in the screening, not only mutants with improved heat resistance but also mutants with improved normal activity even though the residual enzyme activity rate did not improve so much. However, an improvement in activity was confirmed in many of these mutants, and in particular, K139N / A187E showed an activity twice or more that of the wild type. In any case, this experimental system succeeded in obtaining the target diaphorase mutant with improved thermostability. Therefore, it was confirmed that the method for creating mutant libraries generated by random mutation by error-prone PCR and screening by heat treatment used in this study was actually effective.

(実施例3)。
ジアホラーゼ耐熱性変異体に関する詳細な検討。
(Example 3).
Detailed study on diaphorase thermostable mutants.

(3-1)。上記実施例によって得られた変異体のうち、野生型に比べて耐熱性が特に向上した変異型タンパク質K139N/A187Eに関する熱耐性について、さらに詳細な検討を行った。図6には、熱処理の温度をさまざまに変化させたときの残存酵素活性率を測定してプロットしたグラフを示した。   (3-1). Among the mutants obtained in the above examples, further detailed examination was performed on the heat resistance of the mutant protein K139N / A187E, which has particularly improved heat resistance compared to the wild type. FIG. 6 shows a graph obtained by measuring and plotting the residual enzyme activity rate when the temperature of the heat treatment is variously changed.

この図6(図面代用グラフ)に示されているように、温度70℃で酵素活性が落ち始めるが、変異型タンパク質K139N/A187Eは、75〜85℃の温度領域において天然型タンパク質の残存酵素活性率の1.5倍以上(の耐熱性)を維持できることがわかった。   As shown in FIG. 6 (drawing substitute graph), the enzyme activity begins to drop at a temperature of 70 ° C., but the mutant protein K139N / A187E has a residual enzyme activity of the natural protein in the temperature range of 75 to 85 ° C. It was found that 1.5 times or more of the rate (heat resistance) can be maintained.

(3-2)。上記の研究によって得られた変異体のうち、野生型に比べて酵素活性が向上したG122DとK139N/A187Eを代表例として、さらに酵素反応速度論な検討を行った。   (3-2). Among the mutants obtained by the above study, G122D and K139N / A187E, which have improved enzyme activity as compared with the wild type, were used as representative examples to further study enzyme kinetics.

まず、図7(図面代用グラフ)には、NADH 40mM という条件においてANQの濃度をさまざまに変化させたときの酵素反応速度をプロットした。この図7から、変異型タンパク質であるG122DとK139N/A187Eは、野生型(天然型)と同様にANQ濃度依存性を示し、これらの変異型タンパク質は、野生型(天然型)と比較して基質ANQに対するより大きな親和性を獲得していることがわかる。   First, FIG. 7 (drawing substitute graph) plots the enzyme reaction rate when the concentration of ANQ was changed variously under the condition of NADH 40 mM. FIG. 7 shows that the mutant proteins G122D and K139N / A187E show ANQ concentration dependency in the same manner as the wild type (natural type), and these mutant proteins are compared with the wild type (natural type). It can be seen that greater affinity for the substrate ANQ has been obtained.

また、図8(図面代用グラフ)には、ANQ 2.2 mMという条件においてNADHの濃度をさまざまに変化させたときの酵素反応速度をプロットした。変異型タンパク質G122Dは、野生型(天然型)と同様のANQ濃度依存性カーブを描き、変異型タンパク質K139N/A187Eは、野生型(天然型)と比較して基質NADHに対する親和性はむしろ低下している。   Further, in FIG. 8 (drawing substitute graph), the enzyme reaction rate when the concentration of NADH was changed under various conditions of ANQ 2.2 mM was plotted. Mutant protein G122D draws the same ANQ concentration-dependent curve as wild type (natural type), and mutant protein K139N / A187E has rather lower affinity for substrate NADH than wild type (natural type). ing.

酵素反応は、いずれもMichaelis-Mentenの式によく一致し、kcatおよびKM(NADH)、KM(ANQ)を求めた。比較として野生型(天然型)ジアホラーゼ(DI(DH“Amano”3)のkcatおよびKM(NADH)、KM(ANQ)をあわせて示す。ジアホラーゼは、いわゆるping-pong型の反応形式をとる。ここで、kcatは触媒反応の単位時間当たりのターンオーバー数、KM(NADH)、KM(ANQ)はそれぞれの基質に対するMichaelis定数であり、酵素のそれぞれの基質に対する活性部位への基質の結合のし易さを反映するファクターである。以上をまとめると、添付した図9(図面代用表)のようになる。 Enzymatic reactions were in good agreement with the Michaelis-Menten equation, and k cat, K M (NADH), and K M (ANQ) were determined. For comparison, wild type (natural type) diaphorase (DI (DH “Amano” 3) k cat and K M (NADH), K M (ANQ) are also shown. Diaphorase has a so-called ping-pong type reaction format. taking. here, k cat is the number of turnovers per unit time of the catalyst reaction, K M (NADH), K M (ANQ) is Michaelis constant for each substrate, to the active site for each of the substrate for the enzyme This factor reflects the ease of substrate binding, and the above is summarized as shown in FIG.

この結果から、これら変異体のミディエーターANQの結合部位が野生型(天然型)に比べてより結合し易い性質を有することがわかり(図9のANQ関連表参照)、一方、NADHの結合サイトに関しては野生型(天然型)と比較して特に変化がないか、むしろ低下していると考えられる(図9のNADH関連表参照)。したがって、これら変異体(変異型タンパク質)に置けるより高い触媒能は、基質ANQに対する親和性の獲得によるものと予測できる。   From these results, it can be seen that the binding site of the mediator ANQ of these mutants has a property of binding more easily than the wild type (natural type) (see the ANQ related table in FIG. 9), while the binding site of NADH It is considered that there is no particular change compared to the wild type (natural type), or rather it is reduced (see the NADH-related table in FIG. 9). Therefore, it can be predicted that the higher catalytic ability of these mutants (mutant proteins) is due to the acquisition of affinity for the substrate ANQ.

このことは、高濃度におけるより高い触媒活性を示さないが、低濃度において優位性を示すことを意味しており、例えば、酵素電池においてミディエーターANQの濃度をおさえることができるというメリットにつながると考えられる。   This means that it does not show higher catalytic activity at high concentrations, but it shows superiority at low concentrations, leading to the advantage of being able to reduce the mediator ANQ concentration in, for example, enzyme cells. Conceivable.

本発明に係るジアホラーゼ活性を有する変異型タンパク質は、例えば、NADHあるいはNADPHのアッセイキット、NADHあるいはNADPHのセンサー、NADHあるいはNADPHの測定方法、酵素を固定化して電極に用いた燃料電池、キノン類などの色素の還元反応触媒などの分野において利用できる。   Mutant proteins having diaphorase activity according to the present invention include, for example, NADH or NADPH assay kits, NADH or NADPH sensors, NADH or NADPH measurement methods, fuel cells in which enzymes are immobilized and used as electrodes, quinones, etc. It can be used in the field of the reduction reaction catalyst of

実施例2に係わる実験の流れ(ランダムミューテーションによるライブラリー作成とスクリーニング)を示す模式図である。It is a schematic diagram which shows the flow of the experiment concerning Example 2 (library creation and screening by random mutation). 総計約8000コロニーをスクリーニングにかけたときのウェルプレートの写真(図面代用写真)の一部である。A part of a well plate photo (drawing substitute photo) when a total of about 8000 colonies were screened. ダブルチェック実験の結果のウェルプレート写真の一部である。It is a part of well plate photograph of the result of the double check experiment. 耐熱性ジアホラーゼ変異体候補である14変異体の遺伝子配列を解析した結果を示す図面代用表である。It is a drawing substitute table | surface which shows the result of having analyzed the gene sequence of 14 variants which are thermostable diaphorase variant candidates. 耐熱性ジアホラーゼ変異体候補(変異型タンパク質)について耐熱性試験を行った結果を示す図面代用グラフである。It is a drawing substitute graph which shows the result of having performed the thermostability test about the thermostable diaphorase variant candidate (mutant protein). 野生型に比べて耐熱性の向上した変異型タンパク質K139N/A187Eに関する熱耐性に関し、加熱処理の温度をさまざまに変化させたときの残存酵素活性率を測定してプロットしたグラフである。It is the graph which measured and plotted the residual enzyme activity rate when changing the temperature of heat processing variously regarding the heat resistance regarding the mutant protein K139N / A187E which improved heat resistance compared with the wild type. NADH 40mM という条件においてANQの濃度をさまざまに変化させたときの酵素反応速度をプロットした図面代用グラフである。It is a drawing substitute graph plotting the enzyme reaction rate when the concentration of ANQ is changed variously under the condition of NADH 40 mM. ANQ 2.2 mMという条件においてNADHの濃度をさまざまに変化させたときの酵素反応速度をプロットした図面代用グラフである。FIG. 5 is a drawing-substituting graph that plots the enzyme reaction rate when the concentration of NADH is variously changed under the condition of ANQ 2.2 mM. 野生型と、変異型の代表例であるG122D及びK139N/A187Eのジアホラーゼ酵素のそれぞれの基質に対する活性部位への基質の結合のしやすさを反映するファクターをまとめた図面代用表である。It is a drawing substitute table summarizing factors reflecting the ease of binding of the substrate to the active site for each of the diaphorase enzymes of G122D and K139N / A187E, which are representative examples of the wild type and the mutant type.

Claims (14)

配列番号1の天然型アミノ酸配列において、少なくとも一つ以上のアミノ酸残基が、欠失、置換、付加若しくは挿入されたアミノ酸配列からなり、
酵素活性値245以上のジアホラーゼ活性を有する変異型タンパク質。
In the natural amino acid sequence of SEQ ID NO: 1, consisting of an amino acid sequence in which at least one amino acid residue is deleted, substituted, added or inserted,
A mutant protein having diaphorase activity having an enzyme activity value of 245 or more.
加熱処理後の残存酵素活性率が27%以上であることを特徴とする請求項1記載の変異型タンパク質。   The mutant protein according to claim 1, wherein the residual enzyme activity rate after the heat treatment is 27% or more. 加熱処理後の前記残存酵素活性率が41%以上であることを特徴とする請求項2記載の変異型タンパク質。   The mutant protein according to claim 2, wherein the residual enzyme activity rate after the heat treatment is 41% or more. 配列番号1の天然型アミノ酸配列において、少なくとも一つ以上のアミノ酸残基が、欠失、置換、付加若しくは挿入されたアミノ酸配列からなり、
酵素活性値170以上のジアホラーゼ活性を有し、かつ、加熱処理後の前記残存酵素活性率が41%以上である変異型タンパク質。
In the natural amino acid sequence of SEQ ID NO: 1, consisting of an amino acid sequence in which at least one amino acid residue is deleted, substituted, added or inserted,
A mutant protein having a diaphorase activity with an enzyme activity value of 170 or more and having a residual enzyme activity rate of 41% or more after heat treatment.
好熱性バチルス属細菌由来のジアホラーゼ活性を有するタンパク質の変異型である請求項1記載の変異型タンパク質。   The mutant protein according to claim 1, which is a mutant form of a protein having diaphorase activity derived from a thermophilic Bacillus bacterium. 追加
好熱性バチルス属細菌由来のジアホラーゼ活性を有するタンパク質の変異型である請求項4記載の変異型タンパク質。
The mutant protein according to claim 4, which is a mutant form of a protein having a diaphorase activity derived from a thermophilic Bacillus bacterium.
バチルス・ステアロサーモフィラス(Bacillus stearothermophilus)由来のジアホラーゼ活性を有するタンパク質の変異型である請求項5記載の変異型タンパク質。   The mutant protein according to claim 5, which is a mutant protein having a diaphorase activity derived from Bacillus stearothermophilus. バチルス・ステアロサーモフィラス(Bacillus stearothermophilus)由来のジアホラーゼ活性を有するタンパク質の変異型である請求項6記載の変異型タンパク質。   The mutant protein according to claim 6, which is a mutant protein having a diaphorase activity derived from Bacillus stearothermophilus. 配列番号2のアミノ酸配列を有する請求項3記載の変異型タンパク質。   The mutant protein according to claim 3, which has the amino acid sequence of SEQ ID NO: 2. 配列番号3のアミノ酸配列を有する請求項3記載の変異型タンパク質。   The mutant protein according to claim 3, which has the amino acid sequence of SEQ ID NO: 3. 配列番号4のアミノ酸配列を有する請求項2記載の変異型タンパク質。   The mutant protein according to claim 2, which has the amino acid sequence of SEQ ID NO: 4. 配列番号5のアミノ酸配列を有する請求項2記載の変異型タンパク質。   The mutant protein according to claim 2, which has the amino acid sequence of SEQ ID NO: 5. 配列番号6のアミノ酸配列を有する請求項1記載の変異型タンパク質。   The mutant protein according to claim 1, which has the amino acid sequence of SEQ ID NO: 6. 配列番号7のアミノ酸配列を有する請求項1記載の変異型タンパク質。   The mutant protein according to claim 1, which has the amino acid sequence of SEQ ID NO: 7.
JP2005343605A 2005-11-29 2005-11-29 Mutant protein with diaphorase activity Expired - Fee Related JP4946019B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005343605A JP4946019B2 (en) 2005-11-29 2005-11-29 Mutant protein with diaphorase activity
US11/563,983 US20070196899A1 (en) 2005-11-29 2006-11-28 Mutant protein having diaphorase activity
US12/123,357 US7785851B2 (en) 2005-11-29 2008-05-19 Mutant protein having diaphorase activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005343605A JP4946019B2 (en) 2005-11-29 2005-11-29 Mutant protein with diaphorase activity

Publications (2)

Publication Number Publication Date
JP2007143493A true JP2007143493A (en) 2007-06-14
JP4946019B2 JP4946019B2 (en) 2012-06-06

Family

ID=38205655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343605A Expired - Fee Related JP4946019B2 (en) 2005-11-29 2005-11-29 Mutant protein with diaphorase activity

Country Status (1)

Country Link
JP (1) JP4946019B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048703A (en) * 2006-08-28 2008-03-06 Sony Corp Mutant type protein having diaphorase activity
JP2008289398A (en) * 2007-05-23 2008-12-04 Sony Corp Variant protein having diaphorase activity
JP2008289419A (en) * 2007-05-25 2008-12-04 Sony Corp Variant protein having diaphorase activity
WO2010064598A1 (en) * 2008-12-01 2010-06-10 ソニー株式会社 Mutant gluconate dehydrogenase
WO2011148938A1 (en) * 2010-05-24 2011-12-01 ユニチカ株式会社 Protein having diaphorase activity
WO2013094630A1 (en) 2011-12-21 2013-06-27 東洋紡株式会社 Diaphorase
US8603822B2 (en) 2010-01-28 2013-12-10 Sony Corporation Method for designing heat-resistant tyrosine-dependent short-chain dehydrogenase/reductase and heat-resistant tyrosine-dependent short-chain dehydrogenase/reductase
WO2014119516A1 (en) * 2013-01-29 2014-08-07 東洋紡株式会社 Diaphorase composition
JP2018033441A (en) * 2016-08-24 2018-03-08 東洋紡株式会社 Modified diaphorase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309192A (en) * 1997-05-09 1998-11-24 Unitika Ltd Thermostable diaphorase gene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309192A (en) * 1997-05-09 1998-11-24 Unitika Ltd Thermostable diaphorase gene

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048703A (en) * 2006-08-28 2008-03-06 Sony Corp Mutant type protein having diaphorase activity
JP2008289398A (en) * 2007-05-23 2008-12-04 Sony Corp Variant protein having diaphorase activity
JP2008289419A (en) * 2007-05-25 2008-12-04 Sony Corp Variant protein having diaphorase activity
WO2010064598A1 (en) * 2008-12-01 2010-06-10 ソニー株式会社 Mutant gluconate dehydrogenase
US8603822B2 (en) 2010-01-28 2013-12-10 Sony Corporation Method for designing heat-resistant tyrosine-dependent short-chain dehydrogenase/reductase and heat-resistant tyrosine-dependent short-chain dehydrogenase/reductase
WO2011148938A1 (en) * 2010-05-24 2011-12-01 ユニチカ株式会社 Protein having diaphorase activity
WO2013094630A1 (en) 2011-12-21 2013-06-27 東洋紡株式会社 Diaphorase
US9506043B2 (en) 2011-12-21 2016-11-29 Toyobo Co., Ltd. Diaphorase
WO2014119516A1 (en) * 2013-01-29 2014-08-07 東洋紡株式会社 Diaphorase composition
JP2014143942A (en) * 2013-01-29 2014-08-14 Toyobo Co Ltd Diaphorase composition
JP2018033441A (en) * 2016-08-24 2018-03-08 東洋紡株式会社 Modified diaphorase

Also Published As

Publication number Publication date
JP4946019B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4946019B2 (en) Mutant protein with diaphorase activity
JP4639302B2 (en) Mutant glucose dehydrogenase
JP6856344B2 (en) Mutant glucose dehydrogenase and its utilization
JP2004512047A (en) Variants of soluble pyrroloquinoline quinone-dependent glucose dehydrogenase
JP2012090563A (en) Mutant glucose dehydrogenase
JP4929925B2 (en) Mutant protein with diaphorase activity
US9701949B2 (en) Amadoriase with improved thermostability, gene and recombinant DNA for the amadoriase, and method for production of amadoriase with improved thermostability
JP2014528712A (en) Glucose oxidase mutant of Penicillium amagasakiens
US20070196899A1 (en) Mutant protein having diaphorase activity
JP2008289419A (en) Variant protein having diaphorase activity
WO2016063984A1 (en) Amadoriase having enhanced dehydrogenase activity
JPWO2013099294A1 (en) Glucose dehydrogenase
JPWO2017183717A1 (en) HbA1c dehydrogenase
JP2004344145A (en) Pyrroloquinoline quinone (pqq) dependent modified glucosedehydrogenase substance excellent in substrate specificity and stability
WO2005026340A1 (en) Pyrroloquinoline quinone (pqq)-dependent glucose dehydrogenase modification having excellent substrate specificity
JP5821843B2 (en) Protein with diaphorase activity
US7785851B2 (en) Mutant protein having diaphorase activity
WO2012043601A1 (en) Amadoriase variant
JP2008289398A (en) Variant protein having diaphorase activity
JP6127496B2 (en) Diaphorase
WO2004005499A1 (en) Glucose dehydrogenase
JP2012039949A (en) Pyrroloquinoline quinone-dependent glucose dehydrogenase mutant and application thereof
JP5865245B2 (en) Mutant of pyrroloquinoline quinone-dependent soluble glucose dehydrogenase
JP2003310274A (en) Glucose dehydrogenase and gene encoding the same
JP6764219B2 (en) Amadriase stable against Good&#39;s buffer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees