WO2014119407A1 - Head-up display device - Google Patents

Head-up display device Download PDF

Info

Publication number
WO2014119407A1
WO2014119407A1 PCT/JP2014/050931 JP2014050931W WO2014119407A1 WO 2014119407 A1 WO2014119407 A1 WO 2014119407A1 JP 2014050931 W JP2014050931 W JP 2014050931W WO 2014119407 A1 WO2014119407 A1 WO 2014119407A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display
mla
screen
display light
Prior art date
Application number
PCT/JP2014/050931
Other languages
French (fr)
Japanese (ja)
Inventor
俊 関谷
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Publication of WO2014119407A1 publication Critical patent/WO2014119407A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • B60K35/23
    • B60K35/50
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • B60K2360/822
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility

Definitions

  • the present invention relates to a head-up display device.
  • HUD Head-up display
  • This HUD device is provided in a dashboard of a vehicle or the like, and projects a display image on a windshield, thereby allowing the driver to visually recognize the display image as a virtual image.
  • Patent Document 2 discloses a HUD apparatus including a display device such as liquid crystal or DMD, a projection optical system, and a screen.
  • a display device such as liquid crystal or DMD
  • a projection optical system such as a liquid crystal or DMD
  • a screen such as a projection lens system.
  • Patent Document 3 discloses a HUD device including a semiconductor laser, a scanning system, and a screen.
  • a display image is generated by scanning a laser beam emitted from a semiconductor laser toward a screen by a scanning system.
  • external light such as sunlight may enter from the outside of the windshield.
  • the incident external light is reflected by the screen, and the reflected external light may be superimposed on the display light to cause a washout that reduces the visibility of the display image.
  • the present invention has been made in view of the above circumstances, and provides a head-up display device capable of suppressing a decrease in visibility due to incidence of external light and projecting a display image with good visibility. Objective.
  • a head-up display device includes: Display light emitting means for emitting display light constituting a display image; A transmission screen having a light receiving surface for receiving the display light and an output surface for emitting the received display light as diffused light, and having a diffusion characteristic that makes the light intensity distribution of the diffused light substantially uniform; With The transmissive screen is arranged by tilting the normal line of the transmissive screen at a certain angle with respect to the optical axis of the display light, and external light reaching the emission surface along the optical axis of the display light. Reflecting in a direction different from the direction along the optical axis of the display light, It is characterized by that.
  • the present invention it is possible to suppress a decrease in visibility due to the incidence of external light and project a display image with good visibility.
  • FIG. 2 It is a conceptual diagram which shows how the display apparatus which concerns on one Embodiment of this invention is mounted in the vehicle, and how a virtual image is formed.
  • FIG. 2 It is a schematic block diagram of the HUD apparatus which concerns on one Embodiment of this invention.
  • FIG. 2 It is a schematic block diagram of the display apparatus with which the HUD apparatus of FIG. 2 is provided.
  • (A) is a side view which shows the transmission characteristic of a general transmissive screen
  • (b) is a side view which shows the reflective characteristic of this transmissive screen.
  • A) is a figure which shows the light intensity distribution of a transmissive screen when a diffusion angle is large
  • (b) is a figure which shows the light intensity distribution of a transmissive screen when a diffusion angle is small.
  • FIG. 1 is a side view which shows the transmission / reflection characteristic at the time of the inclination arrangement
  • FIG. 1 is a side view of the 1st micro lens array concerning one embodiment of the present invention.
  • (A) is an enlarged plan view of a first microlens array according to an embodiment of the present invention
  • (b) is an enlarged plan view of a second microlens array according to an embodiment of the present invention. is there.
  • (A) is a side view of the microlens array which concerns on the modification of this invention
  • (b) is an enlarged plan view of the microlens array. It is a figure which shows the relationship between the inclination angle of a transmissive screen, and the intensity
  • the HUD device 1 As shown in FIG. 1, the HUD device 1 according to the present embodiment is provided in a dashboard of the vehicle 2 and emits display light L (see FIG. 2) representing a generated display image to the windshield 3 (an example of a transparent plate). ) To cause the driver to visually recognize the virtual image V of the display image representing the vehicle information. The driver visually recognizes the display image as the virtual image V in Eyebox 4 which is a range (viewing area) where the display image can be visually recognized as the virtual image V. Eyebox 4 is an area defined as a range in which the virtual image V can be properly visually recognized. Note that the virtual image V in FIG. 1 is schematically shown in order to facilitate sensory understanding. The same applies to the display light L in FIG.
  • the HUD device 1 shown in FIG. 1 includes a display device 10, a reflector 20, a housing 30, and a control unit (not shown).
  • the display device 10 is a device that emits display light L by combining laser beams of three primary colors of R, G, and B, and displays a display image by a field sequential color (Field ⁇ Sequential Color) method.
  • the display device 10 includes a laser diode (Laser Diode; LD) 11 serving as a light source unit (illuminating means), a mirror unit 12, a reflection mirror 13, a prism (optical element) 14, A reflective display element (DMD: Digital Mirror Device) 15, an optical sensor (detection element) 16, a projection lens 17, and a transmissive screen 18 are provided.
  • the DMD 15 corresponds to a specific example of “display light emitting means” of the present invention.
  • LD 11 includes a surface light source LD 11 r that emits red laser light R, a surface light source LD 11 g that emits green laser light G, and a surface light source LD 11 b that emits blue laser light B.
  • the LD 11r, LD 11g, and LD 11b are individually turned on, and sequentially emit blue, red, and green laser beams.
  • the mirror unit 12 includes a dichroic mirror 12a, a dichroic mirror 12b, and a dichroic mirror 12c.
  • the dichroic mirror 12a, the dichroic mirror 12b, and the dichroic mirror 12c are arranged in parallel to each other.
  • the dichroic mirror 12a is positioned on the traveling direction side of the blue laser light B emitted from the LD 11b, and is disposed at a predetermined angle with respect to the traveling direction of the blue laser light B. As a result, the dichroic mirror 12a receives the blue laser light B emitted from the LD 11b, and emits a part thereof as reflected light L1 toward the dichroic mirror 12b.
  • the dichroic mirror 12b is located on the traveling direction side of the laser light emitted from the dichroic mirror 12a and the LD 11r, and is disposed at a predetermined angle with respect to the traveling direction of each laser light. Thereby, the laser beam L1 is transmitted, the red laser beam R emitted from the LD 11r is received, and a part thereof is reflected toward the dichroic mirror 12c. In this way, the dichroic mirror 12b combines the laser light L1 and the red laser light R, and emits the combined laser light L2 toward the dichroic mirror 12c.
  • the dichroic mirror 12c is located on the traveling direction side of the laser light emitted from the dichroic mirror 12b and the LD 11g, and is disposed at a predetermined angle with respect to the traveling direction of each laser light. Accordingly, the laser beam L2 is transmitted, the green laser beam G emitted from the LD 11g is received, and a part thereof is reflected toward the reflection mirror 13. In this way, the dichroic mirror 12c combines the laser beam L2 and the green laser beam G, and emits the combined laser beam L3 toward the reflection mirror 13.
  • the LD 11 and the mirror unit 12 emit laser light for color display of a display image to be described later by combining and emitting the laser beams R, G, and B.
  • the LD is used as the light source unit of the display device 10, but the present invention is not limited to this. For example, you may use LED as a light source part.
  • the reflection mirror 13 is composed of a plane mirror, and reflects the laser beam L3 emitted from the mirror unit 12 toward the prism 14.
  • the prism 14 is an optical system having a triangular prism shape, and is disposed between the reflection mirror 13, the DMD 15, and the optical sensor 16.
  • the prism 14 receives the laser light L3 emitted from the reflection mirror 13 by the inclined surface 14a, the prism 14 transmits part of the laser light L3 to the DMD 15 and reflects the other part to the optical sensor 16.
  • the prism 14 reflects the display light L ′ emitted from the DMD 15 and emits it toward the projection lens 17.
  • the antireflection film is not provided on the inclined surface 14a of the prism 14, but the present invention is not limited to this.
  • the DMD 15 is a display element in which a plurality of minute mirror surfaces that can be individually controlled are arranged in a plane.
  • the DMD 15 receives the laser light L3 with a plurality of mirror surfaces, and reflects the laser light L3 received with a mirror surface in a reflective state among them.
  • Each minute mirror surface corresponds to one pixel of the display image.
  • the laser beam L3 representing one pixel is incident on the DMD 15, the laser beam L3 is reflected only on the mirror surface corresponding to the pixel.
  • display light L ′ constituting the display image is generated.
  • the state of each mirror surface is controlled by the control unit.
  • the DMD 15 emits the generated display light L ′ toward the prism 14.
  • DMD is used as the reflective display element of the display device 10, but the present invention is not limited to this.
  • LCOS may be used as the reflective display element.
  • the optical sensor 16 is a light receiving element composed of, for example, a photodiode or a phototransistor.
  • the optical sensor 16 detects the light intensity of the laser light L3 reflected by the inclined surface 14a of the prism 14, and supplies the detected light intensity data to the control unit.
  • the light intensity is, for example, the brightness of laser light L3 or display light L described later.
  • the control unit is composed of, for example, a microcomputer and controls the display device 10. For example, the control unit controls the timing at which the LD 11 emits the laser beams R, G, and B and adjusts the light amount thereof, and controls the state of each mirror surface of the DMD 15 to generate a desired display image.
  • the projection lens 17 projects the display light L ′ generated by the DMD 15 onto the transmission screen 18.
  • the projection lens 17 is formed so as to optimize the incident angle of the display light L ′ to the transmissive screen 18 in accordance with the characteristics of the optical system (the reflector 20 and the windshield 3) after the transmissive screen 18. Has been placed.
  • the projection lens 17 may be composed of a single lens or a combination of a plurality of lenses.
  • the transmission screen 18 is projected with the display light L ′ (display image represented by the display light L ′) generated by the DMD 15. At this time, the transmissive screen 18 diffuses the display light L ′ and emits the diffused light (display light L) toward the reflector 20. Specific features, functions, and arrangement methods of the transmissive screen 18 will be described later.
  • the display light L ′ is assumed to be light for one pixel incident on the center of the transmissive screen 18, and the optical axis AX is the optical axis of light for this one pixel.
  • the diffused light (display light L) is light obtained by diffusing the light for one pixel incident on the center of the transmissive screen 18.
  • the DMD 15 generates the display light L ′ based on the laser beams R, G, and B emitted from the LD 11, and the transmissive screen 18 receives the display light L ′ and displays the display image. (Display image is projected) and display light L (diffused light) is emitted toward the reflector 20.
  • the display device 10 may be a combination of a laser light source and a MEMS (Micro Electro Mechanical System) scanner.
  • the display light L emitted from the display device 10 is connected to a desired position as a virtual image V (see FIG. 1) at a desired size.
  • the optical system is provided between the optical path of the display device 10 (transmission screen 18) and the windshield 3.
  • the reflector 20 includes a magnifying mirror 21, a holding member 22, and a stepping motor 23.
  • the magnifying mirror 21 is a concave mirror or the like, and reflects the display light L emitted from the display device 10 by the concave reflecting surface 21a to emit reflected light (display light L) toward the windshield 3.
  • the size of the virtual image V to be connected becomes a size obtained by enlarging the display image (display light L).
  • the magnification of the display image by the magnifying mirror 21 is determined by the focal length (curvature radius) of the magnifying mirror 21 and the distance between the transmission screen 18 and the magnifying mirror 21.
  • the magnifying power by the magnifying mirror 21 depends on the size of the display image, the size of the image to be formed as the virtual image V, the image distortion of the virtual image V, and HUD.
  • the optimum value is determined in consideration of the allowable volume (optical path space) of the apparatus 1 and the like.
  • the magnifying mirror 21 is made of, for example, a resin member such as polycarbonate, and has a reflecting surface 21a on the surface of which a metal such as aluminum is deposited.
  • the magnifying mirror 21 is bonded to the holding member 22 with an adhesive member such as a double-sided adhesive tape.
  • the holding member 22 is made of, for example, a resin member such as ABS, and includes a gear portion 24 and a shaft portion 25.
  • the shaft portion 25 of the holding member 22 is pivotally supported by the housing 30.
  • a gear 26 is attached to the rotation shaft of the stepping motor 23, and the gear 26 is meshed with the gear portion 24 of the holding member 22.
  • the magnifying mirror 21 is supported in a rotatable state together with the holding member 22, and the magnifying mirror 21 can be rotated by the stepping motor 23 to adjust the projection direction of the display light L.
  • An observer (viewpoint in FIG. 1) operates the pushbutton switch (not shown) to change the angle of the magnifying mirror 21 so that the display light L is reflected to the position of the eye (that is, the virtual image V can be visually recognized). adjust.
  • the housing 30 has an opening of a predetermined size on the upper side, is formed in a box shape from a hard resin or the like, and the display device 10 and the reflector 20 disposed at predetermined positions inside the housing 30. Storing.
  • a window 31 is attached to the opening of the housing 30.
  • a light shielding wall 32 is disposed on the inner wall of the housing 30.
  • the window portion 31 is formed in a curved shape from a translucent resin such as acrylic in accordance with the shape of the opening portion of the housing 30, and is attached to the opening portion of the housing 30 by welding or the like.
  • the window 31 transmits the display light L reflected by the magnifying mirror 21.
  • the light shielding wall 32 is a flat plate-shaped shielding member, and is disposed so as to hang obliquely from the upper part of the housing 30.
  • the light shielding wall 32 prevents a phenomenon (washout) in which external light such as sunlight enters the display device 10 and the virtual image V becomes difficult to see.
  • the display image generated by the display device 10 is reflected and enlarged by the reflector 20, and then projected onto the windshield 3 so that the driver of the vehicle can visually recognize the virtual image V. .
  • the driver views the image projected on the transmission screen 18 through the windshield 3 and the reflector 20 as a virtual image V.
  • the transmission screen 18 since the transmission screen 18 has a characteristic configuration, a reduction in visibility due to external light such as sunlight incident from the outside of the windshield 3 is suppressed.
  • a specific configuration and the like of the transmission screen 18 will be described in detail.
  • the transmissive screen 18 of the present embodiment has a configuration that reduces the influence of incident external light incident from the outside of the windshield 3 and sufficiently secures the light intensity of the display light L. That is, the transmissive screen 18 is characterized by its mounting method and the configuration of the light receiving surface and the light emitting surface. First, after explaining the attachment method of the transmission type screen 18, the structure of a light-receiving surface and an output surface is demonstrated.
  • FIG. 4A is a schematic diagram showing a state in which display light corresponding to one representative pixel emitted from the transmissive screen is diffused by the transmissive screen and irradiated with the Eyebox. Although illustration is omitted, display light corresponding to each pixel forms an image on a transmission screen and diffuses so as to irradiate the entire Eyebox. Although omitted in the drawing, the display light is reflected and enlarged by the magnifying mirror and guided to the windshield.
  • the conventional transmissive screen is arranged such that its light receiving surface is perpendicular to the optical axis of the display light. Since the display light transmitted through the transmission screen is diffused at a predetermined diffusion angle ⁇ , it is enlarged. The enlarged display light reaches the Eyebox, which is a range in which the driver can visually recognize the display image as a virtual image via the enlargement mirror and the windshield.
  • the diffusion angle is an angle formed by the display light diffused by the transmissive screen, and indicates a rate at which the display light is expanded when the display light is transmitted through the transmissive screen. This diffusion angle is determined by the configuration of the transmissive screen and the characteristics of the incident display light.
  • the configuration of the transmissive screen is, for example, a lens pitch of a microlens array, a radius of curvature of the microlens, and the like described later.
  • the intensity distribution of display light (diffused light) diffused by a conventional transmission screen is a Gaussian distribution shown in FIG. That is, the light intensity becomes maximum near the center of the irradiation range, and the light intensity decreases at the end of the irradiation range. Further, the intensity distribution of the display light (diffused light) changes depending on the diffusion angle. For example, when display light with different diffusion angles ( ⁇ 1> ⁇ 2) is irradiated, the display light with the diffusion angle ⁇ 1 has a wider irradiation range, and the maximum value of the light intensity becomes smaller (see FIG. 5A).
  • the irradiation range of the display light having the diffusion angle ⁇ 2 is narrowed and the maximum value of the light intensity is increased (see FIG. 5B).
  • the amount of light in the entire irradiation range is the same for the diffusion angle ⁇ 1 and for the diffusion angle ⁇ 2.
  • the diffusion angle when the diffusion angle is decreased, the amount of light that protrudes out of the range of the Eyebox (the hatched portion in the figure) decreases and the light utilization efficiency (luminance) increases, but the Eyebox Since the amount of light decreases at the end of the display, the display uniformity decreases. That is, the diffusion angle needs to be an angle that achieves both light utilization efficiency and display uniformity. Optical characteristics such as light utilization efficiency and display uniformity that change according to the diffusion angle are called diffusion characteristics.
  • the light intensity that cannot sufficiently irradiate Eyebox is 50% or less of the peak intensity of the display light
  • the half angle of the diffusion angle at that time is ⁇ .
  • be the half angle of the diffusion angle when the display light diffuses on the transmission screen and reaches the outermost part of the Eyebox. As described above, ⁇ > ⁇ is established between the diffusion angle ⁇ and the diffusion angle ⁇ .
  • the incident external light irradiates the transmission screen through the windshield and the magnifying mirror.
  • the transmission screen has a transmittance of about 90%, and several% of the incident light is diffusely reflected by the transmission screen.
  • This reflected external light reaches the viewing area of the driver of the vehicle through the magnifying mirror and the windshield in the same manner as the display light transmitted through the transmissive screen. For this reason, when the amount of incident extraneous light increases, the extraneous reflected light reflected by the transmissive screen cannot be ignored. This is because washout occurs in which reflected external light is superimposed on display light to reduce the visibility of the display image.
  • the reflected external light has a diffusion characteristic like the display light described above. That is, by increasing the diffusion angle, the display uniformity increases, but the light utilization efficiency decreases. In addition, by reducing the diffusion angle, the light utilization efficiency is increased while the display uniformity is decreased.
  • the light intensity at which Eyebox cannot be sufficiently irradiated that is, the light intensity that does not deteriorate the visibility is set to 50% or less of the peak intensity of the reflected light, and the half angle of the diffusion angle at that time Is ⁇ ′.
  • FIG. 6 is a schematic diagram showing a state in which display light corresponding to one representative pixel emitted from the transmissive screen 18 is diffused by the transmissive screen 18 and irradiated with the Eyebox 4.
  • display light corresponding to each pixel forms an image on the transmissive screen 18 and diffuses so as to irradiate the entire Eyebox 4.
  • the display light is emitted with an inclination corresponding to the inclination angle of the transmissive screen 18, but the emission angle is extremely small, so that the display light L after diffusion is before diffusion as shown in FIG. 6.
  • the light is emitted along an optical axis substantially equal to the display light L ′. That is, it is considered that the optical axis of the display light is not changed by being diffused by the transmissive screen 18. Although not shown in the figure, the display light is refracted and enlarged by the magnifying mirror and guided to the windshield.
  • the transmission screen 18 is arranged such that the normal line of the transmission screen 18 is tilted with respect to the optical axis AX of the display light L ′. That is, the light receiving surface of the transmissive screen 18 has an inclination angle ⁇ with respect to the direction orthogonal to the optical axis AX. As a result, the angle formed between the incident external light and the reflected external light is 2 ⁇ .
  • the display light L emitted from the display device 10 is received by the light receiving surface of the transmissive screen 18, and then diffused from the light emitting surface to irradiate the Eyebox 4 (at this time, the display image is
  • the display light L ′ reaching the transmissive screen 18 may be generated in consideration of the extended portion so that the extended length is canceled.
  • the transmissive screen 18 is disposed so as to be inclined with respect to the optical axis AX, but the display light L (diffused light) transmitted through the transmissive screen 18 is emitted along the optical axis AX.
  • the conventional transmission screen as shown in FIG.
  • the light intensity in the irradiation range is greatly different between the center and the end, so that the light of the light actually irradiated on the Eyebox 4 when the transmission screen is tilted.
  • the strength is significantly reduced.
  • the display light irradiates the entire area of the irradiation box substantially uniformly, so that the area of the Eyebox 4 is efficiently irradiated. That is, a decrease in light intensity due to tilting can be reduced.
  • a frost type diffusion plate such as ground glass or an opal type diffusion plate in which minute particles are dispersed is generally used.
  • the diffuse intensity distribution of the transmitted light is Gaussian
  • the light intensity that illuminates the center of the Eyebox area is high
  • the light intensity is at the end of the Eyebox area.
  • the conventional HUD device has a problem that the visibility of the display image is lowered due to the diffusion intensity of the transmitted light having a Gaussian distribution. Therefore, in the transmissive screen 18 of the present embodiment, such a problem is solved by configuring the light receiving surface and the irradiation surface as follows.
  • the transmission screen 18 has the following configuration to maintain the diffusion characteristics when the transmission screen 18 is tilted.
  • the transmissive screen 18 is made of a translucent member, and a microlens array (MLA) 40 is formed on an incident surface on which display light is incident, and an emission surface from which the transmitted display light is emitted.
  • MLA microlens array
  • each of a plurality of microlenses (ML) 40a having a lens size of about 100 ⁇ m has a period at a pitch of dH in the horizontal direction and dV in the vertical direction. It is formed so that it may be arranged in order.
  • dH dV
  • the MLA 40 is formed such that square microlenses are periodically arranged in a lattice shape, and gaps and steps generated between adjacent MLs 40a are minimized.
  • the pitch is a distance between the lens centers of the ML 40a adjacent to each other, and this pitch is hereinafter referred to as “MLA 40 pitch”.
  • the MLA 41 has the same configuration as the MLA 40 as shown in FIG. That is, in the in-plane direction, for example, each of a plurality of micro lenses (ML) 41a having a lens size of about 100 ⁇ m is periodically arranged at a pitch of dH ′ in the horizontal direction and dV ′ in the vertical direction. Is.
  • dH ′ dV ′
  • the MLA 41 is formed such that square microlenses are periodically arranged in a lattice shape so that gaps and steps generated between adjacent MLs 41 a are minimized.
  • the pitch is the distance between the lens centers of the ML 41a adjacent to each other, and this pitch is hereinafter referred to as the “MLA 41 pitch”.
  • the pitch of the MLA 40 and the pitch of the MLA 41 are arranged to be equal to each other.
  • the present invention is not limited to this, and the MLA 40 and 41 are in accordance with the incident angle of the image projected on the transmissive screen 18. Can be determined.
  • the ratio between the horizontal pitches dH and dH ′ and the vertical pitches dV and dV ′ determines the shape and aspect ratio of the transmitted light intensity distribution of the transmission screen 18. Therefore, it is desirable to determine the pitch according to the shape of Eyebox 4 to be illuminated.
  • MLA 40 and MLA 41 are arranged opposite to the positions shown in FIG. That is, the light receiving surface of the MLA 40 and the light emitting surface of the MLA 41 are arranged in parallel, and the vertex portion of the ML 40a disposed at the center of the MLA 40 and the vertex portion of the ML 41a disposed at the center of the MLA 41 are both light. It arrange
  • the transmission screen 18 has a diffusion characteristic that makes the light intensity distribution of the diffused light (display light L) substantially uniform.
  • the substantially uniform light intensity distribution is an intensity distribution capable of irradiating within the irradiation range with a substantially uniform light intensity, and is, for example, a Top-Hat type light intensity distribution shown in FIG.
  • the transmissive screen 18 Since the transmissive screen 18 has the above-described configuration, the display light L ′ is diffused when passing through the transmissive screen 18, and the diffused display light L is efficiently irradiated within the range of Eyebox 4.
  • the incident outside light incident from the outside of the windshield 3 is reflected by the exit surface of the transmission screen 18 having the inclination angle ⁇ , and the reflected outside light reaches outside the range of the Eyebox 4. For this reason, it is possible to suppress the reflected external light from leaking into Eyebox 4 and to suppress the deterioration of the visibility of the display image (display light L).
  • the HUD device 1 it is possible to reduce the influence of outside incident light while suppressing the light amount loss of the display light L constituting the display image. That is, since the MLA 40 is formed on the light receiving surface of the transmission screen 18 and the MLA 40 is formed on the light emitting surface thereof, the display light L can irradiate the entire area of the Eyebox 4 substantially uniformly. As a result, external light incident from the outside of the windshield 3 is similarly reflected within the range of Eyebox 4. However, since the transmissive screen 18 is tilted at an inclination angle ⁇ , only reflected external light is reflected on the Eyebox 4. Reflect outside the range. Accordingly, it is possible to suppress a decrease in the visibility of the display image.
  • FIG. 10 shows a simulation result of the intensity distribution of the reflected external light reflected by the transmissive screen 18.
  • the light intensity in the range of Eyebox 4 when the inclination angle ⁇ of the transmission screen 18 shown in FIG. 6 is changed is obtained.
  • the brightness of the external light reflected light changes according to the tilt angle of the transmissive screen 18, and the brightness of the external light reflected light decreases as the tilt angle increases.
  • the inclination angle of the transmissive screen 18 is set to 4 degrees or more. It has been found that it is preferable to set the inclination angle of the transmission screen 18 to 5 degrees or more.
  • the HUD device 1 it is possible to reduce the external light reflection and the internal reflection while suppressing the light amount loss of the display light L constituting the display image. it can.
  • the transmissive screen 18 and the MLA 41 are formed on the emission side, but the present invention is not limited to this.
  • an aperture array 42 may be formed instead of the MLA 41.
  • the aperture array 42 is formed by a photolithography technique or the like so that each of the plurality of openings 42a is periodically arranged at a pitch of dH ′′ in the horizontal direction in the in-plane direction.
  • the vertical array is formed so as to be periodically arranged at a predetermined pitch, and the aperture array 42 may be formed integrally with the MLA 40 or as a separate body. May be.
  • the opening 42a of the aperture array 42 is formed so as to be adjusted to about 1/5 to 1/10 of the lens size of the ML 40a.
  • a region other than the opening 42a of the aperture array 42 is a light shielding portion 42b as illustrated.
  • the light shielding part 42b is formed of a material that absorbs visible light, such as a black resist used in a liquid crystal panel, for example. That is, in the aperture array 42, the area other than the opening 42a on both surfaces is the surface of the light shielding part 42b. Therefore, most of the laser light that has reached the aperture array 42 other than the light that passes through the opening 42a is absorbed by the light shielding portion 42b.
  • the transmission screen 18 is composed of the MLA 40 in which the ML 40a is periodically arranged.
  • the transmissive screen 18 may be configured from a microlens array (MLA) 43 in which ML43a having different shapes are arranged at an irregular pitch.
  • MLA microlens array
  • Engineered DiffusersTM is available. It is designed with the arrangement and sag amount of the microlens calculated so as to obtain a desired diffusion angle and intensity distribution.
  • the MLA 43 can be formed by scanning the photoresist applied on the substrate with a laser beam.
  • FIG. 13 shows a simulation result of the intensity distribution of the intensity distribution of the reflected external light reflected by the transmission screen 18.
  • the light intensity in the range of Eyebox 4 when the inclination angle ⁇ of the transmission screen 18 shown in FIG. 6 is changed is obtained.
  • the brightness of the external light reflected light changes according to the tilt angle of the transmission screen 18, and the brightness of the external light reflected light decreases as the tilt angle increases.
  • the MLA 43 in which ML 43a having different shapes are arranged at irregular pitches has the same effect as the MLA 40 in which the ML 40a is periodically arranged.
  • the MLAs 40 and 41 are integrally formed and each is formed as a convex lens.
  • the present invention is not limited to this.
  • a configuration in which a convex lens and a concave lens are appropriately combined may be used.
  • the MLA 40A and the MLA 41A may be integrally formed, and the MLA 40A may be formed as a convex lens on the light receiving surface side, and the MLA 41A may be formed as a convex lens on the output surface side.
  • FIG. 14A the MLA 40A and the MLA 41A may be integrally formed, and the MLA 40A may be formed as a convex lens on the light receiving surface side, and the MLA 41A may be formed as a convex lens on the output surface side.
  • the MLA 40B and the MLA 41B may be configured as separate bodies, the MLA 40B may be formed as a convex lens on the light receiving surface side, and the MLA 41B may be formed as a convex lens on the output surface side.
  • the MLA 40B and the MLA 41B are fixed by the support member 44 with a predetermined interval.
  • the MLA 40C and the MLA 41C may be configured as separate bodies, and the MLA 40C may be formed as a convex lens on the emission surface side, and the MLA 41C may be formed as a convex lens on the emission surface side.
  • the MLA 40C and the MLA 41C are fixed by the support member 44 through a predetermined interval. Further, as shown in FIG.
  • the MLA 40D and the MLA 41D may be integrally configured, and the MLA 40D may be formed as a convex lens on the light receiving surface side, and the MLA 41D may be formed as a concave lens on the output surface side.
  • MLA 40E and MLA 41E may be configured as separate bodies, MLA 40E may be formed as a convex lens on the light receiving surface side, and MLA 41E may be formed as a convex lens on the light receiving surface side.
  • the MLA 40E and the MLA 41E are fixed by the support member 44 with a predetermined interval. Further, as shown in FIG.
  • the MLA 40F and the MLA 41F may be configured as separate bodies, the MLA 40F may be formed as a convex lens on the emission surface side, and the MLA 41E may be formed as a convex lens on the light receiving surface side.
  • the MLA 40F and the MLA 41F are fixed by the support member 44 through a predetermined interval.
  • MLA 40G and MLA 41G may be configured as separate bodies, and MLA 40G may be formed as a convex lens on the light receiving surface side, and MLA 41G may be formed as a concave lens on the output surface side.
  • the MLA 40G and the MLA 41G are fixed by the support member 44 through a predetermined interval. Further, as shown in FIG.
  • the MLA 40H and the MLA 41H may be configured as separate bodies, and the MLA 40H may be formed as a convex lens on the exit surface side, and the MLA 41H may be formed as a concave lens on the exit surface side.
  • the MLA 40H and the MLA 41H are fixed by the support member 44 through a predetermined interval.
  • the versatility of the transmissive screen 18 can be enhanced by appropriately combining a convex lens and a concave lens.
  • the shape of ML40a which MLA40 has was demonstrated as a square, it is not restricted to this.
  • the shape of the ML 40a may be a rectangle, a hexagon, or the like.
  • the MLA 40 is formed by arranging each of a plurality of MLs 40a in a honeycomb shape at a predetermined pitch.
  • a display image (display light L) may be generated with four primary colors, or a monochrome display image (display light L) may be generated with one LD.
  • an example of a vehicle on which the HUD device is mounted is a vehicle, but is not limited thereto.
  • the HUD device can be mounted on an automobile, a motorcycle, a construction machine, an agricultural machine, a ship, a snow bike, and the like.
  • the reflector 20 is composed of one mirror of the magnifying mirror 21, the shape and the number of mirrors constituting the reflector 20 are not limited to this, and are arbitrary according to the purpose.
  • the present invention relates to a display that is mounted on a moving body such as a vehicle and displays various kinds of information.
  • the display is mounted on various moving bodies such as an automobile, a motorcycle, a construction machine, an agricultural machine, a ship, a snow bike, and a water bike. It is possible to project a display image on a windshield (windshield), which is suitable as a head-up display device that allows the driver to visually recognize the display image as a virtual image.
  • windshield windshield

Abstract

An objective of the present invention is to alleviate a decline in visibility from an entry of outside light, and to project a display image with desirable visibility. A head-up display device comprises: a DMD which emits a display light (L') which configures a display image; and a transmissible screen (18) which has a photoreceptor face which receives the display light (L') and an emission face which emits the received display light (L') as diffused light, and which has a diffusion characteristic which makes the distribution of the light intensity of diffused light (L) approximately uniform. The transmissible screen (18) is positioned with the normal of the transmissible screen (18) inclined at a given angle (α) to an optical axis (AX) of the display light (L'), and outside light which reaches the emission face along the optical axis (AX) of the display light (L') is reflected in a different direction from the direction along the optical axis (AX) of the display light (L').

Description

ヘッドアップディスプレイ装置Head-up display device
 本発明は、ヘッドアップディスプレイ装置に関する。 The present invention relates to a head-up display device.
 車両の運転手が運転中に視線をほとんど動かさずに車両情報(速度、走行距離等)を読み取れるようにするため、フロントガラスの前方に情報を表示させるヘッドアップディスプレイ(Head-UP Display;HUD)装置が提案されている(例えば、下記特許文献1)。このHUD装置は、車両のダッシュボード内等に設けられ、フロントガラスに表示画像を投影することで、運転者に虚像として表示画像を視認させる。 Head-up display (HUD) that displays information in front of the windshield so that the vehicle driver can read vehicle information (speed, mileage, etc.) with little movement while driving An apparatus has been proposed (for example, Patent Document 1 below). This HUD device is provided in a dashboard of a vehicle or the like, and projects a display image on a windshield, thereby allowing the driver to visually recognize the display image as a virtual image.
 上述した車両用HUD装置として、DMD(Digital Micromirror Device)等の2次元空間変調デバイスを用いたHUD装置が提案されている。例えば、下記特許文献2には、液晶やDMD等の表示デバイスと投射光学系とスクリーンとを備えたHUD装置が開示されている。この特許文献2に記載されたHUD装置では、表示デバイス上に生成した画像を、投射レンズ系を用いてスクリーン上に結像させている。 As the above-described vehicle HUD device, a HUD device using a two-dimensional spatial modulation device such as DMD (Digital Micromirror Device) has been proposed. For example, Patent Document 2 below discloses a HUD apparatus including a display device such as liquid crystal or DMD, a projection optical system, and a screen. In the HUD device described in Patent Document 2, an image generated on a display device is imaged on a screen using a projection lens system.
 また、表示画像を投影するための光源として半導体レーザーを備えたHUD装置が提案されている。例えば、下記特許文献3には、半導体レーザーと走査系とスクリーンとを備えたHUD装置が開示されている。この特許文献3に記載のHUD装置では、半導体レーザーが出射したレーザー光を走査系によりスクリーンに向け走査することで表示画像を生成している。 Also, a HUD device having a semiconductor laser as a light source for projecting a display image has been proposed. For example, Patent Document 3 below discloses a HUD device including a semiconductor laser, a scanning system, and a screen. In the HUD device described in Patent Document 3, a display image is generated by scanning a laser beam emitted from a semiconductor laser toward a screen by a scanning system.
特開平5-193400号公報Japanese Patent Laid-Open No. 5-193400 特開2004-126226号公報JP 2004-126226 A 特開平7-270711号公報Japanese Patent Laid-Open No. 7-270711
 上述したHUD装置では、フロントガラスの外部から太陽光等の外光が入射する場合がある。この場合には、入射した外光はスクリーンよって反射され、反射外光が表示光と重畳して表示画像の視認性を低下させるウォッシュアウトが発生することがある。 In the HUD device described above, external light such as sunlight may enter from the outside of the windshield. In this case, the incident external light is reflected by the screen, and the reflected external light may be superimposed on the display light to cause a washout that reduces the visibility of the display image.
 本発明は、上記実情に鑑みてなされたものであり、外光の入射による視認性の低下を抑制し、視認性が良好な表示画像を投影することができるヘッドアップディスプレイ装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a head-up display device capable of suppressing a decrease in visibility due to incidence of external light and projecting a display image with good visibility. Objective.
 上記目的を達成するため、本発明に係るヘッドアップディスプレイ装置は、
 表示画像を構成する表示光を出射する表示光出射手段と、
 前記表示光を受光する受光面と該受光した表示光を拡散光として出射する出射面とを有し、前記拡散光の光強度の分布を略均一とする拡散特性を有する透過型スクリーンと、
 を備え、
 前記透過型スクリーンは、当該透過型スクリーンの法線を前記表示光の光軸に対して一定角度に傾けて配置され、前記表示光の光軸に沿って前記出射面に到達する外光を、前記表示光の光軸に沿った方向とは異なる方向に反射する、
 ことを特徴とする。
In order to achieve the above object, a head-up display device according to the present invention includes:
Display light emitting means for emitting display light constituting a display image;
A transmission screen having a light receiving surface for receiving the display light and an output surface for emitting the received display light as diffused light, and having a diffusion characteristic that makes the light intensity distribution of the diffused light substantially uniform;
With
The transmissive screen is arranged by tilting the normal line of the transmissive screen at a certain angle with respect to the optical axis of the display light, and external light reaching the emission surface along the optical axis of the display light. Reflecting in a direction different from the direction along the optical axis of the display light,
It is characterized by that.
 本発明によれば、外光の入射による視認性の低下を抑制し、視認性が良好な表示画像を投影することができる。 According to the present invention, it is possible to suppress a decrease in visibility due to the incidence of external light and project a display image with good visibility.
本発明の一実施形態に係る表示装置の車両への搭載態様及び虚像がどのように結像されるかを示す概念図である。It is a conceptual diagram which shows how the display apparatus which concerns on one Embodiment of this invention is mounted in the vehicle, and how a virtual image is formed. 本発明の一実施形態に係るHUD装置の概略構成図である。It is a schematic block diagram of the HUD apparatus which concerns on one Embodiment of this invention. 図2のHUD装置が備える表示装置の概略構成図である。It is a schematic block diagram of the display apparatus with which the HUD apparatus of FIG. 2 is provided. (a)は、一般的な透過型スクリーンの透過特性を示す側面図であり、(b)は、該透過型スクリーンの反射特性を示す側面図である。(A) is a side view which shows the transmission characteristic of a general transmissive screen, (b) is a side view which shows the reflective characteristic of this transmissive screen. (a)は、拡散角度が大きい場合の透過型スクリーンの光強度分布を示す図であり、(b)は、拡散角度が小さい場合の透過型スクリーンの光強度分布を示す図である。(A) is a figure which shows the light intensity distribution of a transmissive screen when a diffusion angle is large, (b) is a figure which shows the light intensity distribution of a transmissive screen when a diffusion angle is small. 透過型スクリーンの傾斜配置時の透過/反射特性を示す側面図である。It is a side view which shows the transmission / reflection characteristic at the time of the inclination arrangement | positioning of a transmissive screen. 本発明の一実施形態に係る第1のマイクロレンズアレイの側面図である。It is a side view of the 1st micro lens array concerning one embodiment of the present invention. (a)は、本発明の一実施形態に係る第1のマイクロレンズアレイの拡大平面図であり、(b)は、本発明の一実施形態に係る第2のマイクロレンズアレイの拡大平面図である。(A) is an enlarged plan view of a first microlens array according to an embodiment of the present invention, and (b) is an enlarged plan view of a second microlens array according to an embodiment of the present invention. is there. 本実施形態に係る透過型スクリーンの光強度分布を示す図である。It is a figure which shows the light intensity distribution of the transmissive screen which concerns on this embodiment. 透過型スクリーンの傾斜角度と入射外光の強度との関係を示す図である。It is a figure which shows the relationship between the inclination angle of a transmissive screen, and the intensity | strength of incident external light. 本発明の変形例に係るマイクロレンズアレイの側面図である。It is a side view of the micro lens array which concerns on the modification of this invention. (a)は、本発明の変形例に係るマイクロレンズアレイの側面図であり、(b)は、同マイクロレンズアレイの拡大平面図である。(A) is a side view of the microlens array which concerns on the modification of this invention, (b) is an enlarged plan view of the microlens array. 透過型スクリーンの傾斜角度と入射外光の強度との関係を示す図である。It is a figure which shows the relationship between the inclination angle of a transmissive screen, and the intensity | strength of incident external light. 本発明の他の変形例に係るマイクロレンズアレイの側面図である。It is a side view of the micro lens array which concerns on the other modification of this invention. 本発明の他の変形例に係るマイクロレンズアレイの側面図である。It is a side view of the micro lens array which concerns on the other modification of this invention. 本発明の他の変形例に係るマイクロレンズアレイの側面図である。It is a side view of the micro lens array which concerns on the other modification of this invention.
 本発明の一実施形態に係るHUD装置の構成、作用及び効果について、以下具体的に説明する。 The configuration, operation, and effect of the HUD device according to an embodiment of the present invention will be specifically described below.
 本実施形態に係るHUD装置1は、図1に示すように、車両2のダッシュボード内に設けられ、生成した表示画像を表す表示光L(図2参照)をウインドシールド3(透明板の一例)で反射させることにより、運転者に車両情報を表す表示画像の虚像Vを視認させる装置である。運転者は、表示画像を虚像Vとして視認可能な範囲(視域)であるEyebox4において、表示画像を虚像Vとして視認する。Eyebox4とは、虚像Vが適正に視認可能な範囲として規定された領域である。なお、図1の虚像Vは、感覚的な理解を容易にするため、模式的に示したものである。図2の表示光Lも同様である。 As shown in FIG. 1, the HUD device 1 according to the present embodiment is provided in a dashboard of the vehicle 2 and emits display light L (see FIG. 2) representing a generated display image to the windshield 3 (an example of a transparent plate). ) To cause the driver to visually recognize the virtual image V of the display image representing the vehicle information. The driver visually recognizes the display image as the virtual image V in Eyebox 4 which is a range (viewing area) where the display image can be visually recognized as the virtual image V. Eyebox 4 is an area defined as a range in which the virtual image V can be properly visually recognized. Note that the virtual image V in FIG. 1 is schematically shown in order to facilitate sensory understanding. The same applies to the display light L in FIG.
 図1に示すHUD装置1は、図2に示すように、表示装置10と、反射器20と、ハウジング30と、図示しない制御部とを備える。 As shown in FIG. 2, the HUD device 1 shown in FIG. 1 includes a display device 10, a reflector 20, a housing 30, and a control unit (not shown).
 表示装置10は、R,G,Bの三原色のレーザー光を合波して表示光Lを出射する装置であり、フィールドシーケンシャルカラー(Field Sequential Color)方式によって表示画像を表示するものである。この表示装置10は、図3に示すように、光源部(照明手段)となるレーザーダイオード(Laser Diode;LD)11と、ミラー部12と、反射ミラー13と、プリズム(光学素子)14と、反射型表示素子(DMD:Digital Mirror Device)15と、光センサ(検出素子)16と、投射レンズ17と、透過型スクリーン18と、を備える。なお、DMD15は本発明の「表示光出射手段」の一具体例に相当する。 The display device 10 is a device that emits display light L by combining laser beams of three primary colors of R, G, and B, and displays a display image by a field sequential color (Field 方式 Sequential Color) method. As shown in FIG. 3, the display device 10 includes a laser diode (Laser Diode; LD) 11 serving as a light source unit (illuminating means), a mirror unit 12, a reflection mirror 13, a prism (optical element) 14, A reflective display element (DMD: Digital Mirror Device) 15, an optical sensor (detection element) 16, a projection lens 17, and a transmissive screen 18 are provided. The DMD 15 corresponds to a specific example of “display light emitting means” of the present invention.
 LD11は、赤色レーザー光Rを発する面光源LD11r、緑色レーザー光Gを発する面光源LD11gと、青色レーザー光Bを発する面光源LD11bとから構成される。LD11では、LD11r,LD11g,LD11bがそれぞれ個別に点灯して、順次、青色,赤色,緑色のレーザー光を発光する。 LD 11 includes a surface light source LD 11 r that emits red laser light R, a surface light source LD 11 g that emits green laser light G, and a surface light source LD 11 b that emits blue laser light B. In the LD 11, the LD 11r, LD 11g, and LD 11b are individually turned on, and sequentially emit blue, red, and green laser beams.
 ミラー部12は、ダイクロイックミラー12aと、ダイクロイックミラー12bと、ダイクロイックミラー12cとから構成される。ダイクロイックミラー12aと、ダイクロイックミラー12bと、ダイクロイックミラー12cとは、互いに平行に配置されている。 The mirror unit 12 includes a dichroic mirror 12a, a dichroic mirror 12b, and a dichroic mirror 12c. The dichroic mirror 12a, the dichroic mirror 12b, and the dichroic mirror 12c are arranged in parallel to each other.
 ダイクロイックミラー12aは、LD11bから出射される青色レーザー光Bの進行方向側に位置し、青色レーザー光Bの進行方向に対して所定の角度をもって配設される。これにより、ダイクロイックミラー12aは、LD11bが発光した青色レーザー光Bを受光し、その一部を反射光L1としてダイクロイックミラー12bに向けて出射する。 The dichroic mirror 12a is positioned on the traveling direction side of the blue laser light B emitted from the LD 11b, and is disposed at a predetermined angle with respect to the traveling direction of the blue laser light B. As a result, the dichroic mirror 12a receives the blue laser light B emitted from the LD 11b, and emits a part thereof as reflected light L1 toward the dichroic mirror 12b.
 また、ダイクロイックミラー12bは、ダイクロイックミラー12aとLD11rとから出射されるレーザー光の進行方向側に位置し、各々のレーザー光の進行方向に対して所定の角度をもって配設される。これにより、レーザー光L1を透過するとともに、LD11rが発光した赤色レーザー光Rを受光し、その一部をダイクロイックミラー12cに向けて反射する。このようにして、ダイクロイックミラー12bは、レーザー光L1と赤色レーザー光Rを合波し、合波したレーザー光L2をダイクロイックミラー12cに向けて出射する。 The dichroic mirror 12b is located on the traveling direction side of the laser light emitted from the dichroic mirror 12a and the LD 11r, and is disposed at a predetermined angle with respect to the traveling direction of each laser light. Thereby, the laser beam L1 is transmitted, the red laser beam R emitted from the LD 11r is received, and a part thereof is reflected toward the dichroic mirror 12c. In this way, the dichroic mirror 12b combines the laser light L1 and the red laser light R, and emits the combined laser light L2 toward the dichroic mirror 12c.
 また、ダイクロイックミラー12cは、ダイクロイックミラー12bとLD11gとから出射されるレーザー光の進行方向側に位置し、各々のレーザー光の進行方向に対して所定の角度をもって配設される。これにより、レーザー光L2を透過するとともに、LD11gが発光した緑色レーザー光Gを受光し、その一部を反射ミラー13に向けて反射する。このようにして、ダイクロイックミラー12cは、レーザー光L2と緑色レーザー光Gを合波し、合波したレーザー光L3を反射ミラー13に向けて出射する。 The dichroic mirror 12c is located on the traveling direction side of the laser light emitted from the dichroic mirror 12b and the LD 11g, and is disposed at a predetermined angle with respect to the traveling direction of each laser light. Accordingly, the laser beam L2 is transmitted, the green laser beam G emitted from the LD 11g is received, and a part thereof is reflected toward the reflection mirror 13. In this way, the dichroic mirror 12c combines the laser beam L2 and the green laser beam G, and emits the combined laser beam L3 toward the reflection mirror 13.
 このように、LD11及びミラー部12では、レーザー光R,G,Bを合波して出射することで、後述する表示画像をカラー表示させるためのレーザー光を出射することになる。なお、本実施形態では、表示装置10の光源部としてLDを用いたがこれには限定されない。例えば、光源部としてLEDを用いてもよい。 As described above, the LD 11 and the mirror unit 12 emit laser light for color display of a display image to be described later by combining and emitting the laser beams R, G, and B. In the present embodiment, the LD is used as the light source unit of the display device 10, but the present invention is not limited to this. For example, you may use LED as a light source part.
 反射ミラー13は、平面鏡から構成されるものであり、ミラー部12から出射されたレーザー光L3をプリズム14に向けて反射させる。 The reflection mirror 13 is composed of a plane mirror, and reflects the laser beam L3 emitted from the mirror unit 12 toward the prism 14.
 プリズム14は、三角柱形状を有する光学系であり、反射ミラー13とDMD15と光センサ16との間に配置される。プリズム14は、反射ミラー13から出射されたレーザー光L3を傾斜面14aで受光すると、レーザー光L3の一部をDMD15に透過するとともに、他の一部を光センサ16に反射する。また、プリズム14は、DMD15が出射した表示光L’を反射して、投射レンズ17に向けて出射する。なお、本実施形態では、プリズム14の傾斜面14aに反射防止膜を配設しない構成としているが、これに限定されるものではない。 The prism 14 is an optical system having a triangular prism shape, and is disposed between the reflection mirror 13, the DMD 15, and the optical sensor 16. When the prism 14 receives the laser light L3 emitted from the reflection mirror 13 by the inclined surface 14a, the prism 14 transmits part of the laser light L3 to the DMD 15 and reflects the other part to the optical sensor 16. The prism 14 reflects the display light L ′ emitted from the DMD 15 and emits it toward the projection lens 17. In the present embodiment, the antireflection film is not provided on the inclined surface 14a of the prism 14, but the present invention is not limited to this.
 DMD15は、それぞれ個別に制御可能な複数の微小な鏡面を平面に配列した表示素子である。DMD15では、複数の鏡面でレーザー光L3を受光するとともに、その中の反射可能な状態にある鏡面で受光したレーザー光L3を反射する。各微小な鏡面は、ぞれぞれ、表示画像の一画素に対応している。一画素を表すレーザー光L3がDMD15に入射すると、その画素に対応する鏡面でのみレーザー光L3が反射される。これを表示画像における全ての画素について連続的に行うことで、表示画像を構成する表示光L’が生成される。各鏡面の状態は制御部により制御される。
 また、DMD15は生成した表示光L’をプリズム14に向けて出射する。なお、本実施形態では、表示装置10の反射型表示素子としてDMDを用いたがこれには限定されない。例えば、反射型表示素子としてLCOSを用いてもよい。
The DMD 15 is a display element in which a plurality of minute mirror surfaces that can be individually controlled are arranged in a plane. The DMD 15 receives the laser light L3 with a plurality of mirror surfaces, and reflects the laser light L3 received with a mirror surface in a reflective state among them. Each minute mirror surface corresponds to one pixel of the display image. When the laser beam L3 representing one pixel is incident on the DMD 15, the laser beam L3 is reflected only on the mirror surface corresponding to the pixel. By continuously performing this process for all the pixels in the display image, display light L ′ constituting the display image is generated. The state of each mirror surface is controlled by the control unit.
Further, the DMD 15 emits the generated display light L ′ toward the prism 14. In the present embodiment, DMD is used as the reflective display element of the display device 10, but the present invention is not limited to this. For example, LCOS may be used as the reflective display element.
 光センサ16は、例えば、フォトダイオードやフォトトランジスタ等から構成される受光素子である。この光センサ16は、プリズム14の傾斜面14aで反射されたレーザー光L3の光強度を検出し、検出した光強度のデータを制御部に供給する。なお、光強度とは、例えば、レーザー光L3や後述する表示光Lの輝度である。 The optical sensor 16 is a light receiving element composed of, for example, a photodiode or a phototransistor. The optical sensor 16 detects the light intensity of the laser light L3 reflected by the inclined surface 14a of the prism 14, and supplies the detected light intensity data to the control unit. The light intensity is, for example, the brightness of laser light L3 or display light L described later.
 制御部は、例えば、マイクロコンピュータから構成され、表示装置10を制御する。制御部は、例えば、LD11がレーザー光R,G,Bを出射するタイミング制御やその光量調整を行うとともにDMD15の各鏡面の状態を制御し、所望の表示画像を生成させる。 The control unit is composed of, for example, a microcomputer and controls the display device 10. For example, the control unit controls the timing at which the LD 11 emits the laser beams R, G, and B and adjusts the light amount thereof, and controls the state of each mirror surface of the DMD 15 to generate a desired display image.
 投射レンズ17は、DMD15で生成された表示光L’を透過型スクリーン18に投射する。投射レンズ17は、表示光L’の透過型スクリーン18への入射角を、透過型スクリーン18以降の光学系(反射器20、ウインドシールド3)の特性に合わせて最適化するように形成され、配置されている。なお、投射レンズ17は、1枚のレンズから構成しても良いし、複数のレンズを組み合わせて構成しても良い。 The projection lens 17 projects the display light L ′ generated by the DMD 15 onto the transmission screen 18. The projection lens 17 is formed so as to optimize the incident angle of the display light L ′ to the transmissive screen 18 in accordance with the characteristics of the optical system (the reflector 20 and the windshield 3) after the transmissive screen 18. Has been placed. The projection lens 17 may be composed of a single lens or a combination of a plurality of lenses.
 透過型スクリーン18には、DMD15において生成された表示光L’(表示光L’によって表される表示画像)が投影される。このとき、透過型スクリーン18は表示光L’を透過拡散し、拡散光(表示光L)として反射器20に向けて出射する。透過型スクリーン18の具体的な特徴、機能及び配設方法については後述する。なお、説明を容易にするために、以下では、表示光L’を透過型スクリーン18の中心に入射する一画素分の光とし、光軸AXはこの一画素分の光の光軸とする。また、拡散光(表示光L)を、透過型スクリーン18の中央に入射した一画素分の光が拡散した光とする。 The transmission screen 18 is projected with the display light L ′ (display image represented by the display light L ′) generated by the DMD 15. At this time, the transmissive screen 18 diffuses the display light L ′ and emits the diffused light (display light L) toward the reflector 20. Specific features, functions, and arrangement methods of the transmissive screen 18 will be described later. For ease of explanation, the display light L ′ is assumed to be light for one pixel incident on the center of the transmissive screen 18, and the optical axis AX is the optical axis of light for this one pixel. Further, the diffused light (display light L) is light obtained by diffusing the light for one pixel incident on the center of the transmissive screen 18.
 以上の構成からなる表示装置10では、LD11が出射したレーザー光R,G,Bに基づいて、DMD15が表示光L’を生成し、透過型スクリーン18が表示光L’を受光して表示画像を表示する(表示画像が投影される)とともに表示光L(拡散光)を反射器20に向けて出射する。なお、表示装置10として、レーザー光源とMEMS(Micro Electro Mechanical System)スキャナとを組み合わせたものを用いてもよい。 In the display device 10 configured as described above, the DMD 15 generates the display light L ′ based on the laser beams R, G, and B emitted from the LD 11, and the transmissive screen 18 receives the display light L ′ and displays the display image. (Display image is projected) and display light L (diffused light) is emitted toward the reflector 20. The display device 10 may be a combination of a laser light source and a MEMS (Micro Electro Mechanical System) scanner.
 図2に戻って、反射器20は、表示装置10(透過型スクリーン18)から出射された表示光Lが、所望の位置に、所望の大きさで、虚像V(図1参照)として結ばれるように、表示装置10(透過型スクリーン18)とウインドシールド3の光路間に設けられる光学系である。反射器20は、拡大ミラー21と、保持部材22と、ステッピングモータ23とから構成される。 Returning to FIG. 2, in the reflector 20, the display light L emitted from the display device 10 (transmission type screen 18) is connected to a desired position as a virtual image V (see FIG. 1) at a desired size. As described above, the optical system is provided between the optical path of the display device 10 (transmission screen 18) and the windshield 3. The reflector 20 includes a magnifying mirror 21, a holding member 22, and a stepping motor 23.
 拡大ミラー21は、凹面鏡等であり、表示装置10から出射された表示光Lを凹面状の反射面21aで反射させることで、反射光(表示光L)をウインドシールド3に向かって出射する。これにより、結ばれる虚像Vの大きさは、表示画像(表示光L)が拡大された大きさのものになる。拡大ミラー21による表示画像の拡大倍率は、拡大ミラー21の焦点距離(曲率半径)や透過型スクリーン18と拡大ミラー21間の距離で決まる。拡大ミラー21の焦点距離が短い方が光路スペースを低減できるが、拡大ミラー21による拡大倍率は、表示画像の大きさ、虚像Vとして結像させたい像の大きさ、虚像Vの像歪み、HUD装置1の許容体積(光路スペース)等を勘案して最適な値となるように決定される。  The magnifying mirror 21 is a concave mirror or the like, and reflects the display light L emitted from the display device 10 by the concave reflecting surface 21a to emit reflected light (display light L) toward the windshield 3. As a result, the size of the virtual image V to be connected becomes a size obtained by enlarging the display image (display light L). The magnification of the display image by the magnifying mirror 21 is determined by the focal length (curvature radius) of the magnifying mirror 21 and the distance between the transmission screen 18 and the magnifying mirror 21. Although the optical path space can be reduced when the focal length of the magnifying mirror 21 is short, the magnifying power by the magnifying mirror 21 depends on the size of the display image, the size of the image to be formed as the virtual image V, the image distortion of the virtual image V, and HUD. The optimum value is determined in consideration of the allowable volume (optical path space) of the apparatus 1 and the like. *
 拡大ミラー21は、例えば、ポリカーボネート等の樹脂部材から構成され、その表面には、アルミニウム等の金属を蒸着させ反射面21aを有する。拡大ミラー21は、保持部材22に両面粘着テープ等の接着部材により接着される。保持部材22は、例えば、ABS等の樹脂部材から構成され、歯車部24及び軸部25を有する。保持部材22の軸部25はハウジング30に軸支されている。 The magnifying mirror 21 is made of, for example, a resin member such as polycarbonate, and has a reflecting surface 21a on the surface of which a metal such as aluminum is deposited. The magnifying mirror 21 is bonded to the holding member 22 with an adhesive member such as a double-sided adhesive tape. The holding member 22 is made of, for example, a resin member such as ABS, and includes a gear portion 24 and a shaft portion 25. The shaft portion 25 of the holding member 22 is pivotally supported by the housing 30.
 ステッピングモータ23の回動軸には歯車26が取付けられており、この歯車26は、保持部材22の歯車部24と噛合されている。拡大ミラー21は保持部材22と共に回動可能な状態で支持されており、ステッピングモータ23により拡大ミラー21を回動させ、表示光Lの投射方向を調整することができる。観察者(図1の視点)は、押ボタンスイッチ(図示しない)を操作し表示光Lが目の位置に反射されるように(即ち、虚像Vを視認できるように)拡大ミラー21の角度を調整する。 A gear 26 is attached to the rotation shaft of the stepping motor 23, and the gear 26 is meshed with the gear portion 24 of the holding member 22. The magnifying mirror 21 is supported in a rotatable state together with the holding member 22, and the magnifying mirror 21 can be rotated by the stepping motor 23 to adjust the projection direction of the display light L. An observer (viewpoint in FIG. 1) operates the pushbutton switch (not shown) to change the angle of the magnifying mirror 21 so that the display light L is reflected to the position of the eye (that is, the virtual image V can be visually recognized). adjust.
 ハウジング30は、上方に所定の大きさの開口部を有して、箱状に、硬質樹脂等から形成されるものであり、その内部の所定の位置に配置された表示装置10及び反射器20を収納する。また、ハウジング30の開口部には、窓部31が取り付けられる。また、ハウジング30の内壁には、遮光壁32が配設されている。 The housing 30 has an opening of a predetermined size on the upper side, is formed in a box shape from a hard resin or the like, and the display device 10 and the reflector 20 disposed at predetermined positions inside the housing 30. Storing. A window 31 is attached to the opening of the housing 30. A light shielding wall 32 is disposed on the inner wall of the housing 30.
 窓部31は、ハウジング30の開口部の形状に合わせて、アクリル等の透光性樹脂から湾曲形状に形成され、ハウジング30の開口部に溶着等により取り付けられる。また、窓部31は、拡大ミラー21で反射された表示光Lを透過させる。 The window portion 31 is formed in a curved shape from a translucent resin such as acrylic in accordance with the shape of the opening portion of the housing 30, and is attached to the opening portion of the housing 30 by welding or the like. The window 31 transmits the display light L reflected by the magnifying mirror 21.
 遮光壁32は、平板形状の遮蔽部材であり、ハウジング30の上部から斜めに垂下するように配設されている。この遮光壁32は、太陽光等の外光が表示装置10に入射し虚像Vが見えにくくなる現象(ウォッシュアウト)を防止している。 The light shielding wall 32 is a flat plate-shaped shielding member, and is disposed so as to hang obliquely from the upper part of the housing 30. The light shielding wall 32 prevents a phenomenon (washout) in which external light such as sunlight enters the display device 10 and the virtual image V becomes difficult to see.
 このようにHUD装置1では、表示装置10で生成された表示画像を反射器20で反射させて拡大した後、ウインドシールド3に投影することで、虚像Vを車両の運転手に視認させている。言い換えると、運転手は、ウインドシールド3及び反射器20を介して透過型スクリーン18に投影された映像を虚像Vとして視認することになる。また、HUD装置1では、透過型スクリーン18が特徴的な構成を有することで、ウインドシールド3の外部から入射した太陽光等の外光による視認性の低下を抑制している。以下、透過型スクリーン18の具体的な構成等について詳細に説明する。 As described above, in the HUD device 1, the display image generated by the display device 10 is reflected and enlarged by the reflector 20, and then projected onto the windshield 3 so that the driver of the vehicle can visually recognize the virtual image V. . In other words, the driver views the image projected on the transmission screen 18 through the windshield 3 and the reflector 20 as a virtual image V. Further, in the HUD device 1, since the transmission screen 18 has a characteristic configuration, a reduction in visibility due to external light such as sunlight incident from the outside of the windshield 3 is suppressed. Hereinafter, a specific configuration and the like of the transmission screen 18 will be described in detail.
(透過型スクリーン18)
 本実施形態の透過型スクリーン18は、ウインドシールド3の外部から入射した入射外光の影響を低減するとともに、表示光Lの光強度を十分確保する構成を有する。すなわち、透過型スクリーン18の特徴は、その取付方法と受光面及び出射面の構成とにある。まず、透過型スクリーン18の取付方法について説明した後、受光面及び出射面の構成について説明する。
(Transmission type screen 18)
The transmissive screen 18 of the present embodiment has a configuration that reduces the influence of incident external light incident from the outside of the windshield 3 and sufficiently secures the light intensity of the display light L. That is, the transmissive screen 18 is characterized by its mounting method and the configuration of the light receiving surface and the light emitting surface. First, after explaining the attachment method of the transmission type screen 18, the structure of a light-receiving surface and an output surface is demonstrated.
 まず、HUD装置における一般的な透過型スクリーンの取付方法について、図4を参照して説明する。図4(a)は、透過型スクリーンから出射された代表的な一画素に相当する表示光が、当該透過型スクリーンにより拡散されEyeboxを照射した状態を示す模式図である。なお、図示を省略するが、各画素に相当する表示光は、透過型スクリーンに結像し、Eyebox全域を照射するように拡散する。また、図中では省略するが、表示光は拡大ミラーにおいて反射・拡大されてウインドシールドに導かれる。 First, a general transmissive screen mounting method in the HUD device will be described with reference to FIG. FIG. 4A is a schematic diagram showing a state in which display light corresponding to one representative pixel emitted from the transmissive screen is diffused by the transmissive screen and irradiated with the Eyebox. Although illustration is omitted, display light corresponding to each pixel forms an image on a transmission screen and diffuses so as to irradiate the entire Eyebox. Although omitted in the drawing, the display light is reflected and enlarged by the magnifying mirror and guided to the windshield.
 図4(a)に示すように、従来の透過型スクリーンは、その受光面が表示光の光軸に対して垂直になるように配置される。透過型スクリーンを透過した表示光は、所定の拡散角度θで拡散されるので、拡大される。拡大された表示光は拡大ミラー及びウインドシールドを介して、運転者が表示画像を虚像として視認可能な範囲であるEyeboxに到達する。 As shown in FIG. 4A, the conventional transmissive screen is arranged such that its light receiving surface is perpendicular to the optical axis of the display light. Since the display light transmitted through the transmission screen is diffused at a predetermined diffusion angle θ, it is enlarged. The enlarged display light reaches the Eyebox, which is a range in which the driver can visually recognize the display image as a virtual image via the enlargement mirror and the windshield.
 拡散角度とは、透過型スクリーンによって拡散された表示光のなす角度であり、表示光が透過型スクリーンを透過するときの、表示光が拡大する割合を示すものである。この拡散角度は、透過型スクリーンの構成や入射する表示光の特性により決定される。透過型スクリーンの構成とは、例えば、それぞれ後述するマイクロレンズアレイのレンズピッチやマイクロレンズの曲率半径等である。 The diffusion angle is an angle formed by the display light diffused by the transmissive screen, and indicates a rate at which the display light is expanded when the display light is transmitted through the transmissive screen. This diffusion angle is determined by the configuration of the transmissive screen and the characteristics of the incident display light. The configuration of the transmissive screen is, for example, a lens pitch of a microlens array, a radius of curvature of the microlens, and the like described later.
 従来の透過型スクリーンによって拡散された表示光(拡散光)の強度分布は、図5に示すガウス分布となる。すなわち、照射範囲の中心付近で光強度が最大となり、照射範囲の端部では光強度が低下する。また、表示光(拡散光)の強度分布は、拡散角度により変化する。例えば、拡散角度が異なる(θ1>θ2)表示光が照射された場合、拡散角度θ1の表示光は照射範囲が広がり、光強度の最大値が小さくなる(図5(a)参照)。一方、拡散角度θ2の表示光は照射範囲が狭まり、光強度の最大値が大きくなる(図5(b)参照)。なお、照射範囲全体での光量は、拡散角度θ1の場合と拡散角度θ2の場合とで同じになる。 The intensity distribution of display light (diffused light) diffused by a conventional transmission screen is a Gaussian distribution shown in FIG. That is, the light intensity becomes maximum near the center of the irradiation range, and the light intensity decreases at the end of the irradiation range. Further, the intensity distribution of the display light (diffused light) changes depending on the diffusion angle. For example, when display light with different diffusion angles (θ1> θ2) is irradiated, the display light with the diffusion angle θ1 has a wider irradiation range, and the maximum value of the light intensity becomes smaller (see FIG. 5A). On the other hand, the irradiation range of the display light having the diffusion angle θ2 is narrowed and the maximum value of the light intensity is increased (see FIG. 5B). The amount of light in the entire irradiation range is the same for the diffusion angle θ1 and for the diffusion angle θ2.
 そのため、拡散光でEyeboxの全域を照明する場合、すなわち、表示均斉度(照射範囲における光強度の均一性)を高める場合には、図5(a)に示すように、拡散角度を大きくする必要がある。ところが、拡散角度を大きくしていくと、ガウス分布の裾野が広がり、Eyeboxの範囲外にはみ出す光量(図中、斜線部分)が増加することから、光量損失が大きくなり、表示画像の輝度も低下する。一方、図5(b)に示すように、拡散角度を小さくしていくと、Eyeboxの範囲外にはみ出す光量(図中、斜線部分)が減少し、光利用効率(輝度)が高まるものの、Eyeboxの端部では光量が低下するため表示均斉度が低下する。すなわち、拡散角度は、光利用効率と表示均斉度とを両立する角度である必要がある。この拡散角度に応じて変化する光利用効率や表示均斉度等の光学特性を拡散特性という。 Therefore, when illuminating the whole area of the Eyebox with diffused light, that is, when increasing the display uniformity (uniformity of light intensity in the irradiation range), it is necessary to increase the diffusion angle as shown in FIG. There is. However, as the diffusion angle is increased, the base of the Gaussian distribution is widened, and the amount of light that protrudes outside the Eyebox range (indicated by the shaded area in the figure) increases, resulting in a large loss of light and a decrease in the brightness of the display image. To do. On the other hand, as shown in FIG. 5B, when the diffusion angle is decreased, the amount of light that protrudes out of the range of the Eyebox (the hatched portion in the figure) decreases and the light utilization efficiency (luminance) increases, but the Eyebox Since the amount of light decreases at the end of the display, the display uniformity decreases. That is, the diffusion angle needs to be an angle that achieves both light utilization efficiency and display uniformity. Optical characteristics such as light utilization efficiency and display uniformity that change according to the diffusion angle are called diffusion characteristics.
 そこで、本実施形態では、Eyeboxを十分に照射できない光強度を、表示光のピーク強度に対して50%以下の強度として、そのときの拡散角度の半角をθとする。また、表示光が透過型スクリーンにおいて拡散してEyeboxの最外部に到達するときの拡散角度の半角をφとする。なお、上述のとおり、拡散角度θと拡散角度φとの間にはθ>φが成り立つ。 Therefore, in this embodiment, the light intensity that cannot sufficiently irradiate Eyebox is 50% or less of the peak intensity of the display light, and the half angle of the diffusion angle at that time is θ. Also, let φ be the half angle of the diffusion angle when the display light diffuses on the transmission screen and reaches the outermost part of the Eyebox. As described above, θ> φ is established between the diffusion angle θ and the diffusion angle φ.
 一方、図4(b)に示すように、上述のHUD装置では、ウインドシールドの外部から太陽光等の外光が入射すると、入射外光はウインドシールドと拡大ミラーを介して透過型スクリーンを照射する。透過型スクリーンは、約90%の透過率を有し、入射外光のうち数%の光は透過型スクリーンによって拡散反射される。この反射外光は、透過型スクリーンを透過した表示光と同様に、拡大ミラーとウインドシールドを介して車両の運転手の視域に到達する。そのため、入射外光の光量が大きくなると、透過型スクリーンによって反射された反射外光も無視できなくなる。なぜなら、反射外光が表示光と重畳して表示画像の視認性を低下させるウォッシュアウトが発生するためである。 On the other hand, as shown in FIG. 4B, in the above HUD device, when external light such as sunlight enters from the outside of the windshield, the incident external light irradiates the transmission screen through the windshield and the magnifying mirror. To do. The transmission screen has a transmittance of about 90%, and several% of the incident light is diffusely reflected by the transmission screen. This reflected external light reaches the viewing area of the driver of the vehicle through the magnifying mirror and the windshield in the same manner as the display light transmitted through the transmissive screen. For this reason, when the amount of incident extraneous light increases, the extraneous reflected light reflected by the transmissive screen cannot be ignored. This is because washout occurs in which reflected external light is superimposed on display light to reduce the visibility of the display image.
 反射外光は、上述した表示光と同様に、拡散特性を有する。すなわち、拡散角度を大きくすることで、表示均斉度が高まる一方、光利用効率が低下する。また、拡散角度を小さくすることで、光利用効率が高まる一方、表示均斉度が低下する。なお、本実施形態では、Eyeboxを十分に照射できない光強度、すなわち、視認性を低下させない光強度を、反射外光のピーク強度に対して50%以下の強度として、そのときの拡散角度の半角をθ’とする。 The reflected external light has a diffusion characteristic like the display light described above. That is, by increasing the diffusion angle, the display uniformity increases, but the light utilization efficiency decreases. In addition, by reducing the diffusion angle, the light utilization efficiency is increased while the display uniformity is decreased. In the present embodiment, the light intensity at which Eyebox cannot be sufficiently irradiated, that is, the light intensity that does not deteriorate the visibility is set to 50% or less of the peak intensity of the reflected light, and the half angle of the diffusion angle at that time Is θ ′.
 次に、本実施形態に係るHUD装置1における透過型スクリーン18の取付方法について、図6を参照して説明する。図6は、透過型スクリーン18から出射された代表的な一画素に相当する表示光が、当該透過型スクリーン18により拡散されEyebox4を照射した状態を示す模式図である。
 なお、図示を省略するが、各画素に相当する表示光は、透過型スクリーン18に結像し、Eyebox4全域を照射するように拡散する。
 また、表示光は透過型スクリーン18の傾斜角度に応じた角度だけ傾いて出射されるが、その出射角度は極めて小さいため、拡散後の表示光Lは、図6に示すように、拡散前の表示光L’とほぼ同等の光軸に沿って出射される。すなわち、表示光の光軸は、透過型スクリーン18によって拡散されることで変化しないとみなされる。
 また、図中では省略するが、表示光は拡大ミラーにおいて屈折・拡大されてウインドシールドに導かれる。
Next, a method for attaching the transmission screen 18 in the HUD device 1 according to the present embodiment will be described with reference to FIG. FIG. 6 is a schematic diagram showing a state in which display light corresponding to one representative pixel emitted from the transmissive screen 18 is diffused by the transmissive screen 18 and irradiated with the Eyebox 4.
Although not shown, display light corresponding to each pixel forms an image on the transmissive screen 18 and diffuses so as to irradiate the entire Eyebox 4.
Further, the display light is emitted with an inclination corresponding to the inclination angle of the transmissive screen 18, but the emission angle is extremely small, so that the display light L after diffusion is before diffusion as shown in FIG. 6. The light is emitted along an optical axis substantially equal to the display light L ′. That is, it is considered that the optical axis of the display light is not changed by being diffused by the transmissive screen 18.
Although not shown in the figure, the display light is refracted and enlarged by the magnifying mirror and guided to the windshield.
 図6に示すように、HUD装置1では、透過型スクリーン18は、当該透過型スクリーン18の法線が表示光L’の光軸AXに対して傾倒して配置される。すなわち、透過型スクリーン18の受光面は、光軸AXと直交する方向に対して傾斜角度αを有する。これにより、入射外光と反射外光のなす角は2αとなる。このHUD装置1では、表示装置10から出射された表示光Lは、透過型スクリーン18の受光面で受光された後、その出射面から拡散されてEyebox4を照射する(このとき、表示画像は、傾斜角度分間延びして見えてしまうが、例えば、透過型スクリーン18に到達する表示光L’を前記間延び分を考慮して生成して間延びがキャンセルされるようにすればよい。)。上述のとおり、透過型スクリーン18は光軸AXに対して傾倒して配置されているが、透過型スクリーン18を透過した表示光L(拡散光)は光軸AXに沿って出射される。従来の透過型スクリーンでは、図5に示すように、照射範囲の光強度が中心部と端部とで大きく異なるため、透過型スクリーンを傾倒させたときにEyebox4に実際に照射される光の光強度は著しく低下する。ところが、透過型スクリーン18の受光面及び出射面を後述する構成としたことで、表示光は照射範囲の全域を略均一に照射するため、Eyebox4の範囲内を効率良く照射する。つまり、傾倒による光強度の低下を少なくすることができる。 As shown in FIG. 6, in the HUD device 1, the transmission screen 18 is arranged such that the normal line of the transmission screen 18 is tilted with respect to the optical axis AX of the display light L ′. That is, the light receiving surface of the transmissive screen 18 has an inclination angle α with respect to the direction orthogonal to the optical axis AX. As a result, the angle formed between the incident external light and the reflected external light is 2α. In this HUD device 1, the display light L emitted from the display device 10 is received by the light receiving surface of the transmissive screen 18, and then diffused from the light emitting surface to irradiate the Eyebox 4 (at this time, the display image is For example, the display light L ′ reaching the transmissive screen 18 may be generated in consideration of the extended portion so that the extended length is canceled. As described above, the transmissive screen 18 is disposed so as to be inclined with respect to the optical axis AX, but the display light L (diffused light) transmitted through the transmissive screen 18 is emitted along the optical axis AX. In the conventional transmission screen, as shown in FIG. 5, the light intensity in the irradiation range is greatly different between the center and the end, so that the light of the light actually irradiated on the Eyebox 4 when the transmission screen is tilted. The strength is significantly reduced. However, since the light receiving surface and the exit surface of the transmissive screen 18 are configured as described later, the display light irradiates the entire area of the irradiation box substantially uniformly, so that the area of the Eyebox 4 is efficiently irradiated. That is, a decrease in light intensity due to tilting can be reduced.
 一方、ウインドシールド3の外部から入射した入射外光は、拡大ミラー21を介して透過型スクリーン18を照射する。入射外光の一部は、透過型スクリーン18によって反射される。反射外光は、光軸AXに対して角度2αの方向に、拡大ミラー21とウインドシールド3を介して出射される。このとき、透過型スクリーン18を後述する構成としたことで、反射外光は拡散角度θ’で拡散する。そのため、透過型スクリーン18の傾斜角度αを下記数式(1)で算出された値とすることで、反射外光の照射範囲をEyebox4の範囲外とすることができる。 On the other hand, incident external light incident from the outside of the windshield 3 irradiates the transmission screen 18 through the magnifying mirror 21. A part of the incident light is reflected by the transmission screen 18. The reflected external light is emitted through the magnifying mirror 21 and the windshield 3 in the direction of the angle 2α with respect to the optical axis AX. At this time, since the transmissive screen 18 is configured as described later, the reflected external light diffuses at the diffusion angle θ ′. Therefore, by setting the inclination angle α of the transmissive screen 18 to the value calculated by the following formula (1), the irradiation range of the non-reflected light can be outside the range of Eyebox 4.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 すなわち、透過型スクリーン18の受光面をα以上の傾斜角度で傾倒させることで、反射外光が表示光に重畳して発生するウォッシュアウトを抑制し、表示画像(表示光L)の視認性を確保することができる。 That is, by tilting the light receiving surface of the transmissive screen 18 at an inclination angle equal to or greater than α, washout that occurs when the reflected light is superimposed on the display light is suppressed, and the visibility of the display image (display light L) is improved. Can be secured.
 また、HUD装置用の透過型スクリーンとして、すりガラスなどのフロスト型拡散板や微小な粒子を分散させたオパール型拡散板が一般的に用いられる。また、このような透過型スクリーンを用いた場合には、通常、透過光の拡散強度分布はガウシアンとなり、Eyebox領域の中心部を照明する光強度が高くなり、Eyebox領域の端部では光強度が低くなる。そのため、従来のHUD装置では、透過光の拡散強度がガウス分布を有することに起因して表示画像の視認性が低下するという問題もあった。そこで本実施形態の透過型スクリーン18では、受光面及び照射面を以下のように構成することで、かかる問題を解決している。 Further, as a transmission type screen for the HUD device, a frost type diffusion plate such as ground glass or an opal type diffusion plate in which minute particles are dispersed is generally used. When such a transmission screen is used, normally, the diffuse intensity distribution of the transmitted light is Gaussian, the light intensity that illuminates the center of the Eyebox area is high, and the light intensity is at the end of the Eyebox area. Lower. Therefore, the conventional HUD device has a problem that the visibility of the display image is lowered due to the diffusion intensity of the transmitted light having a Gaussian distribution. Therefore, in the transmissive screen 18 of the present embodiment, such a problem is solved by configuring the light receiving surface and the irradiation surface as follows.
 次に、透過型スクリーン18の構成について図7を参照して説明する。透過型スクリーン18では、以下の構成とすることで、当該透過型スクリーン18を傾倒させた状態における拡散特性を保持している。 Next, the configuration of the transmission screen 18 will be described with reference to FIG. The transmission screen 18 has the following configuration to maintain the diffusion characteristics when the transmission screen 18 is tilted.
 図7に示すように、透過型スクリーン18は透光性部材から構成され、表示光が入射する入射面にマイクロレンズアレイ(MLA)40が形成されるとともに、透過した表示光が出射する出射面にマイクロレンズアレイ(MLA)41が形成される。 As shown in FIG. 7, the transmissive screen 18 is made of a translucent member, and a microlens array (MLA) 40 is formed on an incident surface on which display light is incident, and an emission surface from which the transmitted display light is emitted. A microlens array (MLA) 41 is formed in
 MLA40は、図8(a)に示すように、その面内方向において、例えばレンズサイズ100μm程度の複数のマイクロレンズ(ML)40aの各々が、水平方向にdH、垂直方向にdVのピッチで周期的に配列するようにして形成されるものである。本実施形態ではdH=dVであり、MLA40は、正方形のマイクロレンズが格子状に周期的に配列され、隣り合うML40a同士に生じる隙間や段差が最小限となるように形成されている。ここでのピッチとは、互いに隣接するML40aのレンズ中心間の距離であり、以後、このピッチを「MLA40のピッチ」と呼ぶ。 As shown in FIG. 8A, in the in-plane direction of the MLA 40, for example, each of a plurality of microlenses (ML) 40a having a lens size of about 100 μm has a period at a pitch of dH in the horizontal direction and dV in the vertical direction. It is formed so that it may be arranged in order. In this embodiment, dH = dV, and the MLA 40 is formed such that square microlenses are periodically arranged in a lattice shape, and gaps and steps generated between adjacent MLs 40a are minimized. Here, the pitch is a distance between the lens centers of the ML 40a adjacent to each other, and this pitch is hereinafter referred to as “MLA 40 pitch”.
 MLA41は、図8(b)に示すように、MLA40と同様の構成を有する。すなわち、その面内方向において、例えばレンズサイズ100μm程度の複数のマイクロレンズ(ML)41aの各々が、水平方向にdH’、垂直方向にdV’のピッチで周期的に配列するようにして形成されるものである。本実施形態ではdH’=dV’であり、MLA41は、正方形のマイクロレンズが格子状に周期的に配列され、隣り合うML41a同士に生じる隙間や段差が最小限となるように形成されている。ここでのピッチとは、互いに隣接するML41aのレンズ中心間の距離であり、以後、このピッチを「MLA41のピッチ」と呼ぶ。MLA41のピッチはMLA40のピッチと等しく、dH’=dHである。なお、本実施形態では、MLA40のピッチとMLA41のピッチを等しくなるように配設したが、これには限定されず、透過型スクリーン18上に投射される画像の入射角に応じてMLA40,41のピッチを決定することができる。 The MLA 41 has the same configuration as the MLA 40 as shown in FIG. That is, in the in-plane direction, for example, each of a plurality of micro lenses (ML) 41a having a lens size of about 100 μm is periodically arranged at a pitch of dH ′ in the horizontal direction and dV ′ in the vertical direction. Is. In this embodiment, dH ′ = dV ′, and the MLA 41 is formed such that square microlenses are periodically arranged in a lattice shape so that gaps and steps generated between adjacent MLs 41 a are minimized. Here, the pitch is the distance between the lens centers of the ML 41a adjacent to each other, and this pitch is hereinafter referred to as the “MLA 41 pitch”. The pitch of the MLA 41 is equal to the pitch of the MLA 40, and dH ′ = dH. In the present embodiment, the pitch of the MLA 40 and the pitch of the MLA 41 are arranged to be equal to each other. However, the present invention is not limited to this, and the MLA 40 and 41 are in accordance with the incident angle of the image projected on the transmissive screen 18. Can be determined.
 また、水平方向のピッチdH、dH’と垂直方向のピッチdV、dV’の比が透過型スクリーン18の透過光強度分布の形状およびアスペクト比を決定する。そのため、照明したいEyebox4の形状に応じてピッチを決定することが望ましい。 Further, the ratio between the horizontal pitches dH and dH ′ and the vertical pitches dV and dV ′ determines the shape and aspect ratio of the transmitted light intensity distribution of the transmission screen 18. Therefore, it is desirable to determine the pitch according to the shape of Eyebox 4 to be illuminated.
 MLA40とMLA41とは、図7に示す位置に対向して配置される。すなわち、MLA40の受光面とMLA41の出射面が平行になるように配置され、且つ、MLA40の中央に配置されたML40aの頂点部と、MLA41の中央に配置されたML41aの頂点部とがともに光軸AX上に位置するように配置される。また、MLA40の頂点とMLA41の頂点は、ML40aの焦点距離fの間隔だけ隔てて配置されており、ML40aの頂点を通過した光がML40aの頂点も通過するようにしている。ML40a,41aをこのように配設することで、透過型スクリーン18は、拡散光(表示光L)の光強度の分布を略均一とする拡散特性を有することとなる。略均一な光強度の分布とは、照射範囲内を略均一な光強度で照射することができる強度分布であり、例えば、図9に示すTop-Hat型の光強度分布である。 MLA 40 and MLA 41 are arranged opposite to the positions shown in FIG. That is, the light receiving surface of the MLA 40 and the light emitting surface of the MLA 41 are arranged in parallel, and the vertex portion of the ML 40a disposed at the center of the MLA 40 and the vertex portion of the ML 41a disposed at the center of the MLA 41 are both light. It arrange | positions so that it may be located on the axis | shaft AX. Further, the vertex of the MLA 40 and the vertex of the MLA 41 are arranged with an interval of the focal length f of the ML 40a so that the light passing through the vertex of the ML 40a also passes through the vertex of the ML 40a. By disposing the MLs 40a and 41a in this way, the transmission screen 18 has a diffusion characteristic that makes the light intensity distribution of the diffused light (display light L) substantially uniform. The substantially uniform light intensity distribution is an intensity distribution capable of irradiating within the irradiation range with a substantially uniform light intensity, and is, for example, a Top-Hat type light intensity distribution shown in FIG.
 透過型スクリーン18は、以上の構成を有するため、表示光L’は透過型スクリーン18を透過するときに拡散され、拡散された表示光LはEyebox4の範囲内に効率的に照射される。その一方、ウインドシールド3の外部から入射した入射外光は、傾斜角度αを有する透過型スクリーン18の出射面で反射され、この反射した反射外光はEyebox4の範囲外に到達する。そのため、反射外光がEyebox4に漏れ込むことを抑制することができ、表示画像(表示光L)の視認性の低下が抑制される。また、傾斜角度αを上記数式(1)を用いて求められた所定の角度とすることで、仮に反射外光の一部がEyebox4の範囲内に漏れ込んだ場合であっても、視認性が低下しない程度に反射外光の影響を減少される。 Since the transmissive screen 18 has the above-described configuration, the display light L ′ is diffused when passing through the transmissive screen 18, and the diffused display light L is efficiently irradiated within the range of Eyebox 4. On the other hand, the incident outside light incident from the outside of the windshield 3 is reflected by the exit surface of the transmission screen 18 having the inclination angle α, and the reflected outside light reaches outside the range of the Eyebox 4. For this reason, it is possible to suppress the reflected external light from leaking into Eyebox 4 and to suppress the deterioration of the visibility of the display image (display light L). In addition, by setting the inclination angle α to a predetermined angle obtained using the above formula (1), even if a part of the reflected external light leaks into the range of Eyebox 4, the visibility is improved. The influence of reflected external light is reduced to such an extent that it does not decrease.
 このように、本実施形態に係るHUD装置1によれば、表示画像を構成する表示光Lの光量損失を抑えつつも、入射外光の影響を低減できるため、視認性の低下を抑制できる。すなわち、透過型スクリーン18の受光面にMLA40を形成するとともに、その出射面にMLA40を形成したので、表示光LはEyebox4の全域を略均一に照射することができる。これにより、ウインドシールド3の外部から入射した外光も同様にEyebox4の範囲内に反射されることになるが、透過型スクリーン18を傾斜角度αで傾倒して配置したので、反射外光のみEyebox4の範囲外に反射させる。従って、表示画像の視認性の低下を抑制することができる。 Thus, according to the HUD device 1 according to the present embodiment, it is possible to reduce the influence of outside incident light while suppressing the light amount loss of the display light L constituting the display image. That is, since the MLA 40 is formed on the light receiving surface of the transmission screen 18 and the MLA 40 is formed on the light emitting surface thereof, the display light L can irradiate the entire area of the Eyebox 4 substantially uniformly. As a result, external light incident from the outside of the windshield 3 is similarly reflected within the range of Eyebox 4. However, since the transmissive screen 18 is tilted at an inclination angle α, only reflected external light is reflected on the Eyebox 4. Reflect outside the range. Accordingly, it is possible to suppress a decrease in the visibility of the display image.
 ここで、図10に、透過型スクリーン18で反射された反射外光の強度分布のシミュレーション結果を示す。本シミュレーションは、図6に示す透過型スクリーン18の傾斜角度α変化させたときの、Eyebox4の範囲における光強度を求めたものである。 Here, FIG. 10 shows a simulation result of the intensity distribution of the reflected external light reflected by the transmissive screen 18. In this simulation, the light intensity in the range of Eyebox 4 when the inclination angle α of the transmission screen 18 shown in FIG. 6 is changed is obtained.
 図10を参照すると、外光反射光の輝度は、透過型スクリーン18の傾斜角度に応じて変化し、傾斜角度が大きくなると外光反射光の輝度は低下する。表示光Lの視認性を低下させないためには、外光反射光の輝度を通常の50%以下に低減する必要があるとされていることから、透過型スクリーン18の傾斜角度を4度以上とするのが好ましく、透過型スクリーン18の傾斜角度を5度以上とするのがより好ましいことが分かった。また、後述する変形例(マイクロレンズを不規則に配置した例)と比較して、光強度の減少が急峻であるため、周期的にマイクロレンズを配置することで、傾斜角度αの取り得る範囲を拡大できることがわかった。 Referring to FIG. 10, the brightness of the external light reflected light changes according to the tilt angle of the transmissive screen 18, and the brightness of the external light reflected light decreases as the tilt angle increases. In order not to reduce the visibility of the display light L, it is said that the brightness of the external light reflected light needs to be reduced to 50% or less of the normal light, and therefore the inclination angle of the transmissive screen 18 is set to 4 degrees or more. It has been found that it is preferable to set the inclination angle of the transmission screen 18 to 5 degrees or more. In addition, since the decrease in light intensity is steep compared to a modification example (an example in which microlenses are irregularly arranged), which will be described later, the range in which the inclination angle α can be obtained by periodically arranging microlenses. It was found that can be expanded.
 このように、HUD装置1によれば、表示画像を構成する表示光Lの光量損失を抑えつつも、外光反射と内部反射を低減できるため、表示画像の視認性の低下を抑制することができる。 As described above, according to the HUD device 1, it is possible to reduce the external light reflection and the internal reflection while suppressing the light amount loss of the display light L constituting the display image. it can.
(変形例)
 なお、本発明は、以上の実施形態に限定されるものではなく、種々の変形が可能である。以下に変形例を示す。
(Modification)
In addition, this invention is not limited to the above embodiment, A various deformation | transformation is possible. A modification is shown below.
 例えば、以上の実施形態では、拡散した表示光の光強度の分布を略均一とするために、透過型スクリーン18を、出射側にMLA41を形成したが、これには限定されない。例えば、図11に示すように、MLA41に代えてアパーチャアレイ42を形成してもよい。アパーチャアレイ42は、その面内方向において、複数の開口部42aの各々が、水平方向にdH”のピッチで周期的に配列するように、フォトリソグラフィ技術等により形成されるものである。なお、図示を省略するが、垂直方向についても所定のピッチで周期的に配列するように形成されている。また、アパーチャアレイ42は、MLA40と一体的に形成されてもよいし、別体として形成してもよい。 For example, in the above embodiment, in order to make the light intensity distribution of the diffused display light substantially uniform, the transmissive screen 18 and the MLA 41 are formed on the emission side, but the present invention is not limited to this. For example, as shown in FIG. 11, an aperture array 42 may be formed instead of the MLA 41. The aperture array 42 is formed by a photolithography technique or the like so that each of the plurality of openings 42a is periodically arranged at a pitch of dH ″ in the horizontal direction in the in-plane direction. Although not shown, the vertical array is formed so as to be periodically arranged at a predetermined pitch, and the aperture array 42 may be formed integrally with the MLA 40 or as a separate body. May be.
 アパーチャアレイ42の開口部42aは、その大きさがML40aのレンズサイズの1/5~1/10程度となるように調整して形成されている。アパーチャアレイ42の開口部42a以外の領域は、図示するように、遮光部42bである。遮光部42bは、例えば液晶パネルに用いられるブラックレジストのような可視光を吸収する材料から形成されている。つまり、アパーチャアレイ42において、その両面共に開口部42a以外の領域は、遮光部42bの表面となっている。そのため、アパーチャアレイ42に到達したレーザー光のうち、開口部42aを通過する光以外の光は、遮光部42bでその大部分が吸収される。 The opening 42a of the aperture array 42 is formed so as to be adjusted to about 1/5 to 1/10 of the lens size of the ML 40a. A region other than the opening 42a of the aperture array 42 is a light shielding portion 42b as illustrated. The light shielding part 42b is formed of a material that absorbs visible light, such as a black resist used in a liquid crystal panel, for example. That is, in the aperture array 42, the area other than the opening 42a on both surfaces is the surface of the light shielding part 42b. Therefore, most of the laser light that has reached the aperture array 42 other than the light that passes through the opening 42a is absorbed by the light shielding portion 42b.
 また、拡散した表示光の光強度の分布を略均一とするために、透過型スクリーン18を、ML40aを周期的に配設したMLA40から構成したが、これには限定されない。図12に示すように、形状の異なるML43aを不規則なピッチで配設したマイクロレンズアレイ(MLA)43から透過型スクリーン18を構成してもよい。ランダムピッチを有し、且つ、略均一な強度分布を示す透過型スクリーンとしては、例えば、Engineered DiffusersTMがある。所望の拡散角度と強度分布が得られるよう計算されたマイクロレンズの配置とサグ量で設計される。基材上に塗布されたフォトレジストに対し、レーザービームを走査することでMLA43を形成することができる。
 ここで、図13に、透過型スクリーン18で反射された反射外光の強度分布の強度分布のシミュレーション結果を示す。本シミュレーションは、図6に示す透過型スクリーン18の傾斜角度α変化させたときの、Eyebox4の範囲における光強度を求めたものである。図示するように、外光反射光の輝度は、透過型スクリーン18の傾斜角度に応じて変化し、傾斜角度が大きくなると外光反射光の輝度は低下する。このように、形状の異なるML43aを不規則なピッチで配設したMLA43は、上述したML40aを周期的に配設したMLA40と同様の効果を奏することが分かった。
Further, in order to make the light intensity distribution of the diffused display light substantially uniform, the transmission screen 18 is composed of the MLA 40 in which the ML 40a is periodically arranged. However, the present invention is not limited to this. As shown in FIG. 12, the transmissive screen 18 may be configured from a microlens array (MLA) 43 in which ML43a having different shapes are arranged at an irregular pitch. As a transmission screen having a random pitch and showing a substantially uniform intensity distribution, for example, Engineered DiffusersTM is available. It is designed with the arrangement and sag amount of the microlens calculated so as to obtain a desired diffusion angle and intensity distribution. The MLA 43 can be formed by scanning the photoresist applied on the substrate with a laser beam.
Here, FIG. 13 shows a simulation result of the intensity distribution of the intensity distribution of the reflected external light reflected by the transmission screen 18. In this simulation, the light intensity in the range of Eyebox 4 when the inclination angle α of the transmission screen 18 shown in FIG. 6 is changed is obtained. As shown in the drawing, the brightness of the external light reflected light changes according to the tilt angle of the transmission screen 18, and the brightness of the external light reflected light decreases as the tilt angle increases. Thus, it has been found that the MLA 43 in which ML 43a having different shapes are arranged at irregular pitches has the same effect as the MLA 40 in which the ML 40a is periodically arranged.
 また、以上の実施形態では、拡散した表示光の光強度の分布を略均一とするために、MLA40,41を一体的に構成し、それぞれを凸レンズとして形成したが、これには限定されず、例えば、図14~図16に示すように凸レンズと凹レンズを適宜組み合わせた構成であってもよい。
 例えば、図14(a)に示すように、MLA40AとMLA41Aを一体的に構成し、かつ、MLA40Aを凸レンズとして受光面側に形成し、MLA41Aを凸レンズとして出射面側に形成してもよい。
 また、図14(b)に示すように、MLA40BとMLA41Bを別体として構成し、かつ、MLA40Bを凸レンズとして受光面側に形成し、MLA41Bを凸レンズとして出射面側に形成してもよい。なお、MLA40BとMLA41Bは所定の間隔を介して支持部材44により固定される。
 また、図14(c)に示すように、MLA40CとMLA41Cを別体として構成し、かつ、MLA40Cを凸レンズとして出射面側に形成し、MLA41Cを凸レンズとして出射面側に形成してもよい。なお、MLA40CとMLA41Cは所定の間隔を介して支持部材44により固定される。
 また、図15(a)に示すように、MLA40DとMLA41Dを一体的に構成し、かつ、MLA40Dを凸レンズとして受光面側に形成し、MLA41Dを凹レンズとして出射面側に形成してもよい。
 また、図15(b)に示すように、MLA40EとMLA41Eを別体として構成し、かつ、MLA40Eを凸レンズとして受光面側に形成し、MLA41Eを凸レンズとして受光面側に形成してもよい。なお、MLA40EとMLA41Eは所定の間隔を介して支持部材44により固定される。
 また、図15(c)に示すように、MLA40FとMLA41Fを別体として構成し、かつ、MLA40Fを凸レンズとして出射面側に形成し、MLA41Eを凸レンズとして受光面側に形成してもよい。なお、MLA40FとMLA41Fは所定の間隔を介して支持部材44により固定される。
 また、図16(a)に示すように、MLA40GとMLA41Gを別体として構成し、かつ、MLA40Gを凸レンズとして受光面側に形成し、MLA41Gを凹レンズとして出射面側に形成してもよい。なお、MLA40GとMLA41Gは所定の間隔を介して支持部材44により固定される。
 また、図16(b)に示すように、MLA40HとMLA41Hを別体として構成し、かつ、MLA40Hを凸レンズとして出射面側に形成し、MLA41Hを凹レンズとして出射面側に形成してもよい。なお、MLA40HとMLA41Hは所定の間隔を介して支持部材44により固定される。
 このように、凸レンズと凹レンズを適宜組み合わせることで、透過型スクリーン18の汎用性を高めることができる。
Moreover, in the above embodiment, in order to make the light intensity distribution of the diffused display light substantially uniform, the MLAs 40 and 41 are integrally formed and each is formed as a convex lens. However, the present invention is not limited to this. For example, as shown in FIGS. 14 to 16, a configuration in which a convex lens and a concave lens are appropriately combined may be used.
For example, as shown in FIG. 14A, the MLA 40A and the MLA 41A may be integrally formed, and the MLA 40A may be formed as a convex lens on the light receiving surface side, and the MLA 41A may be formed as a convex lens on the output surface side.
As shown in FIG. 14B, the MLA 40B and the MLA 41B may be configured as separate bodies, the MLA 40B may be formed as a convex lens on the light receiving surface side, and the MLA 41B may be formed as a convex lens on the output surface side. The MLA 40B and the MLA 41B are fixed by the support member 44 with a predetermined interval.
As shown in FIG. 14C, the MLA 40C and the MLA 41C may be configured as separate bodies, and the MLA 40C may be formed as a convex lens on the emission surface side, and the MLA 41C may be formed as a convex lens on the emission surface side. The MLA 40C and the MLA 41C are fixed by the support member 44 through a predetermined interval.
Further, as shown in FIG. 15A, the MLA 40D and the MLA 41D may be integrally configured, and the MLA 40D may be formed as a convex lens on the light receiving surface side, and the MLA 41D may be formed as a concave lens on the output surface side.
Further, as shown in FIG. 15B, MLA 40E and MLA 41E may be configured as separate bodies, MLA 40E may be formed as a convex lens on the light receiving surface side, and MLA 41E may be formed as a convex lens on the light receiving surface side. The MLA 40E and the MLA 41E are fixed by the support member 44 with a predetermined interval.
Further, as shown in FIG. 15C, the MLA 40F and the MLA 41F may be configured as separate bodies, the MLA 40F may be formed as a convex lens on the emission surface side, and the MLA 41E may be formed as a convex lens on the light receiving surface side. The MLA 40F and the MLA 41F are fixed by the support member 44 through a predetermined interval.
Further, as shown in FIG. 16A, MLA 40G and MLA 41G may be configured as separate bodies, and MLA 40G may be formed as a convex lens on the light receiving surface side, and MLA 41G may be formed as a concave lens on the output surface side. The MLA 40G and the MLA 41G are fixed by the support member 44 through a predetermined interval.
Further, as shown in FIG. 16B, the MLA 40H and the MLA 41H may be configured as separate bodies, and the MLA 40H may be formed as a convex lens on the exit surface side, and the MLA 41H may be formed as a concave lens on the exit surface side. The MLA 40H and the MLA 41H are fixed by the support member 44 through a predetermined interval.
Thus, the versatility of the transmissive screen 18 can be enhanced by appropriately combining a convex lens and a concave lens.
 また、以上の実施形態では、MLA40が有するML40aの形状を正方形として説明したが、これに限られない。ML40aの形状は、長方形、六角形等であってもよい。六角形の場合は、MLA40は、ハニカム状に複数のML40aの各々を所定のピッチで配列することによって形成される。 Moreover, in the above embodiment, although the shape of ML40a which MLA40 has was demonstrated as a square, it is not restricted to this. The shape of the ML 40a may be a rectangle, a hexagon, or the like. In the case of a hexagon, the MLA 40 is formed by arranging each of a plurality of MLs 40a in a honeycomb shape at a predetermined pitch.
 また、以上の実施形態では、3つのLDが配設され、これらは各々、レーザー光R,G,Bを出射するものとしたがLDの数はこれに限られない。4つのLDを配設することで、4原色で表示画像(表示光L)を生成してもよいし、1つのLDでモノクロの表示画像(表示光L)を生成してもよい。 Further, in the above embodiment, three LDs are arranged, and these emit laser beams R, G, and B, respectively, but the number of LDs is not limited to this. By arranging four LDs, a display image (display light L) may be generated with four primary colors, or a monochrome display image (display light L) may be generated with one LD.
 また、以上の実施形態では、HUD装置が搭載される乗り物の一例を車両としたが、これに限られない。HUD装置を自動車、オートバイ、建設機械、農耕機械、船舶、雪上バイク等に搭載することも可能である。 In the above embodiment, an example of a vehicle on which the HUD device is mounted is a vehicle, but is not limited thereto. The HUD device can be mounted on an automobile, a motorcycle, a construction machine, an agricultural machine, a ship, a snow bike, and the like.
 また、反射器20は、拡大ミラー21の1枚の鏡から構成されたが、これに限られない、反射器20を構成する鏡の形状・枚数は目的に応じて任意である。 Further, although the reflector 20 is composed of one mirror of the magnifying mirror 21, the shape and the number of mirrors constituting the reflector 20 are not limited to this, and are arbitrary according to the purpose.
 なお、本発明は以上の実施形態及び図面によって限定されるものではない。本発明の要旨を変更しない範囲で、適宜、実施形態及び図面に変更(構成要素の削除も含む)を加えることが可能である。 In addition, this invention is not limited by the above embodiment and drawing. Changes (including deletion of constituent elements) can be added to the embodiments and the drawings as appropriate without departing from the scope of the present invention.
 本発明は、車両などの移動体に搭載して各種情報を表示する表示器に関して、例えば、自動車やオートバイ、建設機械、農耕機械、船舶、雪上バイク、水上バイクをはじめとする各種移動体に搭載でき、フロントガラス(風防ガラス)に表示画像を投影することで、運転者に虚像として表示画像を視認させるヘッドアップディスプレイ装置として好適である。 The present invention relates to a display that is mounted on a moving body such as a vehicle and displays various kinds of information. For example, the display is mounted on various moving bodies such as an automobile, a motorcycle, a construction machine, an agricultural machine, a ship, a snow bike, and a water bike. It is possible to project a display image on a windshield (windshield), which is suitable as a head-up display device that allows the driver to visually recognize the display image as a virtual image.
1 HUD装置
2 車両
3 ウインドシールド
4 Eyebox
10 表示装置
11 LD(11r,11g,11b…LD)
12 ミラー部(12a,12b,12c…ダイクロイックミラー)
13 反射ミラー
14 プリズム(光学素子)
14a 傾斜面
15 DMD(反射型表示素子)
16 光センサ(検出素子)
17 投射レンズ
18 透過型スクリーン
20 反射器
21 拡大ミラー
21a 反射面
22 保持部材
23 ステッピングモータ
24 歯車部
25 軸部
26 歯車
30 ハウジング
31 窓部
32 遮光壁
40,40A~40H,41,41A~41H,43 MLA(マイクロレンズアレイ)
40a,41a,43a ML(マイクロレンズ)
42 アパーチャアレイ
42a 開口部
42b 遮光部
44 支持部材
R 赤色レーザー光
G 緑色レーザー光
B 青色レーザー光
L,L’ 表示光
L1,L2,L3 レーザー光
AX 光軸
V 虚像
1 HUD device 2 Vehicle 3 Windshield 4 Eyebox
10 Display device 11 LD (11r, 11g, 11b... LD)
12 mirror part (12a, 12b, 12c ... dichroic mirror)
13 Reflecting mirror 14 Prism (optical element)
14a Inclined surface 15 DMD (reflection type display element)
16 Optical sensor (detection element)
17 projection lens 18 transmissive screen 20 reflector 21 magnifying mirror 21a reflecting surface 22 holding member 23 stepping motor 24 gear portion 25 shaft portion 26 gear 30 housing 31 window portion 32 light shielding walls 40, 40A to 40H, 41, 41A to 41H, 43 MLA (micro lens array)
40a, 41a, 43a ML (micro lens)
42 Aperture array 42a Opening 42b Shielding portion 44 Support member R Red laser beam G Green laser beam B Blue laser beam L, L 'Display beam L1, L2, L3 Laser beam AX Optical axis V Virtual image

Claims (2)

  1.  表示画像を構成する表示光を出射する表示光出射手段と、
     前記表示光を受光する受光面と該受光した表示光を拡散光として出射する出射面とを有し、前記拡散光の光強度の分布を略均一とする拡散特性を有する透過型スクリーンと、
     を備え、
     前記透過型スクリーンは、当該透過型スクリーンの法線を前記表示光の光軸に対して一定角度に傾けて配置され、前記表示光の光軸に沿って前記出射面に到達する外光を、前記表示光の光軸に沿った方向とは異なる方向に反射する、
     ことを特徴とするヘッドアップディスプレイ装置。
    Display light emitting means for emitting display light constituting a display image;
    A transmission screen having a light receiving surface for receiving the display light and an output surface for emitting the received display light as diffused light, and having a diffusion characteristic that makes the light intensity distribution of the diffused light substantially uniform;
    With
    The transmissive screen is arranged by tilting the normal line of the transmissive screen at a certain angle with respect to the optical axis of the display light, and external light reaching the emission surface along the optical axis of the display light. Reflecting in a direction different from the direction along the optical axis of the display light,
    A head-up display device.
  2.  前記透過型スクリーンの法線と前記光軸とのなす傾斜角度はαであり、
     前記αは下記数式(1)で算出される
    Figure JPOXMLDOC01-appb-M000001
    ことを特徴とする請求項1に記載のヘッドアップディスプレイ装置。
    The inclination angle formed between the normal line of the transmission screen and the optical axis is α,
    Α is calculated by the following formula (1).
    Figure JPOXMLDOC01-appb-M000001
    The head-up display device according to claim 1.
PCT/JP2014/050931 2013-01-31 2014-01-20 Head-up display device WO2014119407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-017870 2013-01-31
JP2013017870A JP2014149405A (en) 2013-01-31 2013-01-31 Head-up display device

Publications (1)

Publication Number Publication Date
WO2014119407A1 true WO2014119407A1 (en) 2014-08-07

Family

ID=51262121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050931 WO2014119407A1 (en) 2013-01-31 2014-01-20 Head-up display device

Country Status (2)

Country Link
JP (1) JP2014149405A (en)
WO (1) WO2014119407A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016209351A (en) * 2015-05-11 2016-12-15 大日本印刷株式会社 Game machine
CN107250911A (en) * 2015-02-26 2017-10-13 大日本印刷株式会社 Rear projection screen and the head-up display device for having used the rear projection screen
KR20190039833A (en) * 2016-10-03 2019-04-15 주식회사 쿠라레 Diffusion plate and projection type image display device
WO2019038201A3 (en) * 2017-08-22 2019-05-23 Continental Automotive Gmbh Head-up display
WO2019208422A1 (en) * 2018-04-23 2019-10-31 日本精機株式会社 Head-up display device and method for manufacturing same
EP3640707A4 (en) * 2017-06-13 2021-03-10 Hamamatsu Photonics K.K. Scanning-type display device, scanning-type display system, and method for manufacturing light-diffusing part
CN112805500A (en) * 2018-10-05 2021-05-14 株式会社小糸制作所 Vehicle lamp

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6402854B2 (en) * 2014-08-25 2018-10-10 大日本印刷株式会社 Transmission screen and head-up display device using the same
WO2016035607A1 (en) * 2014-09-03 2016-03-10 三菱電機株式会社 Image display device
WO2016052359A1 (en) * 2014-09-30 2016-04-07 旭硝子株式会社 Screen for image light projection and display system
JP6489300B2 (en) * 2014-10-02 2019-03-27 大日本印刷株式会社 Transmission screen and head-up display device using the same
JP6372346B2 (en) * 2014-12-24 2018-08-15 日本精機株式会社 Head-up display
WO2016136060A1 (en) * 2015-02-23 2016-09-01 アルプス電気株式会社 Projection optical system and image projection device having same
JP6599632B2 (en) * 2015-04-22 2019-10-30 リコーインダストリアルソリューションズ株式会社 Screen and display device
JP2016212297A (en) * 2015-05-11 2016-12-15 大日本印刷株式会社 Factory visit supporting device
JP2016224264A (en) * 2015-05-29 2016-12-28 ミツミ電機株式会社 Optical scanning control device
JP6904398B2 (en) * 2015-11-25 2021-07-14 株式会社リコー Optical system, image display device and object device
US10901122B2 (en) 2016-01-12 2021-01-26 Kuraray Co., Ltd. Screen for display
JP2017198873A (en) * 2016-04-28 2017-11-02 リコーインダストリアルソリューションズ株式会社 Reflection type screen
JP6830222B2 (en) 2016-06-30 2021-02-17 パナソニックIpマネジメント株式会社 Head-up display
JP2018095157A (en) * 2016-12-15 2018-06-21 アルプス電気株式会社 On-vehicle display device
JP6837938B2 (en) * 2017-07-04 2021-03-03 株式会社ホンダロック Peripheral display device for vehicles
JP2019144470A (en) * 2018-02-22 2019-08-29 株式会社クラレ Head-up display device
JP2019164230A (en) * 2018-03-19 2019-09-26 株式会社リコー Image projection device and mobile body
FR3082630B1 (en) * 2018-06-13 2020-07-10 Valeo Comfort And Driving Assistance PROJECTION APPARATUS FOR A HEAD-UP DISPLAY SYSTEM FOR A DRIVER OF A MOTOR VEHICLE AND CORRESPONDING SYSTEM
JP6813785B2 (en) * 2019-07-09 2021-01-13 ミツミ電機株式会社 Optical scanning controller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113995A (en) * 1995-10-23 1997-05-02 Denso Corp Display device
JPH10133283A (en) * 1996-09-05 1998-05-22 Denso Corp Production of transmission type hologram screen
JP2012047934A (en) * 2010-08-26 2012-03-08 Nippon Seiki Co Ltd Vehicular head-up display device
JP2012208440A (en) * 2011-03-30 2012-10-25 Nippon Seiki Co Ltd Head-up display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113995A (en) * 1995-10-23 1997-05-02 Denso Corp Display device
JPH10133283A (en) * 1996-09-05 1998-05-22 Denso Corp Production of transmission type hologram screen
JP2012047934A (en) * 2010-08-26 2012-03-08 Nippon Seiki Co Ltd Vehicular head-up display device
JP2012208440A (en) * 2011-03-30 2012-10-25 Nippon Seiki Co Ltd Head-up display device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107250911A (en) * 2015-02-26 2017-10-13 大日本印刷株式会社 Rear projection screen and the head-up display device for having used the rear projection screen
JP2016209351A (en) * 2015-05-11 2016-12-15 大日本印刷株式会社 Game machine
KR102266524B1 (en) 2016-10-03 2021-06-17 주식회사 쿠라레 Diffuser plate and projection image display device
EP3521873A4 (en) * 2016-10-03 2020-04-22 Kuraray Co., Ltd. Diffusion plate and projection-type image display device
KR20190039833A (en) * 2016-10-03 2019-04-15 주식회사 쿠라레 Diffusion plate and projection type image display device
US11175440B2 (en) 2016-10-03 2021-11-16 Kuraray Co., Ltd. Diffuser plate and projection-type image displaying device
EP3640707A4 (en) * 2017-06-13 2021-03-10 Hamamatsu Photonics K.K. Scanning-type display device, scanning-type display system, and method for manufacturing light-diffusing part
US11204497B2 (en) 2017-06-13 2021-12-21 Hamamatsu Photonics K.K. Scanning-type display device, scanning-type display system, and method for manufacturing light-diffusing part
WO2019038201A3 (en) * 2017-08-22 2019-05-23 Continental Automotive Gmbh Head-up display
CN111033357A (en) * 2017-08-22 2020-04-17 大陆汽车有限责任公司 Head-up display
US11531198B2 (en) 2017-08-22 2022-12-20 Continental Automotive Gmbh Head-up display
WO2019208422A1 (en) * 2018-04-23 2019-10-31 日本精機株式会社 Head-up display device and method for manufacturing same
JPWO2019208422A1 (en) * 2018-04-23 2021-06-24 日本精機株式会社 Head-up display device and its manufacturing method
JP7222395B2 (en) 2018-04-23 2023-02-15 日本精機株式会社 Head-up display device and manufacturing method thereof
CN112805500A (en) * 2018-10-05 2021-05-14 株式会社小糸制作所 Vehicle lamp

Also Published As

Publication number Publication date
JP2014149405A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2014119407A1 (en) Head-up display device
JP5287828B2 (en) Head-up display device
JP5310810B2 (en) Head-up display device
JP5594272B2 (en) Head-up display device
US8262232B2 (en) Display device emitting a light flux and mobile apparatus including the display device
US20230141255A1 (en) Image display device
JP6287354B2 (en) Scanning display device
EP3447561B1 (en) Head-up display device
JP5358451B2 (en) Planar illumination device and image display device
WO2015012138A1 (en) Scanning-type projection device
US20140085570A1 (en) Backlight and liquid crystal display device
JP2018004817A (en) Image display device and head-up display system
WO2016208379A1 (en) Screen device and head-up display device
WO2017169375A1 (en) Head-up display device
JP2005500567A (en) Projection configuration
JP7112644B2 (en) head-up display device
JP4149493B2 (en) Fresnel optical element, display screen, and projection display device
JP6387230B2 (en) Vehicle instrument cluster
US20190238803A1 (en) Projection device and illumination system
JP2017227681A (en) Head-up display device
JP2017097115A (en) Screen device and head-up display device
JP4639691B2 (en) Optical scanning device and image display device
CN216622850U (en) Multi-depth head-up display system and vehicle-mounted system
CN216927274U (en) Head-up display
JP2022135583A (en) Head-up display for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746036

Country of ref document: EP

Kind code of ref document: A1