WO2014119374A1 - Precharge circuit - Google Patents

Precharge circuit Download PDF

Info

Publication number
WO2014119374A1
WO2014119374A1 PCT/JP2014/050698 JP2014050698W WO2014119374A1 WO 2014119374 A1 WO2014119374 A1 WO 2014119374A1 JP 2014050698 W JP2014050698 W JP 2014050698W WO 2014119374 A1 WO2014119374 A1 WO 2014119374A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
power supply
diode
precharge circuit
transformer
Prior art date
Application number
PCT/JP2014/050698
Other languages
French (fr)
Japanese (ja)
Inventor
芳賀 浩之
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Publication of WO2014119374A1 publication Critical patent/WO2014119374A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/066Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode particular circuits having a special characteristic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges

Definitions

  • the present invention relates to a circuit for precharging a capacitor.
  • This application claims priority based on Japanese Patent Application No. 2013-019049 for which it applied to Japan on February 4, 2013, and uses the content here.
  • FIG. 9 is an example of a circuit diagram showing a power supply device having a conventional precharge circuit, which is disclosed in Patent Document 1 as a prior art.
  • the power supply device provided with this precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3, a rectifying unit 11 inserted between the AC power supply 6 and the capacitor 2, and a switch 3.
  • a resistor 46 connected in parallel, a converter 47 whose input terminal is connected to the capacitor 2, and a load device 48 connected to the output terminal of the converter 47 are provided.
  • the rectifying unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10, and an AC terminal is connected to a series circuit of the AC power supply 6 and the switch 3, and a DC terminal is connected to the capacitor 2.
  • the power supply device is generally provided with a precharge circuit.
  • a resistor that limits the inrush current causes a large loss in this resistor when the power supply device supplies power to the load.
  • an element that short-circuits the inrush current limiting resistor is often connected.
  • the operation of the power supply device provided with the precharge circuit shown in FIG. 9 is as follows. That is, when the AC power supply 6 is connected and charging of the capacitor 2 starts and it is determined that the precharge is sufficiently performed by a control means (not shown), the switch 3 which has been turned off is turned on and the converter 47 operates. And power is supplied to the load device 48. As a result, it is possible to avoid the occurrence of a constant large loss in the resistor 46 while suppressing the inrush current.
  • FIG. 10 is another example of a circuit diagram showing a power supply device having a conventional precharge circuit.
  • the power supply device provided with the precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 and a converter 32 inserted between the AC power supply 6 and the capacitor 2, and a switch 3 in parallel. And a resistor 46 connected to the.
  • the converter 32 includes a choke 19, diodes 20, 21, 22, 23, capacitors 24, 25, MOSFETs 26, 27, 28, 29.
  • Diodes 20 and 21 and MOSFETs 26 and 27 are connected in this order as a series circuit.
  • the cathode of the diode 20 and the source of the MOSFET 27 in this series circuit are connected to the capacitor 2.
  • Diodes 22 and 23 and MOSFETs 28 and 29 are connected in this order as a series circuit.
  • the cathode of the diode 22 and the source of the MOSFET 29 in this series circuit are connected to the capacitor 2.
  • a capacitor 24 is connected to the cathode of the diode 21 and the source of the MOSFET 26.
  • a capacitor 25 is connected to the cathode of the diode 23 and the source of the MOSFET 28.
  • One end of the choke 19 is connected to a connection point between the anode of the diode 21 and the drain of the MOSFET 26.
  • the other end of the choke 19 is connected to the switch 3 and a resistor 46 connected in parallel thereto.
  • a connection point between the anode of the diode 23 and the drain of the MOSFET 28 is connected to the other end of the AC power supply 6.
  • the converter 32 is a circuit in which a flying capacitor type three-level boost chopper circuit is applied to the PFC, and the capacitors 24 and 25 are called flying capacitors.
  • the voltage applied to the diodes 20, 21, 22, and 23 and the MOSFETs 26, 27, 28, and 29 is reduced. Since the voltage is 1 ⁇ 2 of the voltage of the capacitor 2, there is a feature that a low breakdown voltage element can be used.
  • the number of levels can be changed by changing the number of diodes and MOSFETs connected in series, and is generally called a multilevel converter.
  • Non-Patent Document 2 discloses a flying capacitor type three-level boost chopper circuit.
  • FIG. 11 is an example of a circuit diagram showing the converter 47.
  • the converter 47 includes capacitors 33, 34, 45, diodes 35, 36, 42, 43, MOSFETs 37, 38, 39, 40, a transformer 41, and a choke 44.
  • a series circuit of capacitors 33 and 34 is connected to the capacitor 2.
  • a series circuit in which the MOSFETs 37, 38, 39 and 40 are connected in this order is connected to the capacitor 2.
  • the anode of the diode 35 is connected to the connection point of the capacitors 33 and 34, and the cathode is connected to the connection point of the MOSFETs 37 and 38.
  • the cathode of the diode 36 is connected to the connection point between the capacitors 33 and 34, and the anode is connected to the connection point between the MOSFETs 39 and 40.
  • the primary winding of the transformer 41 is connected between the connection point of the capacitors 33 and 34 and the connection point of the MOSFETs 38 and 39.
  • One end of the secondary winding of the transformer 41 and the anode of the diode 42 are connected, the other end of the tertiary winding of the transformer 41 and the anode of the diode 43 are connected, and the other end of the secondary winding of the transformer 41 And one end of the tertiary winding of the transformer 41 are connected to form a series circuit.
  • a series circuit of the choke 44 and the capacitor 45 is connected to a series circuit of the secondary winding of the transformer 41 and the diode 42, and the load device 48 is connected to the capacitor 45.
  • the converter 47 is a diode clamp type three-level half-bridge converter.
  • the voltage applied to the MOSFETs 37, 38, 39, 40 becomes 1 / of the voltage of the capacitor 2. Therefore, a low breakdown voltage element can be used.
  • the number of levels can be changed by changing the number of MOSFETs connected in series, and is generally called a multi-level converter.
  • the converter 47 is disclosed in Non-Patent Document 3.
  • the power supply device provided with the precharge circuit shown in FIG. 9 has a problem in that the power supply device provided with the precharge circuit cannot be downsized because the ratio of the resistor 46 to the device is large.
  • Resistor 46 must withstand the inrush current of the number of uses expected for the life of the device and maintain its performance. For this reason, it is necessary to reduce the stress applied to the component within an allowable range, and it is necessary to take measures such as increasing the number of components to disperse the stress, or using a large component to increase the allowable stress. For this reason, the size tends to increase.
  • elements used for the switch 3 include mechanical contacts such as relays and semiconductor elements such as triacs.
  • Mechanical contacts have the advantage of low conduction loss, but have a limited number of lifetimes for opening and closing the contacts.
  • the semiconductor element has a longer life than the mechanical contact, the semiconductor element has a larger conduction loss than the mechanical contact. Therefore, the cooling means such as a heat sink for cooling the semiconductor element is enlarged, and a precharge circuit is provided. There was a problem that the power supply could not be miniaturized.
  • the diode 20 When the capacitor 24 is not charged at all and the MOSFET 27 is turned on while the voltage is zero volts, the voltage of the capacitor 2 is applied to the diode 20. Therefore, when the diode 20 is a low breakdown voltage element assuming a voltage half that of the capacitor 2, the diode 20 may be broken.
  • the diode 22 is a low breakdown voltage element assuming a voltage half that of the capacitor 2, the diode 22 may be broken.
  • the MOSFET 27 is a low breakdown voltage element assuming a voltage half that of the capacitor 2, the MOSFET 27 may be broken.
  • the MOSFET 29 is a low breakdown voltage element assuming a voltage half that of the capacitor 2, the MOSFET 29 may be broken.
  • the variation of ⁇ v is determined by the variation of C. For example, if you expect a variation of C of ⁇ 20% It becomes. Therefore, if the voltage of the capacitor 2 is 400V, it should be assumed that 200V should be assumed, but it must be assumed that it takes up to 240V, and there is a problem that an element having a higher withstand voltage than the original must be used. .
  • a power supply device including a precharge circuit includes a first input power supply 1, a capacitor 2 charged by the first input power supply 1, a first input power supply 1 and a capacitor 2 A switch 3 inserted between the second input power source 4 and a charging unit inserted between the second input power source 4 and the capacitor 2.
  • the power supply device including the precharge circuit includes an AC power supply 6 that is a first input power supply, a capacitor 2 that is charged by the AC power supply 6, and between the AC power supply 6 and the capacitor 2.
  • the switch 3 and the rectifier 11 inserted in the second input power source 4, the second input power source 4, and the charging unit 5 inserted between the second input power source 4 and the capacitor 2.
  • the rectifying unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10, and an AC terminal is connected to a series circuit of the AC power supply 6 and the switch 3, and a DC terminal is connected to the capacitor 2.
  • a power supply device including a precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 inserted between the AC power supply 6 and the capacitor 2, and A rectifying unit 11, a battery 12 as a second input power source, and a charging unit 5 inserted between the battery 12 and the capacitor 2 are provided.
  • the rectifying unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10, and an AC terminal is connected to a series circuit of the AC power supply 6 and the switch 3, and a DC terminal is connected to the capacitor 2.
  • a power supply device including a precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 inserted between the AC power supply 6 and the capacitor 2, and A rectifying unit 11, a battery 12, and a charging unit 5 inserted between the battery 12 and the capacitor 2 are provided.
  • the rectifying unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10, and an AC terminal is connected to a series circuit of the AC power supply 6 and the switch 3, and a DC terminal is connected to the capacitor 2.
  • the charging unit 5 includes a transformer 13, a MOSFET 14, and a diode 15. A primary circuit of the transformer 13 and a series circuit of the MOSFET 14 are connected to the battery 12. A series circuit of the secondary winding of the transformer 13 and the diode 15 is a capacitor. 2 is connected.
  • a power supply device including a precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 inserted between the AC power supply 6 and the capacitor 2, and A rectifying unit 11, a battery 12, and a charging unit 5 inserted between the battery 12 and the capacitor 2 are provided.
  • the rectifying unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10, and an AC terminal is connected to a series circuit of the AC power supply 6 and the switch 3, and a DC terminal is connected to the capacitor 2.
  • the charging unit 5 includes a transformer 13, a MOSFET 14, and a diode 15. A primary circuit of the transformer 13 and a series circuit of the MOSFET 14 are connected to the battery 12.
  • a series circuit of the secondary winding of the transformer 13 and the diode 15 is a capacitor. 2 is connected.
  • the switch 3 is built in the power supply device 16, and components other than the AC power source 6, the switch 3, and the battery 12 are built in the charger 18, and the battery 12 and the charger 18 are built in the automobile 17.
  • a power supply device including a precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 inserted between the AC power supply 6 and the capacitor 2, and The converter 32, the battery 12, and the charging unit 5 inserted between the battery 12 and the capacitor 2 are provided.
  • the converter 32 includes a choke 19, diodes 20, 21, 22, 23, capacitors 24, 25, MOSFETs 26, 27, 28, 29, and the diodes 20, 21, MOSFETs 26, 27 are connected in this order as a series circuit.
  • the diode 20 and the MOSFET 27 of this series circuit are connected to the capacitor 2, the diodes 22 and 23, the MOSFETs 28 and 29 are connected as a series circuit in this order, and the diode 22 and the MOSFET 29 of this series circuit are connected to the capacitor 2.
  • 24 is connected to the series circuit of the diode 21 and the MOSFET 26
  • the capacitor 25 is connected to the series circuit of the diode 23 and the MOSFET 28, and one end of the choke 19 is connected to the connection point of the diode 21 and the MOSFET 26.
  • the other end is connected to a switch 3, a connection point of the diodes 23 and MOSFET28 are connected to the other end of the AC power supply 6.
  • the charging unit 5 includes a transformer 13, a MOSFET 14, and diodes 15, 30, and 31.
  • a primary circuit of the transformer 13 and a series circuit of the MOSFET 14 are connected to the battery 12, and a secondary winding and a tertiary winding of the transformer 13.
  • a series circuit of the diode 15 is connected to the capacitor 2
  • a series circuit of the secondary winding of the transformer 13 and the diode 30 is connected to a series circuit of the MOSFET 27 and the capacitor 24, and a series of the secondary winding of the transformer 13 and the diode 31 is connected.
  • the circuit is connected to a series circuit of a MOSFET 29 and a capacitor 25.
  • a power supply device including a precharge circuit includes a capacitor 2 charged by an AC power supply (not shown), a converter 47 connected to the capacitor 2, a battery 12, and the battery 12 and the capacitor 2 And a charging unit 5 inserted between the two.
  • the converter 47 includes capacitors 33, 34, 45, diodes 35, 36, 42, 43, MOSFETs 37, 38, 39, 40, a transformer 41, and a choke 44, and a series circuit of the capacitors 33, 34 is connected to the capacitor 2.
  • a series circuit in which the MOSFETs 37, 38, 39, 40 are connected in this order is connected to the capacitor 2
  • the diode 35 is connected to the connection point of the capacitors 33, 34
  • the diode 35 is connected to the connection point of the MOSFETs 37, 38.
  • the diode 36 is connected to the connection point of the capacitors 33 and 34
  • the diode 36 is connected between the connection points of the MOSFETs 39 and 40
  • the primary winding of the transformer 41 is connected to the connection point of the capacitors 33 and 34 and the MOSFETs 38 and 39.
  • the charging unit 5 includes a transformer 13, a MOSFET 14, and diodes 15 and 30. A primary circuit of the transformer 13 and a series circuit of the MOSFET 14 are connected to the battery 12, and a tertiary winding of the transformer 13 and the diode 15 are connected.
  • a series circuit composed of the secondary winding, the tertiary winding and the diode 15 of the transformer 13 is connected to the capacitor 2, and a series circuit composed of the secondary winding of the transformer 13 and the diode 30 is connected to the capacitor 34.
  • the precharge circuit according to the aspect of the present invention has the following three effects.
  • the power supply device equipped with the precharge circuit can be downsized.
  • the switch that shorts the inrush current limiting resistor can be deleted.
  • the power supply device including the circuit can be further reduced in size.
  • the flying capacitor and the capacitor 2 can be charged at the same time, so that even if a low breakdown voltage element is used, a voltage exceeding the element breakdown voltage is applied to the semiconductor element. There is no.
  • FIG. 1 is a circuit diagram showing Embodiment 1 of the present invention.
  • FIG. 2 is a circuit diagram showing Embodiment 2 of the present invention.
  • FIG. 3 is a circuit diagram showing Embodiment 3 of the present invention.
  • FIG. 4 is a circuit diagram showing Embodiment 4 of the present invention.
  • FIG. 5 is a circuit diagram showing Embodiment 5 of the present invention.
  • FIG. 6 is a circuit diagram showing Embodiment 6 of the present invention.
  • FIG. 7 is a waveform diagram showing the precharge voltage waveform of FIG.
  • FIG. 8 is a circuit diagram showing Embodiment 7 of the present invention.
  • FIG. 9 shows an example of a conventional precharge circuit.
  • FIG. 10 shows another example of a conventional precharge circuit.
  • FIG. 11 is an example of a multilevel converter.
  • FIG. 1 is a circuit diagram illustrating a power supply device including a precharge circuit according to a first embodiment of the present invention.
  • the power supply device including the precharge circuit includes a first input power supply 1, a capacitor 2 charged by the first input power supply 1, and one end of the first input power supply 1 and one end of the capacitor 2.
  • An inserted switch 3, a second input power supply 4, and a charging unit 5 inserted between the second input power supply 4 and the capacitor 2 are provided.
  • the charging unit 5 charges the capacitor 2 to a voltage equal to or higher than the voltage of the first input power supply 1 and then turns on the switch 3 to turn on the inrush current. No longer flows.
  • the inrush current flows because the voltage of the capacitor 2 is lower than the voltage of the first input power supply 1, and therefore the charging unit 5 charges the capacitor 2 to be higher than the voltage of the first input power supply 1. If the situation is solved, there will be no inrush current.
  • FIG. 2 is a circuit diagram showing a power supply device including a precharge circuit according to the second embodiment of the present invention.
  • the power supply device including the precharge circuit includes an AC power supply 6 as a first input power supply, a capacitor 2 charged by the AC power supply 6, a switch 3 inserted between the AC power supply 6 and the capacitor 2, and rectification. Unit 11, second input power supply 4, and charging unit 5 inserted between second input power supply 4 and capacitor 2.
  • the rectification unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10.
  • the AC terminal of the rectifying unit 11 is connected to the series circuit of the AC power source 6 and the switch 3, and the DC terminal is connected to the capacitor 2.
  • FIG. 3 is a circuit diagram showing a power supply device including a precharge circuit according to Embodiment 3 of the present invention.
  • the power supply device including the precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 and a rectifier 11 inserted between the AC power supply 6 and the capacitor 2, a second A battery 12 as an input power source and a charging unit 5 inserted between the battery 12 and the capacitor 2 are provided.
  • the rectification unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10.
  • the AC terminal of the rectifying unit 11 is connected to the series circuit of the AC power source 6 and the switch 3, and the DC terminal is connected to the capacitor 2.
  • an inrush current flows by turning on the switch 3 after charging the capacitor 2 to the peak voltage of the AC power supply 6 by the charging unit 5. Disappear.
  • a power supply device for example, in the case of a charger mounted on an automobile, there is a second input to which a 12V battery is input in addition to a first input to which a commercial AC power supply is connected.
  • the inrush current limiting resistor can be eliminated.
  • the charging unit 5 since the AC power source 6 and the battery 12 generally require electrical insulation, the charging unit 5 needs to have an insulation function.
  • FIG. 4 is a circuit diagram showing a power supply device including a precharge circuit according to the fourth embodiment of the present invention.
  • the power supply device including the precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 and a rectifying unit 11 inserted between the AC power supply 6 and the capacitor 2, a battery 12, and the like. And a charging unit 5 inserted between the battery 12 and the capacitor 2.
  • the rectification unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10.
  • the AC terminal of the rectifying unit 11 is connected to the series circuit of the AC power source 6 and the switch 3, and the DC terminal is connected to the capacitor 2.
  • the charging unit 5 includes a transformer 13, an n-channel MOSFET 14, and a diode 15.
  • the positive terminal of the battery 12 is connected to one end of the primary winding of the transformer 13 (hereinafter, the winding start is referred to as “one end”), the negative terminal of the battery 12 is connected to the source of the MOSFET 14, and the transformer 13 is connected to the drain.
  • the other end of the primary winding (hereinafter, the winding end of the winding is referred to as “the other end”) is connected.
  • a series circuit of the secondary winding of the transformer 13 and the diode 15 is connected to the capacitor 2.
  • the anode of the diode 15 is connected to the other end of the secondary winding of the transformer 13.
  • the charging unit 5 charges the capacitor 2 to the peak voltage of the AC power supply 6 or more, and then the switch 3 is turned on so that the inrush current does not flow.
  • the charging unit 5 includes a transformer 13, a MOSFET 14, and a diode 15, and is configured as an isolated flyback converter.
  • the MOSFET 14 is controlled to be turned on and off by a control means (not shown), and energy input from the battery 12 is stored in the transformer 13 when the MOSFET 14 is turned on.
  • the MOSFET 14 is turned off, the energy stored in the transformer 13 is released to the capacitor 2 via the diode 15. As a result, energy is transferred from the battery 12 to the capacitor 2, and the capacitor 2 is charged to a voltage higher than the peak voltage of the AC power supply 6.
  • a control means (not shown) is configured so as to stop the on / off of the MOSFET 14 when the voltage of the capacitor 2 reaches a predetermined voltage, the loss of the charging unit 5 in the steady state is eliminated, which is more desirable.
  • FIG. 5 is a circuit diagram showing a power supply device including a precharge circuit according to the fifth embodiment of the present invention.
  • the power supply device including the precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 and a rectifying unit 11 inserted between the AC power supply 6 and the capacitor 2, a battery 12, and the like. And a charging unit 5 inserted between the battery 12 and the capacitor 2.
  • the rectification unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10.
  • the AC terminal is connected to a series circuit of the AC power source 6 and the switch 3, and the DC terminal is connected to the capacitor 2.
  • the charging unit 5 includes a transformer 13, an n-channel MOSFET 14, and a diode 15.
  • the positive terminal of the battery 12 is connected to one end of the primary winding of the transformer 13, the negative terminal of the battery 12 is connected to the source of the MOSFET 14, and the other end of the primary winding of the transformer 13 is connected to the drain.
  • a series circuit of the secondary winding of the transformer 13 and the diode 15 is connected to the capacitor 2.
  • the anode of the diode 15 is connected to the other end of the secondary winding of the transformer 13.
  • the switch 3 is built in the power supply device 16, components other than the AC power source 6, the switch 3, and the battery 12 are built in the charger 18, and the battery 12 and the charger 18 are built in the automobile 17.
  • an inrush current flows by turning on the switch 3 after charging the capacitor 2 to be equal to or higher than the peak voltage of the AC power supply 6 by the charging unit 5. Disappear.
  • a charging system for charging a high voltage battery of an electric vehicle includes a commercial AC power source 6, a power supply device 16, and a charger 18, and a 12 V low voltage battery 12 is connected to the charger 18.
  • the switch 3 for disconnecting the commercial AC power supply 6 is built in the power supply device 16, the precharge circuit of the present invention has an advantage that it is not necessary to incorporate the switch 3 for disconnecting the commercial AC power supply 6 in the charger 18. Arise.
  • the conventional precharge circuit is configured to insert an inrush current limiting resistor between the commercial AC power supply 6 and the capacitor 2, it is necessary to connect a switch to a position where the resistor is short-circuited. Therefore, the switch 3 existing regardless of the inrush current limiting resistor cannot be used as a part of the precharge circuit. Therefore, it is necessary to incorporate a parallel circuit of an inrush current limiting resistor and a switch in the charger.
  • the switch 3 built in the power supply device 16 can be used as a part of the precharge circuit. As a result, it is possible to delete not only the inrush current limiting resistor but also a switch for disconnecting the commercial AC power supply, and further reduce the size of the power supply device including the precharge circuit.
  • the precharge circuit of the present invention it is necessary to turn on the switch 3 after charging the capacitor 2 by the charging unit 5. This may be achieved by providing a communication unit between the automobile 17 and the power supply device 16 and charging the capacitor 2 with the charging unit 5 and then sending information for permitting the switch 3 to be turned on.
  • FIG. 6 is a circuit diagram showing a power supply device including a precharge circuit in Embodiment 6 of the present invention.
  • the power supply device including the precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 and a converter 32 inserted between the AC power supply 6 and the capacitor 2, a battery 12, And a charging unit 5 inserted between the battery 12 and the capacitor 2.
  • the converter 32 includes a choke 19, diodes 20, 21, 22, 23, capacitors 24, 25, and n-channel MOSFETs 26, 27, 28, 29.
  • a series circuit in which the diodes 20 and 21 and the MOSFETs 26 and 27 are connected in this order is connected to the capacitor 2, and the anode of the diode 21 is connected to the drain of the MOSEFT 26.
  • a series circuit in which the diodes 22 and 23 and the MOSFETs 28 and 29 are connected in this order is connected to the capacitor 2, and the anode of the diode 23 is connected to the drain of the MOSEFT 28.
  • the capacitor 24 is connected to the series circuit of the diode 21 and the MOSFET 26, and the capacitor 25 is connected to the series circuit of the diode 23 and the MOSFET 28.
  • One end of the choke 19 is connected to the connection point of the diode 21 and the MOSFET 26, and the other end of the choke 19, the connection point of the diode 23 and the MOSFET 28 is connected to the series circuit of the AC power supply 6 and the switch 3.
  • the charging unit 5 includes a transformer 13, an n-channel MOSFET 14, and diodes 15, 30, and 31.
  • the positive terminal of the battery 12 is connected to one end of the primary winding of the transformer 13, the negative terminal of the battery 12 is connected to the source of the MOSFET 14, and the other end of the primary winding of the transformer 13 is connected to the drain.
  • a series circuit of the secondary winding and tertiary winding of the transformer 13 and the diode 15 is connected to the capacitor 2
  • a series circuit of the secondary winding of the transformer 13 and the diode 30 is connected to the series circuit of the MOSFET 27 and the capacitor 24.
  • the series circuit of the 13 secondary windings and the diode 31 is connected to the series circuit of the MOSFET 29 and the capacitor 25.
  • the anode of the diode 15 is connected to the other end of the tertiary winding of the transformer 13, and the anodes of the diodes 30 and 31 are connected to the other end of the secondary winding.
  • the number of turns of the secondary winding and the tertiary winding of the transformer 13 is equal.
  • MOSFETs 27 and 29 are turned on by control means (not shown), the capacitor 2 and the capacitors 24 and 25 are simultaneously charged by the charging unit 5, and the capacitors 24 and 25 are charged to a voltage half that of the capacitor 2. 21, 22, 23, MOSFETs 26, 27, 28, 29 are not applied with a voltage more than 1 ⁇ 2 of the capacitor 2 voltage.
  • Example 6 the capacitors 24 and 25 are charged to a voltage half that of the capacitor 2 by equalizing the number of turns of the secondary winding and the tertiary winding of the transformer 13. Moreover, the capacitor 2 and the capacitors 24 and 25 are charged at the same time by configuring the charging unit 5 with one transformer. Therefore, the voltage waveform when the capacitor 2 and the capacitors 24 and 25 are precharged is as shown in FIG. 7. The difference between the voltage of the capacitors 24 and 25 and the voltage of the capacitor 2 and the capacitors 24 and 25 is 1 Never exceed the voltage of / 2. Therefore, the diodes 20, 21, 22, 23 and the MOSFETs 26, 27, 28, 29 are not subjected to a voltage more than 1/2 of the capacitor 2 voltage.
  • Example 6 Since the inrush current limiting resistor can be eliminated, and the charging unit 5 can be made smaller by reducing the charging current, it is possible to reduce the size of the power supply device including the precharge circuit as a whole. Furthermore, since a low breakdown voltage element can be used as the main circuit element of the multilevel converter, the loss can be reduced, and the main circuit part can be downsized. [Example 7]
  • FIG. 8 is a circuit diagram showing a power supply device including a precharge circuit according to the seventh embodiment of the present invention.
  • a power supply device having a precharge circuit includes a capacitor 2 charged by an AC power supply (not shown), a converter 47 connected to the capacitor 2, a battery 12, and the battery 12 and the capacitor. 2 and a charging unit 5 inserted between the two.
  • the converter 47 includes capacitors 33, 34, 45, diodes 35, 36, 42, 43, n-channel MOSFETs 37, 38, 39, 40, a transformer 41, and a choke 44.
  • a series circuit of capacitors 33 and 34 is connected to the capacitor 2.
  • a series circuit in which the MOSFETs 37, 38, 39, and 40 are connected in this order is connected to the capacitor 2.
  • the anode of the diode 35 is connected to the connection point of the capacitors 33 and 34, and the cathode is connected to the connection point of the MOSFETs 37 and 38. Yes.
  • the cathode of the diode 36 is connected to the connection point of the capacitors 33 and 34, and the anode is connected to the connection point of the MOSFETs 39 and 40.
  • the primary winding of the transformer 41 is connected between the connection point of the capacitors 33 and 34 and the connection point of the MOSFETs 38 and 39.
  • the series circuit of the secondary winding of the transformer 41 and the diode 42 is connected to the series circuit of the tertiary winding of the transformer 41 and the diode 43, and the series circuit of the choke 44 and the capacitor 45 is connected to the secondary winding of the transformer 41 and the diode 42.
  • the anode of the diode 42 is connected to the secondary winding of the transformer 13, and the anode of the diode 43 is connected to the tertiary winding of the transformer 13.
  • the charging unit 5 includes a transformer 13, an n-channel MOSFET 14, and diodes 15 and 30.
  • the positive terminal of the battery 12 is connected to one end of the primary winding of the transformer 13, the negative terminal of the battery 12 is connected to the source of the MOSFET 14, and the other end of the primary winding of the transformer 13 is connected to the drain.
  • a series circuit of the secondary winding and tertiary winding of the transformer 13 and the diode 15 is connected to the capacitor 2, and a series circuit of the secondary winding of the transformer 13 and the diode 30 is connected to a series circuit of the diode 36 and the MOSFET 40. .
  • the anode of the diode 15 is connected to the other end of the tertiary winding of the transformer 13, and the anode of the diode 30 is connected to the other end of the secondary winding.
  • the number of turns of the secondary winding and the tertiary winding of the transformer 13 is equal.
  • the charging unit 5 charges the capacitor 2 and the capacitors 33 and 34 at the same time, and the capacitors 33 and 34 are half the voltage of the capacitor 2. As a result, the MOSFETs 37, 38, 39, and 40 are not charged with voltage more than 1 ⁇ 2 of the capacitor 2 voltage.
  • Example 7 the capacitors 33 and 34 are charged to a voltage half that of the capacitor 2 by equalizing the number of turns of the secondary winding and the tertiary winding of the transformer 13. Moreover, the capacitor 2 and the capacitors 33 and 34 are charged simultaneously by forming the charging unit 5 with one transformer. Accordingly, the voltage waveform when the capacitor 2 and the capacitors 33 and 34 are precharged is as shown in FIG. 7, and the voltage of the capacitors 33 and 34 does not exceed a voltage half that of the capacitor 2. Therefore, a voltage more than 1/2 of the capacitor 2 voltage is not applied to the MOSFETs 37, 38, 39, and 40.
  • the series circuit constituted by the capacitors 33 and 34 is obtained by making the capacitance of the capacitors 33 and 34 twice that of the capacitor 2. It is also possible to eliminate the capacitor 2 by making the capacitance of the capacitor 2 equal to that of the capacitor 2. Even in this case, the voltage waveform when the capacitors 33 and 34 are precharged is not different from that of the seventh embodiment, and therefore, the same effect as that of the seventh embodiment is obtained.
  • capacitors 33 and 34 there are two capacitors 33 and 34 that are connected to the capacitor 2 and form a series circuit.
  • the number of capacitors 33 and 34 that directly form a circuit is not limited to two, and three or more capacitors may be used. good.
  • the embodiment of the multilevel converter is not limited to the forms illustrated in FIGS. 6 and 8.
  • a multi-level converter has the same effect at 4 levels or 5 levels instead of 3 levels.
  • the flyback converter is also exemplified for the charging unit 5, but is not limited to this form. Even if it is a converter of another circuit system or a plurality of converters are connected in multiple stages, the same effect can be obtained as long as the capacitor 2 can be charged.
  • the present invention can be applied to a circuit for charging a capacitor in advance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Secondary Cells (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)

Abstract

A precharge circuit comprising an input power supply, a capacitor to be charged by the input power supply, a switch which is inserted between the input power supply and the capacitor, an input power supply, and a charging unit which is inserted between the input power supply and the capacitor, wherein the switch is turned on after the capacitor is charged to the peak voltage of the input power supply or higher by the charging unit, thereby suppressing an inrush current to the capacitor.

Description

プリチャージ回路Precharge circuit
 本発明は、コンデンサを予め充電する回路に関するものである。
 本願は、2013年2月4日に、日本に出願された特願2013-019049号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a circuit for precharging a capacitor.
This application claims priority based on Japanese Patent Application No. 2013-019049 for which it applied to Japan on February 4, 2013, and uses the content here.
 図9は、従来のプリチャージ回路を備えた電源装置を示す回路図の一例であり、特許文献1において従来技術として開示されている。このプリチャージ回路を備えた電源装置は、交流電源6と、交流電源6によって充電されるコンデンサ2と、交流電源6とコンデンサ2の間に挿入されたスイッチ3と整流部11と、スイッチ3に並列に接続された抵抗46と、入力端子がコンデンサ2に接続されたコンバータ47と、コンバータ47の出力端子に接続された負荷装置48と、を備えている。整流部11はダイオード7、8、9、10をブリッジ接続することで構成されており、交流端子が交流電源6とスイッチ3の直列回路に、直流端子がコンデンサ2に接続されている。 FIG. 9 is an example of a circuit diagram showing a power supply device having a conventional precharge circuit, which is disclosed in Patent Document 1 as a prior art. The power supply device provided with this precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3, a rectifying unit 11 inserted between the AC power supply 6 and the capacitor 2, and a switch 3. A resistor 46 connected in parallel, a converter 47 whose input terminal is connected to the capacitor 2, and a load device 48 connected to the output terminal of the converter 47 are provided. The rectifying unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10, and an AC terminal is connected to a series circuit of the AC power supply 6 and the switch 3, and a DC terminal is connected to the capacitor 2.
 もし抵抗46が存在しないと、スイッチ3がオンしたときにコンデンサ2の充電電流を抑制するものは配線インダクタンスや配線抵抗などの寄生要素しかないために、大きな突入電流が流れる。この突入電流によって電源電圧が低下し、交流電源6に接続されている他の装置が誤動作するなどの問題が発生する。 If the resistor 46 does not exist, a large inrush current flows because there are only parasitic elements such as wiring inductance and wiring resistance that suppress the charging current of the capacitor 2 when the switch 3 is turned on. Due to this inrush current, the power supply voltage is lowered, and other devices connected to the AC power supply 6 malfunction.
 この問題を避けるため、電源装置には一般的にプリチャージ回路が設けられる。ただし単に突入電流を制限する抵抗を挿入しただけでは、電源装置が負荷に電力を供給した時にこの抵抗に大きな損失が発生する。そこでこの問題を避けるため、突入電流制限抵抗を短絡する素子が接続される場合が多い。 In order to avoid this problem, the power supply device is generally provided with a precharge circuit. However, simply inserting a resistor that limits the inrush current causes a large loss in this resistor when the power supply device supplies power to the load. In order to avoid this problem, an element that short-circuits the inrush current limiting resistor is often connected.
 図9に示すプリチャージ回路を備えた電源装置の動作は以下のとおりである。すなわち交流電源6が接続されてコンデンサ2への充電が始まり、図示しない制御手段によってプリチャージが充分に行われたと判断されると、それまでオフであったスイッチ3がオンされてコンバータ47が動作を開始し、負荷装置48に電力を供給する。これにより突入電流を抑制しつつ、抵抗46に定常的に大きな損失が発生する事を避ける事ができる。 The operation of the power supply device provided with the precharge circuit shown in FIG. 9 is as follows. That is, when the AC power supply 6 is connected and charging of the capacitor 2 starts and it is determined that the precharge is sufficiently performed by a control means (not shown), the switch 3 which has been turned off is turned on and the converter 47 operates. And power is supplied to the load device 48. As a result, it is possible to avoid the occurrence of a constant large loss in the resistor 46 while suppressing the inrush current.
 なおプリチャージ回路の説明をするに当たり、コンバータ47と負荷装置48の動作は直接関わってこない事から、煩雑さを避けるために以下の説明では記載を省略する。 In describing the precharge circuit, since the operations of the converter 47 and the load device 48 are not directly related to each other, the description is omitted in the following description to avoid complexity.
 図10は、従来のプリチャージ回路を備えた電源装置を示す回路図の他の例である。
 このプリチャージ回路を備えた電源装置は、交流電源6と、交流電源6によって充電されるコンデンサ2と、交流電源6とコンデンサ2の間に挿入されたスイッチ3およびコンバータ32と、スイッチ3に並列に接続された抵抗46と、を備えている。
FIG. 10 is another example of a circuit diagram showing a power supply device having a conventional precharge circuit.
The power supply device provided with the precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 and a converter 32 inserted between the AC power supply 6 and the capacitor 2, and a switch 3 in parallel. And a resistor 46 connected to the.
 コンバータ32はチョーク19、ダイオード20、21、22、23、コンデンサ24、25、MOSFET26、27、28、29で構成されている。ダイオード20、21、MOSFET26、27がこの順番で直列回路として接続されている。この直列回路のダイオード20のカソードとMOSFET27のソースがコンデンサ2に接続されている。ダイオード22、23、MOSFET28、29がこの順番で直列回路として接続されている。この直列回路のダイオード22のカソードとMOSFET29のソースがコンデンサ2に接続されている。コンデンサ24がダイオード21のカソードとMOSFET26のソースに接続されている。コンデンサ25がダイオード23のカソードとMOSFET28のソースに接続されている。チョーク19の一端がダイオード21のアノードとMOSFET26のドレインとの接続点に接続されている。チョーク19の他端がスイッチ3およびこれに並列に接続された抵抗46に接続されている。ダイオード23のアノードとMOSFET28のドレインとの接続点が交流電源6の他端に接続されている。 The converter 32 includes a choke 19, diodes 20, 21, 22, 23, capacitors 24, 25, MOSFETs 26, 27, 28, 29. Diodes 20 and 21 and MOSFETs 26 and 27 are connected in this order as a series circuit. The cathode of the diode 20 and the source of the MOSFET 27 in this series circuit are connected to the capacitor 2. Diodes 22 and 23 and MOSFETs 28 and 29 are connected in this order as a series circuit. The cathode of the diode 22 and the source of the MOSFET 29 in this series circuit are connected to the capacitor 2. A capacitor 24 is connected to the cathode of the diode 21 and the source of the MOSFET 26. A capacitor 25 is connected to the cathode of the diode 23 and the source of the MOSFET 28. One end of the choke 19 is connected to a connection point between the anode of the diode 21 and the drain of the MOSFET 26. The other end of the choke 19 is connected to the switch 3 and a resistor 46 connected in parallel thereto. A connection point between the anode of the diode 23 and the drain of the MOSFET 28 is connected to the other end of the AC power supply 6.
 コンバータ32はフライングキャパシタ型3レベル昇圧チョッパ回路をPFCに適用した回路であり、コンデンサ24、25はフライングキャパシタと呼ばれる。フライングキャパシタの電圧がコンデンサ2の電圧の1/2になる様にMOSFET26、27、28、29を制御する事により、ダイオード20、21、22、23、MOSFET26、27、28、29にかかる電圧がコンデンサ2の電圧の1/2になるため、低耐圧の素子を使用できる特徴がある。
 レベル数はダイオードとMOSFETの直列接続数を変える事で変更でき、一般にマルチレベルコンバータと呼ばれる。フライングキャパシタ型3レベル昇圧チョッパ回路は非特許文献2で開示されている。
The converter 32 is a circuit in which a flying capacitor type three-level boost chopper circuit is applied to the PFC, and the capacitors 24 and 25 are called flying capacitors. By controlling the MOSFETs 26, 27, 28, and 29 so that the voltage of the flying capacitor becomes 1/2 of the voltage of the capacitor 2, the voltage applied to the diodes 20, 21, 22, and 23 and the MOSFETs 26, 27, 28, and 29 is reduced. Since the voltage is ½ of the voltage of the capacitor 2, there is a feature that a low breakdown voltage element can be used.
The number of levels can be changed by changing the number of diodes and MOSFETs connected in series, and is generally called a multilevel converter. Non-Patent Document 2 discloses a flying capacitor type three-level boost chopper circuit.
 図11は、コンバータ47を示す回路図の一例である。
 コンバータ47はコンデンサ33、34、45、ダイオード35、36、42、43、MOSFET37、38、39、40、トランス41、チョーク44で構成されている。コンデンサ33、34の直列回路がコンデンサ2に接続されている。MOSFET37、38、39、40がこの順番で接続される直列回路がコンデンサ2に接続されている。ダイオード35のアノードはコンデンサ33、34の接続点に接続され、カソードはMOSFET37、38の接続点に接続されている。ダイオード36のカソードはコンデンサ33、34の接続点に接続され、アノードはMOSFET39、40の接続点に接続されている。トランス41の一次巻線がコンデンサ33、34の接続点とMOSFET38、39の接続点の間に接続されている。トランス41の二次巻線の一端とダイオード42のアノードとが接続され、トランス41の三次巻線の他端とダイオード43のアノードとが接続され、さらに、トランス41の二次巻線の他端とトランス41の三次巻線の一端とが接続されて、直列回路を構成している。チョーク44とコンデンサ45の直列回路がトランス41の二次巻線とダイオード42の直列回路に接続され、コンデンサ45に負荷装置48が接続されている。
FIG. 11 is an example of a circuit diagram showing the converter 47.
The converter 47 includes capacitors 33, 34, 45, diodes 35, 36, 42, 43, MOSFETs 37, 38, 39, 40, a transformer 41, and a choke 44. A series circuit of capacitors 33 and 34 is connected to the capacitor 2. A series circuit in which the MOSFETs 37, 38, 39 and 40 are connected in this order is connected to the capacitor 2. The anode of the diode 35 is connected to the connection point of the capacitors 33 and 34, and the cathode is connected to the connection point of the MOSFETs 37 and 38. The cathode of the diode 36 is connected to the connection point between the capacitors 33 and 34, and the anode is connected to the connection point between the MOSFETs 39 and 40. The primary winding of the transformer 41 is connected between the connection point of the capacitors 33 and 34 and the connection point of the MOSFETs 38 and 39. One end of the secondary winding of the transformer 41 and the anode of the diode 42 are connected, the other end of the tertiary winding of the transformer 41 and the anode of the diode 43 are connected, and the other end of the secondary winding of the transformer 41 And one end of the tertiary winding of the transformer 41 are connected to form a series circuit. A series circuit of the choke 44 and the capacitor 45 is connected to a series circuit of the secondary winding of the transformer 41 and the diode 42, and the load device 48 is connected to the capacitor 45.
 コンバータ47はダイオードクランプ型3レベルハーフブリッジコンバータである。コンデンサ33、34の電圧がコンデンサ2の電圧の1/2になる様にMOSFET37、38、39、40を制御する事により、MOSFET37、38、39、40にかかる電圧がコンデンサ2の電圧の1/2になるため、低耐圧の素子を使用できる特徴がある。
 レベル数はMOSFETの直列接続数を変える事で変更でき、一般にマルチレベルコンバータと呼ばれる。コンバータ47は非特許文献3で開示されている。
The converter 47 is a diode clamp type three-level half-bridge converter. By controlling the MOSFETs 37, 38, 39, 40 so that the voltage of the capacitors 33, 34 becomes 1/2 of the voltage of the capacitor 2, the voltage applied to the MOSFETs 37, 38, 39, 40 becomes 1 / of the voltage of the capacitor 2. Therefore, a low breakdown voltage element can be used.
The number of levels can be changed by changing the number of MOSFETs connected in series, and is generally called a multi-level converter. The converter 47 is disclosed in Non-Patent Document 3.
特開平5-30650号公報JP-A-5-30650
 しかしながら図9に示すプリチャージ回路を備えた電源装置は、抵抗46の装置に占める割合が大きいため、プリチャージ回路を備えた電源装置を小型化できない問題があった。 However, the power supply device provided with the precharge circuit shown in FIG. 9 has a problem in that the power supply device provided with the precharge circuit cannot be downsized because the ratio of the resistor 46 to the device is large.
 抵抗46は装置寿命で想定される使用回数の突入電流に耐えて性能を維持しなければならない。このため部品に加わるストレスを許容範囲内に下げる必要があり、部品の個数を増やしてストレスを分散させる、あるいは大型の部品を使って許容ストレスを上げるなどの手段をとる必要がある。このため、どうしてもサイズが大きくなる傾向にある。 Resistor 46 must withstand the inrush current of the number of uses expected for the life of the device and maintain its performance. For this reason, it is necessary to reduce the stress applied to the component within an allowable range, and it is necessary to take measures such as increasing the number of components to disperse the stress, or using a large component to increase the allowable stress. For this reason, the size tends to increase.
 またスイッチ3に使われる素子としてはリレーなどの機械式接点やトライアックなどの半導体素子がある。機械式接点は導通損失が小さいメリットがあるが、接点を開閉させる寿命回数が限られている。半導体素子は機械式接点に比べて寿命は長いが、半導体素子は機械式接点よりも導通損失が大きいため、この半導体素子を冷却するヒートシンクなどの冷却手段が大型化して、プリチャージ回路を備えた電源装置を小型化できない問題があった。 Also, elements used for the switch 3 include mechanical contacts such as relays and semiconductor elements such as triacs. Mechanical contacts have the advantage of low conduction loss, but have a limited number of lifetimes for opening and closing the contacts. Although the semiconductor element has a longer life than the mechanical contact, the semiconductor element has a larger conduction loss than the mechanical contact. Therefore, the cooling means such as a heat sink for cooling the semiconductor element is enlarged, and a precharge circuit is provided. There was a problem that the power supply could not be miniaturized.
 また図10に示すように、従来のプリチャージ回路をフライングキャパシタ型マルチレベルコンバータと組み合わせると、低耐圧の素子を使用できない問題があった。これはコンデンサ2がプリチャージ回路によって充電されるにもかかわらず、フライングキャパシタが充電されない事が原因である。 Also, as shown in FIG. 10, when a conventional precharge circuit is combined with a flying capacitor type multi-level converter, there is a problem that a low breakdown voltage element cannot be used. This is because the flying capacitor is not charged even though the capacitor 2 is charged by the precharge circuit.
 コンデンサ24が全く充電されず、電圧がゼロボルトの状態でMOSFET27がオンするとダイオード20にコンデンサ2の電圧がかかる。したがってダイオード20がコンデンサ2の1/2の電圧を想定した低耐圧の素子であった場合、ダイオード20が壊れるおそれがある。 When the capacitor 24 is not charged at all and the MOSFET 27 is turned on while the voltage is zero volts, the voltage of the capacitor 2 is applied to the diode 20. Therefore, when the diode 20 is a low breakdown voltage element assuming a voltage half that of the capacitor 2, the diode 20 may be broken.
 同様にコンデンサ25が全く充電されず、電圧がゼロボルトの状態でMOSFET29がオンするとダイオード22にコンデンサ2の電圧がかかる。したがってダイオード22がコンデンサ2の1/2の電圧を想定した低耐圧の素子であった場合、ダイオード22が壊れるおそれがある。 Similarly, if the capacitor 25 is not charged at all and the MOSFET 29 is turned on with the voltage being zero volts, the voltage of the capacitor 2 is applied to the diode 22. Therefore, when the diode 22 is a low breakdown voltage element assuming a voltage half that of the capacitor 2, the diode 22 may be broken.
 またコンデンサ24が全く充電されず、電圧がゼロボルトの状態でダイオード20が導通するとMOSFET27にコンデンサ2の電圧がかかる。したがってMOSFET27がコンデンサ2の1/2の電圧を想定した低耐圧の素子であった場合、MOSFET27が壊れるおそれがある。 Further, when the capacitor 24 is not charged at all and the diode 20 is turned on with the voltage being zero volts, the voltage of the capacitor 2 is applied to the MOSFET 27. Therefore, when the MOSFET 27 is a low breakdown voltage element assuming a voltage half that of the capacitor 2, the MOSFET 27 may be broken.
 同様にコンデンサ25が全く充電されず、電圧がゼロボルトの状態でダイオード22が導通するとMOSFET29にコンデンサ2の電圧がかかる。したがってMOSFET29がコンデンサ2の1/2の電圧を想定した低耐圧の素子であった場合、MOSFET29が壊れるおそれがある。 Similarly, when the capacitor 25 is not charged at all and the diode 22 is turned on with the voltage being zero volts, the voltage of the capacitor 2 is applied to the MOSFET 29. Therefore, if the MOSFET 29 is a low breakdown voltage element assuming a voltage half that of the capacitor 2, the MOSFET 29 may be broken.
 このため、従来のプリチャージ回路をフライングキャパシタ型マルチレベルコンバータと組み合わせると、低耐圧の素子を使用することによって損失を低減することができるマルチレベルコンバータの特徴を生かせない問題があった。 For this reason, when a conventional precharge circuit is combined with a flying capacitor type multi-level converter, there is a problem that the characteristics of the multi-level converter that can reduce loss by using a low withstand voltage element cannot be utilized.
 また図11に示す様にコンデンサ2の後段に接続するコンバータ47としてダイオードクランプ型マルチレベルコンバータを使用すると、素子耐圧を本来の耐圧まで下げられない問題があった。 Further, as shown in FIG. 11, when a diode clamp type multi-level converter is used as the converter 47 connected to the subsequent stage of the capacitor 2, there is a problem that the element withstand voltage cannot be lowered to the original withstand voltage.
 図9、図10に示す従来のプリチャージ回路で図11のコンデンサ33、34が充電されると、二つのコンデンサが同じ電流で充電されるために、静電容量のバラつきで充電電圧に差が生じる。したがって本来はコンデンサ2の半分の電圧で良いはずであるのに、バラつきの最悪値を見込んでそれよりも高い電圧がかかる事を想定しなければならず、本来よりも高耐圧の素子を使わなければならない。
 充電によるコンデンサの電圧変動分をΔv、充電電流をi、静電容量をC、充電時間をΔtとすると
Figure JPOXMLDOC01-appb-M000001
の関係がある。コンデンサ33、34は同じ電流で充電されるためi、Δtは共通である。したがってCのバラつきでΔvのバラつきが決まる。例えばCのバラつきを±20%見込むと
Figure JPOXMLDOC01-appb-M000002
となる。したがってコンデンサ2の電圧が400Vであるとすると、本来は200Vを想定すれば良いはずが240Vまでかかることを想定しなければならず、本来よりも高耐圧の素子を使わなければならない問題があった。
When the capacitors 33 and 34 in FIG. 11 are charged with the conventional precharge circuit shown in FIGS. 9 and 10, since the two capacitors are charged with the same current, there is a difference in charge voltage due to variations in capacitance. Arise. Therefore, it should be assumed that half the voltage of capacitor 2 should be sufficient, but it is assumed that a higher voltage is applied in anticipation of the worst value of variation, and an element with a higher withstand voltage must be used. I must.
When the voltage fluctuation of the capacitor due to charging is Δv, the charging current is i, the capacitance is C, and the charging time is Δt
Figure JPOXMLDOC01-appb-M000001
There is a relationship. Since the capacitors 33 and 34 are charged with the same current, i and Δt are common. Therefore, the variation of Δv is determined by the variation of C. For example, if you expect a variation of C of ± 20%
Figure JPOXMLDOC01-appb-M000002
It becomes. Therefore, if the voltage of the capacitor 2 is 400V, it should be assumed that 200V should be assumed, but it must be assumed that it takes up to 240V, and there is a problem that an element having a higher withstand voltage than the original must be used. .
 本発明の第1の態様に係るプリチャージ回路を備えた電源装置は、第一の入力電源1と、第一の入力電源1によって充電されるコンデンサ2と、第一の入力電源1とコンデンサ2の間に挿入されたスイッチ3と、第二の入力電源4と、第二の入力電源4とコンデンサ2の間に挿入された充電部と、を備えている。 A power supply device including a precharge circuit according to the first aspect of the present invention includes a first input power supply 1, a capacitor 2 charged by the first input power supply 1, a first input power supply 1 and a capacitor 2 A switch 3 inserted between the second input power source 4 and a charging unit inserted between the second input power source 4 and the capacitor 2.
 本発明の第2の態様に係るプリチャージ回路を備えた電源装置は、第一の入力電源である交流電源6と、交流電源6によって充電されるコンデンサ2と、交流電源6とコンデンサ2の間に挿入されたスイッチ3および整流部11と、第二の入力電源4と、第二の入力電源4とコンデンサ2の間に挿入された充電部5と、を備えている。整流部11はダイオード7、8、9、10をブリッジ接続することで構成されており、交流端子が交流電源6とスイッチ3の直列回路に、直流端子がコンデンサ2に接続されている。 The power supply device including the precharge circuit according to the second aspect of the present invention includes an AC power supply 6 that is a first input power supply, a capacitor 2 that is charged by the AC power supply 6, and between the AC power supply 6 and the capacitor 2. The switch 3 and the rectifier 11 inserted in the second input power source 4, the second input power source 4, and the charging unit 5 inserted between the second input power source 4 and the capacitor 2. The rectifying unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10, and an AC terminal is connected to a series circuit of the AC power supply 6 and the switch 3, and a DC terminal is connected to the capacitor 2.
 本発明の第3の態様に係るプリチャージ回路を備えた電源装置は、交流電源6と、交流電源6によって充電されるコンデンサ2と、交流電源6とコンデンサ2の間に挿入されたスイッチ3および整流部11と、第二の入力電源であるバッテリー12と、バッテリー12とコンデンサ2の間に挿入された充電部5と、を備えている。整流部11はダイオード7、8、9、10をブリッジ接続することで構成されており、交流端子が交流電源6とスイッチ3の直列回路に、直流端子がコンデンサ2に接続されている。 A power supply device including a precharge circuit according to a third aspect of the present invention includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 inserted between the AC power supply 6 and the capacitor 2, and A rectifying unit 11, a battery 12 as a second input power source, and a charging unit 5 inserted between the battery 12 and the capacitor 2 are provided. The rectifying unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10, and an AC terminal is connected to a series circuit of the AC power supply 6 and the switch 3, and a DC terminal is connected to the capacitor 2.
 本発明の第4の態様に係るプリチャージ回路を備えた電源装置は、交流電源6と、交流電源6によって充電されるコンデンサ2と、交流電源6とコンデンサ2の間に挿入されたスイッチ3および整流部11と、バッテリー12と、バッテリー12とコンデンサ2の間に挿入された充電部5と、を備えている。整流部11はダイオード7、8、9、10をブリッジ接続することで構成されており、交流端子が交流電源6とスイッチ3の直列回路に、直流端子がコンデンサ2に接続されている。充電部5はトランス13、MOSFET14、ダイオード15で構成されており、トランス13の一次巻線とMOSFET14の直列回路がバッテリー12に接続され、トランス13の二次巻線とダイオード15の直列回路がコンデンサ2に接続されている。 A power supply device including a precharge circuit according to a fourth aspect of the present invention includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 inserted between the AC power supply 6 and the capacitor 2, and A rectifying unit 11, a battery 12, and a charging unit 5 inserted between the battery 12 and the capacitor 2 are provided. The rectifying unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10, and an AC terminal is connected to a series circuit of the AC power supply 6 and the switch 3, and a DC terminal is connected to the capacitor 2. The charging unit 5 includes a transformer 13, a MOSFET 14, and a diode 15. A primary circuit of the transformer 13 and a series circuit of the MOSFET 14 are connected to the battery 12. A series circuit of the secondary winding of the transformer 13 and the diode 15 is a capacitor. 2 is connected.
 本発明の第5の態様に係るプリチャージ回路を備えた電源装置は、交流電源6と、交流電源6によって充電されるコンデンサ2と、交流電源6とコンデンサ2の間に挿入されたスイッチ3および整流部11と、バッテリー12と、バッテリー12とコンデンサ2の間に挿入された充電部5と、を備えている。整流部11はダイオード7、8、9、10をブリッジ接続することで構成されており、交流端子が交流電源6とスイッチ3の直列回路に、直流端子がコンデンサ2に接続されている。充電部5はトランス13、MOSFET14、ダイオード15で構成されており、トランス13の一次巻線とMOSFET14の直列回路がバッテリー12に接続され、トランス13の二次巻線とダイオード15の直列回路がコンデンサ2に接続されている。スイッチ3は電力供給装置16に内蔵され、交流電源6、スイッチ3、バッテリー12以外の構成要素は充電器18に内蔵され、バッテリー12と充電器18は自動車17に内蔵されている。 A power supply device including a precharge circuit according to a fifth aspect of the present invention includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 inserted between the AC power supply 6 and the capacitor 2, and A rectifying unit 11, a battery 12, and a charging unit 5 inserted between the battery 12 and the capacitor 2 are provided. The rectifying unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10, and an AC terminal is connected to a series circuit of the AC power supply 6 and the switch 3, and a DC terminal is connected to the capacitor 2. The charging unit 5 includes a transformer 13, a MOSFET 14, and a diode 15. A primary circuit of the transformer 13 and a series circuit of the MOSFET 14 are connected to the battery 12. A series circuit of the secondary winding of the transformer 13 and the diode 15 is a capacitor. 2 is connected. The switch 3 is built in the power supply device 16, and components other than the AC power source 6, the switch 3, and the battery 12 are built in the charger 18, and the battery 12 and the charger 18 are built in the automobile 17.
 本発明の第6の態様に係るプリチャージ回路を備えた電源装置は、交流電源6と、交流電源6によって充電されるコンデンサ2と、交流電源6とコンデンサ2の間に挿入されたスイッチ3およびコンバータ32と、バッテリー12と、バッテリー12とコンデンサ2の間に挿入された充電部5と、を備えている。コンバータ32はチョーク19、ダイオード20、21、22、23、コンデンサ24、25、MOSFET26、27、28、29で構成されており、ダイオード20、21、MOSFET26、27がこの順番で直列回路として接続され、この直列回路のダイオード20とMOSFET27がコンデンサ2に接続され、ダイオード22、23、MOSFET28、29がこの順番で直列回路として接続され、この直列回路のダイオード22とMOSFET29がコンデンサ2に接続され、コンデンサ24がダイオード21とMOSFET26の直列回路に接続され、コンデンサ25がダイオード23とMOSFET28の直列回路に接続され、チョーク19の一端がダイオード21とMOSFET26の接続点に接続され、チョーク19の他端がスイッチ3に接続され、ダイオード23とMOSFET28の接続点が交流電源6の他端に接続されている。充電部5はトランス13、MOSFET14、ダイオード15、30、31で構成されており、トランス13の一次巻線とMOSFET14の直列回路がバッテリー12に接続され、トランス13の二次巻線と三次巻線とダイオード15の直列回路がコンデンサ2に接続され、トランス13の二次巻線とダイオード30の直列回路がMOSFET27とコンデンサ24の直列回路に接続され、トランス13の二次巻線とダイオード31の直列回路がMOSFET29とコンデンサ25の直列回路に接続されている。 A power supply device including a precharge circuit according to a sixth aspect of the present invention includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 inserted between the AC power supply 6 and the capacitor 2, and The converter 32, the battery 12, and the charging unit 5 inserted between the battery 12 and the capacitor 2 are provided. The converter 32 includes a choke 19, diodes 20, 21, 22, 23, capacitors 24, 25, MOSFETs 26, 27, 28, 29, and the diodes 20, 21, MOSFETs 26, 27 are connected in this order as a series circuit. The diode 20 and the MOSFET 27 of this series circuit are connected to the capacitor 2, the diodes 22 and 23, the MOSFETs 28 and 29 are connected as a series circuit in this order, and the diode 22 and the MOSFET 29 of this series circuit are connected to the capacitor 2. 24 is connected to the series circuit of the diode 21 and the MOSFET 26, the capacitor 25 is connected to the series circuit of the diode 23 and the MOSFET 28, and one end of the choke 19 is connected to the connection point of the diode 21 and the MOSFET 26. The other end is connected to a switch 3, a connection point of the diodes 23 and MOSFET28 are connected to the other end of the AC power supply 6. The charging unit 5 includes a transformer 13, a MOSFET 14, and diodes 15, 30, and 31. A primary circuit of the transformer 13 and a series circuit of the MOSFET 14 are connected to the battery 12, and a secondary winding and a tertiary winding of the transformer 13. And a series circuit of the diode 15 is connected to the capacitor 2, a series circuit of the secondary winding of the transformer 13 and the diode 30 is connected to a series circuit of the MOSFET 27 and the capacitor 24, and a series of the secondary winding of the transformer 13 and the diode 31 is connected. The circuit is connected to a series circuit of a MOSFET 29 and a capacitor 25.
 本発明の第7の態様に係るプリチャージ回路を備えた電源装置は、図示しない交流電源によって充電されるコンデンサ2と、コンデンサ2に接続されたコンバータ47と、バッテリー12と、バッテリー12とコンデンサ2の間に挿入された充電部5と、を備えている。コンバータ47はコンデンサ33、34、45、ダイオード35、36、42、43、MOSFET37、38、39、40、トランス41、チョーク44で構成されており、コンデンサ33、34の直列回路がコンデンサ2に接続され、MOSFET37、38、39、40がこの順番で接続される直列回路がコンデンサ2に接続され、ダイオード35がコンデンサ33、34の接続点に接続され、ダイオード35がMOSFET37、38の接続点に接続され、ダイオード36がコンデンサ33、34の接続点に接続され、ダイオード36がMOSFET39、40の接続点の間に接続され、トランス41の一次巻線がコンデンサ33、34の接続点とMOSFET38、39の接続点の間に接続され、トランス41の二次巻線とダイオード42とが接続され、トランス41の三次巻線とダイオード43とが接続され、さらに、トランス41の二次巻線とトランス41の三次巻線とが接続されて、直列回路を構成し、チョーク44とコンデンサ45の直列回路がトランス41の二次巻線とダイオード42の直列回路に接続されている。充電部5はトランス13、MOSFET14、ダイオード15、30で構成されており、トランス13の一次巻線とMOSFET14の直列回路がバッテリー12に接続され、トランス13の三次巻線とダイオード15が接続されて、トランス13の二次巻線と三次巻線とダイオード15とで構成する直列回路がコンデンサ2に接続され、トランス13の二次巻線とダイオード30のとで構成する直列回路がコンデンサ34に接続されている。 A power supply device including a precharge circuit according to a seventh aspect of the present invention includes a capacitor 2 charged by an AC power supply (not shown), a converter 47 connected to the capacitor 2, a battery 12, and the battery 12 and the capacitor 2 And a charging unit 5 inserted between the two. The converter 47 includes capacitors 33, 34, 45, diodes 35, 36, 42, 43, MOSFETs 37, 38, 39, 40, a transformer 41, and a choke 44, and a series circuit of the capacitors 33, 34 is connected to the capacitor 2. A series circuit in which the MOSFETs 37, 38, 39, 40 are connected in this order is connected to the capacitor 2, the diode 35 is connected to the connection point of the capacitors 33, 34, and the diode 35 is connected to the connection point of the MOSFETs 37, 38. The diode 36 is connected to the connection point of the capacitors 33 and 34, the diode 36 is connected between the connection points of the MOSFETs 39 and 40, and the primary winding of the transformer 41 is connected to the connection point of the capacitors 33 and 34 and the MOSFETs 38 and 39. Connected between the connection points, the secondary winding of the transformer 41 and the diode Are connected to each other, the secondary winding of the transformer 41 and the diode 43 are connected, and the secondary winding of the transformer 41 and the tertiary winding of the transformer 41 are connected to form a series circuit. A series circuit of 44 and a capacitor 45 is connected to a series circuit of the secondary winding of the transformer 41 and the diode 42. The charging unit 5 includes a transformer 13, a MOSFET 14, and diodes 15 and 30. A primary circuit of the transformer 13 and a series circuit of the MOSFET 14 are connected to the battery 12, and a tertiary winding of the transformer 13 and the diode 15 are connected. A series circuit composed of the secondary winding, the tertiary winding and the diode 15 of the transformer 13 is connected to the capacitor 2, and a series circuit composed of the secondary winding of the transformer 13 and the diode 30 is connected to the capacitor 34. Has been.
 本発明の態様に係るプリチャージ回路によれば、次の三つの効果がある。 The precharge circuit according to the aspect of the present invention has the following three effects.
 第一に、突入電流制限抵抗を削除する事が可能になるため、プリチャージ回路を備えた電源装置を小型化できる。 First, since the inrush current limiting resistor can be deleted, the power supply device equipped with the precharge circuit can be downsized.
 第二に、プリチャージ回路を備えた電源装置の上流に第一の入力電源を切離すスイッチが既に存在する場合、突入電流制限抵抗を短絡するスイッチも削除する事が可能になるため、プリチャージ回路を備えた電源装置を更に小型化できる。 Second, if there is already a switch that disconnects the first input power supply upstream of the power supply with a precharge circuit, the switch that shorts the inrush current limiting resistor can be deleted. The power supply device including the circuit can be further reduced in size.
 第三に、マルチレベルコンバータと本発明のプリチャージ回路を組み合わせた場合、フライングキャパシタとコンデンサ2を同時に充電できる為、低耐圧素子を使っても素子耐圧を超える電圧が半導体素子に印加される事が無い。 Third, when the multilevel converter and the precharge circuit of the present invention are combined, the flying capacitor and the capacitor 2 can be charged at the same time, so that even if a low breakdown voltage element is used, a voltage exceeding the element breakdown voltage is applied to the semiconductor element. There is no.
図1は本発明の実施例1を示す回路図である。FIG. 1 is a circuit diagram showing Embodiment 1 of the present invention. 図2は本発明の実施例2を示す回路図である。FIG. 2 is a circuit diagram showing Embodiment 2 of the present invention. 図3は本発明の実施例3を示す回路図である。FIG. 3 is a circuit diagram showing Embodiment 3 of the present invention. 図4は本発明の実施例4を示す回路図である。FIG. 4 is a circuit diagram showing Embodiment 4 of the present invention. 図5は本発明の実施例5を示す回路図である。FIG. 5 is a circuit diagram showing Embodiment 5 of the present invention. 図6は本発明の実施例6を示す回路図である。FIG. 6 is a circuit diagram showing Embodiment 6 of the present invention. 図7は図6のプリチャージ電圧波形を示す波形図である。FIG. 7 is a waveform diagram showing the precharge voltage waveform of FIG. 図8は本発明の実施例7を示す回路図である。FIG. 8 is a circuit diagram showing Embodiment 7 of the present invention. 図9は従来のプリチャージ回路を示す一例である。FIG. 9 shows an example of a conventional precharge circuit. 図10は従来のプリチャージ回路を示す他の例である。FIG. 10 shows another example of a conventional precharge circuit. 図11はマルチレベルコンバータの一例である。FIG. 11 is an example of a multilevel converter.
 本発明を実施するための形態は、以下の好ましい実施例の説明を添付図面と照らし合わせて読むと、明らかである。但し、図面はもっぱら解説のためのものであって、本発明の範囲を限定するものではない。
[実施例1]
The mode for carrying out the present invention will be apparent from the following description of the preferred embodiments when read with reference to the accompanying drawings. However, the drawings are only for explanation and do not limit the scope of the present invention.
[Example 1]
 (実施例1の構成)
 図1は、本発明の実施例1におけるプリチャージ回路を備えた電源装置を示す回路図である。
 このプリチャージ回路を備えた電源装置は、第一の入力電源1と、第一の入力電源1によって充電されるコンデンサ2と、第一の入力電源1の一端とコンデンサ2の一端との間に挿入されたスイッチ3と、第二の入力電源4と、第二の入力電源4とコンデンサ2の間に挿入された充電部5と、を備えている。
(Configuration of Example 1)
FIG. 1 is a circuit diagram illustrating a power supply device including a precharge circuit according to a first embodiment of the present invention.
The power supply device including the precharge circuit includes a first input power supply 1, a capacitor 2 charged by the first input power supply 1, and one end of the first input power supply 1 and one end of the capacitor 2. An inserted switch 3, a second input power supply 4, and a charging unit 5 inserted between the second input power supply 4 and the capacitor 2 are provided.
 (実施例1の動作)
 このように構成された実施例1におけるプリチャージ回路を備えた電源装置において、充電部5によってコンデンサ2を第一の入力電源1の電圧以上に充電してからスイッチ3をオンさせる事で突入電流が流れなくなる。
(Operation of Example 1)
In the power supply device having the precharge circuit according to the first embodiment configured as described above, the charging unit 5 charges the capacitor 2 to a voltage equal to or higher than the voltage of the first input power supply 1 and then turns on the switch 3 to turn on the inrush current. No longer flows.
 そもそも突入電流が流れるのは、コンデンサ2の電圧が第一の入力電源1の電圧よりも低いことが原因であるので、充電部5によってコンデンサ2を第一の入力電源1の電圧以上に充電する事でその状態を解消すれば、突入電流は流れない。 In the first place, the inrush current flows because the voltage of the capacitor 2 is lower than the voltage of the first input power supply 1, and therefore the charging unit 5 charges the capacitor 2 to be higher than the voltage of the first input power supply 1. If the situation is solved, there will be no inrush current.
 (実施例1の効果)
 第二の入力電源4が存在しない従来のプリチャージ回路では、第一の入力電源1の電圧を利用してコンデンサ2を充電せざるを得ない為に突入電流制限抵抗が大型化していた。しかし、第二の入力電源4を利用して充電部5を形成すれば、突入電流制限抵抗を削除でき、かつ任意の電流でコンデンサ2を充電する事が可能である。充電電流を小さくする事で充電部5を小さくすることができる為、全体としてプリチャージ回路を備えた電源装置を小型化する事が可能となる。
[実施例2]
(Effect of Example 1)
In the conventional precharge circuit in which the second input power supply 4 does not exist, the capacitor 2 has to be charged using the voltage of the first input power supply 1, so that the inrush current limiting resistor is enlarged. However, if the charging unit 5 is formed using the second input power source 4, the inrush current limiting resistor can be eliminated and the capacitor 2 can be charged with an arbitrary current. Since the charging unit 5 can be reduced by reducing the charging current, the power supply device including the precharge circuit as a whole can be reduced in size.
[Example 2]
 (実施例2の構成)
 図2は、本発明の実施例2におけるプリチャージ回路を備えた電源装置を示す回路図である。
 このプリチャージ回路を備えた電源装置は、第一の入力電源である交流電源6と、交流電源6によって充電されるコンデンサ2と、交流電源6とコンデンサ2の間に挿入されたスイッチ3および整流部11と、第二の入力電源4と、第二の入力電源4とコンデンサ2の間に挿入された充電部5と、を備えている。
(Configuration of Example 2)
FIG. 2 is a circuit diagram showing a power supply device including a precharge circuit according to the second embodiment of the present invention.
The power supply device including the precharge circuit includes an AC power supply 6 as a first input power supply, a capacitor 2 charged by the AC power supply 6, a switch 3 inserted between the AC power supply 6 and the capacitor 2, and rectification. Unit 11, second input power supply 4, and charging unit 5 inserted between second input power supply 4 and capacitor 2.
 整流部11はダイオード7、8、9、10をブリッジ接続することで構成されている。整流部11の交流端子が交流電源6とスイッチ3の直列回路に、直流端子がコンデンサ2にそれぞれ接続されている。 The rectification unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10. The AC terminal of the rectifying unit 11 is connected to the series circuit of the AC power source 6 and the switch 3, and the DC terminal is connected to the capacitor 2.
 (実施例2の動作)
 このように構成された実施例2におけるプリチャージ回路を備えた電源装置において、充電部5によってコンデンサ2を交流電源6のピーク電圧以上に充電してからスイッチ3をオンさせる事で突入電流が流れなくなる。
(Operation of Example 2)
In the power supply device having the precharge circuit according to the second embodiment configured as described above, an inrush current flows by turning on the switch 3 after charging the capacitor 2 to the peak voltage of the AC power supply 6 by the charging unit 5. Disappear.
 (実施例2の効果)
 突入電流制限抵抗を削除できる事、充電電流を小さくして充電部5を小さくすることで、全体としてプリチャージ回路を備えた電源装置を小型化する事が可能となる。
[実施例3]
(Effect of Example 2)
Since the inrush current limiting resistor can be eliminated, and the charging unit 5 can be made smaller by reducing the charging current, it is possible to reduce the size of the power supply device including the precharge circuit as a whole.
[Example 3]
 (実施例3の構成)
 図3は、本発明の実施例3におけるプリチャージ回路を備えた電源装置を示す回路図である。
 このプリチャージ回路を備えた電源装置は、交流電源6と、交流電源6によって充電されるコンデンサ2と、交流電源6とコンデンサ2の間に挿入されたスイッチ3および整流部11と、第二の入力電源であるバッテリー12と、バッテリー12とコンデンサ2の間に挿入された充電部5と、を備えている。
(Configuration of Example 3)
FIG. 3 is a circuit diagram showing a power supply device including a precharge circuit according to Embodiment 3 of the present invention.
The power supply device including the precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 and a rectifier 11 inserted between the AC power supply 6 and the capacitor 2, a second A battery 12 as an input power source and a charging unit 5 inserted between the battery 12 and the capacitor 2 are provided.
 整流部11はダイオード7、8、9、10をブリッジ接続することで構成されている。整流部11の交流端子が交流電源6とスイッチ3の直列回路に、直流端子がコンデンサ2にそれぞれ接続されている。 The rectification unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10. The AC terminal of the rectifying unit 11 is connected to the series circuit of the AC power source 6 and the switch 3, and the DC terminal is connected to the capacitor 2.
 (実施例3の動作)
 このように構成された実施例3におけるプリチャージ回路を備えた電源装置において、充電部5によってコンデンサ2を交流電源6のピーク電圧以上に充電してからスイッチ3をオンさせる事で突入電流が流れなくなる。
(Operation of Example 3)
In the power supply device having the precharge circuit according to the third embodiment configured as described above, an inrush current flows by turning on the switch 3 after charging the capacitor 2 to the peak voltage of the AC power supply 6 by the charging unit 5. Disappear.
 電源装置の一例として、例えば自動車に搭載される充電器の場合、商用交流電源が接続される第一の入力以外に、12Vバッテリーが入力される第二の入力が存在する。この第二の入力と充電部5を使ってコンデンサ2を充電する事によって、突入電流制限抵抗を削除する事が可能になる。
 このような用途では、交流電源6とバッテリー12は一般に電気的な絶縁が必要であるため、充電部5は絶縁機能を持つ必要がある。
As an example of a power supply device, for example, in the case of a charger mounted on an automobile, there is a second input to which a 12V battery is input in addition to a first input to which a commercial AC power supply is connected. By charging the capacitor 2 using the second input and the charging unit 5, the inrush current limiting resistor can be eliminated.
In such an application, since the AC power source 6 and the battery 12 generally require electrical insulation, the charging unit 5 needs to have an insulation function.
 (実施例3の効果)
 突入電流制限抵抗を削除できる事、充電電流を小さくして充電部5を小さくすることで、全体としてプリチャージ回路を備えた電源装置を小型化する事が可能となる。
[実施例4]
(Effect of Example 3)
Since the inrush current limiting resistor can be eliminated, and the charging unit 5 can be made smaller by reducing the charging current, it is possible to reduce the size of the power supply device including the precharge circuit as a whole.
[Example 4]
 (実施例4の構成)
 図4は、本発明の実施例4におけるプリチャージ回路を備えた電源装置を示す回路図である。
 このプリチャージ回路を備えた電源装置は、交流電源6と、交流電源6によって充電されるコンデンサ2と、交流電源6とコンデンサ2の間に挿入されたスイッチ3および整流部11と、バッテリー12と、バッテリー12とコンデンサ2の間に挿入された充電部5と、を備えている。
(Configuration of Example 4)
FIG. 4 is a circuit diagram showing a power supply device including a precharge circuit according to the fourth embodiment of the present invention.
The power supply device including the precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 and a rectifying unit 11 inserted between the AC power supply 6 and the capacitor 2, a battery 12, and the like. And a charging unit 5 inserted between the battery 12 and the capacitor 2.
 整流部11はダイオード7、8、9、10をブリッジ接続することで構成されている。整流部11の交流端子が交流電源6とスイッチ3の直列回路に、直流端子がコンデンサ2に、それぞれ接続されている。 The rectification unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10. The AC terminal of the rectifying unit 11 is connected to the series circuit of the AC power source 6 and the switch 3, and the DC terminal is connected to the capacitor 2.
 充電部5はトランス13、nチャンネルMOSFET14、ダイオード15で構成されている。トランス13の一次巻線の一端(以下、巻線の巻き始めを「一端」という。)にバッテリー12のプラス端子が接続され、MOSFET14のソースにバッテリー12のマイナス端子が接続され、ドレインにトランス13の一次巻線の他端(以下、巻線の巻き終わりを「他端」という。)が接続されている。トランス13の二次巻線とダイオード15の直列回路がコンデンサ2に接続されている。なお、ダイオード15のアノードがトランス13の二次巻線の他端に接続されている。 The charging unit 5 includes a transformer 13, an n-channel MOSFET 14, and a diode 15. The positive terminal of the battery 12 is connected to one end of the primary winding of the transformer 13 (hereinafter, the winding start is referred to as “one end”), the negative terminal of the battery 12 is connected to the source of the MOSFET 14, and the transformer 13 is connected to the drain. The other end of the primary winding (hereinafter, the winding end of the winding is referred to as “the other end”) is connected. A series circuit of the secondary winding of the transformer 13 and the diode 15 is connected to the capacitor 2. The anode of the diode 15 is connected to the other end of the secondary winding of the transformer 13.
 (実施例4の動作)
 このように構成された実施例4におけるプリチャージ回路において、充電部5によってコンデンサ2を交流電源6のピーク電圧以上に充電してからスイッチ3をオンさせる事で突入電流が流れなくなる。
(Operation of Example 4)
In the precharge circuit according to the fourth embodiment configured as described above, the charging unit 5 charges the capacitor 2 to the peak voltage of the AC power supply 6 or more, and then the switch 3 is turned on so that the inrush current does not flow.
 充電部5はトランス13、MOSFET14、ダイオード15で構成されており、絶縁型フライバックコンバータとして構成されている。MOSFET14は図示しない制御手段によってオンオフを制御され、MOSFET14がオンしている時にバッテリー12から入力されたエネルギーがトランス13に蓄えられる。MOSFET14がオフするとトランス13に蓄えられたエネルギーはダイオード15を介してコンデンサ2に放出される。この作用によりバッテリー12からコンデンサ2にエネルギーを転送して、コンデンサ2を交流電源6のピーク電圧以上に充電する。 The charging unit 5 includes a transformer 13, a MOSFET 14, and a diode 15, and is configured as an isolated flyback converter. The MOSFET 14 is controlled to be turned on and off by a control means (not shown), and energy input from the battery 12 is stored in the transformer 13 when the MOSFET 14 is turned on. When the MOSFET 14 is turned off, the energy stored in the transformer 13 is released to the capacitor 2 via the diode 15. As a result, energy is transferred from the battery 12 to the capacitor 2, and the capacitor 2 is charged to a voltage higher than the peak voltage of the AC power supply 6.
 コンデンサ2の電圧が所定の電圧に達したことをもってMOSFET14のオンオフを停止するように図示しない制御手段を構成すれば、定常状態における充電部5の損失がなくなるため、より望ましい。 If a control means (not shown) is configured so as to stop the on / off of the MOSFET 14 when the voltage of the capacitor 2 reaches a predetermined voltage, the loss of the charging unit 5 in the steady state is eliminated, which is more desirable.
 (実施例4の効果)
 突入電流制限抵抗を削除できる事、充電電流を小さくして充電部5を小さくすることで、全体としてプリチャージ回路を備えた電源装置を小型化する事が可能となる。
[実施例5]
(Effect of Example 4)
Since the inrush current limiting resistor can be eliminated, and the charging unit 5 can be made smaller by reducing the charging current, it is possible to reduce the size of the power supply device including the precharge circuit as a whole.
[Example 5]
 (実施例5の構成)
 図5は、本発明の実施例5におけるプリチャージ回路を備えた電源装置を示す回路図である。
 このプリチャージ回路を備えた電源装置は、交流電源6と、交流電源6によって充電されるコンデンサ2と、交流電源6とコンデンサ2の間に挿入されたスイッチ3および整流部11と、バッテリー12と、バッテリー12とコンデンサ2の間に挿入された充電部5と、を備えている。
(Configuration of Example 5)
FIG. 5 is a circuit diagram showing a power supply device including a precharge circuit according to the fifth embodiment of the present invention.
The power supply device including the precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 and a rectifying unit 11 inserted between the AC power supply 6 and the capacitor 2, a battery 12, and the like. And a charging unit 5 inserted between the battery 12 and the capacitor 2.
 整流部11はダイオード7、8、9、10をブリッジ接続することで構成されている。交流端子が交流電源6とスイッチ3の直列回路に、直流端子がコンデンサ2に接続されている。 The rectification unit 11 is configured by bridge-connecting diodes 7, 8, 9, and 10. The AC terminal is connected to a series circuit of the AC power source 6 and the switch 3, and the DC terminal is connected to the capacitor 2.
 充電部5はトランス13、nチャンネルMOSFET14、ダイオード15で構成されている。トランス13の一次巻線の一端にバッテリー12のプラス端子が接続され、MOSFET14のソースにバッテリー12のマイナス端子が接続され、ドレインにトランス13の一次巻線の他端が接続されている。トランス13の二次巻線とダイオード15の直列回路がコンデンサ2に接続されている。なお、ダイオード15のアノードがトランス13の二次巻線の他端に接続されている。 The charging unit 5 includes a transformer 13, an n-channel MOSFET 14, and a diode 15. The positive terminal of the battery 12 is connected to one end of the primary winding of the transformer 13, the negative terminal of the battery 12 is connected to the source of the MOSFET 14, and the other end of the primary winding of the transformer 13 is connected to the drain. A series circuit of the secondary winding of the transformer 13 and the diode 15 is connected to the capacitor 2. The anode of the diode 15 is connected to the other end of the secondary winding of the transformer 13.
 スイッチ3は電力供給装置16に内蔵され、交流電源6、スイッチ3、バッテリー12以外の構成要素は充電器18に内蔵され、バッテリー12と充電器18は自動車17に内蔵されている。 The switch 3 is built in the power supply device 16, components other than the AC power source 6, the switch 3, and the battery 12 are built in the charger 18, and the battery 12 and the charger 18 are built in the automobile 17.
(実施例5の動作)
 このように構成された実施例5におけるプリチャージ回路を備えた電源装置において、充電部5によってコンデンサ2を交流電源6のピーク電圧以上に充電してからスイッチ3をオンさせる事で突入電流が流れなくなる。
(Operation of Example 5)
In the power supply apparatus having the precharge circuit according to the fifth embodiment configured as described above, an inrush current flows by turning on the switch 3 after charging the capacitor 2 to be equal to or higher than the peak voltage of the AC power supply 6 by the charging unit 5. Disappear.
 例えば電気自動車の高圧バッテリーを充電するための充電システムは、商用交流電源6と電力供給装置16、充電器18で構成され、充電器18には12Vの低圧バッテリー12が接続されている。電力供給装置16に商用交流電源6を切離すスイッチ3が内蔵されている場合、本発明のプリチャージ回路には充電器18に商用交流電源6を切離すスイッチ3を内蔵しなくてよいメリットが生じる。 For example, a charging system for charging a high voltage battery of an electric vehicle includes a commercial AC power source 6, a power supply device 16, and a charger 18, and a 12 V low voltage battery 12 is connected to the charger 18. When the switch 3 for disconnecting the commercial AC power supply 6 is built in the power supply device 16, the precharge circuit of the present invention has an advantage that it is not necessary to incorporate the switch 3 for disconnecting the commercial AC power supply 6 in the charger 18. Arise.
 従来のプリチャージ回路は、商用交流電源6とコンデンサ2の間に突入電流制限抵抗を挿入する構成であるため、この抵抗を短絡する位置にスイッチを接続する必要がある。したがって突入電流制限抵抗と無関係に存在するスイッチ3をプリチャージ回路の一部として利用する事は出来なかった。したがって突入電流制限抵抗とスイッチの並列回路を充電器に内蔵する必要があった。 Since the conventional precharge circuit is configured to insert an inrush current limiting resistor between the commercial AC power supply 6 and the capacitor 2, it is necessary to connect a switch to a position where the resistor is short-circuited. Therefore, the switch 3 existing regardless of the inrush current limiting resistor cannot be used as a part of the precharge circuit. Therefore, it is necessary to incorporate a parallel circuit of an inrush current limiting resistor and a switch in the charger.
 しかし、本発明のプリチャージ回路ではこのような制約がないため、電力供給装置16に内蔵されるスイッチ3をプリチャージ回路の一部として利用する事が可能である。これにより突入電流制限抵抗だけではなく商用交流電源を切離すスイッチも削除する事が可能となり、更にプリチャージ回路を備えた電源装置を小型化する事ができる。 However, since the precharge circuit of the present invention does not have such a restriction, the switch 3 built in the power supply device 16 can be used as a part of the precharge circuit. As a result, it is possible to delete not only the inrush current limiting resistor but also a switch for disconnecting the commercial AC power supply, and further reduce the size of the power supply device including the precharge circuit.
 本発明のプリチャージ回路では、充電部5でコンデンサ2を充電してからスイッチ3をオンさせる必要がある。これは自動車17と電力供給装置16の間に通信部を設け、充電部5でコンデンサ2を充電してからスイッチ3のオンを許可する情報を送れば良い。 In the precharge circuit of the present invention, it is necessary to turn on the switch 3 after charging the capacitor 2 by the charging unit 5. This may be achieved by providing a communication unit between the automobile 17 and the power supply device 16 and charging the capacitor 2 with the charging unit 5 and then sending information for permitting the switch 3 to be turned on.
 (実施例5の効果)
 突入電流制限抵抗を削除できる事、商用交流電源を切離すスイッチを削除できる事、充電電流を小さくして充電部5を小さくすることで、全体としてプリチャージ回路を備えた電源装置を小型化する事が可能となる。
[実施例6]
(Effect of Example 5)
The inrush current limiting resistor can be deleted, the switch for disconnecting the commercial AC power supply can be deleted, and the charging unit 5 can be reduced by reducing the charging current, thereby reducing the size of the power supply device including the precharge circuit as a whole. Things will be possible.
[Example 6]
 (実施例6の構成)
 図6は、本発明の実施例6におけるプリチャージ回路を備えた電源装置を示す回路図である。
 このプリチャージ回路を備えた電源装置は、交流電源6と、交流電源6によって充電されるコンデンサ2と、交流電源6とコンデンサ2の間に挿入されたスイッチ3およびコンバータ32と、バッテリー12と、バッテリー12とコンデンサ2の間に挿入された充電部5と、を備えている。
(Configuration of Example 6)
FIG. 6 is a circuit diagram showing a power supply device including a precharge circuit in Embodiment 6 of the present invention.
The power supply device including the precharge circuit includes an AC power supply 6, a capacitor 2 charged by the AC power supply 6, a switch 3 and a converter 32 inserted between the AC power supply 6 and the capacitor 2, a battery 12, And a charging unit 5 inserted between the battery 12 and the capacitor 2.
 コンバータ32はチョーク19、ダイオード20、21、22、23、コンデンサ24、25、nチャンネルMOSFET26、27、28、29で構成されている。ダイオード20、21、MOSFET26、27がこの順番で接続される直列回路がコンデンサ2に接続され、ダイオード21のアノードがMOSEFT26のドレインに接続されている。ダイオード22、23、MOSFET28、29がこの順番で接続される直列回路がコンデンサ2に接続され、ダイオード23のアノードがMOSEFT28のドレインに接続されている。 The converter 32 includes a choke 19, diodes 20, 21, 22, 23, capacitors 24, 25, and n- channel MOSFETs 26, 27, 28, 29. A series circuit in which the diodes 20 and 21 and the MOSFETs 26 and 27 are connected in this order is connected to the capacitor 2, and the anode of the diode 21 is connected to the drain of the MOSEFT 26. A series circuit in which the diodes 22 and 23 and the MOSFETs 28 and 29 are connected in this order is connected to the capacitor 2, and the anode of the diode 23 is connected to the drain of the MOSEFT 28.
 コンデンサ24がダイオード21とMOSFET26の直列回路に接続され、コンデンサ25がダイオード23とMOSFET28の直列回路に接続されている。チョーク19の一端がダイオード21とMOSFET26の接続点に接続され、チョーク19の他端とダイオード23とMOSFET28の接続点が交流電源6とスイッチ3の直列回路に接続されている。 The capacitor 24 is connected to the series circuit of the diode 21 and the MOSFET 26, and the capacitor 25 is connected to the series circuit of the diode 23 and the MOSFET 28. One end of the choke 19 is connected to the connection point of the diode 21 and the MOSFET 26, and the other end of the choke 19, the connection point of the diode 23 and the MOSFET 28 is connected to the series circuit of the AC power supply 6 and the switch 3.
 充電部5はトランス13、nチャンネルMOSFET14、ダイオード15、30、31で構成されている。トランス13の一次巻線の一端にバッテリー12のプラス端子が接続され、MOSFET14のソースにバッテリー12のマイナス端子が接続され、ドレインにトランス13の一次巻線の他端が接続されている。トランス13の二次巻線と三次巻線とダイオード15の直列回路がコンデンサ2に接続され、トランス13の二次巻線とダイオード30の直列回路がMOSFET27とコンデンサ24の直列回路に接続され、トランス13の二次巻線とダイオード31の直列回路がMOSFET29とコンデンサ25の直列回路に接続されている。なお、ダイオード15のアノードがトランス13の三次巻線の他端に接続され、ダイオード30,31のアノードが二次巻線の他端に接続されている。
 ここでトランス13の二次巻線と三次巻線の巻数は等しいものとする。
The charging unit 5 includes a transformer 13, an n-channel MOSFET 14, and diodes 15, 30, and 31. The positive terminal of the battery 12 is connected to one end of the primary winding of the transformer 13, the negative terminal of the battery 12 is connected to the source of the MOSFET 14, and the other end of the primary winding of the transformer 13 is connected to the drain. A series circuit of the secondary winding and tertiary winding of the transformer 13 and the diode 15 is connected to the capacitor 2, and a series circuit of the secondary winding of the transformer 13 and the diode 30 is connected to the series circuit of the MOSFET 27 and the capacitor 24. The series circuit of the 13 secondary windings and the diode 31 is connected to the series circuit of the MOSFET 29 and the capacitor 25. The anode of the diode 15 is connected to the other end of the tertiary winding of the transformer 13, and the anodes of the diodes 30 and 31 are connected to the other end of the secondary winding.
Here, it is assumed that the number of turns of the secondary winding and the tertiary winding of the transformer 13 is equal.
 (実施例6の動作)
 このように構成された実施例6におけるプリチャージ回路を備えた電源装置において、充電部5によってコンデンサ2を交流電源6のピーク電圧以上に充電してからスイッチ3をオンさせる事で突入電流が流れなくなる。
(Operation of Example 6)
In the power supply apparatus having the precharge circuit according to the sixth embodiment configured as described above, an inrush current flows by turning on the switch 3 after charging the capacitor 2 to the peak voltage of the AC power supply 6 by the charging unit 5. Disappear.
 更に図示しない制御手段によってMOSFET27、29をオンさせ、充電部5によってコンデンサ2とコンデンサ24、25を同時に充電し、かつコンデンサ24、25をコンデンサ2の1/2の電圧に充電する事でダイオード20、21、22、23、MOSFET26、27、28、29にコンデンサ2電圧の1/2以上の電圧がかかる事が無くなる。 Further, the MOSFETs 27 and 29 are turned on by control means (not shown), the capacitor 2 and the capacitors 24 and 25 are simultaneously charged by the charging unit 5, and the capacitors 24 and 25 are charged to a voltage half that of the capacitor 2. 21, 22, 23, MOSFETs 26, 27, 28, 29 are not applied with a voltage more than ½ of the capacitor 2 voltage.
 実施例6ではトランス13の二次巻線と三次巻線の巻数を等しくする事でコンデンサ24、25をコンデンサ2の1/2の電圧に充電している。また一つのトランスで充電部5を構成する事で、コンデンサ2とコンデンサ24、25を同時に充電している。したがってコンデンサ2とコンデンサ24、25をプリチャージする時の電圧波形は図7の様になり、コンデンサ24、25の電圧と、コンデンサ2とコンデンサ24、25の電圧の差分はいずれもコンデンサ2の1/2の電圧を超える事が無い。したがってダイオード20、21、22、23、MOSFET26、27、28、29にコンデンサ2電圧の1/2以上の電圧がかかる事はない。 In Example 6, the capacitors 24 and 25 are charged to a voltage half that of the capacitor 2 by equalizing the number of turns of the secondary winding and the tertiary winding of the transformer 13. Moreover, the capacitor 2 and the capacitors 24 and 25 are charged at the same time by configuring the charging unit 5 with one transformer. Therefore, the voltage waveform when the capacitor 2 and the capacitors 24 and 25 are precharged is as shown in FIG. 7. The difference between the voltage of the capacitors 24 and 25 and the voltage of the capacitor 2 and the capacitors 24 and 25 is 1 Never exceed the voltage of / 2. Therefore, the diodes 20, 21, 22, 23 and the MOSFETs 26, 27, 28, 29 are not subjected to a voltage more than 1/2 of the capacitor 2 voltage.
 (実施例6の効果)
 突入電流制限抵抗を削除できる事、充電電流を小さくして充電部5を小さくすることで、全体としてプリチャージ回路を備えた電源装置を小型化する事が可能となる。
 更にマルチレベルコンバータの主回路素子として低耐圧の素子を使う事ができるようになるため、損失を低減する事ができ、主回路部の小型化を実現できる。
[実施例7]
(Effect of Example 6)
Since the inrush current limiting resistor can be eliminated, and the charging unit 5 can be made smaller by reducing the charging current, it is possible to reduce the size of the power supply device including the precharge circuit as a whole.
Furthermore, since a low breakdown voltage element can be used as the main circuit element of the multilevel converter, the loss can be reduced, and the main circuit part can be downsized.
[Example 7]
 (実施例7の構成)
 図8は、本発明の実施例7におけるプリチャージ回路を備えた電源装置を示す回路図である。
(Configuration of Example 7)
FIG. 8 is a circuit diagram showing a power supply device including a precharge circuit according to the seventh embodiment of the present invention.
 本発明の内の第7の発明のプリチャージ回路を備えた電源装置は、図示しない交流電源によって充電されるコンデンサ2と、コンデンサ2に接続されたコンバータ47と、バッテリー12と、バッテリー12とコンデンサ2の間に挿入された充電部5と、を備えている。 A power supply device having a precharge circuit according to a seventh aspect of the present invention includes a capacitor 2 charged by an AC power supply (not shown), a converter 47 connected to the capacitor 2, a battery 12, and the battery 12 and the capacitor. 2 and a charging unit 5 inserted between the two.
 コンバータ47はコンデンサ33、34、45、ダイオード35、36、42、43、nチャンネルMOSFET37、38、39、40、トランス41、チョーク44で構成されている。コンデンサ33、34の直列回路がコンデンサ2に接続されている。MOSFET37、38、39、40がこの順番で接続される直列回路がコンデンサ2に接続され、ダイオード35のアノードがコンデンサ33、34の接続点に、カソードがMOSFET37、38の接続点にそれぞれ接続されている。ダイオード36のカソードがコンデンサ33、34の接続点に、アノードがMOSFET39、40の接続点にそれぞれ接続されている。トランス41の一次巻線がコンデンサ33、34の接続点とMOSFET38、39の接続点の間に接続されている。トランス41の二次巻線とダイオード42の直列回路がトランス41の三次巻線とダイオード43の直列回路に接続され、チョーク44とコンデンサ45の直列回路がトランス41の二次巻線とダイオード42の直列回路に接続されている。なお、ダイオード42のアノードがトランス13の二次巻線に、ダイオード43のアノードがトランス13の三次巻線にそれぞれ接続されている。 The converter 47 includes capacitors 33, 34, 45, diodes 35, 36, 42, 43, n- channel MOSFETs 37, 38, 39, 40, a transformer 41, and a choke 44. A series circuit of capacitors 33 and 34 is connected to the capacitor 2. A series circuit in which the MOSFETs 37, 38, 39, and 40 are connected in this order is connected to the capacitor 2. The anode of the diode 35 is connected to the connection point of the capacitors 33 and 34, and the cathode is connected to the connection point of the MOSFETs 37 and 38. Yes. The cathode of the diode 36 is connected to the connection point of the capacitors 33 and 34, and the anode is connected to the connection point of the MOSFETs 39 and 40. The primary winding of the transformer 41 is connected between the connection point of the capacitors 33 and 34 and the connection point of the MOSFETs 38 and 39. The series circuit of the secondary winding of the transformer 41 and the diode 42 is connected to the series circuit of the tertiary winding of the transformer 41 and the diode 43, and the series circuit of the choke 44 and the capacitor 45 is connected to the secondary winding of the transformer 41 and the diode 42. Connected to a series circuit. The anode of the diode 42 is connected to the secondary winding of the transformer 13, and the anode of the diode 43 is connected to the tertiary winding of the transformer 13.
 充電部5はトランス13、nチャンネルMOSFET14、ダイオード15、30で構成されている。トランス13の一次巻線の一端にバッテリー12のプラス端子が接続され、MOSFET14のソースにバッテリー12のマイナス端子が接続され、ドレインにトランス13の一次巻線の他端が接続されている。トランス13の二次巻線と三次巻線とダイオード15の直列回路がコンデンサ2に接続され、トランス13の二次巻線とダイオード30の直列回路がダイオード36とMOSFET40の直列回路に接続されている。なお、ダイオード15のアノードがトランス13の三次巻線の他端に接続され、ダイオード30のアノードが二次巻線の他端に接続されている。
 ここでトランス13の二次巻線と三次巻線の巻数は等しいものとする。
The charging unit 5 includes a transformer 13, an n-channel MOSFET 14, and diodes 15 and 30. The positive terminal of the battery 12 is connected to one end of the primary winding of the transformer 13, the negative terminal of the battery 12 is connected to the source of the MOSFET 14, and the other end of the primary winding of the transformer 13 is connected to the drain. A series circuit of the secondary winding and tertiary winding of the transformer 13 and the diode 15 is connected to the capacitor 2, and a series circuit of the secondary winding of the transformer 13 and the diode 30 is connected to a series circuit of the diode 36 and the MOSFET 40. . The anode of the diode 15 is connected to the other end of the tertiary winding of the transformer 13, and the anode of the diode 30 is connected to the other end of the secondary winding.
Here, it is assumed that the number of turns of the secondary winding and the tertiary winding of the transformer 13 is equal.
 (実施例7の動作)
 このように構成された実施例7におけるプリチャージ回路を備えた電源装置において、充電部5によってコンデンサ2とコンデンサ33、34を同時に充電し、かつコンデンサ33、34をコンデンサ2の1/2の電圧に充電する事でMOSFET37、38、39、40にコンデンサ2電圧の1/2以上の電圧がかかる事が無くなる。
(Operation of Example 7)
In the power supply device including the precharge circuit according to the seventh embodiment configured as described above, the charging unit 5 charges the capacitor 2 and the capacitors 33 and 34 at the same time, and the capacitors 33 and 34 are half the voltage of the capacitor 2. As a result, the MOSFETs 37, 38, 39, and 40 are not charged with voltage more than ½ of the capacitor 2 voltage.
 実施例7ではトランス13の二次巻線と三次巻線の巻数を等しくする事でコンデンサ33、34をコンデンサ2の1/2の電圧に充電している。また一つのトランスで充電部5を構成する事で、コンデンサ2とコンデンサ33、34を同時に充電している。したがってコンデンサ2とコンデンサ33、34をプリチャージする時の電圧波形は図7の様になり、コンデンサ33、34の電圧はコンデンサ2の1/2の電圧を超える事が無い。したがってMOSFET37、38、39、40にコンデンサ2電圧の1/2以上の電圧がかかる事はない。 In Example 7, the capacitors 33 and 34 are charged to a voltage half that of the capacitor 2 by equalizing the number of turns of the secondary winding and the tertiary winding of the transformer 13. Moreover, the capacitor 2 and the capacitors 33 and 34 are charged simultaneously by forming the charging unit 5 with one transformer. Accordingly, the voltage waveform when the capacitor 2 and the capacitors 33 and 34 are precharged is as shown in FIG. 7, and the voltage of the capacitors 33 and 34 does not exceed a voltage half that of the capacitor 2. Therefore, a voltage more than 1/2 of the capacitor 2 voltage is not applied to the MOSFETs 37, 38, 39, and 40.
 実施例7ではコンデンサ2とは別にコンデンサ33、34を設ける回路を示したが、コンデンサ33、34の静電容量をコンデンサ2の2倍にする事で、コンデンサ33、34で構成される直列回路の静電容量をコンデンサ2と等しくして、コンデンサ2を削除する事も可能である。
 この場合でもコンデンサ33、34をプリチャージする時の電圧波形は実施例7と変わらないので、実施例7と同様の効果を奏する。
Although the circuit in which the capacitors 33 and 34 are provided in addition to the capacitor 2 is shown in the seventh embodiment, the series circuit constituted by the capacitors 33 and 34 is obtained by making the capacitance of the capacitors 33 and 34 twice that of the capacitor 2. It is also possible to eliminate the capacitor 2 by making the capacitance of the capacitor 2 equal to that of the capacitor 2.
Even in this case, the voltage waveform when the capacitors 33 and 34 are precharged is not different from that of the seventh embodiment, and therefore, the same effect as that of the seventh embodiment is obtained.
 実施例7ではコンデンサ2に接続され、直列回路を構成するコンデンサ33,34は2つであるが、直接回路を構成するコンデンサ33、34は2つに限定されず、3つ以上であっても良い。 In the seventh embodiment, there are two capacitors 33 and 34 that are connected to the capacitor 2 and form a series circuit. However, the number of capacitors 33 and 34 that directly form a circuit is not limited to two, and three or more capacitors may be used. good.
 (実施例7の効果)
 マルチレベルコンバータの主回路素子として低耐圧の素子を使う事ができるようになるため、損失を低減する事ができ、主回路部の小型化を実現できる。
(Effect of Example 7)
Since a low breakdown voltage element can be used as the main circuit element of the multilevel converter, the loss can be reduced and the main circuit part can be downsized.
 なお、本発明が効果を奏するのは入力電源1によってコンデンサ2に突入電流が流れる場合であるので、入力電源1とコンデンサ2の接続形態は図1~図6に例示した形態に限定されるものではない。 Since the present invention is effective when an inrush current flows through the capacitor 2 by the input power supply 1, the connection form of the input power supply 1 and the capacitor 2 is limited to the form illustrated in FIGS. is not.
 また、本発明が効果を奏するのはコンデンサ2とマルチレベルコンバータが接続されている場合であるので、マルチレベルコンバータの実施形態は図6、図8に例示した形態に限定されるものではない。例えばマルチレベルコンバータは3レベルではなく、4レベルでも5レベルでも同様の効果を奏する。 Further, since the present invention is effective when the capacitor 2 and the multilevel converter are connected, the embodiment of the multilevel converter is not limited to the forms illustrated in FIGS. 6 and 8. For example, a multi-level converter has the same effect at 4 levels or 5 levels instead of 3 levels.
 充電部5についてもフライバックコンバータを例示しているが、この形態に限定されるものではない。別の回路方式のコンバータであっても、あるいは複数のコンバータを多段接続しても、コンデンサ2を充電できれば同様の効果を奏する。 The flyback converter is also exemplified for the charging unit 5, but is not limited to this form. Even if it is a converter of another circuit system or a plurality of converters are connected in multiple stages, the same effect can be obtained as long as the capacitor 2 can be charged.
 本発明は、コンデンサを予め充電する回路などに適用できる。 The present invention can be applied to a circuit for charging a capacitor in advance.
 1  入力電源
 2  コンデンサ
 3  スイッチ
 4  入力電源
 5  充電部
 6  交流電源
 7  ダイオード
 8  ダイオード
 9  ダイオード
 10  ダイオード
 11  整流部
 12  バッテリー
 13  トランス
 14  MOSFET
 15  ダイオード
 16  電力供給装置
 17  自動車
 18  充電器
 19  チョーク
 20  ダイオード
 21  ダイオード
 22  ダイオード
 23  ダイオード
 24  コンデンサ
 25  コンデンサ
 26  MOSFET
 27  MOSFET
 28  MOSFET
 29  MOSFET
 30  ダイオード
 31  ダイオード
 32  マルチレベルコンバータ
 33  コンデンサ
 34  コンデンサ
 35  ダイオード
 36  ダイオード
 37  MOSFET
 38  MOSFET
 39  MOSFET
 40  MOSFET
 41  トランス
 42  ダイオード
 43  ダイオード
 44  チョーク
 45  コンデンサ
 46  抵抗
 47  コンバータ
 48  負荷装置
DESCRIPTION OF SYMBOLS 1 Input power supply 2 Capacitor 3 Switch 4 Input power supply 5 Charging part 6 AC power supply 7 Diode 8 Diode 9 Diode 10 Diode 11 Rectification part 12 Battery 13 Transformer 14 MOSFET
DESCRIPTION OF SYMBOLS 15 Diode 16 Power supply apparatus 17 Car 18 Charger 19 Choke 20 Diode 21 Diode 22 Diode 23 Diode 24 Capacitor 25 Capacitor 26 Capacitor 26 MOSFET
27 MOSFET
28 MOSFET
29 MOSFET
30 diode 31 diode 32 multi-level converter 33 capacitor 34 capacitor 35 diode 36 diode 37 MOSFET
38 MOSFET
39 MOSFET
40 MOSFET
41 Transformer 42 Diode 43 Diode 44 Choke 45 Capacitor 46 Resistance 47 Converter 48 Load device

Claims (11)

  1.  第一の入力電源と、
     前記第一の入力電源によって充電されるコンデンサと、
     前記第一の入力電源と前記コンデンサとの間に挿入されたスイッチと、
     第二の入力電源と、
     前記第二の入力電源と前記コンデンサとの間に挿入された充電部と、
     を有するプリチャージ回路。
    A first input power source;
    A capacitor charged by the first input power source;
    A switch inserted between the first input power source and the capacitor;
    A second input power source;
    A charging unit inserted between the second input power source and the capacitor;
    A precharge circuit.
  2.  前記充電部によって前記コンデンサを充電してから前記スイッチをオンさせる請求項1に記載のプリチャージ回路。 The precharge circuit according to claim 1, wherein the switch is turned on after the capacitor is charged by the charging unit.
  3.  前記第一の入力電源が交流電源で、前記第一の入力電源と前記コンデンサとの間に整流部が挿入された請求項1または請求項2に記載のプリチャージ回路。 The precharge circuit according to claim 1 or 2, wherein the first input power supply is an AC power supply, and a rectifier is inserted between the first input power supply and the capacitor.
  4.  前記第一の入力電源が商用交流電源である請求項3に記載のプリチャージ回路。 The precharge circuit according to claim 3, wherein the first input power source is a commercial AC power source.
  5.  前記第二の入力電源がバッテリーである請求項1から請求項4のいずれか一項に記載のプリチャージ回路。 The precharge circuit according to any one of claims 1 to 4, wherein the second input power source is a battery.
  6.  前記充電部が絶縁型コンバータである請求項1から請求項5のいずれか一項に記載のプリチャージ回路。 The precharge circuit according to any one of claims 1 to 5, wherein the charging unit is an insulating converter.
  7.  前記コンデンサを充電したあとで、前記充電部の充電機能を停止させる請求項1から請求項6のいずれか一項に記載のプリチャージ回路。 The precharge circuit according to any one of claims 1 to 6, wherein the charging function of the charging unit is stopped after charging the capacitor.
  8.  前記コンデンサが自動車に搭載され、前記スイッチが電力供給装置に搭載され、前記自動車と前記電力供給装置の間には通信部が具備され、前記スイッチのオンを許可する情報を前記自動車から前記通信部を通じて前記電力供給装置に伝える請求項1から請求項7のいずれか一項に記載のプリチャージ回路。 The capacitor is mounted on a vehicle, the switch is mounted on a power supply device, a communication unit is provided between the vehicle and the power supply device, and information for permitting the switch to be turned on is transmitted from the vehicle to the communication unit. The precharge circuit according to claim 1, wherein the precharge circuit transmits the power to the power supply apparatus through the precharge circuit.
  9.  前記コンデンサにフライングキャパシタ型マルチレベルコンバータが接続され、前記充電部が前記コンデンサと同時に前記マルチレベルコンバータのフライングキャパシタを充電する請求項1から請求項8のいずれか一項に記載のプリチャージ回路。 The precharge circuit according to any one of claims 1 to 8, wherein a flying capacitor type multi-level converter is connected to the capacitor, and the charging unit charges the flying capacitor of the multi-level converter simultaneously with the capacitor.
  10.  前記コンデンサに複数のコンデンサを直列接続した直列回路が接続され、前記充電部が前記コンデンサと同時に前記直列回路の各コンデンサを充電する請求項1から請求項9のいずれか一項に記載のプリチャージ回路。 The precharge according to any one of claims 1 to 9, wherein a series circuit in which a plurality of capacitors are connected in series is connected to the capacitor, and the charging unit charges each capacitor of the series circuit simultaneously with the capacitor. circuit.
  11.  前記コンデンサの静電容量を前記複数のコンデンサにそれぞれ振り分け、前記コンデンサを削除する請求項10に記載のプリチャージ回路。 The precharge circuit according to claim 10, wherein the capacitance of the capacitor is allocated to each of the plurality of capacitors, and the capacitor is deleted.
PCT/JP2014/050698 2013-02-04 2014-01-16 Precharge circuit WO2014119374A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013019049A JP2016059084A (en) 2013-02-04 2013-02-04 Precharge circuit
JP2013-019049 2013-02-04

Publications (1)

Publication Number Publication Date
WO2014119374A1 true WO2014119374A1 (en) 2014-08-07

Family

ID=51262088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050698 WO2014119374A1 (en) 2013-02-04 2014-01-16 Precharge circuit

Country Status (2)

Country Link
JP (1) JP2016059084A (en)
WO (1) WO2014119374A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113206538A (en) * 2020-02-03 2021-08-03 茂达电子股份有限公司 Power-off prevention system and method with power management mechanism
WO2021182478A1 (en) * 2020-03-11 2021-09-16 株式会社オートネットワーク技術研究所 Power supply control device
AT17751U1 (en) * 2017-07-14 2023-01-15 Tridonic Gmbh & Co Kg Supply circuit for providing an operating voltage
EP4299363A4 (en) * 2021-04-30 2024-04-17 Huawei Digital Power Tech Co Ltd Charger, soft start method, electric vehicle, and charging system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102394826B1 (en) 2018-02-14 2022-05-04 주식회사 엘지에너지솔루션 Power supply circuit for energy transfer between battery and smoothing capacitor and battery management system including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066388A (en) * 1996-08-23 1998-03-06 Mitsubishi Heavy Ind Ltd Main inverter device and auxiliary machine device
JP2003219634A (en) * 2002-01-23 2003-07-31 Seiko Epson Corp Dc/dc converter
JP2004088972A (en) * 2002-08-29 2004-03-18 Toshiba Corp Power-conversion device
JP2009177951A (en) * 2008-01-24 2009-08-06 National Institute Of Advanced Industrial & Technology Power conversion apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066388A (en) * 1996-08-23 1998-03-06 Mitsubishi Heavy Ind Ltd Main inverter device and auxiliary machine device
JP2003219634A (en) * 2002-01-23 2003-07-31 Seiko Epson Corp Dc/dc converter
JP2004088972A (en) * 2002-08-29 2004-03-18 Toshiba Corp Power-conversion device
JP2009177951A (en) * 2008-01-24 2009-08-06 National Institute Of Advanced Industrial & Technology Power conversion apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT17751U1 (en) * 2017-07-14 2023-01-15 Tridonic Gmbh & Co Kg Supply circuit for providing an operating voltage
CN113206538A (en) * 2020-02-03 2021-08-03 茂达电子股份有限公司 Power-off prevention system and method with power management mechanism
WO2021182478A1 (en) * 2020-03-11 2021-09-16 株式会社オートネットワーク技術研究所 Power supply control device
EP4299363A4 (en) * 2021-04-30 2024-04-17 Huawei Digital Power Tech Co Ltd Charger, soft start method, electric vehicle, and charging system

Also Published As

Publication number Publication date
JP2016059084A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
US10833594B2 (en) System and method of controlling a power converter having an LC tank coupled between a switching network and a transformer winding
US10461553B2 (en) Power source device
CN105009430B (en) DC-DC high-voltage converter
WO2013179674A1 (en) Power conversion device and battery charging device using same
US9787199B2 (en) Power conversion device to control power distribution of input power to multiple outputs
WO2015118631A1 (en) In-vehicle charger and surge-suppression method for in-vehicle charger
US9673715B2 (en) Switching element driving power supply circuit
WO2014119374A1 (en) Precharge circuit
KR102482820B1 (en) Insulated switching power supply
CN107294366B (en) Pre-charging circuit, direct current-direct current converter and hybrid electric vehicle
KR20200080385A (en) Apparatus incorporating non-isolated charger and dc converter
JP6944058B2 (en) Vehicle charger with DC / DC converter
US7359219B2 (en) Power supply
US11760218B2 (en) Charging circuit for a vehicle-side electrical energy store
JP2017118806A (en) Power conversion device and control method
JP2015228788A (en) Power supply unit
CN114944759A (en) DC-DC converter and vehicle
US20140268963A1 (en) Dc voltage conversion circuit
KR102639091B1 (en) Precharger
CN110557031A (en) Frequency converter and frequency converter system
JP2019009848A (en) Dc-dc converter, power supply system employing the same, and automobile employing the power supply system
JP6300664B2 (en) Railway vehicle power circuit
JP2015139312A (en) Switching power supply arrangement and electric power converter unit
KR20200097722A (en) Isolated switching power supply
KR102537358B1 (en) Insulated switching power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP