WO2014119086A1 - Drive device for hybrid vehicle - Google Patents

Drive device for hybrid vehicle Download PDF

Info

Publication number
WO2014119086A1
WO2014119086A1 PCT/JP2013/080683 JP2013080683W WO2014119086A1 WO 2014119086 A1 WO2014119086 A1 WO 2014119086A1 JP 2013080683 W JP2013080683 W JP 2013080683W WO 2014119086 A1 WO2014119086 A1 WO 2014119086A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
gear
hybrid vehicle
drive device
engine
Prior art date
Application number
PCT/JP2013/080683
Other languages
French (fr)
Japanese (ja)
Inventor
真二郎 大木
隆之 奥田
加藤 芳章
Original Assignee
日産自動車株式会社
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ジヤトコ株式会社 filed Critical 日産自動車株式会社
Publication of WO2014119086A1 publication Critical patent/WO2014119086A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the first electric motor 10 is coupled to the output shaft 17a via the electric motor transmission 17.
  • the motor transmission 17 is composed of planetary gears, and the first motor 10, the output shaft 17a, and the motor transmission 17 are arranged in a line in the axial direction.
  • the internal combustion engine 1 has an intake pipe or an exhaust pipe arranged on the side where the first electric motor 10 is arranged.
  • the axial space between the case of the axle 11 is limited. Since the motor transmission 17 is arranged in series in this limited space, the space between the motor transmission 17 and the pipe is even narrower.
  • the drive shaft 7a extends in the axial direction from the transaxle 11, and it is necessary to avoid interference with the drive shaft 7a on the outer diameter side of the first electric motor 10.
  • the rotation shaft of the first electric motor 10 needs to be arranged in a range that can be engaged with the final gear 6a. .
  • a transmission coupled to the engine output shaft of the engine, a clutch coupled to the transmission output shaft of the transmission, and a clutch output shaft of the clutch
  • the first gear coupled to the first gear, the final reduction gear that always meshes with the first gear, the drive shaft coupled to the final reduction gear, and the inter-axis distance between the drive shaft and the first shaft is the distance between the drive shaft and the first gear.
  • a rotating element provided at a position farther from the rotating element, and a power transmission mechanism for transmitting power between the rotating element and the final reduction gear, and an electric motor coupled to the rotating element.
  • a transmission, a clutch, a first gear, a final reduction gear, and a power transmission mechanism are accommodated, and a transaxle case having a mounting surface for mounting the engine and the electric motor is provided.
  • the power transmission mechanism is provided in the transaxle case, there is no need to arrange a reduction gear in the axial direction when coupling with the electric motor, and space in the axial direction can be secured.
  • the inter-axis distance between the rotating element to which the electric motor is coupled and the drive shaft is farther than the inter-axis distance between the drive shaft and the first gear, the degree of freedom of the outer diameter of the electric motor is increased, and the electric motor The physique can be enlarged. Therefore, the vehicle speed range in which the vehicle can be driven by the electric motor is expanded, and the decelerating vehicle speed region of the vehicle that can be regenerated is expanded, so that fuel efficiency can be improved.
  • FIG. 1 is a schematic system diagram showing a drive system of a drive device for a hybrid vehicle of Example 1 and an overall control system thereof.
  • 1 is a schematic diagram illustrating a layout configuration of a drive device for a hybrid vehicle according to a first embodiment.
  • FIG. 1 is a schematic view of a drive device for a hybrid vehicle according to a first embodiment when viewed from the crankshaft side in a vehicle-mounted state.
  • FIG. 3 is a partial enlarged cross-sectional view of a portion in which a power transmission mechanism is housed in the hybrid vehicle drive device according to the first embodiment.
  • FIG. 6 is a partial enlarged cross-sectional view of a portion in which a power transmission mechanism is housed in the hybrid vehicle drive device according to the second embodiment.
  • FIG. 1 is a schematic system diagram showing a drive system of a drive device for a hybrid vehicle according to a first embodiment and an overall control system thereof.
  • the hybrid vehicle of FIG. 1 is mounted with an engine 1 and an electric motor 2 as power sources, and the engine 1 is started by a starter motor 3.
  • the engine 1 is drive-coupled to the drive wheels 5 through a V-belt type continuously variable transmission 4 so as to be appropriately disengageable.
  • the continuously variable transmission 4 is a continuously variable transmission mechanism CVT composed of a variator including a primary pulley 6, a secondary pulley 7, and a V belt 8 spanned between the pulleys 6 and 7.
  • the primary pulley 6 is coupled to a crankshaft which is an output shaft of the engine 1 via a torque converter T / C with a lockup clutch
  • the secondary pulley 7 is a differential mechanism of the clutch CL, the final gear set 9 and the final reduction gear 30.
  • 32 (see FIG. 2) is coupled to the drive wheels 5 in sequence.
  • the final gear set 9 indicates the meshing between the first gear 9a coupled to the output shaft of the clutch CL and the final reduction gear 31 of the final reduction gear 30.
  • Hybrid vehicle travel mode selection engine 1 output control, electric motor 2 rotation direction control and output control, continuously variable transmission 4 shift control, clutch CL engagement / release control, and battery 12 charge
  • the discharge control is performed by the hybrid controller 21, respectively.
  • the hybrid controller 21 performs these controls via the corresponding engine controller 22, motor controller 23, transmission controller 24, and battery controller 25.
  • the hybrid controller 21 includes an accelerator opening sensor 27 that detects a signal from a brake switch 26 that is a normally open switch that switches from OFF to ON during braking when the brake pedal 16 is depressed, and an accelerator pedal depression amount (accelerator opening) APO. The signal from is input.
  • the hybrid controller 21 further exchanges internal information with the engine controller 22, the motor controller 23, the transmission controller 24, and the battery controller 25.
  • the engine controller 22 controls the output of the engine 1 in response to a command from the hybrid controller 21, and the motor controller 23 controls the rotational direction of the electric motor 2 via the inverter 13 in response to the command from the hybrid controller 21.
  • the transmission controller 24 responds to a command from the hybrid controller 21 and controls the transmission of the continuously variable transmission 4 (V-belt continuously variable transmission mechanism CVT) using oil from the oil pump O / P driven by the engine as a medium.
  • the clutch CL is engaged and released.
  • the battery controller 25 performs charge / discharge control of the battery 12 in response to a command from the hybrid controller 21.
  • the power transmission mechanism 11 is a mechanism having two or more gears, the distance between the drive shaft 33 and the rotating shaft of the electric motor 2 can be effectively increased. Further, since the power transmission mechanism 11 is a speed reduction mechanism, torque amplification of the electric motor 2 is possible, and it is easy to secure the driving force at the start and the driving force at the time of acceleration necessary for the vehicle.
  • the electric motor 2 is disposed above the rotation shaft of the drive shaft 33 in a state where the transaxle case 50 is mounted on the vehicle.
  • the rotation shaft of the drive shaft 33 is disposed at a position overlapping the projection surface of the electric motor 2 below the vehicle. That is, when using the power transmission mechanism 11 to secure an inter-axis distance between the drive shaft 33 and the rotating shaft of the electric motor 2, the entire drive device can be reduced in size when viewed from the top of the vehicle by being above the drive shaft 33. Even if the size of the electric motor 2 is increased, a compact driving device can be provided as a whole.
  • FIG. 4 is a partially enlarged cross-sectional view of a portion where the power transmission mechanism is housed in the hybrid vehicle drive device of the first embodiment.
  • the transaxle case 50 includes a converter housing 51 that houses the torque converter T / C, a transmission case 52 that houses the continuously variable transmission 4 and the like, and an intermediate that defines between the converter housing 51 and the transmission case 52. It consists of a wall 53.
  • the transaxle case 50 is divided into the converter housing 51 on the engine side and the transmission case 52 on the transmission side, thereby ensuring ease of assembly.
  • the second, third, and fourth gears 11a, 11b, and 11c constituting the power transmission mechanism 11 are accommodated between the converter housing 51 and the intermediate wall 53.
  • continuously variable transmission 4 (transmission) coupled to the engine output shaft of engine 1;
  • a clutch CL coupled to the transmission output shaft of the continuously variable transmission 4,
  • a first gear 9a coupled to the clutch output shaft of the clutch CL;
  • a final reduction gear 31 that always meshes with the first gear 9a;
  • a drive shaft 33 coupled to the final reduction gear 31,
  • a power transmission mechanism 11 that transmits power to and from the final reduction gear 31, and An electric motor 2 (electric motor) coupled to the second gear 11a;
  • a transaxle case 50 having a mounting surface 50a in which the continuously variable transmission 4, the clutch CL, the first gear 9a, the final reduction gear 31, and the power transmission mechanism 11 are accommodated and the engine 1 and the electric motor 2a are attached.
  • the outer diameter of the electric motor 2a since the distance between the shafts of the second gear 11a to which the electric motor 2a is coupled and the drive shaft 33 is farther than the distance between the shafts of the drive shaft 33 and the first gear 9a, the outer diameter of the electric motor 2a.
  • the degree of freedom can be increased and the size of the electric motor 2a can be increased. Accordingly, the vehicle speed range in which the vehicle can be driven by the electric motor 2a is expanded, and the decelerating vehicle speed range of the regenerative vehicle is expanded, so that fuel efficiency can be improved.
  • the power transmission mechanism 11 has two or more gears. Therefore, the distance between the drive shaft 33 and the rotating shaft of the electric motor 2 can be effectively increased.
  • the power transmission mechanism 11 is a speed reduction mechanism. Therefore, torque amplification of the electric motor 2 is possible, and it is possible to easily secure the driving force at the time of start required for the vehicle and the driving force at the time of acceleration.
  • the transaxle case 50 includes a converter housing 51 on the engine side, a transmission case 52 on the continuously variable transmission side, and an intermediate wall 53 that defines between the converter housing 51 and the transmission case 52.
  • the power transmission mechanism 11 is accommodated between the converter housing 51 and the intermediate wall 53. Therefore, it becomes possible to mount the electric motor 2 without providing a speed reduction mechanism or the like on the mounting surface 50a side, and the axial dimension of the electric motor 2 can be increased by securing a space between the engine exhaust pipe 40 and the mounting surface 50a. Can be enlarged.
  • the converter housing 51 and the intermediate wall 53 are accommodated. However, even if the transmission case 52 and the intermediate wall 53 are accommodated, the same effect can be obtained.
  • FIG. 5 is a partially enlarged cross-sectional view of a portion in which the power transmission mechanism is housed in the hybrid vehicle drive apparatus according to the second embodiment.
  • the configuration including the intermediate wall 53 is shown, but in the second embodiment, the case where the intermediate wall is not provided is shown.
  • the transaxle case 50 includes a converter housing 51 that houses the torque converter T / C and a transmission case 52 that houses the continuously variable transmission 4 and the like. At this time, the second, third and fourth gears 11a, 11b and 11c constituting the power transmission mechanism 11 are accommodated between the converter housing 51 and the transmission case 52. This makes it possible to mount the electric motor 2 without providing a speed reduction mechanism or the like on the mounting surface 50a side, and by securing a space between the engine exhaust pipe 40 and the mounting surface 50a, the axial dimension of the electric motor 2 can be secured. Can be enlarged.
  • the transaxle case 50 includes a converter housing 51 on the engine side and a transmission case 52 on the continuously variable transmission side.
  • the power transmission mechanism 11 is disposed between the converter housing 51 and the transmission case. Be dressed. Therefore, it becomes possible to mount the electric motor 2 without providing a speed reduction mechanism or the like on the mounting surface 50a side, and the axial dimension of the electric motor 2 can be increased by securing a space between the engine exhaust pipe 40 and the mounting surface 50a. Can be enlarged.
  • the example in which the electric motor 2 of the hybrid vehicle is mounted is shown, but the same applies even when a large generator for supplying a driving current to a motor provided in another wheel is mounted. Is possible. Further, although an example of an electric motor has been shown, the present invention may be applied when providing a transfer as a four-wheel drive unit.
  • the configuration in which the engine is restarted by the starter motor 3 is shown, but other configurations may be used.
  • a vehicle with an idling stop function has been replaced by replacing the alternator with a motor / generator, adding an alternator function to the motor / generator and adding an engine start function to restart the engine from an idling stop.
  • a technique for restarting the engine with this motor / generator instead of the starter motor has been put into practical use.
  • the present invention may also be configured to restart the engine by the motor / generator as described above.

Abstract

This drive device for a hybrid vehicle has: a transmission (4) which is joined to the output shaft of an engine (1); a clutch (CL) which is joined to the output shaft of the transmission (4); a first gear (9a) which is joined to the output shaft of the clutch (CL); a final reduction gear (31) which constantly meshes with the first gear (9a); a drive shaft (33) which is joined to the final reduction gear (31); a power transmitting mechanism (11) which has a rotating element (11a) provided at a position which makes the distance between the axis of the rotating element (11a) and the axis of the drive shaft (33) greater than the distance between the axis of the drive shaft (33) and the axis of the first gear (9a), the power transmitting mechanism (11) transmitting power between the rotating element (11a) and the final reduction gear (31); and an electric motor (2) which is joined to the rotating element (11a). The drive device is also provided with a transfer axle case (50) which houses the transmission (4), the clutch (CL), the first gear (9a), the final reduction gear (31), and the power transmitting mechanism (11) and has a mounting surface to which the engine (1) and the electric motor (2) are mounted.

Description

ハイブリッド車両の駆動装置Drive device for hybrid vehicle
 本発明は、エンジンと電動機とを搭載したハイブリッド車両の駆動装置に関する。 The present invention relates to a drive device for a hybrid vehicle equipped with an engine and an electric motor.
 このようなハイブリッド車両の駆動装置として、例えば特許文献1に記載のようなものが知られている。この車両は、第1電動機10が電動機用変速装置17を介して出力軸17aに結合される。電動機用変速装置17は遊星歯車で構成され、第1電動機10と出力軸17aと電動機用変速装置17とが軸方向に1列で配置されている。 As such a hybrid vehicle drive device, for example, the one described in Patent Document 1 is known. In this vehicle, the first electric motor 10 is coupled to the output shaft 17a via the electric motor transmission 17. The motor transmission 17 is composed of planetary gears, and the first motor 10, the output shaft 17a, and the motor transmission 17 are arranged in a line in the axial direction.
特許第3584680号公報Japanese Patent No. 3584680
 ここで、第1電動機10における軸方向寸法について見てみると、内燃機関1には、第1電動機10が配置される側に、吸気管もしくは排気管が配置されることから、この配管とトランスアクスル11のケースとの間の軸方向スペースが限られている。この限られたスペースに電動機用変速装置17を直列に配置しているため、電動機用変速装置17と配管との間のスペースは更に狭い。次に、径方向寸法について見てみると、トランスアクスル11から軸方向にはドライブシャフト7aが延びており、第1電動機10の外径側においてドライブシャフト7aとの干渉を回避する必要がある。また、トランスアクスル11内の終減速装置6のファイナルギヤ6aと電動機用変速装置17とが噛み合うことから、第1電動機10の回転軸は、ファイナルギヤ6aと噛み合い可能な範囲で配置する必要がある。 Here, looking at the axial dimensions of the first electric motor 10, the internal combustion engine 1 has an intake pipe or an exhaust pipe arranged on the side where the first electric motor 10 is arranged. The axial space between the case of the axle 11 is limited. Since the motor transmission 17 is arranged in series in this limited space, the space between the motor transmission 17 and the pipe is even narrower. Next, regarding the radial dimension, the drive shaft 7a extends in the axial direction from the transaxle 11, and it is necessary to avoid interference with the drive shaft 7a on the outer diameter side of the first electric motor 10. Further, since the final gear 6a of the final reduction gear 6 in the transaxle 11 and the transmission 17 for electric motor are engaged with each other, the rotation shaft of the first electric motor 10 needs to be arranged in a range that can be engaged with the final gear 6a. .
 以上の軸方向及び径方向の制約を満たす搭載可能な第1電動機10は、軸方向寸法及び径方向寸法共に小さくせざるを得ない。このように、電動機の体格が制限を受けると、電動機とバッテリとの間の入出力エネルギを確保できない。よって、車両駆動可能な車速領域が制限されると共に、回生可能な車両の減速車速領域も制限され、燃費を十分に改善することが困難であった。 The first electric motor 10 that can be mounted that satisfies the above axial and radial constraints must be reduced in both axial and radial dimensions. Thus, when the physique of the electric motor is restricted, input / output energy between the electric motor and the battery cannot be secured. Therefore, the vehicle speed range in which the vehicle can be driven is limited, and the deceleration vehicle speed region of the regenerative vehicle is also limited, making it difficult to sufficiently improve fuel consumption.
 本発明は上記課題に着目し、電動機の体格を確保することで燃費を改善可能なハイブリッド車両の駆動装置を提供することを目的とする。 This invention pays attention to the above-mentioned subject, and it aims at providing the drive device of the hybrid vehicle which can improve fuel consumption by ensuring the physique of an electric motor.
 この目的のため、本発明のハイブリッド車両の駆動装置にあっては、エンジンのエンジン出力軸に結合された変速機と、変速機の変速機出力軸に結合されたクラッチと、クラッチのクラッチ出力軸に結合された第1歯車と、第1歯車と常時噛み合う終減速歯車と、終減速歯車と結合されたドライブシャフトと、ドライブシャフトとの軸間距離がドライブシャフトと第1歯車との軸間距離よりも離れた位置に設けられた回転要素を有し、該回転要素と前記終減速歯車との間で動力伝達を行う動力伝達機構と、回転要素に結合された電動機と、を有する。そして、変速機と、クラッチと、第1歯車と、終減速歯車と、動力伝達機構とを収装し、エンジン及び電動機を取り付ける取り付け面を有するトランスアクスルケースを備えた。 For this purpose, in the hybrid vehicle drive device of the present invention, a transmission coupled to the engine output shaft of the engine, a clutch coupled to the transmission output shaft of the transmission, and a clutch output shaft of the clutch The first gear coupled to the first gear, the final reduction gear that always meshes with the first gear, the drive shaft coupled to the final reduction gear, and the inter-axis distance between the drive shaft and the first shaft is the distance between the drive shaft and the first gear. A rotating element provided at a position farther from the rotating element, and a power transmission mechanism for transmitting power between the rotating element and the final reduction gear, and an electric motor coupled to the rotating element. A transmission, a clutch, a first gear, a final reduction gear, and a power transmission mechanism are accommodated, and a transaxle case having a mounting surface for mounting the engine and the electric motor is provided.
 トランスアクスルケース内に動力伝達機構を設けたため、電動機と結合する際に軸方向に減速機等を配置する必要がなく、軸方向のスペースを確保できる。また、電動機が結合される回転要素とドライブシャフトとの軸間距離は、ドライブシャフトと第1歯車との軸間距離よりも離れているため、電動機の外径の自由度が高くなり、電動機の体格を大型化できる。よって、電動機による車両駆動可能な車速領域が拡大され、かつ、回生可能な車両の減速車速領域が拡大されるため、燃費の改善を図ることができる。 Since the power transmission mechanism is provided in the transaxle case, there is no need to arrange a reduction gear in the axial direction when coupling with the electric motor, and space in the axial direction can be secured. In addition, since the inter-axis distance between the rotating element to which the electric motor is coupled and the drive shaft is farther than the inter-axis distance between the drive shaft and the first gear, the degree of freedom of the outer diameter of the electric motor is increased, and the electric motor The physique can be enlarged. Therefore, the vehicle speed range in which the vehicle can be driven by the electric motor is expanded, and the decelerating vehicle speed region of the vehicle that can be regenerated is expanded, so that fuel efficiency can be improved.
実施例1のハイブリッド車両の駆動装置の駆動系およびその全体制御システムを示す概略系統図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic system diagram showing a drive system of a drive device for a hybrid vehicle of Example 1 and an overall control system thereof. 実施例1のハイブリッド車両の駆動装置のレイアウト構成を表す概略図である。1 is a schematic diagram illustrating a layout configuration of a drive device for a hybrid vehicle according to a first embodiment. 実施例1のハイブリッド車両の駆動装置の車載状態におけるクランク軸側から見た概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a drive device for a hybrid vehicle according to a first embodiment when viewed from the crankshaft side in a vehicle-mounted state. 実施例1のハイブリッド車両の駆動装置において、動力伝達機構を収装した部分の部分拡大断面図である。FIG. 3 is a partial enlarged cross-sectional view of a portion in which a power transmission mechanism is housed in the hybrid vehicle drive device according to the first embodiment. 実施例2のハイブリッド車両の駆動装置において、動力伝達機構を収装した部分の部分拡大断面図である。FIG. 6 is a partial enlarged cross-sectional view of a portion in which a power transmission mechanism is housed in the hybrid vehicle drive device according to the second embodiment.
 1 エンジン
 2 電動モータ(電動機)
 4 Vベルト式無段変速機
 5 駆動輪
 9a 第1歯車
 11 動力伝達機構
 11a 第2歯車(回転要素)
 30 終減速装置
 31 終減速歯車
 33 ドライブシャフト
 40 エンジン排気配管
 50 トランスアクスルケース
 50a 取り付け面
 CL クラッチ
1 Engine 2 Electric motor (electric motor)
4 V-belt type continuously variable transmission 5 Drive wheel 9a 1st gear 11 Power transmission mechanism 11a 2nd gear (rotating element)
30 Final reduction gear 31 Final reduction gear 33 Drive shaft 40 Engine exhaust piping 50 Transaxle case 50a Mounting surface CL Clutch
 〔実施例1〕
 図1は、実施例1のハイブリッド車両の駆動装置の駆動系およびその全体制御システムを示す概略系統図である。図1のハイブリッド車両は、エンジン1および電動モータ2を動力源として搭載され、エンジン1は、スタータモータ3により始動する。エンジン1は、Vベルト式の無段変速機4を介して駆動輪5に適宜切り離し可能に駆動結合し、無段変速機4は、概略を以下に説明するようなものとする。
[Example 1]
FIG. 1 is a schematic system diagram showing a drive system of a drive device for a hybrid vehicle according to a first embodiment and an overall control system thereof. The hybrid vehicle of FIG. 1 is mounted with an engine 1 and an electric motor 2 as power sources, and the engine 1 is started by a starter motor 3. The engine 1 is drive-coupled to the drive wheels 5 through a V-belt type continuously variable transmission 4 so as to be appropriately disengageable.
 無段変速機4は、プライマリプーリ6と、セカンダリプーリ7と、これらプーリ6,7間に掛け渡したVベルト8とからなるバリエータから構成された無段変速機構CVTである。プライマリプーリ6はロックアップクラッチ付きのトルクコンバータT/Cを介してエンジン1の出力軸であるクランクシャフトに結合し、セカンダリプーリ7はクラッチCL、ファイナルギヤ組9及び終減速装置30の差動機構32(図2参照)を順次介して駆動輪5に結合する。ここで、ファイナルギヤ組9とは、クラッチCLの出力軸に結合された第1歯車9aと、終減速装置30の終減速歯車31との噛み合いを示す。 The continuously variable transmission 4 is a continuously variable transmission mechanism CVT composed of a variator including a primary pulley 6, a secondary pulley 7, and a V belt 8 spanned between the pulleys 6 and 7. The primary pulley 6 is coupled to a crankshaft which is an output shaft of the engine 1 via a torque converter T / C with a lockup clutch, and the secondary pulley 7 is a differential mechanism of the clutch CL, the final gear set 9 and the final reduction gear 30. 32 (see FIG. 2) is coupled to the drive wheels 5 in sequence. Here, the final gear set 9 indicates the meshing between the first gear 9a coupled to the output shaft of the clutch CL and the final reduction gear 31 of the final reduction gear 30.
 かくしてクラッチCLの締結状態で、エンジン1からの動力はトルクコンバータT/Cを経てプライマリプーリ6へ入力され、その後Vベルト8、セカンダリプーリ7、クラッチCLおよびファイナルギヤ組9を順次経て駆動輪5に達し、ハイブリッド車両の走行に供される。 Thus, with the clutch CL engaged, the power from the engine 1 is input to the primary pulley 6 via the torque converter T / C, and then sequentially passes through the V belt 8, the secondary pulley 7, the clutch CL and the final gear set 9 to drive wheels 5 To be used for running a hybrid vehicle.
 電動モータ2は動力伝達機構11を介して駆動輪5に常時結合し、この電動モータ2は、バッテリ12の電力によりインバータ13を介して駆動する。ここで、動力伝達機構11とは、電動モータ2の出力軸に結合された第2歯車11a(回転要素)と、第2歯車11aと噛み合う第3歯車11bと、第3歯車11b及び終減速歯車31と噛み合う第4歯車11cと噛み合う終減速歯車31との噛み合いを示す。
 インバータ13は、バッテリ12の直流電力を交流電力に変換して電動モータ2へ供給すると共に、電動モータ2への供給電力を加減することにより、電動モータ2を駆動力制御および回転方向制御する。
 なお電動モータ2は、上記のモータ駆動のほかに発電機としても機能し、後で詳述する回生制動の用にも供する。この回生制動時はインバータ13が、電動モータ2に回生制動力分の発電負荷をかけることにより、電動モータ2を発電機として作用させ、電動モータ2の発電電力をバッテリ12に蓄電する。
The electric motor 2 is always coupled to the drive wheel 5 via the power transmission mechanism 11, and the electric motor 2 is driven via the inverter 13 by the power of the battery 12. Here, the power transmission mechanism 11 includes a second gear 11a (rotating element) coupled to the output shaft of the electric motor 2, a third gear 11b meshing with the second gear 11a, a third gear 11b, and a final reduction gear. The meshing with the final reduction gear 31 meshing with the fourth gear 11c meshing with 31 is shown.
The inverter 13 converts the DC power of the battery 12 into AC power and supplies it to the electric motor 2, and controls the driving force and the rotation direction of the electric motor 2 by adjusting the power supplied to the electric motor 2.
The electric motor 2 functions as a generator in addition to the motor drive described above, and is also used for regenerative braking described in detail later. During this regenerative braking, the inverter 13 applies a power generation load corresponding to the regenerative braking force to the electric motor 2 so that the electric motor 2 acts as a generator, and the generated power of the electric motor 2 is stored in the battery 12.
 実施例1のハイブリッド車両は、クラッチCLを解放すると共にエンジン1を停止させた状態で電動モータ2を駆動することで、電動モータ2の動力のみが動力伝達機構11を経て駆動輪5に達し、電動モータ2のみによる電気走行モード(EVモード)で走行を行う。この間、クラッチCLを解放していることで、停止状態のエンジン1を連れ回すことがなく、EV走行中の無駄な電力消費を抑制する。 In the hybrid vehicle of the first embodiment, by driving the electric motor 2 with the clutch CL released and the engine 1 stopped, only the power of the electric motor 2 reaches the drive wheels 5 via the power transmission mechanism 11, The vehicle travels in the electric travel mode (EV mode) using only the electric motor 2. During this time, the clutch CL is released, so that the stopped engine 1 is not rotated and wasteful power consumption during EV traveling is suppressed.
 上記のEV走行状態においてエンジン1をスタータモータ3により始動させると共にクラッチCLを締結させると、エンジン1からの動力がトルクコンバータT/C、プライマリプーリ6、Vベルト8、セカンダリプーリ7、クラッチCLおよびファイナルギヤ組9を順次経て駆動輪5に達するようになり、ハイブリッド車両はエンジン1および電動モータ2によるハイブリッド走行モード(HEVモード)で走行を行う。 When the engine 1 is started by the starter motor 3 and the clutch CL is engaged in the EV running state, the power from the engine 1 is converted to the torque converter T / C, the primary pulley 6, the V belt 8, the secondary pulley 7, the clutch CL, The vehicle finally reaches the drive wheel 5 through the final gear set 9, and the hybrid vehicle travels in a hybrid travel mode (HEV mode) using the engine 1 and the electric motor 2.
 ハイブリッド車両を上記の走行状態から停車させる、もしくは、この停車状態に保つに際しては、駆動輪5と共に回転するブレーキディスク14をキャリパ15により挟圧して制動することで目的を達する。キャリパ15は、運転者が踏み込むブレーキペダル16の踏力に応動して負圧式ブレーキブースタ17による倍力下でブレーキペダル踏力対応のブレーキ液圧を出力するマスタシリンダ18に接続し、このブレーキ液圧でキャリパ15を作動させてブレーキディスク14の制動を行う。ハイブリッド車両はEVモードおよびHEVモードのいずれにおいても、運転者がアクセルペダル19を踏み込んで指令する駆動力指令に応じたトルクで車輪5を駆動され、運転者の要求に応じた駆動力をもって走行される。 When the hybrid vehicle is stopped from the above running state or kept in this stopped state, the brake disk 14 that rotates together with the drive wheels 5 is clamped by the caliper 15 to achieve the purpose. The caliper 15 is connected to a master cylinder 18 that responds to the depressing force of the brake pedal 16 that the driver depresses and outputs a brake hydraulic pressure corresponding to the brake pedal depressing force under the boost of the negative pressure type brake booster 17. The caliper 15 is operated to brake the brake disc 14. In both the EV mode and the HEV mode, the hybrid vehicle is driven with the driving force command according to the driver's request by driving the wheel 5 with the torque according to the driving force command that the driver depresses the accelerator pedal 19. The
 ハイブリッド車両の走行モード選択と、エンジン1の出力制御と、電動モータ2の回転方向制御および出力制御と、無段変速機4の変速制御と、クラッチCLの締結、解放制御と、バッテリ12の充放電制御とは、それぞれハイブリッドコントローラ21が行う。このとき、ハイブリッドコントローラ21は、対応するエンジンコントローラ22、モータコントローラ23、変速機コントローラ24、およびバッテリコントローラ25を介してこれら制御を行うものとする。 Hybrid vehicle travel mode selection, engine 1 output control, electric motor 2 rotation direction control and output control, continuously variable transmission 4 shift control, clutch CL engagement / release control, and battery 12 charge The discharge control is performed by the hybrid controller 21, respectively. At this time, the hybrid controller 21 performs these controls via the corresponding engine controller 22, motor controller 23, transmission controller 24, and battery controller 25.
 そのためハイブリッドコントローラ21には、ブレーキペダル16を踏み込む制動時にOFFからONに切り替わる常開スイッチであるブレーキスイッチ26からの信号と、アクセルペダル踏み込み量(アクセル開度)APOを検出するアクセル開度センサ27からの信号とを入力する。ハイブリッドコントローラ21は更に、エンジンコントローラ22、モータコントローラ23、変速機コントローラ24、およびバッテリコントローラ25との間で、内部情報のやり取りを行う。 Therefore, the hybrid controller 21 includes an accelerator opening sensor 27 that detects a signal from a brake switch 26 that is a normally open switch that switches from OFF to ON during braking when the brake pedal 16 is depressed, and an accelerator pedal depression amount (accelerator opening) APO. The signal from is input. The hybrid controller 21 further exchanges internal information with the engine controller 22, the motor controller 23, the transmission controller 24, and the battery controller 25.
 エンジンコントローラ22は、ハイブリッドコントローラ21からの指令に応答して、エンジン1を出力制御し、モータコントローラ23は、ハイブリッドコントローラ21からの指令に応答してインバータ13を介し電動モータ2の回転方向制御および出力制御を行う。変速機コントローラ24は、ハイブリッドコントローラ21からの指令に応答し、エンジン駆動されるオイルポンプO/Pからのオイルを媒体として、無段変速機4(Vベルト式無段変速機構CVT)の変速制御およびクラッチCLの締結、解放制御を行う。バッテリコントローラ25は、ハイブリッドコントローラ21からの指令に応答し、バッテリ12の充放電制御を行う。 The engine controller 22 controls the output of the engine 1 in response to a command from the hybrid controller 21, and the motor controller 23 controls the rotational direction of the electric motor 2 via the inverter 13 in response to the command from the hybrid controller 21. Perform output control. The transmission controller 24 responds to a command from the hybrid controller 21 and controls the transmission of the continuously variable transmission 4 (V-belt continuously variable transmission mechanism CVT) using oil from the oil pump O / P driven by the engine as a medium. In addition, the clutch CL is engaged and released. The battery controller 25 performs charge / discharge control of the battery 12 in response to a command from the hybrid controller 21.
 図2は実施例1のハイブリッド車両の駆動装置のレイアウト構成を表す概略図である。エンジン1及び電動モータ2は、エンジン1のクランク軸と電動モータ回転軸とが平行となるように配置され、両者共にトランスアクスルケース50の取り付け面50aに取り付けられている。言い換えると、エンジン1と電動モータ2とは、取り付け面50aである略同一平面から突出するように組み付けられている。トランスアクスルケース50内には、トルクコンバータT/Cと、無段変速機4と、クラッチCLと、第1歯車9aと、終減速装置30と、動力伝達機構11とが収装されている。 FIG. 2 is a schematic diagram showing the layout configuration of the hybrid vehicle drive device of the first embodiment. The engine 1 and the electric motor 2 are arranged such that the crankshaft of the engine 1 and the electric motor rotating shaft are parallel to each other, and both are attached to the attachment surface 50a of the transaxle case 50. In other words, the engine 1 and the electric motor 2 are assembled so as to protrude from substantially the same plane that is the mounting surface 50a. In the transaxle case 50, the torque converter T / C, the continuously variable transmission 4, the clutch CL, the first gear 9a, the final reduction gear 30, and the power transmission mechanism 11 are accommodated.
 エンジン1の取り付け面50a側とは反対側の部分には、エンジン排気配管(もしくは吸気配管)40が設けられている。また、トランスアクスルケース50の下方には、ドライブシャフト33が結合されている。よって、電動モータ2は、径方向について見てみると、ドライブシャフト33とエンジン1とに挟まれた領域内に設けられ、軸方向について見てみると、取り付け面50aとエンジン排気配管40とに挟まれた領域内に設けられる。
 尚、図2では、第1歯車9aと第4歯車11cとを紙面に記載するに際して、便宜上、隣り合わせで記載したが、実際には、第1歯車9aと第4歯車11cともに、図3に記載されたように、終減速歯車31の回転軸に対して垂直方向の同一面で終減速歯車31に噛み合っている。
An engine exhaust pipe (or intake pipe) 40 is provided on the part of the engine 1 opposite to the mounting surface 50a side. A drive shaft 33 is coupled to the lower side of the transaxle case 50. Therefore, when viewed in the radial direction, the electric motor 2 is provided in a region sandwiched between the drive shaft 33 and the engine 1, and when viewed in the axial direction, the mounting surface 50a and the engine exhaust pipe 40 are separated. It is provided in the sandwiched area.
In FIG. 2, when describing the first gear 9a and the fourth gear 11c on the paper surface, they are described side by side for convenience, but in actuality, both the first gear 9a and the fourth gear 11c are described in FIG. As described above, the final reduction gear 31 meshes with the same plane perpendicular to the rotation axis of the final reduction gear 31.
 図3は実施例1のハイブリッド車両の駆動装置の車載状態におけるクランク軸側から見た概略図である。動力伝達機構11は、第2,第3及び第4歯車11a,11b,11cから構成され、第2歯車11aがドライブシャフト33から離間する位置となるように配置されている。言い換えると、ドライブシャフト33と第2歯車11aとの軸間距離は、ドライブシャフト33と第1歯車9aとの軸間距離よりも離れた位置に配置されている。そして、第2歯車11aには電動モータ2が接続され、電動モータ2の回転軸とドライブシャフト33との軸間距離が確保されており、動力伝達機構11により電動モータ2の外径寸法の大型化を可能としている。 FIG. 3 is a schematic view seen from the crankshaft side in a vehicle-mounted state of the hybrid vehicle drive device of the first embodiment. The power transmission mechanism 11 includes second, third, and fourth gears 11a, 11b, and 11c, and is disposed so that the second gear 11a is spaced from the drive shaft 33. In other words, the inter-axis distance between the drive shaft 33 and the second gear 11a is arranged at a position farther than the inter-axis distance between the drive shaft 33 and the first gear 9a. The electric motor 2 is connected to the second gear 11a, and the distance between the rotation shaft of the electric motor 2 and the drive shaft 33 is secured. The power transmission mechanism 11 makes the outer diameter of the electric motor 2 large. Is possible.
 尚、実施例1では、動力伝達機構11を2軸以上の歯車を有する機構としたため、ドライブシャフト33と電動モータ2の回転軸との距離を効果的に大きくすることができる。また、動力伝達機構11は減速機構となっているため、電動モータ2のトルク増幅が可能となり、車両に必要な発進時の駆動力確保や、加速時の駆動力確保を容易としている。 In the first embodiment, since the power transmission mechanism 11 is a mechanism having two or more gears, the distance between the drive shaft 33 and the rotating shaft of the electric motor 2 can be effectively increased. Further, since the power transmission mechanism 11 is a speed reduction mechanism, torque amplification of the electric motor 2 is possible, and it is easy to secure the driving force at the start and the driving force at the time of acceleration necessary for the vehicle.
 ここで、比較例として動力伝達機構とモータとが一列に配置された場合と実施例とを対比して説明する。図3には、第1歯車9aの位置において、一列に電動モータを配置した場合の電動モータの外形寸法最大値を点線で表す。比較例の場合、ドライブシャフト33との干渉が生じ、電動モータを外径寸法において大型化することは困難である。
 これに対し、実施例1では、比較例のように第1歯車9aの位置において電動モータを一列に配置するのではなく、動力伝達機構11によりドライブシャフト33に対して径方向外側の第2歯車11aに電動モータ2を結合したため、ドライブシャフト33とモータ回転軸との軸間距離を確保することができ、電動モータ2の外形寸法を大型化できる。
Here, as a comparative example, the case where the power transmission mechanism and the motor are arranged in a row and the example will be described. In FIG. 3, the maximum value of the outer dimension of the electric motor when the electric motor is arranged in a row at the position of the first gear 9a is represented by a dotted line. In the case of the comparative example, interference with the drive shaft 33 occurs, and it is difficult to increase the size of the electric motor in the outer diameter dimension.
On the other hand, in the first embodiment, the electric motors are not arranged in a line at the position of the first gear 9a as in the comparative example, but the second gear radially outside the drive shaft 33 by the power transmission mechanism 11 is used. Since the electric motor 2 is coupled to 11a, the distance between the drive shaft 33 and the motor rotation shaft can be secured, and the outer dimensions of the electric motor 2 can be increased.
 また、トランスアクスルケース50を車載した状態において、電動モータ2をドライブシャフト33の回転軸の上方に配置している。言い換えると、車両上面から見たとき、ドライブシャフト33の回転軸は、電動モータ2の車両下方への投影面と重なる位置に配置されている。
 すなわち、動力伝達機構11を用いてドライブシャフト33と電動モータ2の回転軸との軸間距離を確保する場合、ドライブシャフト33の上方とすることで、車両上面視において、駆動装置全体の小型化を図ることができ、電動モータ2の体格の大型化を行ったとしても、全体としてコンパクトな駆度装置を提供できる。
In addition, the electric motor 2 is disposed above the rotation shaft of the drive shaft 33 in a state where the transaxle case 50 is mounted on the vehicle. In other words, when viewed from the upper surface of the vehicle, the rotation shaft of the drive shaft 33 is disposed at a position overlapping the projection surface of the electric motor 2 below the vehicle.
That is, when using the power transmission mechanism 11 to secure an inter-axis distance between the drive shaft 33 and the rotating shaft of the electric motor 2, the entire drive device can be reduced in size when viewed from the top of the vehicle by being above the drive shaft 33. Even if the size of the electric motor 2 is increased, a compact driving device can be provided as a whole.
 図4は実施例1のハイブリッド車両の駆動装置において、動力伝達機構を収装した部分の部分拡大断面図である。トランスアクスルケース50は、トルクコンバータT/Cを収装するコンバータハウジング51と、無段変速機4等を収装するトランスミッションケース52と、コンバータハウジング51とトランスミッションケース52との間を画成する中間壁53とから構成されている。このように、トランスアクスルケース50は、エンジン側となるコンバータハウジング51と、変速機側となるトランスミッションケース52とに分割して構成することで、組み付け容易性を確保している。 FIG. 4 is a partially enlarged cross-sectional view of a portion where the power transmission mechanism is housed in the hybrid vehicle drive device of the first embodiment. The transaxle case 50 includes a converter housing 51 that houses the torque converter T / C, a transmission case 52 that houses the continuously variable transmission 4 and the like, and an intermediate that defines between the converter housing 51 and the transmission case 52. It consists of a wall 53. Thus, the transaxle case 50 is divided into the converter housing 51 on the engine side and the transmission case 52 on the transmission side, thereby ensuring ease of assembly.
 このとき、動力伝達機構11を構成する第2,第3及び第4歯車11a,11b,11cが、コンバータハウジング51と中間壁53との間に収装されている。これにより、取り付け面50a側に減速機構等を設けることなく電動モータ2を取り付けることが可能となり、エンジン排気配管40と取り付け面50aとの間の空間を確保することで電動モータ2の軸方向寸法を大型化できる。 At this time, the second, third, and fourth gears 11a, 11b, and 11c constituting the power transmission mechanism 11 are accommodated between the converter housing 51 and the intermediate wall 53. This makes it possible to mount the electric motor 2 without providing a speed reduction mechanism or the like on the mounting surface 50a side, and by securing a space between the engine exhaust pipe 40 and the mounting surface 50a, the axial dimension of the electric motor 2 can be secured. Can be enlarged.
 以上説明したように、実施例1にあっては下記に列挙する作用効果が得られる。
 (1)エンジン1のエンジン出力軸に結合された無段変速機4(変速機)と、
 無段変速機4の変速機出力軸に結合されたクラッチCLと、
 クラッチCLのクラッチ出力軸に結合された第1歯車9aと、
 第1歯車9aと常時噛み合う終減速歯車31と、
 終減速歯車31と結合されたドライブシャフト33と、
 ドライブシャフト33との軸間距離が、ドライブシャフト33と第1歯車9aとの軸間距離よりも離れた位置に設けられた第2歯車11a(回転要素)を有し、該第2歯車11aと終減速歯車31との間で動力伝達を行う動力伝達機構11と、
 第2歯車11aに結合された電動モータ2(電動機)と、
 無段変速機4と、クラッチCLと、第1歯車9aと、終減速歯車31と、動力伝達機構11とを収装し、エンジン1及び電動モータ2aを取り付ける取り付け面50aを有するトランスアクスルケース50と、
 を備えた。
 すなわち、トランスアクスルケース50内に動力伝達機構11を設けたため、電動モータ2aと結合する際に軸方向に減速機等を配置する必要がなく、軸方向のスペースを確保できる。また、電動モータ2aが結合される第2歯車11aとドライブシャフト33との軸間距離は、ドライブシャフト33と第1歯車9aとの軸間距離よりも離れているため、電動モータ2aの外径の自由度が高くなり、電動モータ2aの体格を大型化できる。よって、電動モータ2aによる車両駆動可能な車速領域が拡大され、かつ、回生可能な車両の減速車速領域が拡大されるため、燃費の改善を図ることができる。
As described above, the effects listed below are obtained in the first embodiment.
(1) continuously variable transmission 4 (transmission) coupled to the engine output shaft of engine 1;
A clutch CL coupled to the transmission output shaft of the continuously variable transmission 4,
A first gear 9a coupled to the clutch output shaft of the clutch CL;
A final reduction gear 31 that always meshes with the first gear 9a;
A drive shaft 33 coupled to the final reduction gear 31,
There is a second gear 11a (rotating element) provided at a position where the distance between the drive shaft 33 and the shaft between the drive shaft 33 and the first gear 9a is greater than the distance between the drive shaft 33 and the first gear 9a. A power transmission mechanism 11 that transmits power to and from the final reduction gear 31, and
An electric motor 2 (electric motor) coupled to the second gear 11a;
A transaxle case 50 having a mounting surface 50a in which the continuously variable transmission 4, the clutch CL, the first gear 9a, the final reduction gear 31, and the power transmission mechanism 11 are accommodated and the engine 1 and the electric motor 2a are attached. When,
Equipped with.
That is, since the power transmission mechanism 11 is provided in the transaxle case 50, it is not necessary to arrange a reduction gear or the like in the axial direction when coupled to the electric motor 2a, and an axial space can be secured. In addition, since the distance between the shafts of the second gear 11a to which the electric motor 2a is coupled and the drive shaft 33 is farther than the distance between the shafts of the drive shaft 33 and the first gear 9a, the outer diameter of the electric motor 2a. The degree of freedom can be increased and the size of the electric motor 2a can be increased. Accordingly, the vehicle speed range in which the vehicle can be driven by the electric motor 2a is expanded, and the decelerating vehicle speed range of the regenerative vehicle is expanded, so that fuel efficiency can be improved.
 (2)動力伝達機構11は、2軸以上の歯車を有する。よって、ドライブシャフト33と電動モータ2の回転軸との距離を効果的に大きくすることができる。
 (3)動力伝達機構11は、減速機構である。よって、電動モータ2のトルク増幅が可能となり、容易に車両に必要な発進時の駆動力確保や、加速時の駆動力確保ができる。
(2) The power transmission mechanism 11 has two or more gears. Therefore, the distance between the drive shaft 33 and the rotating shaft of the electric motor 2 can be effectively increased.
(3) The power transmission mechanism 11 is a speed reduction mechanism. Therefore, torque amplification of the electric motor 2 is possible, and it is possible to easily secure the driving force at the time of start required for the vehicle and the driving force at the time of acceleration.
 (4)トランスアクスルケース50は、エンジン側となるコンバータハウジング51と、無段変速機側となるトランスミッションケース52と、コンバータハウジング51とトランスミッションケース52との間を画成する中間壁53とから構成され、
動力伝達機構11は、コンバータハウジング51と中間壁53との間に収装されている。
 よって、取り付け面50a側に減速機構等を設けることなく電動モータ2を取り付けることが可能となり、エンジン排気配管40と取り付け面50aとの間の空間を確保することで電動モータ2の軸方向寸法を大型化できる。
 尚、実施例1ではコンバータハウジング51と中間壁53との間に収装したが、トランスミッションケース52と中間壁53との間に収装しても同様の作用効果が得られる。
(4) The transaxle case 50 includes a converter housing 51 on the engine side, a transmission case 52 on the continuously variable transmission side, and an intermediate wall 53 that defines between the converter housing 51 and the transmission case 52. And
The power transmission mechanism 11 is accommodated between the converter housing 51 and the intermediate wall 53.
Therefore, it becomes possible to mount the electric motor 2 without providing a speed reduction mechanism or the like on the mounting surface 50a side, and the axial dimension of the electric motor 2 can be increased by securing a space between the engine exhaust pipe 40 and the mounting surface 50a. Can be enlarged.
In the first embodiment, the converter housing 51 and the intermediate wall 53 are accommodated. However, even if the transmission case 52 and the intermediate wall 53 are accommodated, the same effect can be obtained.
 (5)トランスアクスルケース50を車載した状態において、電動モータ2をドライブシャフト33の回転軸の上方に配置した。言い換えると、トランスアクスルケース50を車載した状態において、車両上面から見たとき、ドライブシャフト33の回転軸は、電動モータ2と重なる位置に配置されている。
 すなわち、動力伝達機構11を用いてドライブシャフト33と電動モータ2の回転軸との軸間距離を確保する場合、ドライブシャフト33の上方とすることで、車両上面視において、駆動装置全体の小型化を図ることができ、電動モータ2の体格の大型化を行ったとしても、全体としてコンパクトな駆度装置を提供できる。
(5) In a state where the transaxle case 50 is mounted on the vehicle, the electric motor 2 is disposed above the rotation shaft of the drive shaft 33. In other words, when the transaxle case 50 is mounted on the vehicle, the rotation shaft of the drive shaft 33 is disposed at a position overlapping the electric motor 2 when viewed from the upper surface of the vehicle.
That is, when using the power transmission mechanism 11 to secure an inter-axis distance between the drive shaft 33 and the rotating shaft of the electric motor 2, the entire drive device can be reduced in size when viewed from the top of the vehicle by being above the drive shaft 33. Even if the size of the electric motor 2 is increased, a compact driving device can be provided as a whole.
 〔実施例2〕
 次に、実施例2について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図5は実施例2のハイブリッド車両の駆動装置において、動力伝達機構を収装した部分の部分拡大断面図である。実施例1では、中間壁53を備えた構成を示したが、実施例2では、中間壁を設けていない場合を示す。
[Example 2]
Next, Example 2 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. FIG. 5 is a partially enlarged cross-sectional view of a portion in which the power transmission mechanism is housed in the hybrid vehicle drive apparatus according to the second embodiment. In the first embodiment, the configuration including the intermediate wall 53 is shown, but in the second embodiment, the case where the intermediate wall is not provided is shown.
 トランスアクスルケース50は、トルクコンバータT/Cを収装するコンバータハウジング51と、無段変速機4等を収装するトランスミッションケース52とから構成されている。このとき、動力伝達機構11を構成する第2,第3及び第4歯車11a,11b,11cが、コンバータハウジング51とトランスミッションケース52との間に収装されている。これにより、取り付け面50a側に減速機構等を設けることなく電動モータ2を取り付けることが可能となり、エンジン排気配管40と取り付け面50aとの間の空間を確保することで電動モータ2の軸方向寸法を大型化できる。 The transaxle case 50 includes a converter housing 51 that houses the torque converter T / C and a transmission case 52 that houses the continuously variable transmission 4 and the like. At this time, the second, third and fourth gears 11a, 11b and 11c constituting the power transmission mechanism 11 are accommodated between the converter housing 51 and the transmission case 52. This makes it possible to mount the electric motor 2 without providing a speed reduction mechanism or the like on the mounting surface 50a side, and by securing a space between the engine exhaust pipe 40 and the mounting surface 50a, the axial dimension of the electric motor 2 can be secured. Can be enlarged.
 以上説明したように、実施例2にあっては、下記の作用効果を得ることができる。
 (6)トランスアクスルケース50は、エンジン側となるコンバータハウジング51と、無段変速機側となるトランスミッションケース52とから構成され、動力伝達機構11は、コンバータハウジング51とトランスミッションケースとの間に収装される。
 よって、取り付け面50a側に減速機構等を設けることなく電動モータ2を取り付けることが可能となり、エンジン排気配管40と取り付け面50aとの間の空間を確保することで電動モータ2の軸方向寸法を大型化できる。
As described above, in the second embodiment, the following operational effects can be obtained.
(6) The transaxle case 50 includes a converter housing 51 on the engine side and a transmission case 52 on the continuously variable transmission side. The power transmission mechanism 11 is disposed between the converter housing 51 and the transmission case. Be dressed.
Therefore, it becomes possible to mount the electric motor 2 without providing a speed reduction mechanism or the like on the mounting surface 50a side, and the axial dimension of the electric motor 2 can be increased by securing a space between the engine exhaust pipe 40 and the mounting surface 50a. Can be enlarged.
 以上、各実施例に基づいて本発明を説明したが、上記構成に限らず、他の構成であっても本発明に含まれる。
 例えば、実施例では、動力伝達機構11として歯車を組み合わせた例を示したが、歯車に限らずチェーンとスプロケットから構成してもよい。また、実施例では、第1歯車9aと終減速歯車31とを噛合し、動力伝達機構11と終減速歯車31とを噛合した例を示したが、動力伝達機構11と第1歯車9aとを噛合してもよい。
As mentioned above, although this invention was demonstrated based on each Example, not only the said structure but another structure is also included in this invention.
For example, in the embodiment, an example in which a gear is combined as the power transmission mechanism 11 has been described. In the embodiment, the first gear 9a and the final reduction gear 31 are engaged, and the power transmission mechanism 11 and the final reduction gear 31 are engaged. However, the power transmission mechanism 11 and the first gear 9a are connected to each other. You may mesh.
 また、実施例では、ハイブリッド車両の電動モータ2を搭載した例を示したが、他の輪に設けられたモータに駆動電流を供給する大型発電機を搭載した場合であっても、同様に適用可能である。また、電動機の例を示したが、4輪駆動ユニットとしてのトランスファーを設ける際に、本発明を適用してもよい。 Further, in the embodiment, the example in which the electric motor 2 of the hybrid vehicle is mounted is shown, but the same applies even when a large generator for supplying a driving current to a motor provided in another wheel is mounted. Is possible. Further, although an example of an electric motor has been shown, the present invention may be applied when providing a transfer as a four-wheel drive unit.
 また、実施例1のハイブリッド車両にあっては、無段変速機4を搭載した例を示したが、無段変速機4に限らず他の有段変速機であってもよい。また、クラッチCLに代えて、複数の摩擦締結要素からなる遊星歯車機構を搭載し、適宜変速可能な副変速装置を搭載してもよい。 In the hybrid vehicle of the first embodiment, the example in which the continuously variable transmission 4 is mounted is shown, but the present invention is not limited to the continuously variable transmission 4 and may be other stepped transmissions. Further, instead of the clutch CL, a planetary gear mechanism composed of a plurality of frictional engagement elements may be mounted, and a sub-transmission device capable of appropriately shifting may be mounted.
 更に、実施例ではスタータモータ3によりエンジン再始動を行う構成を示したが、他の構成であっても構わない。具体的には、近年、アイドリングストップ機能付き車両であって、オルタネータをモータ・ジェネレータに置き換え、このモータ・ジェネレータにオルタネータ機能を加えてエンジン始動機能を付加することにより、アイドリングストップからのエンジン再始動時に、スタータモータではなく、このモータ・ジェネレータによりエンジン再始動を行う技術が実用化されている。本願発明も上記のようなモータ・ジェネレータによりエンジン再始動を行う構成としてもよい。 Furthermore, in the embodiment, the configuration in which the engine is restarted by the starter motor 3 is shown, but other configurations may be used. Specifically, in recent years, a vehicle with an idling stop function has been replaced by replacing the alternator with a motor / generator, adding an alternator function to the motor / generator and adding an engine start function to restart the engine from an idling stop. At times, a technique for restarting the engine with this motor / generator instead of the starter motor has been put into practical use. The present invention may also be configured to restart the engine by the motor / generator as described above.

Claims (7)

  1.  エンジンのエンジン出力軸に結合された変速機と、
     前記変速機の変速機出力軸に結合されたクラッチと、
     前記クラッチのクラッチ出力軸に結合された第1歯車と、
     前記第1歯車と常時噛み合う終減速歯車と、
     前記終減速歯車と結合されたドライブシャフトと、
     前記ドライブシャフトとの軸間距離が、前記ドライブシャフトと前記第1歯車との軸間距離よりも離れた位置に設けられた回転要素を有し、該回転要素と前記終減速歯車との間で動力伝達を行う動力伝達機構と、
     前記回転要素に結合された電動機と、
     前記変速機と、前記クラッチと、前記第1歯車と、前記終減速歯車と、前記動力伝達機構とを収装し、前記エンジン及び前記電動機を取り付ける取り付け面を有するトランスアクスルケースと、
     を備えたことを特徴とするハイブリッド車両の駆動装置。
    A transmission coupled to the engine output shaft of the engine;
    A clutch coupled to a transmission output shaft of the transmission;
    A first gear coupled to the clutch output shaft of the clutch;
    A final reduction gear that always meshes with the first gear;
    A drive shaft coupled to the final reduction gear;
    A rotation element provided at a position where an inter-axis distance with the drive shaft is separated from an inter-axis distance between the drive shaft and the first gear; and between the rotation element and the final reduction gear. A power transmission mechanism for performing power transmission;
    An electric motor coupled to the rotating element;
    A transaxle case having a mounting surface that houses the transmission, the clutch, the first gear, the final reduction gear, and the power transmission mechanism and to which the engine and the electric motor are attached;
    A drive device for a hybrid vehicle, comprising:
  2.  請求項1に記載のハイブリッド車両の駆動装置において、
     前記動力伝達機構は、2軸以上の歯車を有することを特徴とするハイブリッド車両の駆動装置。
    The drive device for a hybrid vehicle according to claim 1,
    The drive mechanism for a hybrid vehicle, wherein the power transmission mechanism has two or more gears.
  3.  請求項1または2に記載のハイブリッド車両の駆動装置において、
     前記動力伝達機構は、減速機構であることを特徴とするハイブリッド車両の駆動装置。
    In the hybrid vehicle drive device according to claim 1 or 2,
    The drive device for a hybrid vehicle, wherein the power transmission mechanism is a speed reduction mechanism.
  4.  請求項1ないし3いずれか1つに記載のハイブリッド車両の駆動装置において、
     前記トランスアクスルケースは、前記エンジン側となるコンバータハウジングと、前記変速機側となるトランスミッションケースとから構成され、
     前記動力伝達機構は、前記コンバータハウジングと前記トランスミッションケースとの間に収装されることを特徴とするハイブリッド車両の駆動装置。
    In the hybrid vehicle drive device according to any one of claims 1 to 3,
    The transaxle case is composed of a converter housing on the engine side and a transmission case on the transmission side,
    The drive device for a hybrid vehicle, wherein the power transmission mechanism is housed between the converter housing and the transmission case.
  5.  請求項1ないし3いずれか1つに記載のハイブリッド車両の駆動装置において、
     前記トランスアクスルケースは、前記エンジン側となるコンバータハウジングと、前記変速機側となるトランスミッションケースと、前記コンバータハウジングと前記トランスミッションケースとの間を画成する中間壁とから構成され、
     前記動力伝達機構は、前記コンバータハウジングと前記中間壁との間、もしくは前記トランスミッションケースと前記中間壁との間に収装されることを特徴とするハイブリッド車両の駆動装置。
    In the hybrid vehicle drive device according to any one of claims 1 to 3,
    The transaxle case is composed of a converter housing on the engine side, a transmission case on the transmission side, and an intermediate wall that defines between the converter housing and the transmission case,
    The drive device for a hybrid vehicle, wherein the power transmission mechanism is housed between the converter housing and the intermediate wall or between the transmission case and the intermediate wall.
  6.  請求項1ないし5いずれか1つに記載のハイブリッド車両の駆動装置において、
     前記トランスアクスルケースを車載した状態において、前記電動機を前記ドライブシャフトの回転軸の上方に配置したことを特徴とするハイブリッド車両の駆動装置。
    In the hybrid vehicle drive device according to any one of claims 1 to 5,
    A drive device for a hybrid vehicle, wherein the electric motor is disposed above a rotation shaft of the drive shaft in a state where the transaxle case is mounted on a vehicle.
  7.  請求項1ないし6いずれか1つに記載のハイブリッド車両の駆動装置において、
     前記トランスアクスルケースを車載した状態において、車両上面から見たとき、前記ドライブシャフトの回転軸は、前記電動機と重なる位置に配置されていることを特徴とするハイブリッド車両の駆動装置。
    In the hybrid vehicle drive device according to any one of claims 1 to 6,
    A drive device for a hybrid vehicle, characterized in that when the transaxle case is mounted on a vehicle, the rotational shaft of the drive shaft is disposed at a position overlapping the electric motor when viewed from the upper surface of the vehicle.
PCT/JP2013/080683 2013-01-30 2013-11-13 Drive device for hybrid vehicle WO2014119086A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-015566 2013-01-30
JP2013015566A JP2016055653A (en) 2013-01-30 2013-01-30 Driving apparatus for hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2014119086A1 true WO2014119086A1 (en) 2014-08-07

Family

ID=51261818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080683 WO2014119086A1 (en) 2013-01-30 2013-11-13 Drive device for hybrid vehicle

Country Status (2)

Country Link
JP (1) JP2016055653A (en)
WO (1) WO2014119086A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106671769A (en) * 2016-12-27 2017-05-17 苏州大方特种车股份有限公司 Dual power driving axle structure and vehicle with same
CN111183054A (en) * 2017-10-24 2020-05-19 日产自动车株式会社 Power transmission device for four-wheel drive vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7183772B2 (en) * 2018-12-21 2022-12-06 スズキ株式会社 Drive system for hybrid vehicle
CN111284481A (en) * 2020-03-31 2020-06-16 东风格特拉克汽车变速箱有限公司 Hybrid power driving system with bidirectional power interruption mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261302A (en) * 2006-03-27 2007-10-11 Honda Motor Co Ltd Power transmission system for hybrid vehicle
JP2008239124A (en) * 2007-03-29 2008-10-09 Daihatsu Motor Co Ltd Driving device of hybrid automobile
JP2009096404A (en) * 2007-10-18 2009-05-07 Aisin Ai Co Ltd Power device in vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261302A (en) * 2006-03-27 2007-10-11 Honda Motor Co Ltd Power transmission system for hybrid vehicle
JP2008239124A (en) * 2007-03-29 2008-10-09 Daihatsu Motor Co Ltd Driving device of hybrid automobile
JP2009096404A (en) * 2007-10-18 2009-05-07 Aisin Ai Co Ltd Power device in vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106671769A (en) * 2016-12-27 2017-05-17 苏州大方特种车股份有限公司 Dual power driving axle structure and vehicle with same
CN111183054A (en) * 2017-10-24 2020-05-19 日产自动车株式会社 Power transmission device for four-wheel drive vehicle

Also Published As

Publication number Publication date
JP2016055653A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5889438B2 (en) Drive device for hybrid vehicle
JP5859143B2 (en) Drive device for hybrid vehicle
US9340100B2 (en) Power transmission system of hybrid electric vehicle
US7972235B2 (en) Hybrid powertrain system having selectively connectable engine, motor/generator, and transmission
JP7011754B2 (en) Hybrid vehicle transmission and power system
JP2017177975A (en) Hybrid vehicle system
US9193253B2 (en) Power transmission system of hybrid electric vehicle
JP2001047881A (en) Hybrid vehicle
JP7120035B2 (en) Vehicle transmission control device
US9199530B2 (en) Power transmission apparatus for vehicle
WO2014199457A1 (en) Vehicle controlling device and method
JP6817767B2 (en) Control device and control method for hybrid vehicle system
JP2019108073A (en) Driving force control device for hybrid vehicle
WO2014119086A1 (en) Drive device for hybrid vehicle
JPH11254982A (en) Drive device for automobile
JP4086077B2 (en) Start control device for internal combustion engine
JP4853173B2 (en) Power transmission system
JP2001287555A (en) Power transmission of automobile
JP2012001108A (en) Driving apparatus of hybrid vehicle
CN110155037B (en) Vehicle drive control device and vehicle control method
JP2000179671A (en) Control device for hybrid vehicle
JP2000197209A (en) Controller for hybrid vehicle
JP6269073B2 (en) Hybrid vehicle
JP2015000679A (en) Driving device of traveling vehicle
JP2019026107A (en) Addition mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP