WO2014119035A1 - Power-transmission apparatus - Google Patents
Power-transmission apparatus Download PDFInfo
- Publication number
- WO2014119035A1 WO2014119035A1 PCT/JP2013/073604 JP2013073604W WO2014119035A1 WO 2014119035 A1 WO2014119035 A1 WO 2014119035A1 JP 2013073604 W JP2013073604 W JP 2013073604W WO 2014119035 A1 WO2014119035 A1 WO 2014119035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- power transmission
- power receiving
- field coupling
- receiving device
- Prior art date
Links
- 238000010168 coupling process Methods 0.000 claims abstract description 78
- 238000004804 winding Methods 0.000 claims abstract description 47
- 230000005684 electric field Effects 0.000 claims abstract description 38
- 238000005859 coupling reaction Methods 0.000 claims abstract description 34
- 230000008878 coupling Effects 0.000 claims abstract description 33
- 230000005540 biological transmission Effects 0.000 claims description 75
- 238000000034 method Methods 0.000 claims description 49
- 230000009466 transformation Effects 0.000 claims description 3
- 230000006698 induction Effects 0.000 abstract description 32
- 230000008569 process Effects 0.000 description 12
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005686 electrostatic field Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/05—Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
Definitions
- the present invention relates to a power transmission device, and more particularly to a power transmission device that wirelessly transmits power from a power transmission device to a power reception device.
- a wireless power transmission method for example, as in Patent Document 1, a method of transmitting power from a primary coil on the power transmission unit side to a secondary coil on the load unit side using magnetic field coupling is generally used.
- a method electric field coupling method
- a coupling electrode on the power transmission unit side to a coupling electrode on the load unit side using an electrostatic field is known in which electric power is transmitted from a coupling electrode on the power transmission unit side to a coupling electrode on the load unit side using an electrostatic field.
- the electric field coupling method uses an electrostatic field between the coupling electrodes, so that the positional accuracy of each coupling electrode can be relaxed and the coupling electrode can be downsized. Since a principle completely different from the method is adopted, if one power transmission device is adapted to any method, the circuit configuration may be complicated.
- a main object of the present invention is to provide a power transmission device that can cope with both the magnetic field coupling method and the electric field coupling method while suppressing the complexity of the circuit configuration.
- a power transmission device (10: reference numeral corresponding to the embodiment; the same applies hereinafter) is a voltage booster in cooperation with a low voltage side winding (L1) connected to an AC power source (12 to 14) and a low voltage side coil.
- High-voltage side winding (L2) forming the transformer (16), one end connected to one end of the high-voltage side winding, a coil (L3) for performing magnetic field coupling type power transmission, one of the high-voltage side winding
- the first switch (SW1) that is selectively connected to the other end of the winding, and the control that controls the connection mode of the first switch by identifying the power transmission method of the power receiving device placed on the placement surface of the housing Means (S1, S11 to S15, S37 to S41, S47) are provided.
- the control means includes first request means (S13 to S15, S39 to S41) for requesting the first switch to select the other end of the coil when the power transmission method of the power receiving device is a magnetic field coupling method, and the power receiving device When the power transmission method is an electric field coupling method, second request means (S1, S13, S39, S47) for requesting the first switch to select the second electrode is included.
- first request means S13 to S15, S39 to S41
- second request means S1, S13, S39, S47
- the first electrode and the second electrode correspond to a large electrode and a small electrode, respectively.
- the second electrode includes a plurality of partial electrodes (E1 to E4), and further includes a second switch (24) for selectively connecting the plurality of partial electrodes to the first switch.
- adjustment means for adjusting the transformation ratio of the step-up transformer so as to conform to the power transmission method of the power receiving device is further provided.
- the detecting means for detecting the position of the power receiving device
- the first moving means for moving the coil to the position detected by the detecting means when the power receiving method of the power receiving device is a magnetic field coupling method.
- S43 the second moving means for moving the second electrode to the position detected by the detecting means when the power receiving method of the power receiving apparatus is the electric field coupling method.
- the other end of the high-voltage side winding is connected to one of the other end of the coil and the second electrode by the first switch, and the connection mode of the first switch is the power receiving device placed on the placement surface of the housing
- the power transmission method is identified and controlled.
- the first electrode functions as a ground electrode when the magnetic field coupling method is selected, and functions as a part of the power transmission electrode when the electric field coupling method is selected.
- FIG. 1 It is a block diagram which shows the structure of one Example of this invention.
- A) is an illustration figure which shows an example of the state which looked at the power transmission apparatus shown in FIG. 1 from the top
- (B) is an illustration figure which shows an example of the state which looked at the power transmission apparatus shown in FIG. 1 from the side.
- FIG. 6 It is a block diagram which shows the structure of the other Example of this invention.
- A) is an illustration figure which shows an example of the state which looked at the power transmission apparatus shown in FIG. 6 from the top
- (B) is an illustration figure which shows an example of the state which looked at the power transmission apparatus shown in FIG. 6 from the side.
- the power transmission system of this embodiment includes a power transmission device 10 that supports both the magnetic field coupling method and the electric field coupling method, a power receiving device 40 that supports the magnetic field coupling method, and a power reception device that supports the electric field coupling method.
- Device 60 The power transmission device 10 includes a rectangular parallelepiped housing HS1 shown in FIGS. 2 (A) to 2 (B).
- the one main surface and the other main surface of the housing HS1 correspond to the upper surface and the lower surface, respectively, and the power receiving devices 40 and 60 are alternatively placed on the one main surface of the housing HS1.
- the power transmission device 10 transmits power to the power receiving device 40 by the magnetic field coupling method when the power receiving device 40 is placed, and transmits power to the power receiving device 60 by the electric field coupling method when the power receiving device 60 is placed.
- the control circuit 14 gives a PWM signal to the drive circuit 12.
- the drive circuit 12 converts the DC voltage supplied from the DC power source Vcc into an AC voltage according to the PWM signal supplied from the control circuit 14.
- the frequency of the converted AC voltage matches the frequency of the PWM signal, and the level of the converted AC voltage depends on the duty ratio of the PWM signal.
- the converted AC voltage is applied to the primary winding L1 forming the step-up transformer 16, and the AC voltage boosted to a different voltage according to the transformation ratio is excited in the secondary winding L2 forming the step-up transformer 16.
- One end of the secondary winding L2 is connected to one end of an induction coil L3 for magnetic field coupling provided in the coil unit 20, and is further connected to a passive electrode (large electrode) E5 for electric field coupling.
- the other end of the secondary winding L2 is connected to a common terminal T1 that forms a switch SW1.
- Branch terminals T2 and T3 forming switch SW1 are connected to the other end of induction coil L3 and switch group 24, respectively.
- the switch SW1 switches the other end of the secondary winding L2 to either the other end of the induction coil L3 or the switch group 24, but the one end of the secondary winding L2 is switched to the induction coil L3. May be switched to either one of the first electrode and the passive electrode E5.
- the switch group 24 includes switches SW11 to SW14, and the electrode unit 22 includes active electrodes (small electrodes) E1 to E4.
- the branch terminal T3 is connected to the active electrode E1 through the switch SW11, is connected to the active electrode E2 through the switch SW12, is connected to the active electrode E3 through the switch SW13, and is connected to the active electrode E4 through the switch SW14. Connected.
- the common terminal T1 forming the switch SW1 is connected to the branch terminal T2 when the power receiving device 40 is placed on the housing HS1, and is connected to the branch terminal T3 when the power receiving device 60 is placed on the housing HS1. Is done.
- the switches SW11 to SW14 are alternatively turned on when the power receiving device 60 is placed on the housing HS1. Specifically, the switch SW11 is turned on when the power receiving device 60 is placed near the active electrode E1, and the switch SW12 is turned on when the power receiving device 60 is placed near the active electrode E2. Further, the switch SW13 is turned on when the power receiving device 60 is placed near the active electrode E3, and the switch SW14 is turned on when the power receiving device 60 is placed near the active electrode E4.
- the common terminal T1 forming the switch SW1 is connected to the branch terminal T3, and the switches SW11 to SW14 are turned on cyclically and alternatively. Is done.
- the impedance on the output side of the drive circuit 12 increases, and the impedance value is the same as when the power receiving device 40 is placed and when the power receiving device 60 is placed. It is different from the time.
- the settings of the switch SW1 and the switch group 24 are adjusted with reference to such impedance.
- the active electrodes E1 to E4 and the passive electrode E5 are all formed in a rectangular plate shape and housed in the housing HS1.
- the induction coil L3 is formed in a disk shape, and this is also housed in the housing HS1.
- the areas of the main surfaces of the active electrodes E1 to E4 are common to each other and are much smaller than the area of the main surface of the passive electrode E5. Further, the area of the main surface of the passive electrode E5 is slightly smaller than the area of the main surface of the housing HS1. Further, the diameter of the circle forming the main surface of the induction coil L3 is slightly smaller than the short side of the rectangle forming the main surface of each of the active electrodes E1 to E4.
- the areas of the active electrode and the passive electrode may be the same.
- the switch SW1 is provided on the active electrode side (the other end of the secondary winding L2 is switched to either the other end of the induction coil L3 or the switch group 24).
- the high electric field of the active electrode affects the induction coil L3. It is preferable because it is difficult.
- the passive electrode E5 is provided at a substantially central position in the height direction of the housing HS1 in a posture in which one main surface faces upward and the other main surface faces downward.
- the active electrodes E1 to E4 are provided on the upper side of the passive electrode E5 in such a posture that each one main surface faces upward and each other main surface faces downward.
- the active electrodes E1 to E4 are arranged in a matrix.
- the induction coil L3 is provided on the upper side of the passive electrode E5 in a posture in which one main surface faces upward and the other main surface faces downward.
- the distance from one main surface of induction coil L3 to one main surface of housing HS1 is smaller than the distance from one main surface of each of active electrodes E1 to E4 to one main surface of housing HS1.
- the distance from the other main surface of induction coil L3 to one main surface of housing HS1 is also smaller than the distance from one main surface of each of active electrodes E1 to E4 to one main surface of housing HS1.
- the electrode unit 22 is moved in the left-right direction with the posture facing the.
- the coil unit 20 is moved by the XY table 18 so that the induction coil L ⁇ b> 3 is disposed below the power receiving device 40.
- the power receiving device 60 that employs the electric field coupling method is placed at the position shown in FIG. 4, any one of the active electrodes E1 to E4 is disposed below the power receiving device 40.
- the electrode unit 24 is moved by the XY table 18.
- the drive circuit 12, the control circuit 14, the step-up transformer 16, the switch SW1, and the switch group 24 are built in the power transmission module TM1.
- the power receiving device 40 is provided with an induction coil L4 for magnetic field coupling.
- Induction coil L4 are connected to one end and the other end of primary winding L5 that form step-down transformer 42 together with secondary winding L6. Therefore, when an AC voltage is applied to the induction coil L3 of the power transmission device 10, an AC voltage corresponding to the AC voltage is excited in the induction coil L4, and an AC voltage indicating a voltage corresponding to the step-down ratio of the step-down transformer 42 is secondary. Excited by the coil L6.
- the rectifying / smoothing circuit 44 rectifies and smoothes the AC voltage excited by the secondary coil L6.
- the DC-DC converter 46 adjusts the level of the DC voltage generated thereby, and supplies the DC voltage having the adjusted level to the mobile device 50 integrated with the power receiving device 40.
- the power receiving device 60 is provided with an active electrode E6 and a passive electrode E7 for electric field coupling.
- the active electrode E6 and the passive electrode E7 are connected to one end and the other end of the primary winding L7 that form the step-down transformer 62 together with the secondary winding L8.
- the rectifying / smoothing circuit 64 rectifies and smoothes the AC voltage excited by the secondary coil L8.
- the DC-DC converter 66 adjusts the level of the DC voltage generated thereby, and supplies the DC voltage having the adjusted level to the mobile device 70 integrated with the power receiving device 60.
- the control circuit 14 executes processing according to the flowchart shown in FIG. 5 in order to selectively transmit power to the power receiving apparatuses 40 and 60.
- step S1 the common terminal T1 of the switch SW1 is connected to the branch terminal T3 in order to set the power transmission method to the electric field coupling method.
- step S3 the switch SW11 is turned on to validate the active electrode E1, and in step S5, the impedance on the output side of the drive circuit 12 is measured.
- step S7 whether or not the power receiving device 40 or 60 is placed in the vicinity of the activated active electrode E1 is determined based on the measured impedance. If the determination result is NO, other active electrodes are alternatively enabled in step S9, and then the process returns to step S3. Therefore, as long as the determination result of step S7 is maintained NO, the active electrode to be activated is cyclically switched in the order of “E1” ⁇ “E2” ⁇ “E3” ⁇ “E4” ⁇ “E1” ⁇ . It is done.
- step S7 it is determined in steps S11 to S13 whether the power transmission method employed by the power receiving device mounted on the housing HS1 is the magnetic field coupling method or the electric field coupling method. In the determination, the impedance measured in step S5 is referred to.
- step S13 the power receiving device mounted on the housing HS1 is the power receiving device 40 adopting the magnetic field coupling method
- the process proceeds from step S13 to step S15, and the power transmission method is set to the magnetic field coupling method.
- the common terminal T1 of the switch SW1 is connected to the branch terminal T2.
- step S ⁇ b> 17 the XY table 18 is controlled to move the coil unit 20 to the lower part of the power receiving device 40.
- the coil unit 20, that is, the induction coil L ⁇ b> 3 is disposed at a position facing the induction coil L ⁇ b> 4 provided in the power receiving device 40.
- step S19 the step-up ratio of the step-up transformer 18 is adjusted to the ratio for magnetic field coupling.
- the step-up transformer is constituted by a winding type transformer, a plurality of midpoint taps are provided in the primary winding or the secondary winding, and a method of switching the turn ratio or a piezoelectric transformer is used for the transformer.
- a method of adjusting the step-up ratio by changing the frequency of the applied AC voltage is conceivable.
- step S21 the process proceeds to step S21, and the XY table 18 is controlled to place the electrode unit 22 below the power receiving device 60. Move to.
- the electrode unit 22 is disposed at a position where the activated active electrode faces the active electrode E ⁇ b> 6 of the power receiving device 60.
- step S23 the step-up ratio of the step-up transformer 18 is adjusted to a ratio for electric field coupling.
- step-up transformer when the step-up transformer is constituted by a winding type transformer, a plurality of midpoint taps are provided in the primary winding or the secondary winding, and a method of switching the turn ratio or a piezoelectric transformer is used for the transformer. A method of adjusting the step-up ratio by changing the frequency of the applied AC voltage is conceivable.
- a PWM signal is given to the drive circuit 12 to start power transmission to the power receiving device 60.
- the primary winding L1 forming the step-up transformer 16 is connected to the drive circuit 12 that generates an AC voltage.
- One end of the secondary winding L2 constituting the step-up transformer 16 is connected to one end of an induction coil L3 for magnetic field coupling, and further to a passive electrode E5 for electric field coupling.
- the active electrodes E1 to E4 realize electric field coupling type power transmission in cooperation with the passive electrode E5.
- the other end of the secondary winding L2 forming the step-up transformer 16 is connected to the induction coil L3 and the active electrodes E1 to E4 via the switch SW1.
- the control circuit 14 identifies the power transmission method of the power receiving device mounted on the mounting surface of the housing HS1 and controls the connection mode of the switch SW1 (S1, S11 to S15).
- step-up ratio of the step-up transformer 18 may be fixed without adjustment.
- the other end of the secondary winding L2 is connected to either the other end of the induction coil L3 or the passive electrode E5 by the switch SW1, and the connection mode of the switch SW1 is based on the power transmission method of the power receiving device. Identify and control.
- the passive electrode E5 functions as a ground electrode when the magnetic field coupling method is selected, and functions as a part of the power transmission electrode when the electric field coupling method is selected.
- control circuit 14 replaces the flowchart shown in FIG. 6. Since it is the same as that of the above-mentioned Example except the point which performs the process according to the flowchart shown in FIG. 10, the overlapping description regarding the same structure is abbreviate
- the switch group 24 is omitted, and the electrode unit 22 having a single active electrode E11 is replaced with the electrode unit 26.
- the branch terminal T3 of the switch SW1 is directly connected to the active electrode E11.
- the position sensor 28 has a plurality of sensor elements PS1 to PS21 provided in a matrix on the back side of the upper surface of the housing HS1.
- the position on the housing HS1 where the power receiving device 40 or 60 is placed is detected based on the plurality of sensor elements PS1 to PS21.
- the antenna 30 corresponds to an antenna for communicating with the mobile device 50 or 70.
- the power transmission method adopted by the power receiving device 40 is recognized by the mobile device 50, and the power transmission method adopted by the power receiving device 60 is recognized by the mobile device 70.
- the recognized power transmission method is transferred from the mobile device 50 or 70 to the power transmission device 10 and given to the control circuit 14 via the antenna 30 and the communication circuit 32.
- the active electrode E11 has the same shape and size as one of the active electrodes E1 to E4 described above, with one main surface facing upward and the other.
- the main surface is housed in the housing HS1 with the posture facing downward.
- the active electrode E11 is disposed at the same height as the induction coil L3.
- the power transmission module TM1 additionally includes a communication circuit 32.
- the coil unit 20 is moved by the XY table 18 so that the induction coil L3 is disposed below the power receiving device 40 when the power receiving device 40 employing the magnetic field coupling method is placed at the position shown in FIG.
- the electrode unit 26 is placed on the XY table so that the active electrode E11 is disposed below the power receiving device 40. 18 is moved.
- step S31 ID authentication is executed with a mobile device existing in the vicinity.
- step S33 it is determined whether or not the authentication is successful. If the determination result is NO, the processes in steps S31 to S33 are repeated. When the determination result is updated from NO to YES, the process proceeds to step S35, and the placement position of the authenticated power receiving apparatus is detected based on the output of the position sensor 28. When the position detection is completed, it is determined in steps S39 to S41 whether the power transmission method employed by the power receiving device mounted on the housing HS1 is the magnetic field coupling method or the electric field coupling method. In the determination, the specification information acquired from the mobile device 50 or 70 at the time of ID authentication is referred to.
- step S41 the power receiving device mounted on the housing HS1 is the power receiving device 40 adopting the magnetic field coupling method
- the process proceeds from step S41 to step S43, and the power transmission method is set to the magnetic field coupling method.
- the common terminal T1 of the switch SW1 is connected to the branch terminal T2.
- step S45 the XY table 18 is controlled to move the coil unit 20 to the lower part of the power receiving device 40.
- the coil unit 20, that is, the induction coil L ⁇ b> 3 is disposed at a position facing the induction coil L ⁇ b> 4 provided in the power receiving device 40.
- step S47 the step-up ratio of the step-up transformer 18 is adjusted to a ratio for magnetic field coupling.
- step-up transformer when the step-up transformer is constituted by a winding type transformer, a plurality of midpoint taps are provided in the primary winding or the secondary winding, and a method of switching the turn ratio or a piezoelectric transformer is used for the transformer. A method of adjusting the step-up ratio by changing the frequency of the applied AC voltage is conceivable.
- a PWM signal is given to the drive circuit 12 to start power transmission to the power receiving device 40.
- step S49 the process proceeds from step S41 to step S49, and the power transmission method is set to the electric field coupling method.
- the common terminal T1 of the switch SW1 is connected to the branch terminal T3.
- step S51 the XY table 18 is controlled to move the electrode unit 26 to the lower part of the power receiving device 60.
- the electrode unit 22, that is, the active electrode E ⁇ b> 11 is disposed at a position facing the active electrode E ⁇ b> 6 provided in the power receiving device 60.
- step S53 the step-up ratio of the step-up transformer 18 is adjusted to a ratio for electric field coupling.
- step-up transformer when the step-up transformer is constituted by a winding type transformer, a plurality of midpoint taps are provided in the primary winding or the secondary winding, and a method of switching the turn ratio or a piezoelectric transformer is used for the transformer. A method of adjusting the step-up ratio by changing the frequency of the applied AC voltage is conceivable.
- step S53 When the process of step S53 is completed, a PWM signal is given to the drive circuit 12 to start power transmission to the power receiving device 60.
- the primary winding L1 forming the step-up transformer 16 is connected to the drive circuit 12 that generates an AC voltage.
- One end of the secondary winding L2 constituting the step-up transformer 16 is connected to one end of an induction coil L3 for magnetic field coupling, and further to a passive electrode E5 for electric field coupling.
- the active electrode E11 cooperates with the passive electrode E5 to realize electric field coupling type power transmission.
- the other end of the secondary winding L2 forming the step-up transformer 16 is connected to the induction coil L3 and the active electrode E11 via the switch SW1.
- the control circuit 14 identifies the power transmission method of the power receiving device mounted on the mounting surface of the housing HS1 and controls the connection mode of the switch SW1 (S37 to S41, S47).
- the other end of the secondary winding L2 is connected to either the other end of the induction coil L3 or the passive electrode E11 by the switch SW1, and the connection mode of the switch SW1 is based on the power transmission method of the power receiving device. Identify and control.
- the passive electrode E5 functions as a ground electrode when the magnetic field coupling method is selected, and functions as a part of the power transmission electrode when the electric field coupling method is selected.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
The primary winding (L1) of a step-up transformer (16) is connected to a drive circuit (12) that generates an AC voltage. One end of the secondary winding (L2) of said step-up transformer (16) is connected to one end of an induction coil (L3) used for magnetic-field coupling and is also connected to a passive electrode (E5) used for electric-field coupling. Active electrodes (E1 through E4) work in concert with said passive electrode (E5) to implement electric-field-coupling power transfer. The other end of the secondary winding (L2) of the step-up transformer (16) is connected to the induction coil (L3) and the active electrodes (E1 through E4) via a switch (SW1). A control circuit (14) identifies the power-transfer scheme used by a power-reception apparatus placed on a placement surface of a housing and controls the connection state of the aforementioned switch (SW1).
Description
この発明は、送電装置に関し、特に送電装置から受電装置に対して無線で電力を伝送する、送電装置に関する。
The present invention relates to a power transmission device, and more particularly to a power transmission device that wirelessly transmits power from a power transmission device to a power reception device.
ワイヤレス電力伝送方式としては、たとえば特許文献1のように、磁界結合を利用して送電ユニット側の一次コイルから負荷ユニット側の二次コイルに電力を伝送する方式が一般的である。また、たとえば特許文献1~3のように静電界を利用して送電ユニット側の結合用電極から負荷ユニット側の結合用電極に電力を伝送する方式(電界結合方式)が知られている。
As a wireless power transmission method, for example, as in Patent Document 1, a method of transmitting power from a primary coil on the power transmission unit side to a secondary coil on the load unit side using magnetic field coupling is generally used. For example, as in Patent Documents 1 to 3, a method (electric field coupling method) is known in which electric power is transmitted from a coupling electrode on the power transmission unit side to a coupling electrode on the load unit side using an electrostatic field.
しかし、磁界結合方式では、コイルを通る磁束の大きさが起電力に大きく影響するため、一次コイルと二次コイルの高い位置精度が要求され、かつコイルの小型化が難しい。
However, in the magnetic field coupling method, since the magnitude of the magnetic flux passing through the coil greatly affects the electromotive force, high positional accuracy of the primary coil and the secondary coil is required, and it is difficult to reduce the size of the coil.
また、電界結合方式では、結合用電極間の静電界を利用することから、各結合用電極の位置精度を緩和することができ、また結合用電極を小型化できるという利点があるものの、磁界結合方式とは全く異なる原理が採用されるため、1つの送電装置でいずれの方式にも対応しようとすると、回路構成の複雑化を引き起こすおそれがある。
In addition, the electric field coupling method uses an electrostatic field between the coupling electrodes, so that the positional accuracy of each coupling electrode can be relaxed and the coupling electrode can be downsized. Since a principle completely different from the method is adopted, if one power transmission device is adapted to any method, the circuit configuration may be complicated.
それゆえに、この発明の主たる目的は、回路構成の複雑化を抑制しつつ磁界結合方式および電界結合方式の両方に対応できる、送電装置を提供することである。
Therefore, a main object of the present invention is to provide a power transmission device that can cope with both the magnetic field coupling method and the electric field coupling method while suppressing the complexity of the circuit configuration.
この発明に従う送電装置(10:実施例で相当する参照符号。以下同じ)は、交流電源(12~14)に接続された低圧側巻線(L1)、低圧側巻線と協働して昇圧トランス(16)をなす高圧側巻線(L2)、高圧側巻線の一方端に接続された一方端を有して磁界結合方式の電力伝送を行うコイル(L3)、高圧側巻線の一方端に接続された第1電極(E5)、第1電極と協働して電界結合方式の電力伝送を行う第2電極(E1~E4, E11)、コイルの他方端および第2電極を高圧側巻線の他方端に選択的に接続する第1スイッチ(SW1)、および筐体の載置面に載置された受電装置の電力伝送方式を識別して第1スイッチの接続態様を制御する制御手段(S1, S11~S15, S37~S41, S47)を備える。
A power transmission device according to the present invention (10: reference numeral corresponding to the embodiment; the same applies hereinafter) is a voltage booster in cooperation with a low voltage side winding (L1) connected to an AC power source (12 to 14) and a low voltage side coil. High-voltage side winding (L2) forming the transformer (16), one end connected to one end of the high-voltage side winding, a coil (L3) for performing magnetic field coupling type power transmission, one of the high-voltage side winding The first electrode (E5) connected to the end, the second electrode (E1 to E4, E11) that performs electric field coupling type power transmission in cooperation with the first electrode, the other end of the coil and the second electrode on the high voltage side The first switch (SW1) that is selectively connected to the other end of the winding, and the control that controls the connection mode of the first switch by identifying the power transmission method of the power receiving device placed on the placement surface of the housing Means (S1, S11 to S15, S37 to S41, S47) are provided.
好ましくは、制御手段は、受電装置の電力伝送方式が磁界結合方式であるときコイルの他方端の選択を第1スイッチに要求する第1要求手段(S13~S15, S39~S41)、および受電装置の電力伝送方式が電界結合方式であるとき第2電極の選択を第1スイッチに要求する第2要求手段(S1, S13, S39, S47)を含む。
Preferably, the control means includes first request means (S13 to S15, S39 to S41) for requesting the first switch to select the other end of the coil when the power transmission method of the power receiving device is a magnetic field coupling method, and the power receiving device When the power transmission method is an electric field coupling method, second request means (S1, S13, S39, S47) for requesting the first switch to select the second electrode is included.
好ましくは、第1電極および第2電極はそれぞれ大型電極および小型電極に相当する。
Preferably, the first electrode and the second electrode correspond to a large electrode and a small electrode, respectively.
好ましくは、第2電極は複数の部分電極(E1~E4)を含み、複数の部分電極を第1スイッチに選択的に接続する第2スイッチ(24)がさらに備えられる。
Preferably, the second electrode includes a plurality of partial electrodes (E1 to E4), and further includes a second switch (24) for selectively connecting the plurality of partial electrodes to the first switch.
好ましくは、受電装置の電力伝送方式に適合するように昇圧トランスの変圧比を調整する調整手段(S19, S23, S45, S51)がさらに備えられる。
Preferably, adjustment means (S19, S23, S45, S51) for adjusting the transformation ratio of the step-up transformer so as to conform to the power transmission method of the power receiving device is further provided.
好ましくは、受電装置の位置を検知する検知手段(S3~S9, S35)、受電装置の受電方式が磁界結合方式であるときコイルを検知手段によって検知された位置に移動させる第1移動手段(S17, S43)、および受電装置の受電方式が電界結合方式であるとき第2電極を検知手段によって検知された位置に移動させる第2移動手段(S21, S49)がさらに備えられる。
Preferably, the detecting means (S3 to S9, S35) for detecting the position of the power receiving device, and the first moving means (S17) for moving the coil to the position detected by the detecting means when the power receiving method of the power receiving device is a magnetic field coupling method. , S43), and second moving means (S21, S49) for moving the second electrode to the position detected by the detecting means when the power receiving method of the power receiving apparatus is the electric field coupling method.
高圧側巻線の他方端は第1スイッチによってコイルの他方端および第2電極のいずれか一方に接続されるところ、第1スイッチの接続態様は筐体の載置面に載置された受電装置の電力伝送方式を識別して制御される。
The other end of the high-voltage side winding is connected to one of the other end of the coil and the second electrode by the first switch, and the connection mode of the first switch is the power receiving device placed on the placement surface of the housing The power transmission method is identified and controlled.
これによって、第1電極は、磁界結合方式が選択されたときグランド電極として機能する一方、電界結合方式が選択されたとき電力伝送用の電極の一部として機能する。第1電極をこうして共用することで、回路構成の複雑化を抑制しつつ磁界結合方式および電界結合方式の両方に対応することができる。
Thus, the first electrode functions as a ground electrode when the magnetic field coupling method is selected, and functions as a part of the power transmission electrode when the electric field coupling method is selected. By sharing the first electrode in this way, it is possible to cope with both the magnetic field coupling method and the electric field coupling method while suppressing the complexity of the circuit configuration.
この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。
The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
図1を参照して、この実施例の電力伝送システムは、磁界結合方式および電界結合方式の両方に対応する送電装置10と、磁界結合方式に対応する受電装置40および電界結合方式に対応する受電装置60とを備える。送電装置10は、図2(A)~図2(B)に示す直方体状の筐体HS1を有する。ここで、筐体HS1の一方主面および他方主面がそれぞれ上面および下面に相当し、受電装置40および60は筐体HS1の一方主面に択一的に載置される。送電装置10は、受電装置40が載置されたとき磁界結合方式で電力を受電装置40に伝送する一方、受電装置60が載置されたとき電界結合方式で電力を受電装置60に伝送する。
Referring to FIG. 1, the power transmission system of this embodiment includes a power transmission device 10 that supports both the magnetic field coupling method and the electric field coupling method, a power receiving device 40 that supports the magnetic field coupling method, and a power reception device that supports the electric field coupling method. Device 60. The power transmission device 10 includes a rectangular parallelepiped housing HS1 shown in FIGS. 2 (A) to 2 (B). Here, the one main surface and the other main surface of the housing HS1 correspond to the upper surface and the lower surface, respectively, and the power receiving devices 40 and 60 are alternatively placed on the one main surface of the housing HS1. The power transmission device 10 transmits power to the power receiving device 40 by the magnetic field coupling method when the power receiving device 40 is placed, and transmits power to the power receiving device 60 by the electric field coupling method when the power receiving device 60 is placed.
送電装置10において、制御回路14はPWM信号を駆動回路12に与える。駆動回路12は、直流電源Vccから供給された直流電圧を制御回路14から与えられたPWM信号に従って交流電圧に変換する。変換された交流電圧の周波数はPWM信号の周波数と一致し、変換された交流電圧のレベルはPWM信号のデューティ比に依存する。
In the power transmission device 10, the control circuit 14 gives a PWM signal to the drive circuit 12. The drive circuit 12 converts the DC voltage supplied from the DC power source Vcc into an AC voltage according to the PWM signal supplied from the control circuit 14. The frequency of the converted AC voltage matches the frequency of the PWM signal, and the level of the converted AC voltage depends on the duty ratio of the PWM signal.
変換された交流電圧は昇圧トランス16を形成する一次巻線L1に印加され、昇圧トランス16を形成する二次巻線L2には変圧比に応じて異なる電圧まで昇圧された交流電圧が励起される。二次巻線L2の一方端は、コイルユニット20に設けられた磁界結合用の誘導コイルL3の一方端と接続され、さらに電界結合用のパッシブ電極(大型電極)E5と接続される。また、二次巻線L2の他方端は、スイッチSW1を形成する共通端子T1と接続される。スイッチSW1を形成する分岐端子T2およびT3はそれぞれ、誘導コイルL3の他方端およびスイッチ群24と接続される。
The converted AC voltage is applied to the primary winding L1 forming the step-up transformer 16, and the AC voltage boosted to a different voltage according to the transformation ratio is excited in the secondary winding L2 forming the step-up transformer 16. . One end of the secondary winding L2 is connected to one end of an induction coil L3 for magnetic field coupling provided in the coil unit 20, and is further connected to a passive electrode (large electrode) E5 for electric field coupling. The other end of the secondary winding L2 is connected to a common terminal T1 that forms a switch SW1. Branch terminals T2 and T3 forming switch SW1 are connected to the other end of induction coil L3 and switch group 24, respectively.
なお、ここでスイッチSW1は、二次巻線L2の他方端を、誘導コイルL3の他方端およびスイッチ群24のいずれかに切り替えているが、二次巻線L2の一方端を、誘導コイルL3の一方端およびパッシブ電極E5のいずれかに切り替えてもよい。
Here, the switch SW1 switches the other end of the secondary winding L2 to either the other end of the induction coil L3 or the switch group 24, but the one end of the secondary winding L2 is switched to the induction coil L3. May be switched to either one of the first electrode and the passive electrode E5.
スイッチ群24はスイッチSW11~SW14を有し、電極ユニット22はアクティブ電極(小型電極)E1~E4を有する。分岐端子T3は、スイッチSW11を介してアクティブ電極E1と接続され、スイッチSW12を介してアクティブ電極E2と接続され、スイッチSW13を介してアクティブ電極E3と接続され、そしてスイッチSW14を介してアクティブ電極E4と接続される。
The switch group 24 includes switches SW11 to SW14, and the electrode unit 22 includes active electrodes (small electrodes) E1 to E4. The branch terminal T3 is connected to the active electrode E1 through the switch SW11, is connected to the active electrode E2 through the switch SW12, is connected to the active electrode E3 through the switch SW13, and is connected to the active electrode E4 through the switch SW14. Connected.
スイッチSW1を形成する共通端子T1は、受電装置40が筐体HS1に載置されたとき分岐端子T2と接続される一方、受電装置60が筐体HS1に載置されたとき分岐端子T3と接続される。
The common terminal T1 forming the switch SW1 is connected to the branch terminal T2 when the power receiving device 40 is placed on the housing HS1, and is connected to the branch terminal T3 when the power receiving device 60 is placed on the housing HS1. Is done.
また、スイッチSW11~SW14は、受電装置60が筐体HS1に載置されたときに択一的にオンされる。具体的には、受電装置60の載置位置がアクティブ電極E1の近傍であればスイッチSW11がオンされ、受電装置60の載置位置がアクティブ電極E2の近傍であればスイッチSW12がオンされる。また、受電装置60の載置位置がアクティブ電極E3の近傍であればスイッチSW13がオンされ、受電装置60の載置位置がアクティブ電極E4の近傍であればスイッチSW14がオンされる。
The switches SW11 to SW14 are alternatively turned on when the power receiving device 60 is placed on the housing HS1. Specifically, the switch SW11 is turned on when the power receiving device 60 is placed near the active electrode E1, and the switch SW12 is turned on when the power receiving device 60 is placed near the active electrode E2. Further, the switch SW13 is turned on when the power receiving device 60 is placed near the active electrode E3, and the switch SW14 is turned on when the power receiving device 60 is placed near the active electrode E4.
なお、筐体HS1への受電装置40または60の載置を検出する段階では、スイッチSW1を形成する共通端子T1は分岐端子T3と接続され、スイッチSW11~SW14は循環的かつ択一的にオンされる。受電装置40または60が筐体HS1に載置されると、駆動回路12よりも出力側のインピーダンスが増大し、かつインピーダンス値は受電装置40が載置されるときと受電装置60が載置されるときとで相違する。スイッチSW1およびスイッチ群24の設定は、このようなインピーダンスを参照して調整される。
At the stage of detecting the placement of the power receiving device 40 or 60 on the housing HS1, the common terminal T1 forming the switch SW1 is connected to the branch terminal T3, and the switches SW11 to SW14 are turned on cyclically and alternatively. Is done. When the power receiving device 40 or 60 is placed on the housing HS1, the impedance on the output side of the drive circuit 12 increases, and the impedance value is the same as when the power receiving device 40 is placed and when the power receiving device 60 is placed. It is different from the time. The settings of the switch SW1 and the switch group 24 are adjusted with reference to such impedance.
図2(A)~図2(B)から分かるように、アクティブ電極E1~E4およびパッシブ電極E5はいずれも矩形の板状に形成され、筐体HS1に収められる。また、誘導コイルL3は円盤状に形成され、これもまた筐体HS1に収められる。
As can be seen from FIG. 2A to FIG. 2B, the active electrodes E1 to E4 and the passive electrode E5 are all formed in a rectangular plate shape and housed in the housing HS1. Moreover, the induction coil L3 is formed in a disk shape, and this is also housed in the housing HS1.
ここで、アクティブ電極E1~E4の主面の面積は互いに共通し、かつパッシブ電極E5の主面の面積よりも格段に小さい。また、パッシブ電極E5の主面の面積は、筐体HS1の主面の面積よりも僅かに小さい。さらに、誘導コイルL3の主面をなす円の直径は、アクティブ電極E1~E4の各々の主面をなす矩形の短辺よりも僅かに小さい。
Here, the areas of the main surfaces of the active electrodes E1 to E4 are common to each other and are much smaller than the area of the main surface of the passive electrode E5. Further, the area of the main surface of the passive electrode E5 is slightly smaller than the area of the main surface of the housing HS1. Further, the diameter of the circle forming the main surface of the induction coil L3 is slightly smaller than the short side of the rectangle forming the main surface of each of the active electrodes E1 to E4.
ここで、アクティブ電極・パッシブ電極の面積は同じでもよい。
Here, the areas of the active electrode and the passive electrode may be the same.
なお、アクティブ電極の面積がパッシブ電極より小さい場合、スイッチSW1をアクティブ電極側に設ける(二次巻線L2の他方端を、誘導コイルL3の他方端およびスイッチ群24のいずれかに切り替える)ほうが、パッシブ電極側に設ける(二次巻線L2の一方端を、誘導コイルL3の一方端およびパッシブ電極E5のいずれかに切り替える)ことと比べて、アクティブ電極の高電界が誘導コイルL3に影響を与えにくいので好ましい。
If the area of the active electrode is smaller than the passive electrode, the switch SW1 is provided on the active electrode side (the other end of the secondary winding L2 is switched to either the other end of the induction coil L3 or the switch group 24). Compared with providing on the passive electrode side (switching one end of the secondary winding L2 to one end of the induction coil L3 or one of the passive electrodes E5), the high electric field of the active electrode affects the induction coil L3. It is preferable because it is difficult.
パッシブ電極E5は、その一方主面が上を向きかつ他方主面が下を向く姿勢で、筐体HS1の高さ方向におけるほぼ中央に設けられる。また、アクティブ電極E1~E4は、各々の一方主面が上を向きかつ各々の他方主面が下を向く姿勢で、パッシブ電極E5の上側に設けられる。上方から眺めたとき、アクティブ電極E1~E4は、マトリクス状に配置される。
The passive electrode E5 is provided at a substantially central position in the height direction of the housing HS1 in a posture in which one main surface faces upward and the other main surface faces downward. The active electrodes E1 to E4 are provided on the upper side of the passive electrode E5 in such a posture that each one main surface faces upward and each other main surface faces downward. When viewed from above, the active electrodes E1 to E4 are arranged in a matrix.
さらに、誘導コイルL3は、その一方主面が上を向きかつ他方主面が下を向く姿勢で、パッシブ電極E5の上側に設けられる。誘導コイルL3の一方主面から筐体HS1の一方主面までの距離は、アクティブ電極E1~E4の各々の一方主面から筐体HS1の一方主面までの距離よりも小さい。同様に、誘導コイルL3の他方主面から筐体HS1の一方主面までの距離も、アクティブ電極E1~E4の各々の一方主面から筐体HS1の一方主面までの距離よりも小さい。
Furthermore, the induction coil L3 is provided on the upper side of the passive electrode E5 in a posture in which one main surface faces upward and the other main surface faces downward. The distance from one main surface of induction coil L3 to one main surface of housing HS1 is smaller than the distance from one main surface of each of active electrodes E1 to E4 to one main surface of housing HS1. Similarly, the distance from the other main surface of induction coil L3 to one main surface of housing HS1 is also smaller than the distance from one main surface of each of active electrodes E1 to E4 to one main surface of housing HS1.
図1に示すXYテーブル18は、誘導コイルL3の一方主面が常に上を向く姿勢でコイルユニット20を左右方向(=水平方向)に移動させ、アクティブ電極E1~E4の一方主面が常に上を向く姿勢で電極ユニット22を左右方向に移動させる。磁界結合方式を採用する受電装置40が図3に示す位置に載置されたとき、誘導コイルL3が受電装置40の下部に配置されるように、コイルユニット20がXYテーブル18によって移動される。これに対して、電界結合方式を採用する受電装置60が図4に示す位置に載置されたときは、アクティブ電極E1~E4のいずれか1つが受電装置40の下部に配置されるように、電極ユニット24がXYテーブル18によって移動される。
The XY table 18 shown in FIG. 1 moves the coil unit 20 in the left-right direction (= horizontal direction) in a posture in which one main surface of the induction coil L3 always faces upward, and one main surface of the active electrodes E1 to E4 is always upward. The electrode unit 22 is moved in the left-right direction with the posture facing the. When the power receiving device 40 employing the magnetic field coupling method is placed at the position shown in FIG. 3, the coil unit 20 is moved by the XY table 18 so that the induction coil L <b> 3 is disposed below the power receiving device 40. On the other hand, when the power receiving device 60 that employs the electric field coupling method is placed at the position shown in FIG. 4, any one of the active electrodes E1 to E4 is disposed below the power receiving device 40. The electrode unit 24 is moved by the XY table 18.
なお、駆動回路12,制御回路14,昇圧トランス16,スイッチSW1およびスイッチ群24は、送電モジュールTM1に内蔵される。
The drive circuit 12, the control circuit 14, the step-up transformer 16, the switch SW1, and the switch group 24 are built in the power transmission module TM1.
図1に戻って、受電装置40には、磁界結合用の誘導コイルL4が設けられる。誘導コイルL4の一方端および他方端はそれぞれ、二次巻線L6とともに降圧トランス42を形成する一次巻線L5の一方端および他方端と接続される。したがって、送電装置10の誘導コイルL3に交流電圧が印加されると、これに対応する交流電圧が誘導コイルL4に励起され、さらに降圧トランス42の降圧比に応じた電圧を示す交流電圧が二次コイルL6に励起される。
1, the power receiving device 40 is provided with an induction coil L4 for magnetic field coupling. One end and the other end of induction coil L4 are connected to one end and the other end of primary winding L5 that form step-down transformer 42 together with secondary winding L6. Therefore, when an AC voltage is applied to the induction coil L3 of the power transmission device 10, an AC voltage corresponding to the AC voltage is excited in the induction coil L4, and an AC voltage indicating a voltage corresponding to the step-down ratio of the step-down transformer 42 is secondary. Excited by the coil L6.
整流平滑回路44は、二次コイルL6に励起された交流電圧に整流平滑を施す。DC-DCコンバータ46は、これによって生成された直流電圧のレベルを調整し、調整後のレベルを有する直流電圧を受電装置40と一体化されたモバイル機器50に供給する。
The rectifying / smoothing circuit 44 rectifies and smoothes the AC voltage excited by the secondary coil L6. The DC-DC converter 46 adjusts the level of the DC voltage generated thereby, and supplies the DC voltage having the adjusted level to the mobile device 50 integrated with the power receiving device 40.
受電装置60には、電界結合用のアクティブ電極E6およびパッシブ電極E7が設けられる。アクティブ電極E6およびパッシブ電極E7はそれぞれ、二次巻線L8とともに降圧トランス62を形成する一次巻線L7の一方端および他方端と接続される。
The power receiving device 60 is provided with an active electrode E6 and a passive electrode E7 for electric field coupling. The active electrode E6 and the passive electrode E7 are connected to one end and the other end of the primary winding L7 that form the step-down transformer 62 together with the secondary winding L8.
したがって、送電装置10に設けられたアクティブ電極E1~E4のいずれか1つおよびパッシブ電極E5に交流電圧が印加されると、これに対応する交流電圧がアクティブ電極E6およびパッシブ電極E7に励起され、さらに降圧トランス62の降圧比に応じた電圧を示す交流電圧が二次コイルL8に励起される。
Therefore, when an AC voltage is applied to any one of the active electrodes E1 to E4 and the passive electrode E5 provided in the power transmission device 10, the corresponding AC voltage is excited to the active electrode E6 and the passive electrode E7, Further, an AC voltage indicating a voltage corresponding to the step-down ratio of the step-down transformer 62 is excited in the secondary coil L8.
整流平滑回路64は、二次コイルL8に励起された交流電圧に整流平滑を施す。DC-DCコンバータ66は、これによって生成された直流電圧のレベルを調整し、調整後のレベルを有する直流電圧を受電装置60と一体化されたモバイル機器70に供給する。
The rectifying / smoothing circuit 64 rectifies and smoothes the AC voltage excited by the secondary coil L8. The DC-DC converter 66 adjusts the level of the DC voltage generated thereby, and supplies the DC voltage having the adjusted level to the mobile device 70 integrated with the power receiving device 60.
制御回路14は、受電装置40および60に対して択一的に電力を伝送するべく、図5に示すフロー図に従う処理を実行する。
The control circuit 14 executes processing according to the flowchart shown in FIG. 5 in order to selectively transmit power to the power receiving apparatuses 40 and 60.
まずステップS1で、電力伝送方式を電界結合方式に設定するべくスイッチSW1の共通端子T1を分岐端子T3に接続する。ステップS3ではアクティブ電極E1を有効化するべくスイッチSW11をオンし、ステップS5では駆動回路12よりも出力側のインピーダンスを測定する。
First, in step S1, the common terminal T1 of the switch SW1 is connected to the branch terminal T3 in order to set the power transmission method to the electric field coupling method. In step S3, the switch SW11 is turned on to validate the active electrode E1, and in step S5, the impedance on the output side of the drive circuit 12 is measured.
ステップS7では、有効化されたアクティブ電極E1の近傍に受電装置40または60が載置されたか否かを測定されたインピーダンスに基づいて判別する。判別結果がNOであればステップS9で他のアクティブ電極を代替的に有効化しその後にステップS3に戻る。したがって、ステップS7の判別結果がNOを維持する限り、有効化されるアクティブ電極は、“E1”→“E2”→“E3”→“E4”→“E1”→…の順序で循環的に切り換えられる。
In step S7, whether or not the power receiving device 40 or 60 is placed in the vicinity of the activated active electrode E1 is determined based on the measured impedance. If the determination result is NO, other active electrodes are alternatively enabled in step S9, and then the process returns to step S3. Therefore, as long as the determination result of step S7 is maintained NO, the active electrode to be activated is cyclically switched in the order of “E1” → “E2” → “E3” → “E4” → “E1” →. It is done.
ステップS7の判別結果がYESであれば、筐体HS1に載置された受電装置が採用する電力伝送方式が磁界結合方式および電界結合方式のいずれであるかをステップS11~S13で判別する。判別にあたっては、ステップS5で測定されたインピーダンスが参照される。
If the determination result in step S7 is YES, it is determined in steps S11 to S13 whether the power transmission method employed by the power receiving device mounted on the housing HS1 is the magnetic field coupling method or the electric field coupling method. In the determination, the impedance measured in step S5 is referred to.
筐体HS1に載置された受電装置が磁界結合方式を採用する受電装置40であれば、ステップS13からステップS15に進み、電力伝送方式を磁界結合方式に設定する。具体的には、スイッチSW1の共通端子T1を分岐端子T2に接続する。ステップS17では、XYテーブル18を制御してコイルユニット20を受電装置40の下部に移動させる。コイルユニット20つまり誘導コイルL3は、受電装置40に設けられた誘導コイルL4と対向する位置に配置される。
If the power receiving device mounted on the housing HS1 is the power receiving device 40 adopting the magnetic field coupling method, the process proceeds from step S13 to step S15, and the power transmission method is set to the magnetic field coupling method. Specifically, the common terminal T1 of the switch SW1 is connected to the branch terminal T2. In step S <b> 17, the XY table 18 is controlled to move the coil unit 20 to the lower part of the power receiving device 40. The coil unit 20, that is, the induction coil L <b> 3 is disposed at a position facing the induction coil L <b> 4 provided in the power receiving device 40.
ステップS19では昇圧トランス18の昇圧比を磁界結合用の比率に調整する。具体的には、昇圧トランスを巻線型トランスで構成する場合は、1次巻線または2次巻線に複数の中点タップを設け、巻数比を切り換える方式や、圧電トランスを用いて、トランスに印加する交流電圧の周波数を変化させて昇圧比を調整する方式などが考えられる。ステップS19の処理が完了すると、受電装置40への送電を開始するべく、PWM信号を駆動回路12に与える。
In step S19, the step-up ratio of the step-up transformer 18 is adjusted to the ratio for magnetic field coupling. Specifically, when the step-up transformer is constituted by a winding type transformer, a plurality of midpoint taps are provided in the primary winding or the secondary winding, and a method of switching the turn ratio or a piezoelectric transformer is used for the transformer. A method of adjusting the step-up ratio by changing the frequency of the applied AC voltage is conceivable. When the process of step S19 is completed, a PWM signal is given to the drive circuit 12 to start power transmission to the power receiving device 40.
これに対して、筐体HS1に載置された受電装置が電界結合方式を採用する受電装置60であれば、ステップS21に進み、XYテーブル18を制御して電極ユニット22を受電装置60の下部に移動させる。電極ユニット22は、有効化されたアクティブ電極が受電装置60のアクティブ電極E6と対向する位置に配置される。ステップS23では昇圧トランス18の昇圧比を電界結合用の比率に調整する。具体的には、昇圧トランスを巻線型トランスで構成する場合は、1次巻線または2次巻線に複数の中点タップを設け、巻数比を切り換える方式や、圧電トランスを用いて、トランスに印加する交流電圧の周波数を変化させて昇圧比を調整する方式などが考えられる。ステップS23の処理が完了すると、受電装置60への送電を開始するべく、PWM信号を駆動回路12に与える。
On the other hand, if the power receiving device mounted on the housing HS1 is the power receiving device 60 that adopts the electric field coupling method, the process proceeds to step S21, and the XY table 18 is controlled to place the electrode unit 22 below the power receiving device 60. Move to. The electrode unit 22 is disposed at a position where the activated active electrode faces the active electrode E <b> 6 of the power receiving device 60. In step S23, the step-up ratio of the step-up transformer 18 is adjusted to a ratio for electric field coupling. Specifically, when the step-up transformer is constituted by a winding type transformer, a plurality of midpoint taps are provided in the primary winding or the secondary winding, and a method of switching the turn ratio or a piezoelectric transformer is used for the transformer. A method of adjusting the step-up ratio by changing the frequency of the applied AC voltage is conceivable. When the process of step S23 is completed, a PWM signal is given to the drive circuit 12 to start power transmission to the power receiving device 60.
以上の説明から分かるように、昇圧トランス16をなす一次巻線L1は、交流電圧を発生する駆動回路12と接続される。昇圧トランス16をなす二次巻線L2の一方端は、磁界結合用の誘導コイルL3の一方端と接続され、さらに電界結合用のパッシブ電極E5と接続される。アクティブ電極E1~E4は、パッシブ電極E5と協働して電界結合方式の電力伝送を実現する。昇圧トランス16をなす二次巻線L2の他方端は、スイッチSW1を介して誘導コイルL3およびアクティブ電極E1~E4と接続される。制御回路14は、筐体HS1の載置面に載置された受電装置の電力伝送方式を識別してスイッチSW1の接続態様を制御する(S1, S11~S15)。
As can be seen from the above description, the primary winding L1 forming the step-up transformer 16 is connected to the drive circuit 12 that generates an AC voltage. One end of the secondary winding L2 constituting the step-up transformer 16 is connected to one end of an induction coil L3 for magnetic field coupling, and further to a passive electrode E5 for electric field coupling. The active electrodes E1 to E4 realize electric field coupling type power transmission in cooperation with the passive electrode E5. The other end of the secondary winding L2 forming the step-up transformer 16 is connected to the induction coil L3 and the active electrodes E1 to E4 via the switch SW1. The control circuit 14 identifies the power transmission method of the power receiving device mounted on the mounting surface of the housing HS1 and controls the connection mode of the switch SW1 (S1, S11 to S15).
ここで、昇圧トランス18の昇圧比は調整することなく固定でもよい。
Here, the step-up ratio of the step-up transformer 18 may be fixed without adjustment.
このように、二次巻線L2の他方端は、スイッチSW1によって誘導コイルL3の他方端およびパッシブ電極E5のいずれか一方に接続されるところ、スイッチSW1の接続態様は受電装置の電力伝送方式を識別して制御される。
In this way, the other end of the secondary winding L2 is connected to either the other end of the induction coil L3 or the passive electrode E5 by the switch SW1, and the connection mode of the switch SW1 is based on the power transmission method of the power receiving device. Identify and control.
これによって、パッシブ電極E5は、磁界結合方式が選択されたときグランド電極として機能する一方、電界結合方式が選択されたとき電力伝送用の電極の一部として機能する。パッシブ電極E5をこうして共用することで、回路構成の複雑化を抑制しつつ磁界結合方式および電界結合方式の両方に対応することができる。
Thus, the passive electrode E5 functions as a ground electrode when the magnetic field coupling method is selected, and functions as a part of the power transmission electrode when the electric field coupling method is selected. By sharing the passive electrode E5 in this way, it is possible to cope with both the magnetic field coupling method and the electric field coupling method while suppressing the complexity of the circuit configuration.
図6を参照して、他の実施例の電力伝送システムは、送電装置10の構成の一部が図1に示す送電装置10と相違し、制御回路14が図6に示すフロー図に代えて図10に示すフロー図に従う処理を実行する点を除き、上述の実施例と同様であるため、同様の構成に関する重複した説明は極力省略する。
Referring to FIG. 6, in a power transmission system according to another embodiment, a part of the configuration of power transmission device 10 is different from power transmission device 10 shown in FIG. 1, and control circuit 14 replaces the flowchart shown in FIG. 6. Since it is the same as that of the above-mentioned Example except the point which performs the process according to the flowchart shown in FIG. 10, the overlapping description regarding the same structure is abbreviate | omitted as much as possible.
図6によれば、スイッチ群24が省略され、単一のアクティブ電極E11を有する電極ユニット22が電極ユニット26に置換される。スイッチSW1の分岐端子T3は、アクティブ電極E11と直接的に接続される。
According to FIG. 6, the switch group 24 is omitted, and the electrode unit 22 having a single active electrode E11 is replaced with the electrode unit 26. The branch terminal T3 of the switch SW1 is directly connected to the active electrode E11.
図7(A)および図7(B)をさらに参照して、位置センサ28は、筐体HS1の上面の裏側にマトリクス状に設けられた複数のセンサ素子PS1~PS21を有する。受電装置40または60が筐体HS1のどの位置に載置されたかは、複数のセンサ素子PS1~PS21に基づいて検出される。
7A and 7B, the position sensor 28 has a plurality of sensor elements PS1 to PS21 provided in a matrix on the back side of the upper surface of the housing HS1. The position on the housing HS1 where the power receiving device 40 or 60 is placed is detected based on the plurality of sensor elements PS1 to PS21.
アンテナ30は、モバイル機器50または70と通信するためのアンテナに相当する。受電装置40が採用する電力伝送方式はモバイル機器50によって認識され、受電装置60が採用する電力伝送方式はモバイル機器70によって認識される。認識された電力伝送方式は、モバイル機器50または70から送電装置10に転送され、アンテナ30および通信回路32を介して制御回路14に与えられる。
The antenna 30 corresponds to an antenna for communicating with the mobile device 50 or 70. The power transmission method adopted by the power receiving device 40 is recognized by the mobile device 50, and the power transmission method adopted by the power receiving device 60 is recognized by the mobile device 70. The recognized power transmission method is transferred from the mobile device 50 or 70 to the power transmission device 10 and given to the control circuit 14 via the antenna 30 and the communication circuit 32.
図7(A)~図7(B)から分かるように、アクティブ電極E11は、上述したアクティブ電極E1~E4の1つと同様の形状およびサイズを有し、その一方主面が上を向きかつ他方主面が下を向く姿勢で筐体HS1に収められる。ただし、アクティブ電極E11は、誘導コイルL3と同じ高さに配置される。なお、送電モジュールTM1には、通信回路32が追加的に内蔵される。
As can be seen from FIGS. 7A to 7B, the active electrode E11 has the same shape and size as one of the active electrodes E1 to E4 described above, with one main surface facing upward and the other. The main surface is housed in the housing HS1 with the posture facing downward. However, the active electrode E11 is disposed at the same height as the induction coil L3. The power transmission module TM1 additionally includes a communication circuit 32.
磁界結合方式を採用する受電装置40が図8に示す位置に載置されたとき、誘導コイルL3が受電装置40の下部に配置されるように、コイルユニット20がXYテーブル18によって移動される。これに対して、電界結合方式を採用する受電装置60が図9に示す位置に載置されたときは、アクティブ電極E11が受電装置40の下部に配置されるように、電極ユニット26がXYテーブル18によって移動される。
The coil unit 20 is moved by the XY table 18 so that the induction coil L3 is disposed below the power receiving device 40 when the power receiving device 40 employing the magnetic field coupling method is placed at the position shown in FIG. On the other hand, when the power receiving device 60 that employs the electric field coupling method is placed at the position shown in FIG. 9, the electrode unit 26 is placed on the XY table so that the active electrode E11 is disposed below the power receiving device 40. 18 is moved.
受電装置40または60への電力伝送は、図10に示すフロー図に従って実行される。ステップS31では、周辺に存在するモバイル機器との間でID認証を実行する。ステップS33では認証に成功したか否かを判別し、判別結果がNOであればステップS31~S33の処理を繰り返す。判別結果がNOからYESに更新されるとステップS35に進み、認証された受電装置の載置位置を位置センサ28の出力に基づいて検出する。位置検出が完了すると、筐体HS1に載置された受電装置が採用する電力伝送方式が磁界結合方式および電界結合方式のいずれであるかをステップS39~S41で判別する。判別にあたっては、ID認証の際にモバイル機器50または70から取得した仕様情報が参照される。
The power transmission to the power receiving device 40 or 60 is executed according to the flowchart shown in FIG. In step S31, ID authentication is executed with a mobile device existing in the vicinity. In step S33, it is determined whether or not the authentication is successful. If the determination result is NO, the processes in steps S31 to S33 are repeated. When the determination result is updated from NO to YES, the process proceeds to step S35, and the placement position of the authenticated power receiving apparatus is detected based on the output of the position sensor 28. When the position detection is completed, it is determined in steps S39 to S41 whether the power transmission method employed by the power receiving device mounted on the housing HS1 is the magnetic field coupling method or the electric field coupling method. In the determination, the specification information acquired from the mobile device 50 or 70 at the time of ID authentication is referred to.
筐体HS1に載置された受電装置が磁界結合方式を採用する受電装置40であれば、ステップS41からステップS43に進み、電力伝送方式を磁界結合方式に設定する。具体的には、スイッチSW1の共通端子T1を分岐端子T2に接続する。ステップS45では、XYテーブル18を制御してコイルユニット20を受電装置40の下部に移動させる。コイルユニット20つまり誘導コイルL3は、受電装置40に設けられた誘導コイルL4と対向する位置に配置される。ステップS47では昇圧トランス18の昇圧比を磁界結合用の比率に調整する。具体的には、昇圧トランスを巻線型トランスで構成する場合は、1次巻線または2次巻線に複数の中点タップを設け、巻数比を切り換える方式や、圧電トランスを用いて、トランスに印加する交流電圧の周波数を変化させて昇圧比を調整する方式などが考えられる。ステップS47の処理が完了すると、受電装置40への送電を開始するべく、PWM信号を駆動回路12に与える。
If the power receiving device mounted on the housing HS1 is the power receiving device 40 adopting the magnetic field coupling method, the process proceeds from step S41 to step S43, and the power transmission method is set to the magnetic field coupling method. Specifically, the common terminal T1 of the switch SW1 is connected to the branch terminal T2. In step S45, the XY table 18 is controlled to move the coil unit 20 to the lower part of the power receiving device 40. The coil unit 20, that is, the induction coil L <b> 3 is disposed at a position facing the induction coil L <b> 4 provided in the power receiving device 40. In step S47, the step-up ratio of the step-up transformer 18 is adjusted to a ratio for magnetic field coupling. Specifically, when the step-up transformer is constituted by a winding type transformer, a plurality of midpoint taps are provided in the primary winding or the secondary winding, and a method of switching the turn ratio or a piezoelectric transformer is used for the transformer. A method of adjusting the step-up ratio by changing the frequency of the applied AC voltage is conceivable. When the process of step S47 is completed, a PWM signal is given to the drive circuit 12 to start power transmission to the power receiving device 40.
これに対して、筐体HS1に載置された受電装置が電界結合方式を採用する受電装置60であれば、ステップS41からステップS49に進み、電力伝送方式を電界結合方式に設定する。具体的には、スイッチSW1の共通端子T1を分岐端子T3に接続する。ステップS51では、XYテーブル18を制御して電極ユニット26を受電装置60の下部に移動させる。電極ユニット22つまりアクティブ電極E11は、受電装置60に設けられたアクティブ電極E6と対向する位置に配置される。ステップS53では昇圧トランス18の昇圧比を電界結合用の比率に調整する。具体的には、昇圧トランスを巻線型トランスで構成する場合は、1次巻線または2次巻線に複数の中点タップを設け、巻数比を切り換える方式や、圧電トランスを用いて、トランスに印加する交流電圧の周波数を変化させて昇圧比を調整する方式などが考えられる。ステップS53の処理が完了すると、受電装置60への送電を開始するべく、PWM信号を駆動回路12に与える。
On the other hand, if the power receiving device mounted on the housing HS1 is the power receiving device 60 adopting the electric field coupling method, the process proceeds from step S41 to step S49, and the power transmission method is set to the electric field coupling method. Specifically, the common terminal T1 of the switch SW1 is connected to the branch terminal T3. In step S51, the XY table 18 is controlled to move the electrode unit 26 to the lower part of the power receiving device 60. The electrode unit 22, that is, the active electrode E <b> 11 is disposed at a position facing the active electrode E <b> 6 provided in the power receiving device 60. In step S53, the step-up ratio of the step-up transformer 18 is adjusted to a ratio for electric field coupling. Specifically, when the step-up transformer is constituted by a winding type transformer, a plurality of midpoint taps are provided in the primary winding or the secondary winding, and a method of switching the turn ratio or a piezoelectric transformer is used for the transformer. A method of adjusting the step-up ratio by changing the frequency of the applied AC voltage is conceivable. When the process of step S53 is completed, a PWM signal is given to the drive circuit 12 to start power transmission to the power receiving device 60.
この実施例においても、昇圧トランス16をなす一次巻線L1は、交流電圧を発生する駆動回路12と接続される。昇圧トランス16をなす二次巻線L2の一方端は、磁界結合用の誘導コイルL3の一方端と接続され、さらに電界結合用のパッシブ電極E5と接続される。アクティブ電極E11は、パッシブ電極E5と協働して電界結合方式の電力伝送を実現する。昇圧トランス16をなす二次巻線L2の他方端は、スイッチSW1を介して誘導コイルL3およびアクティブ電極E11と接続される。制御回路14は、筐体HS1の載置面に載置された受電装置の電力伝送方式を識別してスイッチSW1の接続態様を制御する(S37~S41, S47)。
Also in this embodiment, the primary winding L1 forming the step-up transformer 16 is connected to the drive circuit 12 that generates an AC voltage. One end of the secondary winding L2 constituting the step-up transformer 16 is connected to one end of an induction coil L3 for magnetic field coupling, and further to a passive electrode E5 for electric field coupling. The active electrode E11 cooperates with the passive electrode E5 to realize electric field coupling type power transmission. The other end of the secondary winding L2 forming the step-up transformer 16 is connected to the induction coil L3 and the active electrode E11 via the switch SW1. The control circuit 14 identifies the power transmission method of the power receiving device mounted on the mounting surface of the housing HS1 and controls the connection mode of the switch SW1 (S37 to S41, S47).
このように、二次巻線L2の他方端は、スイッチSW1によって誘導コイルL3の他方端およびパッシブ電極E11のいずれか一方に接続されるところ、スイッチSW1の接続態様は受電装置の電力伝送方式を識別して制御される。
Thus, the other end of the secondary winding L2 is connected to either the other end of the induction coil L3 or the passive electrode E11 by the switch SW1, and the connection mode of the switch SW1 is based on the power transmission method of the power receiving device. Identify and control.
これによって、パッシブ電極E5は、磁界結合方式が選択されたときグランド電極として機能する一方、電界結合方式が選択されたとき電力伝送用の電極の一部として機能する。パッシブ電極E5をこうして共用することで、回路構成の複雑化を抑制しつつ磁界結合方式および電界結合方式の両方に対応することができる。
Thus, the passive electrode E5 functions as a ground electrode when the magnetic field coupling method is selected, and functions as a part of the power transmission electrode when the electric field coupling method is selected. By sharing the passive electrode E5 in this way, it is possible to cope with both the magnetic field coupling method and the electric field coupling method while suppressing the complexity of the circuit configuration.
10 …送電装置
14 …制御回路
16 …昇圧トランス
18 …XYテーブル
20 …コイルユニット
22,26 …電極ユニット
28 …位置センサ
30 …アンテナ DESCRIPTION OFSYMBOLS 10 ... Power transmission apparatus 14 ... Control circuit 16 ... Boosting transformer 18 ... XY table 20 ... Coil unit 22, 26 ... Electrode unit 28 ... Position sensor 30 ... Antenna
14 …制御回路
16 …昇圧トランス
18 …XYテーブル
20 …コイルユニット
22,26 …電極ユニット
28 …位置センサ
30 …アンテナ DESCRIPTION OF
Claims (6)
- 交流電源に接続された低圧側巻線、
前記低圧側巻線と協働して昇圧トランスをなす高圧側巻線、
前記高圧側巻線の一方端に接続された一方端を有して磁界結合方式の電力伝送を行うコイル、
前記高圧側巻線の前記一方端に接続された第1電極、
前記第1電極と協働して電界結合方式の電力伝送を行う第2電極、
前記コイルの他方端および前記第2電極のうち、一方を前記高圧側巻線の他方端に選択的に接続する第1スイッチ、および
受電装置の電力伝送方式を識別して前記第1スイッチの接続態様を制御する制御手段を備える、送電装置。 Low voltage side winding connected to AC power supply,
A high-voltage side winding that forms a step-up transformer in cooperation with the low-voltage side winding;
A coil that has one end connected to one end of the high-voltage side winding and performs magnetic field coupling type power transmission;
A first electrode connected to the one end of the high-voltage side winding;
A second electrode that performs electric field coupling type power transmission in cooperation with the first electrode;
A first switch that selectively connects one of the other end of the coil and the second electrode to the other end of the high-voltage side winding, and a connection of the first switch by identifying a power transmission system of a power receiving device A power transmission device comprising control means for controlling an aspect. - 前記制御手段は、前記受電装置の電力伝送方式が磁界結合方式であるとき前記コイルの他方端の選択を前記第1スイッチに要求する第1要求手段、および前記受電装置の電力伝送方式が電界結合方式であるとき前記第2電極の選択を前記第1スイッチに要求する第2要求手段を含む、請求項1記載の送電装置。 The control means includes first request means for requesting the first switch to select the other end of the coil when the power transmission method of the power receiving device is a magnetic field coupling method, and the power transmission method of the power receiving device is an electric field coupling. The power transmission device according to claim 1, further comprising: a second request unit that requests the first switch to select the second electrode when the method is used.
- 前記第1電極の面積は、前記第2電極の面積より大きい、請求項1または2記載の送電装置。 The power transmission device according to claim 1 or 2, wherein an area of the first electrode is larger than an area of the second electrode.
- 前記第2電極は複数の部分電極を含み、
前記複数の部分電極を前記第1スイッチに選択的に接続する第2スイッチをさらに備える、請求項1ないし3のいずれかに記載の送電装置。 The second electrode includes a plurality of partial electrodes,
4. The power transmission device according to claim 1, further comprising a second switch that selectively connects the plurality of partial electrodes to the first switch. 5. - 前記受電装置の電力伝送方式に適合するように前記昇圧トランスの変圧比を調整する調整手段をさらに備える、請求項1ないし4のいずれかに記載の送電装置。 The power transmission device according to any one of claims 1 to 4, further comprising adjusting means for adjusting a transformation ratio of the step-up transformer so as to be adapted to a power transmission method of the power receiving device.
- 前記受電装置の位置を検知する検知手段、
前記受電装置の受電方式が磁界結合方式であるとき前記コイルを前記検知手段によって検知された位置に移動させる第1移動手段、および
前記受電装置の受電方式が電界結合方式であるとき前記第2電極を前記検知手段によって検知された位置に移動させる第2移動手段をさらに備える、請求項1ないし5のいずれかに記載の送電装置。 Detecting means for detecting the position of the power receiving device;
First moving means for moving the coil to a position detected by the detecting means when the power receiving system of the power receiving apparatus is a magnetic field coupling system; and the second electrode when the power receiving system of the power receiving apparatus is an electric field coupling system The power transmission device according to any one of claims 1 to 5, further comprising a second moving unit that moves a position to a position detected by the detecting unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014557647A JP5804303B2 (en) | 2013-01-29 | 2013-09-03 | Power transmission equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013014879 | 2013-01-29 | ||
JP2013-014879 | 2013-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014119035A1 true WO2014119035A1 (en) | 2014-08-07 |
Family
ID=51261773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/073604 WO2014119035A1 (en) | 2013-01-29 | 2013-09-03 | Power-transmission apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5804303B2 (en) |
WO (1) | WO2014119035A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104362770A (en) * | 2014-11-06 | 2015-02-18 | 重庆大学 | Power signal parallel transfer circuit for ECPT (electric-field coupled power transfer) and control method of power signal parallel transfer circuit |
CN107482918A (en) * | 2016-12-23 | 2017-12-15 | 中南大学 | A kind of electric power electric transformer based on plate condenser |
CN109245329A (en) * | 2018-09-06 | 2019-01-18 | 华南理工大学 | A kind of wireless energy transfer system and method based on vector power superposition |
US10396599B2 (en) * | 2015-02-16 | 2019-08-27 | Lg Innotek Co., Ltd. | Wireless power transmission apparatus and wireless power transmission method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62501671A (en) * | 1985-01-11 | 1987-07-02 | インダラ コ−ポレ−シヨン | identification system |
JP2006246633A (en) * | 2005-03-03 | 2006-09-14 | Sony Corp | System, device and method for supplying power, power-receiving device/method, recording medium and program |
WO2008114268A2 (en) * | 2007-03-22 | 2008-09-25 | Powermat Ltd | Signal transfer system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1140206A (en) * | 1997-07-22 | 1999-02-12 | Sanyo Electric Co Ltd | Portable electrical equipment and charging table, and pack battery and charging table |
JP4962560B2 (en) * | 2006-03-21 | 2012-06-27 | 株式会社村田製作所 | Energy carrier with partial influence through a dielectric medium |
JP2009089520A (en) * | 2007-09-28 | 2009-04-23 | Takenaka Komuten Co Ltd | Power supply system |
JP4557049B2 (en) * | 2008-06-09 | 2010-10-06 | ソニー株式会社 | Transmission system, power supply apparatus, power reception apparatus, and transmission method |
-
2013
- 2013-09-03 JP JP2014557647A patent/JP5804303B2/en active Active
- 2013-09-03 WO PCT/JP2013/073604 patent/WO2014119035A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62501671A (en) * | 1985-01-11 | 1987-07-02 | インダラ コ−ポレ−シヨン | identification system |
JP2006246633A (en) * | 2005-03-03 | 2006-09-14 | Sony Corp | System, device and method for supplying power, power-receiving device/method, recording medium and program |
WO2008114268A2 (en) * | 2007-03-22 | 2008-09-25 | Powermat Ltd | Signal transfer system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104362770A (en) * | 2014-11-06 | 2015-02-18 | 重庆大学 | Power signal parallel transfer circuit for ECPT (electric-field coupled power transfer) and control method of power signal parallel transfer circuit |
US10396599B2 (en) * | 2015-02-16 | 2019-08-27 | Lg Innotek Co., Ltd. | Wireless power transmission apparatus and wireless power transmission method |
CN107482918A (en) * | 2016-12-23 | 2017-12-15 | 中南大学 | A kind of electric power electric transformer based on plate condenser |
CN109245329A (en) * | 2018-09-06 | 2019-01-18 | 华南理工大学 | A kind of wireless energy transfer system and method based on vector power superposition |
CN109245329B (en) * | 2018-09-06 | 2021-10-26 | 华南理工大学 | Wireless energy transmission system and method based on vector power superposition |
Also Published As
Publication number | Publication date |
---|---|
JP5804303B2 (en) | 2015-11-04 |
JPWO2014119035A1 (en) | 2017-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6835802B2 (en) | Vehicle wireless power transmitters and receivers | |
US9837829B2 (en) | Wireless power transmission system having wireless power transmitter | |
US10897153B2 (en) | System and method for charging receiver devices | |
KR102056404B1 (en) | Wireless power transmitting device and Controlling method thereof | |
US11183888B2 (en) | System and method for providing inductive power at multiple power levels | |
US9866042B2 (en) | Electronic apparatus and wireless power transmission system | |
KR102189365B1 (en) | Contactless-power-supply system, terminal device, contactless-power-supply device and contactless-power-supply method | |
US11081900B2 (en) | Charging pads and methods for charging receiver devices having different frequency standards | |
WO2011043074A1 (en) | Power supply system, and movable body and fixed body therefor | |
US20150022147A1 (en) | Device and method for wirelessly transmitting power | |
JP6089464B2 (en) | Non-contact power transmission device | |
JP2011045195A (en) | Non-contact power feeding device and non-contact power feeding method | |
JP2013532461A (en) | Circuit of contactless inductive power transmission system | |
JP2012138976A (en) | Power transmission system | |
KR20150106274A (en) | Wireless Power Transfer System including Wireless Power Transfer System-Charger | |
WO2013125091A1 (en) | Power transmission device and power transmission control method | |
JP2015223031A (en) | Power transmission device | |
US20190356171A1 (en) | System and method for actively controlling output voltage of a wireless power transfer system | |
US20180041065A1 (en) | System and method for charging receiver devices | |
JP5804303B2 (en) | Power transmission equipment | |
JP5930182B2 (en) | antenna | |
KR20160000997U (en) | Wireless power charging apparatus of vehicle | |
JP2014011845A (en) | Noncontact power transmission device and power receiving apparatus | |
EP3235106A1 (en) | Inductive power transmitter and method of power flow control | |
KR20150112160A (en) | Wireless Power Transfer System including Wireless Power Transfer System-Charger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13873686 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014557647 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13873686 Country of ref document: EP Kind code of ref document: A1 |