WO2014118899A1 - Control device and control method - Google Patents

Control device and control method Download PDF

Info

Publication number
WO2014118899A1
WO2014118899A1 PCT/JP2013/051930 JP2013051930W WO2014118899A1 WO 2014118899 A1 WO2014118899 A1 WO 2014118899A1 JP 2013051930 W JP2013051930 W JP 2013051930W WO 2014118899 A1 WO2014118899 A1 WO 2014118899A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
psu
time
unit
supply device
Prior art date
Application number
PCT/JP2013/051930
Other languages
French (fr)
Japanese (ja)
Inventor
秀之 山地
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2014559398A priority Critical patent/JP5958562B2/en
Priority to PCT/JP2013/051930 priority patent/WO2014118899A1/en
Publication of WO2014118899A1 publication Critical patent/WO2014118899A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality

Definitions

  • the present invention relates to a control device and a control method.
  • a technique is known in which a plurality of power supply devices are installed in an information processing device or a storage device, and the power supply device is replaced while the information processing device or the storage device is operating.
  • a technology is known that optimizes the number of power supply devices to be operated according to the amount of operating hardware resources. It has been.
  • the amount of hardware resources increases or decreases, or when the number of power supply devices to be activated is optimized by user operations
  • when operating servers and storage devices that are operated continuously for a long period of time there may be a power supply device that is not operated for a long time.
  • the electrolytic capacitor used for voltage conversion or the like deteriorates, and a failure is likely to occur.
  • a technique is known in which the operation time of each power supply device is monitored, and the power supply device with less accumulated operation time is preferentially operated.
  • the object is to prevent multiple power supply devices from failing at the same time.
  • the control device selects a power supply device to be operated from a plurality of power supply devices.
  • the control device measures the time during which the plurality of power supply devices are operated for each power supply device.
  • the control device calculates, for each power supply device, an operation ratio that is different for each power supply device and a total value and a product of the times measured for each power supply device.
  • a control apparatus selects an electric power supply apparatus in an order from the electric power supply apparatus with the smaller value which subtracted the value calculated from the measured time. Thereafter, the control device operates the power supply device selected by the selection unit, and stops the other power supply devices.
  • multiple power supply devices can be prevented from failing at the same time.
  • FIG. 1 is a diagram illustrating the information processing system according to the first embodiment.
  • FIG. 2 is a diagram for explaining a functional configuration of the SVP according to the first embodiment.
  • FIG. 3 is a diagram for explaining an example of a hard resource power table.
  • FIG. 4A is a diagram for explaining an example of the accumulated operation time measured by the measurement unit.
  • FIG. 4B is a first diagram for explaining the PSU operation management table.
  • FIG. 4C is a diagram for explaining processing for storing the operation ratio in the PSU operation management table.
  • FIG. 4D is a diagram for explaining a process of storing the assumed time in the PSU operation management table.
  • FIG. 4E is a diagram for explaining processing for storing a time difference in the PSU operation management table.
  • FIG. 4A is a diagram for explaining an example of the accumulated operation time measured by the measurement unit.
  • FIG. 4B is a first diagram for explaining the PSU operation management table.
  • FIG. 4C is a diagram for explaining processing
  • FIG. 5A is a diagram for explaining the transition of the accumulated operation time.
  • FIG. 5B is a diagram for describing processing for selecting a PSU to be newly operated.
  • FIG. 6 is a diagram for explaining the flow of processing executed by the SVP.
  • FIG. 7 is a flowchart for explaining the flow of the selection process.
  • FIG. 8 is a flowchart for explaining the flow of processing executed by the SVP when power is turned on and when a hard resource is inserted or removed.
  • FIG. 9 is a flowchart for explaining the flow of selection processing that is periodically executed and selection processing that is executed when a failure occurs.
  • FIG. 10 is a diagram for explaining an example of the operation ratio.
  • FIG. 1 is a diagram illustrating the information processing system according to the first embodiment.
  • the information processing system 1 includes an SVP (Service Processor) 2, a PSU (Power Supply Unit) group 3, and a hard resource group 4.
  • the SVP 2 includes an MPU (Micro Processing Unit) 2a, a memory 2b, a flash memory 2c, and a hub 2d.
  • the hub 2 d has communication terminals 5 and 6, and is connected to the user terminal 7 via the communication terminals 5 and 6.
  • the PSU group 3 has a plurality of PSUs 8 to 11.
  • the PSU 8 has an FRU (Field-Replaceable Unit) 12
  • the PSU 9 has an FRU 13.
  • the PSU 10 has an FRU 14, and the PSU 11 has an FRU 15.
  • the hard resource group 4 includes a plurality of SB (System Board) 16 to 19 and a plurality of IOB (Input Output Board) 20 to 23.
  • the SB 16 includes a CPU (Central Processing Unit) 24 and a memory 25.
  • the other SBs 17 to 19 also have a CPU, a memory, and the like, similar to SB16.
  • the IOB 20 includes an HDD (Hard Disk Drive) 26, a PCI (Peripheral Components Interconnect) card 27, and a hub 28.
  • HDD Hard Disk Drive
  • PCI Peripheral Components Interconnect
  • the other IOBs 21 to 23 also have HDDs, PCI cards, hubs, etc., like the IOB 20.
  • the PSU 9 to PSU 11 are assumed to perform the same function as the PSU 8, and the description thereof is omitted.
  • SB17 to SB19 are assumed to perform the same function as SB16, and the description thereof is omitted.
  • the IOBs 21 to 23 perform the same functions as the IOB 20 and will not be described.
  • the PSU 8 is a power supply device that acquires power from the external power source 1 a, converts the acquired power, and supplies it to the hard resource group 4. For example, the PSU 8 converts an alternating current supplied from the external power source 1a into a direct current. Then, the PSU 8 increases or decreases the voltage of the direct current according to the device to which power is supplied, and supplies the direct current to the SBs 16 to 19 and the IOBs 20 to 23.
  • PSU8 has FRU12.
  • the FRU 12 is a component installed in the PSU 8 and is a replaceable part.
  • the FRU 12 has a storage medium writable from the SVP 2 and can store arbitrary information written from the SVP 2.
  • the hardware resource group 4 is hardware that operates with the power supplied from the PSU group 3.
  • the SB 16 is a base or rack mountable server that can be inserted into and removed from the housing of the information processing system 1 in which the hard resource group 4 is installed, and performs various arithmetic processing using the power supplied from the PSU group 3.
  • Execute. Specifically, the CPU 24 installed in the SB 16 performs arithmetic processing using the data stored in the memory 25, and transmits the arithmetic result to an external device (not shown) via the IOBs 20-23.
  • the IOB 20 is a base or rack mountable housing on which an IO device used by each of the SBs 16 to 19 installed in the hardware resource group 4 is installed, and is hardware that operates with electric power supplied from the PSU group 3. .
  • the IOB 20 includes an HDD 26 that stores data used by the SBs 16 to 19 for arithmetic processing, a PCI card 27 that controls communication between the SBs 16 to 19 and an external device, and communication between the SBs 16 to 19, and each SB 16 to And a hub 28 for relaying 19 communications.
  • the SVP 2 is an information processing apparatus that controls various hardware installed in the information processing system 1, and is installed on a control board of the information processing system 1, for example.
  • the MPU 2a included in the SVP 2 is an information processing apparatus that executes programs such as firmware stored in the memory 2b and the flash memory 2c, which are storage media, and executes various control processes.
  • the MPU 2a monitors the insertion / removal states of the SBs 16 to 19 and IOBs 20 to 23 included in the hardware resource group 4, and identifies the number of SBs and IOBs operating in the information processing system 1. can do. Further, the MPU 2a calculates the power consumed by the hardware resource group 4 from the number of SBs operating in the information processing apparatus system 1 and the number of IOBs, and calculates the number of PSUs that can supply the calculated power. Then, the MPU 2a selects the number of PSUs calculated from the PSUs 8 to 11, operates the selected PSU, and stops other PSUs.
  • the MPU 2a measures the time when each of the PSUs 8 to 11 is operated, and selects the PSU to be operated so that the time when the PSUs 8 to 11 are operated is not the same. For example, the MPU 2a generates an operation ratio that is a ratio for operating the PSUs 8 to 11. Specifically, the MPU 2a generates the operation ratios of the PSUs 8 to 11 so that the operation ratios of the PSUs 8 to 11 have different values. Further, the MPU 2a measures the time when each of the PSUs 8 to 11 is operated, and calculates the product of the total time when each of the PSUs 8 to 11 is operated and the operating ratio of each of the PSUs 8 to 11, whereby the PSUs 8 to 11 are calculated. Calculate the ideal operating time.
  • the MPU 2a calculates a value obtained by subtracting the calculated ideal operating time of each PSU 8-11 from the measured operating time of each PSU 8-11. After that, the MPU 2a has a smaller value obtained by subtracting the calculated ideal operating time of each PSU 8-11 from the measured operating time of each PSU 8-11, that is, the measured operating time is smaller than the ideal operating time. Select a short PSU with priority.
  • the MPU 2a makes the time when the PSUs 8 to 11 operate irregularly, so that it is possible to prevent the PSUs 8 to 11 from failing at the same time. That is, each of the PSUs 8 to 11 has a period during which normal operation is guaranteed, and after the period during which normal operation is guaranteed, a failure is likely to occur, so that it is replaced with a new PSU. However, when the PSUs 8 to 11 are operated at the same time, the PSUs 8 to 11 are replaced at the same time, and the information processing system 1 must be turned off.
  • the MPU 2a selects a PSU to be operated from each of the PSUs 8 to 11 so that the operation time of each of the PSUs 8 to 11 is not uniform. As a result, the MPU 2a shifts the replacement timing and failure occurrence timing of the PSUs 8 to 11, so that the PSUs 8 to 11 can be replaced while the information processing system 1 is operating.
  • FIG. 2 is a diagram for explaining a functional configuration of the SVP according to the first embodiment.
  • the MPU 2 a includes a PSU operation instruction mechanism 32 and a hard resource monitoring unit 33.
  • the memory 2b stores a hard resource power table 30 and a PSU operation management table 31.
  • the hard resource monitoring unit 33 includes a power supply monitoring unit 34, a regular monitoring unit 35, an insertion / extraction monitoring unit 36, and a failure monitoring unit 37.
  • the PSU operation instruction mechanism 32 includes a measurement unit 38, a calculation unit 39, a selection unit 40, and a control unit 41.
  • the hard resource power table 30 stores the power consumed by the SBs 16 to 19 and the IOBs 20 to 23 included in the hard resource group 4.
  • FIG. 3 is a diagram for explaining an example of a hard resource power table.
  • the hardware resource power table 30 stores a hardware resource that consumes power and a power consumed by each piece of hardware in association with each other.
  • the hard resource power table 30 stores that one SB consumes “700 W (Watt)” and one IOB consumes “100 W”.
  • the PSU operation management table 31 is a table that stores information used by the MPU 2a when selecting a PSU to be operated from each of the PSUs 8 to 11.
  • the PSU operation management table 31 is a table created when the MPU 2a selects a PSU to be operated, and information that is not stored in the memory 2b while the MPU 2a is not performing the selection process. is there.
  • the power monitoring unit 34 instructs the PSU operation instruction mechanism 32 to perform PSU selection processing when the information processing system 1 is turned on. For example, the power supply monitoring unit 34 monitors the operating state of the PSU group 3. When the PSU group 3 starts operation, the power supply monitoring unit 34 determines that the information processing system 1 has been turned on, and the PSU operation instruction mechanism 32. Is instructed to execute the selection process.
  • the regular monitoring unit 35 instructs the PSU operation instruction mechanism 32 to perform PSU selection processing at predetermined time intervals.
  • the periodic monitoring unit 35 has a timer that starts counting from when the power is turned on, and instructs the PSU operation instruction mechanism 32 to execute the PSU selection process when the count value of the timer reaches a predetermined value. To do.
  • the periodic monitoring unit 35 resets the count value of the timer when the PSU operation instruction mechanism 32 executes the PSU selection process according to an instruction from the hardware resource monitoring unit 33.
  • the insertion / removal monitoring unit 36 selects a PSU in the PSU operation instruction mechanism 32 in accordance with the addition / removal of each SB 16-19, each IOB 20-23, and the addition / removal of each PSU 8-11 included in the hardware resource group 4. Instruct processing. For example, the insertion / removal monitoring unit 36 monitors the insertion / removal status of the SBs 16 to 19, the IOBs 20 to 23, and the PSUs 8 to 11 included in the hardware resource group 4. Then, when any of the new SB, IOB, or PSU is added to the hard resource group 4 or when the SB, IOB, or PSU is reduced, the insertion / extraction monitoring unit 36 notifies the PSU operation instruction mechanism 32. Instructs execution of PSU selection processing.
  • the failure monitoring unit 37 executes the PSU selection process to the PSU operation instruction mechanism 32 when the SBs 16 to 19, the IOBs 20 to 23, and the PSUs 8 to 11 included in the hardware resource group 4 are disconnected due to a failure. Instruct. For example, if any of the SBs 16 to 19, IOBs 20 to 23, or PSUs 8 to 11 of the hard resource group 4 is disconnected due to a failure by the disconnection process due to the failure, the failure monitoring unit 37 sends a PSU operation instruction mechanism 32 to the PSU operation instruction mechanism 32. Instructs execution of PSU selection processing.
  • the measuring unit 38 individually measures the time that each of the PSUs 8 to 11 is operating. And the measurement part 38 produces
  • the measurement unit 38 has a timer that counts the time that has elapsed since the PSU operation instruction mechanism 32 performed the PSU selection process.
  • the measurement unit 38 is instructed to execute the PSU selection process from the power source monitoring unit 34, the regular monitoring unit 35, the insertion / removal monitoring unit 36, and the failure monitoring unit 37 of the hard resource monitoring unit 33, each of the FRUs 12-15 Get the operation time stored in.
  • the measurement unit 38 calculates the cumulative operating time of each PSU 8 to 11 by adding the time counted by the timer to the operating time acquired from the FRU of the operating PSU. Then, the measurement unit 38 generates a PSU operation management table 31 in which the accumulated operation time of each PSU 8 to 11 is stored. Thereafter, the measuring unit 38 stores the updated accumulated operating time of each PSU 8 to 11 in each FRU 12 to 15 of each PSU 8 to 11.
  • the operation time “1000 hours” is stored in the FRU 12
  • the operation time “800 hours” is stored in the FRU 13
  • the operation time “500 hours” is stored in the FRU 14
  • the operation time “0 hours” is stored in the FRU 15. "Is stored. Further, it is assumed that PSU 9 and PSU 11 are operating and PSU 8 and PSU 10 are stopped.
  • the measurement unit 38 acquires the operation time stored in each of the FRUs 12 to 15 when the PSU selection process is instructed from the regular monitoring unit 35.
  • the measuring unit 38 adds “100 hours” to the operating time acquired from the FRUs 13 and 15 of the operating PSUs 9 and 11. Calculate the cumulative operating time of PSUs 8-11.
  • FIG. 4A is a figure for demonstrating an example of the accumulation operation time which the measurement part measured.
  • the measurement unit 38 has a cumulative operating time of PSU 8 of “1000 hours”, a cumulative operating time of PSU 9 of “900 hours”, an operating time of PSU 10 of “500 hours”, and a cumulative operating time of PSU 11 Is “100 hours”.
  • the measurement unit 38 stores “900 hours” in the FRU 13 of the PSU 9 that has been operating among the PSUs 8 to 11, and stores “100 hours” in the FRU 15 of the PSU 11.
  • FIG. 4B is a first diagram for explaining the PSU operation management table.
  • the measurement unit 38 generates a PSU operation management table 31 in which the operation ratio, the operation time, the assumed time, and the time difference are associated with each other for each PSU 8-11.
  • the operating ratio is an ideal ratio for operating the PSUs 8 to 11, and is a ratio that is different for each of the PSUs 8 to 11.
  • the assumed time is an ideal time for operating each of the PSUs 8-11.
  • the time difference is a value obtained by subtracting the assumed time from the operating time. Then, the measuring unit 38 stores the accumulated operation time of each PSU 8 to 11 in the operation time of the created PSU operation management table 31.
  • the measurement unit 38 uses the operation time, the assumed time, and the time difference among the information stored in the PSU operation management table 31. Erase. Then, the measurement unit 38 rewrites the operation time of each PSU 8 to 11 with a new operation time.
  • the measuring unit 38 stores each operating time as “0” in each PSU operation management table 31. Then, the measurement unit 38 stores the operation time “0” in each of the FRUs 12 to 15. Further, for example, when the PSU 11 is removed due to a failure or when a new PSU is added, the measuring unit 38 newly updates the PSU operation management table 31 in which only the operation time of each PSU 8 to 10 is stored. To generate.
  • the calculation unit 39 calculates the ideal operation time of each PSU 8 to 11 using the operation ratio of each PSU 8 to 11. To do. Then, the calculating unit 39 calculates the difference between the accumulated operating time of each PSU 8 to 11 and the ideal operating time.
  • the calculation unit 39 accumulates the PSUs 8 to 11 when the operation ratio of the PSUs 8 to 11 is not allocated, such as after the power-on of the information processing system 1 or when the PSU is added or removed. Depending on the operating time, the operating ratios with different values are calculated in stages.
  • the calculation unit 39 refers to the PSU operation management table 31 and determines whether an operation ratio is set for each of the PSUs 8 to 11. Then, when the operation ratio is not set for each of the PSUs 8 to 11, the calculation unit 39 generates operation ratios having different values in stages and assigns them to PSUs having longer operation times in descending order of operation ratio. For example, when “n” PSUs are installed in the information processing system 1, the calculation unit 39 calculates the total value of integers from “1” to “n”, and “1” to “n”. The operation ratio is calculated by dividing the whole number up to the total value by the percentage. Then, the calculation unit 39 assigns an operation ratio with a larger value in order from the PSU with the longer operation time.
  • FIG. 4C is a diagram for explaining processing for storing the operation ratio in the PSU operation management table.
  • the calculation unit 39 calculates an integer total value “10” from 1 to 4.
  • the calculation unit 39 calculates the operation ratio “10%” by dividing “1” by “10”, the operation ratio “20%” by dividing “2” by “10”, and “3” by “10”.
  • the operation ratio “40%” obtained by dividing the divided operation ratio “30%” and “4” by “10” is calculated.
  • the calculation unit 39 assigns the largest operation ratio “40%” to the PSU 8 with the longest operation time, and sets the next largest operation ratio “30” to the PSU 9 with the next most operation time. % ". Further, the calculation unit 39 assigns the operation ratio “20%” to the PSU 10 and assigns the operation ratio “10%” to the PSU 11. Then, as shown in FIG. 4C, the calculation unit 39 stores the operation ratio assigned to each PSU 8 to 11 in the PSU operation management table 31.
  • the calculation unit 39 calculates the product of the sum of the operation times of the PSUs 8 to 11 and the operation ratio and the operation time assigned to each of the PSUs 8 to 11, and uses the calculated value as the assumed time for the PSU operation management table 31. To store. That is, the calculation unit 39 calculates the ideal operating time of each PSU 8 to 11 from the product of the operating ratio assigned to each PSU 8 to 11 and the total operating time of the written PSUs 8 to 11.
  • FIG. 4D is a diagram for explaining a process of storing the assumed time in the PSU operation management table.
  • the calculation unit 39 calculates the total operation time “2500 hours” that is the sum of the operation times of the PSUs 8 to 11.
  • the calculation unit 39 adds the calculated total excess time “2500 hours” to the operation ratios of the PSUs 8 to 11, and sets the result of the integration as the assumed time of the PSUs 8 to 11.
  • the calculation unit 39 calculates the time difference obtained by subtracting the assumed time from the operating time of each PSU 8-11. That is, the calculation unit 39 calculates how many of the PSUs 8 to 11 are operating with respect to the ideal operating time. Then, the calculation unit 39 stores the calculation result in the PSU operation management table 31.
  • FIG. 4E is a diagram for explaining processing for storing a time difference in the PSU operation management table.
  • the calculation unit 39 stores a value “ ⁇ 0” obtained by subtracting the assumed time “1000 hours” from the operation time “1000 hours” of the PSU 8 in the PSU operation management table 31 as the time difference of the PSU 8. Further, the calculation unit 39 stores a value “+150” obtained by subtracting the assumed time “750 hours” from the operation time “900 hours” of the PSU 9 in the PSU operation management table 31 as the time difference of the PSU 9.
  • the calculation unit 39 stores a value “ ⁇ 0” obtained by subtracting the assumed time “500 hours” from the operation time “500 hours” of the PSU 10 in the PSU operation management table 31 as the time difference of the PSU 10. Further, the calculation unit 39 stores a value “ ⁇ 150” obtained by subtracting the assumed time “250 hours” from the operation time “100 hours” of the PSU 11 in the PSU operation management table 31 as the time difference of the PSU 11.
  • the calculating unit 39 uses the value of the operating ratio as it is as the assumed time. For example, when the information processing system 1 is shipped and the accumulated operating hours of the PSUs 8 to 11 are all “0”, the calculating unit 39 sets the operating times to “40” hours, “30” hours, “20”, respectively. The time difference is calculated as “time” and “10” time.
  • the selection unit 40 selects a PSU to be operated based on the difference from the assumed operation time of each PSU 8-11. Specifically, the selection unit 40 calculates the number of PSUs to be operated according to the power consumed by the hardware resource group 4 installed in the information processing system 1 and the power that can be supplied by each of the PSUs 8 to 11. . Then, the selection unit 40 selects the calculated number of PSUs in ascending order of time difference stored in the PSU operation management table 31. Thereafter, the selection unit 40 notifies the control unit 41 of the selected PSU.
  • the selection unit 40 preferentially selects a PSU having a shorter accumulated operation time.
  • the selection unit 40 selects the PSU 11 as the first PSU.
  • the selection unit 40 selects PSU 8 or PSU 10 as the second candidate, but since PSU 10 has a shorter cumulative operating time than PSU 8, PSU 10 is selected as the second generation PSU. Then, the selection unit 40 notifies the control unit 41 of PSU 10 and PSU 11.
  • the control unit 41 operates the PSU selected by the selection unit 40 and stops other PSUs. For example, when the notification of the PSU 10 and the PSU 11 is received from the selection unit 40, the control unit 41 operates the PSU 10 and the PSU 11 and supplies power to the hard resource group 4. Moreover, the control part 41 reduces power consumption by stopping operation
  • the SVP 2 calculates the ideal operation time of each PSU 8 to 11 using the operation ratio that is different for each PSU 8 to 11, and calculates the ideal operation time and the actual accumulated operation time of each PSU 8 to 11.
  • the PSU to be operated is selected on the basis of the difference. For this reason, the SVP 2 shifts the cumulative operating time of the PSUs 8 to 11 while reducing the power consumption of the information processing system 1, thereby preventing simultaneous failure of the PSUs 8 to 11 and simultaneous replacement of the PSUs 8 to 11. it can.
  • the SVP 2 can exchange the PSUs without stopping the operation of the information processing system 1, so that stable operation can be achieved.
  • FIG. 5A is a diagram for explaining the transition of the accumulated operation time.
  • the SVP 2 calculates that the accumulated operating time of the PSU 10 after one week is “668” hours and the accumulated operating time of the PSU 11 is “268” hours. Then, the SVP 2 stores “668” time in the FRU 14 of the PSU 10 and stores “268” time in the FRU 15 of the PSU 11. Since SVP2 does not operate PSU8 and PSU10, it does not store new accumulated operating time.
  • FIG. 5B is a diagram for describing processing for selecting a PSU to be newly operated.
  • the SVP 2 assigns the same operation ratio to the PSUs 8 to 10 as before, and stores the new accumulated operation time of each PSU 8 to 10 in the PSU operation management table 31 as the operation time.
  • the SVP 2 calculates the assumed times “1134”, “850”, “567”, and “283” for each PSU 8-10. Further, the SVP 2 calculates the time differences “ ⁇ 134” time, “+50” time, “+101” time, and “ ⁇ 15” time of the PSUs 8 to 10. As a result, the SVP 2 selects two PSUs 8 and PSUs 11 having time difference values smaller than those of other PSUs. Thereafter, the SVP 2 operates the PSU 8 and the PSU 11 and stops the PSU 9 and the PSU 10.
  • FIG. 6 is a diagram for explaining the flow of processing executed by the SVP.
  • the cumulative operating time of PSU 8 is “1000” hours
  • the cumulative operating time of PSU 9 is “900” hours
  • the cumulative operating time of PSU 10 is “500” hours.
  • the accumulated operating time of the PSU 11 is “100” hours.
  • the operating ratio “40”% is assigned to PSU 8
  • the operating ratio “30”% is assigned to PSU 9
  • the operating ratio “20”% is assigned to PSU 10
  • the operating ratio is assigned to PSU 11. “10”% is allocated.
  • the SVP 2 consumes each SB 16, 17 and each IOB 20, 21 from the hard resource power table 30. Get power. Then, the SVP 2 calculates the total power amount “1600 W” of the hard resource group 4 by summing the acquired power consumptions as shown in FIG.
  • the SVP 2 calculates the total operating time “2500” hours from the cumulative operating time of each PSU 8-11. Then, the SVP 2 calculates the assumed time of each of the PSUs 8 to 11 as shown in FIG. 6E by calculating the product of the operating ratio of each of the PSUs 8 to 11 and the total operating time. Specifically, the SVP 2 calculates an assumed time “1000” time of the PSU 8, an assumed time “750” time of the PSU 9, an assumed time “500” time of the PSU 10, and an assumed time “250” time of the PSU 11.
  • the SVP 2 calculates a time difference obtained by subtracting the operation time from the assumed time of each PSU 8-11. Specifically, the SVP 2 calculates the time difference “0” of the PSUs 8 and 10, the time difference “+150” of the PSU 9, and the time difference “ ⁇ 150” of the PSU 11. As a result, the SVP 2 stops the PSU 8 and PSU 9 as shown in (G) of FIG. 6, and operates the PSU 10 and PSU 11 as shown in (H) of FIG.
  • the SVP 2 generates the PSU operation management table 31 shown in (I) of FIG. 6 by executing the same processing as (C) to (F) in FIG. 6 after one week. As a result, the SVP 2 stops the PSU 9 and PSU 10 shown in (J) in FIG. 6, and operates the PSU 8 and PSU 11 shown in (K) in FIG.
  • FIG. 7 is a flowchart for explaining the flow of the selection process.
  • the SVP 2 determines the number of PSUs to be operated (step S1).
  • the SVP 2 acquires the operation time from each PSU (step S2).
  • the SVP 2 calculates the operation ratio of each PSU (step S3).
  • the SVP 2 calculates an assumed time for each PSU (step S4).
  • the SVP 2 calculates the time difference between the operating time of each PSU and the assumed time (step S5), determines the PSU to be operated using the calculation result (step S6), and ends the process.
  • FIG. 8 is a flowchart for explaining the flow of processing executed by the SVP when power is turned on and when a hard resource is inserted or removed.
  • the SVP 2 calculates the number of PSUs necessary for supplying the power calculated in Step S101 (Step S102).
  • the SVP 2 reads the operation time from the PSU and stores it in the PSU operation management table 31 (step S103). Subsequently, the SVP 2 determines an operation ratio of each PSU (step S104), and determines an assumed time from the determined operation ratio and the total operation time of each PSU (step S105).
  • the SVP 2 when the PSU is removed, the SVP 2 recalculates the operation ratio of the remaining PSU and assigns the recalculated operation ratio. Further, when the operating time of each PSU does not satisfy a predetermined threshold, the SVP 2 uses the operating ratio of each PSU as it is as an assumed time. Further, when a PSU is added, the SVP 2 recalculates the operation ratio of all PSUs including the newly added PSU, and assigns the recalculated operation ratio.
  • the SVP 2 calculates a time difference obtained by subtracting the operation time from the assumed time in the PSU operation management table 31 (step S106). Then, the SVP 2 selects the number of PSUs calculated in step S102 in order from the PSU having the smallest time difference (step S107). Note that when there are a plurality of PSUs having the same time difference, the SVP 2 preferentially selects a PSU with a short operation time. Then, the SVP 2 turns on the power supply of the selected PSU (step S108) and turns off the power supply of the other PSUs (step S109). Thereafter, the SVP 2 stores the operation time in the FRU of each PSU (step S110) and ends the process.
  • FIG. 9 is a flowchart for explaining the flow of selection processing that is periodically executed and selection processing that is executed when a failure occurs.
  • step S201 and step S202 are the same as steps S101 and S102 in FIG.
  • steps S205 to S211 in FIG. 9 are the same processes as steps S104 to S110 in FIG.
  • the SVP 2 reads the operation time from each PSU and stores it in the PSU operation management table 31 (step S203). Then, the SVP 2 updates the operating time of the operating PSU (Step S204) and executes the process of Step S205. That is, in the selection process based on the periodic monitoring or the failure monitoring, the operation time stored in the FRUs 12 to 15 of the PSUs 8 to 11 is updated, and the selection process is executed using the updated operation time.
  • the SVP 2 measures the time for which each of the PSUs 8 to 11 is operating for each PSU. Further, the SVP 2 calculates the product of the operation ratio that is different for each PSU 8 to 11 and the total operation time of each PSU 8 to 11 for each PSU. Then, the SVP 2 selects the PSUs to be operated in order from the PSU having the smallest calculated product value, operates the selected PSUs, and stops the other PSUs.
  • the SVP 2 can shift the operation time of the PSUs 8 to 11, so that simultaneous failure of the PSUs 8 to 11 can be prevented.
  • the SVP 2 can replace the PSUs 8 to 11 in units of units without stopping the information processing system 1, thereby realizing stable operation.
  • the SVP 2 rotates the PSU to be operated according to the operation ratio, it is possible to prevent the PSUs 8 to 11 from being stopped for a long time. As a result, the SVP 2 can improve the service life of each PSU 8-11.
  • the SVP 2 generates a plurality of operation ratios having different values in stages, and sequentially assigns the operation ratios with the larger values in order from the PSU having the longer operation time. As a result, since the SVP 2 preferentially uses the PSU having a long operation time, it is possible to prevent a situation in which a stopped PSU, that is, a PSU that performs backup cannot be used due to a failure.
  • the SVP 2 selects as many PSUs as the PSUs to be operated according to the power consumed by the hardware resource group 4 and the power that can be supplied by each PSU. For this reason, the SVP 2 can reduce useless power consumed by the information processing system 1.
  • the SVP 2 preferentially operates the PSU having a short operation time. For this reason, the SVP 2 can prevent only the PSU having a long operation time from being selected again and generating a PSU that does not operate for a long period of time.
  • the SVP 2 stores the operation time of each PSU 8 to 11 in the FRU 12 to 15 included in each PSU 8 to 11.
  • the SVP 2 selects a PSU to be newly operated, the SVP 2 reads the operation time stored in each of the PSUs 8 to 11 and calculates the time elapsed since the previous selection process was performed on the operation time read from the PSU that was operating. By adding, the operating time is calculated. For this reason, the SVP 2 can accurately grasp the operation time even when the PSUs 8 to 11 are replaced.
  • the SVP 2 since the SVP 2 stores the operation time in the FRUs 12 to 15 of the PSUs 8 to 11, it is possible to easily determine whether or not to perform preventive replacement of each PSU.
  • the SVP 2 is newly operated when the information processing system 1 is turned on, when each of the PSUs 8 to 11 or the hardware resource group 4 fails, or when expansion or removal occurs due to insertion or removal, or at a predetermined time interval. Select a PSU. For this reason, the SVP 2 can switch the PSU to be operated while stably operating the information processing system 1.
  • the operation ratios having different values in a linear manner are assigned in the order in which the operation times of the PSUs 8 to 11 are long.
  • the embodiment is not limited to this.
  • the SVP 2 can set different operating times for the PSUs 8 to 11, it can set an arbitrary operating time such as an operating ratio with a non-linearly different value.
  • the process of selecting the operating PSUs 8 to 11 is performed, for example, on a weekly basis. Therefore, the difference between the assumed times of the PSUs 8 to 11 is set to be at least one week. Is desirable.
  • the SVP 2 may increase the difference in the operation ratio allocated to each PSU 8-11 as the operation time of each PSU 8-11 extends.
  • FIG. 10 is a diagram for explaining an example of the operation ratio.
  • the SVP 2 gives a slight difference in the operation ratio of the PSUs 8 to 11 until the operation time of the PSUs 8 to 11 exceeds 30,000 hours and reaches 45,000 hours.
  • the SVP 2 assigns an operation ratio “29”% to the PSU 8, assigns an operation ratio “27”% to the PSU 9, assigns “23”% to the PSU 10, and assigns “21”% to the PSU 11. assign.
  • the SVP 2 assigns an operating ratio “40”% to the PSU 8 in order to make the operating time of each PSU 8-11 non-uniform, and the PSU 9 Is assigned an operation ratio of “30”%. Further, the SVP 2 assigns the operation ratio “20”% to the PSU 10 and assigns the operation ratio “10”% to the PSU 11.
  • the SVP 2 evenly uses the PSUs 8 to 11 until the failure is likely to occur. It is possible to prevent the deterioration of ⁇ 11.
  • the SVP can make the operation times of the PSUs 8 to 11 uneven after the PSUs 8 to 11 are likely to fail due to long-term operation.
  • the SVP 2 may obtain the operation ratio by using not only the method of calculating the operation ratio allocated to each of the PSUs 8 to 11 by the above-described calculation but also, for example, using a table storing operation ratios that differ for each operation time. . Further, the SVP 2 may obtain not only the operation time but also the operation ratio using, for example, a table storing the operation ratio according to the service life of each of the PSUs 8 to 11 and the type of the manufacturer.
  • the SVP 2 is set to the information processing system 1 that executes various types of information processing.
  • the embodiment is not limited to this.
  • the SVP 2 may be installed in a storage system and may control a PSU that supplies power to a storage or the like. That is, the selection process executed by the SVP 2 described above can be applied to any system.
  • the number of PSUs 8 to 11 included in the PSU group 3, the number of SBs 16 to 19 and the IOBs 20 to 23 included in the hard resource group 4, the configuration, and the like are not limited to the above-described embodiments.
  • each component of each illustrated apparatus is functionally conceptual and does not necessarily need to be physically configured as illustrated. That is, the specific form of distribution and integration of each device is not limited to the illustrated one. That is, all or a part of them can be configured to be functionally or physically distributed / integrated in arbitrary units according to various loads or usage conditions. For example, the selection process described above may be realized by a plurality of SVPs.
  • each processing function performed in each device is realized by a CPU and a program and firmware analyzed and executed by the CPU, or is realized as hardware by wired logic. obtain.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

An SVP (2) measures the amount of time for which each PSU (8 to 11) has operated per PSU. In addition, the SVP (2) calculates the product of a working ratio, which is different for each of the PSUs (8 to 11), by the total value of the working time of a respective PSU (8 to 11), for each of the PSUs (8 to 11). Then, the SVP (2) selects, as power supply devices to be operated, PSUs in ascending order from the PCU with the lowest value obtained by subtracting a calculated value from the working time of each of the respective PSUs (8 to 11). Next, the SVP (2) operates the selected PSU, and suspends the other PSUs.

Description

制御装置、および制御方法Control device and control method
 本発明は制御装置、および制御方法に関する。 The present invention relates to a control device and a control method.
 従来、情報処理装置やストレージ装置等に複数の電力供給装置を設置し、情報処理装置やストレージ装置を稼動させたままで電力供給装置の交換を行う技術が知られている。また、複数の電力供給装置が設置された情報処理装置やストレージ装置の消費電力を削減するため、動作するハードウェアのリソース量に応じて、稼動させる電力供給装置の数を最適化する技術が知られている。 Conventionally, a technique is known in which a plurality of power supply devices are installed in an information processing device or a storage device, and the power supply device is replaced while the information processing device or the storage device is operating. In addition, in order to reduce the power consumption of information processing devices and storage devices with multiple power supply devices installed, a technology is known that optimizes the number of power supply devices to be operated according to the amount of operating hardware resources. It has been.
 ここで、ハードウェアのリソース量が増減した際や、利用者の操作を契機として稼動させる電力供給装置の数を最適化すると、運用されるサーバやストレージ装置等を長期間継続して運用する際に、長期間稼動されない電力供給装置が生じる場合がある。ところが、電力供給装置は、長期間稼動されなかった場合に、電圧変換等に用いる電解コンデンサが劣化し、故障が発生し易くなる。このような電解コンデンサの劣化を防ぐため、各電力供給装置の稼働時間を監視し、稼働時間の累積が少ない電力供給装置を優先的に稼動させる技術が知られている。 Here, when the amount of hardware resources increases or decreases, or when the number of power supply devices to be activated is optimized by user operations, when operating servers and storage devices that are operated continuously for a long period of time In addition, there may be a power supply device that is not operated for a long time. However, when the power supply device is not operated for a long period of time, the electrolytic capacitor used for voltage conversion or the like deteriorates, and a failure is likely to occur. In order to prevent such deterioration of the electrolytic capacitor, a technique is known in which the operation time of each power supply device is monitored, and the power supply device with less accumulated operation time is preferentially operated.
特開2009-055663号公報JP 2009-055663 A
 しかしながら、稼働時間の少ない電力供給装置を優先的に稼動させる技術では、各電力供給装置の稼働時間が均一化するので、各電力供給装置が同時期に故障しやすくなる。この結果、複数の電力供給装置を有する情報処理装置やストレージ装置等を安定して運用することができない。 However, in the technology that preferentially operates the power supply device with a short operation time, the operation time of each power supply device is made uniform, so that each power supply device is likely to fail at the same time. As a result, it is not possible to stably operate an information processing apparatus or storage apparatus having a plurality of power supply apparatuses.
 1つの側面では、複数の電力供給装置が同時期に故障するのを防ぐことを目的とする。 In one aspect, the object is to prevent multiple power supply devices from failing at the same time.
 1つの側面では、複数の電力供給装置から稼動させる電力供給装置を選択する制御装置である。ここで、制御装置は、複数の電力供給装置が稼動した時間を電力供給装置ごとに測定する。また、制御装置は、電力供給装置ごとに異なる稼動比率と、電力供給装置ごとに測定した時間の合計値と積を電力供給装置ごとに算出する。そして、制御装置は、測定した時間から算出した値を減算した値がより小さい電力供給装置から順に、電力供給装置を選択する。その後、制御装置は、選択部が選択した電力供給装置を稼動させ、他の電力供給装置を停止させる。 In one aspect, the control device selects a power supply device to be operated from a plurality of power supply devices. Here, the control device measures the time during which the plurality of power supply devices are operated for each power supply device. In addition, the control device calculates, for each power supply device, an operation ratio that is different for each power supply device and a total value and a product of the times measured for each power supply device. And a control apparatus selects an electric power supply apparatus in an order from the electric power supply apparatus with the smaller value which subtracted the value calculated from the measured time. Thereafter, the control device operates the power supply device selected by the selection unit, and stops the other power supply devices.
 1つの側面では、複数の電力供給装置が同時期に故障するのを防ぐことができる。 In one aspect, multiple power supply devices can be prevented from failing at the same time.
図1は、実施例1に係る情報処理システムを説明する図である。FIG. 1 is a diagram illustrating the information processing system according to the first embodiment. 図2は、実施例1に係るSVPが有する機能構成を説明するための図である。FIG. 2 is a diagram for explaining a functional configuration of the SVP according to the first embodiment. 図3は、ハードリソース電力テーブルの一例を説明するための図である。FIG. 3 is a diagram for explaining an example of a hard resource power table. 図4Aは、測定部が測定した累積稼働時間の一例を説明するための図である。FIG. 4A is a diagram for explaining an example of the accumulated operation time measured by the measurement unit. 図4Bは、PSU稼動管理テーブルを説明するための第1の図である。FIG. 4B is a first diagram for explaining the PSU operation management table. 図4Cは、PSU稼動管理テーブルに稼動比率を格納する処理を説明するための図である。FIG. 4C is a diagram for explaining processing for storing the operation ratio in the PSU operation management table. 図4Dは、PSU稼動管理テーブルに仮定時間を格納する処理を説明するための図である。FIG. 4D is a diagram for explaining a process of storing the assumed time in the PSU operation management table. 図4Eは、PSU稼動管理テーブルに時間差を格納する処理を説明するための図である。FIG. 4E is a diagram for explaining processing for storing a time difference in the PSU operation management table. 図5Aは、累積稼働時間の遷移を説明するための図である。FIG. 5A is a diagram for explaining the transition of the accumulated operation time. 図5Bは、新たに稼動させるPSUを選択する処理を説明するための図である。FIG. 5B is a diagram for describing processing for selecting a PSU to be newly operated. 図6は、SVPが実行する処理の流れを説明するための図である。FIG. 6 is a diagram for explaining the flow of processing executed by the SVP. 図7は、選択処理の流れを説明するためのフローチャートである。FIG. 7 is a flowchart for explaining the flow of the selection process. 図8は、電源投入時、およびハードリソースの挿抜が行われた際にSVPが実行する処理の流れを説明するためのフローチャートである。FIG. 8 is a flowchart for explaining the flow of processing executed by the SVP when power is turned on and when a hard resource is inserted or removed. 図9は、定期的に実行する選択処理、および故障が発生した際に実行する選択処理の流れを説明するためのフローチャートである。FIG. 9 is a flowchart for explaining the flow of selection processing that is periodically executed and selection processing that is executed when a failure occurs. 図10は、稼動比率の一例を説明するための図である。FIG. 10 is a diagram for explaining an example of the operation ratio.
 以下に、参照図面を参照して本願に係る制御装置、および制御方法の実施例を図面に基づいて詳細に説明する。なお、この実施例により開示技術が限定されるものではない。また、各実施例は、矛盾しない範囲で適宜組みあわせても良い。 Hereinafter, embodiments of a control device and a control method according to the present application will be described in detail with reference to the drawings. The disclosed technology is not limited by this embodiment. In addition, the embodiments may be combined as appropriate within a consistent range.
 以下の実施例1では、図1を用いて、制御装置を有する情報処理システムの一例を説明する。図1は、実施例1に係る情報処理システムを説明する図である。図1に示す例では、情報処理システム1は、SVP(Service Processor)2、PSU(Power Supply Unit)群3、ハードリソース群4とを有する。また、SVP2は、MPU(Micro Processing Unit)2a、メモリ2b、フラッシュメモリ2c、ハブ2dを有する。ここで、ハブ2dは、通信端子5、6を有し、通信端子5、6を介して利用者端末7と接続されている。 In the following first embodiment, an example of an information processing system having a control device will be described with reference to FIG. FIG. 1 is a diagram illustrating the information processing system according to the first embodiment. In the example illustrated in FIG. 1, the information processing system 1 includes an SVP (Service Processor) 2, a PSU (Power Supply Unit) group 3, and a hard resource group 4. The SVP 2 includes an MPU (Micro Processing Unit) 2a, a memory 2b, a flash memory 2c, and a hub 2d. Here, the hub 2 d has communication terminals 5 and 6, and is connected to the user terminal 7 via the communication terminals 5 and 6.
 また、PSU群3は、複数のPSU8~11を有する。ここで、PSU8は、FRU(Field-Replaceable Unit)12を有し、PSU9は、FRU13を有する。また、PSU10は、FRU14を有し、PSU11は、FRU15を有する。また、ハードリソース群4は、複数のSB(System Board)16~19と、複数のIOB(Input Output Board)20~23を有する。また、SB16は、CPU(Central Processing Unit)24、メモリ25を有する。なお、図1では、図示を省略したが、他のSB17~19も、SB16と同様に、CPUとメモリ等を有するものとする。 The PSU group 3 has a plurality of PSUs 8 to 11. Here, the PSU 8 has an FRU (Field-Replaceable Unit) 12, and the PSU 9 has an FRU 13. The PSU 10 has an FRU 14, and the PSU 11 has an FRU 15. The hard resource group 4 includes a plurality of SB (System Board) 16 to 19 and a plurality of IOB (Input Output Board) 20 to 23. The SB 16 includes a CPU (Central Processing Unit) 24 and a memory 25. Although not shown in FIG. 1, it is assumed that the other SBs 17 to 19 also have a CPU, a memory, and the like, similar to SB16.
 また、IOB20は、HDD(Hard Disk Drive)26、PCI(Peripheral Components Interconnect)カード27、ハブ28を有する。なお、図1では、図示を省略したが、他のIOB21~23も、IOB20と同様に、HDD、PCIカード、ハブ等を有するものとする。また、以下の説明では、PSU9~PSU11は、PSU8と同様の機能を発揮するものとして、説明を省略する。また、SB17~19は、SB16と同様の機能を発揮するものとして、説明を省略する。また、IOB21~23は、IOB20と同様の機能を発揮するものとして、説明を省略する。 Further, the IOB 20 includes an HDD (Hard Disk Drive) 26, a PCI (Peripheral Components Interconnect) card 27, and a hub 28. Although not shown in FIG. 1, it is assumed that the other IOBs 21 to 23 also have HDDs, PCI cards, hubs, etc., like the IOB 20. In the following description, the PSU 9 to PSU 11 are assumed to perform the same function as the PSU 8, and the description thereof is omitted. Further, SB17 to SB19 are assumed to perform the same function as SB16, and the description thereof is omitted. The IOBs 21 to 23 perform the same functions as the IOB 20 and will not be described.
 まず、PSU群3が有するPSU8について説明する。PSU8は、外部電源1aから電力を取得し、取得した電力を変換してハードリソース群4に供給する電力供給装置である。例えば、PSU8は、外部電源1aから供給される交流電流を直流電流に変換する。そして、PSU8は、電力の供給先となる装置に応じて、直流電流の電圧を昇圧、または降圧し、各SB16~19や、各IOB20~23に対して直流電流を供給する。 First, the PSU 8 included in the PSU group 3 will be described. The PSU 8 is a power supply device that acquires power from the external power source 1 a, converts the acquired power, and supplies it to the hard resource group 4. For example, the PSU 8 converts an alternating current supplied from the external power source 1a into a direct current. Then, the PSU 8 increases or decreases the voltage of the direct current according to the device to which power is supplied, and supplies the direct current to the SBs 16 to 19 and the IOBs 20 to 23.
 また、PSU8は、FRU12を有する。ここで、FRU12とは、PSU8に設置されたコンポーネントであり、交換等が可能な部品である。また、FRU12は、SVP2から書き込み可能な記憶媒体を有し、SVP2から書き込まれた任意の情報を記憶することができる。 Moreover, PSU8 has FRU12. Here, the FRU 12 is a component installed in the PSU 8 and is a replaceable part. Further, the FRU 12 has a storage medium writable from the SVP 2 and can store arbitrary information written from the SVP 2.
 次に、ハードリソース群4について説明する。ハードリソース群4は、PSU群3から供給される電力により動作するハードウェアである。例えば、SB16は、ハードリソース群4が設置された情報処理システム1の筐体内から抜き挿し可能な基盤やラックマウント可能なサーバであり、PSU群3から供給される電力を用いて、各種演算処理を実行する。詳細には、SB16に設置されたCPU24は、メモリ25に格納されたデータを用いて演算処理を行い、IOB20~23を介して、演算結果を図示しない外部装置に送信する。 Next, the hardware resource group 4 will be described. The hardware resource group 4 is hardware that operates with the power supplied from the PSU group 3. For example, the SB 16 is a base or rack mountable server that can be inserted into and removed from the housing of the information processing system 1 in which the hard resource group 4 is installed, and performs various arithmetic processing using the power supplied from the PSU group 3. Execute. Specifically, the CPU 24 installed in the SB 16 performs arithmetic processing using the data stored in the memory 25, and transmits the arithmetic result to an external device (not shown) via the IOBs 20-23.
 IOB20は、ハードリソース群4に設置された各SB16~19が利用するIO装置が設置された基盤やラックマウント可能な筐体であり、PSU群3から供給される電力により動作するハードウェアである。詳細には、IOB20は、各SB16~19が演算処理に用いるデータ等を記憶するHDD26、各SB16~19と外部装置との通信やSB16~19間の通信を制御するPCIカード27、各SB16~19の通信を中継するハブ28等を有する。 The IOB 20 is a base or rack mountable housing on which an IO device used by each of the SBs 16 to 19 installed in the hardware resource group 4 is installed, and is hardware that operates with electric power supplied from the PSU group 3. . Specifically, the IOB 20 includes an HDD 26 that stores data used by the SBs 16 to 19 for arithmetic processing, a PCI card 27 that controls communication between the SBs 16 to 19 and an external device, and communication between the SBs 16 to 19, and each SB 16 to And a hub 28 for relaying 19 communications.
 次に、SVP2について説明する。SVP2は、情報処理システム1に設置された各種ハードウェアの制御を行う情報処理装置であり、例えば、情報処理システム1の制御ボード上に設置される。具体的には、SVP2が有するMPU2aは、記憶媒体であるメモリ2bやフラッシュメモリ2cに格納されたファームウェア等のプログラムを実行し、各種制御処理を実行する情報処理装置である。 Next, SVP2 will be described. The SVP 2 is an information processing apparatus that controls various hardware installed in the information processing system 1, and is installed on a control board of the information processing system 1, for example. Specifically, the MPU 2a included in the SVP 2 is an information processing apparatus that executes programs such as firmware stored in the memory 2b and the flash memory 2c, which are storage media, and executes various control processes.
 詳細には、MPU2aは、ハードリソース群4が有する各SB16~19、およびIOB20~23の抜き挿し状態を監視しており、情報処理システム1内で動作するSBの数、およびIOBの数を識別することができる。また、MPU2aは、情報処理装置システム1内で動作するSBの数、およびIOBの数からハードリソース群4が消費する電力を算出し、算出した電力を供給可能とするPSUの数を算出する。そして、MPU2aは、PSU8~11から算出した数のPSUを選択し、選択したPSUを稼動させ、他のPSUを停止させる。 Specifically, the MPU 2a monitors the insertion / removal states of the SBs 16 to 19 and IOBs 20 to 23 included in the hardware resource group 4, and identifies the number of SBs and IOBs operating in the information processing system 1. can do. Further, the MPU 2a calculates the power consumed by the hardware resource group 4 from the number of SBs operating in the information processing apparatus system 1 and the number of IOBs, and calculates the number of PSUs that can supply the calculated power. Then, the MPU 2a selects the number of PSUs calculated from the PSUs 8 to 11, operates the selected PSU, and stops other PSUs.
 また、MPU2aは、各PSU8~11が稼動した時間を測定し、各PSU8~11が稼動した時間が同じにならないように稼動させるPSUを選択する。例えば、MPU2aは、各PSU8~11を稼動させる比率である稼動比率を生成する。詳細には、MPU2aは、各PSU8~11の稼動比率がそれぞれ異なる値になるように、各PSU8~11の稼動比率を生成する。また、MPU2aは、各PSU8~11を稼動させた時間を測定し、各PSU8~11が稼動した時間の合計と、各PSU8~11の稼動比率との積を算出することで、各PSU8~11の理想的な稼動時間を算出する。 Also, the MPU 2a measures the time when each of the PSUs 8 to 11 is operated, and selects the PSU to be operated so that the time when the PSUs 8 to 11 are operated is not the same. For example, the MPU 2a generates an operation ratio that is a ratio for operating the PSUs 8 to 11. Specifically, the MPU 2a generates the operation ratios of the PSUs 8 to 11 so that the operation ratios of the PSUs 8 to 11 have different values. Further, the MPU 2a measures the time when each of the PSUs 8 to 11 is operated, and calculates the product of the total time when each of the PSUs 8 to 11 is operated and the operating ratio of each of the PSUs 8 to 11, whereby the PSUs 8 to 11 are calculated. Calculate the ideal operating time.
 そして、MPU2aは、測定した各PSU8~11の稼働時間から、算出した各PSU8~11の理想的な稼働時間を減算した値を算出する。その後、MPU2aは、測定した各PSU8~11の稼働時間から、算出した各PSU8~11の理想的な稼働時間を減算した値が小さいPSU、すなわち、測定した稼働時間が理想的な稼働時間よりも短いPSUを優先して選択する。 Then, the MPU 2a calculates a value obtained by subtracting the calculated ideal operating time of each PSU 8-11 from the measured operating time of each PSU 8-11. After that, the MPU 2a has a smaller value obtained by subtracting the calculated ideal operating time of each PSU 8-11 from the measured operating time of each PSU 8-11, that is, the measured operating time is smaller than the ideal operating time. Select a short PSU with priority.
 この結果、MPU2aは、各PSU8~11が稼動する時間を不揃いにするので、各PSU8~11が同時期に故障するのを防ぐことができる。すなわち、各PSU8~11は、正常な動作が保障される期間が定められており、正常な動作が保障される期間が過ぎると、故障が発生し易くなるため、新たなPSUと交換される。しかし、各PSU8~11を稼動させる時間を揃えた場合には、各PSU8~11を同時に交換することとなり、情報処理システム1の電源を切らなければならい。 As a result, the MPU 2a makes the time when the PSUs 8 to 11 operate irregularly, so that it is possible to prevent the PSUs 8 to 11 from failing at the same time. That is, each of the PSUs 8 to 11 has a period during which normal operation is guaranteed, and after the period during which normal operation is guaranteed, a failure is likely to occur, so that it is replaced with a new PSU. However, when the PSUs 8 to 11 are operated at the same time, the PSUs 8 to 11 are replaced at the same time, and the information processing system 1 must be turned off.
 このため、MPU2aは、各PSU8~11が稼動する時間を不揃いになるように、各PSU8~11から稼動させるPSUを選択する。この結果、MPU2aは、各PSU8~11の交換時期や故障発生時期をずらすので、情報処理システム1を動作させたままで、各PSU8~11の交換を行うことができる。 Therefore, the MPU 2a selects a PSU to be operated from each of the PSUs 8 to 11 so that the operation time of each of the PSUs 8 to 11 is not uniform. As a result, the MPU 2a shifts the replacement timing and failure occurrence timing of the PSUs 8 to 11, so that the PSUs 8 to 11 can be replaced while the information processing system 1 is operating.
 次に、図2を用いて、MPU2aが実行する処理を詳細に説明する。図2は、実施例1に係るSVPが有する機能構成を説明するための図である。図2に示すように、MPU2aは、PSU稼動指示機構32と、ハードリソース監視部33とを有する。また、メモリ2bは、ハードリソース電力テーブル30と、PSU稼動管理テーブル31とを記憶する。また、ハードリソース監視部33は、電源監視部34、定期監視部35、挿抜監視部36、故障監視部37を有する。また、PSU稼動指示機構32は、測定部38、算出部39、選択部40、制御部41を有する。 Next, the processing executed by the MPU 2a will be described in detail with reference to FIG. FIG. 2 is a diagram for explaining a functional configuration of the SVP according to the first embodiment. As shown in FIG. 2, the MPU 2 a includes a PSU operation instruction mechanism 32 and a hard resource monitoring unit 33. The memory 2b stores a hard resource power table 30 and a PSU operation management table 31. The hard resource monitoring unit 33 includes a power supply monitoring unit 34, a regular monitoring unit 35, an insertion / extraction monitoring unit 36, and a failure monitoring unit 37. The PSU operation instruction mechanism 32 includes a measurement unit 38, a calculation unit 39, a selection unit 40, and a control unit 41.
 まず、図を用いて、メモリ2bが記憶する各テーブル30、31について説明する。ハードリソース電力テーブル30は、ハードリソース群4が有する各SB16~19、および各IOB20~23が消費する電力を記憶する。例えば、図3は、ハードリソース電力テーブルの一例を説明するための図である。図3に示す例では、ハードリソース電力テーブル30は、電力を消費するハードリソースと、各ハードウェアが消費する電力とを対応付けて記憶する。例えば、ハードリソース電力テーブル30は、1つのSBが「700W(ワット)」の電力を消費し、1つのIOBが「100W」の電力を消費する旨を記憶する。 First, the tables 30 and 31 stored in the memory 2b will be described with reference to the drawings. The hard resource power table 30 stores the power consumed by the SBs 16 to 19 and the IOBs 20 to 23 included in the hard resource group 4. For example, FIG. 3 is a diagram for explaining an example of a hard resource power table. In the example illustrated in FIG. 3, the hardware resource power table 30 stores a hardware resource that consumes power and a power consumed by each piece of hardware in association with each other. For example, the hard resource power table 30 stores that one SB consumes “700 W (Watt)” and one IOB consumes “100 W”.
 図2に戻って、PSU稼動管理テーブル31は、各PSU8~11から稼動させるPSUを選択する際に、MPU2aが用いる情報を記憶するテーブルである。なお、PSU稼動管理テーブル31は、稼動させるPSUをMPU2aが選択する選択処理を行う際に作成されるテーブルであり、MPU2aが選択処理を行っていない間は、メモリ2bに記憶されていない情報である。 Referring back to FIG. 2, the PSU operation management table 31 is a table that stores information used by the MPU 2a when selecting a PSU to be operated from each of the PSUs 8 to 11. The PSU operation management table 31 is a table created when the MPU 2a selects a PSU to be operated, and information that is not stored in the memory 2b while the MPU 2a is not performing the selection process. is there.
 次に、ハードリソース監視部33が有する電源監視部34、定期監視部35、挿抜監視部36、故障監視部37が発揮する機能について説明する。電源監視部34は、情報処理システム1の電源投入を契機として、PSU稼動指示機構32にPSUの選択処理を指示する。例えば、電源監視部34は、PSU群3の稼動状態を監視しており、PSU群3が稼動を開始した場合には、情報処理システム1の電源が投入されたと判定し、PSU稼動指示機構32に選択処理の実行を指示する。 Next, functions that the power monitoring unit 34, the regular monitoring unit 35, the insertion / removal monitoring unit 36, and the failure monitoring unit 37 of the hardware resource monitoring unit 33 exhibit will be described. The power monitoring unit 34 instructs the PSU operation instruction mechanism 32 to perform PSU selection processing when the information processing system 1 is turned on. For example, the power supply monitoring unit 34 monitors the operating state of the PSU group 3. When the PSU group 3 starts operation, the power supply monitoring unit 34 determines that the information processing system 1 has been turned on, and the PSU operation instruction mechanism 32. Is instructed to execute the selection process.
 定期監視部35は、所定の時間間隔でPSU稼動指示機構32にPSUの選択処理を指示する。例えば、定期監視部35は、電源投入時からカウントを開始するタイマを有し、タイマのカウント値が所定の値になった場合には、PSU稼動指示機構32にPSUの選択処理の実行を指示する。また、定期監視部35は、ハードリソース監視部33からの指示により、PSU稼動指示機構32がPSUの選択処理を実行した場合には、タイマのカウント値をリセットする。 The regular monitoring unit 35 instructs the PSU operation instruction mechanism 32 to perform PSU selection processing at predetermined time intervals. For example, the periodic monitoring unit 35 has a timer that starts counting from when the power is turned on, and instructs the PSU operation instruction mechanism 32 to execute the PSU selection process when the count value of the timer reaches a predetermined value. To do. In addition, the periodic monitoring unit 35 resets the count value of the timer when the PSU operation instruction mechanism 32 executes the PSU selection process according to an instruction from the hardware resource monitoring unit 33.
 挿抜監視部36は、ハードリソース群4が有する各SB16~19、各IOB20~23の増設や減設、および各PSU8~11の増設や減設に応じて、PSU稼動指示機構32にPSUの選択処理を指示する。例えば、挿抜監視部36は、ハードリソース群4が有する各SB16~19、各IOB20~23、および各PSU8~11の挿抜状況を監視する。そして、挿抜監視部36は、ハードリソース群4に新たなSB、IOB、PSUのいずれかが増設された場合や、SB、IOB、PSUが減設された場合には、PSU稼動指示機構32にPSUの選択処理の実行を指示する。 The insertion / removal monitoring unit 36 selects a PSU in the PSU operation instruction mechanism 32 in accordance with the addition / removal of each SB 16-19, each IOB 20-23, and the addition / removal of each PSU 8-11 included in the hardware resource group 4. Instruct processing. For example, the insertion / removal monitoring unit 36 monitors the insertion / removal status of the SBs 16 to 19, the IOBs 20 to 23, and the PSUs 8 to 11 included in the hardware resource group 4. Then, when any of the new SB, IOB, or PSU is added to the hard resource group 4 or when the SB, IOB, or PSU is reduced, the insertion / extraction monitoring unit 36 notifies the PSU operation instruction mechanism 32. Instructs execution of PSU selection processing.
 故障監視部37は、ハードリソース群4が有する各SB16~19、各IOB20~23、および各PSU8~11の故障による切り離しが発生した場合は、PSU稼動指示機構32にPSUの選択処理の実行を指示する。例えば、故障監視部37は、故障による切り離し処理によりハードリソース群4の各SB16~19、IOB20~23、または各PSU8~11のいずれかが故障により切り離された場合は、PSU稼動指示機構32にPSUの選択処理の実行を指示する。 The failure monitoring unit 37 executes the PSU selection process to the PSU operation instruction mechanism 32 when the SBs 16 to 19, the IOBs 20 to 23, and the PSUs 8 to 11 included in the hardware resource group 4 are disconnected due to a failure. Instruct. For example, if any of the SBs 16 to 19, IOBs 20 to 23, or PSUs 8 to 11 of the hard resource group 4 is disconnected due to a failure by the disconnection process due to the failure, the failure monitoring unit 37 sends a PSU operation instruction mechanism 32 to the PSU operation instruction mechanism 32. Instructs execution of PSU selection processing.
 次に、PSU稼動指示機構32が有する測定部38、算出部39、制御部41、選択部40が実行する処理について説明する。測定部38は、各PSU8~11が稼動した時間を個別に測定する。そして、測定部38は、測定結果を格納したPSU稼動管理テーブル31を生成する。その後、測定部38は、観測結果を各PSU8~11が有する各FRU12~15に格納する。 Next, processing performed by the measurement unit 38, the calculation unit 39, the control unit 41, and the selection unit 40 included in the PSU operation instruction mechanism 32 will be described. The measuring unit 38 individually measures the time that each of the PSUs 8 to 11 is operating. And the measurement part 38 produces | generates the PSU operation management table 31 which stored the measurement result. Thereafter, the measurement unit 38 stores the observation result in each of the FRUs 12 to 15 included in each of the PSUs 8 to 11.
 以下、測定部38が実行する処理を説明する。測定部38は、PSU稼動指示機構32がPSUの選択処理を行ってから経過した時間をカウントするタイマを有する。そして、測定部38は、ハードリソース監視部33の電源監視部34、定期監視部35、挿抜監視部36、故障監視部37からPSUの選択処理の実行を指示された場合は、各FRU12~15に格納された稼働時間を取得する。 Hereinafter, the process executed by the measurement unit 38 will be described. The measurement unit 38 has a timer that counts the time that has elapsed since the PSU operation instruction mechanism 32 performed the PSU selection process. When the measurement unit 38 is instructed to execute the PSU selection process from the power source monitoring unit 34, the regular monitoring unit 35, the insertion / removal monitoring unit 36, and the failure monitoring unit 37 of the hard resource monitoring unit 33, each of the FRUs 12-15 Get the operation time stored in.
 また、測定部38は、稼動していたPSUのFRUから取得した稼働時間に、タイマがカウントした時間を合算することで、各PSU8~11の累積稼働時間を算出する。そして、測定部38は、各PSU8~11の累積稼働時間が格納されたPSU稼動管理テーブル31を生成する。その後、測定部38は、更新した各PSU8~11の累積稼働時間を、各PSU8~11の各FRU12~15に格納する。 In addition, the measurement unit 38 calculates the cumulative operating time of each PSU 8 to 11 by adding the time counted by the timer to the operating time acquired from the FRU of the operating PSU. Then, the measurement unit 38 generates a PSU operation management table 31 in which the accumulated operation time of each PSU 8 to 11 is stored. Thereafter, the measuring unit 38 stores the updated accumulated operating time of each PSU 8 to 11 in each FRU 12 to 15 of each PSU 8 to 11.
 以下、測定部38が実行する処理の一例を説明する。なお、以下の説明では、FRU12に稼働時間「1000時間」が格納され、FRU13に稼働時間「800時間」が格納され、FRU14に稼働時間「500時間」が格納され、FRU15に稼働時間「0時間」が格納されているものとする。また、PSU9とPSU11が稼動しており、PSU8とPSU10とが停止しているものとする。 Hereinafter, an example of processing executed by the measurement unit 38 will be described. In the following description, the operation time “1000 hours” is stored in the FRU 12, the operation time “800 hours” is stored in the FRU 13, the operation time “500 hours” is stored in the FRU 14, and the operation time “0 hours” is stored in the FRU 15. "Is stored. Further, it is assumed that PSU 9 and PSU 11 are operating and PSU 8 and PSU 10 are stopped.
 例えば、測定部38は、定期監視部35からPSUの選択処理の実行が指示された場合は、各FRU12~15に格納された稼働時間を取得する。そして、測定部38は、タイマがカウントした時間が「100時間」である場合は、稼動していたPSU9、11のFRU13、15から取得した稼働時間に「100時間」を合算することで、各PSU8~11の累積稼働時間を算出する。 For example, the measurement unit 38 acquires the operation time stored in each of the FRUs 12 to 15 when the PSU selection process is instructed from the regular monitoring unit 35. When the time counted by the timer is “100 hours”, the measuring unit 38 adds “100 hours” to the operating time acquired from the FRUs 13 and 15 of the operating PSUs 9 and 11. Calculate the cumulative operating time of PSUs 8-11.
 ここで、図4Aは、測定部が測定した累積稼働時間の一例を説明するための図である。例えば、測定部38は、PSU8の累積稼働時間が「1000時間」であり、PSU9の累積稼働時間が「900時間」であり、PSU10の稼働時間が「500時間」であり、PSU11の累積稼働時間が「100時間」であると算出する。また、測定部38は、PSU8~11のうち、稼動していたPSU9のFRU13に「900時間」を格納し、PSU11のFRU15に「100時間」を格納する。 Here, FIG. 4A is a figure for demonstrating an example of the accumulation operation time which the measurement part measured. For example, the measurement unit 38 has a cumulative operating time of PSU 8 of “1000 hours”, a cumulative operating time of PSU 9 of “900 hours”, an operating time of PSU 10 of “500 hours”, and a cumulative operating time of PSU 11 Is “100 hours”. In addition, the measurement unit 38 stores “900 hours” in the FRU 13 of the PSU 9 that has been operating among the PSUs 8 to 11, and stores “100 hours” in the FRU 15 of the PSU 11.
 そして、測定部38は、図4Bに示すPSU稼動管理テーブル31を生成する。図4Bは、PSU稼動管理テーブルを説明するための第1の図である。図4Bに示すように、測定部38は、各PSU8~11ごとに、稼動比率と稼働時間と仮定時間と時間差とを対応付けたPSU稼動管理テーブル31を生成する。 And the measurement part 38 produces | generates the PSU operation management table 31 shown to FIG. 4B. FIG. 4B is a first diagram for explaining the PSU operation management table. As shown in FIG. 4B, the measurement unit 38 generates a PSU operation management table 31 in which the operation ratio, the operation time, the assumed time, and the time difference are associated with each other for each PSU 8-11.
 ここで、稼動比率とは、各PSU8~11を動作させる理想的な比率であり、各PSU8~11ごとに異なる比率である。また、仮定時間とは、各PSU8~11を稼動させる理想的な時間である。また、時間差とは、稼働時間から仮定時間を減算した値である。そして、測定部38は、作成したPSU稼動管理テーブル31の稼動時間に、各PSU8~11の累積稼働時間を格納する。 Here, the operating ratio is an ideal ratio for operating the PSUs 8 to 11, and is a ratio that is different for each of the PSUs 8 to 11. The assumed time is an ideal time for operating each of the PSUs 8-11. The time difference is a value obtained by subtracting the assumed time from the operating time. Then, the measuring unit 38 stores the accumulated operation time of each PSU 8 to 11 in the operation time of the created PSU operation management table 31.
 なお、測定部38は、前回の選択処理時に生成したPSU稼動管理テーブル31がメモリ2bに格納されている場合は、PSU稼動管理テーブル31に格納された情報のうち、稼働時間、仮定時間、時間差を消去する。そして、測定部38は、各PSU8~11の稼働時間を新たな稼働時間に書き換える。 Note that, when the PSU operation management table 31 generated during the previous selection process is stored in the memory 2b, the measurement unit 38 uses the operation time, the assumed time, and the time difference among the information stored in the PSU operation management table 31. Erase. Then, the measurement unit 38 rewrites the operation time of each PSU 8 to 11 with a new operation time.
 また、測定部38は、情報処理システム1の出荷時等、各FRU12~15に稼働時間が格納されていない場合には、各稼働時間を「0」として各PSU稼動管理テーブル31に格納する。そして、測定部38は、稼働時間「0」を各FRU12~15に格納する。また、例えば、測定部38は、PSU11が故障により減設された場合や、新たなPSUが増設された場合には、各PSU8~10の稼働時間のみが格納されたPSU稼動管理テーブル31を新たに生成する。 Further, when the operating time is not stored in each of the FRUs 12 to 15 such as when the information processing system 1 is shipped, the measuring unit 38 stores each operating time as “0” in each PSU operation management table 31. Then, the measurement unit 38 stores the operation time “0” in each of the FRUs 12 to 15. Further, for example, when the PSU 11 is removed due to a failure or when a new PSU is added, the measuring unit 38 newly updates the PSU operation management table 31 in which only the operation time of each PSU 8 to 10 is stored. To generate.
 図2に戻って、算出部39は、測定部38がPSU稼動管理テーブル31に稼働時間を格納すると、各PSU8~11の稼動比率を用いて、各PSU8~11の理想的な稼働時間を算出する。そして、算出部39は、各PSU8~11の累積稼働時間と、理想的な稼働時間との差を算出する。ここで、算出部39は、情報処理システム1の電源投入後やPSUの増設、減設があった場合等、各PSU8~11の稼動比率が割り当てられていない場合は、各PSU8~11の累積稼働時間に応じて、段階的に異なる値の稼動比率を算出する。 Returning to FIG. 2, when the measurement unit 38 stores the operation time in the PSU operation management table 31, the calculation unit 39 calculates the ideal operation time of each PSU 8 to 11 using the operation ratio of each PSU 8 to 11. To do. Then, the calculating unit 39 calculates the difference between the accumulated operating time of each PSU 8 to 11 and the ideal operating time. Here, the calculation unit 39 accumulates the PSUs 8 to 11 when the operation ratio of the PSUs 8 to 11 is not allocated, such as after the power-on of the information processing system 1 or when the PSU is added or removed. Depending on the operating time, the operating ratios with different values are calculated in stages.
 具体的には、算出部39は、PSU稼動管理テーブル31を参照し、各PSU8~11に稼動比率が設定されているか否かを判定する。そして、算出部39は、各PSU8~11に稼動比率が設定されていない場合は、値が段階的に異なる稼動比率を生成し、値が大きい稼動比率から順に、稼働時間が長いPSUに割り当てる。例えば、算出部39は、情報処理システム1に「n」台のPSUが設置されている場合は、「1」から「n」までの整数の合計値を算出し、「1」から「n」までの整数をそれぞれ合計値で割った値をパーセントで示した稼動比率を算出する。そして、算出部39は、稼働時間が多いPSUから順に、多い値の稼動比率を割り当てる。 Specifically, the calculation unit 39 refers to the PSU operation management table 31 and determines whether an operation ratio is set for each of the PSUs 8 to 11. Then, when the operation ratio is not set for each of the PSUs 8 to 11, the calculation unit 39 generates operation ratios having different values in stages and assigns them to PSUs having longer operation times in descending order of operation ratio. For example, when “n” PSUs are installed in the information processing system 1, the calculation unit 39 calculates the total value of integers from “1” to “n”, and “1” to “n”. The operation ratio is calculated by dividing the whole number up to the total value by the percentage. Then, the calculation unit 39 assigns an operation ratio with a larger value in order from the PSU with the longer operation time.
 例えば、図4Cは、PSU稼動管理テーブルに稼動比率を格納する処理を説明するための図である。図4Cに示す例では、算出部39は、情報処理システム1に4台のPSU8~11が設置されているので、1から4までの整数の合計値「10」を算出する。次に、算出部39は、「1」を「10」で割った稼動比率「10%」、「2」を「10」で割った稼動比率「20%」、「3」を「10」で割った稼動比率「30%」、「4」を「10」で割った稼動比率「40%」を算出する。 For example, FIG. 4C is a diagram for explaining processing for storing the operation ratio in the PSU operation management table. In the example shown in FIG. 4C, since the four PSUs 8 to 11 are installed in the information processing system 1, the calculation unit 39 calculates an integer total value “10” from 1 to 4. Next, the calculation unit 39 calculates the operation ratio “10%” by dividing “1” by “10”, the operation ratio “20%” by dividing “2” by “10”, and “3” by “10”. The operation ratio “40%” obtained by dividing the divided operation ratio “30%” and “4” by “10” is calculated.
 そして、算出部39は、稼働時間が最も多いPSU8に対して、最も大きい値の稼動比率「40%」を割り当て、次に稼働時間が多いPSU9に対して、次に大きい値の稼動比率「30%」を割り当てる。また、算出部39は、PSU10に対して稼動比率「20%」を割り当て、PSU11に対して、稼動比率「10%」を割り当てる。そして、算出部39は、図4Cに示すように、各PSU8~11に割り当てた稼動比率をPSU稼動管理テーブル31に格納する。 Then, the calculation unit 39 assigns the largest operation ratio “40%” to the PSU 8 with the longest operation time, and sets the next largest operation ratio “30” to the PSU 9 with the next most operation time. % ". Further, the calculation unit 39 assigns the operation ratio “20%” to the PSU 10 and assigns the operation ratio “10%” to the PSU 11. Then, as shown in FIG. 4C, the calculation unit 39 stores the operation ratio assigned to each PSU 8 to 11 in the PSU operation management table 31.
 なお、情報処理システム1の出荷時や、新たなPSU8~11を設置した場合は、各PSU8~11の稼働時間が「0」となる。このため、算出部39は、各PSU8~11の稼働時間が「0」である場合は、各PSU8~11を識別する番号が若いPSUから順に、高い値の稼動比率を割り当てる。 Note that when the information processing system 1 is shipped or when new PSUs 8 to 11 are installed, the operation time of each PSU 8 to 11 becomes “0”. Therefore, when the operating time of each PSU 8 to 11 is “0”, the calculating unit 39 assigns a higher operating ratio in order from the PSU with the smallest number for identifying each PSU 8 to 11.
 次に、算出部39は、各PSU8~11の稼働時間の和と、各PSU8~11に割り当てた稼動比率と稼働時間との積を算出し、算出した値を仮定時間としてPSU稼動管理テーブル31に格納する。すなわち、算出部39は、各PSU8~11に割り当てた稼動比率と書くPSU8~11の総稼働時間との積から、各PSU8~11の理想的な稼働時間を算出する。 Next, the calculation unit 39 calculates the product of the sum of the operation times of the PSUs 8 to 11 and the operation ratio and the operation time assigned to each of the PSUs 8 to 11, and uses the calculated value as the assumed time for the PSU operation management table 31. To store. That is, the calculation unit 39 calculates the ideal operating time of each PSU 8 to 11 from the product of the operating ratio assigned to each PSU 8 to 11 and the total operating time of the written PSUs 8 to 11.
 例えば、図4Dは、PSU稼動管理テーブルに仮定時間を格納する処理を説明するための図である。まず、算出部39は、各PSU8~11の稼働時間を合計した総稼働時間「2500時間」を算出する。次に、算出部39は、各PSU8~11の稼動比率に、算出した総過度時間「2500時間」を積算し、積算の結果を各PSU8~11の仮定時間とする。図4Dに示す例では、算出部39は、PSU8の仮定時間を「2500×0.4=1000時間」とし、PSU9の仮定時間を「2500×0.3=750」時間とする。また、算出部39は、PSU10の仮定時間を「2500×0.2=500時間」とし、PSU11の仮定時間を「2500×0.1=250」時間とする。 For example, FIG. 4D is a diagram for explaining a process of storing the assumed time in the PSU operation management table. First, the calculation unit 39 calculates the total operation time “2500 hours” that is the sum of the operation times of the PSUs 8 to 11. Next, the calculation unit 39 adds the calculated total excess time “2500 hours” to the operation ratios of the PSUs 8 to 11, and sets the result of the integration as the assumed time of the PSUs 8 to 11. In the example illustrated in FIG. 4D, the calculation unit 39 sets the assumed time of the PSU 8 to “2500 × 0.4 = 1000 hours” and the assumed time of the PSU 9 to “2500 × 0.3 = 750” hours. Further, the calculation unit 39 sets the assumed time of the PSU 10 to “2500 × 0.2 = 500 hours” and the assumed time of the PSU 11 to “2500 × 0.1 = 250” hours.
 次に、算出部39は、各PSU8~11の稼働時間から仮定時間を減算した時間差を算出する。すなわち、算出部39は、各PSU8~11が理想的な稼働時間に対して、どれくらい多く稼動しているかを算出する。そして、算出部39は、算出結果をPSU稼動管理テーブル31に格納する。 Next, the calculation unit 39 calculates the time difference obtained by subtracting the assumed time from the operating time of each PSU 8-11. That is, the calculation unit 39 calculates how many of the PSUs 8 to 11 are operating with respect to the ideal operating time. Then, the calculation unit 39 stores the calculation result in the PSU operation management table 31.
 例えば、図4Eは、PSU稼動管理テーブルに時間差を格納する処理を説明するための図である。図4Eに示す例では、算出部39は、PSU8の稼働時間「1000時間」から仮定時間「1000時間」を減算した値「±0」をPSU8の時間差としてPSU稼動管理テーブル31に格納する。また、算出部39は、PSU9の稼働時間「900時間」から、仮定時間「750時間」を減算した値「+150」をPSU9の時間差としてPSU稼動管理テーブル31に格納する。 For example, FIG. 4E is a diagram for explaining processing for storing a time difference in the PSU operation management table. In the example illustrated in FIG. 4E, the calculation unit 39 stores a value “± 0” obtained by subtracting the assumed time “1000 hours” from the operation time “1000 hours” of the PSU 8 in the PSU operation management table 31 as the time difference of the PSU 8. Further, the calculation unit 39 stores a value “+150” obtained by subtracting the assumed time “750 hours” from the operation time “900 hours” of the PSU 9 in the PSU operation management table 31 as the time difference of the PSU 9.
 また、算出部39は、PSU10の稼働時間「500時間」から、仮定時間「500時間」を減算した値「±0」をPSU10の時間差としてPSU稼動管理テーブル31に格納する。また、算出部39は、PSU11の稼働時間「100時間」から、仮定時間「250時間」を減算した値「-150」をPSU11の時間差としてPSU稼動管理テーブル31に格納する。 Further, the calculation unit 39 stores a value “± 0” obtained by subtracting the assumed time “500 hours” from the operation time “500 hours” of the PSU 10 in the PSU operation management table 31 as the time difference of the PSU 10. Further, the calculation unit 39 stores a value “−150” obtained by subtracting the assumed time “250 hours” from the operation time “100 hours” of the PSU 11 in the PSU operation management table 31 as the time difference of the PSU 11.
 なお、算出部39は、各PSU8~11の累積稼働時間が所定の閾値を超えない場合は、稼動比率の値をそのまま仮定時間とする。例えば、算出部39は、情報処理システム1の出荷時当、各PSU8~11の累積稼働時間がすべて「0」である場合は、稼働時間をそれぞれ「40」時間、「30」時間、「20」時間、「10」時間として、時間差を算出する。 Note that, when the accumulated operating time of each of the PSUs 8 to 11 does not exceed a predetermined threshold, the calculating unit 39 uses the value of the operating ratio as it is as the assumed time. For example, when the information processing system 1 is shipped and the accumulated operating hours of the PSUs 8 to 11 are all “0”, the calculating unit 39 sets the operating times to “40” hours, “30” hours, “20”, respectively. The time difference is calculated as “time” and “10” time.
 図2に戻って、選択部40は、各PSU8~11の稼働時間仮定時間との差に基づいて、稼動させるPSUを選択する。具体的には、選択部40は、情報処理システム1に設置されたハードリソース群4が消費する電力と、各PSU8~11が供給可能な電力とに応じて、稼動させるPSUの数を算出する。そして、選択部40は、PSU稼動管理テーブル31に格納された時間差が小さい順に、算出した数のPSUを選択する。その後、選択部40は、選択したPSUを制御部41に通知する。 Referring back to FIG. 2, the selection unit 40 selects a PSU to be operated based on the difference from the assumed operation time of each PSU 8-11. Specifically, the selection unit 40 calculates the number of PSUs to be operated according to the power consumed by the hardware resource group 4 installed in the information processing system 1 and the power that can be supplied by each of the PSUs 8 to 11. . Then, the selection unit 40 selects the calculated number of PSUs in ascending order of time difference stored in the PSU operation management table 31. Thereafter, the selection unit 40 notifies the control unit 41 of the selected PSU.
 以下、選択部40が実行する処理を具体的な数値を用いて説明する。なお、以下の説明では、ハードリソース群4に2台のSB16、17と、2台のIOB20、21が設置されている例について説明する。例えば、選択部40は、ハードリソース群4が2台のSB16、17と、2台のIOB20、21を有すると判定する。この結果、選択部40は、ハードリソース電力テーブル30に格納されたSBとIOBの消費電力を用いて、ハードリソース群4の消費電力「700×2+100×2=1600(W)」を算出する。 Hereinafter, processing executed by the selection unit 40 will be described using specific numerical values. In the following description, an example in which two SBs 16 and 17 and two IOBs 20 and 21 are installed in the hardware resource group 4 will be described. For example, the selection unit 40 determines that the hard resource group 4 has two SBs 16 and 17 and two IOBs 20 and 21. As a result, the selection unit 40 calculates the power consumption “700 × 2 + 100 × 2 = 1600 (W)” of the hard resource group 4 using the power consumption of the SB and the IOB stored in the hard resource power table 30.
 次に、選択部40は、PSU1台が1000Wの出力を有し、電力の変換効率が良い稼働率が「80%」である場合は、稼動させるPSUの台数「1600/1000×0.8=2(台)」を算出する。この結果、選択部40は、時間差の値が少ない順に2台のPSUを選択する。ここで、選択部40は、時間差が同じPSUが複数存在する場合には、累積稼働時間がより短いPSUを優先して選択する。 Next, when one PSU has an output of 1000 W and the operation rate with good power conversion efficiency is “80%”, the selection unit 40 sets the number of PSUs to be operated “1600/1000 × 0.8 = 2 (unit) "is calculated. As a result, the selection unit 40 selects two PSUs in ascending order of time difference values. Here, when there are a plurality of PSUs having the same time difference, the selection unit 40 preferentially selects a PSU having a shorter accumulated operation time.
 例えば、選択部40は、図4Eに示す情報がPSU稼動管理テーブル31に格納されている場合は、1台目のPSUとしてPSU11を選択する。次に、選択部40は、PSU8、またはPSU10を2台目の候補とするが、PSU10がPSU8よりも累積稼働時間が短いので、2代目のPSUとしてPSU10を選択する。そして、選択部40は、PSU10とPSU11とを制御部41に通知する。 For example, when the information shown in FIG. 4E is stored in the PSU operation management table 31, the selection unit 40 selects the PSU 11 as the first PSU. Next, the selection unit 40 selects PSU 8 or PSU 10 as the second candidate, but since PSU 10 has a shorter cumulative operating time than PSU 8, PSU 10 is selected as the second generation PSU. Then, the selection unit 40 notifies the control unit 41 of PSU 10 and PSU 11.
 図2に戻って、制御部41は、選択部40が選択したPSUを稼動させ、他のPSUを停止させる。例えば、制御部41は、選択部40からPSU10とPSU11との通知を受信した場合は、PSU10とPSU11を稼動させてハードリソース群4に電力を供給させる。また、制御部41は、PSU8とPSU9の動作を停止させることで、消費電力を削減する。 2, the control unit 41 operates the PSU selected by the selection unit 40 and stops other PSUs. For example, when the notification of the PSU 10 and the PSU 11 is received from the selection unit 40, the control unit 41 operates the PSU 10 and the PSU 11 and supplies power to the hard resource group 4. Moreover, the control part 41 reduces power consumption by stopping operation | movement of PSU8 and PSU9.
 このように、SVP2は、各PSU8~11ごとに異なる稼動比率を用いて、各PSU8~11の理想的な稼働時間を算出し、各PSU8~11の理想的な稼働時間と実際の累積稼働時間との差に基づいて、稼動させるPSUを選択する。このため、SVP2は、情報処理システム1の消費電力を削減しつつ、各PSU8~11の累積稼働時間をずらすので、各PSU8~11の同時故障や、各PSU8~11の同時交換を防ぐことができる。この結果、SVP2は、情報処理システム1の運用を停止することなくPSUの交換を可能とするので、安定運用を図ることができる。 As described above, the SVP 2 calculates the ideal operation time of each PSU 8 to 11 using the operation ratio that is different for each PSU 8 to 11, and calculates the ideal operation time and the actual accumulated operation time of each PSU 8 to 11. The PSU to be operated is selected on the basis of the difference. For this reason, the SVP 2 shifts the cumulative operating time of the PSUs 8 to 11 while reducing the power consumption of the information processing system 1, thereby preventing simultaneous failure of the PSUs 8 to 11 and simultaneous replacement of the PSUs 8 to 11. it can. As a result, the SVP 2 can exchange the PSUs without stopping the operation of the information processing system 1, so that stable operation can be achieved.
 次に、図5A、図5Bを用いて、一定期間経過後にSVP2が新たに稼動させるPSUを選択する処理について説明する。なお、以下の説明では、前回の選択処理から1週間が経過し、定期監視部35が選択処理の実行を指示したことを契機としてSVP2が選択処理を実行する例について説明する。 Next, a process for selecting a PSU to be newly operated by the SVP 2 after a certain period of time will be described with reference to FIGS. 5A and 5B. In the following description, an example will be described in which the SVP 2 executes the selection process when one week has passed since the previous selection process and the periodic monitoring unit 35 instructs the execution of the selection process.
 まず、図5Aを用いて、1週間後の各PSU8~11の累積稼働時間について説明する。図5Aは、累積稼働時間の遷移を説明するための図である。図5Aに示すように、SVP2は、一週間後におけるPSU10の累積稼働時間が「668」時間であり、PSU11の累積稼働時間が「268」時間であると算出する。そして、SVP2は、PSU10のFRU14に「668」時間を格納し、PSU11のFRU15に「268」時間を格納する。なお、SVP2は、PSU8、およびPSU10を稼動させていないので、新たな累積稼働時間の格納を行わない。 First, the accumulated operation time of each PSU 8 to 11 after one week will be described with reference to FIG. 5A. FIG. 5A is a diagram for explaining the transition of the accumulated operation time. As shown in FIG. 5A, the SVP 2 calculates that the accumulated operating time of the PSU 10 after one week is “668” hours and the accumulated operating time of the PSU 11 is “268” hours. Then, the SVP 2 stores “668” time in the FRU 14 of the PSU 10 and stores “268” time in the FRU 15 of the PSU 11. Since SVP2 does not operate PSU8 and PSU10, it does not store new accumulated operating time.
 次に、図5Bを用いて、1週間後に新たに稼動させるPSUを選択する処理について説明する。図5Bは、新たに稼動させるPSUを選択する処理を説明するための図である。図5Bに示すように、SVP2は、各PSU8~10に対して、前回と同じ稼動比率を割り当て、各PSU8~10の新たな累積稼働時間を稼働時間としてPSU稼動管理テーブル31に格納する。 Next, a process for selecting a PSU to be newly activated after one week will be described with reference to FIG. 5B. FIG. 5B is a diagram for describing processing for selecting a PSU to be newly operated. As shown in FIG. 5B, the SVP 2 assigns the same operation ratio to the PSUs 8 to 10 as before, and stores the new accumulated operation time of each PSU 8 to 10 in the PSU operation management table 31 as the operation time.
 そして、SVP2は、各PSU8~10の仮定時間「1134」時間、「850」時間、「567」時間、「283」時間を算出する。また、SVP2は、各PSU8~10の時間差「-134」時間、「+50」時間、「+101」時間、「-15」時間を算出する。この結果、SVP2は、時間差の値が他のPSUよりも少ない2つのPSU8とPSU11を選択する。その後、SVP2は、PSU8とPSU11を稼動させ、PSU9とPSU10を停止させる。 The SVP 2 calculates the assumed times “1134”, “850”, “567”, and “283” for each PSU 8-10. Further, the SVP 2 calculates the time differences “−134” time, “+50” time, “+101” time, and “−15” time of the PSUs 8 to 10. As a result, the SVP 2 selects two PSUs 8 and PSUs 11 having time difference values smaller than those of other PSUs. Thereafter, the SVP 2 operates the PSU 8 and the PSU 11 and stops the PSU 9 and the PSU 10.
 次に、図6を用いて、SVP2が実行する処理の流れを説明する。図6は、SVPが実行する処理の流れを説明するための図である。例えば、図6中(A)に示す例では、PSU8の累積稼働時間が「1000」時間であり、PSU9の累積稼働時間が「900」時間であり、PSU10の累積稼働時間が「500」時間であり、PSU11の累積稼働時間が「100」時間である。また、PSU8には、稼動比率「40」%が割り当てられ、PSU9には、稼動比率「30」%が割り当てられ、PSU10には、稼動比率「20」%が割り当てられ、PSU11には、稼動比率「10」%が割り当てられている。 Next, the flow of processing executed by the SVP 2 will be described with reference to FIG. FIG. 6 is a diagram for explaining the flow of processing executed by the SVP. For example, in the example shown in FIG. 6A, the cumulative operating time of PSU 8 is “1000” hours, the cumulative operating time of PSU 9 is “900” hours, and the cumulative operating time of PSU 10 is “500” hours. Yes, the accumulated operating time of the PSU 11 is “100” hours. Also, the operating ratio “40”% is assigned to PSU 8, the operating ratio “30”% is assigned to PSU 9, the operating ratio “20”% is assigned to PSU 10, and the operating ratio is assigned to PSU 11. “10”% is allocated.
 ここで、図6中(B)に示すように、情報処理システム1の電源投入指示があった場合には、SVP2は、ハードリソース電力テーブル30から各SB16、17、および各IOB20、21の消費電力を取得する。そして、SVP2は、図6中(C)に示すように、取得した消費電力を合計し、ハードリソース群4の総電力量「1600W」を算出する。 Here, as shown in FIG. 6B, when there is an instruction to turn on the information processing system 1, the SVP 2 consumes each SB 16, 17 and each IOB 20, 21 from the hard resource power table 30. Get power. Then, the SVP 2 calculates the total power amount “1600 W” of the hard resource group 4 by summing the acquired power consumptions as shown in FIG.
 次に、図6中(D)に示すように、SVP2は、各PSU8~11の累積稼働時間から総稼働時間「2500」時間を算出する。そして、SVP2は、各PSU8~11の稼動比率と総稼働時間の積を算出することで、図6中(E)に示すように、各PSU8~11の仮定時間を算出する。詳細には、SVP2は、PSU8の仮定時間「1000」時間、PSU9の仮定時間「750」時間、PSU10の仮定時間「500」時間、PSU11の仮定時間「250」時間を算出する。 Next, as shown in FIG. 6D, the SVP 2 calculates the total operating time “2500” hours from the cumulative operating time of each PSU 8-11. Then, the SVP 2 calculates the assumed time of each of the PSUs 8 to 11 as shown in FIG. 6E by calculating the product of the operating ratio of each of the PSUs 8 to 11 and the total operating time. Specifically, the SVP 2 calculates an assumed time “1000” time of the PSU 8, an assumed time “750” time of the PSU 9, an assumed time “500” time of the PSU 10, and an assumed time “250” time of the PSU 11.
 次に、SVP2は、図6中(F)に示すように、各PSU8~11の仮定時間から稼働時間を減算した時間差を算出する。詳細には、SVP2は、PSU8、10の時間差「0」、PSU9の時間差「+150」、PSU11の時間差「-150」を算出する。この結果、SVP2は、図6中(G)に示すように、PSU8とPSU9を停止させ、図6中(H)に示すようにPSU10とPSU11を稼動させる。 Next, as shown in FIG. 6F, the SVP 2 calculates a time difference obtained by subtracting the operation time from the assumed time of each PSU 8-11. Specifically, the SVP 2 calculates the time difference “0” of the PSUs 8 and 10, the time difference “+150” of the PSU 9, and the time difference “−150” of the PSU 11. As a result, the SVP 2 stops the PSU 8 and PSU 9 as shown in (G) of FIG. 6, and operates the PSU 10 and PSU 11 as shown in (H) of FIG.
 また、SVP2は、一週間後に図6中(C)~(F)と同様の処理を実行することで、図6中(I)に示すPSU稼動管理テーブル31を生成する。この結果、SVP2は、図6中(J)に示すPSU9およびPSU10を停止させ、図6中(K)に示すPSU8とPSU11を稼動させる。 Further, the SVP 2 generates the PSU operation management table 31 shown in (I) of FIG. 6 by executing the same processing as (C) to (F) in FIG. 6 after one week. As a result, the SVP 2 stops the PSU 9 and PSU 10 shown in (J) in FIG. 6, and operates the PSU 8 and PSU 11 shown in (K) in FIG.
 次に、図7を用いて、SVP2が実行する選択処理の流れを説明する。図7は、選択処理の流れを説明するためのフローチャートである。例えば、図7に示す例では、SVP2は、稼動させるPSUの数を決定する(ステップS1)。次に、SVP2は、各PSUから稼働時間を取得する(ステップS2)。続いて、SVP2は、各PSUの稼動比率を算出する(ステップS3)。また、SVP2は、各PSUの仮定時間を算出する(ステップS4)。そして、SVP2は、各PSUの稼働時間と仮定時間との時間差を算出し(ステップS5)、算出結果を用いて、稼動対象となるPSUを決定し(ステップS6)、処理を終了する。 Next, the flow of selection processing executed by the SVP 2 will be described with reference to FIG. FIG. 7 is a flowchart for explaining the flow of the selection process. For example, in the example shown in FIG. 7, the SVP 2 determines the number of PSUs to be operated (step S1). Next, the SVP 2 acquires the operation time from each PSU (step S2). Subsequently, the SVP 2 calculates the operation ratio of each PSU (step S3). Further, the SVP 2 calculates an assumed time for each PSU (step S4). Then, the SVP 2 calculates the time difference between the operating time of each PSU and the assumed time (step S5), determines the PSU to be operated using the calculation result (step S6), and ends the process.
 次に、図8を用いて、情報処理システム1の電源投入時、およびSB(System Board)16~19、IOB(Input Output Board)20~23、PSU8~11の挿抜が行われた場合に、SVP2が実行する処理の流れについて説明する。図8は、電源投入時、およびハードリソースの挿抜が行われた際にSVPが実行する処理の流れを説明するためのフローチャートである。SVP2は、情報処理システム1の電源が投入された場合や、SB16~19、IOB20~23、PSU8~11の挿抜が行われた場合は、電源投入するハードリソースを確認し、ハードリソース電力テーブル30から、必要な電力を算出する(ステップS101)。 Next, referring to FIG. 8, when the information processing system 1 is turned on, and when SB (System Board) 16-19, IOB (Input Output Board) 20-23, and PSU 8-11 are inserted / removed, A flow of processing executed by the SVP 2 will be described. FIG. 8 is a flowchart for explaining the flow of processing executed by the SVP when power is turned on and when a hard resource is inserted or removed. When the power of the information processing system 1 is turned on or when the SBs 16 to 19, IOBs 20 to 23, and PSUs 8 to 11 are inserted / removed, the SVP 2 confirms the hardware resources to be turned on, and the hardware resource power table 30 From this, the required power is calculated (step S101).
 次に、SVP2は、ステップS101で算出した電力を供給するための必要なPSUの数を算出する(ステップS102)。次に、SVP2は、PSUから稼働時間を読み出して、PSU稼動管理テーブル31に格納する(ステップS103)。続いて、SVP2は、各PSUの稼動比率を決定し(ステップS104)、決定した稼動比率と、各PSUの総稼働時間から仮定時間を決定する(ステップS105)。 Next, the SVP 2 calculates the number of PSUs necessary for supplying the power calculated in Step S101 (Step S102). Next, the SVP 2 reads the operation time from the PSU and stores it in the PSU operation management table 31 (step S103). Subsequently, the SVP 2 determines an operation ratio of each PSU (step S104), and determines an assumed time from the determined operation ratio and the total operation time of each PSU (step S105).
 例えば、SVP2は、PSUの減設が行われた場合は、残ったPSUの稼動比率を再計算し、再計算した稼動比率の割り当てを行う。また、SVP2は、各PSUの稼働時間が所定の閾値に満たない場合は、各PSUの稼動比率をそのまま仮定時間とする。また、SVP2は、PSUの増設が行われた場合は、新たに増設されたPSUを含む全PSUの稼動比率を再計算し、再計算した稼動比率の割り当てを行う。 For example, when the PSU is removed, the SVP 2 recalculates the operation ratio of the remaining PSU and assigns the recalculated operation ratio. Further, when the operating time of each PSU does not satisfy a predetermined threshold, the SVP 2 uses the operating ratio of each PSU as it is as an assumed time. Further, when a PSU is added, the SVP 2 recalculates the operation ratio of all PSUs including the newly added PSU, and assigns the recalculated operation ratio.
 続いて、SVP2は、PSU稼動管理テーブル31の仮定時間から稼働時間を減算した時間差を算出する(ステップS106)。そして、SVP2は、時間差が小さい値のPSUから順に、ステップS102にて算出した数のPSUを選択する(ステップS107)。なお、SVP2は、時間差が同じ値のPSUが複数存在する場合は、稼働時間が短いPSUを優先して選択する。そして、SVP2は、選択したPSUの電源を投入し(ステップS108)、他のPSUの電源を切断する(ステップS109)。その後、SVP2は、各PSUのFRUに稼働時間を格納し(ステップS110)、処理を終了する。 Subsequently, the SVP 2 calculates a time difference obtained by subtracting the operation time from the assumed time in the PSU operation management table 31 (step S106). Then, the SVP 2 selects the number of PSUs calculated in step S102 in order from the PSU having the smallest time difference (step S107). Note that when there are a plurality of PSUs having the same time difference, the SVP 2 preferentially selects a PSU with a short operation time. Then, the SVP 2 turns on the power supply of the selected PSU (step S108) and turns off the power supply of the other PSUs (step S109). Thereafter, the SVP 2 stores the operation time in the FRU of each PSU (step S110) and ends the process.
 次に、図9を用いて、定期監視部35が選択処理の実行を指示した際、もしくは故障監視部37が選択処理の実行を指示した際にSVP2が実行する処理の流れについて説明する。図9は、定期的に実行する選択処理、および故障が発生した際に実行する選択処理の流れを説明するためのフローチャートである。なお、図9に示す処理のうち、ステップS201、ステップS202は、図8中ステップS101、ステップS102と同じ処理であるものとして、説明を省略する。また、図9中ステップS205~ステップS211は、図8中ステップS104~ステップS110と同じ処理であるものとして説明を省略する。 Next, the flow of processing executed by the SVP 2 when the regular monitoring unit 35 instructs execution of the selection processing or when the failure monitoring unit 37 instructs execution of the selection processing will be described with reference to FIG. FIG. 9 is a flowchart for explaining the flow of selection processing that is periodically executed and selection processing that is executed when a failure occurs. Of the processes shown in FIG. 9, step S201 and step S202 are the same as steps S101 and S102 in FIG. Further, since steps S205 to S211 in FIG. 9 are the same processes as steps S104 to S110 in FIG.
 例えば、SVP2は、各PSUから稼働時間を読み出して、PSU稼動管理テーブル31に格納する(ステップS203)。そして、SVP2は、稼動したPSUの稼働時間を更新し(ステップS204)、ステップS205の処理を実行する。すなわち、定期監視や故障監視による選択処理では、各PSU8~11のFRU12~15に格納されていた稼働時間を更新し、更新した稼働時間を用いて選択処理を実行することとなる。 For example, the SVP 2 reads the operation time from each PSU and stores it in the PSU operation management table 31 (step S203). Then, the SVP 2 updates the operating time of the operating PSU (Step S204) and executes the process of Step S205. That is, in the selection process based on the periodic monitoring or the failure monitoring, the operation time stored in the FRUs 12 to 15 of the PSUs 8 to 11 is updated, and the selection process is executed using the updated operation time.
[SVP2の効果]
 上述したように、SVP2は、各PSU8~11が稼動した時間をPSUごとに測定する。また、SVP2は、各PSU8~11ごとに異なる稼動比率と、各PSU8~11の稼働時間の合計との積を、PSUごとに算出する。そして、SVP2は、算出した積の値が小さいPSUから順に、稼動させるPSUを選択し、選択したPSUを稼動させ、他のPSUを停止させる。
[Effects of SVP2]
As described above, the SVP 2 measures the time for which each of the PSUs 8 to 11 is operating for each PSU. Further, the SVP 2 calculates the product of the operation ratio that is different for each PSU 8 to 11 and the total operation time of each PSU 8 to 11 for each PSU. Then, the SVP 2 selects the PSUs to be operated in order from the PSU having the smallest calculated product value, operates the selected PSUs, and stops the other PSUs.
 このため、SVP2は、各PSU8~11の稼働時間をずらすことができるので、各PSU8~11の同時故障を防止することができる。この結果、SVP2は、情報処理システム1を停止させることなく、ユニット単位で各PSU8~11を交換可能とするので、安定運用を実現することができる。また、SVP2は、稼動させるPSUを稼動比率に応じてローテーションさせるので、各PSU8~11が長期間停止するのを防ぐことができる。この結果、SVP2は、各PSU8~11の耐久年数を向上させることができる。 For this reason, the SVP 2 can shift the operation time of the PSUs 8 to 11, so that simultaneous failure of the PSUs 8 to 11 can be prevented. As a result, the SVP 2 can replace the PSUs 8 to 11 in units of units without stopping the information processing system 1, thereby realizing stable operation. Further, since the SVP 2 rotates the PSU to be operated according to the operation ratio, it is possible to prevent the PSUs 8 to 11 from being stopped for a long time. As a result, the SVP 2 can improve the service life of each PSU 8-11.
 また、SVP2は、段階的に値が異なる複数の稼動比率を生成し、稼働時間が長いPSUから順に、値が大きい稼動比率から順次割り当てる。この結果、SVP2は、稼働時間が長いPSUを優先的に使用するので、停止状態のPSU、すなわちバックアップを行うPSUが故障により利用できないといった事態を防ぐことができる。 Also, the SVP 2 generates a plurality of operation ratios having different values in stages, and sequentially assigns the operation ratios with the larger values in order from the PSU having the longer operation time. As a result, since the SVP 2 preferentially uses the PSU having a long operation time, it is possible to prevent a situation in which a stopped PSU, that is, a PSU that performs backup cannot be used due to a failure.
 また、SVP2は、ハードリソース群4が消費する電力と、各PSUが供給可能な電力とに応じた数のPSUを、稼動させるPSUとして選択する。このため、SVP2は、情報処理システム1が消費する無駄な電力を削減することができる。 Also, the SVP 2 selects as many PSUs as the PSUs to be operated according to the power consumed by the hardware resource group 4 and the power that can be supplied by each PSU. For this reason, the SVP 2 can reduce useless power consumed by the information processing system 1.
 また、SVP2は、算出した時間差が同じ値となるPSUが複数存在する場合は、稼働時間が少ないPSUを優先して稼動させる。このため、SVP2は、稼働時間が長いPSUのみが再度選択され、長期間稼動しないPSUが生じるのを防ぐことができる。 In addition, when there are a plurality of PSUs having the same calculated time difference, the SVP 2 preferentially operates the PSU having a short operation time. For this reason, the SVP 2 can prevent only the PSU having a long operation time from being selected again and generating a PSU that does not operate for a long period of time.
 また、SVP2は、各PSU8~11が有するFRU12~15に、各PSU8~11の稼働時間を格納する。そして、SVP2は、新たに稼動させるPSUを選択する場合は、各PSU8~11に格納した稼働時間を読み出し、稼動していたPSUから読み出した稼働時間に前回選択処理を行ってから経過した時間を加算することで、稼働時間を算出する。このため、SVP2は、PSU8~11を交換する場合にも、稼働時間を正確に把握することができる。また、SVP2は、各PSU8~11のFRU12~15に稼働時間を格納するので、各PSUの予防交換を行うか否かを容易に判断することができる。 In addition, the SVP 2 stores the operation time of each PSU 8 to 11 in the FRU 12 to 15 included in each PSU 8 to 11. When the SVP 2 selects a PSU to be newly operated, the SVP 2 reads the operation time stored in each of the PSUs 8 to 11 and calculates the time elapsed since the previous selection process was performed on the operation time read from the PSU that was operating. By adding, the operating time is calculated. For this reason, the SVP 2 can accurately grasp the operation time even when the PSUs 8 to 11 are replaced. In addition, since the SVP 2 stores the operation time in the FRUs 12 to 15 of the PSUs 8 to 11, it is possible to easily determine whether or not to perform preventive replacement of each PSU.
 また、SVP2は、情報処理システム1の電源投入時、各PSU8~11やハードリソース群4が故障した場合や挿抜により増設、減設が発生した際、または所定の時間間隔で、新たに稼動させるPSUを選択する。このため、SVP2は、情報処理システム1を安定運用させつつ、稼動させるPSUの切替を行うことができる。 In addition, the SVP 2 is newly operated when the information processing system 1 is turned on, when each of the PSUs 8 to 11 or the hardware resource group 4 fails, or when expansion or removal occurs due to insertion or removal, or at a predetermined time interval. Select a PSU. For this reason, the SVP 2 can switch the PSU to be operated while stably operating the information processing system 1.
 これまで本発明の実施例について説明したが実施例は、上述した実施例以外にも様々な異なる形態にて実施されて良いものである。そこで、以下では実施例2として本発明に含まれる他の実施例を説明する。 Although the embodiments of the present invention have been described so far, the embodiments may be implemented in various different forms other than the embodiments described above. Therefore, another embodiment included in the present invention will be described below as a second embodiment.
(1)稼動比率について
 上述した実施例1では、各PSU8~11の稼動時間が長い順に、線形的に値が異なる稼動比率を割り当てていた。しかし、実施例はこれに限定されるものではない。すなわち、SVP2は、各PSU8~11に対して異なる値の稼働時間を設定することができれば、非線形的に値が異なる稼動比率等、任意の稼働時間を設定することができる。なお、情報処理システム1において、稼動するPSU8~11を選択する処理は、例えば1週間単位で行われるので、各PSU8~11の仮定時間の差分が、少なくとも1週間以上となるように設定するのが望ましい。
(1) About the operation ratio In the above-described first embodiment, the operation ratios having different values in a linear manner are assigned in the order in which the operation times of the PSUs 8 to 11 are long. However, the embodiment is not limited to this. In other words, if the SVP 2 can set different operating times for the PSUs 8 to 11, it can set an arbitrary operating time such as an operating ratio with a non-linearly different value. In the information processing system 1, the process of selecting the operating PSUs 8 to 11 is performed, for example, on a weekly basis. Therefore, the difference between the assumed times of the PSUs 8 to 11 is set to be at least one week. Is desirable.
 また、SVP2は、各PSU8~11の稼働時間が延びるにつれて、各PSU8~11に割り当てる稼動比率の差を大きくしても良い。例えば、図10は、稼動比率の一例を説明するための図である。例えば、SVP2は、各PSU8~11の稼働時間が0時間から3万時間までの間は、故障する可能性が少ないので、各PSU8~11に稼働時間「25」%を割り当て、均等に稼動させる。また、SVP2は、各PSU8~11の稼働時間が3万時間を超え、4万5千時間までの間は、各PSU8~11の稼働比率に若干差を持たせる。例えば、図10に示す例では、SVP2は、PSU8に稼動比率「29」%を割り当て、PSU9に稼動比率「27」%を割り当て、PSU10に「23」%を割り当て、PSU11に「21」%を割り当てる。 Also, the SVP 2 may increase the difference in the operation ratio allocated to each PSU 8-11 as the operation time of each PSU 8-11 extends. For example, FIG. 10 is a diagram for explaining an example of the operation ratio. For example, since SVP2 has a low possibility of failure during the operation time of each PSU 8-11 from 0 hours to 30,000 hours, the operation time “25”% is allocated to each PSU 8-11 and is operated evenly. . In addition, the SVP 2 gives a slight difference in the operation ratio of the PSUs 8 to 11 until the operation time of the PSUs 8 to 11 exceeds 30,000 hours and reaches 45,000 hours. For example, in the example illustrated in FIG. 10, the SVP 2 assigns an operation ratio “29”% to the PSU 8, assigns an operation ratio “27”% to the PSU 9, assigns “23”% to the PSU 10, and assigns “21”% to the PSU 11. assign.
 また、SVP2は、各PSU8~11の稼働時間が4万5千時間を越えた場合は、各PSU8~11の稼働時間を不均一化するため、PSU8に稼動比率「40」%を割り当て、PSU9に稼動比率「30」%を割り当てる。また、SVP2は、PSU10に稼動比率「20」%を割り当て、PSU11に稼動比率「10」%を割り当てる。 Further, when the operating time of each PSU 8-11 exceeds 45,000 hours, the SVP 2 assigns an operating ratio “40”% to the PSU 8 in order to make the operating time of each PSU 8-11 non-uniform, and the PSU 9 Is assigned an operation ratio of “30”%. Further, the SVP 2 assigns the operation ratio “20”% to the PSU 10 and assigns the operation ratio “10”% to the PSU 11.
 このように、SVP2は、各PSU8~11の稼働時間が長くなるにつれて、稼動比率の差分を段階的に大きくした場合は、故障が発生しやすくなるまで各PSU8~11を均等に使用し、PSU8~11の劣化を防ぐことができる。また、SVPは、長期間の稼動により、各PSU8~11に故障が発生しやすくなった後は、各PSU8~11の稼働時間を不均一にすることができる。 As described above, when the operating ratio of the PSUs 8 to 11 becomes longer as the operating time of the PSUs 8 to 11 increases, the SVP 2 evenly uses the PSUs 8 to 11 until the failure is likely to occur. It is possible to prevent the deterioration of ~ 11. In addition, the SVP can make the operation times of the PSUs 8 to 11 uneven after the PSUs 8 to 11 are likely to fail due to long-term operation.
 なお、SVP2は、各PSU8~11に割り当てる稼動比率を上述した計算により算出する方法だけではなく、例えば、稼働時間ごとに異なる稼動比率が格納されたテーブルを用いて、稼動比率を求めてもよい。また、SVP2は、稼働時間だけではなく、例えば、各PSU8~11の耐用時間やメーカ等の種別に応じた稼動比率が格納されたテーブルを用いて、稼動比率を求めてもよい。 Note that the SVP 2 may obtain the operation ratio by using not only the method of calculating the operation ratio allocated to each of the PSUs 8 to 11 by the above-described calculation but also, for example, using a table storing operation ratios that differ for each operation time. . Further, the SVP 2 may obtain not only the operation time but also the operation ratio using, for example, a table storing the operation ratio according to the service life of each of the PSUs 8 to 11 and the type of the manufacturer.
(2)情報処理システム1について
 上述した実施例1では、SVP2は、各種情報処理を実行する情報処理システム1に設定されていた。しかし、実施例はこれに限定されるものではない。例えば、SVP2は、ストレージシステムに設置され、ストレージ等に電力を供給するPSUの制御を行っても良い。すなわち、上述したSVP2が実行する選択処理は、任意のシステムに対して適用することができる。
(2) Information Processing System 1 In the first embodiment described above, the SVP 2 is set to the information processing system 1 that executes various types of information processing. However, the embodiment is not limited to this. For example, the SVP 2 may be installed in a storage system and may control a PSU that supplies power to a storage or the like. That is, the selection process executed by the SVP 2 described above can be applied to any system.
 なお、PSU群3が有する各PSU8~11の数や、ハードリソース群4が有するSB16~19、IOB20~23の数、および構成等は、上述した実施例に限定されるものではない。 Note that the number of PSUs 8 to 11 included in the PSU group 3, the number of SBs 16 to 19 and the IOBs 20 to 23 included in the hard resource group 4, the configuration, and the like are not limited to the above-described embodiments.
(3)機能構成について
 上述した処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的におこなうこともできる。あるいは、手動的におこなわれるものとして説明した処理の全部または一部を公知の方法で自動的におこなうこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
(3) Functional configuration Of the processes described above, all or part of the processes described as being automatically performed can be manually performed. Alternatively, all or part of the processing described as being performed manually can be automatically performed by a known method. In addition, the processing procedures, specific names, and information including various data and parameters shown in the document and drawings can be arbitrarily changed unless otherwise specified.
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散や統合の具体的形態は図示のものに限られない。つまり、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。例えば、上述した選択処理は、複数のSVPによって実現されても良い。 Also, each component of each illustrated apparatus is functionally conceptual and does not necessarily need to be physically configured as illustrated. That is, the specific form of distribution and integration of each device is not limited to the illustrated one. That is, all or a part of them can be configured to be functionally or physically distributed / integrated in arbitrary units according to various loads or usage conditions. For example, the selection process described above may be realized by a plurality of SVPs.
 さらに、各装置にて行なわれる各処理機能は、その全部または任意の一部が、CPUおよび当該CPUにて解析実行されるプログラムやファームウェアにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。 Furthermore, all or any part of each processing function performed in each device is realized by a CPU and a program and firmware analyzed and executed by the CPU, or is realized as hardware by wired logic. obtain.
 1 情報処理システム
 2 SVP
 2a MPU
 2b、25 メモリ
 2c フラッシュメモリ
 2d ハブ
 3 PSU群
 4 ハードリソース群
 5、6 通信端子
 7 利用者端末
 8~11 PSU
 12~15 FRU
 16~19 SB
 20~23 IOB
 24 CPU
 26 HDD
 27 PCIカード
 28 ハブ
 30 ハードリソース電力テーブル
 31 PSU稼動管理テーブル
 32 PSU稼動指示機構
 33 ハードリソース監視部
 34 電源監視部
 35 定期監視部
 36 挿抜監視部
 37 故障監視部
 38 測定部
 39 算出部
 40 選択部
 41 制御部
1 Information processing system 2 SVP
2a MPU
2b, 25 memory 2c flash memory 2d hub 3 PSU group 4 hard resource group 5, 6 communication terminal 7 user terminal 8-11 PSU
12-15 FRU
16-19 SB
20-23 IOB
24 CPU
26 HDD
27 PCI card 28 hub 30 hard resource power table 31 PSU operation management table 32 PSU operation instruction mechanism 33 hard resource monitoring unit 34 power supply monitoring unit 35 periodical monitoring unit 36 insertion / extraction monitoring unit 37 failure monitoring unit 38 measurement unit 39 calculation unit 40 selection unit 41 Control unit

Claims (8)

  1.  複数の電力供給装置が稼動した時間を電力供給装置ごとに測定する測定部と、
     前記電力供給装置ごとに異なる稼動比率と、前記測定部が前記電力供給装置ごとに測定した時間の合計値との積を前記電力供給装置ごとに算出する算出部と、
     前記測定部が測定した時間から前記算出部が算出した値を減算した値がより小さい電力供給装置から順に、稼動させる電力供給装置を選択する選択部と、
     前記選択部が選択した電力供給装置を稼動させ、他の電力供給装置を停止させる制御部と
     を有することを特徴とする制御装置。
    A measuring unit that measures the time for which the plurality of power supply devices are operated for each power supply device;
    A calculation unit that calculates, for each power supply device, a product of an operation ratio that is different for each power supply device and a total value of times measured by the measurement unit for each power supply device;
    A selection unit for selecting a power supply device to be operated in order from a power supply device having a smaller value obtained by subtracting the value calculated by the calculation unit from the time measured by the measurement unit;
    A control unit that operates the power supply device selected by the selection unit and stops other power supply devices.
  2.  段階的に値が異なる複数の稼動比率を生成する生成部と、
     前記測定部が測定した時間が長い電力供給装置から、より大きな値の稼動比率を順次割り当てる割り当て部とを有し、
     前記算出部は、前記割り当て部が各電力供給装置に割り当てた稼動比率と、前記測定部が測定した時間との積を算出することを特徴とする請求項1に記載の制御装置。
    A generator that generates a plurality of operation ratios having different values in stages;
    From the power supply device measured by the measuring unit for a long time, an allocation unit that sequentially allocates an operation ratio of a larger value,
    The control device according to claim 1, wherein the calculation unit calculates a product of an operation ratio assigned to each power supply device by the assignment unit and a time measured by the measurement unit.
  3.  前記生成部は、前記測定部が測定した時間が長くなるにつれて、生成する稼動比率の差分を段階的に大きくすることを特徴とする請求項2に記載の制御装置。 3. The control device according to claim 2, wherein the generation unit increases a difference in operation ratio to be generated stepwise as the time measured by the measurement unit becomes longer.
  4.  前記選択部は、前記複数の電力供給装置が電力を供給する装置の消費電力と、各電力供給装置が供給可能な電力とに応じた数の電力供給装置を選択することを特徴とする請求項1~3のいずれか1つに記載の制御装置。 The selection unit selects a number of power supply devices according to power consumption of a device to which the plurality of power supply devices supply power and power that can be supplied by each of the power supply devices. 4. The control device according to any one of 1 to 3.
  5.  前記選択部は、前記測定部が測定した時間から前記算出部が算出した値を減算した値が同じ値となる電力供給装置が複数存在する場合は、当該複数の電力供給装置のうち、前記測定部が測定した時間がより少ない電力供給装置を優先して選択することを特徴とする請求項1~3のいずれか1つに記載の制御装置。 In the case where there are a plurality of power supply devices in which the value obtained by subtracting the value calculated by the calculation unit from the time measured by the measurement unit is the same value, the selection unit selects the measurement among the plurality of power supply devices. The control device according to any one of claims 1 to 3, wherein the control unit preferentially selects a power supply device having a shorter measurement time.
  6.  前記測定部が測定した時間を前記電力供給装置が有する記憶装置に登録する登録部を有し、
     前記測定部は、前記電力供給装置が有する記憶媒体に登録された時間を読み出し、前回選択部が電力供給装置を選択してから経過した時間を前記記憶装置から読み出した時間とから前記電力供給装置が稼動した時間を算出することを特徴とする請求項1~3のいずれか1つに記載の制御装置。
    A registration unit that registers the time measured by the measurement unit in a storage device included in the power supply device;
    The measurement unit reads a time registered in a storage medium included in the power supply device, and the power supply device based on a time read from the storage device after a previous selection unit selected the power supply device The control device according to any one of claims 1 to 3, characterized in that a time during which said is operated is calculated.
  7.  前記複数の電力供給装置が電力を供給する装置の電源投入時、または、いずれかの前記電力供給装置が故障した場合、または、前記電力供給装置を交換した場合、または、前回電力供給装置を選択してから所定の時間が経過した場合は、新たに稼動させる電力供給装置を選択することを特徴とする請求項1~3のいずれか1つに記載の制御装置。 When powering on a device that supplies power from the plurality of power supply devices, or when any of the power supply devices fails, or when replacing the power supply device, or selecting the previous power supply device The control apparatus according to any one of claims 1 to 3, wherein when a predetermined time has passed, a power supply apparatus to be newly operated is selected.
  8.  複数の電力供給装置を制御する制御装置が、
     前記複数の電力供給装置が稼動した時間を前記電力供給装置ごとに測定し、
     前記電力供給装置ごとに異なる稼動比率と、前記電力供給装置ごとに測定した時間の合計値との積を前記電力供給装置ごとに算出し、
     前記測定した時間から前記算出した値を減算した値がより小さい電力供給装置から順に、稼動させる電力供給装置を選択し、
     前記電力供給装置を稼動させ、他の電力供給装置を停止させる
     処理を実行することを特徴とする制御方法。
    A control device that controls a plurality of power supply devices,
    Measure the time that the plurality of power supply devices are operating for each power supply device,
    A product of an operation ratio that is different for each power supply device and a total value of times measured for each power supply device is calculated for each power supply device,
    Select a power supply device to be operated sequentially from a power supply device having a smaller value obtained by subtracting the calculated value from the measured time,
    A control method, comprising: operating the power supply device and stopping other power supply devices.
PCT/JP2013/051930 2013-01-29 2013-01-29 Control device and control method WO2014118899A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014559398A JP5958562B2 (en) 2013-01-29 2013-01-29 Control device and control method
PCT/JP2013/051930 WO2014118899A1 (en) 2013-01-29 2013-01-29 Control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051930 WO2014118899A1 (en) 2013-01-29 2013-01-29 Control device and control method

Publications (1)

Publication Number Publication Date
WO2014118899A1 true WO2014118899A1 (en) 2014-08-07

Family

ID=51261648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051930 WO2014118899A1 (en) 2013-01-29 2013-01-29 Control device and control method

Country Status (2)

Country Link
JP (1) JP5958562B2 (en)
WO (1) WO2014118899A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159691A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Power supply system
JP2010040004A (en) * 2008-08-08 2010-02-18 Nec Computertechno Ltd Information processor, power supply unit control method, and program
JP2012137887A (en) * 2010-12-24 2012-07-19 Nec Computertechno Ltd Computer system and operation method of power supply module

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08212096A (en) * 1995-02-03 1996-08-20 Hitachi Ltd Dynamic constitution optimization system
JPH09325898A (en) * 1996-06-06 1997-12-16 Hitachi Ltd Data processor consisting of plural units
JP2003177875A (en) * 2001-12-11 2003-06-27 Hitachi Ltd Disk array system
JP5115710B2 (en) * 2008-02-21 2013-01-09 日本電気株式会社 Multiple configuration control apparatus, multiple configuration control method, and multiple configuration control program
JP4600489B2 (en) * 2008-02-21 2010-12-15 日本電気株式会社 Power control device
JP5332518B2 (en) * 2008-10-31 2013-11-06 日本電気株式会社 Build-up computer, switching control method, and program
JP5479288B2 (en) * 2010-09-29 2014-04-23 株式会社東芝 Instrumentation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159691A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Power supply system
JP2010040004A (en) * 2008-08-08 2010-02-18 Nec Computertechno Ltd Information processor, power supply unit control method, and program
JP2012137887A (en) * 2010-12-24 2012-07-19 Nec Computertechno Ltd Computer system and operation method of power supply module

Also Published As

Publication number Publication date
JPWO2014118899A1 (en) 2017-01-26
JP5958562B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
US9870159B2 (en) Solid-state disk (SSD) management
US8390148B2 (en) Systems and methods for power supply wear leveling in a blade server chassis
US11126242B2 (en) Time varying power management within datacenters
US10128684B2 (en) Energy control via power requirement analysis and power source enablement
US9588571B2 (en) Dynamic power supply management
TWI566084B (en) Methods for power capping and non-transitory computer readable storage mediums and systems thereof
Fan et al. Power provisioning for a warehouse-sized computer
JP6273577B2 (en) Storage battery control method and storage battery control device
US9183102B2 (en) Hardware consumption architecture
WO2011007391A1 (en) Storage system, control method of storage device
US20080077817A1 (en) Apparatus and Methods for Managing Power in an Information Handling System
US10025369B2 (en) Management apparatus and method of controlling information processing system
WO2019173203A1 (en) Dynamic tiering of datacenter power for workloads
Zhang et al. Flex: High-availability datacenters with zero reserved power
JP2020008971A (en) Server device, electric power control program and supervisory control device
JP2011186701A (en) Resource allocation apparatus, resource allocation method and resource allocation program
US20100100756A1 (en) Power Supply Wear Leveling in a Multiple-PSU Information Handling System
CN116195375A (en) Disaggregated computer system
JPWO2015008353A1 (en) Cluster system, control device, control method, control program, and computer-readable recording medium recording the program
JP6054800B2 (en) Power management system and power switching control device
US10139878B2 (en) Systems and methods for extended power performance capability discovery for a modular chassis
JP5958562B2 (en) Control device and control method
US11327549B2 (en) Method and apparatus for improving power management by controlling operations of an uninterruptible power supply in a data center
US8595534B2 (en) Method for system energy use management of current shared power supplies
US20190155359A1 (en) Method for automatically managing the electricity consumption of a server farm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559398

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873861

Country of ref document: EP

Kind code of ref document: A1