WO2014117702A1 - 一种发光装置和灯具 - Google Patents

一种发光装置和灯具 Download PDF

Info

Publication number
WO2014117702A1
WO2014117702A1 PCT/CN2014/071521 CN2014071521W WO2014117702A1 WO 2014117702 A1 WO2014117702 A1 WO 2014117702A1 CN 2014071521 W CN2014071521 W CN 2014071521W WO 2014117702 A1 WO2014117702 A1 WO 2014117702A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
led
scattering
array
Prior art date
Application number
PCT/CN2014/071521
Other languages
English (en)
French (fr)
Inventor
李屹
张权
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201320063224 external-priority patent/CN203202671U/zh
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2014117702A1 publication Critical patent/WO2014117702A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/06Controlling the distribution of the light emitted by adjustment of elements by movement of refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the utility model relates to the technical field of illumination and display, in particular to a light-emitting device and a light fixture.
  • a light-emitting device is a threaded zoom spotlight.
  • the light-emitting device includes a light source 110, a reflector 120, a threaded lens 130, and a light source 110.
  • the reflector 120 is a spherical reflector, and the light-emitting point of the gas discharge lamp 110 is located at the center of the spherical reflector, and the light is emitted from the reflector 120.
  • Threaded lens 130 Non-threaded surface 131, usually pressed with 'moire' or 'honeycomb' Wait for the pattern to scatter light properly, so that the illumination effect is soft and uniform, and in the illuminated light field, there is no obvious boundary, which is convenient for light.
  • Gas discharge lamps include high-pressure mercury lamps, low-pressure mercury lamps, metal halide lamps, etc.
  • the disadvantage is that the life of gas discharge lamps is relatively short, and contains harmful substances such as mercury, which is not environmentally friendly and energy-saving.
  • the technical problem mainly solved by the utility model is to provide a zoomable light-emitting device and a light-emitting device which are environmentally-friendly and energy-saving and emit soft spots.
  • the utility model provides a light-emitting device, comprising an LED array light source, comprising an LED array and a collimating lens array, and an LED
  • the array includes two or more white LEDs of different color temperatures or LEDs of different colors
  • the collimating lens array includes two or more collimating lenses for LEDs
  • the exit light of the array is collimated and emitted; including a collecting lens for receiving LED An outgoing light of the array light source, and focusing the emitted light; comprising: a scattering device for scattering the emitted light of the collecting lens, and the distance between the scattering device and the collecting lens is less than or equal to a focal length of the collecting lens; the projection lens And for receiving the light of the scattering device and focusing or collimating the emitted light; and the zooming device is configured to adjust the projection lens to move back and forth along the optical axis direction, and the distance between the scattering device and the projection lens is less than or equal to the projection lens The focal length.
  • the scattering device comprises a diffuser or a fly-eye lens.
  • each lens unit in the fly-eye lens has a diameter of 0.02 cm or less.
  • the scattering means is located at the focus of the collecting lens.
  • the LED chip of the same color light or the same color temperature white light in the LED array light source is in the LED Evenly arranged in the chip array.
  • the LED unit is composed of different color LEDs or white LEDs of different color temperatures, and each LED The types and quantities of LEDs in the unit are the same.
  • the light emitting device further comprises an array of collimating lenses, each of the collimating lens arrays corresponding to an LED unit for The outgoing light of the LED unit is collimated.
  • the light emitting device further comprises a light homogenizing device located on the optical path between the collecting lens and the scattering device for homogenizing the incident light.
  • the projection lens is a Fresnel lens
  • the non-threaded surface of the Fresnel lens is provided with a scattering pattern.
  • the utility model provides another illuminating device, comprising:
  • LED array light source including LED array and collimating lens array
  • LED array includes two or more different color temperature white light LED or LED of different colors
  • the collimating lens array includes two or more collimating lenses for collimating and emitting the outgoing light of the LED array
  • a collecting lens for receiving the outgoing light of the LED array light source and focusing the emitted light
  • a scattering device for scattering the emitted light of the collecting lens, and the distance between the scattering device and the collecting lens is less than or equal to a focal length of the collecting lens;
  • a projection lens for receiving the emitted light of the scattering device and focusing or collimating the emitted light, and the distance between the projection lens and the scattering device is less than or equal to a focal length of the projection lens;
  • Zoom unit for adjusting LED The array light source and the concentrating lens move back and forth along the optical axis direction to vary the size of the incident spot on the scattering device.
  • the utility model also provides a lamp comprising the above-mentioned light-emitting device.
  • the embodiment of the present invention has the following beneficial effects:
  • the LED array light source includes LEDs of different color temperatures or different colors. Chips, different chips will emit beams of different colors or color temperatures.
  • Condenser lens can receive LED The outgoing light of the array light source focuses the outgoing light to reduce the total cross-sectional area of the outgoing light, but the light beams of different colors or different color temperatures cannot completely coincide.
  • the scattering device can scatter the light emitted from the concentrating lens such that the overlapping of the different beams within the illuminating light is greater. At this time, the cross-section intensity of the exiting light of the projection lens is more uniform, and there is no obvious change in brightness and darkness.
  • the illuminating device can achieve zooming and emit a soft spot. Simultaneously,
  • the LED array light source overcomes the shortcomings of gas discharge lamps that are not energy efficient and environmentally friendly.
  • Figure 1 is a prior art light emitting device
  • FIG. 2a is a schematic structural view of a light-emitting device after removing a scattering device according to a first embodiment of the present invention
  • FIG. 2b is a schematic structural view of a light emitting device according to a first embodiment of the present invention.
  • Figure 3 is a diagram showing the effect of the emitted spot after focusing without using a scattering device
  • Figure 4 is a diagram showing the effect of the emitted spot after focusing using a scattering device
  • FIG. 5 is a schematic structural view of a light emitting device according to a second embodiment of the present invention.
  • Figure 6 is a schematic view showing the arrangement of the LED arrays in the embodiment of Figure 5.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 2b is a schematic structural view of an embodiment of a light-emitting device of the present invention, as shown in FIG. 2b, the light-emitting device includes an LED The array light source 210, the collecting lens 220, the projection lens 230, the scattering device 240, and the zoom device 250.
  • the LED array light source 210 includes an LED array 211 and a collimating lens array 212.
  • LED array 211 Includes two or more LEDs of different color temperatures or different colors.
  • the illuminating device is provided with a collimating lens array 212, and the collimating lens array 212 can have the LED array 211 The exiting light is collimated and then emerged.
  • the LED array light source 210 is different from the gas discharge lamp, it is a surface light source, not a point light source, so the LED array light source The light-emitting area of 210 is large. In order to facilitate the processing of the subsequent optical path, it is necessary to provide a collecting lens 220 to receive the LED array light source 210. The emitted light is focused and the emitted light is focused to reduce the area of the light.
  • the projection lens 230 can be directly disposed on the collecting lens 220 if it is directly disposed on the subsequent optical path of the collecting lens 220.
  • the outgoing light is projected.
  • the focus of the projection lens 230 may be set to coincide with the focus O of the collecting lens 220, i.e., at the S2 position. At this time, due to different LEDs The light is focused at the focus position of the collecting lens 220, so that the mixing is relatively uniform; and the projection lens 230 can image the light at its own focus in the far field, so the projection lens 230 Project a relatively uniform spot at a distance.
  • the illumination device needs to be zoomed to form spots of different sizes at a distance.
  • the light-emitting device further includes a zoom device 250 whose function is to adjust the projection lens 230. Move along the optical axis.
  • the zooming device 250 in this embodiment is specifically a sliding bracket fixed to the projection lens 230 and slidable along the optical axis to adjust the projection lens 230 and the scattering device 240. The distance between them changes the divergence angle of the incident light of the projection lens 230. It can be understood that when the focus of the projection lens 230 coincides with the focus O of the collecting lens 220, that is, it is located in Fig. 2a.
  • the divergence angle of the projected beam is the smallest and the far-field spot is also the smallest.
  • the uniformity of the far-field spot will deteriorate sharply, and the specific reason is explained as follows.
  • the focus of the projection lens 230 when the focus of the projection lens 230 is between the collecting lens 220 and the focus O of the collecting lens, In the S1 position, it can be seen that the light emitted by the LEDs at the S1 position does not completely coincide, so that the light at the S1 position passes through the projection lens 230.
  • the projected far-field spot will have uneven distribution of light intensity or color cast, as shown in Figure 3. Shown. It can be seen that there are a plurality of small spots that do not overlap in the far-field spot at this time, and the gap between the different small spots is dark, and the light intensity distribution is uneven.
  • the light-emitting device of the present embodiment is provided with a scattering device between the collecting lens 220 and the projection lens 230. 240.
  • the scattering device 240 is disposed at a focus of the collecting lens 220.
  • the scattering device 240 can scatter the emitted light of the collecting lens 220 to make different LEDs The outgoing beams overlap.
  • the outgoing light of the scattering device 240 is collimated or focused by the subsequent projection lens 230, as shown in Figure 2b. As shown, even if the focus of the projection lens 230 is located at S1, the light intensity distribution of the projection spot of the projection lens 230 is as shown in FIG. Figure 4 The spot in the light has no obvious change in brightness and darkness, and the spot becomes more uniform, thereby solving the problem that the divergence angle and uniformity of the outgoing light of the projection lens cannot be achieved.
  • the position of the scattering means 240 does not have to be located at the position of the focus O of the collecting lens 220.
  • S2 On It has been found experimentally that the distance between the scattering means 240 and the collecting lens 220 is less than or equal to the focal length of the collecting lens 220, but at this time the spot ratio on the scattering means 240 is located. S2 is large, so even if the focus of the projection lens 230 is on the scattering device 240, the projection lens 230 The minimum divergence angle of the exiting light also becomes large, which is not conducive to obtaining a larger focusing range and a more collimated beam.
  • the projection lens 230 is located at the scattering device 240 under adjustment of the zoom device 250. Any position of the rear end optical path is sufficient, but considering the size of the projection lens 230, the light-receiving area is limited, and the zoom device 250 ensures the scattering device 240 during the adjustment of the projection lens 230.
  • the distance from the projection lens 230 is less than or equal to the focal length of the projection lens 230, and the spot is not very dark.
  • the projection lens 230 when the distance between the projection lens 230 and the scattering device 240 is equal to the projection lens 230 At the focal length, the projected beam is most collimated and the far field spot is also minimal; when a larger spot is desired, the position of the projection lens 230 can be adjusted closer to the scattering device 240.
  • the distance between the scattering device 240 and the light emitted from the collecting lens 230 is less than or equal to the collecting lens 230.
  • the outgoing light of the collecting lens 230 can be scattered so that the different beams inside the emitted light overlap, eliminating the gap between the different beams.
  • Projection lens 230 The light intensity of the cross section of the exiting light is relatively uniform and there is no significant change.
  • the zoom device adjusts the LED array light source 210 or the projection lens 230 to move back and forth along the optical axis direction and ensures the scattering device 240
  • the distance from the projection lens 230 is less than or equal to the focal length of the projection lens 230, and the illumination device can achieve zooming and emit a soft spot.
  • the LED array light source 210 Overcome the shortcomings of gas discharge lamps that are not energy efficient and environmentally friendly.
  • the scattering device 240 in this embodiment may be a diffusion sheet which is a transparent sheet having scattering particles inside or a transparent sheet having a slight undulation on the surface, and scattering particles or minute undulations may scatter the incident light, thereby causing different beams to diffuse to overlap.
  • the Scattering device 240 It can also be a fly-eye lens, which has a high transmittance and controllable light.
  • the fly-eye lens includes a plurality of fly-eye lens units, which can converge and overlap the light to achieve mixing between the light emitted by different fly-eye lens units.
  • the uniformity of the emitted light is also better, preferably, the diameter of each lens unit in the fly-eye lens is less than or equal to 0.02 cm.
  • the above-mentioned compound eye lens or diffusion sheet may be made of glass or resin.
  • the glass material is more heat-resistant and can be placed at the focus position of the concentrating lens, and the resin material is cheaper, but the heat resistance is not high and can be placed close to the poly. The position of the light lens.
  • the focus O of the collecting lens 220 and the scattering means 240 Convex lenses or other focusing lenses may also be provided between them.
  • Projection lens 230 on the other hand It is also possible to improve the uniformity of the outgoing light.
  • the projection lens is a Fresnel lens
  • the non-threaded surface 231 of the Fresnel lens includes a scattering pattern
  • the second time scatters the light.
  • a scattering device such as a fly-eye lens or a diffusion sheet.
  • the surface is coated with an anti-reflection coating to reduce the Fresnel loss of the surface.
  • the scattering effect of the diffusing sheet cannot be very strong, and the fly-eye lens is limited by the curvature of the surface, and the degree of divergence of light is not large, so the scattering device cannot achieve lossless Bo scattering.
  • the collecting lens 220 Uniformity of the exiting light, preferably LEDs of the same color temperature or color are evenly arranged in the LED array to improve the uniformity of the light exiting the LED array source.
  • the light-emitting device moves the projection lens 230 to change the projection lens 230 and the scattering device.
  • the distance of 240 causes the divergence angle of light incident from the scattering device 240 to the projection lens 230 to change, thereby causing the projection lens 230 It will project different sizes of light spots in the far field to achieve 'zooming'.
  • the 'zooming' of the illumination device can also be moved by moving the LED array source 210 and the collecting lens 220. Realized.
  • the distance between the scattering device 240 and the projection lens 230 is fixed, and the distance between the projection lens and the scattering device is less than or equal to the focal length of the projection lens by moving the LED array light source 210.
  • the collecting lens 220 the spot size of the light emitted from the collecting lens 220 on the scattering device 240 can be changed, and the scattering device 240 is incident on the projection lens 230.
  • the divergence angle is constant such that the projection lens 230 will project different sized spots in the far field. But because of the LED array light source 210 It is often necessary to fix the heat sink to dissipate heat thereof, which is difficult to move, so that zooming is preferably achieved by moving the projection lens 230.
  • FIG. 5 is a schematic structural view of still another embodiment of a light-emitting device of the present invention.
  • the light-emitting device includes an LED array light source. 310, concentrating lens 320, projection lens 330, scattering device 340, zoom device 350, LED array light source 310 including LED array 311 And collimating lens array 312.
  • FIG. 6 is a schematic structural view of the LED array in the embodiment, as shown in FIG. 6, the LED array 311 A plurality of uniformly arranged LED units 311a are included, each LED unit 311a is composed of LED chips of different colors, and LEDs in each LED unit The types and numbers of chips are the same. As shown in FIG. 6, each LED unit 311a includes an LED chip G, an LED chip R, an LED chip B, and an LED chip. W, they are green LED chips, red LED chips, blue LED chips, white LED chips. This arrangement makes it easier to achieve uniform arrangement of LEDs of different colors, making The LED array emits light more evenly. It is easy to understand that the structure of this LED array is also applicable to LED arrays containing white LEDs of different color temperatures.
  • the collimating lens array 311 Includes multiple collimating lenses, each with a collimating lens and each LED Corresponding to the unit, receiving the emitted light and collimating, it is possible to pre-mix the white light of different color lights or different color temperatures, so that the emitted light is more uniform.
  • the illumination device further includes a fly-eye lens pair 360, and the fly-eye lens pair 360 can be directed to the LED array light source 310
  • the emitted light is homogenized to make it more uniform, and the cross-sectional shape of the light emitted from the collecting lens 320 can be controlled by adjusting the shape of the compound eye lens unit.
  • the light-emitting device of the present embodiment includes a light-dancing rod 370 which can more uniformly face the collecting lens 320
  • the outgoing light is mixed
  • the homogenizing rod 370 may be a tapered rod or a square rod, and may be a solid rod or a hollow rod.
  • the homogenizing rod 370 can also use TIR (Total Internal Reflection, total internal reflection) is replaced by a homogenizing device such as a lens.
  • the embodiment of the present invention further provides a light fixture comprising the above-mentioned light emitting device; the light emitted by the light emitting device is used as the light emitted by the light fixture.
  • the luminaire may also include a control device, a housing and a suspension device, other optical systems or optical lenses, which are not described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种发光装置和灯具,包括LED阵列光源(210,310)和用于接收LED阵列光源(210,310)的出射光并将该出射光进行聚焦的聚光透镜(220,320);包括散射装置(240,340),其与聚光透镜(220,320)的距离小于等于聚光透镜(220,320)的焦距;包括投射透镜(230,330),用于接收散射装置(240,340)的出射光并对该出射光聚焦或者准直后出射;还包括变焦装置(250,350),用于调整LED阵列光源(210,310)和聚光透镜(220,320)或者调整投射透镜(230,330)沿着光轴方向前后移动,且散射装置(240,340)与投射透镜(230,330)的距离小于等于投射透镜(230,330)的焦距。该发光装置和光源可以在实现调焦的同时保持远场光斑的均匀性。

Description

一种发光装置和灯具 技术领域
本实用新型涉及照明及显示技术领域,特别是涉及一种发光装置和灯具。
背景技术
在传统影视场合,螺纹变焦聚光灯被大量采用来进行照明,其投出的光斑比较柔和,且可以通过移动螺纹透镜或移动光源来实现光斑大小的变化。图 1 为现有技术中一种发光装置,该发光装置为一种螺纹变焦聚光灯,如图 1 所示,发光装置包括光源 110 ,反光罩 120 ,螺纹透镜 130 ,光源 110 为气体放电灯,反射罩 120 为球面反射体,气体放电灯 110 的发光点位于球面反射体的中心,其出射光在反射罩 120 的作用下往同一个方向出射,通过变焦装置(图 1 未画出),使光源沿着光轴方向前后移动,即可得到发散角度连续变化的光束,从而获得大小不同的光斑。螺纹透镜 130 的非螺纹表面 131 ,通常压有 ' 龟纹 ' 或 ' 蜂窝 ' 等花样,使光线适当地散射,使照明效果柔和均匀,且在被照射的光场中,无明显的边界,便于接光。
气体放电灯包括高压汞灯、低压汞灯、金属卤化物灯等,缺点在于气体放电灯的寿命比较短,并且含有汞等有害物质,不够环保节能。
技术问题
本实用新型主要解决的技术问题是提供一种环保节能且出射柔和光斑的可变焦发光装置和灯具。
本实用新型提出一种发光装置,包括 LED 阵列光源,包括 LED 阵列和准直透镜阵列, LED 阵列包括两种以上的不同色温的白光 LED 或者不同颜色的 LED ,准直透镜阵列包括两个以上准直透镜,用于将 LED 阵列的出射光进行准直后出射;包括聚光透镜,用于接收 LED 阵列光源的出射光,并将该出射光进行聚焦;包括散射装置,用于对聚光透镜的出射光进行散射,且该散射装置与聚光透镜的距离小于等于聚光透镜的焦距;投射透镜,用于接收散射装置的出射光并对该出射光聚焦或者准直后出射;变焦装置,用于调整投射透镜沿着光轴方向前后移动,且使得散射装置与投射透镜的距离小于等于投射透镜的焦距。
优选的,散射装置包括扩散片或复眼透镜。
优选的,复眼透镜中的每个透镜单元的直径小于等于 0.02 厘米 。
优选的,散射装置位于聚光透镜的焦点上。
优选的, LED 阵列光源中相同颜色光或者相同色温白光的 LED 芯片在 LED 芯片阵列中均匀排布。
优选的, LED 单元由不同颜色 LED 或者不同色温的白光 LED 组合而成,且每个 LED 单元中的 LED 种类和数量相同。
优选的,发光装置还包括准直透镜阵列,准直透镜阵列中的每个准直透镜与一个 LED 单元对应,用于将该 LED 单元的出射光进行准直。
优选的,发光装置还包括匀光装置,该匀光装置位于聚光透镜和散射装置之间的光路上,用于对入射光进行匀光。
优选的,投射透镜为菲涅尔透镜,且该菲涅尔透镜的非螺纹面设置有散射花纹。
本实用新型提出另一种发光装置,包括:
LED 阵列光源,包括 LED 阵列和准直透镜阵列, LED 阵列包括两种以上的不同色温的白光 LED 或者不同颜色的 LED ,准直透镜阵列包括两个以上准直透镜,用于将 LED 阵列的出射光进行准直后出射;
聚光透镜,用于接收 LED 阵列光源的出射光,并将该出射光进行聚焦;
散射装置,用于对聚光透镜的出射光进行散射,且该散射装置与聚光透镜的距离小于等于聚光透镜的焦距;
投射透镜,用于接收散射装置的出射光并对该出射光聚焦或者准直后出射,且投射透镜与散射装置的距离小于等于投射透镜的焦距;
变焦装置,用于调整 LED 阵列光源和聚光透镜沿着光轴方向前后移动,以使得散射装置上的入射光斑大小变化。
本实用新型还提出一种灯具,包括上述的发光装置。
与现有技术相比,本实用新型实施例具有如下有益效果:
本实用新型实施例中, LED 阵列光源包括不同色温或者不同颜色的 LED 芯片,不同芯片将出射不同颜色或者色温的光束。聚光透镜可以接收 LED 阵列光源的出射光,并将该出射光进行聚焦,以减小出射光总的截面积,但是不同颜色或者不同色温的光束之间不能完全重合。而散射装置可以对聚光透镜的出射光进行散射,以使得该出射光内部不同光束之间的交叠程度更大,此时投射透镜出射光的截面光强更加均匀,没有明显的明暗变化。当变焦装置调整 LED 阵列光源和聚光透镜或者调整投射透镜沿着光轴方向前后移动时且 散射装置与投射透镜的距离小于等于投射透镜的焦距,发光装置可以实现变焦且出射柔和光斑。同时, LED 阵列光源克服了气体放电灯不够节能环保的缺点。
附图说明
图 1 为现有技术中的发光装置;
图 2a 为本实用新型第一实施例去除散射装置后的发光装置结构示意图;
图 2b 为本实用新型第一实施例的发光装置结构示意图;
图 3 为不使用散射装置使调焦后的出射光斑效果图;
图 4 为使用散射装置后调焦后的出射光斑效果图;
图 5 为本实用新型第二实施例的发光装置的结构示意图;
图 6 为图 5 实施例中的 LED 阵列的排布示意图。
本发明的实施方式
下面结合附图及实施方式来对本实用新型的实施例进行详细分析。
实施例一:
图 2b 为本实用新型发光装置的一个实施例的结构示意图,如图 2b 所示,发光装置包括 LED 阵列光源 210 、聚光透镜 220 、投射透镜 230 、散射装置 240 、变焦装置 250 。
LED 阵列光源 210 包括 LED 阵列 211 以及准直透镜阵列 212 。 LED 阵列 211 包括两种以上不同色温或者不同颜色的 LED 。
由于 LED 发光为朗伯分布,传播的过程中发光面积会变的很大,难以收集,因此发光装置设置了准直透镜阵列 212 ,该准直透镜阵列 212 可以将 LED 阵列 211 的出射光准直后出射。
由于 LED 阵列光源 210 与气体放电灯不同,是面光源,而不是点光源,所以 LED 阵列光源 210 的发光面积较大。为了便于后续光路的处理,需要设置聚光透镜 220 接收 LED 阵列光源 210 的出射光,并对该出射光进行聚焦,以缩小发光面积。
投射透镜 230 若直接设置在聚光透镜 220 的后续光路上,可以直接对聚光透镜 220 的出射光进行投射。如图 2a 所示。投射透镜 230 的焦点可以设置与聚光透镜 220 的焦点 O 重合,即位于 S2 位置。此时,由于不同 LED 的光都在聚光透镜 220 的焦点位置聚焦,所以混合得比较均匀;而投射透镜 230 可以将自身焦点处的光在远场成像,所以投射透镜 230 在远处投射出比较均匀的光斑。
然而,在某些应用场合,发光装置需要进行变焦以在远处形成不同大小的光斑。为了实现发光装置的变焦,发光装置还包括了变焦装置 250 ,其功能是调整投射透镜 230 沿着光轴方向移动。本实施例中变焦装置 250 具体为滑动支架,其与投射透镜 230 固定,可以沿着光轴方向滑动,来调整投射透镜 230 与散射装置 240 之间的距离,从而改变投射透镜 230 的入射光的发散角度。可以理解,当投射透镜 230 的焦点与聚光透镜 220 的焦点 O 重合,也就是位于图 2a 中的 S2 的位置时,投射光束的发散角最小,远场光斑也最小。然而,投射透镜 230 的焦点位置移动,远场光斑的均匀性将会急剧恶化,具体原因解释如下。
当 LED 阵列 211 中不同 LED 之间的颜色或者色温有一定差异,且经准直透镜阵列 212 准直后,不同 LED 的出射光束之间存在间隙,而聚光透镜 220 对 LED 阵列光源 210 的出射光聚焦后,在除焦点 O 所在位置 S2 以外的位置上的截面内的不同 LED 出射的光束不能完全重合。例如在图 2a 中,当投射透镜 230 的焦点位于聚光透镜 220 和聚光透镜的焦点 O 之间的 S1 位置时,可以看出在 S1 位置各 LED 发出的光线并没有完全重合,因此此时 S1 位置的光经投射透镜 230 投射的远场光斑会出现光强分布不均匀或者偏色现象,如图 3 所示。可以看到此时远场光斑内存在多个不重合的小光斑,不同小光斑之间的间隙亮度较暗,光强分布很不均匀。
为了解决上述问题,本实施例中发光装置在聚光透镜 220 和投射透镜 230 之间设置了散射装置 240 ,该散射装置 240 设置于聚光透镜 220 的焦点上。散射装置 240 可以对聚光透镜 220 的出射光进行散射,使得不同 LED 出射的光束重叠。
散射装置 240 的出射光会被后续的投射透镜 230 准直或者聚焦后出射,此时如图 2b 所示的,即使投射透镜 230 的焦点位于 S1 处,投射透镜 230 的投射光斑的光强分布如图 4 所示。图 4 中的光斑没有明显的明暗变化,光斑变得更加均匀,从而解决了无法兼顾投射透镜的出射光的发散角度和均匀性的问题。
实际上,散射装置 240 的位置并不一定要位于聚光透镜 220 的焦点 O 所在的位置 S2 上。实验发现,散射装置 240 与聚光透镜 220 之间的距离小于等于聚光透镜 220 的焦距时都具有良好的均匀性,但是此时散射装置 240 上的光斑比位于 S2 时要大,所以即使投射透镜 230 的焦点位于散射装置 240 上,投射透镜 230 出射光的最小发散角也会变大,这不利于得到较大的调焦范围和较为准直的光束。
理论上,投射透镜 230 在变焦装置 250 的调整下位于散射装置 240 后端光路的任意位置即可,但是考虑到投射透镜 230 尺寸的限制,其收光面积有限,变焦装置 250 在调整投射透镜 230 的过程中要保证散射装置 240 与投射透镜 230 的距离小于等于投射透镜 230 的焦距,光斑不会亮度很暗。在调焦过程中,当投射透镜 230 与散射装置 240 的距离等于投射透镜 230 的焦距时,投射光束最为准直,远场光斑也最小;当希望得到更大的光斑时,可以调整投射透镜 230 的位置使其更靠近散射装置 240 。
通过以上描述可知,散射装置 240 与聚光透镜 230 的出射光的距离小于等于聚光透镜 230 的焦距时,可以对聚光透镜 230 的出射光进行散射,以使得该出射光内部不同光束之间产生交叠,消除不同光束之间的间隙。投射透镜 230 出射光的截面的光强比较均匀,没有明显的变化。当变焦装置调整 LED 阵列光源 210 或者投射透镜 230 沿着光轴方向前后移动时且保证 散射装置 240 与投射透镜 230 的距离小于等于投射透镜 230 的焦距,发光装置可以实现变焦且出射柔和光斑。同时, LED 阵列光源 210 克服了气体放电灯不够节能环保的缺点。
本实施例中散射装置 240 可以是扩散片,扩散片为内部具有散射颗粒的透明片或者表面具有微小起伏的透明片,散射颗粒或者微小起伏可以对入射光起到散射作用,从而使得不同光束扩散而产生交叠。
散射装置 240 还可以是复眼透镜,复眼透镜的透过率高,且光线可控。复眼透镜包括多个复眼透镜单元,该多个复眼透镜可以对光线的汇聚后发散并交叠来实现不同复眼透镜单元出射光之间的混合的,复眼透镜单元的尺寸越小,扩散效果越好,出射光均匀性也越好,优选地,复眼透镜中的每个透镜单元的直径小于等于 0.02 厘米 。
上述的复眼透镜或者扩散片可以是玻璃或者树脂等材质,玻璃材质更加耐热,可以放置在聚光透镜的焦点位置,而树脂材质价格更加便宜,但是耐热性能不高,可以放置在靠近聚光透镜的位置。
进一步地,为了改善光斑均匀性,在聚光透镜 220 的焦点 O 和散射装置 240 之间还可设置凸透镜或其他聚焦透镜。
另一方面,投射透镜 230 也可以提高出射光的均匀性,例如,投射透镜为菲涅尔透镜,菲涅尔透镜的非螺纹面 231 包括散射花纹,第二次对光进行散射。
为了保证散射效果的同时,减少散射装置上的光损失,优选地,可以在复眼透镜或者扩散片等散射装置 240 的表面镀有增透膜,以减少表面的菲涅尔损失。
实际上,为了保证透过率和光效,散射片的散射作用不能非常强,而复眼透镜则受到表面曲率的限制,对光的发散程度也不是很大,因此散射装置不能做到无损耗的朗伯散射。为了进一步提高聚光透镜 220 出射光的均匀性,优选地,相同色温或者颜色的 LED 在 LED 阵列中均匀排布,以提高 LED 阵列光源出射光的均匀性。
值得说明的是,本实施例中,发光装置通过移动投射透镜 230 ,以改变投射透镜 230 与散射装置 240 的距离,使得从散射装置 240 入射到投射透镜 230 的光的发散角改变,从而使得投射透镜 230 会在远场投射出不同大小的光斑,实现'变焦'。但是在本实用新型的其它实施方式中,发光装置的'变焦'还可以通过移动 LED 阵列光源 210 和聚光透镜 220 实现。此时散射装置 240 和投射透镜 230 的距离固定,且 投射透镜与所述散射装置的距离小于等于所述投射透镜的焦距,通过移动 LED 阵列光源 210 和聚光透镜 220 ,可以改变聚光透镜 220 的出射光在散射装置 240 上的光斑大小,而散射装置 240 入射到投射透镜 230 的发散角度是不变的,从而使得投射透镜 230 会在远场投射出不同大小光斑。但是由于 LED 阵列光源 210 往往需要固定散热器来对其进行散热,移动比较困难,因此优选地,通过移动投射透镜 230 来实现变焦。
实施例二
图 5 为本实用新型发光装置的又一个实施例的结构示意图,如图 5 所示,发光装置包括 LED 阵列光源 310 、聚光透镜 320 、投射透镜 330 、散射装置 340 、变焦装置 350 , LED 阵列光源 310 包括 LED 阵列 311 和准直透镜阵列 312 。
图 5 所示的发光装置与图 2b 所示的发光装置的不同点在于:
( 1 )图 6 为本实施例中的 LED 阵列的结构示意图,如图 6 所示, LED 阵列 311 包括多个均匀排列的 LED 单元 311a ,每个 LED 单元 311a 由不同颜色的 LED 芯片组成,且每个 LED 单元内的 LED 芯片的种类和数量相同。如图 6 所示,每个 LED 单元 311a 中包括一个 LED 芯片 G , LED 芯片 R , LED 芯片 B , LED 芯片 W ,它们分别是绿光 LED 芯片,红光 LED 芯片,蓝光 LED 芯片,白光 LED 芯片。这种排列方式比较容易地实现了不同颜色的 LED 均匀排布,使得 LED 阵列的出射光更加均匀。容易理解的是,这种 LED 阵列的结构也同样适用于包含不同色温的白光 LED 的 LED 阵列。
为了实现对每个 LED 单元内的不同 LED 的出射光进行预混合,准直透镜阵列 311 包括多个准直透镜,每个准直透镜与每个 LED 单元对应,接收其出射光并进行准直,可以实现预先对不同颜色光或者不同色温的白光进行混光,使得出射光更加均匀。
( 2 )发光装置还包括复眼透镜对 360 ,复眼透镜对 360 可以对 LED 阵列光源 310 的出射光进行匀光,使得其更加均匀,还可以通过对复眼透镜单元形状调整控制聚光透镜 320 出射光的截面形状。
( 3 )本实施例的发光装置包括匀光棒 370 ,可以更均匀地对聚光透镜 320 的出射光进行混合,匀光棒 370 可以是锥形棒或者方棒,可以是实心棒或者空心棒。在本实用新型其它实施方式中,匀光棒 370 还可以用 TIR ( Total Internal Reflection ,全内反射)透镜等匀光装置代替。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本实用新型实施例还提供一种灯具,包括上述的发光装置;发光装置发出的光作为该灯具的出射光。除了发光装置外,该灯具还可能包括控制装置、外壳和悬挂装置、其它光学系统或光学透镜,此处不赘述。
以上所述仅为本实用新型的实施方式,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。

Claims (11)

  1. 一种发光装置,其特征在于,包括:
    LED 阵列光源,包括 LED 阵列和准直透镜阵列,所述 LED 阵列包括两种以上的不同色温的白光 LED 或者不同颜色的 LED ,所述准直透镜阵列包括两个以上准直透镜,用于将所述 LED 阵列的出射光进行准直后出射;
    聚光透镜,用于接收 LED 阵列光源的出射光,并将该出射光进行聚焦;
    散射装置,用于对所述聚光透镜的出射光进行散射,且该散射装置与所述聚光透镜的距离小于等于所述聚光透镜的焦距;
    投射透镜,用于接收所述散射装置的出射光并对该出射光聚焦或者准直后出射;
    变焦装置,用于将所述投射透镜沿着光轴方向前后移动,且使得所述散射装置与所述投射透镜的距离小于等于所述投射透镜的焦距。
  2. 根据权利要求 1 所述的发光装置,其特征在于:所述散射装置包括扩散片或复眼透镜。
  3. 根据权利要求 2 所述的发光装置,其特征在于:所述复眼透镜中的每个透镜单元的直径小于等于 0.02 厘米。
  4. 根据权利要求 1 所述的发光装置,其特征在于:所述散射装置位于所述聚光透镜的焦点上。
  5. 根据权利要求 1 所述的发光装置,其特征在于:所述 LED 阵列光源中相同颜色光或者相同色温白光的 LED 芯片在 LED 芯片阵列中均匀排布。
  6. 根据权利要求 1 所述的发光装置,其特征在于:所述 LED 阵列光源包括多个均匀排布的 LED 单元,所述 LED 单元由不同颜色 LED 芯片或者不同色温的白光 LED 芯片组合而成,且每个 LED 单元中的 LED 芯片的种类和数量相同。
  7. 根据权利要求 6 所述的发光装置,其特征在于:所述发光装置还包括准直透镜阵列,所述准直透镜阵列中的每个准直透镜与一个所述 LED 单元对应,用于将该 LED 单元的出射光进行准直。
  8. 根据权利要求 1 所述的发光装置,其特征在于:所述发光装置还包括匀光装置,该匀光装置位于所述聚光透镜和散射装置之间的光路上,用于对入射光进行匀光。
  9. 根据权利要求 1 所述的发光装置,其特征在于:所述投射透镜为菲涅尔透镜,且该菲涅尔透镜的非螺纹面设置有散射花纹。
  10. 一种发光装置,其特征在于,包括:
    LED 阵列光源,包括 LED 阵列和准直透镜阵列,所述 LED 阵列包括两种以上的不同色温的白光 LED 或者不同颜色的 LED ,所述准直透镜阵列包括两个以上准直透镜,用于将所述 LED 阵列的出射光进行准直后出射;
    聚光透镜,用于接收 LED 阵列光源的出射光,并将该出射光进行聚焦;
    散射装置,用于对所述聚光透镜的出射光进行散射,且该散射装置与所述聚光透镜的距离小于等于所述聚光透镜的焦距;
    投射透镜,用于接收所述散射装置的出射光并对该出射光聚焦或者准直后出射,且所述投射透镜与所述散射装置的距离小于等于所述投射透镜的焦距;
    变焦装置,用于将所述 LED 阵列光源和聚光透镜沿着光轴方向前后移动,以使得所述散射装置上的入射光斑大小变化。
  11. 一种灯具,其特征在于,包括权利要求 1 至 10 中任一项所述的发光装置。
PCT/CN2014/071521 2013-02-04 2014-01-27 一种发光装置和灯具 WO2014117702A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013200632248 2013-02-04
CN 201320063224 CN203202671U (zh) 2012-12-19 2013-02-04 一种发光装置及灯具

Publications (1)

Publication Number Publication Date
WO2014117702A1 true WO2014117702A1 (zh) 2014-08-07

Family

ID=51262124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071521 WO2014117702A1 (zh) 2013-02-04 2014-01-27 一种发光装置和灯具

Country Status (1)

Country Link
WO (1) WO2014117702A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107654909A (zh) * 2017-10-30 2018-02-02 东莞市古德照明有限公司 一种可调光束角的嵌入式led灯

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916485A (zh) * 2005-08-16 2007-02-21 株式会社东芝 照明装置、led照明装置和带有照明装置的成像设备
WO2011119453A2 (en) * 2010-03-22 2011-09-29 Robe Lighting Inc Lens system for an led luminaire
CN202091904U (zh) * 2011-04-14 2011-12-28 北京欣天和怡机电设备安装工程有限公司 一种多光源led成像灯
CN102518964A (zh) * 2011-12-11 2012-06-27 深圳市光峰光电技术有限公司 光源和照明装置
CN102818221A (zh) * 2012-09-13 2012-12-12 广州市浩洋电子有限公司 一种用于舞台灯具的光学系统
CN102853374A (zh) * 2012-08-24 2013-01-02 霍永峰 Led舞台灯透镜组及led舞台灯
CN203202671U (zh) * 2012-12-19 2013-09-18 深圳市光峰光电技术有限公司 一种发光装置及灯具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916485A (zh) * 2005-08-16 2007-02-21 株式会社东芝 照明装置、led照明装置和带有照明装置的成像设备
WO2011119453A2 (en) * 2010-03-22 2011-09-29 Robe Lighting Inc Lens system for an led luminaire
CN202091904U (zh) * 2011-04-14 2011-12-28 北京欣天和怡机电设备安装工程有限公司 一种多光源led成像灯
CN102518964A (zh) * 2011-12-11 2012-06-27 深圳市光峰光电技术有限公司 光源和照明装置
CN102853374A (zh) * 2012-08-24 2013-01-02 霍永峰 Led舞台灯透镜组及led舞台灯
CN102818221A (zh) * 2012-09-13 2012-12-12 广州市浩洋电子有限公司 一种用于舞台灯具的光学系统
CN203202671U (zh) * 2012-12-19 2013-09-18 深圳市光峰光电技术有限公司 一种发光装置及灯具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107654909A (zh) * 2017-10-30 2018-02-02 东莞市古德照明有限公司 一种可调光束角的嵌入式led灯
CN107654909B (zh) * 2017-10-30 2023-09-29 东莞市古德节能科技有限公司 一种可调光束角的嵌入式led灯

Similar Documents

Publication Publication Date Title
US6746124B2 (en) Flashlight producing uniform high brightness
JP5881221B2 (ja) スポット照射のための装置
CN203202671U (zh) 一种发光装置及灯具
EP2795185B1 (en) Light collecting system with a number of reflector pairs
US20120243215A1 (en) Light collection system for an led luminaire
US7223002B2 (en) Hybrid fiber optic framing projector
TW201237323A (en) Lens and lighting device
US20110116265A1 (en) Illumination Apparatus
WO2011124140A1 (zh) 混光灯具
EP2517066A1 (en) Projecting illumination device with multiple light sources
RU2539976C2 (ru) Осветительное устройство, включающее в себя несколько источников света и одну отражательную систему, и блок отражателя
TW201333382A (zh) 照明裝置及用於該裝置的集光體
US20120120647A1 (en) Illumination device for stage lighting with high light-combining efficiency
JP5785551B2 (ja) 照明器具及び光学部品
WO2014117702A1 (zh) 一种发光装置和灯具
CN218974749U (zh) 一种摄影灯
WO2021031474A1 (zh) 一种便携式多色激光照明系统
JP4331077B2 (ja) Led式光源装置及びスポットライト
CN212647232U (zh) 一种激光影视照明灯具光路结构
TW202016574A (zh) 具有高強度投射機制的照明系統及其操作方法
CN205938756U (zh) 一种用于多颗彩色led灯珠成像灯的光学系统
CN221237734U (zh) 一种摄影灯
TWM577515U (zh) Light source assembly and light source system of parallel light exposure machine
US20200393110A1 (en) Reflected Light Collector System
CN211952651U (zh) 一种匀光系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/12/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 14746265

Country of ref document: EP

Kind code of ref document: A1