WO2014117686A1 - 一种随机接入方法及用户设备 - Google Patents

一种随机接入方法及用户设备 Download PDF

Info

Publication number
WO2014117686A1
WO2014117686A1 PCT/CN2014/071401 CN2014071401W WO2014117686A1 WO 2014117686 A1 WO2014117686 A1 WO 2014117686A1 CN 2014071401 W CN2014071401 W CN 2014071401W WO 2014117686 A1 WO2014117686 A1 WO 2014117686A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
base station
access preamble
preamble sequence
layer
Prior art date
Application number
PCT/CN2014/071401
Other languages
English (en)
French (fr)
Inventor
余荣道
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14746717.9A priority Critical patent/EP2943031B1/en
Publication of WO2014117686A1 publication Critical patent/WO2014117686A1/zh
Priority to US14/812,691 priority patent/US9807791B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0871Hybrid systems, i.e. switching and combining using different reception schemes, at least one of them being a diversity reception scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present invention relates to the field of communications, and in particular, to a random access method and user equipment. Background technique
  • the antenna configuration of the UE has gradually evolved from configuring one antenna to configuring two antennas, four antennas, eight antennas and even more. .
  • the UE when the UE needs to communicate with the network, it must first access the network through the random access procedure, and can communicate with the network after the access is successful. At this time, the UE can report its own antenna configuration capability. To the network, in order to use the multiple antennas for information transmission in the subsequent communication process. In the random access process before the UE communicates with the network, because the network does not know the antenna configuration capability of the UE, even if the UE is configured with multiple antennas, multiple antennas cannot be used for information transmission during the random access process. As a result, the transmission efficiency and reliability of the UE transmitting the message to the base station through the random access process are low, and the user experience is poor.
  • the embodiments of the present invention provide a random access method and user equipment, which improve the transmission efficiency and reliability of a message sent by a UE to a base station in a random access procedure.
  • a first aspect of the present invention provides a random access method, including:
  • the base station Transmitting, by the first antenna, a random access preamble sequence to the base station, so that the base station learns the number of antennas of the user equipment UE according to the received random access preamble sequence, where the first antenna is a multi-antenna of the UE Any one of the antennas;
  • a layer 2 or layer 3 message is sent to the base station using multiple antennas according to a preset rule.
  • the method further includes: if the random access response is not received, retransmitting the random access preamble sequence to the base station by using a second antenna;
  • the second antenna is any one of the multiple antennas of the UE except the first antenna.
  • the method before the sending, by using the first antenna, the random access preamble sequence to the base station, the method further includes: selecting, from the set of random access preamble sequences The random access preamble sequence.
  • the method before the selecting the random access preamble sequence from the random access preamble sequence set, the method further includes:
  • selecting the random access preamble sequence from the set of random access preamble sequences including:
  • the method before the sending, by using the first antenna, the random access preamble sequence to the base station, the method further includes: receiving the number of antennas sent by the base station a second mapping relationship of the random access wireless network temporary identifier RA-RNTI;
  • the sending, by using the first antenna, the random access preamble sequence to the base station includes: A sequence indicating the number of antennas of the UE is carried in the random access preamble sequence and transmitted to the base station by the first antenna.
  • the sending, by using multiple antennas, the layer 2 or layer 3 message to the base station according to the preset rule includes:
  • the layer 2 or layer 3 message is transmitted to the base station using multiple antennas according to the transmit diversity scheme.
  • the hybrid automatic repeat request HARQ transmission is performed on the layer 2 or layer 3 message according to the transmit diversity scheme using a multi-antenna round robin mode.
  • a second aspect of the present invention provides a random access method, including:
  • the method before the receiving the random access preamble sequence sent by the user equipment UE, the method further includes:
  • the method before the receiving the random access preamble sequence sent by the user equipment UE, the method further includes: Sending, to the UE, a second mapping relationship between the number of antennas and the random access radio network temporary identifier RA-RNTI, so that the UE determines to send the random access preamble sequence according to the number of antennas of the UE and the second mapping relationship. And a required target RA-RNTI, and sending the random access preamble sequence to the base station by using the first antenna according to the target RA-RNTI.
  • the receiving the layer 2 or layer 3 message sent by the UE by using multiple antennas includes: determining, according to the number of antennas of the UE, transmitting Diversity scheme
  • a third aspect of the present invention provides a user equipment, including:
  • a first sending unit configured to send, by using the first antenna, a random access preamble sequence to the base station, so that the base station learns the number of antennas of the user equipment UE according to the received random access preamble sequence; where the first antenna Any one of the multiple antennas of the UE;
  • a determining unit configured to determine, within a preset time threshold, whether to receive the random access response sent by the base station
  • a second sending unit configured to send the layer 2 or layer 3 message to the base station by using multiple antennas according to a preset rule, if the random access response is received.
  • the first sending unit is further configured to: if the random access response is not received, resend the random access preamble sequence to the base station by using a second antenna; where the second antenna is the UE Any one of the plurality of antennas except the first antenna.
  • the method further includes:
  • a selecting unit configured to select the random access preamble sequence from the set of random access preamble sequences before the first sending unit sends the random access preamble sequence to the base station by using the first antenna.
  • the method further includes: a first receiving unit, configured to receive, before the selecting unit selects the random access preamble sequence from the random access preamble sequence set, a first mapping of the number of antennas sent by the base station and the random access preamble sequence relationship;
  • the selecting unit includes:
  • a selecting module configured to determine the random access preamble sequence according to the number of antennas of the UE and the first mapping relationship received by the first receiving unit.
  • the method further includes:
  • a second receiving unit configured to receive, before the first sending unit sends a random access preamble sequence to the base station by using the first antenna, the number of antennas sent by the base station and the second of the random access radio network temporary identifier RA-RNTI Mapping relations;
  • a determining unit configured to determine, according to the number of antennas of the UE and the second mapping relationship received by the second receiving unit, a target RA-RNTI required to send the random access preamble, so that the UE is configured according to Transmitting, by the target RA-RNTI, the random access preamble sequence to the base station by using a first antenna, and further, the base station according to the received random access preamble sequence sent by the UE according to the target RA-RNTI The number of antennas of the UE is determined.
  • the first sending unit includes:
  • a first sending module configured to carry, in the random access preamble sequence, a sequence indicating an antenna number of the UE, to the base station by using the first antenna.
  • the second sending unit includes:
  • a determining module configured to determine a transmit diversity scheme according to the number of antennas of the UE; a second sending module, configured to send the layer 2 to the base station by using multiple antennas according to the transmit diversity scheme determined by the determining module Layer 3 message.
  • the method further includes:
  • a third receiving unit configured to: after the second sending module sends the layer 2 or layer 3 message to the base station by using multiple antennas according to the transmit diversity scheme, receiving the base station An acknowledgment signal is sent so that the UE learns that the base station successfully receives the layer 2 or layer 3 message.
  • the third receiving unit is further configured to: when the second sending module uses multiple antennas according to the transmit diversity scheme After the base station sends the layer 2 or layer 3 message, receiving a non-acknowledgment indication signal sent by the base station;
  • a retransmission unit configured to perform hybrid automatic repeat request HARQ transmission on the layer 2 or layer 3 message according to the transmit diversity scheme by using a multi-antenna round robin manner.
  • a base station including:
  • a first receiving unit configured to receive a random access preamble sequence sent by the user equipment UE, and a determining unit, configured to determine, according to the random access preamble sequence received by the first receiving unit, an antenna number of the UE;
  • a second receiving unit configured to receive a layer 2 or layer 3 message sent by the UE by using multiple antennas.
  • the method further includes:
  • a first sending unit configured to send, before the first receiving unit receives the random access preamble sequence sent by the user equipment UE, a first mapping relationship between the number of antennas and the random access preamble sequence to the UE, so that The UE determines the random access preamble sequence according to the number of antennas of the UE and the first mapping relationship.
  • the method further includes:
  • a second sending unit configured to send a second mapping relationship between the number of antennas and the random access radio network temporary identifier RA-RNTI to the UE before the first receiving unit receives the random access preamble sequence sent by the user equipment UE And determining, by the UE, the target RA-RNTI required to send the random access preamble sequence according to the number of antennas of the UE and the second mapping relationship, and according to the target RA-RNTI, to the base station by using the first antenna. Transmitting the random access preamble sequence.
  • the second receiving unit includes:
  • a determining module configured to determine a transmit diversity scheme according to the number of antennas of the UE;
  • a receiving module configured to receive, according to the transmit diversity scheme determined by the determining module, a layer 2 or layer 3 message sent by the UE by using multiple antennas.
  • the random access method and the user equipment provided by the embodiment of the present invention, the random access preamble sequence sent by the first antenna to the base station, so that the base station learns the number of antennas of the UE according to the received random access preamble sequence, and the UE is preset. Within the time threshold, it is determined whether the random access response sent by the base station is received. If a random access response is received, the layer 2 or layer 3 message is sent to the base station by using multiple antennas according to a preset rule, so that the UE passes the application. The multi-antenna transmits the layer 2 or layer 3 message to the base station, which improves the transmission efficiency and reliability of the layer 2 or layer 3 message in the random access process.
  • FIG. 1 is a schematic flowchart of a random access method according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a random access method according to another embodiment of the present invention
  • FIG. 4 is a flow chart of another random access method according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a composition of a user equipment according to another embodiment of the present invention
  • FIG. 6 is a schematic diagram of another user equipment according to another embodiment of the present invention
  • FIG. 8 is a schematic diagram of another base station according to another embodiment of the present invention
  • FIG. 9 is a schematic diagram of another user equipment according to another embodiment of the present invention
  • An embodiment of the present invention provides a random access method. As shown in FIG. 1, the method may include:
  • the UE sends a random access preamble sequence to the base station by using the first antenna, so that the base station learns the number of antennas of the UE according to the received random access preamble sequence.
  • the UE Before the UE sends the random access preamble sequence to the base station, the UE first selects one antenna from the multiple antennas as the first antenna, and then uses the first antenna to send the random access preamble sequence to the base station.
  • the random access preamble sequence may imply the number of antennas of the UE itself, or may carry a sequence for indicating the number of antennas of the UE, or send the random access preamble sequence in a specific manner, so that the base station according to the received random
  • the access preamble sequence learns the number of antennas of the UE.
  • the UE determines, according to the preset time threshold, whether to receive the random access response sent by the base station.
  • the UE After the UE sends the random access preamble sequence to the base station by using the first antenna, it may detect whether the random access response sent by the base station is received within a preset time threshold.
  • the UE If receiving the random access response, the UE sends the layer 2 or layer 3 message to the base station by using multiple antennas according to a preset rule.
  • the UE may send the layer 2 or layer 3 message to the base station according to a preset rule, so that the base station uses the UE according to the receiving UE.
  • Layer 2 or Layer 3 messages sent by the antenna thereby improving the efficiency and reliability of Layer 2 or Layer 3 message transmission.
  • the random access method provided by the embodiment of the present invention, the random access preamble sequence sent by the first antenna to the base station, so that the base station learns the number of antennas of the UE according to the received random access preamble sequence, and the UE is at a preset time. Within the value, it is determined whether the random access response sent by the base station is received, and if a random access response is received, the layer 2 or layer 3 message is sent to the base station by using multiple antennas according to a preset rule, so that the UE uses multiple antennas to The base station sends the layer 2 or layer 3 message, which improves the transmission efficiency of the layer 2 or layer 3 message in the random access process. Rate and reliability.
  • Another embodiment of the present invention provides a random access method.
  • the method may include:
  • the UE receives a first mapping relationship between the number of antennas sent by the base station and the random access preamble sequence.
  • the antenna configuration of the UE has been developed from one antenna to two antennas, four antennas, eight antennas, or even more, in order to enable the UE to pass multiple antennas in the random access process.
  • the base station sends a message.
  • the UE may receive the number of antennas in the random access preamble sequence, and the UE may receive the number of antennas before the random access preamble sequence implies its own antenna number.
  • the first mapping relationship between the number of antennas and the random access preamble sequence can be as shown in Table 1.
  • the mapping relationship can be as shown in Table 2.
  • the random access preamble sequence is any one of 1 to 32, indicating that the UE is configured with one antenna, and the random access preamble sequence is any one of 33 to 48, indicating that the UE is configured with two antennas, and the random access preamble sequence It is any one of 49 to 64, indicating that the UE is configured with 4 antennas.
  • the first mapping relationship between the number of antennas and the random access preamble sequence provided by the embodiment of the present invention is only for reference, and the specific mapping relationship between the number of antennas and the random access preamble sequence is not performed herein. limit.
  • the UE determines a random access preamble sequence according to the number of antennas of the UE and the first mapping relationship.
  • the UE may select a random access preamble from the set of random access preamble sequences according to the number of antennas and the first mapping relationship. sequence.
  • the first mapping relationship between the number of antennas received by the UE and the random access preamble sequence is as shown in Table 1, and the UE is configured with two antennas, and the random access preamble sequence may be any of 33 to 48. One.
  • the UE sends a random access preamble sequence to the base station by using the first antenna, so that the base station learns the number of antennas of the user equipment UE according to the received random access preamble sequence.
  • an antenna can be arbitrarily selected from its own multiple antennas to transmit the random access preamble sequence to the base station.
  • the number of antennas of the UE may be obtained according to the received random access preamble sequence and the first mapping relationship.
  • the UE determines whether the random access response sent by the base station is received, and if the random access response is received, performing step 205a and step 206a, if no random access response is received, Step 207a is performed.
  • the UE After the UE sends the random access preamble sequence with the number of its own antennas to the base station, it can detect whether the random access response sent by the base station is received within a preset time threshold. If the UE receives the random access response, step 205a and step 206a are performed; if the UE does not receive the random access response, step 207a is performed.
  • the UE determines a transmit diversity scheme according to the number of antennas of the UE.
  • the base station After the UE receives the random access response sent by the base station, the base station can learn the number of its own antenna, so that the UE can determine the number of antennas according to its own number of antennas.
  • Shooting diversity scheme For example, when the UE is configured with 2 antennas, the transmit diversity scheme specifically transmits data according to the following transmission matrix:
  • the meaning of the transmission matrix for data transmission using two antennas is: at the first moment, the first antenna is used to transmit the symbol, and the second antenna is used to transmit the coincidence; at the second moment, the first antenna is used to transmit the symbol - , ⁇ use the second antenna to transmit symbols.
  • the transmit diversity scheme specifically transmits data according to the following transmission matrix:
  • the meaning of the transmission matrix for data transmission using 4 antennas is: At the first moment, the first antenna transmits the symbol A, the second antenna transmits the coincidence, and the third antenna and the fourth antenna do not send any data. At the second moment, the first antenna transmits the symbol -, the second antenna transmits the symbol, and the third antenna and the fourth antenna do not transmit any data; at the third moment, the first antenna and the second antenna do not send any Data, using the third antenna to transmit the symbol s 3 , ⁇ transmitting the symbol with the fourth antenna; at the fourth moment, the first antenna and the second antenna do not send any data, and the third antenna transmits the symbol ⁇ , using the fourth The antenna transmits the symbol.
  • the UE sends a layer 2 or layer 3 message to the base station by using multiple antennas according to the transmit diversity scheme.
  • the UE may send the layer 2 or layer 3 message to the base station by using multiple antennas according to the transmit diversity scheme.
  • the UE retransmits the random access preamble sequence to the base station by using the second antenna.
  • the number of preamble transmissions is increased by one, so that the current transmission transmission number is equal to the preset threshold, and an error report is sent to the system, and Reselecting from the multiple antennas except the first antenna Determining the backoff time delay of any one of the antennas, and then resending the random access preamble sequence, so as to avoid using the first antenna to transmit the random access preamble sequence in case of a problem with the first antenna, thereby improving the transmission random access preamble The success rate of the sequence.
  • step 208a After transmitting the layer 2 or layer 3 message to the base station using multiple antennas according to the transmit diversity scheme, the following step 208a may be performed, or the following steps 209a and 210a may be performed.
  • the UE receives an acknowledgment signal sent by the base station, so as to learn that the base station successfully receives the layer 2 or layer 3 message.
  • the base station can learn the number of antennas of the UE according to the received random access preamble sequence sent by the UE, and determine the transmission according to the same rule.
  • the diversity scheme then the receiving UE transmits the layer 2 or layer 3 message to the base station by using multiple antennas, and after receiving the success, sends an acknowledgment signal to the UE, and the UE can receive the acknowledgment signal sent by the base station, so that the UE learns that the base station succeeds.
  • Receive Layer 2 or Layer 3 messages Receive Layer 2 or Layer 3 messages.
  • the UE receives a non-acknowledgment indication signal sent by the base station.
  • the base station learns according to the received random access preamble sequence sent by the UE.
  • the UE fails to receive the UE and transmits the layer 2 or layer 3 message to the base station by using multiple antennas, and the base station needs to send a non-acknowledgment indication signal to the UE, and the UE then The non-acknowledgment indication signal sent by the base station can be received.
  • the UE performs hybrid automatic repeat request (HQQ) transmission on the layer 2 or layer 3 message according to the transmit diversity scheme by using multiple antenna rotation training.
  • HQQ hybrid automatic repeat request
  • the UE After the UE receives the non-acknowledgment indication signal sent by the base station, in order to improve the reliability of the transmission, the UE uses the multi-antenna rotation training mode to layer 2 or layer according to the transmission diversity scheme.
  • the UE is configured with 4 antennas, and when the layer 2 or layer 3 message is sent for the first time ⁇
  • the transmission matrix used is: that is, on the first transmission, the first day line and the second antenna form a pair of Alamouti space-frequency block coding (Space Frequency Block
  • the third antenna and the fourth antenna form a pair of Alamouti SFBC
  • the layer 2 or layer 3 message needs to be retransmitted, and the transmission matrix used for the first retransmission may be
  • the line forms a pair of Alamouti SFBC pairs, and the second antenna and the fourth antenna form a pair
  • the Alamouti SFBC still receives the non-acknowledgment indication signal sent by the base station, the second retransmission is continued, and the transmission matrix of the second retransmission may be
  • the s* 0 0 line constitutes a pair of Alamouti SFBC pairs, and the second antenna and the third antenna form a pair of s 3 - s 4
  • the Alamouti SFBC pair repeats the above transmission until it receives an acknowledgment from the base station.
  • the SFBC group is formed by the rotation of different antennas, and the diversity gain can be obtained, thereby improving the reliability of transmission.
  • the method may include:
  • the UE receives a second mapping relationship between the number of antennas sent by the base station and a random access radio network temporary identifier (RA-RNTI).
  • RA-RNTI random access radio network temporary identifier
  • the base station may send the second mapping relationship between the number of antennas and the RA-RNTI to the UE, so that the UE may imply its own number of antennas through the RA-RNTI.
  • the RA-RNTI is calculated according to the time when the UE transmitter accesses the preamble sequence and the transmission frequency, so that the second mapping relationship between the number of antennas and the RA-RNTI may be obtained. For example, when the frequency of the random access preamble sequence is specified to be fixed, the random access preamble sequence is sent at time 1, indicating that the number of antennas configured by the UE is 1, and the corresponding first RA-RNTI is calculated, and the random connection is sent at time 2.
  • the base station can obtain a second mapping relationship, and the second mapping relationship is passed through the broadcast channel.
  • the time for transmitting the random access preamble sequence may be fixed.
  • the random access preamble sequence is sent in the frequency band 1, indicating that the number of antennas configured by the UE is 1, and the corresponding RA-RNTI is calculated, and the random access preamble is transmitted in the frequency band 2.
  • the sequence indicates that the number of antennas configured by the UE is 2, and the corresponding RA-RNTI is calculated, and the random access preamble sequence is transmitted in the frequency band 3, indicating that the number of antennas configured by the UE is 4, and the corresponding RA-RNTI is calculated, and thus A second mapping relationship can be obtained.
  • the time at which the random access preamble sequence is transmitted and the transmission frequency may be combined to obtain more correspondences and the like.
  • the second mapping relationship between the number of antennas and the RA-RNTI is not specifically limited, and those skilled in the art may formulate rules according to actual conditions.
  • the UE determines, according to the number of antennas of the UE and the second mapping relationship, a target RA-RNTI required to send a random access preamble sequence.
  • the UE may determine the target RA-RNTI required to send the random access preamble sequence according to the number of antennas and the second mapping relationship.
  • the UE selects a random access preamble sequence from the set of random access preamble sequences.
  • the UE may arbitrarily select a random access preamble sequence from the predetermined random access preamble sequence set as the random access preamble sequence.
  • the UE sends a random access preamble sequence to the base station by using the first antenna according to the target RA-RNTI.
  • the UE When the UE determines the target RA-RNTI according to the number of its own antennas and the second mapping relationship, and determines the random access preamble sequence from the random access preamble sequence set, the UE can pass the first antenna according to the target RA-RNTI. A random access preamble sequence is sent to the base station.
  • the number of antennas configured by the UE is 2, and the second mapping relationship is to transmit a random access preamble sequence (such as sending a random access preamble sequence at time 1, indicating that the number of antennas configured by the UE is 1, and transmitting a random access preamble at time 2)
  • the sequence indicates that the number of antennas configured by the UE is 2, and the random access preamble sequence is transmitted at time 3, indicating that the number of antennas configured by the UE is 4), then the UE can transmit the first transmission antenna to the base station at the time 2 hair Send a random access preamble sequence.
  • the UE determines whether the random access response sent by the base station is received, and if the random access response is received, performing step 206b and step 207b, if no random access response is received, Step 208b is performed.
  • the UE determines a transmit diversity scheme according to the number of antennas of the UE.
  • the UE sends a layer 2 or layer 3 message to the base station by using multiple antennas according to the transmit diversity scheme.
  • the UE retransmits the random access preamble sequence to the base station by using the second antenna.
  • step 209b may be performed, or the following steps 210b and 211b are performed.
  • the UE receives the acknowledgement signal sent by the base station, so as to learn that the base station successfully receives the layer 2 or layer 3 message.
  • the UE receives a non-acknowledgment indication signal sent by the base station.
  • the UE performs hybrid automatic retransmission request HARQ transmission on the layer 2 or layer 3 message according to the transmit diversity scheme by using multiple antenna rotation training mode.
  • the method may include:
  • the UE selects a random access preamble sequence from the set of random access preamble sequences.
  • the UE may arbitrarily select a random access preamble sequence from the predetermined random access preamble sequence set as the random access preamble sequence.
  • the UE carries a sequence indicating the number of antennas of the UE in the random access preamble sequence to be sent to the base station by using the first antenna.
  • the sequence indicating the number of its own antennas may be carried in the random access preamble sequence and sent to the base station through the first antenna.
  • a random access preamble sequence carrying a sequence of antenna numbers indicating the UE may be as shown in Table 3.
  • the Preamble index is a random access preamble ⁇ 1 J
  • the UE Antenna Number is the number of antennas of the UE.
  • the UE determines whether the random access response sent by the base station is received, and if the random access response is received, performing step 204c and step 205c, if no random access response is received, Step 206c is performed.
  • the UE determines a transmit diversity scheme according to the number of antennas of the UE.
  • the UE sends a layer 2 or layer 3 message to the base station by using multiple antennas according to the transmit diversity scheme.
  • the UE retransmits the random access preamble sequence to the base station by using the second antenna.
  • step 207c After transmitting the layer 2 or layer 3 message to the base station by using multiple antennas according to the transmit diversity scheme, the following step 207c may be performed, or the following steps 208c and 209c are performed.
  • the UE receives an acknowledgment signal sent by the base station, so as to learn that the base station successfully receives the layer 2 or layer 3 message.
  • the UE receives a non-acknowledgment indication signal sent by the base station.
  • the UE performs hybrid automatic retransmission request HARQ transmission on the layer 2 or layer 3 message according to the transmit diversity scheme by using multiple antenna rotation training mode.
  • the random access method provided by the embodiment of the present invention, the random access preamble sequence sent by the first antenna to the base station, so that the base station learns the number of antennas of the UE according to the received random access preamble sequence, and the UE is at a preset time. Within the value, it is determined whether the random access response sent by the base station is received, and if a random access response is received, the layer 2 or layer 3 message is sent to the base station by using multiple antennas according to a preset rule, so that the UE uses multiple antennas to The base station sends the layer 2 or layer 3 message, which improves the transmission efficiency and reliability of the layer 2 or layer 3 message in the random access process.
  • the other antenna is used to resend the random access preamble sequence, which increases the success rate of transmitting the random access preamble sequence, and the layer 2 or layer 3 message
  • the multi-antenna wheel is used.
  • the training method retransmits the layer 2 or layer 3 message, so that the reliability of the transmission is further improved.
  • FIG. 5 Another embodiment of the present invention provides a user equipment, as shown in FIG. 5, including: a first sending unit 31, a determining unit 32, and a second sending unit 33.
  • the first sending unit 31 is configured to send, by using the first antenna, a random access preamble sequence to the base station, so that the base station learns the number of antennas of the user equipment UE according to the received random access preamble sequence;
  • the antenna is any one of the multiple antennas of the UE.
  • the determining unit 32 is configured to determine, within a preset time threshold, whether the random access response sent by the base station is received.
  • the second sending unit 33 is configured to: if the random access response is received, send a layer 2 or layer 3 message to the base station by using multiple antennas according to a preset rule.
  • the first sending unit 31 is further configured to: if the random access response is not received, resend the random access preamble sequence to the base station by using a second antenna; wherein, the second antenna Any one of the multiple antennas of the UE except the first antenna.
  • the user equipment may further include: a selecting unit 34.
  • the selecting unit 34 is configured to select the random access preamble sequence from the random access preamble sequence set before the first sending unit 31 sends the random access preamble sequence to the base station by using the first antenna.
  • the user equipment may further include: a first receiving unit 35.
  • the first receiving unit 35 is configured to receive, before the selecting unit 34 selects the random access preamble sequence from the random access preamble sequence set, the number of antennas sent by the base station and the number of the random access preamble sequence. A mapping relationship.
  • the selecting unit 34 may include: a selecting module 341.
  • the selecting module 341 is configured to determine the random access preamble sequence according to the number of antennas of the UE and the first mapping relationship received by the first receiving unit 35.
  • the user equipment may further include: a second receiving unit 36, a determining unit
  • a second receiving unit 36 configured to pass the first antenna to the first sending unit 31 Before the base station sends the random access preamble sequence, the second mapping relationship between the number of antennas sent by the base station and the random access radio network temporary identifier RA-RNTI is received.
  • a determining unit 37 configured to determine, according to the number of antennas of the UE and the second mapping relationship received by the second receiving unit 36, a target RA-RNTI required to send the random access preamble, so that Transmitting, by the UE, the random access preamble sequence to the base station by using the first antenna according to the target RA-RNTI, and then the base station according to the received random access sent by the UE according to the target RA-RNTI
  • the preamble sequence determines the number of antennas of the UE.
  • the first sending unit 31 may include: a first sending module 311.
  • the first sending module 311 is configured to carry a sequence indicating the number of antennas of the UE in the random access preamble sequence to be sent to the base station by using the first antenna.
  • the second sending unit 33 may include: a determining module 331 and a second sending module 332.
  • the determining module 331 is configured to determine a transmit diversity scheme according to the number of antennas of the UE.
  • the second sending module 332 is configured to send the layer 2 or layer 3 message to the base station by using multiple antennas according to the transmit diversity scheme determined by the determining module 331.
  • the user equipment may further include: a third receiving unit 38.
  • the third receiving unit 38 is configured to: after the second sending module 332 sends the layer 2 or layer 3 message to the base station by using multiple antennas according to the transmit diversity scheme, receive an acknowledgement signal sent by the base station, In order for the UE to know that the base station successfully receives the layer 2 or layer 3 message.
  • the third receiving unit 38 is further configured to: after the second sending module 332 sends the layer 2 or layer 3 message to the base station by using multiple antennas according to the transmit diversity scheme, A non-acknowledgment indication signal sent by the base station.
  • the user equipment may further include: a retransmission unit 39.
  • the retransmission unit 39 is configured to perform hybrid automatic retransmission request HARQ transmission on the layer 2 or layer 3 message according to the transmit diversity scheme by using multiple antenna rotation training.
  • the random access preamble sequence sent by the UE to the base station by using the first antenna so that the base station learns the number of antennas of the UE according to the received random access preamble sequence, and the UE is at a preset time threshold.
  • determine whether to receive the base station to send The random access response if a random access response is received, the layer 2 or layer 3 message is sent to the base station by using multiple antennas according to a preset rule, so that the UE sends the layer 2 or layer 3 message to the base station by using multiple antennas.
  • the transmission efficiency and reliability of Layer 2 or Layer 3 messages in the random access process are improved.
  • the UE fails to send the random access preamble sequence by using the first antenna
  • the other antenna is used to resend the random access preamble sequence, which increases the success rate of transmitting the random access preamble sequence, and is in layer 2 or layer 3.
  • the UE retransmits the layer 2 or layer 3 message by using multiple antenna rotation, so that the reliability of the transmission is further improved.
  • FIG. 7 Another embodiment of the present invention provides a base station, as shown in FIG. 7, including: a first receiving unit 41, a determining unit 42, and a second receiving unit 43.
  • the first receiving unit 41 is configured to receive a random access preamble ⁇
  • the determining unit 42 is configured to determine an antenna number of the UE according to the random access preamble sequence received by the first receiving unit 41.
  • the second receiving unit 43 is configured to receive a layer 2 or layer 3 message sent by the UE by using multiple antennas.
  • the base station may further include: a first sending unit 44.
  • the first sending unit 44 is configured to send, before the first receiving unit 41 receives the random access preamble sequence sent by the user equipment UE, the first mapping relationship between the number of antennas and the random access preamble sequence to the UE, The UE determines the random access preamble sequence according to the number of antennas of the UE and the first mapping relationship.
  • the base station may further include: a second sending unit 45.
  • the second sending unit 45 is configured to send, before the first receiving unit 41 receives the random access preamble sequence sent by the user equipment UE, the number of antennas and the second of the random access radio network temporary identifier RA-RNTI a mapping relationship, so that the UE determines a target RA-RNTI required to send the random access preamble sequence according to the number of antennas of the UE and the second mapping relationship, and passes the first antenna according to the target RA-RNTI
  • the base station transmits the random access preamble sequence.
  • the second receiving unit 43 may include: a determining module 431, receiving Module 432.
  • the determining module 431 is configured to determine a transmit diversity scheme according to the number of antennas of the UE.
  • the receiving module 432 is configured to receive, according to the transmit diversity scheme determined by the determining module 431, a layer 2 or layer 3 message sent by the UE by using multiple antennas.
  • the base station learns the number of antennas of the UE according to the received random access preamble sequence sent by the UE through the first antenna, and receives the layer 2 or layer 3 message sent by the UE through multiple antennas, so that the UE passes the UE.
  • the layer 2 or layer 3 message is sent to the base station by using multiple antennas, which improves the transmission efficiency and reliability of the layer 2 or layer 3 message in the random access process of the UE.
  • the UE fails to send the random access preamble sequence by using the first antenna
  • the other antenna is used to resend the random access preamble sequence, which increases the success rate of transmitting the random access preamble sequence, and is in layer 2 or layer 3.
  • the UE retransmits the layer 2 or layer 3 message by using the multi-antenna wheel training mode, so that the reliability of the transmission is further improved.
  • FIG. 9 Another embodiment of the present invention provides a user equipment, as shown in FIG. 9, including: at least one processor 51, a memory 52, a communication interface 53, and a bus 54, and the at least one processor 51, the memory 52, and the communication interface 53 pass The bus 54 connects and completes communication with each other, wherein:
  • the bus 54 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (ESA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • ESA Extended Industry Standard Architecture
  • the bus 54 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • the memory 52 is for storing executable program code, the program code including computer operating instructions.
  • Memory 52 may contain high speed RAM memory and may also include non-volatile memory, such as at least one disk memory.
  • the processor 51 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention. .
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the communication interface 53 is mainly used to implement communication between devices of the embodiment.
  • the processor 51 is configured to send, by using the first antenna, a random access preamble sequence to the base station, so that the base station learns the number of antennas of the user equipment UE according to the received random access preamble sequence;
  • the antenna is any one of the multiple antennas of the UE; and within a preset time threshold, determining whether the random access response sent by the base station is received, and if the random access response is received, according to The preset rule uses multiple antennas to send a layer 2 or layer 3 message to the base station.
  • the processor 51 is further configured to: if the random access response is not received, resend the random access preamble sequence to the base station by using a second antenna; wherein, the second antenna is Any one of the plurality of antennas of the UE except the first antenna.
  • the processor 51 is further configured to select the random access preamble sequence from the set of random access preamble sequences before sending the random access preamble sequence to the base station by using the first antenna.
  • the processor 51 is further configured to: before the selecting the random access preamble sequence from the random access preamble sequence set, receiving the number of antennas sent by the base station and the random access preamble sequence a first mapping relationship, and determining the random access preamble sequence according to the number of antennas of the UE and the first mapping relationship.
  • the processor 51 is further configured to: before the sending the random access preamble sequence to the base station by using the first antenna, receive the number of antennas sent by the base station and the random access radio network temporary identifier RA-RNTI a second mapping relationship, and determining, according to the number of antennas of the UE and the second mapping relationship, a target RA-RNTI required to send the random access preamble sequence, so that the UE passes the first according to the target RA-RNTI
  • the antenna sends the random access preamble sequence to the base station, and the base station determines the number of antennas of the UE according to the received random access preamble sequence sent by the UE according to the target RA-RNTI.
  • the processor 51 is further configured to carry a sequence indicating the number of antennas of the UE in the random access preamble sequence to be sent to the base station by using the first antenna.
  • the processor 51 is further configured to determine a transmit diversity scheme according to the number of antennas of the UE, and send the layer 2 or layer 3 message to the base station by using multiple antennas according to the transmit diversity scheme.
  • the processor 51 is further configured to perform, according to the transmit diversity scheme After transmitting the layer 2 or layer 3 message to the base station by using multiple antennas, the acknowledgment signal sent by the base station is received, so as to obtain that the base station successfully receives the layer 2 or layer 3 message.
  • the processor 51 is further configured to: after the sending the layer 2 or layer 3 message to the base station by using multiple antennas according to the transmit diversity scheme, receiving a non-acknowledgment indication signal sent by the base station And performing hybrid automatic repeat request HARQ transmission on the layer 2 or layer 3 message according to the transmit diversity scheme.
  • the random access preamble sequence sent by the UE to the base station by using the first antenna so that the base station learns the number of antennas of the UE according to the received random access preamble sequence, and the UE is at a preset time threshold.
  • the UE determines whether the random access response sent by the base station is received. If the random access response is received, the layer 2 or layer 3 message is sent to the base station by using multiple antennas according to a preset rule, so that the UE uses the multiple antennas to the base station.
  • the layer 2 or layer 3 message is sent to improve the transmission efficiency and reliability of the layer 2 or layer 3 message in the random access process.
  • the UE fails to send the random access preamble sequence by using the first antenna
  • the other antenna is used to resend the random access preamble sequence, which increases the success rate of transmitting the random access preamble sequence, and is in layer 2 or layer 3.
  • the UE retransmits the layer 2 or layer 3 message by using multiple antenna rotation, so that the reliability of the transmission is further improved.
  • FIG. 10 Another embodiment of the present invention provides a base station, as shown in FIG. 10, including: at least one processor 61, a memory 62, a communication interface 63, and a bus 64.
  • the at least one processor 61, the memory 62, and the communication interface 63 pass through a bus.
  • 64 connects and completes communication with each other, wherein: the bus 64 can be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an extended industry standard architecture ( Extended) Industry Standard Architecture, EISA) Bus, etc.
  • the bus 64 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 10, but it does not mean that there is only one bus or one type of bus.
  • the memory 62 is for storing executable program code, the program code including computer operating instructions.
  • Memory 62 may contain high speed RAM memory and may also include non-volatile memory, such as at least one disk memory.
  • the processor 61 may be a central processing unit (Central Processing Unit, CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the communication interface 63 is mainly used to implement communication between devices of the embodiment.
  • the processor 61 is configured to receive a random access preamble sequence sent by the user equipment UE, determine an antenna number of the UE according to the random access preamble sequence, and receive a layer 2 or layer 3 that is sent by the UE by using multiple antennas. Message.
  • the processor 61 is further configured to: before the receiving the random access preamble sequence sent by the user equipment UE, send a first mapping relationship between the number of antennas and the random access preamble sequence to the UE, so that The UE determines the random access preamble sequence according to the number of its own antennas and the first mapping relationship.
  • the processor 61 is further configured to: send the number of antennas to the UE and the number of the random access radio network temporary identifier RA-RNTI before receiving the random access preamble sequence sent by the user equipment UE a second mapping relationship, so that the UE determines a target RA-RNTI required to send the random access preamble sequence according to the number of antennas of the UE and the second mapping relationship, and passes the first antenna according to the target RA-RNTI.
  • the base station sends the random access preamble sequence.
  • the processor 61 is further configured to determine a transmit diversity scheme according to the number of antennas of the UE, and receive, according to the transmit diversity scheme, a layer 2 or layer 3 message sent by the UE by using multiple antennas.
  • the base station learns the number of antennas of the UE according to the received random access preamble sequence sent by the UE through the first antenna, and receives the layer 2 or layer 3 message sent by the UE through multiple antennas, so that the UE passes the UE.
  • the layer 2 or layer 3 message is sent to the base station by using multiple antennas, which improves the transmission efficiency and reliability of the layer 2 or layer 3 message in the random access process of the UE.
  • the UE fails to send the random access preamble sequence by using the first antenna
  • the other antenna is used to resend the random access preamble sequence, which increases the success rate of transmitting the random access preamble sequence, and is in layer 2 or layer 3.
  • the UE retransmits the layer 2 or layer 3 message by using the multi-antenna wheel training mode, so that the reliability of the transmission is further improved.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, Through hardware, but in many cases the former is a better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种随机接入方法及用户设备,涉及通信领域,提高了随机接入过程中UE向基站发送消息的传输效率及可靠性。具体方案为:通过第一天线向基站发送随机接入前导序列,以便所述基站根据接收到的所述随机接入前导序列获知用户设备UE的天线数目;其中,所述第一天线为所述UE的多天线中的任意一根天线;在预设的时间阔值内,判断是否接收到所述基站发送的随机接入响应;若接收到所述随机接入响应,按照预设规则采用多天线向所述基站发送层2或层3消息。本发明用于随机接入过程中。

Description

一种随机接入方法及用户设备
技术领域 本发明涉及通信领域, 尤其涉及一种随机接入方法及用户设备。 背景技术
随着移动通信技术的快速发展, 用户设备(User Equipment, UE ) 的能力也不断增强, UE的天线配置从配置 1根天线逐渐发展到配置 2 根天线、 4根天线、 8根天线甚至更多。
在现有技术中, 当 UE需要与网络进行通信时, 必须首先通过随 机接入过程接入网络, 并在接入成功之后才可以与网络进行通信, 此 时 UE可以将自身的天线配置能力上报给网络, 以便在后续的通信过 程中釆用多天线进行信息的传输。 而在 UE 与网络进行通信之前的随 机接入过程中, 由于网络不知道 UE 的天线配置能力, 因此即使 UE 配置了多天线也无法在随机接入的过程中釆用多天线进行信息传输, 这样便导致了 UE在通过随机接入过程中向基站发送消息的传输效率 及可靠性低, 用户体验差。
因此急需一种可以解决上述随机接入过程中 UE向基站发送消息 的传输效率及可靠性低的问题。 发明内容
本发明的实施例提供一种随机接入方法及用户设备, 提高了随机 接入过程中 UE向基站发送消息的传输效率及可靠性。
为达到上述目的, 本发明的实施例釆用如下技术方案:
本发明的第一方面, 提供一种随机接入方法, 包括:
通过第一天线向基站发送随机接入前导序列, 以便所述基站根据 接收到的所述随机接入前导序列获知用户设备 UE的天线数目; 其中, 所述第一天线为所述 UE的多天线中的任意一根天线;
在预设的时间阔值内, 判断是否接收到所述基站发送的随机接入 口向应;
若接收到所述随机接入响应, 按照预设规则釆用多天线向所述基 站发送层 2或层 3消息。
结合第一方面, 在一种可能的实现方式中, 所述方法还包括: 若未接收到所述随机接入响应, 通过第二天线重新向所述基站发 送所述随机接入前导序列; 其中, 所述第二天线为所述 UE 的多天线 中除所述第一天线外的任意一根天线。
结合第一方面和上述可能的实现方式, 在另一种可能的实现方式 中, 在所述通过第一天线向基站发送随机接入前导序列之前, 还包括: 从随机接入前导序列集合中选取所述随机接入前导序列。
结合第一方面和上述可能的实现方式, 在另一种可能的实现方式 中, 在所述从随机接入前导序列集合中选取所述随机接入前导序列之 前, 还包括:
接收所述基站发送的天线数目与所述随机接入前导序列的第一映 射关系;
所述从随机接入前导序列集合中选取所述随机接入前导序列, 包 括:
根据所述 UE 的天线数目和所述第一映射关系确定所述随机接入 前导序列。
结合第一方面和上述可能的实现方式, 在另一种可能的实现方式 中, 在所述通过第一天线向基站发送随机接入前导序列之前, 还包括: 接收所述基站发送的天线数目与随机接入无线网络临时标识 RA-RNTI的第二映射关系;
根据所述 UE 的天线数目和所述第二映射关系确定发送所述随机 接入前导序列所需的目标 RA-RNTI , 以便所述 UE 根据所述目标 RA-RNTI通过第一天线向所述基站发送所述随机接入前导序列, 进而 所述基站根据接收到的所述 UE根据所述目标 RA-RNTI发送的所述随 机接入前导序列确定所述 UE的天线数目。
结合第一方面和上述可能的实现方式, 在另一种可能的实现方式 中, 所述通过第一天线向基站发送随机接入前导序列, 包括: 将指示所述 UE 的天线数目的序列携带在所述随机接入前导序列 中通过所述第一天线发送至所述基站。
结合第一方面和上述可能的实现方式, 在另一种可能的实现方式 中, 所述按照预设规则釆用多天线向所述基站发送层 2或层 3消息, 包括:
根据所述 UE的天线数目确定发射分集方案;
根据所述发射分集方案釆用多天线向所述基站发送所述层 2或层 3消息。
结合第一方面和上述可能的实现方式, 在另一种可能的实现方式 中, 在所述根据所述发射分集方案釆用多天线向所述基站发送所述层 2或层 3消息之后, 还包括:
接收所述基站发送的确认信号, 以便所述 UE获知所述基站成功 接收所述层 2或层 3消息。
结合第一方面和上述可能的实现方式, 在另一种可能的实现方式 中, 在所述根据所述发射分集方案釆用多天线向所述基站发送所述层 2或层 3消息之后, 还包括:
接收所述基站发送的非确认指示信号;
根据所述发射分集方案釆用多天线轮训方式对所述层 2或层 3消 息进行混合自动重传请求 HARQ传输。
本发明的第二方面, 提供一种随机接入方法, 包括:
接收用户设备 UE发送的随机接入前导序列;
根据所述随机接入前导序列确定所述 UE的天线数目;
接收所述 UE通过多天线发送的层 2或层 3消息。
结合第二方面, 在一种可能的实现方式中, 在所述接收用户设备 UE发送的随机接入前导序列之前, 还包括:
向所述 UE发送天线数目与所述随机接入前导序列的第一映射关 系, 以便所述 UE根据自身的天线数目和所述第一映射关系确定所述 随机接入前导序列。
结合第二方面和上述可能的实现方式, 在另一种可能的实现方式 中, 在所述接收用户设备 UE发送的随机接入前导序列之前, 还包括: 向所述 UE发送天线数目与随机接入无线网络临时标识 RA-RNTI 的第二映射关系, 以便所述 UE根据自身的天线数目和所述第二映射 关系确定发送所述随机接入前导序列所需的目标 RA-RNTI , 并根据所 述目标 RA-RNTI 通过第一天线向所述基站发送所述随机接入前导序 列。
结合第二方面和上述可能的实现方式, 在另一种可能的实现方式 中, 所述接收所述 UE通过多天线发送的层 2或层 3消息, 包括: 根据所述 UE的天线数目确定发射分集方案;
根据所述发射分集方案接收所述 UE通过多天线发送的层 2或层 3 消息。
本发明的第三方面, 提供一种用户设备, 包括:
第一发送单元,用于通过第一天线向基站发送随机接入前导序列, 以便所述基站根据接收到的所述随机接入前导序列获知用户设备 UE 的天线数目; 其中, 所述第一天线为所述 UE 的多天线中的任意一根 天线;
判断单元, 用于在预设的时间阔值内, 判断是否接收到所述基站 发送的随机接入响应;
第二发送单元, 用于若接收到所述随机接入响应, 按照预设规则 釆用多天线向所述基站发送层 2或层 3消息。
结合第三方面, 在一种可能的实现方式中,
所述第一发送单元, 还用于若未接收到所述随机接入响应, 通过 第二天线重新向所述基站发送所述随机接入前导序列; 其中, 所述第 二天线为所述 UE的多天线中除所述第一天线外的任意一根天线。
结合第三方面和上述可能的实现方式, 在另一种可能的实现方式 中, 还包括:
选取单元, 用于在所述第一发送单元通过第一天线向基站发送随 机接入前导序列之前, 从随机接入前导序列集合中选取所述随机接入 前导序列。
结合第三方面和上述可能的实现方式, 在另一种可能的实现方式 中, 还包括: 第一接收单元, 用于在所述选取单元从随机接入前导序列集合中 选取所述随机接入前导序列之前, 接收所述基站发送的天线数目与所 述随机接入前导序列的第一映射关系;
所述选取单元, 包括:
选取模块, 用于根据所述 UE 的天线数目和所述第一接收单元接 收到的所述第一映射关系确定所述随机接入前导序列。
结合第三方面和上述可能的实现方式, 在另一种可能的实现方式 中, 还包括:
第二接收单元, 用于在所述第一发送单元通过第一天线向基站发 送随机接入前导序列之前, 接收所述基站发送的天线数目与随机接入 无线网络临时标识 RA-RNTI的第二映射关系;
确定单元, 用于根据所述 UE 的天线数目和所述第二接收单元接 收到的所述第二映射关系确定发送所述随机接入前导序列所需的目标 RA-RNTI , 以便所述 UE根据所述目标 RA-RNTI通过第一天线向所述 基站发送所述随机接入前导序列,进而所述基站根据接收到的所述 UE 根据所述目标 RA-RNTI发送的所述随机接入前导序列确定所述 UE的 天线数目。
结合第三方面和上述可能的实现方式, 在另一种可能的实现方式 中, 所述第一发送单元, 包括:
第一发送模块, 用于将指示所述 UE 的天线数目的序列携带在所 述随机接入前导序列中通过所述第一天线发送至所述基站。
结合第三方面和上述可能的实现方式, 在另一种可能的实现方式 中, 所述第二发送单元包括:
确定模块, 用于根据所述 UE的天线数目确定发射分集方案; 第二发送模块, 用于根据所述确定模块确定的所述发射分集方案 釆用多天线向所述基站发送所述层 2或层 3消息。
结合第三方面和上述可能的实现方式, 在另一种可能的实现方式 中, 还包括:
第三接收单元, 用于在所述第二发送模块根据所述发射分集方案 釆用多天线向所述基站发送所述层 2或层 3消息之后, 接收所述基站 发送的确认信号,以便所述 UE获知所述基站成功接收所述层 2或层 3 消息。
结合第三方面和上述可能的实现方式, 在另一种可能的实现方式 中, 所述第三接收单元, 还用于在所述第二发送模块根据所述发射分 集方案釆用多天线向所述基站发送所述层 2或层 3消息之后, 接收所 述基站发送的非确认指示信号;
重传单元, 用于根据所述发射分集方案釆用多天线轮训方式对所 述层 2或层 3消息进行混合自动重传请求 HARQ传输。
本发明的第四方面, 提供一种基站, 包括:
第一接收单元, 用于接收用户设备 UE发送的随机接入前导序列; 确定单元, 用于根据所述第一接收单元接收到的所述随机接入前 导序列确定所述 UE的天线数目;
第二接收单元, 用于接收所述 UE通过多天线发送的层 2或层 3 消息。
结合第四方面, 在一种可能的实现方式中, 还包括:
第一发送单元, 用于在所述第一接收单元接收用户设备 UE发送 的随机接入前导序列之前, 向所述 UE发送天线数目与所述随机接入 前导序列的第一映射关系, 以便所述 UE根据自身的天线数目和所述 第一映射关系确定所述随机接入前导序列。
结合第四方面和上述可能的实现方式, 在另一种可能的实现方式 中, 还包括:
第二发送单元, 用于在所述第一接收单元接收用户设备 UE发送 的随机接入前导序列之前, 向所述 UE发送天线数目与随机接入无线 网络临时标识 RA-RNTI的第二映射关系, 以便所述 UE根据自身的天 线数目和所述第二映射关系确定发送所述随机接入前导序列所需的目 标 RA-RNTI, 并根据所述目标 RA-RNTI通过第一天线向所述基站发 送所述随机接入前导序列。
结合第四方面和上述可能的实现方式, 在另一种可能的实现方式 中, 所述第二接收单元包括:
确定模块, 用于根据所述 UE的天线数目确定发射分集方案; 接收模块, 用于根据所述确定模块确定的所述发射分集方案接收 所述 UE通过多天线发送的层 2或层 3消息。
本发明实施例提供的随机接入方法及用户设备, 通过第一天线向 基站发送的随机接入前导序列, 以便基站根据接收到随机接入前导序 列获知 UE的天线数目, 此时 UE在预设的时间阔值内, 判断是否接收 到基站发送的随机接入响应, 若接收到随机接入响应, 则按照预设规 则釆用多天线向基站发送层 2或层 3消息, 这样 UE通过釆用多天线 向基站发送层 2或层 3消息, 提高了随机接入过程中层 2或层 3消息 的传输效率及可靠性。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面 将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而 易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域 普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这 些附图获得其他的附图。
图 1为本发明一实施例提供的一种随机接入方法流程示意图; 图 2为本发明另一实施例提供的一种随机接入方法流程示意图; 图 3 为本发明另一实施例提供的另一种随机接入方法流程示意 图 4 为本发明另一实施例提供的又一种随机接入方法流程示意
Figure imgf000008_0001
图 5为本发明另一实施例提供的一种用户设备组成示意图; 图 6为本发明另一实施例提供的另一种用户设备组成示意图; 图 7为本发明另一实施例提供的一种基站组成示意图;
图 8为本发明另一实施例提供的另一种基站组成示意图; 图 9为本发明另一实施例提供的又一种用户设备组成示意图; 图 10为本发明另一实施例提供的又一种基站组成示意图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方 案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部 分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普 通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明一实施例提供一种随机接入方法, 如图 1所示, 该方法可 以包括:
101、 UE通过第一天线向基站发送随机接入前导序列, 以便基站 根据接收到的随机接入前导序列获知 UE的天线数目。
其中, 在 UE在向基站发送随机接入前导序列之前, 首先从自身 的多天线中的任意选择一根天线作为第一天线, 然后使用第一天线将 随机接入前导序列发送至基站。 其中该随机接入前导序列中可以隐含 UE 自身的天线数目, 或者可以携带用于指示 UE的天线数目的序列, 或者通过特定的方式发送该随机接入前导序列, 以便基站根据接收到 的随机接入前导序列获知 UE的天线数目。
102、 在预设的时间阔值内, UE判断是否接收到基站发送的随机 接入响应。
其中, 当 UE通过第一天线将随机接入前导序列发送至基站之后, 可以在预设的时间阔值内,检测是否接收到基站发送的随机接入响应。
103、 若接收到随机接入响应, UE按照预设规则釆用多天线向基 站发送层 2或层 3消息。
其中, 若 UE在预定的时间阔值内接收到基站发送的随机接入响 应, 则可以按照预设的规则釆用多天线向基站发送层 2或层 3消息, 以便基站根据接收 UE釆用多天线发送的层 2或层 3消息, 进而提高 层 2或层 3消息传输的效率及可靠性。
本发明实施例提供的随机接入方法, 通过第一天线向基站发送的 随机接入前导序列, 以便基站根据接收到随机接入前导序列获知 UE 的天线数目, 此时 UE在预设的时间阔值内, 判断是否接收到基站发 送的随机接入响应, 若接收到随机接入响应, 则按照预设规则釆用多 天线向基站发送层 2或层 3消息, 这样 UE通过釆用多天线向基站发 送层 2或层 3消息, 提高了随机接入过程中层 2或层 3消息的传输效 率及可靠性。
本发明另一实施例提供一种随机接入方法, 在本发明实施例提供 的第一个场景中, 如图 2所示, 该方法可以包括:
201a, UE接收基站发送的天线数目与随机接入前导序列的第一映 射关系。
其中, 随着 UE能力的增强, UE的天线配置已经从 1根天线发展 到 2根天线、 4根天线、 8根天线甚至更多, 为了使得 UE在随机接入 过程中也可以通过多天线向基站发送消息, 在本发明实施例的一种场 景中, UE通过在随机接入前导序列中隐含自身的天线数目, 而在通过 随机接入前导序列隐含自身的天线数目之前,UE可以接收基站通过广 播信道广播的天线数目与随机接入前导序列的第一映射关系。 例如, 以一个小区支持 64 个前导索引 (Preamble index ) 为例, 在支持 UE 多天线的新系统出现的初期, 具有高阶天线配置的 UE 比较少, 这样 便可以釆用较少的 Preamble index来对应高阶天线, 天线数目与随机 接入前导序列的第一映射关系可以如表 1 所示。 而当支持 UE多天线 的系统成熟以后, 具有高阶天线配置的 UE会逐渐增多, 此时便可釆 用较多的 Preamble index来对应高阶天线, 天线数目与随机接入前导 序列的第一映射关系可以如表 2所示。
表 1
Figure imgf000010_0001
其中, 若天线数目与随机接入前导序列的第一映射关系如表 1所 示, 则随机接入前导序列为 1 ~ 32中的任意一个, 表示 UE配置 1根 天线, 随机接入前导序列为 33 ~ 48中的任意一个, 表示 UE配置 2根 天线, 随机接入前导序列为 49 ~ 64中的任意一个, 表示 UE配置 4根 天线。
需要说明的是, 本发明实施例中提供的天线数目与随机接入前导 序列的第一映射关系仅作参考, 对于天线数目与随机接入前导序列具 体的映射关系本发明实施例在此不做限制。
202a, UE根据 UE的天线数目和第一映射关系确定随机接入前导 序列。
其中, 当 UE接收到基站发送的天线数目与随机接入前导序列的 第一映射关系时, 便可以根据自身的天线数目和第一映射关系, 从随 机接入前导序列集合中选取随机接入前导序列。 例如, UE接收到的天 线数目与随机接入前导序列的第一映射关系如表 1 所示, 且该 UE配 置了 2根天线,此时随机接入前导序列便可以是 33 ~ 48中的任意一个。
203a、 UE通过第一天线向基站发送随机接入前导序列, 以便基站 根据接收到的随机接入前导序列获知用户设备 UE的天线数目。
其中, 当 UE根据自身的天线数目和第一映射关系确定了随机接 入前导序列之后, 便可以从自身的多天线任意选取一根天线, 来将该 随机接入前导序列发送至基站, 当基站接收到随机接入前导序列时, 便可以根据接收到的随机接入前导序列和第一映射关系获知该 UE 的 天线数目。
204a,在预设的时间阔值内, UE判断是否接收到基站发送的随机 接入响应, 若接收到随机接入响应, 则执行步骤 205a和步骤 206a, 若未接收到随机接入响应, 则执行步骤 207a。
其中, 当 UE将隐含自身天线数目的随机接入前导序列发送至基 站之后, 便可以在预设的时间阔值内, 检测是否接收到基站发送的随 机接入响应。 其中若 UE接收到随机接入响应, 那么执行步骤 205a和 步骤 206a; 若 UE未接收到随机接入响应, 则执行步骤 207a。
205a, UE根据 UE的天线数目确定发射分集方案。
其中, 当 UE接收到基站发送的随机接入响应之后, 便可以基站 以获知自身的天线数目, 这样 UE便可以根据自身的天线数目确定发 射分集方案。 例如, 当 UE配置了 2根天线时, 发射分集方案具体的 是按照下述传输矩阵传输数据:
Figure imgf000012_0001
其中, 釆用 2根天线进行数据传输的传输矩阵的含义为: 在第一 时刻, 釆用第一天线发射符号 釆用第二天线发射符合 ; 在第二时 刻, 釆用第一天线发射符号 - , 釆用第二天线发射符号 。
例如, UE配置了 4根天线时,发射分集方案具体的是按照下述传 输矩阵传输数据:
Figure imgf000012_0002
s2 s* 0 0
0 0 s3 - s4*
0 0 s4 s'*
其中, 釆用 4根天线进行数据传输的传输矩阵的含义为: 在第一 时刻, 釆用第一天线发射符号 A , 釆用第二天线发射符合 , 第三天线 和第四天线不发任何数据; 在第二时刻, 釆用第一天线发射符号 - , 釆用第二天线发射符号 , 第三天线和第四天线不发任何数据; 在第 三时刻, 第一天线和第二天线不发任何数据, 釆用第三天线发射符号 s3 , 釆用第四天线发射符号 ; 在第四时刻, 第一天线和第二天线不 发任何数据, 釆用第三天线发射符号^ , 釆用第四天线发射符号 。
需要说明的是, 对于不同天线数目的传输矩阵可以参考本发明实 施例中的 2根天线的传输矩阵、 4根天线的传输矩阵, 本发明实施例 不在——赘述。
206a, UE根据发射分集方案釆用多天线向基站发送层 2 或层 3 消息。
其中, 当 UE根据自身的天线数目确定了发射分集方案之后, 此 时 UE便可以根据该发射分集方案釆用多天线向基站发送层 2或层 3 消息。
207a, UE通过第二天线重新向基站发送随机接入前导序列。
其中, 当 UE在预定的时间阔值内, 未接收到基站发送的随机接 入响应, 则将前导传输次数加 1 , 以便当前导传输次数等于预设阔值 时向系统发送错误报告, 并可以从多天线中重新选择除第一天线外的 任意一根天线, 确定退避时间延迟, 然后重新发送随机接入前导序列, 这样可以避免在第一天线出现问题的情况下继续使用第一天线传输随 机接入前导序列, 提高了传输随机接入前导序列的成功率。
根据发射分集方案釆用多天线向基站发送层 2或层 3消息之后, 可以执行以下步骤 208a, 或者执行以下步骤 209a和步骤 210a。
208a, UE接收基站发送的确认信号, 以便获知基站成功接收层 2 或层 3消息。
其中,当 UE根据发射分集方案釆用多天线向基站发送层 2或层 3 消息之后, 基站可以根据接收到的 UE发送的随机接入前导序列获知 UE的天线数目, 并按照同样的规则确定发射分集方案, 然后接收 UE 釆用多天线向基站发送层 2或层 3消息, 并在接收成功后, 向 UE发 送确认信号, 此时 UE便可以接收基站发送的确认信号, 这样 UE便获 知基站成功接收层 2或层 3消息。
209a, UE接收基站发送的非确认指示信号。
其中, 而若基站根据接收到的 UE发送的随机接入前导序列获知
UE的天线数目, 并按照同样的规则确定发射分集方案后, 未能成功接 收 UE釆用多天线向基站发送层 2或层 3消息,基站则需要向 UE发送 非确认指示信号, 此时 UE便可以接收基站发送的非确认指示信号。
210a, UE根据发射分集方案釆用多天线轮训方式对层 2 或层 3 消息进行混合自动重传请求 ( Hybrid Automatic Repeat Request , HARQ ) 传输。
其中, 当 UE接收到基站发送的非确认指示信号之后, 为了提高 传输的可靠性, UE根据发射分集方案釆用多天线轮训方式对层 2或层
3消息进行 HARQ传输。
例如, UE配置了 4根天线, 且在第一次发送层 2或层 3消息时釆
S, - 5* 0 0
用的传输矩阵是: 也就是说在第一次传输时, 第一天 线和第二天线构成一对 Alamouti空频分组编码 ( Space Frequency Block
Code , SFBC )对 ,第三天线和第四天线构成一对 Alamouti SFBC
^2 , 那么当 UE接收到基站发送的非确认指示信号之后, 便需 要对层 2 或层 3 消息进行重传, 且第一次重传釆用的传输矩阵可以是
0 0
0 0
* , 也就是说在进行第一重传的时候, 第一天线和第三天
0 0
*
0 0
51
线构成一对 Alamouti SFBC对 , 第二天线和第四天线构成一对
Alamouti SFBC对 若仍接收到基站发送的非确认指示信号, 则 继续进行第二次重传 且第二次重传釆用 的传输矩阵可以是
S, - 5* 0 0
0 s3 - s,
, 也就是说在进行第二重传的时候, 第一天线和第四天 0 s4 s*
s* 0 0 线构成一对 Alamouti SFBC对 , 第二天线和第三天线构成一对 s3 - s4
Alamouti SFBC对 , 重复以上传输, 直至接收到基站发送的确认 指示。 这样通过不同天线进行轮训构成 SFBC组, 可以获得分集增益, 从而提高传输的可靠性。
在本发明实施例提供的第二个场景中, 如图 3所示, 该方法可以 包括:
201b、UE接收基站发送的天线数目与随机接入无线网络临时标识 ( Random Access Radio Network Temporary Identifier, RA-RNTI)的第 二映射关系。
其中, 在发明实施例提供的另一种场景中, 基站可以将天线数目 与 RA-RNTI的第二映射关系发送至 UE ,这样 UE便可以通过 RA-RNTI 隐含自身的天线数目。 其中, RA-RNTI根据 UE发送机接入前导序列 的时间以及发射频率计算得到, 因此可以得到天线数目与 RA-RNTI ——对应的第二映射关系。 例如, 当规定发送随机接入前导序列的频 率一定, 在时刻 1发送随机接入前导序列, 表示 UE配置的天线数目 为 1 , 并计算得到相应的第一 RA-RNTI, 在时刻 2发送随机接入前导 序列,表示 UE配置的天线数目为 2 ,并计算得到相应的第二 RA-RNTI, 在时刻 3发送随机接入前导序列, 表示 UE配置的天线数目为 4 , 并计 算得到相应的第三 RA-RNTI等, 这样基站便可以得到第二映射关系, 并将第二映射关系通过广播信道进行广播。 或者也可以规定发送随机 接入前导序列的时间一定, 在频带 1发送随机接入前导序列, 表示 UE 配置的天线数目为 1 , 并计算得到相应的 RA-RNTI, 在频带 2发送随 机接入前导序列, 表示 UE 配置的天线数目为 2 , 并计算得到相应的 RA-RNTI , 在频带 3发送随机接入前导序列, 表示 UE配置的天线数 目为 4 , 并计算得到相应的 RA-RNTI , 这样同样可以得到第二映射关 系。 或者也可以将发送随机接入前导序列的时间和发射频率进行组成 已得到更多的对应关系等等。
需要说明的是,本发明实施例对天线数目与 RA-RNTI的第二映射 关系不做具体限定, 本领域技术人员可以根据实际情况制定规则。
202b , UE根据 UE的天线数目和第二映射关系确定发送随机接入 前导序列所需的目标 RA-RNTI。
其中, 当 UE接收到基站发送的天线数目与 RA-RNTI的第二映射 关系之后, 便可以根据自身的天线数目和第二映射关系确定发送随机 接入前导序列所需的目标 RA-RNTI。
203b、 UE从随机接入前导序列集合中选取随机接入前导序列。 其中,UE可以从预定的随机接入前导序列集合中任意选取一个随 机接入前导序列作为随机接入前导序列。
204b , UE根据目标 RA-RNTI通过第一天线向基站发送随机接入 前导序列。
其中, 当 UE 根据自身的天线数目和第二映射关系确定了目标 RA-RNTI , 并从随机接入前导序列集合中确定了随机接入前导序列之 后,便可以根据目标 RA-RNTI通过第一天线向基站发送随机接入前导 序列。 例如, UE配置的天线数目为 2 , 第二映射关系为发射随机接入 前导序列 (如在时刻 1发送随机接入前导序列, 表示 UE配置的天线 数目为 1 , 在时刻 2发送随机接入前导序列, 表示 UE配置的天线数目 为 2 ,在时刻 3发送随机接入前导序列,表示 UE配置的天线数目为 4 ), 那么 UE便可以在时刻 2釆用预定的发射频率通过第一天线向基站发 送随机接入前导序列。
205b,在预设的时间阔值内, UE判断是否接收到基站发送的随机 接入响应, 若接收到随机接入响应, 则执行步骤 206b和步骤 207b , 若未接收到随机接入响应, 则执行步骤 208b。
206b, UE根据 UE的天线数目确定发射分集方案。
207b, UE根据发射分集方案釆用多天线向基站发送层 2 或层 3 消息。
208b, UE通过第二天线重新向基站发送随机接入前导序列。
UE根据发射分集方案釆用多天线向基站发送层 2或层 3 消息之 后, 可以执行以下步骤 209b, 或者执行以下步骤 210b和步骤 211b。
209b, UE接收基站发送的确认信号, 以便获知基站成功接收层 2 或层 3消息。
210b, UE接收基站发送的非确认指示信号。
211b, UE根据发射分集方案釆用多天线轮训方式对层 2 或层 3 消息进行混合自动重传请求 HARQ传输。
需要说明的是, 本发明实施例中步骤 205b到步骤 211b参数的具 体描述可以参考本发明实施例中步骤 204a到步骤 210a中对应参数的 具体描述, 本发明实施例在此不再——赘述。
在本发明实施例提供的第三个场景中, 如图 4所示, 该方法可以 包括:
201c, UE从随机接入前导序列集合中选取随机接入前导序列。 其中,UE可以从预定的随机接入前导序列集合中任意选取一个随 机接入前导序列作为随机接入前导序列。
202c, UE将指示 UE的天线数目的序列携带在随机接入前导序列 中通过第一天线发送至基站。
其中, 当 UE选取到随机接入前导序列之后, 可以将指示自身的 天线数目的序列携带在随机接入前导序列中通过第一天线发送至基 站。 例如, 携带指示 UE 的天线数目序列的随机接入前导序列可以如 表 3所示。
表 3
Figure imgf000017_0001
其中 , Preamble index为随机接入前导序歹1 J , UE Antenna Number 为 UE的天线数目。
203c ,在预设的时间阔值内, UE判断是否接收到基站发送的随机 接入响应, 若接收到随机接入响应, 则执行步骤 204c 和步骤 205c , 若未接收到随机接入响应, 则执行步骤 206c。
204c , UE根据 UE的天线数目确定发射分集方案。
205c , UE根据发射分集方案釆用多天线向基站发送层 2 或层 3 消息。
206c , UE通过第二天线重新向基站发送随机接入前导序列。
根据发射分集方案釆用多天线向基站发送层 2或层 3消息之后, 可以执行以下步骤 207c , 或者执行以下步骤 208c和步骤 209c。
207c , UE接收基站发送的确认信号, 以便获知基站成功接收层 2 或层 3消息。
208c , UE接收基站发送的非确认指示信号。
209c , UE根据发射分集方案釆用多天线轮训方式对层 2 或层 3 消息进行混合自动重传请求 HARQ传输。
需要说明的是, 本发明实施例中步骤 203c到步骤 209c参数的具 体描述可以参考本发明实施例中步骤 204a到步骤 210a中对应参数的 具体描述, 本发明实施例在此不再——赘述。
本发明实施例提供的随机接入方法, 通过第一天线向基站发送的 随机接入前导序列, 以便基站根据接收到随机接入前导序列获知 UE 的天线数目, 此时 UE在预设的时间阔值内, 判断是否接收到基站发 送的随机接入响应, 若接收到随机接入响应, 则按照预设规则釆用多 天线向基站发送层 2或层 3消息, 这样 UE通过釆用多天线向基站发 送层 2或层 3消息, 提高了随机接入过程中层 2或层 3消息的传输效 率及可靠性。
并且, 若釆用第一天线发送随机接入前导序列失败, 则釆用其他 天线重新发送该随机接入前导序列, 增加了传输随机接入前导序列的 成功率, 且在层 2或层 3消息第一次发送失败时, 釆用釆用多天线轮 训方式对所述层 2或层 3消息进行重传, 使得传输的可靠性得到进一 步提高。
本发明另一实施例提供一种用户设备, 如图 5所示, 包括: 第一 发送单元 31、 判断单元 32、 第二发送单元 33。
第一发送单元 31 , 用于通过第一天线向基站发送随机接入前导序 列, 以便所述基站根据接收到的所述随机接入前导序列获知用户设备 UE的天线数目; 其中, 所述第一天线为所述 UE的多天线中的任意一 根天线。
判断单元 32 , 用于在预设的时间阔值内, 判断是否接收到所述基 站发送的随机接入响应。
第二发送单元 33 , 用于若接收到所述随机接入响应, 按照预设规 则釆用多天线向所述基站发送层 2或层 3消息。
进一步的, 所述第一发送单元 31 , 还用于若未接收到所述随机接 入响应, 通过第二天线重新向所述基站发送所述随机接入前导序列; 其中, 所述第二天线为所述 UE 的多天线中除所述第一天线外的任意 一根天线。
进一步的, 如图 6所示, 该用户设备还可以包括: 选取单元 34。 选取单元 34 , 用于在所述第一发送单元 31 通过第一天线向基站 发送随机接入前导序列之前, 从随机接入前导序列集合中选取所述随 机接入前导序列。
进一步的, 该用户设备还可以包括: 第一接收单元 35。
第一接收单元 35 , 用于在所述选取单元 34从随机接入前导序列 集合中选取所述随机接入前导序列之前, 接收所述基站发送的天线数 目与所述随机接入前导序列的第一映射关系。
所述选取单元 34可以包括: 选取模块 341。
选取模块 341 ,用于根据所述 UE的天线数目和所述第一接收单元 35接收到的所述第一映射关系确定所述随机接入前导序列。
进一步的, 该用户设备还可以包括: 第二接收单元 36、 确定单元
37。
第二接收单元 36 , 用于在所述第一发送单元 31 通过第一天线向 基站发送随机接入前导序列之前, 接收所述基站发送的天线数目与随 机接入无线网络临时标识 RA-RNTI的第二映射关系。
确定单元 37 , 用于根据所述 UE的天线数目和所述第二接收单元 36接收到的所述第二映射关系确定发送所述随机接入前导序列所需的 目标 RA-RNTI ,以便所述 UE根据所述目标 RA-RNTI通过第一天线向 所述基站发送所述随机接入前导序列, 进而所述基站根据接收到的所 述 UE根据所述目标 RA-RNTI发送的所述随机接入前导序列确定所述 UE的天线数目。
进一步的, 所述第一发送单元 31 可以包括: 第一发送模块 311。 第一发送模块 311 ,用于将指示所述 UE的天线数目的序列携带在 所述随机接入前导序列中通过所述第一天线发送至所述基站。
进一步的, 所述第二发送单元 33可以包括: 确定模块 331、 第二 发送模块 332。
确定模块 331 , 用于根据所述 UE的天线数目确定发射分集方案。 第二发送模块 332 , 用于根据所述确定模块 331 确定的所述发射 分集方案釆用多天线向所述基站发送所述层 2或层 3消息。
进一步的, 该用户设备还可以包括: 第三接收单元 38。
第三接收单元 38 , 用于在所述第二发送模块 332根据所述发射分 集方案釆用多天线向所述基站发送层所述 2或层 3消息之后, 接收所 述基站发送的确认信号,以便所述 UE获知所述基站成功接收所述层 2 或层 3消息。
进一步的,所述第三接收单元 38 ,还用于在所述第二发送模块 332 根据所述发射分集方案釆用多天线向所述基站发送层所述 2或层 3消 息之后, 接收所述基站发送的非确认指示信号。
该用户设备还可以包括: 重传单元 39。
重传单元 39 , 用于根据所述发射分集方案釆用多天线轮训方式对 所述层 2或层 3消息进行混合自动重传请求 HARQ传输。
本发明实施例提供的用户设备,UE通过第一天线向基站发送的随 机接入前导序列, 以便基站根据接收到随机接入前导序列获知 UE 的 天线数目, 此时 UE在预设的时间阔值内, 判断是否接收到基站发送 的随机接入响应, 若接收到随机接入响应, 则按照预设规则釆用多天 线向基站发送层 2或层 3消息, 这样 UE通过釆用多天线向基站发送 层 2或层 3消息, 提高了随机接入过程中层 2或层 3消息的传输效率 及可靠性。
并且, 若 UE釆用第一天线发送随机接入前导序列失败, 则釆用 其他天线重新发送该随机接入前导序列, 增加了传输随机接入前导序 列的成功率, 且在层 2或层 3消息第一次发送失败时, UE釆用多天线 轮训方式对所述层 2或层 3消息进行重传, 使得传输的可靠性得到进 一步提高。
本发明另一实施例提供一种基站, 如图 7所示, 包括: 第一接收 单元 41、 确定单元 42、 第二接收单元 43。
第一接收单元 41 , 用于接收用户设备 UE发送的随机接入前导序 歹 |J。
确定单元 42 , 用于根据所述第一接收单元 41接收到的所述随机 接入前导序列确定所述 UE的天线数目。
第二接收单元 43 , 用于接收所述 UE通过多天线发送的层 2或层 3消息。
进一步的, 如图 8所示, 该基站还可以包括: 第一发送单元 44。 第一发送单元 44 , 用于在所述第一接收单元 41接收用户设备 UE 发送的随机接入前导序列之前, 向所述 UE发送天线数目与所述随机 接入前导序列的第一映射关系, 以便所述 UE根据自身的天线数目和 所述第一映射关系确定所述随机接入前导序列。
进一步的, 该基站还可以包括: 第二发送单元 45。
第二发送单元 45 , 用于在所述第一接收单元 41接收用户设备 UE 发送的随机接入前导序列之前, 向所述 UE发送天线数目与随机接入 无线网络临时标识 RA-RNTI的第二映射关系, 以便所述 UE根据自身 的天线数目和所述第二映射关系确定发送所述随机接入前导序列所需 的目标 RA-RNTI, 并根据所述目标 RA-RNTI通过第一天线向所述基 站发送所述随机接入前导序列。
进一步的, 所述第二接收单元 43可以包括: 确定模块 431、 接收 模块 432。
确定模块 431 , 用于根据所述 UE的天线数目确定发射分集方案。 接收模块 432 , 用于根据所述确定模块 431 确定的所述发射分集 方案接收所述 UE通过多天线发送的层 2或层 3消息。
本发明实施例提供的基站, 基站根据接收到的 UE通过第一天线 发送的随机接入前导序列获知 UE的天线数目,并接收 UE通过多天线 发送的层 2或层 3消息,这样使得 UE通过釆用多天线向基站发送层 2 或层 3消息, 提高了 UE在随机接入过程中层 2或层 3消息的传输效 率及可靠性。
并且, 若 UE釆用第一天线发送随机接入前导序列失败, 则釆用 其他天线重新发送该随机接入前导序列, 增加了传输随机接入前导序 列的成功率, 且在层 2或层 3消息第一次发送失败时, UE釆用釆用多 天线轮训方式对所述层 2或层 3消息进行重传, 使得传输的可靠性得 到进一步提高。
本发明另一实施例提供一种用户设备, 如图 9所示, 包括: 至少 一个处理器 51、 存储器 52、 通信接口 53和总线 54 , 该至少一个处理 器 51、 存储器 52和通信接口 53通过总线 54连接并完成相互间的通 信, 其中:
所述总线 54 可以是工业标准体系结构 ( Industry Standard Architecture , ISA )总线、 夕卜部设备互连( Peripheral Component, PCI ) 总线或扩展工业标准体系 结构 ( Extended Industry Standard Architecture , EISA ) 总线等。 该总线 54 可以分为地址总线、 数据总 线、 控制总线等。 为便于表示, 图 9 中仅用一条粗线表示, 但并不表 示仅有一根总线或一种类型的总线。
所述存储器 52用于存储可执行程序代码,该程序代码包括计算机 操作指令。 存储器 52可能包含高速 RAM存储器, 也可能还包括非易 失性存储器 ( non-volatile memory ) , 例如至少一个磁盘存储器。
所述处理器 51可能是一个中央处理器 (Central Processing Unit, CPU ) , 或者是特定集成电路 ( Application Specific Integrated Circuit, ASIC ) , 或者是被配置成实施本发明实施例的一个或多个集成电路。
所述通信接口 53 , 主要用于实现本实施例的设备之间的通信。 所述处理器 51 , 用于通过第一天线向基站发送随机接入前导序 列, 以便所述基站根据接收到的所述随机接入前导序列获知用户设备 UE的天线数目; 其中, 所述第一天线为所述 UE的多天线中的任意一 根天线; 并在预设的时间阔值内, 判断是否接收到所述基站发送的随 机接入响应, 若接收到所述随机接入响应, 按照预设规则釆用多天线 向所述基站发送层 2或层 3消息。
进一步的,所述处理器 51 ,还用于若未接收到所述随机接入响应, 通过第二天线重新向所述基站发送所述随机接入前导序列; 其中, 所 述第二天线为所述 UE的多天线中除所述第一天线外的任意一根天线。
进一步的, 所述处理器 51 , 还用于在所述通过第一天线向基站发 送随机接入前导序列之前, 从随机接入前导序列集合中选取所述随机 接入前导序列。
进一步的, 所述处理器 51 , 还用于在所述从随机接入前导序列集 合中选取所述随机接入前导序列之前, 接收所述基站发送的天线数目 与所述随机接入前导序列的第一映射关系, 并根据所述 UE 的天线数 目和所述第一映射关系确定所述随机接入前导序列。
进一步的, 所述处理器 51 , 还用于在所述通过第一天线向基站发 送随机接入前导序列之前, 接收所述基站发送的天线数目与随机接入 无线网络临时标识 RA-RNTI的第二映射关系, 并根据所述 UE的天线 数目和所述第二映射关系确定发送所述随机接入前导序列所需的目标 RA-RNTI , 以便所述 UE根据所述目标 RA-RNTI通过第一天线向所述 基站发送所述随机接入前导序列,进而所述基站根据接收到的所述 UE 根据所述目标 RA-RNTI发送的所述随机接入前导序列确定所述 UE的 天线数目。
进一步的, 所述处理器 51 , 还用于将指示所述 UE的天线数目的 序列携带在所述随机接入前导序列中通过所述第一天线发送至所述基 站。
进一步的, 所述处理器 51 , 还用于根据所述 UE的天线数目确定 发射分集方案, 并根据所述发射分集方案釆用多天线向所述基站发送 所述层 2或层 3消息。
进一步的, 所述处理器 51 , 还用于在所述根据所述发射分集方案 釆用多天线向所述基站发送所述层 2或层 3消息之后, 接收所述基站 发送的确认信号, 以便获取所述基站成功接收所述层 2或层 3消息。
进一步的, 所述处理器 51 , 还用于在所述根据所述发射分集方案 釆用多天线向所述基站发送所述层 2或层 3消息之后, 接收所述基站 发送的非确认指示信号, 并根据所述发射分集方案釆用多天线轮训方 式对所述层 2或层 3消息进行混合自动重传请求 HARQ传输。
本发明实施例提供的用户设备,UE通过第一天线向基站发送的随 机接入前导序列, 以便基站根据接收到随机接入前导序列获知 UE 的 天线数目, 此时 UE在预设的时间阔值内, 判断是否接收到基站发送 的随机接入响应, 若接收到随机接入响应, 则按照预设规则釆用多天 线向基站发送层 2或层 3消息, 这样 UE通过釆用多天线向基站发送 层 2或层 3消息, 提高了随机接入过程中层 2或层 3消息的传输效率 及可靠性。
并且, 若 UE釆用第一天线发送随机接入前导序列失败, 则釆用 其他天线重新发送该随机接入前导序列, 增加了传输随机接入前导序 列的成功率, 且在层 2或层 3消息第一次发送失败时, UE釆用多天线 轮训方式对所述层 2或层 3消息进行重传, 使得传输的可靠性得到进 一步提高。
本发明另一实施例提供一种基站, 如图 10所示, 包括: 至少一个 处理器 61、存储器 62、通信接口 63和总线 64 ,该至少一个处理器 61、 存储器 62和通信接口 63通过总线 64连接并完成相互间的通信,其中: 所述总线 64 可以是工业标准体系结构 ( Industry Standard Architecture , ISA )总线、 夕卜部设备互连( Peripheral Component, PCI ) 总线或扩展工业标准体系 结构 ( Extended Industry Standard Architecture , EISA ) 总线等。 该总线 64 可以分为地址总线、 数据总 线、 控制总线等。 为便于表示, 图 10中仅用一条粗线表示, 但并不表 示仅有一根总线或一种类型的总线。
所述存储器 62用于存储可执行程序代码,该程序代码包括计算机 操作指令。 存储器 62可能包含高速 RAM存储器, 也可能还包括非易 失性存储器 ( non-volatile memory ) , 例如至少一个磁盘存储器。
所述处理器 61可能是一个中央处理器 (Central Processing Unit, CPU ) , 或者是特定集成电路 ( Application Specific Integrated Circuit, ASIC ) , 或者是被配置成实施本发明实施例的一个或多个集成电路。
所述通信接口 63 , 主要用于实现本实施例的设备之间的通信。 所述处理器 61 ,用于接收用户设备 UE发送的随机接入前导序列; 根据所述随机接入前导序列确定所述 UE 的天线数目, 接收所述 UE 通过多天线发送的层 2或层 3消息。
进一步的, 所述处理器 61 , 还用于在所述接收用户设备 UE发送 的随机接入前导序列之前, 向所述 UE发送天线数目与随机接入前导 序列的第一映射关系, 以便所述 UE根据自身的天线数目和所述第一 映射关系确定所述随机接入前导序列。
进一步的, 所述处理器 61 , 还用于在所述接收用户设备 UE发送 的随机接入前导序列之前, 向所述 UE发送天线数目与所述随机接入 无线网络临时标识 RA-RNTI的第二映射关系, 以便所述 UE根据自身 的天线数目和所述第二映射关系确定发送所述随机接入前导序列所需 的目标 RA-RNTI , 并根据所述目标 RA-RNTI通过第一天线向所述基 站发送所述随机接入前导序列。
进一步的, 所述处理器 61 , 还用于根据所述 UE的天线数目确定 发射分集方案; 根据所述发射分集方案接收所述 UE通过多天线发送 的层 2或层 3消息。
本发明实施例提供的基站, 基站根据接收到的 UE通过第一天线 发送的随机接入前导序列获知 UE的天线数目,并接收 UE通过多天线 发送的层 2或层 3消息,这样使得 UE通过釆用多天线向基站发送层 2 或层 3消息, 提高了 UE在随机接入过程中层 2或层 3消息的传输效 率及可靠性。
并且, 若 UE釆用第一天线发送随机接入前导序列失败, 则釆用 其他天线重新发送该随机接入前导序列, 增加了传输随机接入前导序 列的成功率, 且在层 2或层 3消息第一次发送失败时, UE釆用釆用多 天线轮训方式对所述层 2或层 3消息进行重传, 使得传输的可靠性得 到进一步提高。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了 解到本发明可借助软件加必需的通用硬件的方式来实现, 当然也可以 通过硬件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软 件产品的形式体现出来, 该计算机软件产品存储在可读取的存储介质 中, 如计算机的软盘, 硬盘或光盘等, 包括若干指令用以使得一台计 算机设备 (可以是个人计算机, 服务器, 或者网络设备等) 执行本发 明各个实施例所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围 内, 可轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因 此, 本发明的保护范围应以所述权利要求的保护范围为准。

Claims

权利 要求 书
1、 一种随机接入方法, 其特征在于, 包括:
通过第一天线向基站发送随机接入前导序列, 以便所述基站根据 接收到的所述随机接入前导序列获知用户设备 UE的天线数目; 其中, 所述第一天线为所述 UE的多天线中的任意一根天线;
在预设的时间阔值内, 判断是否接收到所述基站发送的随机接入 口向应;
若接收到所述随机接入响应, 按照预设规则釆用多天线向所述基 站发送层 2或层 3消息。
2、 根据权利要求 1所述的随机接入方法, 其特征在于, 所述方法 还包括:
若未接收到所述随机接入响应, 通过第二天线重新向所述基站发 送所述随机接入前导序列; 其中, 所述第二天线为所述 UE 的多天线 中除所述第一天线外的任意一根天线。
3、 根据权利要求 1或 2所述的随机接入方法, 其特征在于, 在所 述通过第一天线向基站发送随机接入前导序列之前, 还包括:
从随机接入前导序列集合中选取所述随机接入前导序列。
4、 根据权利要求 3所述的随机接入方法, 其特征在于, 在所述从 随机接入前导序列集合中选取所述随机接入前导序列之前, 还包括: 接收所述基站发送的天线数目与所述随机接入前导序列的第一映 射关系;
所述从随机接入前导序列集合中选取所述随机接入前导序列, 包 括:
根据所述 UE 的天线数目和所述第一映射关系确定所述随机接入 前导序列。
5、 根据权利要求 3所述的随机接入方法, 其特征在于, 在所述通 过第一天线向基站发送随机接入前导序列之前, 还包括:
接收所述基站发送的天线数目与随机接入无线网络临时标识 RA-RNTI的第二映射关系;
根据所述 UE 的天线数目和所述第二映射关系确定发送所述随机 接入前导序列所需的目标 RA-RNTI , 以便所述 UE 根据所述目标 RA-RNTI通过第一天线向所述基站发送所述随机接入前导序列, 进而 所述基站根据接收到的所述 UE根据所述目标 RA-RNTI发送的所述随 机接入前导序列确定所述 UE的天线数目。
6、 根据权利要求 3所述的随机接入方法, 其特征在于, 所述通过 第一天线向基站发送随机接入前导序列, 包括:
将指示所述 UE 的天线数目的序列携带在所述随机接入前导序列 中通过所述第一天线发送至所述基站。
7、 根据权利要求 1至 6中任意一项所述的随机接入方法, 其特征 在于,所述按照预设规则釆用多天线向所述基站发送层 2或层 3消息, 包括:
根据所述 UE的天线数目确定发射分集方案;
根据所述发射分集方案釆用多天线向所述基站发送所述层 2或层 3消息。
8、 根据权利要求 7所述的随机接入方法, 其特征在于, 在所述根 据所述发射分集方案釆用多天线向所述基站发送所述层 2或层 3消息 之后, 还包括:
接收所述基站发送的确认信号, 以便所述 UE获知所述基站成功 接收所述层 2或层 3消息。
9、 根据权利要求 7所述的随机接入方法, 其特征在于, 在所述根 据所述发射分集方案釆用多天线向所述基站发送所述层 2或层 3消息 之后, 还包括:
接收所述基站发送的非确认指示信号;
根据所述发射分集方案釆用多天线轮训方式对所述层 2或层 3消 息进行混合自动重传请求 HARQ传输。
10、 一种随机接入方法, 其特征在于, 包括:
接收用户设备 UE发送的随机接入前导序列;
根据所述随机接入前导序列确定所述 UE的天线数目;
接收所述 UE通过多天线发送的层 2或层 3消息。
11、 根据权利要求 10所述的随机接入方法, 其特征在于, 在所述 接收用户设备 UE发送的随机接入前导序列之前, 还包括:
向所述 UE发送天线数目与所述随机接入前导序列的第一映射关 系, 以便所述 UE根据自身的天线数目和所述第一映射关系确定所述 随机接入前导序列。
12、 根据权利要求 10所述的随机接入方法, 其特征在于, 在所述 接收用户设备 UE发送的随机接入前导序列之前, 还包括:
向所述 UE发送天线数目与随机接入无线网络临时标识 RA-RNTI 的第二映射关系, 以便所述 UE根据自身的天线数目和所述第二映射 关系确定发送所述随机接入前导序列所需的目标 RA-RNTI , 并根据所 述目标 RA-RNTI 通过第一天线向所述基站发送所述随机接入前导序 歹 |J。
13、 根据权利要求 10至 12中任意一项所述的随机接入方法, 其 特征在于, 所述接收所述 UE通过多天线发送的层 2或层 3消息, 包 括:
根据所述 UE的天线数目确定发射分集方案;
根据所述发射分集方案接收所述 UE通过多天线发送的层 2或层 3 消息。
14、 一种用户设备, 其特征在于, 包括:
第一发送单元,用于通过第一天线向基站发送随机接入前导序列 , 以便所述基站根据接收到的所述随机接入前导序列获知用户设备 UE 的天线数目; 其中, 所述第一天线为所述 UE 的多天线中的任意一根 天线;
判断单元, 用于在预设的时间阔值内, 判断是否接收到所述基站 发送的随机接入响应;
第二发送单元, 用于若接收到所述随机接入响应, 按照预设规则 釆用多天线向所述基站发送层 2或层 3消息。
15、 根据权利要求 14所述的用户设备, 其特征在于,
所述第一发送单元, 还用于若未接收到所述随机接入响应, 通过 第二天线重新向所述基站发送所述随机接入前导序列; 其中, 所述第 二天线为所述 UE的多天线中除所述第一天线外的任意一根天线。
16、 根据权利要求 14或 15所述的用户设备, 其特征在于, 还包 括:
选取单元, 用于在所述第一发送单元通过第一天线向基站发送随 机接入前导序列之前, 从随机接入前导序列集合中选取所述随机接入 前导序列。
17、 根据权利要求 16所述的用户设备, 其特征在于, 还包括: 第一接收单元, 用于在所述选取单元从随机接入前导序列集合中 选取所述随机接入前导序列之前, 接收所述基站发送的天线数目与所 述随机接入前导序列的第一映射关系;
所述选取单元, 包括:
选取模块, 用于根据所述 UE 的天线数目和所述第一接收单元接 收到的所述第一映射关系确定所述随机接入前导序列。
18、 根据权利要求 16所述的用户设备, 其特征在于, 还包括: 第二接收单元, 用于在所述第一发送单元通过第一天线向基站发 送随机接入前导序列之前, 接收所述基站发送的天线数目与随机接入 无线网络临时标识 RA-RNTI的第二映射关系;
确定单元, 用于根据所述 UE 的天线数目和所述第二接收单元接 收到的所述第二映射关系确定发送所述随机接入前导序列所需的目标 RA-RNTI , 以便所述 UE根据所述目标 RA-RNTI通过第一天线向所述 基站发送所述随机接入前导序列,进而所述基站根据接收到的所述 UE 根据所述目标 RA-RNTI发送的所述随机接入前导序列确定所述 UE的 天线数目。
19、 根据权利要求 16所述的用户设备, 其特征在于, 所述第一发 送单元, 包括:
第一发送模块, 用于将指示所述 UE 的天线数目的序列携带在所 述随机接入前导序列中通过所述第一天线发送至所述基站。
20、 根据权利要求 14至 19中任意一项所述的用户设备, 其特征 在于, 所述第二发送单元包括:
确定模块, 用于根据所述 UE的天线数目确定发射分集方案; 第二发送模块, 用于根据所述确定模块确定的所述发射分集方案 釆用多天线向所述基站发送所述层 2或层 3消息。
21、 根据权利要求 20所述的用户设备, 其特征在于, 还包括: 第三接收单元, 用于在所述第二发送模块根据所述发射分集方案 釆用多天线向所述基站发送所述层 2或层 3消息之后, 接收所述基站 发送的确认信号,以便所述 UE获知所述基站成功接收所述层 2或层 3 消息。
22、 根据权利要求 20所述的用户设备, 其特征在于,
所述第三接收单元, 还用于在所述第二发送模块根据所述发射分 集方案釆用多天线向所述基站发送所述层 2或层 3消息之后, 接收所 述基站发送的非确认指示信号;
重传单元, 用于根据所述发射分集方案釆用多天线轮训方式对所 述层 2或层 3消息进行混合自动重传请求 HARQ传输。
23、 一种基站, 其特征在于, 包括:
第一接收单元, 用于接收用户设备 UE发送的随机接入前导序列; 确定单元, 用于根据所述第一接收单元接收到的所述随机接入前 导序列确定所述 UE的天线数目;
第二接收单元, 用于接收所述 UE通过多天线发送的层 2或层 3 消息。
24、 根据权利要求 23所述的基站, 其特征在于, 还包括: 第一发送单元, 用于在所述第一接收单元接收用户设备 UE发送 的随机接入前导序列之前, 向所述 UE发送天线数目与所述随机接入 前导序列的第一映射关系, 以便所述 UE根据自身的天线数目和所述 第一映射关系确定所述随机接入前导序列。
25、 根据权利要求 23所述的基站, 其特征在于, 还包括: 第二发送单元, 用于在所述第一接收单元接收用户设备 UE发送 的随机接入前导序列之前, 向所述 UE发送天线数目与随机接入无线 网络临时标识 RA-RNTI的第二映射关系, 以便所述 UE根据自身的天 线数目和所述第二映射关系确定发送所述随机接入前导序列所需的目 标 RA-RNTI, 并根据所述目标 RA-RNTI通过第一天线向所述基站发 送所述随机接入前导序列。
26、 根据权利要求 23至 25中任意一项所述的基站, 其特征在于, 所述第二接收单元包括:
确定模块, 用于根据所述 UE的天线数目确定发射分集方案; 接收模块, 用于根据所述确定模块确定的所述发射分集方案接收 所述 UE通过多天线发送的层 2或层 3消息。
PCT/CN2014/071401 2013-01-30 2014-01-24 一种随机接入方法及用户设备 WO2014117686A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14746717.9A EP2943031B1 (en) 2013-01-30 2014-01-24 Random access method and user equipment
US14/812,691 US9807791B2 (en) 2013-01-30 2015-07-29 Random access method and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310037513.5A CN103974446B (zh) 2013-01-30 2013-01-30 一种随机接入方法及用户设备
CN201310037513.5 2013-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/812,691 Continuation US9807791B2 (en) 2013-01-30 2015-07-29 Random access method and user equipment

Publications (1)

Publication Number Publication Date
WO2014117686A1 true WO2014117686A1 (zh) 2014-08-07

Family

ID=51243349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071401 WO2014117686A1 (zh) 2013-01-30 2014-01-24 一种随机接入方法及用户设备

Country Status (4)

Country Link
US (1) US9807791B2 (zh)
EP (1) EP2943031B1 (zh)
CN (1) CN103974446B (zh)
WO (1) WO2014117686A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105580466A (zh) * 2014-08-30 2016-05-11 华为技术有限公司 一种天线信息的发送、接收方法和设备

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016029486A1 (zh) * 2014-08-30 2016-03-03 华为技术有限公司 一种天线信息的发送、接收方法和设备
WO2016208836A1 (ko) 2015-06-26 2016-12-29 엘지전자 주식회사 가상 단말 방식을 사용한 단말의 네트워크 접속 방법
CN107046706A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 接入方法、ue的能力和/或操作特征的确定方法及装置
US20170265230A1 (en) * 2016-03-14 2017-09-14 Futurewei Technologies, Inc. System and Method for Random Access Backoffs
EP3454476A4 (en) * 2016-09-30 2019-06-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND APPARATUS FOR DATA TRANSMISSION
CN108023623B (zh) 2016-11-04 2022-05-27 维沃移动通信有限公司 一种终端信息上报、获取方法、终端及基站
TW201820918A (zh) * 2016-11-28 2018-06-01 財團法人資訊工業策進會 用於行動通訊系統之無線裝置及其隨機存取方法
US11064529B2 (en) 2016-12-21 2021-07-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, terminal device and network device
CN108282902B (zh) * 2017-01-06 2023-11-07 北京三星通信技术研究有限公司 随机接入方法、基站和用户设备
EP3709750B1 (en) * 2017-11-14 2021-09-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for contention-based random access, network device and terminal device
CN108112089A (zh) * 2018-01-05 2018-06-01 北京小米移动软件有限公司 随机接入方法、装置及非临时性计算机可读存储介质
CN108055065A (zh) * 2018-02-11 2018-05-18 广东欧珀移动通信有限公司 天线切换方法、装置、存储介质和电子设备
CN108366388A (zh) * 2018-02-11 2018-08-03 广东欧珀移动通信有限公司 天线切换方法、装置、存储介质和电子设备
CN108093452A (zh) * 2018-02-11 2018-05-29 广东欧珀移动通信有限公司 天线切换方法、装置、存储介质及电子设备
CN108471326B (zh) * 2018-03-01 2021-02-02 Oppo广东移动通信有限公司 天线切换方法、装置、存储介质及电子设备
CN110650473B (zh) * 2018-06-27 2021-09-07 华为技术有限公司 一种能力上报的方法及装置
US20220407623A1 (en) * 2019-11-06 2022-12-22 Beijing Xiaomi Mobile Software Co., Ltd. Feedback sequence transmission method and apparatus, and device and readable storage medium
CN113973271B (zh) * 2020-07-24 2023-05-26 维沃移动通信有限公司 重复传输方法、装置及用户设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483626A (zh) * 2008-01-09 2009-07-15 中兴通讯股份有限公司 前导序列的发送、接收、及传输方法
WO2010146980A1 (ja) * 2009-06-16 2010-12-23 シャープ株式会社 移動局装置、基地局装置、通信システムおよびランダムアクセス方法
CN102316586A (zh) * 2010-07-06 2012-01-11 电信科学技术研究院 无线网络临时标识的分配方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957011B1 (ko) * 2006-09-13 2010-05-13 삼성전자주식회사 다중 입력 다중 출력 시스템에서 자동 반복 요청 장치 및 방법
KR101468226B1 (ko) * 2008-03-19 2014-12-04 엘지전자 주식회사 무선 통신 시스템에서 랜덤 액세스를 위한 프리앰블 생성 방법
EP2299602A1 (en) * 2008-07-09 2011-03-23 Sharp Kabushiki Kaisha Communication device, communication system, reception method, and communication method
WO2010087569A1 (en) * 2009-02-02 2010-08-05 Lg Electronics Inc. Determination of user equipment antenna capability
US8923218B2 (en) * 2009-11-02 2014-12-30 Qualcomm Incorporated Apparatus and method for random access signaling in a wireless communication system
US8630280B2 (en) * 2010-03-14 2014-01-14 Lg Electronics Inc. Method and user equipment for transmitting feedback information
KR20110120808A (ko) * 2010-04-29 2011-11-04 엘지전자 주식회사 하향링크 ack/nack 신호 전송방법 및 기지국과, 하향링크 ack/nack 신호 수신방법 및 사용자기기
EP2653003B1 (en) * 2010-12-13 2017-11-15 Telefonaktiebolaget LM Ericsson (publ) Transmission of random access preambles using tx diversity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483626A (zh) * 2008-01-09 2009-07-15 中兴通讯股份有限公司 前导序列的发送、接收、及传输方法
WO2010146980A1 (ja) * 2009-06-16 2010-12-23 シャープ株式会社 移動局装置、基地局装置、通信システムおよびランダムアクセス方法
CN102316586A (zh) * 2010-07-06 2012-01-11 电信科学技术研究院 无线网络临时标识的分配方法和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105580466A (zh) * 2014-08-30 2016-05-11 华为技术有限公司 一种天线信息的发送、接收方法和设备
EP3179796A4 (en) * 2014-08-30 2017-08-30 Huawei Technologies Co., Ltd. Antenna information transmission and reception method and device
US10299111B2 (en) 2014-08-30 2019-05-21 Huawei Technologies Co., Ltd. Antenna information sending method and device, and antenna information receiving method and device
CN110890906A (zh) * 2014-08-30 2020-03-17 华为技术有限公司 一种天线信息的发送、接收方法和设备
CN110890906B (zh) * 2014-08-30 2022-08-26 华为技术有限公司 一种天线信息的发送、接收方法和设备

Also Published As

Publication number Publication date
EP2943031A1 (en) 2015-11-11
EP2943031A4 (en) 2015-12-30
CN103974446B (zh) 2018-07-31
EP2943031B1 (en) 2017-12-13
US9807791B2 (en) 2017-10-31
CN103974446A (zh) 2014-08-06
US20150334748A1 (en) 2015-11-19

Similar Documents

Publication Publication Date Title
WO2014117686A1 (zh) 一种随机接入方法及用户设备
CN102428741B (zh) 用于辅助随机接入性能提升的基站
EP3606195A1 (en) Beam configuration method and device
CN110463109B (zh) 发送删余信号的方法、设备和存储介质
RU2477004C2 (ru) Проверка правильности обнаружения подтверждения приема по схеме н-аrq посредством комбинирования данных и повторного декодирования
WO2016183705A1 (zh) 授权辅助接入系统中用于传输上行数据的方法和装置
EP3598682B1 (en) Method and apparatus for uplink data transmission
CN107872298B (zh) 免授权传输的方法、网络设备和终端设备
WO2015077964A1 (en) Methods, apparatuses and user equipment for hybrid automatic repeat request transmission
WO2011038648A1 (zh) 一种透明中继网络中的上行混合自动重传请求方法及装置
US20210385142A1 (en) Method and device for data transmission
WO2016070561A1 (zh) 数据传输处理方法及装置
WO2015038921A1 (en) System and method for performing hybrid automatic repeat request (harq) in a wlan system
US20190132106A1 (en) Uplink transmission method and apparatus
CN113412595B (zh) 无线通信方法、终端设备和网络设备
CN109842462B (zh) 混合自动重送方法及系统
CN113796032A (zh) 用于半静态harq-ack码本确定的方法及设备
WO2019028965A1 (zh) 传输数据的方法和装置
CN108616335B (zh) 一种数据包传输方法、用户终端和网络侧设备
WO2018157745A1 (zh) 一种数据传输方法及装置
WO2020164709A1 (en) Harq feedback technique for communication systems
US20220045794A1 (en) Method for transmitting sidelink data, and terminal device
WO2018170907A1 (zh) 通信方法、终端和网络设备
WO2019095932A1 (zh) 通信方法和装置
WO2019029213A1 (zh) 传输参数获取、数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014746717

Country of ref document: EP