WO2014117607A1 - 驱动led模块的交流电整流电路及交流电整流方法 - Google Patents

驱动led模块的交流电整流电路及交流电整流方法 Download PDF

Info

Publication number
WO2014117607A1
WO2014117607A1 PCT/CN2013/090330 CN2013090330W WO2014117607A1 WO 2014117607 A1 WO2014117607 A1 WO 2014117607A1 CN 2013090330 W CN2013090330 W CN 2013090330W WO 2014117607 A1 WO2014117607 A1 WO 2014117607A1
Authority
WO
WIPO (PCT)
Prior art keywords
alternating current
capacitor
module
led module
diode
Prior art date
Application number
PCT/CN2013/090330
Other languages
English (en)
French (fr)
Inventor
李东明
封正勇
龙文涛
杨冕
Original Assignee
四川新力光源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310037188.2A external-priority patent/CN103152914B/zh
Application filed by 四川新力光源股份有限公司 filed Critical 四川新力光源股份有限公司
Priority to EP13873234.2A priority Critical patent/EP2953429A4/en
Priority to US14/762,666 priority patent/US9565724B2/en
Priority to EA201591398A priority patent/EA201591398A1/ru
Priority to CA2899390A priority patent/CA2899390C/en
Publication of WO2014117607A1 publication Critical patent/WO2014117607A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/066Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode particular circuits having a special characteristic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4266Arrangements for improving power factor of AC input using passive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an alternating current rectification technology, and more particularly to an alternating current rectifying circuit and an alternating current rectifying method for driving a light emitting diode (LED) module.
  • LED light emitting diode
  • LED Light Emitting Diode
  • the lifetime of the illumination device depends not only on the illumination performance of the LED, but also on the stability of the drive circuit assembly that provides the operating voltage of the LED module. In current applications, the bottleneck in the life of the LED module is still the voltage stability provided by the driver circuit. In order to reduce the influence of the fluctuation of the driving voltage on the life of the LED module, it is necessary to design a new AC rectifying circuit based on the widely used AC power to provide a stable driving voltage to drive the LED module.
  • the bridge rectifier circuit is connected to a simple rectifier circuit by using a semiconductor rectifier diode (or diode). It is widely used in various AC/DC conversion voltage regulation applications.
  • the bridge rectifier circuit is used to rectify the alternating current (AC) into a direct current (DC). ), can provide a relatively stable voltage for the LED module, thereby increasing the service life of the LED module.
  • FIG. 1 is a schematic structural view of an alternating current rectifying circuit of a conventional driving LED module.
  • the LED module is connected to the DC output end of the AC rectification circuit, and the AC rectification circuit is used to rectify the AC power, and the LED module can be directly driven.
  • the AC rectification circuit is a bridge rectifier circuit, including: an AC module (AC) a first diode D1, a second diode D2, a third diode D3, and a fourth diode D4, wherein
  • the anode of the first diode D 1 is connected to the cathode of the second diode D2, and the cathode is respectively connected to the third
  • the cathode of the pole D3 is connected to the input terminal (V+) of the external LED module;
  • the anode of the second diode D2 is respectively connected to the anode of the fourth diode D4 and the output terminal (V-) of the external LED module;
  • the anode of the third diode D3 is connected to the cathode of the fourth diode D4;
  • One end (A1) of the AC module is connected to the anode of the first diode D1, and the other end (A2) is connected to the anode of the second diode D2.
  • the alternating current output from the alternating current module passes through the first diode D1, the outer LED module, and the fourth diode D4 to form a current loop to provide a working voltage for the external LED module;
  • the alternating current output from the alternating current module passes through the third diode D3, the outer LED module and the second diode D2 to form another current loop, which provides an operating voltage for the external LED module.
  • the existing AC rectifying circuit for driving the LED module directly drives the LED module after rectification of the alternating current through the diode. Since the alternating current is periodically fluctuating, the LED module has a certain turn-on voltage, that is, only the LED module is loaded. When the voltage at both ends exceeds the turn-on voltage, the LED module will be turned on and emit light; if the voltage applied across the LED module does not exceed the turn-on voltage, the LED module is in the off state, that is, in the non-lighting state.
  • the existing alternating current rectifying circuit when the current loop is turned, the voltage that can be supplied to the external LED module is less than the turn-on voltage, so that the luminous efficiency of the LED module is low; further, the rectification and output of the diode in the alternating current rectifying circuit
  • the voltage value to the LED module fluctuates with the fluctuation of the AC voltage, and the output voltage stability is low, which causes the LED module to exhibit obvious flickering phenomenon and reduces the service life of the LED module.
  • Embodiments of the present invention provide an AC rectification circuit for driving an LED module to improve the stability of the output voltage and improve the luminous efficiency of the LED module.
  • Embodiments of the present invention also provide an AC rectification method for driving an LED module, improving stability of an output voltage, and improving luminous efficiency of the LED module.
  • an AC rectification circuit for driving an LED module is provided by an embodiment of the present invention.
  • the AC rectification circuit includes: an AC module, a positive half cycle rectification branch, a positive half cycle feed branch, a negative half cycle rectification branch, and a negative Half-cycle feeder branch, where
  • a positive half cycle rectifying branch for rectifying the alternating current output from the alternating current module when the alternating current module is in the positive half cycle, and outputting the rectified voltage signal to the external LED module;
  • the positive half-cycle feeding branch is configured to charge according to the alternating current output by the alternating current module when the alternating current module is in the negative half cycle; when the alternating current module is in the positive half cycle, discharge is performed, and the discharged voltage signal is output to the external LED module;
  • a negative half-cycle rectifying branch for rectifying the alternating current output from the alternating current module when the alternating current module is in the negative half cycle, and outputting the rectified voltage signal to the external LED module;
  • the negative half-cycle feed branch is used to charge according to the alternating current output from the alternating current module when the alternating current module is in the positive half cycle; when the alternating current module is in the negative half cycle, discharge is performed, and the discharged voltage signal is output to the external LED module.
  • the positive half-cycle rectification branch includes: a first rectifier tube, a second rectifier tube, and a sixth rectifier tube, wherein
  • the anode of the second rectifier tube is connected to one end of the alternating current module, and the cathode is connected to the anode of the first rectifier tube;
  • a cathode of the first rectifier is connected to an input end of the external LED module
  • the anode of the sixth rectifier is connected to the output of the external LED module, and the cathode is connected to the other end of the AC module.
  • the negative half-cycle rectifying branch includes: a third rectifying tube, a fourth rectifying tube, and a fifth rectifying tube, wherein
  • the negative pole of the third rectifier tube is connected to one end of the alternating current module, and the positive pole is connected to the output end of the external LED module;
  • the anode of the fifth rectifier tube is connected to the other end of the alternating current module, and the cathode is connected to the anode of the fourth rectifier tube;
  • the negative pole of the fourth rectifier is connected to the input of the external LED module.
  • the positive half-cycle feed branch includes: a first capacitor and a fourth capacitor, wherein one end of the first capacitor is connected to the anode of the fourth rectifier tube, and the other end is connected to one end of the AC module.
  • One end of the fourth capacitor is connected to the other end of the AC module, and the other end is connected to the output end of the external LED module.
  • the negative half-cycle feed branch includes: a second capacitor and a third capacitor, wherein one end of the second capacitor is connected to one end of the AC module, and the other end is connected to an output end of the external LED module;
  • One end of the third capacitor is connected to the anode of the first rectifier, and the other end is connected to the other end of the AC module.
  • the rectifier is a diode, a triode or a thyristor rectifier.
  • the first capacitor, the second capacitor, the third capacitor, and the fourth capacitor adopt a non-polarity capacitor.
  • the first capacitor, the second capacitor, the third capacitor, and the fourth capacitor have the same capacitance value.
  • the current forms a loop through the second diode, the first diode, the LED module, and the sixth diode, and supplies power to the LED module, wherein
  • the alternating current forms a loop through the second diode and the third capacitor to charge the third capacitor; meanwhile, the alternating current forms a loop through the second capacitor and the sixth diode to charge the second capacitor;
  • the fourth capacitor, the first capacitor, the fourth diode, and the LED module form a loop to supply power to the LED module;
  • the current forms a loop through the fifth diode, the fourth diode, the LED module, and the third diode, and supplies power to the LED module, wherein
  • the alternating current in the alternating current module forms a loop through the fifth diode and the first capacitor to charge the first capacitor; meanwhile, the alternating current forms a loop through the fourth capacitor and the third diode, to the fourth The capacitor is charged; meanwhile, the second capacitor, the third capacitor, the first diode, and the LED module form a loop to supply power to the LED module.
  • the alternating current rectifying circuit further comprises: a constant current diode,
  • the positive electrode of the constant current diode is connected to the output end of the LED module, and the negative electrode is connected to the positive electrode of the third diode.
  • the alternating current rectifying circuit further comprises: an electrolytic capacitor, The anode of the electrolytic capacitor is connected to the input end of the LED module, and the cathode is connected to the output end of the LED module.
  • An alternating current rectifying method for driving an LED module of an LED the LED module being driven by an alternating current rectifying circuit, the alternating current rectifying circuit comprising: an alternating current module, a positive half cycle rectifying branch, a positive half cycle feeding branch, a negative half cycle rectifying branch, and The negative half cycle feeding branch, the method comprises: when the alternating current module is in the positive half cycle, the positive half cycle rectifying branch rectifies the alternating current output by the alternating current module, and outputs the rectified voltage signal to the external LED module;
  • the negative half-cycle feed branch is charged according to the alternating current output from the alternating current module, and the positive half-cycle feed branch is discharged, and the discharged voltage signal is output to the external LED module;
  • the negative half cycle rectification branch rectifies the AC power output by the AC module, and outputs the rectified voltage signal to the external LED module;
  • the negative half-cycle feed branch discharges, and the discharged voltage signal is output to an external LED module, and the positive half-cycle feed branch is charged according to the alternating current output from the alternating current module.
  • the positive half-cycle rectification branch includes: a first rectifier tube, a second rectifier tube, and a sixth rectifier tube, wherein
  • the anode of the second rectifier tube is connected to one end of the alternating current module, and the cathode is connected to the anode of the first rectifier tube;
  • a cathode of the first rectifier is connected to an input end of the external LED module
  • the anode of the sixth rectifier is connected to the output of the external LED module, and the cathode is connected to the other end of the AC module.
  • the negative half-cycle rectification branch includes: a third rectifier tube, a fourth rectifier tube, and a fifth rectifier tube, wherein
  • the negative pole of the third rectifier tube is connected to one end of the alternating current module, and the positive pole is connected to the output end of the external LED module;
  • the anode of the fifth rectifier tube is connected to the other end of the alternating current module, and the cathode is connected to the anode of the fourth rectifier tube;
  • the negative pole of the fourth rectifier is connected to the input of the external LED module.
  • the positive half-cycle feeding branch includes: a first capacitor and a fourth capacitor, wherein one end of the first capacitor is connected to the anode of the fourth rectifier tube, and the other end is connected to one end of the alternating current module Even
  • One end of the fourth capacitor is connected to the other end of the AC module, and the other end is connected to the output end of the external LED module.
  • the negative half-cycle feed branch includes: a second capacitor and a third capacitor, wherein one end of the second capacitor is connected to one end of the AC module, and the other end is connected to an output end of the external LED module;
  • One end of the third capacitor is connected to the anode of the first rectifier, and the other end is connected to the other end of the AC module.
  • the rectifier tube is a diode
  • the current forms a loop through the second diode, the first diode, the LED module, and the sixth diode, and supplies power to the LED module, wherein
  • the alternating current forms a loop through the second diode and the third capacitor to charge the third capacitor; meanwhile, the alternating current forms a loop through the second capacitor and the sixth diode to charge the second capacitor;
  • the fourth capacitor, the first capacitor, the fourth diode, and the LED module form a loop to supply power to the LED module;
  • the current forms a loop through the fifth diode, the fourth diode, the LED module, and the third diode, and supplies power to the LED module, wherein
  • the alternating current in the alternating current module forms a loop through the fifth diode and the first capacitor to charge the first capacitor; meanwhile, the alternating current forms a loop through the fourth capacitor and the third diode, to the fourth The capacitor is charged; meanwhile, the second capacitor, the third capacitor, the first diode, and the LED module form a loop to supply power to the LED module.
  • the AC power rectifier circuit and the AC power rectifier method for driving the LED module include: an alternating current module, a positive half cycle rectification branch, a positive half cycle feed branch, a negative half cycle rectification branch, and a negative half cycle feeding branch, wherein the positive half cycle rectifying branch is configured to rectify the alternating current output by the alternating current module when the alternating current module is in the positive half cycle, and output the rectified voltage signal to the external LED module;
  • the electric branch is used for charging according to the alternating current output by the alternating current module when the alternating current module is in the negative half cycle; when the alternating current module is in the positive half cycle, discharging is performed, and the discharged voltage signal is output to the external LED module; the negative half cycle rectifier branch
  • the circuit is used for rectifying the alternating current output by the alternating current module when the alternating current module is in the negative half cycle.
  • the rectified voltage signal is output to the external LED module; the negative half-cycle feed branch is used for charging according to the alternating current output by the alternating current module when the alternating current module is in the positive half cycle; when the alternating current module is in the negative half cycle, discharging is performed, The discharged voltage signal is output to an external LED module.
  • the existing AC power directly drives the circuit foundation of the LED module, thereby improving the stability of the output voltage, improving the utilization rate of each half cycle of the alternating current, and increasing the conduction time of the LED.
  • the LED illumination fluctuation is reduced, and a higher power factor is ensured, which improves the luminous efficiency of the LED module.
  • FIG. 1 is a schematic structural view of an alternating current rectifying circuit of a conventional driving LED module.
  • FIG. 2 is a schematic structural view of an alternating current rectifying circuit for driving an LED module according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an alternating current rectifying circuit for driving an LED module according to an embodiment of the present invention.
  • Fig. 4 is a schematic view showing another specific structure of an alternating current rectifying circuit for driving an LED module according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing another specific structure of an alternating current rectifying circuit for driving an LED module according to an embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of an alternating current rectification method for driving an LED module according to an embodiment of the present invention.
  • the existing AC rectifying circuit for driving the LED module since the alternating current is periodically fluctuating, and the LED module has a certain turn-on voltage, when the current loop is turned, the voltage that can be supplied to the external LED module is less than the turn-on voltage, so that the LED
  • the luminous efficiency of the module is low; further, after the rectification of the diode in the alternating current rectifying circuit, the voltage value output to the LED module is paid
  • the flow voltage fluctuates and fluctuates, and the output voltage stability is low, which affects the service life of the LED module.
  • a driving circuit for directly driving the LED module by the alternating current is provided, and the driving current is provided for the LED module, that is, the charging and discharging of the capacitor are used to increase the conduction angle. Fill the valleys of the alternating current to improve the power efficiency and reduce the LED flashing.
  • the AC rectification circuit includes: an AC module, a positive half cycle rectification branch, a positive half cycle feed branch, a negative half cycle rectification branch, and a negative half cycle feed branch, wherein
  • a positive half cycle rectifying branch for rectifying the alternating current output from the alternating current module when the alternating current module is in the positive half cycle, and outputting the rectified voltage signal to the external LED module;
  • the positive half-cycle feeding branch is used for charging according to the alternating current output by the alternating current module when the alternating current module is in the negative half cycle; for discharging when the alternating current module is in the positive half cycle, outputting the discharged voltage signal to the external LED module ;
  • a negative half-cycle rectifying branch for rectifying the alternating current output from the alternating current module when the alternating current module is in the negative half cycle, and outputting the rectified voltage signal to the external LED module;
  • the negative half-cycle feed branch is used for charging according to the alternating current output by the alternating current module when the alternating current module is in the positive half cycle; for discharging when the alternating current module is in the negative half cycle, outputting the discharged voltage signal to the external LED module .
  • the external LED module may also be other load modules, for example, other loads that need to be at a stable operating voltage.
  • the positive half cycle rectification branch includes: a first rectifier D1, a second rectifier D2, and a sixth rectifier D6 (not shown), wherein
  • the anode of the second rectifier tube D2 is connected to one end (A1) of the alternating current module, and the cathode is connected to the anode of the first rectifier tube D1;
  • the negative pole of the first rectifier D1 is connected to the input end of the external LED module
  • the anode of the sixth rectifier D6 is connected to the output of the external LED module, and the cathode is connected to the other end (A2) of the AC module.
  • the negative half-cycle rectification branch includes: a third rectifier D3, a fourth rectifier D4, and a fifth rectifier D5 (not shown), wherein The cathode of the third rectifier D3 is connected to one end (A1) of the AC module, and the anode is connected to the output of the external LED module;
  • the anode of the fifth rectifier tube D5 is connected to the other end (A2) of the alternating current module, and the cathode is connected to the anode of the fourth rectifier tube D4;
  • the negative terminal of the fourth rectifier D4 is connected to the input terminal of the external LED module.
  • the positive half-cycle feed branch includes: a first capacitor C1 and a fourth capacitor C4 (not shown), wherein
  • One end of the first capacitor C1 is connected to the anode of the fourth diode D4, and the other end is connected to one end (A1) of the alternating current module;
  • One end of the fourth capacitor C4 is connected to the other end of the AC module (A2), and the other end is external
  • the outputs of the LED modules are connected.
  • the negative half-cycle feed branch includes: a second capacitor C2 and a third capacitor C3 (not shown), wherein
  • One end of the second capacitor C2 is connected to one end (A1) of the AC module, and the other end is connected to the output end of the external LED module;
  • the third capacitor C3 has one end connected to the anode of the first rectifier D1 and the other end connected to the other end (A2) of the AC module.
  • the rectifier tube may be a diode or a triode as long as it is a device having unidirectional conductivity characteristics, for example, a thyristor rectifier or the like.
  • the semiconductor rectifying diode is used, which is not only low in cost, but also convenient for secondary integration with an LED module or the like, and constitutes an LED lighting device directly driven by the integrated alternating current.
  • FIG. 3 is a schematic structural diagram of an alternating current rectifying circuit for driving an LED module according to an embodiment of the present invention.
  • the alternating current rectifying circuit for driving the LED module comprises: a first diode D1, a second diode D2, a third diode D3, a fourth diode D4, a fifth diode D5, and a first a diode D6, a first capacitor C1, a second capacitor C2, a third capacitor C3, a fourth capacitor C4, and an LED module, wherein
  • the anode of the second diode D2 is connected to one end (A1) of the alternating current module (AC), and the cathode is respectively connected to the anode of the first diode D1 and one end of the third capacitor C3;
  • the cathode of the first diode D1 is respectively connected to the cathode of the fourth diode D4 and the input terminal (V+) of the LED module;
  • the other end of the third capacitor C3 is connected to the other end (A2) of the alternating current;
  • the anode of the fourth diode D4 is respectively connected to the cathode of the fifth diode D5 and one end of the first capacitor C1;
  • the other end of the first capacitor C1 is connected to one end (A1) of the alternating current;
  • the anode of the fifth diode D5 is respectively connected to the cathode of the sixth diode D6, one end of the fourth capacitor C4, and the other end of the alternating current;
  • the cathode of the third diode D3 is respectively connected to one end of the second capacitor C2 and one end (A2) of the alternating current;
  • the output terminal (V-) of the LED module is respectively connected to the anode of the third diode D3, the other end of the second capacitor C2, the other end of the fourth capacitor C4, the anode of the sixth diode D6, and the fifth capacitor C5. The other end is connected.
  • the first capacitor C1, the second capacitor C2, the third capacitor C3, and the fourth capacitor C4 are in an AC state, and need to withstand a reverse voltage.
  • the third capacitor C3 and the fourth capacitor C4 all adopt non-polar capacitors to adapt to the AC working environment.
  • the AC withstand voltage of a non-polar capacitor should be greater than or at least equal to the AC input voltage.
  • the first capacitor Cl, the second capacitor C2, the third capacitor C3, and the fourth capacitor C4 have the same or similar capacitance values.
  • the current forms a loop through the second diode D2, the first diode D1, the LED module, and the sixth diode D6 to supply power to the LED module. among them,
  • the alternating current forms a loop through the second diode D2 and the third capacitor C3 to charge the third capacitor C3; meanwhile, the alternating current forms a loop through the second capacitor C2 and the sixth diode D6, which is the second The capacitor C2 is charged; at the same time, the fourth capacitor C4, the first capacitor C1, the fourth diode D4, and the LED module form a loop to supply power to the LED module, that is, the charge stored in the first capacitor C1 and the fourth capacitor C4, after the first The four diode D4 discharges to the LED module to provide an operating voltage for the LED module.
  • the second capacitor C2 and the third capacitor C3 in the rising phase of the alternating current voltage, the second capacitor C2 and the third capacitor C3
  • the circuit structure is in parallel relationship; the first capacitor C1 and the fourth capacitor C4 are in series relationship with the alternating current module in the circuit structure, and supply power to the LED module, which is equivalent to increasing when the alternating current module is initially powered or switched between positive and negative half cycles.
  • the voltage of the alternating current enables the LED module to be turned on in advance, thereby improving the quality factor of the circuit, improving the stability of the output voltage, improving the luminous efficiency of the LED module, and improving the service life of the LED module.
  • the current forms a loop through the fifth diode D5, the fourth diode D4, the LED module, and the third diode D3 to supply power to the LED module. among them,
  • the alternating current in the alternating current module forms a loop through the fifth diode D5 and the first capacitor C1 to charge the first capacitor C1; meanwhile, the alternating current is formed by the fourth capacitor C4 and the third diode D3.
  • the circuit charges the fourth capacitor C4; at the same time, the second capacitor C2, the third capacitor C3, the first diode D1 and the LED module form a loop for supplying power to the LED module, that is, the second capacitor C2 and the third capacitor C3 are stored.
  • the charge is discharged to the LED module through the first diode D1 to provide an operating voltage for the LED module.
  • the first capacitor C1 and the fourth capacitor C4 are in a parallel relationship on the circuit structure; the second capacitor C2 and the third capacitor C3 are in the circuit structure and the alternating current module.
  • the absolute value of the AC voltage is increased, so that the LED module can be turned on in advance.
  • the first capacitor C1, the second capacitor C2, the third capacitor C3, and the fourth capacitor C4 are alternately charged and discharged in the positive half cycle of the alternating current and the negative half cycle of the alternating current, so that the voltage value outputted to the LED module is relatively Stable, reducing the flicker frequency of the LED module when emitting light; At the same time, increasing the on-time of the LED module in the positive half cycle of the alternating current and the negative half cycle of the alternating current, reducing the illumination fluctuation of the LED module and improving the power factor of the circuit.
  • the circuit of the embodiment of the invention has a simple circuit structure and high power supply efficiency, and is very suitable for the illumination device of the LED module directly driven by the alternating current.
  • each branch should be the same or similar, that is, the diode parameters in each branch should be the same or Similarly, each capacitor should have the same or similar capacitance value.
  • the diode parameter in the positive half-cycle rectification branch should be the same or similar to the diode parameter in the negative half-cycle rectification branch;
  • the capacitance value in the positive half-cycle feed branch It should be the same or similar to the value of the capacitor in the negative half-cycle feed branch.
  • selecting capacitors with the same or similar parameters is beneficial for improving the electrical balance, and is also beneficial for balancing the load, reducing the flicker, and improving the power efficiency.
  • the charge and discharge characteristics of the capacitor are mainly utilized. Therefore, the capacitance (capacitance) parameter is the most important parameter. When the capacitors having the same or similar capacitance are selected, the charge and discharge characteristics can be substantially the same or similar.
  • the AC rectification circuit of the driving LED module of the embodiment of the present invention further includes a Current Regulating Diode (CRD).
  • CCD Current Regulating Diode
  • Fig. 4 is a schematic view showing another specific structure of an alternating current rectifying circuit for driving an LED module according to an embodiment of the present invention.
  • the anode of the CRD is connected to the output of the LED module, and the cathode is connected to the anode of the third diode D3.
  • the luminous efficiency of the LED module is greatly improved.
  • the embodiment of the present invention can solve the fluctuation problem of the light output of the LED module to a certain extent, the degree of filling of the alternating current wave valley is not large. In the valley of the alternating voltage, the light output of the LED module has only the light output at the peak. 30% ⁇ 40%.
  • FIG. 5 is a schematic diagram showing another specific structure of an alternating current rectifying circuit for driving an LED module according to an embodiment of the present invention.
  • an electrolytic capacitor C5 is added as a filter capacitor, and the anode of the electrolytic capacitor C5 is connected to the input end of the LED module, and the output terminal of the anode and the LED module is connected. Connected.
  • the filtering function of the electrolytic capacitor C5 due to the filtering function of the electrolytic capacitor C5, the current waveform flowing into the LED module is smoothed.
  • the light output of the LED module at the alternating voltage valley can reach more than 80% of the peak time output, sensory There is almost no difference.
  • FIG. 6 is a schematic flow chart of an alternating current rectification method for driving an LED module according to an embodiment of the present invention.
  • the LED module is driven by an AC rectification circuit, and the AC rectification circuit includes: an AC module, a positive half cycle rectification branch, a positive half cycle feed branch, a negative half cycle rectification branch, and a negative half cycle feed branch.
  • the process includes:
  • Step 601 When the AC power module is in the positive half cycle, the positive half cycle rectification branch rectifies the AC power output by the AC module, and outputs the rectified voltage signal to the external LED module.
  • the positive half-cycle rectification branch includes: a first rectifier tube, a second rectifier tube, and a sixth rectifier tube, wherein
  • the anode of the second rectifier tube is connected to one end of the alternating current module, and the cathode is connected to the anode of the first rectifier tube;
  • a cathode of the first rectifier is connected to an input end of the external LED module
  • the anode of the sixth rectifier is connected to the output of the external LED module, and the cathode is connected to the other end of the AC module.
  • Step 602 The negative half-cycle feed branch is charged according to the alternating current output by the alternating current module, and the positive half-cycle feed branch is discharged, and the discharged voltage signal is output to the external LED module;
  • the negative half-cycle feed branch includes: a second capacitor and a third capacitor, wherein one end of the second capacitor is connected to one end of the AC module, and the other end is connected to an output end of the external LED module;
  • One end of the third capacitor is connected to the anode of the first rectifier, and the other end is connected to the other end of the AC module.
  • the positive half-cycle feed branch includes: a first capacitor and a fourth capacitor, wherein
  • One end of the first capacitor is connected to the anode of the fourth diode, and the other end is connected to one end of the alternating current module;
  • One end of the fourth capacitor is connected to the other end of the AC module, and the other end is connected to the output end of the external LED module.
  • Step 603 When the AC module is in the negative half cycle, the negative half cycle rectifying branch rectifies the AC power output by the AC module, and outputs the rectified voltage signal to the external LED module.
  • the negative half cycle rectification branch includes: a third rectifier tube, a fourth rectifier tube, and a fifth rectifier tube, wherein
  • the negative pole of the third rectifier tube is connected to one end of the alternating current module, and the positive pole is connected to the output end of the external LED module;
  • the anode of the fifth rectifier tube is connected to the other end of the alternating current module, and the cathode is connected to the anode of the fourth rectifier tube;
  • the negative pole of the fourth rectifier is connected to the input of the external LED module.
  • Step 604 the negative half-cycle feeding branch discharges, and outputs the discharged voltage signal to the outside.
  • the LED module, the positive half-cycle feed branch is charged according to the alternating current output from the AC module.
  • the current in the positive half cycle of the alternating current, the current forms a loop through the second diode, the first diode, the LED module, and the sixth diode, and supplies power to the LED module, where
  • the alternating current forms a loop through the second diode and the third capacitor to charge the third capacitor; meanwhile, the alternating current forms a loop through the second capacitor and the sixth diode to charge the second capacitor;
  • the fourth capacitor, the first capacitor, the fourth diode, and the LED module form a loop to supply power to the LED module;
  • the current forms a loop through the fifth diode, the fourth diode, the LED module, and the third diode, and supplies power to the LED module, wherein
  • the alternating current in the alternating current module forms a loop through the fifth diode and the first capacitor to charge the first capacitor; meanwhile, the alternating current forms a loop through the fourth capacitor and the third diode, to the fourth The capacitor is charged; meanwhile, the second capacitor, the third capacitor, the first diode, and the LED module form a loop to supply power to the LED module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明公开了一种驱动LED模块的交流电整流电路及交流电整流方法。包括:在交流电模块处于正半周时,对交流电模块输出的交流电进行整流后输出至外部LED模块的正半周整流支路;在交流电模块处于负半周时,根据交流电模块输出的交流电进行充电,在交流电模块处于正半周时,进行放电并输出至外部LED模块的正半周馈电支路;在交流电模块处于负半周时,对交流电模块输出的交流电进行整流,并输出至外部LED模块的负半周整流支路;在交流电模块处于正半周时,根据交流电模块输出的交流电进行充电,在交流电模块处于负半周时,进行放电并输出至外部LED模块的负半周馈电支路。应用本发明,可以提高输出电压的稳定性、提升LED模块的发光效率。

Description

驱动 LED模块的交流电整流电路及交流电整流方法 本申请要求于 2013 年 1 月 31 日提交中国国家知识产权局、 申请号为 201310037188.2、 发明名称为 "驱动 LED模块的交流电整流电路及交流电整 流方法"的中国专利申请的优先权, 该在先申请的全部内容通过引用结合在本 申请中。
技术领域 本发明涉及交流电整流技术, 尤其涉及一种驱动发光二极管(LED, Light Emitting Diode )模块的交流电整流电路及交流电整流方法。
背景技术
发光二极管( LED, Light Emitting Diode )模块作为一种高效益的新光源, 由于具有寿命长、 能耗低、 节能环保等优点, 广泛应用于商业、 工业、 家庭领 域的照明。
当 LED模块作为照明装置光源时,照明装置的寿命不仅仅取决于 LED的 发光性能, 还取决于提供 LED模块工作电压的驱动电路组件的稳定性。 在目 前的应用方案中, LED模块寿命的瓶颈仍然是驱动电路提供的电压稳定性。 为了降低驱动电压的波动性对 LED模块的寿命影响, 需要基于现有广泛应用 的交流电, 设计全新的交流电整流电路, 用以提供稳定的驱动电压, 从而驱动 LED模块。
桥式整流电路采用半导体整流二极管 (或称二极管 )连接成简单的整流电 路, 广泛应用于各种交直流转换的稳压应用中, 通过桥式整流电路, 将交流电 ( AC )整流成直流电 (DC ), 可以为 LED模块提供较为稳定的电压, 从而提 升 LED模块的使用寿命。
图 1为现有驱动 LED模块的交流电整流电路结构示意图。将 LED模块连 接在交流电整流电路的直流输出端,通过该交流电整流电路,对交流电进行整 流, 可以直接驱动 LED模块, 参见图 1 , 该交流电整流电路为桥式整流电路, 包括: 交流电模块(AC )、 第一二极管 Dl、 第二二极管 D2、 第三二极管 D3 以及第四二极管 D4, 其中,
第一二极管 D 1的正极与第二二极管 D2的负极相连, 负极分别与第三二 极管 D3的负极以及外部 LED模块的输入端 ( V+ )相连;
第二二极管 D2的正极分别与第四二极管 D4的正极以及外部 LED模块的 输出端 (V- )相连;
第三二极管 D3的正极与第四二极管 D4的负极相连;
交流电模块的一端 (A1 )与第一二极管 D1 的正极相连, 另一端 (A2 ) 与第二二极管 D2的正极相连。
Figure imgf000004_0001
在交流电的正半周期, 交流电模块输出的交流电通过第一二极管 Dl、 外 部 LED模块以及第四二极管 D4, 形成电流回路, 为外部 LED模块提供工作 电压;
在交流电的负半周器, 交流电模块输出的交流电通过第三二极管 D3、 外 部 LED模块以及第二二极管 D2, 形成另一电流回路, 为外部 LED模块提供 工作电压。
由上述可见, 现有驱动 LED模块的交流电整流电路, 交流电通过二极管 的整流后, 直接驱动 LED模块工作, 由于交流电是周期性波动的, 而 LED模 块存在一定的开启电压,即只有加载在 LED模块两端的电压超过开启电压时, LED模块才会导通并发光; 如果加载在 LED模块两端的电压没有超过开启电 压, LED模块处于截止状态, 即处于不发光状态。 因而, 现有的交流电整流 电路, 在电流回路发生转向时, 能够提供给外部 LED模块的电压小于开启电 压, 使得 LED模块的发光效率较低; 进一步地, 经过交流电整流电路中二极 管的整流, 输出至 LED模块的电压值随着交流电压波动而波动, 输出电压稳 定性较低,使得 LED模块出现明显的闪烁现象,减少了 LED模块的使用寿命。 发明内容
本发明的实施例提供一种驱动 LED模块的交流电整流电路, 提高输出电 压的稳定性、 提升 LED模块的发光效率。
本发明的实施例还提供一种驱动 LED模块的交流电整流方法, 提高输出 电压的稳定性、 提升 LED模块的发光效率。 为达到上述目的, 本发明实施例提供的一种驱动 LED模块的交流电整流 电路, 该交流电整流电路包括: 交流电模块、 正半周整流支路、 正半周馈电支 路、 负半周整流支路以及负半周馈电支路, 其中,
正半周整流支路, 用于在交流电模块处于正半周时,对交流电模块输出的 交流电进行整流, 将整流后的电压信号输出至外部的 LED模块;
正半周馈电支路, 用于在交流电模块处于负半周时,根据交流电模块输出 的交流电进行充电; 在交流电模块处于正半周时, 进行放电, 将放电的电压信 号输出至外部的 LED模块;
负半周整流支路, 用于在交流电模块处于负半周时,对交流电模块输出的 交流电进行整流, 将整流后的电压信号输出至外部的 LED模块;
负半周馈电支路, 用于在交流电模块处于正半周时,根据交流电模块输出 的交流电进行充电; 在交流电模块处于负半周时, 进行放电, 将放电的电压信 号输出至外部的 LED模块。
较佳地, 所述正半周整流支路包括: 第一整流管、 第二整流管以及第六整 流管, 其中,
第二整流管的正极与交流电模块的一端相连,负极与第一整流管的正极相 连;
第一整流管的负极与外部 LED模块的输入端相连;
第六整流管的正极与外部 LED模块的输出端相连, 负极与交流电模块的 另一端相连。
较佳地, 所述负半周整流支路包括: 第三整流管、 第四整流管以及第五整 流管, 其中,
第三整流管的负极与交流电模块的一端相连, 正极与外部 LED模块的输 出端相连;
第五整流管的正极与交流电模块的另一端相连,负极与第四整流管的正极 相连;
第四整流管的负极与外部 LED模块的输入端相连。
较佳地, 所述正半周馈电支路包括: 第一电容以及第四电容, 其中, 第一电容的一端与第四整流管的正极相连,另一端与交流电模块的一端相 连;
第四电容的一端与交流电模块的另一端相连, 另一端与外部 LED模块的 输出端相连。
较佳地, 所述负半周馈电支路包括: 第二电容以及第三电容, 其中, 第二电容的一端与交流电模块的一端相连, 另一端与外部 LED模块的输 出端相连;
第三电容的一端与第一整流管的正极相连,另一端与交流电模块的另一端 相连。
较佳地, 所述整流管为二极管、 三极管或可控硅整流器。
较佳地, 所述第一电容、第二电容、第三电容、第四电容采用无极性电容。 较佳地, 所述第一电容、 第二电容、 第三电容、 第四电容具有相同的电容 值。
较佳地,
在交流电正半周期, 电流经第二二极管、 第一二极管、 LED模块、 第六 二极管形成回路, 向 LED模块供电, 其中,
在交流电电压上升阶段, 交流电通过第二二极管以及第三电容形成回路, 为第三电容充电; 同时, 交流电通过第二电容以及第六二极管形成回路, 为第 二电容充电; 同时, 第四电容、 第一电容、 第四二极管以及 LED模块形成回 路, 为 LED模块供电;
在交流电负半周期, 电流经第五二极管、 第四二极管、 LED模块、 第三 二极管形成回路, 向 LED模块供电, 其中,
在电压绝对值上升阶段,交流电模块中的交流电通过第五二极管以及第一 电容形成回路, 向第一电容充电; 同时, 交流电通过第四电容以及第三二极管 形成回路, 向第四电容充电; 同时, 第二电容、 第三电容、 第一二极管以及 LED模块形成回路, 为 LED模块供电。
较佳地, 所述交流电整流电路进一步包括: 恒流二极管,
所述恒流二极管的正极与 LED模块的输出端相连, 负极与第三二极管的 正极相连。
较佳地, 所述交流电整流电路进一步包括: 电解电容, 所述电解电容的正极与 LED模块的输入端相连, 负极与 LED模块的输出 端相连。
一种驱动发光二极管 LED模块的交流电整流方法, 由交流电整流电路驱 动发光二极管 LED模块, 该交流电整流电路包括: 交流电模块、 正半周整流 支路、 正半周馈电支路、 负半周整流支路以及负半周馈电支路, 该方法包括: 在交流电模块处于正半周时,正半周整流支路对交流电模块输出的交流电 进行整流, 将整流后的电压信号输出至外部的 LED模块;
负半周馈电支路根据交流电模块输出的交流电进行充电,正半周馈电支路 进行放电, 将放电的电压信号输出至外部的 LED模块;
在交流电模块处于负半周时,负半周整流支路对交流电模块输出的交流电 进行整流, 将整流后的电压信号输出至外部的 LED模块;
负半周馈电支路进行放电, 将放电的电压信号输出至外部的 LED模块, 正半周馈电支路根据交流电模块输出的交流电进行充电。
其中, 所述正半周整流支路包括: 第一整流管、 第二整流管以及第六整流 管, 其中,
第二整流管的正极与交流电模块的一端相连,负极与第一整流管的正极相 连;
第一整流管的负极与外部 LED模块的输入端相连;
第六整流管的正极与外部 LED模块的输出端相连, 负极与交流电模块的 另一端相连。
其中, 所述负半周整流支路包括: 第三整流管、 第四整流管以及第五整流 管, 其中,
第三整流管的负极与交流电模块的一端相连, 正极与外部 LED模块的输 出端相连;
第五整流管的正极与交流电模块的另一端相连,负极与第四整流管的正极 相连;
第四整流管的负极与外部 LED模块的输入端相连。
其中, 所述正半周馈电支路包括: 第一电容以及第四电容, 其中, 第一电容的一端与第四整流管的正极相连,另一端与交流电模块的一端相 连;
第四电容的一端与交流电模块的另一端相连, 另一端与外部 LED模块的 输出端相连。
其中, 所述负半周馈电支路包括: 第二电容以及第三电容, 其中, 第二电容的一端与交流电模块的一端相连, 另一端与外部 LED模块的输 出端相连;
第三电容的一端与第一整流管的正极相连,另一端与交流电模块的另一端 相连。
其中, 所述整流管为二极管,
在交流电正半周期, 电流经第二二极管、 第一二极管、 LED模块、 第六 二极管形成回路, 向 LED模块供电, 其中,
在交流电电压上升阶段, 交流电通过第二二极管以及第三电容形成回路, 为第三电容充电; 同时, 交流电通过第二电容以及第六二极管形成回路, 为第 二电容充电; 同时, 第四电容、 第一电容、 第四二极管以及 LED模块形成回 路, 为 LED模块供电;
在交流电负半周期, 电流经第五二极管、 第四二极管、 LED模块、 第三 二极管形成回路, 向 LED模块供电, 其中,
在电压绝对值上升阶段,交流电模块中的交流电通过第五二极管以及第一 电容形成回路, 向第一电容充电; 同时, 交流电通过第四电容以及第三二极管 形成回路, 向第四电容充电; 同时, 第二电容、 第三电容、 第一二极管以及 LED模块形成回路, 为 LED模块供电。
由上述技术方案可见, 本发明实施例提供的一种驱动 LED模块的交流电 整流电路及交流电整流方法, 包括: 交流电模块、 正半周整流支路、 正半周馈 电支路、 负半周整流支路以及负半周馈电支路, 其中, 正半周整流支路, 用于 在交流电模块处于正半周时,对交流电模块输出的交流电进行整流,将整流后 的电压信号输出至外部的 LED模块; 正半周馈电支路, 用于在交流电模块处 于负半周时,根据交流电模块输出的交流电进行充电; 在交流电模块处于正半 周时, 进行放电, 将放电的电压信号输出至外部的 LED模块; 负半周整流支 路, 用于在交流电模块处于负半周时, 对交流电模块输出的交流电进行整流, 将整流后的电压信号输出至外部的 LED模块; 负半周馈电支路, 用于在交流 电模块处于正半周时,根据交流电模块输出的交流电进行充电; 在交流电模块 处于负半周时, 进行放电, 将放电的电压信号输出至外部的 LED模块。 这样, 利用电容的充、 放电, 在现有的交流电直接驱动 LED模块的电路基石出上, 提 高了输出电压的稳定性, 提高了交流电每个半周期的利用率, 增加 LED的导 通时间, 同时降低了 LED发光波动, 并保证了较高的功率因数, 提升了 LED 模块的发光效率。
附图说明
实施例或现有技术描述中所需要使用的附图作简单地介绍。 显而易见地, 以下描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人 员而言, 还可以根据这些附图所示实施例得到其它的实施例及其附图。
图 1为现有驱动 LED模块的交流电整流电路结构示意图。
图 2为本发明实施例驱动 LED模块的交流电整流电路结构示意图。
图 3为本发明实施例驱动 LED模块的交流电整流电路具体结构示意图。 图 4为本发明实施例驱动 LED模块的交流电整流电路另一具体结构示意 图。
图 5为本发明实施例驱动 LED模块的交流电整流电路再一具体结构示意 图。
图 6为本发明实施例驱动 LED模块的交流电整流方法流程示意图。
具体实施方式 以下将结合附图对本发明各实施例的技术方案进行清楚、 完整的描述, 显 然, 所描述的实施例仅仅是本发明的一部分实施例, 而不是全部的实施例。 基 于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所 得到的所有其它实施例, 都属于本发明所保护的范围。
现有驱动 LED模块的交流电整流电路, 由于交流电是周期性波动的, 而 LED模块存在一定的开启电压, 因而, 在电流回路发生转向时, 能够提供给 外部 LED模块的电压小于开启电压, 使得 LED模块的发光效率较低; 进一步 地, 经过交流电整流电路中二极管的整流, 输出至 LED模块的电压值随着交 流电压波动而波动, 输出电压稳定性较低, 影响 LED模块的使用寿命。
本发明实施例中,针对现有技术交流电直接驱动电路的缺点,提供一种交 流电直接驱动 LED模块的驱动电路, 为 LED模块提供驱动电流, 即利用电容 的充、 放电来增大导通角, 并将交流电的波谷填充起来, 提高电源效率, 降低 LED发光闪烁现象。
图 2为本发明实施例驱动 LED模块的交流电整流电路结构示意图。 参见 图 2, 该交流电整流电路包括: 交流电模块、 正半周整流支路、 正半周馈电支 路、 负半周整流支路以及负半周馈电支路, 其中,
正半周整流支路, 用于在交流电模块处于正半周时,对交流电模块输出的 交流电进行整流, 将整流后的电压信号输出至外部的 LED模块;
正半周馈电支路, 用于在交流电模块处于负半周时,根据交流电模块输出 的交流电进行充电; 用于在交流电模块处于正半周时, 进行放电, 将放电的电 压信号输出至外部的 LED模块;
负半周整流支路, 用于在交流电模块处于负半周时,对交流电模块输出的 交流电进行整流, 将整流后的电压信号输出至外部的 LED模块;
负半周馈电支路, 用于在交流电模块处于正半周时,根据交流电模块输出 的交流电进行充电; 用于在交流电模块处于负半周时, 进行放电, 将放电的电 压信号输出至外部的 LED模块。
本发明实施例中, 外部的 LED模块也可以是其它负载模块, 例如, 其他 需要在稳定工作电压下的负载。
其中, 正半周整流支路包括: 第一整流管 Dl、 第二整流管 D2 以及第六 整流管 D6 (图中未示出), 其中,
第二整流管 D2的正极与交流电模块的一端( A1 )相连, 负极与第一整流 管 D1的正极相连;
第一整流管 D1的负极与外部 LED模块的输入端相连;
第六整流管 D6的正极与外部 LED模块的输出端相连, 负极与交流电模 块的另一端 (A2 )相连。
负半周整流支路包括: 第三整流管 D3、 第四整流管 D4 以及第五整流管 D5 (图中未示出), 其中, 第三整流管 D3的负极与交流电模块的一端( A1 )相连, 正极与外部 LED 模块的输出端相连;
第五整流管 D5的正极与交流电模块的另一端(A2 )相连, 负极与第四整 流管 D4的正极相连;
第四整流管 D4的负极与外部 LED模块的输入端相连。
正半周馈电支路包括: 第一电容 C1以及第四电容 C4 (图中未示出), 其 中,
第一电容 C1的一端与第四二极管 D4的正极相连, 另一端与交流电模块 的一端 ( A1 )相连;
第四电容 C4 的一端与交流电模块的另一端 (A2 )相连, 另一端与外部
LED模块的输出端相连。
负半周馈电支路包括: 第二电容 C2以及第三电容 C3 (图中未示出), 其 中,
第二电容 C2的一端与交流电模块的一端( A1 )相连, 另一端与外部 LED 模块的输出端相连;
第三电容 C3的一端与第一整流管 D1的正极相连, 另一端与交流电模块 的另一端 (A2 )相连。
较佳地, 整流管可以是二极管, 也可以是三极管, 只要是具有单向导电特 性的器件即可, 例如, 可控硅整流器等。 较佳地, 采用半导体整流二极管, 不 但成本低廉, 而且便于与 LED模块等进行二次集成, 构成一体化交流电直接 驱动的 LED照明装置。
以下以整流管为二极管为例, 对本发明实施例进行详细描述。
图 3为本发明实施例驱动 LED模块的交流电整流电路具体结构示意图。 参见图 3 , 该驱动 LED模块的交流电整流电路包括: 第一二极管 Dl、 第二二 极管 D2、 第三二极管 D3、 第四二极管 D4、 第五二极管 D5、 第六二极管 D6、 第一电容 Cl、 第二电容 C2、 第三电容 C3、 第四电容 C4以及 LED模块, 其 中,
第二二极管 D2的正极与交流电模块(AC ) 的一端 (A1 )相连, 负极分 别与第一二极管 D1的正极以及第三电容 C3的一端相连; 第一二极管 D1的负极分别与第四二极管 D4的负极以及 LED模块的输入 端 ( V+ )相连;
第三电容 C3的另一端与交流电的另一端 (A2 )相连;
第四二极管 D4的正极分别与第五二极管 D5的负极以及第一电容 C 1的一 端相连;
第一电容 C1的另一端与交流电的一端 (A1 )相连;
第五二极管 D5的正极分别与第六二极管 D6的负极、第四电容 C4的一端 以及交流电的另一端相连;
第三二极管 D3的负极分别与第二电容 C2的一端以及交流电的一端(A2 ) 相连;
LED模块的输出端 (V- )分别与第三二极管 D3的正极、 第二电容 C2的 另一端、第四电容 C4的另一端、第六二极管 D6的正极以及第五电容 C5的另 一端相连。
本发明实施例中, 第一电容 Cl、 第二电容 C2、 第三电容 C3、 第四电容 C4 工作在交流状态, 需要承受反向电压, 较佳地, 第一电容 Cl、 第二电容 C2、 第三电容 C3、 第四电容 C4均采用无极性电容, 以适应交流工作环境。 无极性电容的交流耐压值应大于或至少等于交流输入电压值。
优选的, 第一电容 Cl、 第二电容 C2、 第三电容 C3、 第四电容 C4具有相 同或相近的电容值。
下面描述本发明实施例电路的工作原理:
在交流电正半周期, 电流经第二二极管 D2、 第一二极管 Dl、 LED模块、 第六二极管 D6形成回路, 向 LED模块供电。 其中,
在交流电电压上升阶段, 交流电通过第二二极管 D2以及第三电容 C3形 成回路, 为第三电容 C3充电; 同时, 交流电通过第二电容 C2以及第六二极 管 D6形成回路, 为第二电容 C2充电; 同时, 第四电容 C4、 第一电容 Cl、 第四二极管 D4以及 LED模块形成回路, 为 LED模块供电, 即第一电容 C1 以及第四电容 C4中存储的电荷, 经过第四二极管 D4, 向 LED模块放电, 从 而为 LED模块提供工作电压。
本发明实施例中, 在交流电电压上升阶段, 第二电容 C2、 第三电容 C3 在电路结构上为并联关系; 第一电容 Cl、第四电容 C4在电路结构上与交流电 模块为串联关系, 为 LED模块供电, 相当于在交流电模块初始供电或切换正 负半周期时, 增大了交流电的电压, 使 LED模块能够提前导通, 从而提升电 路的品质因数, 并提高了输出电压的稳定性、 提升了 LED模块的发光效率, 也提高了 LED模块的使用寿命。
在交流电负半周期, 电流经第五二极管 D5、 第四二极管 D4、 LED模块、 第三二极管 D3形成回路, 向 LED模块供电。 其中,
在电压绝对值上升阶段, 交流电模块中的交流电通过第五二极管 D5以及 第一电容 C1形成回路, 向第一电容 C1充电; 同时, 交流电通过第四电容 C4 以及第三二极管 D3形成回路, 向第四电容 C4充电; 同时, 第二电容 C2、 第 三电容 C3、 第一二极管 D1以及 LED模块形成回路, 为 LED模块供电, 即第 二电容 C2、 第三电容 C3中存储的电荷, 通过第一二极管 D1 , 向 LED模块放 电, 从而为 LED模块提供工作电压。
本发明实施例中, 在电压绝对值上升阶段的充电过程中, 第一电容 Cl、 第四电容 C4在电路结构上为并联关系; 第二电容 C2、 第三电容 C3在电路结 构上与交流电模块为串联关系,相当于在交流电切换时, 增大交流电的电压绝 对值, 使 LED模块能够提前导通。
本发明实施例中, 通过第一电容 Cl、 第二电容 C2、 第三电容 C3以及第 四电容 C4在交流电正半周期以及交流电负半周期交替的充放电, 使得输出至 LED模块的电压值较为稳定, 减少了 LED模块发光时的闪烁频率; 同时, 增 加了 LED模块在交流电正半周期以及交流电负半周期内的导通时间, 降低了 LED模块的发光波动, 并提高了电路的功率因数。 进一步地, 本发明实施例 的电路结构简洁, 电源效率高, 非常适合用于交流电直接驱动的 LED模块的 照明装置。
实际应用中, 为了保证在交流电正负半周期输出电流不会相差太大, 图 2 和图 3中,各支路的等效电阻应相同或相近, 即各支路中的二极管参数应当相 同或相近, 各电容也应当具有相同或相近的电容值, 例如, 正半周整流支路中 的二极管参数应与负半周整流支路中的二极管参数相同或相近;正半周馈电支 路中的电容值应与负半周馈电支路中的电容值相同或相近。 本发明实施例中,选择参数相同或相近的电容,对于提高电气平衡有好处, 同样有利于平衡负载、 降低闪烁和提高电源效率。 本发明实施例中, 主要是利 用电容的充放电特性, 因而, 电容(电容量)参数是最重要的参数, 选择电容 相同或相近的电容, 充放电特性就基本上可以达到相同或相近。
较佳地, 为了进一步提高输出至 LED模块的电压信号的稳定性, 本发明 实施例的驱动 LED模块的交流电整流电路进一步包括恒流二极管 (CRD, Current Regulative Diode )。
图 4为本发明实施例驱动 LED模块的交流电整流电路另一具体结构示意 图。参见图 4,与图 3不同的是,进一步包括恒流二极管( CRD, Current Regulative Diode ) , CRD的正极与 LED模块的输出端相连, 负极与第三二极管 D3的正 极相连。 这样, 通过在直流回路中增加一只恒流二极管用于限流, 使得 LED 模块的发光效率有很大提升。
在图 3中, 本发明实施例虽然在一定程度上能够解决 LED模块光输出的 波动问题, 但是对交流电波谷填补程度不大, 在交流电压波谷处, LED模块 光输出仅有波峰处光输出的 30 % ~ 40 % 。
由此, 给出本发明一种优选方案, 如图 5所示。
图 5为本发明实施例驱动 LED模块的交流电整流电路再一具体结构示意 图。 参见图 5, 与图 4不同的是, 在本发明的基本电路基础上, 增加了一电解 电容 C5作为滤波电容, 电解电容 C5的正极与 LED模块的输入端相连, 负极 与 LED模块的输出端相连。这样, 由于电解电容 C5的滤波功能,使流入 LED 模块的电流波形更加平滑, 虽然牺牲了一些功率因数, 但是 LED模块在交流 电压波谷处的光输出, 可以达到波峰时光输出的 80 %以上, 感官上几乎没有 差别。
图 6为本发明实施例驱动 LED模块的交流电整流方法流程示意图。 参见 图 6, 由交流电整流电路驱动发光二极管 LED模块, 该交流电整流电路包括: 交流电模块、 正半周整流支路、 正半周馈电支路、 负半周整流支路以及负半周 馈电支路, 该流程包括:
步骤 601 , 在交流电模块处于正半周时, 正半周整流支路对交流电模块输 出的交流电进行整流, 将整流后的电压信号输出至外部的 LED模块; 本步骤中, 正半周整流支路包括: 第一整流管、 第二整流管以及第六整流 管, 其中,
第二整流管的正极与交流电模块的一端相连,负极与第一整流管的正极相 连;
第一整流管的负极与外部 LED模块的输入端相连;
第六整流管的正极与外部 LED模块的输出端相连, 负极与交流电模块的 另一端相连。
步骤 602, 负半周馈电支路根据交流电模块输出的交流电进行充电, 正半 周馈电支路进行放电, 将放电的电压信号输出至外部的 LED模块;
本步骤中, 负半周馈电支路包括: 第二电容以及第三电容, 其中, 第二电容的一端与交流电模块的一端相连, 另一端与外部 LED模块的输 出端相连;
第三电容的一端与第一整流管的正极相连,另一端与交流电模块的另一端 相连。
正半周馈电支路包括: 第一电容以及第四电容, 其中,
第一电容的一端与第四二极管的正极相连,另一端与交流电模块的一端相 连;
第四电容的一端与交流电模块的另一端相连, 另一端与外部 LED模块的 输出端相连。
步骤 603 , 在交流电模块处于负半周时, 负半周整流支路对交流电模块输 出的交流电进行整流, 将整流后的电压信号输出至外部的 LED模块;
本步骤中, 负半周整流支路包括: 第三整流管、 第四整流管以及第五整流 管, 其中,
第三整流管的负极与交流电模块的一端相连, 正极与外部 LED模块的输 出端相连;
第五整流管的正极与交流电模块的另一端相连,负极与第四整流管的正极 相连;
第四整流管的负极与外部 LED模块的输入端相连。
步骤 604, 负半周馈电支路进行放电, 将放电的电压信号输出至外部的 LED模块, 正半周馈电支路根据交流电模块输出的交流电进行充电。 这样, 本发明实施例中, 在交流电正半周期, 电流经第二二极管、 第一二 极管、 LED模块、 第六二极管形成回路, 向 LED模块供电, 其中,
在交流电电压上升阶段, 交流电通过第二二极管以及第三电容形成回路, 为第三电容充电; 同时, 交流电通过第二电容以及第六二极管形成回路, 为第 二电容充电; 同时, 第四电容、 第一电容、 第四二极管以及 LED模块形成回 路, 为 LED模块供电;
在交流电负半周期, 电流经第五二极管、 第四二极管、 LED模块、 第三 二极管形成回路, 向 LED模块供电, 其中,
在电压绝对值上升阶段,交流电模块中的交流电通过第五二极管以及第一 电容形成回路, 向第一电容充电; 同时, 交流电通过第四电容以及第三二极管 形成回路, 向第四电容充电; 同时, 第二电容、 第三电容、 第一二极管以及 LED模块形成回路, 为 LED模块供电。
显然,本领域技术人员可以对本发明进行各种改动和变型而不脱离本发明 的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及 其等同技术的范围之内, 则本发明也包含这些改动和变型在内。

Claims

- 15 - 权 利 要 求
1. 一种驱动发光二极管 LED模块的交流电整流电路, 其特征在于, 该交 流电整流电路包括: 交流电模块、 正半周整流支路、 正半周馈电支路、 负半周 整流支路以及负半周馈电支路, 其中,
正半周整流支路, 用于在交流电模块处于正半周时,对交流电模块输出的 交流电进行整流, 将整流后的电压信号输出至外部的 LED模块;
正半周馈电支路, 用于在交流电模块处于负半周时,根据交流电模块输出 的交流电进行充电; 在交流电模块处于正半周时, 进行放电, 将放电的电压信 号输出至外部的 LED模块;
负半周整流支路, 用于在交流电模块处于负半周时,对交流电模块输出的 交流电进行整流, 将整流后的电压信号输出至外部的 LED模块;
负半周馈电支路, 用于在交流电模块处于正半周时,根据交流电模块输出 的交流电进行充电; 在交流电模块处于负半周时, 进行放电, 将放电的电压信 号输出至外部的 LED模块。
2. 根据权利要求 1所述的交流电整流电路, 其特征在于, 所述正半周整 流支路包括: 第一整流管、 第二整流管以及第六整流管, 其中,
第二整流管的正极与交流电模块的一端相连,负极与第一整流管的正极相 连;
第一整流管的负极与外部 LED模块的输入端相连;
第六整流管的正极与外部 LED模块的输出端相连, 负极与交流电模块的 另一端相连。
3. 根据权利要求 2所述的交流电整流电路, 其特征在于, 所述负半周整 流支路包括: 第三整流管、 第四整流管以及第五整流管, 其中,
第三整流管的负极与交流电模块的一端相连, 正极与外部 LED模块的输 出端相连;
第五整流管的正极与交流电模块的另一端相连,负极与第四整流管的正极 相连;
第四整流管的负极与外部 LED模块的输入端相连。
4. 根据权利要求 3所述的交流电整流电路, 其特征在于, 所述正半周馈 - 16- 电支路包括: 第一电容以及第四电容, 其中,
第一电容的一端与第四整流管的正极相连,另一端与交流电模块的一端相 连;
第四电容的一端与交流电模块的另一端相连, 另一端与外部 LED模块的 输出端相连。
5. 根据权利要求 4所述的交流电整流电路, 其特征在于, 所述负半周馈 电支路包括: 第二电容以及第三电容, 其中,
第二电容的一端与交流电模块的一端相连, 另一端与外部 LED模块的输 出端相连;
第三电容的一端与第一整流管的正极相连,另一端与交流电模块的另一端 相连。
6. 根据权利要求 1至 5任一项所述的交流电整流电路, 其特征在于, 所 述整流管为二极管、 三极管或可控硅整流器。
7. 根据权利要求 6所述的交流电整流电路, 其特征在于, 所述第一电容、 第二电容、 第三电容、 第四电容采用无极性电容。
8. 根据权利要求 7所述的交流电整流电路, 其特征在于, 所述第一电容、 第二电容、 第三电容、 第四电容具有相同的电容值。
9. 根据权利要求 7所述的交流电整流电路, 其特征在于,
在交流电正半周期, 电流经第二二极管、 第一二极管、 LED模块、 第六 二极管形成回路, 向 LED模块供电, 其中,
在交流电电压上升阶段, 交流电通过第二二极管以及第三电容形成回路, 为第三电容充电; 同时, 交流电通过第二电容以及第六二极管形成回路, 为第 二电容充电; 同时, 第四电容、 第一电容、 第四二极管以及 LED模块形成回 路, 为 LED模块供电;
在交流电负半周期, 电流经第五二极管、 第四二极管、 LED模块、 第三 二极管形成回路, 向 LED模块供电, 其中,
在电压绝对值上升阶段,交流电模块中的交流电通过第五二极管以及第一 电容形成回路, 向第一电容充电; 同时, 交流电通过第四电容以及第三二极管 形成回路, 向第四电容充电; 同时, 第二电容、 第三电容、 第一二极管以及 - 17-
LED模块形成回路, 为 LED模块供电。
10. 根据权利要求 9所述的交流电整流电路, 其特征在于, 所述交流电整 流电路进一步包括: 恒流二极管,
所述恒流二极管的正极与 LED模块的输出端相连, 负极与第三二极管的 正极相连。
11. 根据权利要求 10所述的交流电整流电路, 其特征在于, 所述交流电 整流电路进一步包括: 电解电容,
所述电解电容的正极与 LED模块的输入端相连, 负极与 LED模块的输出 端相连。
12. 一种驱动发光二极管 LED模块的交流电整流方法, 由交流电整流电 路驱动发光二极管 LED模块, 该交流电整流电路包括: 交流电模块、 正半周 整流支路、 正半周馈电支路、 负半周整流支路以及负半周馈电支路, 该方法包 括:
在交流电模块处于正半周时,正半周整流支路对交流电模块输出的交流电 进行整流, 将整流后的电压信号输出至外部的 LED模块;
负半周馈电支路根据交流电模块输出的交流电进行充电,正半周馈电支路 进行放电, 将放电的电压信号输出至外部的 LED模块;
在交流电模块处于负半周时,负半周整流支路对交流电模块输出的交流电 进行整流, 将整流后的电压信号输出至外部的 LED模块;
负半周馈电支路进行放电, 将放电的电压信号输出至外部的 LED模块, 正半周馈电支路根据交流电模块输出的交流电进行充电。
13. 根据权利要求 12所述的交流电整流方法, 其中, 所述正半周整流支 路包括: 第一整流管、 第二整流管以及第六整流管, 其中,
第二整流管的正极与交流电模块的一端相连,负极与第一整流管的正极相 连;
第一整流管的负极与外部 LED模块的输入端相连;
第六整流管的正极与外部 LED模块的输出端相连, 负极与交流电模块的 另一端相连。 - 18-
14. 根据权利要求 13所述的交流电整流方法, 其中, 所述负半周整流支 路包括: 第三整流管、 第四整流管以及第五整流管, 其中,
第三整流管的负极与交流电模块的一端相连, 正极与外部 LED模块的输 出端相连;
第五整流管的正极与交流电模块的另一端相连,负极与第四整流管的正极 相连;
第四整流管的负极与外部 LED模块的输入端相连。
15. 根据权利要求 14所述的交流电整流方法, 其中, 所述正半周馈电支 路包括: 第一电容以及第四电容, 其中,
第一电容的一端与第四整流管的正极相连,另一端与交流电模块的一端相 连;
第四电容的一端与交流电模块的另一端相连, 另一端与外部 LED模块的 输出端相连。
16. 根据权利要求 15所述的交流电整流方法, 其中, 所述负半周馈电支 路包括: 第二电容以及第三电容, 其中,
第二电容的一端与交流电模块的一端相连, 另一端与外部 LED模块的输 出端相连;
第三电容的一端与第一整流管的正极相连,另一端与交流电模块的另一端 相连。
17. 根据权利要求 16所述的交流电整流方法, 所述整流管为二极管, 其 中,
在交流电正半周期, 电流经第二二极管、 第一二极管、 LED模块、 第六 二极管形成回路, 向 LED模块供电, 其中,
在交流电电压上升阶段, 交流电通过第二二极管以及第三电容形成回路, 为第三电容充电; 同时, 交流电通过第二电容以及第六二极管形成回路, 为第 二电容充电; 同时, 第四电容、 第一电容、 第四二极管以及 LED模块形成回 路, 为 LED模块供电;
在交流电负半周期, 电流经第五二极管、 第四二极管、 LED模块、 第三 二极管形成回路, 向 LED模块供电, 其中, - 19- 在电压绝对值上升阶段,交流电模块中的交流电通过第五二极管以及第一 电容形成回路, 向第一电容充电; 同时, 交流电通过第四电容以及第三二极管 形成回路, 向第四电容充电; 同时, 第二电容、 第三电容、 第一二极管以及 LED模块形成回路, 为 LED模块供电。
PCT/CN2013/090330 2013-01-31 2013-12-24 驱动led模块的交流电整流电路及交流电整流方法 WO2014117607A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13873234.2A EP2953429A4 (en) 2013-01-31 2013-12-24 AC ADJUSTMENT AND AC ADJUSTMENT METHOD FOR CONTROLLING AN LED MODULE
US14/762,666 US9565724B2 (en) 2013-01-31 2013-12-24 Alternating current rectifying circuit and alternating current rectifying method for driving LED module
EA201591398A EA201591398A1 (ru) 2013-01-31 2013-12-24 Цепь выпрямления переменного тока и способ выпрямления переменного тока для возбуждения модуля led
CA2899390A CA2899390C (en) 2013-01-31 2013-12-24 Alternating current rectifying circuit and alternating current rectifying method for driving led module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310037188.2 2013-01-31
CN201310037188.2A CN103152914B (zh) 2012-05-29 2013-01-31 驱动led模块的交流电整流电路及交流电整流方法

Publications (1)

Publication Number Publication Date
WO2014117607A1 true WO2014117607A1 (zh) 2014-08-07

Family

ID=51262060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090330 WO2014117607A1 (zh) 2013-01-31 2013-12-24 驱动led模块的交流电整流电路及交流电整流方法

Country Status (5)

Country Link
US (1) US9565724B2 (zh)
EP (1) EP2953429A4 (zh)
CA (1) CA2899390C (zh)
EA (1) EA201591398A1 (zh)
WO (1) WO2014117607A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10178717B2 (en) 2017-03-09 2019-01-08 Dongming Li Lamp-control circuit for lamp array emitting constant light output

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201591396A1 (ru) * 2013-01-31 2015-12-30 Сычуань Санфор Лайт Ко., Лтд. Цепь выпрямления переменного тока и способ выпрямления переменного тока для возбуждения модуля led
WO2014173723A1 (en) * 2013-04-26 2014-10-30 Koninklijke Philips N.V. Lighting device suitable for multiple voltage sources
TWI615060B (zh) * 2017-01-05 2018-02-11 Huang Ying Dian 發光二極體驅動裝置及其驅動方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050122062A1 (en) * 2003-12-09 2005-06-09 Yung-Hsiang Hsu Light emitting diode driving circuit
US20080252229A1 (en) * 2007-04-13 2008-10-16 Cree, Inc. High efficiency AC LED driver circuit
CN102186283A (zh) * 2011-03-23 2011-09-14 杭州矽力杰半导体技术有限公司 一种可控硅调光电路、调光方法以及应用其的一种led驱动电路
CN103152914A (zh) * 2012-05-29 2013-06-12 四川新力光源股份有限公司 驱动led模块的交流电整流电路及交流电整流方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526821A (en) * 1967-09-20 1970-09-01 Frederick A Thomas Controlled circuitry for charging electrical capacitors
JPH0923655A (ja) * 1995-07-07 1997-01-21 Nemic Lambda Kk 3倍電圧整流回路
DE102009008635A1 (de) * 2009-02-12 2010-08-19 Osram Gesellschaft mit beschränkter Haftung Schaltungsanordnung zum Umwandeln einer Eingangswechselspannung in eine Gleichspannung, Nachrüstlampe mit solch einer Schaltungsanordnung, sowie Beleuchtungssystem
US20120146525A1 (en) * 2009-04-24 2012-06-14 City University Of Hong Kong Apparatus and methods of operation of passive and active led lighting equipment
US20130063043A1 (en) * 2011-09-09 2013-03-14 Futur-Tec (Hong Kong) Limited Voltage rectifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050122062A1 (en) * 2003-12-09 2005-06-09 Yung-Hsiang Hsu Light emitting diode driving circuit
US20080252229A1 (en) * 2007-04-13 2008-10-16 Cree, Inc. High efficiency AC LED driver circuit
CN102186283A (zh) * 2011-03-23 2011-09-14 杭州矽力杰半导体技术有限公司 一种可控硅调光电路、调光方法以及应用其的一种led驱动电路
CN103152914A (zh) * 2012-05-29 2013-06-12 四川新力光源股份有限公司 驱动led模块的交流电整流电路及交流电整流方法
CN103152913A (zh) * 2012-05-29 2013-06-12 四川新力光源股份有限公司 驱动led模块的交流电整流电路及交流电整流方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10178717B2 (en) 2017-03-09 2019-01-08 Dongming Li Lamp-control circuit for lamp array emitting constant light output

Also Published As

Publication number Publication date
EP2953429A1 (en) 2015-12-09
EP2953429A4 (en) 2016-09-14
EA201591398A1 (ru) 2015-12-30
US20150373794A1 (en) 2015-12-24
CA2899390C (en) 2018-01-16
CA2899390A1 (en) 2014-08-07
US9565724B2 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
CN103917017B (zh) 一种单级式无电解电容ac/dc led恒流驱动电源
CN102223748A (zh) 一种交流供电的led灯驱动方法和驱动电源
JP2013229340A (ja) 定電流駆動ledモジュール装置
WO2014117606A1 (zh) 驱动led模块的交流电整流电路及交流电整流方法
CN102348319A (zh) 发光二极管灯驱动电源
CN103546027A (zh) 电源装置、固体发光元件点灯装置及照明装置
WO2014117607A1 (zh) 驱动led模块的交流电整流电路及交流电整流方法
CN103152914A (zh) 驱动led模块的交流电整流电路及交流电整流方法
EP2249470B1 (en) Capacitance reducing method for a pulsed activiated device and associated devices
CN104582132A (zh) 用以驱动发光二极管的无闪烁电能转换器
CN105915086B (zh) 高效率ac/dc电源电路及其控制方法与供电方法
CN214544119U (zh) 一种Buck型单开关多路恒流输出开关变换器
Mounika et al. ADC controlled half-bridge LC series resonant converter for LED lighting
CN109005624B (zh) 一种无桥式无电解电容led驱动电源及切换方法
CN203340372U (zh) 一种采用模拟调光的led灯驱动电源
CN217957365U (zh) 一种低频闪led灯电路
CN201919210U (zh) 一种led驱动电路
CN215379289U (zh) 一种吸收模块、调光电路及发光装置
JP5744277B2 (ja) ハイブリット型定電流ledライト
CN203788519U (zh) 一种led灯驱动电路
CN103619093A (zh) 一种led集成光源
CN210381400U (zh) 一种可调光的线性led灯电路
CN101702855B (zh) Led照明灯电源控制器的高效低耗供电电路
CN211579881U (zh) 一种简易的负压和升压辅助电源电路及开关电源
CN102665341A (zh) 一种高效led电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873234

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14762666

Country of ref document: US

Ref document number: 2013873234

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2899390

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201591398

Country of ref document: EA