WO2014117329A1 - 反向供电线路测试系统及设备 - Google Patents

反向供电线路测试系统及设备 Download PDF

Info

Publication number
WO2014117329A1
WO2014117329A1 PCT/CN2013/071111 CN2013071111W WO2014117329A1 WO 2014117329 A1 WO2014117329 A1 WO 2014117329A1 CN 2013071111 W CN2013071111 W CN 2013071111W WO 2014117329 A1 WO2014117329 A1 WO 2014117329A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power supply
line
coupled
switch
Prior art date
Application number
PCT/CN2013/071111
Other languages
English (en)
French (fr)
Inventor
高兴国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/071111 priority Critical patent/WO2014117329A1/zh
Priority to CN201380000131.3A priority patent/CN103403563B/zh
Publication of WO2014117329A1 publication Critical patent/WO2014117329A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements

Definitions

  • the present application relates to the field of communications, and in particular to a reverse power supply line test system and apparatus.
  • the prior art provides a reverse power supply system
  • the network device is set to have a power interface (power Interface) Powered Device (PD) 130, and set the power supply device in the user's home (Power Supply) Equipment, PSE) 110.
  • the power supply device 110 transmits data to the power receiving device 130 through the same line, and simultaneously supplies power to the power receiving device 130.
  • at least one power supply device 110 must supply power to the powered device 130.
  • the current sharing circuit 120 ensures that the power obtained from each power supply device 110 is the same to ensure fairness of power usage.
  • only the ports that have been powered on can perform services normally, and ports that are not powered can not perform services normally.
  • the maintenance of the line is mainly based on testing the basic characteristics of the line voltage, resistance and capacitance.
  • the conventional line there is no extra voltage.
  • the test of the line is affected, and the test result cannot reflect the characteristics of the line itself, so that the The line is maintained.
  • the technical problem mainly solved by the present application is to provide a reverse power supply line test system and equipment, which can test the line in the reverse power supply system.
  • the first aspect of the present application provides a reverse power supply line test system, including: a power receiving device and at least two power supply devices, each of which is coupled to the power receiving device through an independent line.
  • the power receiving device includes a processing module, a service module of the same number as the power supply device, a first switch having the same number of power supply devices, and a power take-off module having the same number of power supply devices, and the processing module is coupled to all service modules, respectively.
  • the service modules are coupled to the lines of the corresponding power supply devices, and the processing modules are respectively coupled to the control ends of all the first switches, and the first end of each of the first switches is coupled to the corresponding power supply device.
  • each of the first switches is coupled to a power take-off module belonging to the same line
  • the power supply device includes a signal detecting module, a second switch, and a reverse power supply module
  • the signal detecting module is coupled to the line
  • the signal detecting module is coupled to the control end of the second switch, the first end of the second switch is coupled to the line, and the first end of the second switch is coupled to the reverse power supply module
  • the processing module controls each service module to send signaling to the signal detecting module of the corresponding power supply device, and at least one signal detecting module receives the signaling.
  • the power receiving device further includes a test module of the same quantity as the power supply device, and one end of the test module is coupled to the processing module.
  • the other end of the test module is coupled to a line coupled to a corresponding power supply device, and the processing module controls the test module to test a line that is not powered.
  • the power receiving device further includes a first capacitor, and the service module is coupled to the line by using the first capacitor, where a switch is coupled between the first capacitor and the line between the service module and the first capacitor under the control of the processing module to implement a bypass
  • the first switch is configured to stop the power take-off module from taking power from the power supply device.
  • the power supply device further includes a second capacitor, the signal detecting module is coupled to the line by the second capacitor, The two switches are coupled between the second capacitor and the line between the signal detecting module and the second capacitor under the control of the signal detecting module to implement The second switch is bypassed such that the reverse power supply module stops supplying power to the powered device.
  • the second aspect of the present application provides a power receiving device, including: a processing module, at least two service modules, a first switch having the same number of service modules, and a power take-off module having the same number of service modules.
  • the processing modules are respectively coupled to all the service modules, and each of the service modules is coupled to a line coupled to the corresponding power supply device, and the processing module is further coupled to the control ends of all the first switches, and the first switch One end is coupled to the line coupled to the corresponding power supply device, and the second end of each of the first switches is coupled to a power take-off module that belongs to the same line.
  • the processing module controls each service module to correspond to each other.
  • the signal detecting module of the power supply device sends signaling, so that after receiving the signaling, the at least one signal detecting module controls the second switch to bypass the corresponding reverse power supply module to stop supplying power to the powered device, and at the same time, at least one After receiving the signaling, the signal detecting module controls the second switch to maintain the connected state of the reverse power supply module and the line, thereby entering the powered device Power supply, the first processing switch modules without powering the bypass line, to stop the take power from the power module to take appropriate power supply apparatus, thereby allowing the power supply line is not tested.
  • the power receiving device further includes a test module of the same quantity as the service module, and one end of the test module is coupled to the processing module, where The other end of the test module is coupled to a line coupled to a corresponding power supply device, and the processing module controls the test module to test a line that is not powered.
  • the power receiving device further includes a capacitor
  • the service module is coupled to the line by the capacitor
  • the first switch is in the Under the control of the processing module
  • the power take-off module is coupled between the capacitor and the line between the service module and the capacitor to bypass the first switch, so that the The power take-off module stops taking power from the power supply device.
  • a third aspect of the present disclosure provides a power supply device, including: a signal detection module, a switch, and a reverse power supply module, wherein the signal detection module is coupled to a line, and the signal detection module is coupled to the a control end of the switch, the first end of the switch is coupled to the line, and the second end of the switch is coupled to the reverse power supply module.
  • the signal detecting module receives the message sent by the service module
  • the switch is controlled to bypass the corresponding reverse power supply module to stop supplying power to the powered device.
  • the power supply device further includes a capacitor, the signal detecting module is coupled to the line by the capacitor, and the switch is at the signal
  • the reverse power supply module is coupled between the capacitor and the line between the signal detecting module and the capacitor under control of the detecting module to bypass the switch, so that the The power supply module stops supplying power to the power receiving device.
  • the processing module controls the service module to send signaling, so that at least one power supply device keeps supplying power to the powered device, ensuring that the powered device operates normally, and at least one power supply device stops supplying power to the powered device, so that the powered device There is no supply voltage on the corresponding line during normal operation, which is convenient for testing the line.
  • FIG. 2 is a circuit diagram of an embodiment of a reverse power supply line test system of the present application
  • FIG. 3 is a circuit diagram of another embodiment of a reverse power supply line test system of the present application.
  • FIG. 2 is a circuit diagram of an embodiment of a reverse power supply line test system of the present application.
  • the reverse power supply line test system of the present embodiment includes: a power receiving device 210 and at least two power supply devices 220, each of which is coupled to the power receiving device 210 through an independent line.
  • the power receiving device 210 includes a processing module 211, a current sharing module 212, a service module 213 having the same number as the power supply device 220, a first switch 214 having the same number as the power supply device 220, and a power take-off module 215 having the same number as the power supply device 220 and
  • the power module 220 is the same as the test module 216.
  • the processing module 211 is coupled to all the service modules 213.
  • Each of the service modules 213 is coupled to the line coupled to the corresponding power supply device 220.
  • the processing module 211 is also coupled to all the first modules.
  • each of the first switches 214 is coupled to the line coupled to the corresponding power supply device 220, and the second end of each of the first switches 214 is coupled to the power take-off module 215 belonging to the same line.
  • the power take-off module 215 is coupled to the current sharing module 212.
  • Each test module 216 is coupled to the processing module 211 at one end and to the corresponding line at the other end.
  • the power supply device 220 includes a signal detection module 221, a second switch 222, a reverse power supply module 223, and a service terminal 224.
  • the signal detection module 221 and the service terminal 224 are coupled to the line, and the signal detection module 221 is coupled to the second switch 222.
  • the first end of the second switch 222 is coupled to the line, and the second end of the second switch 222 is coupled to the reverse power supply module 223.
  • the plurality of power supply devices 220 simultaneously supply power to the power receiving device 210 through separate lines.
  • the current sharing module 212 of the power receiving device 210 ensures that the same power is obtained from each power supply device 220, so that the power receiving device 210 In normal working condition.
  • the service module 213 sends the service data to the service terminal 224 through the same line for the service terminal 224 to forward to the user for use.
  • the processing module 211 controls each service module 213 to send signaling to the signal detection module 221 of the corresponding power supply device 220.
  • the at least one signal detecting module 221 bypasses the second switch 222 to stop the corresponding reverse power supply module 223 from supplying power to the powered device 210, and at the same time, the at least one signal detecting module 221 receives the signaling.
  • the second switch 222 is controlled to maintain the communication state between the reverse power supply module 223 and the line, thereby supplying power to the power receiving device 210, and ensuring that the power receiving device 210 can work normally.
  • the first line of the line is tested first, then the second line is tested, and so on, until all lines are tested.
  • test module 216 of the first way first detects whether there is a reverse supply voltage for the line of the first way.
  • the line may have a fault such as an open circuit, and the processing module 211 bypasses the first switch 214 of the first path to stop the power take-off module of the first path.
  • 215 takes power from the first line.
  • the test module 216 of the first way tests the basic characteristics of the line of the first path, and then reports the test result to the upper level device of the powered device 210.
  • the processing module 211 controls the first switch 214 of the first way to restore the original connected state, so that the power take-off module 215 of the first way recovers power from the line of the first way.
  • the processing module 211 controls the service module 213 of the first path to send signaling to the signal detecting module 221 of the corresponding power supply device 220.
  • the first signal detecting module 221 bypasses the second switch 222 of the first path to stop the corresponding reverse power supply module 223 from supplying power to the powered device 210, and at the same time, the processing module 211 bypasses the first A switch 214 stops the corresponding power take-off module 215 to take power from the first line.
  • the test module 216 of the first line again detects whether there is a reverse supply voltage for the line of the first line to determine whether the power supply device 220 of the first path is successfully stopped.
  • the service module 213 of the first road sends signaling to the signal detection module 221 of the corresponding power supply device 220 again to bypass the A switch 214 and a second switch 222 ensure that there is no reverse supply voltage on the line of the first path. If there is no reverse power supply voltage, indicating that the first power supply device 220 has been successfully powered off, the processing module 211 bypasses the first switch 214 of the first circuit to stop the power take-off module 215 of the first circuit. All the way to the line to take power. The test module 216 of the first way tests the basic characteristics of the line of the first path, and then reports the test result to the upper level device of the powered device 210.
  • the processing module 211 controls the first switch 214 of the first way to restore the original connected state, so that the power take-off module 215 of the first way recovers power from the line of the first way.
  • the first service module 213 also sends signaling to the signal detection module 221, so that the reverse power supply module 223 of the first path resumes power supply to the powered device 210.
  • the second and third paths are sequentially controlled until the bypass and the connected state of the first switch 214 and the second switch 222 of the last road, so that all the lines can be tested, thereby achieving maintenance of the line.
  • the power receiving device 210 is provided with the test module 216 on each line of the circuit, but the test module 216 may not be provided, but the circuit may be tested by the external device.
  • FIG. 3 is a circuit diagram of another embodiment of a reverse power supply line testing system of the present application.
  • the embodiment is different from the previous embodiment in that the power receiving device 210 further includes a first capacitor 317, and the service module 213 is coupled to the line through the first capacitor 317, and the first switch 214 is in the processing module 211.
  • the control module 215 is coupled between the first capacitor 317 and the line between the service module 213 and the first capacitor 317 to bypass the first switch 214, so that the power take-off module 215 stops from the power supply device 220. Take power.
  • the power supply device 220 further includes a second capacitor 325, the signal detecting module 221 is coupled to the line through the second capacitor 325, and the second switch 222 controls the reverse power supply module 223 from the second capacitor 325 under the control of the signal detecting module 221.
  • the lines are coupled between the signal detection module 221 and the second capacitor 325 to bypass the second switch 222 such that the reverse power supply module 223 stops supplying power to the powered device 210.
  • the reverse power supply module 223 is coupled to the junction of the second capacitor 325 and the line through the second switch 222 to provide DC power to the powered device 210.
  • the power take-off module 215 is coupled to the intersection of the first capacitor 317 and the line through the first switch 214 to take power from the power supply device 220. Since the reverse power supply module 223 provides direct current, the first capacitor 317 and the second capacitor 325 both block the direct current, so the service module 213 and the service terminal 224 are not affected.
  • the signaling sent by the service module 213 to the signal detecting module 221 and the service data sent to the service terminal 224 are all AC signals, and can smoothly reach the signal detecting module 221 and the service terminal through the first capacitor 317 and the second capacitor 325, respectively. 224.
  • the power take-off module 215 is coupled to the intersection of the first capacitor 317 and the service module 213 through the first switch 214, stops powering from the power supply device 220, and/or the reverse power supply module 223 passes the second switch.
  • the 222 is coupled to the intersection of the second capacitor 325 and the service terminal 224 to stop supplying DC power to the power receiving device 210.
  • the service module 213 can still send the signaling and service data of the alternating current to the signal detecting module 221 and the service terminal 224 through the first capacitor 317 and the second capacitor 325, and the DC power provided by the reverse power supply module 223 cannot pass the first
  • the second capacitor 325 and the power take-off module 215 cannot obtain the direct current on the line through the first capacitor 317, thereby implementing the bypass of the second switch 222 and the first switch 214.
  • the present application further provides a power receiving device and a power supply device.
  • a power receiving device and a power supply device.
  • FIG. 2, FIG. 3, and related descriptions, and details are not described herein.
  • the processing module controls the service module to send signaling, so that at least one power supply device keeps supplying power to the powered device, ensuring that the powered device operates normally, and at least one power supply device stops supplying power to the powered device, so that the powered device There is no supply voltage on the corresponding line during normal operation, which is convenient for testing the line.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device implementations described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the present embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Power Sources (AREA)

Abstract

一种反向供电线路测试系统及设备。该系统包括受电设备(210)和至少两个供电设备(220)。受电设备(210)包括处理模块(211)、与供电设备数量相同的业务模块(213)、与供电设备数量相同的第一开关(214)以及与供电设备数量相同的取电模块(215)。供电设备(220)包括信号检测模块(221)、第二开关(222)以及反向供电模块(223)。当进行检测时,处理模块控制每个业务模块向各自对应的供电设备的信号检测模块发送信令;至少一个信号检测模块在接收到信令后,控制第二开关旁路相应的反向供电模块以停止向受电设备供电;同时,另外的至少一个信号检测模块在接收到信令后,控制第二开关保持反向供电模块与线路的连通状态,从而向受电设备供电。处理模块旁路没有供电的线路上的第一开关,以停止取电模块从相应的供电设备取电,从而允许对没有供电的线路进行测试。该系统使得被测试的线路上不存在供电电压,从而便于对该线路进行测试。

Description

反向供电线路测试系统及设备
【技术领域】
本申请涉及通信领域,特别是涉及反向供电线路测试系统及设备。
【背景技术】
在光纤到配线点(Fiber To The Distribution Point,FTTdp)的组网环境中,网络设备通常设置远离电源的户外、过道或者楼层之间等等,所以,网络设备难以获得供电。
参阅图1,现有技术提供了一种反向供电系统,令网络设备设置为具有电源接口(power interface)的受电设备(Powered Device,PD)130,并在用户的家中设置供电设备(Power Supply Equipment,PSE)110。供电设备110通过同一线路既向受电设备130传输数据,也同时向受电设备130供电。为了保证受电设备130正常工作,必须至少有一个供电设备110向受电设备130进行供电。当有两个或以上供电设备110同时向受电设备130供电时,均流电路120保证从每个供电设备110获取得到的功率都是相同的,以保证用电的公平。而且,只有进行了供电的端口才能正常开展业务,而没有进行供电的端口不能正常开展业务。
在现有技术条件下,对于线路的维护主要是基于对线路的电压、电阻以及电容等等基本特性进行测试。但是,与传统的线路上无额外电压不同,在反向供电系统中,线路上已经存在了电压,所以会对线路的测试存在影响,导致测试的结果无法体现线路本身的特性,从而无法实现对线路进行维护。
【发明内容】
本申请主要解决的技术问题是提供反向供电线路测试系统及设备,能够在反向供电系统中对线路进行测试。
为解决上述技术问题,本申请第一方面提供一种反向供电线路测试系统,包括:受电设备以及至少两个供电设备,每个供电设备通过独立的线路与所述受电设备耦接。所述受电设备包括处理模块、与供电设备数量相同的业务模块,与供电设备数量相同的第一开关以及与供电设备数量相同的取电模块,所述处理模块分别耦接所有业务模块,每个业务模块耦接到与对应供电设备耦接的线路上,所述处理模块还分别耦接所有第一开关的控制端,每个第一开关的第一端耦接到与对应供电设备耦接的线路上,每个第一开关的第二端耦接属于同一线路的取电模块,所述供电设备包括信号检测模块、第二开关以及反向供电模块,所述信号检测模块耦接到线路上,所述信号检测模块耦接所述第二开关的控制端,所述第二开关的第一端耦接到线路上,所述第二开关的第一端耦接所述反向供电模块,进行检测时,所述处理模块控制每个业务模块向各自对应的供电设备的信号检测模块发送信令,至少一个信号检测模块在接收到信令后,控制第二开关旁路相应的反向供电模块以停止向所述受电设备供电,同时,至少一个信号检测模块在接收到信令后,控制第二开关保持反向供电模块与线路的连通状态,从而向所述受电设备进行供电,所述处理模块旁路没有供电的线路上的第一开关,以停止所述取电模块从相应的供电设备取电,从而允许对没有供电的线路进行测试。
结合第一方面,本申请第一方面的第一种可能的实施方式中,所述受电设备还包括与供电设备数量相同的测试模块,所述测试模块一端与所述处理模块耦接,所述测试模块另一端耦接到与对应供电设备耦接的线路上,所述处理模块控制所述测试模块对没有供电的线路进行测试。
结合第一方面,本申请第一方面的第二种可能的实施方式中,所述受电设备还包括第一电容,所述业务模块通过所述第一电容耦接到线路上,所述第一开关在所述处理模块的控制下,将所述取电模块从所述第一电容与所述线路之间耦接到所述业务模块和所述第一电容之间,以实现旁路所述第一开关,使得所述取电模块停止从所述供电设备取电。
结合第一方面,本申请第一方面的第三种可能的实施方式中,所述供电设备还包括第二电容,所述信号检测模块通过所述第二电容耦接到线路上,所述第二开关在所述信号检测模块的控制下,将所述反向供电模块从所述第二电容与所述线路之间耦接到所述信号检测模块和所述第二电容之间,以实现旁路所述第二开关,使得所述反向供电模块停止向所述受电设备供电。
为解决上述技术问题,本申请第二方面提供一种受电设备,包括:处理模块、至少两个业务模块,与业务模块数量相同的第一开关以及与业务模块数量相同的取电模块,所述处理模块分别耦接所有业务模块,每个业务模块耦接到与对应供电设备耦接的线路上,所述处理模块还分别耦接所有第一开关的控制端,每个第一开关的第一端耦接到与对应供电设备耦接的线路上,每个第一开关的第二端耦接属于同一线路的取电模块,进行检测时,所述处理模块控制每个业务模块向各自对应的供电设备的信号检测模块发送信令,使得至少一个信号检测模块在接收到信令后,控制第二开关旁路相应的反向供电模块以停止向所述受电设备供电,同时,至少一个信号检测模块在接收到信令后,控制第二开关保持反向供电模块与线路的连通状态,从而向所述受电设备进行供电,所述处理模块旁路没有供电的线路上的第一开关,以停止所述取电模块从相应的供电设备取电,从而允许对没有供电的线路进行测试。
结合第二方面,本申请第二方面的第一种可能的实施方式中,所述受电设备还包括与业务模块数量相同的测试模块,所述测试模块一端与所述处理模块耦接,所述测试模块另一端耦接到与对应供电设备耦接的线路上,所述处理模块控制所述测试模块对没有供电的线路进行测试。
结合第二方面,本申请第二方面的第二种可能的实施方式中,所述受电设备还包括电容,所述业务模块通过所述电容耦接到线路上,所述第一开关在所述处理模块的控制下,将所述取电模块从所述电容与所述线路之间耦接到所述业务模块和所述电容之间,以实现旁路所述第一开关,使得所述取电模块停止从所述供电设备取电。
为解决上述技术问题,本申请第三方面提供一种供电设备,包括:信号检测模块、开关以及反向供电模块,所述信号检测模块耦接到线路上,所述信号检测模块耦接所述开关的控制端,所述开关的第一端耦接到线路上,所述开关的第二端耦接所述反向供电模块,进行检测时,所述信号检测模块接收业务模块所发送的信令,从而控制所述开关旁路相应的反向供电模块以停止向所述受电设备供电。
结合第三方面,本申请第三方面的第一种可能的实施方式中,所述供电设备还包括电容,所述信号检测模块通过所述电容耦接到线路上,所述开关在所述信号检测模块的控制下,将所述反向供电模块从所述电容与所述线路之间耦接到所述信号检测模块和所述电容之间,以实现旁路所述开关,使得所述反向供电模块停止向所述受电设备供电。
上述方案,通过处理模块控制业务模块发送信令,使得至少一个供电设备保持向受电设备供电,保证受电设备正常工作,而且,至少一个供电设备停止向受电设备供电,使得在受电设备正常工作时相应的线路上不存在供电电压,便于对该线路进行测试。
【附图说明】
图1是现有技术一种反向供电系统;
图2是本申请反向供电线路测试系统一实施方式的电路图;
图3是本申请反向供电线路测试系统另一实施方式的电路图。
【具体实施方式】
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施方式中也可以实现本申请。在其它情况中,省略对众所周知的装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
参阅图2,图2是本申请反向供电线路测试系统一实施方式的电路图。本实施方式的反向供电线路测试系统包括:受电设备210以及至少两个供电设备220,每个供电设备220通过独立的线路与受电设备210耦接。
受电设备210包括处理模块211、均流模块212、与供电设备220数量相同的业务模块213,与供电设备220数量相同的第一开关214、与供电设备220数量相同的取电模块215以及与供电设备220数量相同的测试模块216,处理模块211分别耦接所有业务模块213,每个业务模块213耦接到与对应供电设备220耦接的线路上,处理模块211还分别耦接所有第一开关214的控制端,每个第一开关214的第一端耦接到与对应供电设备220耦接的线路上,每个第一开关214的第二端耦接属于同一线路的取电模块215,取电模块215耦接均流模块212。每个测试模块216一端耦接处理模块211,另一端耦接到对应的线路上。
供电设备220包括信号检测模块221、第二开关222、反向供电模块223以及业务终端224,信号检测模块221及业务终端224耦接到线路上,信号检测模块221耦接第二开关222的控制端,第二开关222的第一端耦接到线路上,第二开关222的第二端耦接反向供电模块223。
在进行测试前,多个供电设备220同时通过各自独立的线路向受电设备210供电,受电设备210的均流模块212保证从每个供电设备220获取得到相同的功率,使受电设备210处于正常工作状态。受电设备210正常工作时,业务模块213将业务数据通过相同的线路发送给业务终端224,以供业务终端224转发给用户进行使用。
进行检测时,处理模块211控制每个业务模块213向各自对应的供电设备220的信号检测模块221发送信令。至少一个信号检测模块221在接收到信令后,旁路第二开关222,以停止相应的反向供电模块223向受电设备210供电,同时,至少一个信号检测模块221在接收到信令后,控制第二开关222保持反向供电模块223与线路的连通状态,从而向受电设备210进行供电,保证受电设备210能够正常工作。通常地,首先对第一路的线路进行测试,然后对第二路的线路进行测试,依次类推,直到完成对所有的线路进行测试。
具体地,第一路的测试模块216首先检测第一路的线路是否存在反向供电电压。
第一种情况,如果第一路的线路不存在反向供电电压,则可能线路存在断路等故障,则处理模块211旁路第一路的第一开关214,以停止第一路的取电模块215从第一路的线路取电。第一路的测试模块216对第一路的线路的基本特性进行测试,然后向受电设备210的上一级设备报告测试结果。最后,处理模块211控制第一路的第一开关214恢复原来的连通状态,使得第一路的取电模块215恢复从第一路的线路取电。
第二种情况,如果第一路的线路存在反向供电电压,处理模块211控制第一路的业务模块213向对应的供电设备220的信号检测模块221发送信令。第一路的信号检测模块221在接收到信令后,旁路第一路的第二开关222,以停止相应的反向供电模块223向受电设备210供电,同时,处理模块211旁路第一开关214,以停止相应的取电模块215从第一线路取电。第一线路的测试模块216再次检测第一路的线路是否存在反向供电电压,以确定是否成功使得第一路的供电设备220停止进行供电。如果存在反向供电电压,说明没有成功使得第一路的供电设备220停止进行供电,则第一路的业务模块213再次向对应的供电设备220的信号检测模块221发送信令,以旁路第一开关214以及第二开关222,从而确保第一路的线路上不存在反向供电电压。如果不存在反向供电电压,说明已经成功使得第一路的供电设备220停止进行供电,则处理模块211旁路第一路的第一开关214,以停止第一路的取电模块215从第一路的线路取电。第一路的测试模块216对第一路的线路的基本特性进行测试,然后向受电设备210的上一级设备报告测试结果。最后,处理模块211控制第一路的第一开关214恢复原来的连通状态,使得第一路的取电模块215恢复从第一路的线路取电。而,第一路的业务模块213也向信号检测模块221发送信令,使得第一路的反向供电模块223恢复向受电设备210供电。
此后,依次控制第二路、第三路直到最后一路的第一开关214以及第二开关222的旁路以及连通状态,即可实现对所有的线路进行测试,从而实现对线路的维护。
可以理解的是,为了便于测试,受电设备210在每一路的线路上都设置了测试模块216,但是,也可以不设置测试模块216,而通过外部设备对线路进行测试。
参阅图3,图3是本申请反向供电线路测试系统另一实施方式的电路图。本实施方式与上一实施方式的不同之处在于,所述受电设备210还包括第一电容317,业务模块213通过第一电容317耦接到线路上,第一开关214在处理模块211的控制下,将取电模块215从第一电容317与线路之间耦接到业务模块213和第一电容317之间,以实现旁路第一开关214,使得取电模块215停止从供电设备220取电。供电设备220还包括第二电容325,信号检测模块221通过第二电容325耦接到线路上,第二开关222在信号检测模块221的控制下,将反向供电模块223从第二电容325与线路之间耦接到信号检测模块221和第二电容325之间,以实现旁路第二开关222,使得反向供电模块223停止向受电设备210供电。
在测试前,反向供电模块223通过第二开关222耦接到第二电容325与线路的交接处上,向受电设备210提供直流电。取电模块215通过第一开关214耦接到第一电容317与线路的交接处上,从供电设备220处进行取电。由于反向供电模块223所提供的是直流电,第一电容317以及第二电容325都对直流电有阻隔作用,所以,不会对业务模块213以及业务终端224造成影响。而业务模块213向信号检测模块221发送的信令以及向业务终端224所发送的业务数据都是交流信号,可以顺利地通过第一电容317以及第二电容325分别到达信号检测模块221以及业务终端224。
测试时,取电模块215通过第一开关214耦接到第一电容317与业务模块213的交接处上,停止从供电设备220处进行取电,和/或反向供电模块223通过第二开关222耦接到第二电容325与业务终端224的交接处上,停止向受电设备210提供直流电。此时,业务模块213依然可以通过第一电容317以及第二电容325向信号检测模块221以及业务终端224发送交流的信令和业务数据,而反向供电模块223所提供的直流电没法通过第二电容325,取电模块215也没法通过第一电容317在线路上取得直流电,从而实现旁路第二开关222以及第一开关214。
此外,本申请还提供了一种受电设备以及一种供电设备,具体请参见图2、图3以及相关描述,此处不重复赘述。
上述方案,通过处理模块控制业务模块发送信令,使得至少一个供电设备保持向受电设备供电,保证受电设备正常工作,而且,至少一个供电设备停止向受电设备供电,使得在受电设备正常工作时相应的线路上不存在供电电压,便于对该线路进行测试。
在本申请所提供的几个实施方式中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施方式中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。

Claims (9)

  1. 一种反向供电线路测试系统,其特征在于,包括:受电设备以及至少两个供电设备,每个供电设备通过独立的线路与所述受电设备耦接。
    所述受电设备包括处理模块、与供电设备数量相同的业务模块,与供电设备数量相同的第一开关以及与供电设备数量相同的取电模块,所述处理模块分别耦接所有业务模块,每个业务模块耦接到与对应供电设备耦接的线路上,所述处理模块还分别耦接所有第一开关的控制端,每个第一开关的第一端耦接到与对应供电设备耦接的线路上,每个第一开关的第二端耦接属于同一线路的取电模块,
    所述供电设备包括信号检测模块、第二开关以及反向供电模块,所述信号检测模块耦接到线路上,所述信号检测模块耦接所述第二开关的控制端,所述第二开关的第一端耦接到线路上,所述第二开关的第一端耦接所述反向供电模块,
    进行检测时,所述处理模块控制每个业务模块向各自对应的供电设备的信号检测模块发送信令,至少一个信号检测模块在接收到信令后,控制第二开关旁路相应的反向供电模块以停止向所述受电设备供电,同时,至少一个信号检测模块在接收到信令后,控制第二开关保持反向供电模块与线路的连通状态,从而向所述受电设备进行供电,所述处理模块旁路没有供电的线路上的第一开关,以停止所述取电模块从相应的供电设备取电,从而允许对没有供电的线路进行测试。
  2. 根据权利要求1所述的系统,其特征在于,所述受电设备还包括与供电设备数量相同的测试模块,所述测试模块一端与所述处理模块耦接,所述测试模块另一端耦接到与对应供电设备耦接的线路上,所述处理模块控制所述测试模块对没有供电的线路进行测试。
  3. 根据权利要求1所述的系统,其特征在于,所述受电设备还包括第一电容,所述业务模块通过所述第一电容耦接到线路上,所述第一开关在所述处理模块的控制下,将所述取电模块从所述第一电容与所述线路之间耦接到所述业务模块和所述第一电容之间,以实现旁路所述第一开关,使得所述取电模块停止从所述供电设备取电。
  4. 根据权利要求1所述的系统,其特征在于,所述供电设备还包括第二电容,所述信号检测模块通过所述第二电容耦接到线路上,所述第二开关在所述信号检测模块的控制下,将所述反向供电模块从所述第二电容与所述线路之间耦接到所述信号检测模块和所述第二电容之间,以实现旁路所述第二开关,使得所述反向供电模块停止向所述受电设备供电。
  5. 一种受电设备,其特征在于,包括:处理模块、至少两个业务模块,与业务模块数量相同的第一开关以及与业务模块数量相同的取电模块,所述处理模块分别耦接所有业务模块,每个业务模块耦接到与对应供电设备耦接的线路上,所述处理模块还分别耦接所有第一开关的控制端,每个第一开关的第一端耦接到与对应供电设备耦接的线路上,每个第一开关的第二端耦接属于同一线路的取电模块,
    进行检测时,所述处理模块控制每个业务模块向各自对应的供电设备的信号检测模块发送信令,使得至少一个信号检测模块在接收到信令后,控制第二开关旁路相应的反向供电模块以停止向所述受电设备供电,同时,至少一个信号检测模块在接收到信令后,控制第二开关保持反向供电模块与线路的连通状态,从而向所述受电设备进行供电,所述处理模块旁路没有供电的线路上的第一开关,以停止所述取电模块从相应的供电设备取电,从而允许对没有供电的线路进行测试。
  6. 根据权利要求5所述的受电设备,其特征在于,所述受电设备还包括与业务模块数量相同的测试模块,所述测试模块一端与所述处理模块耦接,所述测试模块另一端耦接到与对应供电设备耦接的线路上,所述处理模块控制所述测试模块对没有供电的线路进行测试。
  7. 根据权利要求5所述的受电设备,其特征在于,所述受电设备还包括电容,所述业务模块通过所述电容耦接到线路上,所述第一开关在所述处理模块的控制下,将所述取电模块从所述电容与所述线路之间耦接到所述业务模块和所述电容之间,以实现旁路所述第一开关,使得所述取电模块停止从所述供电设备取电。
  8. 一种供电设备,其特征在于,包括:信号检测模块、开关以及反向供电模块,所述信号检测模块耦接到线路上,所述信号检测模块耦接所述开关的控制端,所述开关的第一端耦接到线路上,所述开关的第二端耦接所述反向供电模块,
    进行检测时,所述信号检测模块接收业务模块所发送的信令,从而控制所述开关旁路相应的反向供电模块以停止向所述受电设备供电。
  9. 根据权利要求8所述的供电设备,其特征在于,所述供电设备还包括电容,所述信号检测模块通过所述电容耦接到线路上,所述开关在所述信号检测模块的控制下,将所述反向供电模块从所述电容与所述线路之间耦接到所述信号检测模块和所述电容之间,以实现旁路所述开关,使得所述反向供电模块停止向所述受电设备供电。
PCT/CN2013/071111 2013-01-30 2013-01-30 反向供电线路测试系统及设备 WO2014117329A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/071111 WO2014117329A1 (zh) 2013-01-30 2013-01-30 反向供电线路测试系统及设备
CN201380000131.3A CN103403563B (zh) 2013-01-30 2013-01-30 反向供电线路测试系统及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071111 WO2014117329A1 (zh) 2013-01-30 2013-01-30 反向供电线路测试系统及设备

Publications (1)

Publication Number Publication Date
WO2014117329A1 true WO2014117329A1 (zh) 2014-08-07

Family

ID=49565838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071111 WO2014117329A1 (zh) 2013-01-30 2013-01-30 反向供电线路测试系统及设备

Country Status (2)

Country Link
CN (1) CN103403563B (zh)
WO (1) WO2014117329A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301546B (zh) * 2015-06-09 2019-07-02 中兴通讯股份有限公司 反向供电线路检测处理方法及装置
CN106707045A (zh) * 2015-11-13 2017-05-24 中兴通讯股份有限公司 一种反向供电线路噪声定位方法和装置
CN108134677B (zh) * 2016-12-01 2020-08-14 九旸电子股份有限公司 以太网络供电系统的供电装置
CN109005041B (zh) * 2017-06-07 2022-05-13 中兴通讯股份有限公司 一种局端设备、反向供电系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355416B1 (en) * 2007-01-07 2008-04-08 Microsemi Corp.- Analog Mixed Signal Group Ltd. Measurement of cable quality by power over ethernet
US7474704B2 (en) * 2005-03-16 2009-01-06 Cisco Technology, Inc. Method and apparatus for current sharing ethernet power across four conductor pairs
CN102164039A (zh) * 2010-02-15 2011-08-24 佳能株式会社 供电系统、受电设备及电力接收方法
CN202009229U (zh) * 2011-04-08 2011-10-12 瑞斯康达科技发展股份有限公司 以太网馈电端口组、防浪涌保护电路以及以太网馈电设备
CN102571502A (zh) * 2012-02-23 2012-07-11 中兴通讯股份有限公司 终端接入设备和反向以太网工供电状态的检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887091B (zh) * 2010-04-28 2012-07-25 北京星网锐捷网络技术有限公司 以太网供电设备测试装置及方法
CN101902341B (zh) * 2010-07-19 2014-07-16 中兴通讯股份有限公司 对受电设备进行供电的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7474704B2 (en) * 2005-03-16 2009-01-06 Cisco Technology, Inc. Method and apparatus for current sharing ethernet power across four conductor pairs
US7355416B1 (en) * 2007-01-07 2008-04-08 Microsemi Corp.- Analog Mixed Signal Group Ltd. Measurement of cable quality by power over ethernet
CN102164039A (zh) * 2010-02-15 2011-08-24 佳能株式会社 供电系统、受电设备及电力接收方法
CN202009229U (zh) * 2011-04-08 2011-10-12 瑞斯康达科技发展股份有限公司 以太网馈电端口组、防浪涌保护电路以及以太网馈电设备
CN102571502A (zh) * 2012-02-23 2012-07-11 中兴通讯股份有限公司 终端接入设备和反向以太网工供电状态的检测方法

Also Published As

Publication number Publication date
CN103403563B (zh) 2015-08-05
CN103403563A (zh) 2013-11-20

Similar Documents

Publication Publication Date Title
WO2014169443A1 (zh) 供电设备的识别电路以及受电设备
CN101124772B (zh) 具有用于确定通信电缆电阻的机构的通过通信电缆供电的系统
CN104135375B (zh) 通过通信链路供电的系统中高端和低端电流感测的组合
JP6975785B2 (ja) 給電装置
US20070278857A1 (en) Mid-Link Powered Device for Power over Ethernet
US20070288771A1 (en) Source Separator for Power over Ethernet Systems
CN109739792A (zh) 串口充电通信复用方法
WO2014117329A1 (zh) 反向供电线路测试系统及设备
CN105453484A (zh) 以太网供电控制系统
CN104429020A (zh) 基于以太网的供电的监控
CN103066683A (zh) 以太网供电系统中的导体对切换
WO2018038431A1 (ko) 통합모듈 및 통신의 이중화 구조를 구비한 모터제어반용 시스템
CN103546300A (zh) 一种以太网供电方法和装置
WO1998028883A1 (en) Network including multi-protocol cross-connect switch
CN203289458U (zh) 一种线路切换器
CN104793544B (zh) 一种以太网poe中双向供电系统
CN113194020A (zh) 一种虚拟网络交互方法及虚拟网络架构
CN112202571A (zh) 一种poe电源传输装置、poe交换机及poe系统
CN109756400A (zh) 10g poe交换机的流量测试方法及系统
CN105978700A (zh) 一种多路反向馈电的智能电源管理方法及系统
CN108683959A (zh) 一种建筑智能化综合布线系统
CN101567822A (zh) 一种动力环境集中监控系统的组网综合服务设备及其运用方法
CN205071015U (zh) 以太网供电装置
CN101399760B (zh) 一种集成化的室外接入设备
WO2018139734A1 (ko) 배터리 팩 관리 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873184

Country of ref document: EP

Kind code of ref document: A1