WO2014115924A1 - Flat-panel type photobioreactor module and photobiological culture system using same - Google Patents

Flat-panel type photobioreactor module and photobiological culture system using same Download PDF

Info

Publication number
WO2014115924A1
WO2014115924A1 PCT/KR2013/001451 KR2013001451W WO2014115924A1 WO 2014115924 A1 WO2014115924 A1 WO 2014115924A1 KR 2013001451 W KR2013001451 W KR 2013001451W WO 2014115924 A1 WO2014115924 A1 WO 2014115924A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
plate
supply pipe
light
gas supply
Prior art date
Application number
PCT/KR2013/001451
Other languages
French (fr)
Korean (ko)
Inventor
정상화
박종락
안동규
김종태
김광호
Original Assignee
조선대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조선대학교산학협력단 filed Critical 조선대학교산학협력단
Publication of WO2014115924A1 publication Critical patent/WO2014115924A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/04Apparatus for enzymology or microbiology with gas introduction means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/02Tissue, human, animal or plant cell, or virus culture apparatus with means providing suspensions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/26Means for regulation, monitoring, measurement or control, e.g. flow regulation of pH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • the present invention relates to a flat panel bioreactor module and a photobiological culture system using the same, and more particularly, to a flat biofilm and an improved light irradiation structure for irradiating light to the photobiological culture vessel. It relates to a reactor module and a photobiological culture system using the same.
  • Microalgae can play a role in the treatment of wastewater, immobilization of carbon dioxide, etc., due to their various capabilities, and have been used for the production of useful substances such as fuels, cosmetics, feed, food coloring and pharmaceutical raw materials. In the meantime, useful and high value added substances are constantly being discovered and expanding their applications.
  • a device for culturing photosynthetic microalgae for the purpose of immobilizing carbon dioxide can be largely divided into a mass culture (open system) and a photobioreactor (closed system) outdoors.
  • Outdoor mass cultivation apparatus including pond type has been mainly used in the form of reaction facilities such as lakes or large ponds and is commercially available in some countries.
  • this type of cultivation facility has the advantages of low initial investment and easy maintenance, but it is difficult to contaminate, isolate and purify, low cell concentration, high mass (especially nitrogen source), high water quality and quantity demand, and irregular climate. Due to problems such as conditions, expensive labor costs, the installation is extremely limited. In particular, the effective growth of light is not achieved inside the culture apparatus, the growth rate of the cells is low, the growth yield of the cells is low, and a large installation space is required to remove a large amount of carbon dioxide.
  • the light applied while the microalgae is incubated becomes more and more bulky as the microalgae grows, so that the microalgae on the surface of the reactor can continue to receive light, but the microalgae inside the reactor are microalgae on the surface. Because of the shadow effect will not be able to receive enough light to grow.
  • most of the microalgae photobioreactors designed to date do not overcome this point, and thus the production efficiency thereof is lower than that of other microbial bioreactors. To overcome this and to transmit light efficiently.
  • photobioreactors using internal light sources have been studied. Widely used photobioreactors include tubular photoreactors and vertical columnar photobioreactors that use sunlight as an external light source.
  • the reactor has a structure in which the narrow and long rectangular or cylindrical pipes are densely adhered to circulate the culture in order to maximize the irradiation area exposed to sunlight and to shorten the light transmission distance into the culture.
  • Such photobioreactors have advantages and disadvantages in their respective forms.
  • the reactor using the fiber as the internal light source has a good light efficiency, but there is a problem that the cell adheres to the optical fiber surface.
  • an artificial light source such as a fluorescent lamp
  • Korean Patent No. 0933741 discloses a photobioreactor for culturing microalgae.
  • the published reactor uses LEDs and flexible LEDs and has a structure in which the light source is directly in contact with the culture solution.
  • micro algae are attached to the surface of the light source, thereby reducing light efficiency.
  • Republic of Korea Patent Publication No. 2009-0055170 discloses a cylindrical photobioreactor
  • Republic of Korea Patent No. 0897019 discloses a photobiological reactor for high efficiency microalgae culture.
  • This reactor has a structure in which sunlight is irradiated to the photobioreactor using a reflective collector and an optical fiber.
  • US Patent Application No. 2009/0211150 discloses a technical configuration for producing biomass and biodiesel by culturing microalgae gloella at high concentration using a tubular photobioreactor, and US Patent Application No. 2005/0255584.
  • a tubular photobioreactor having a surface area increased while using a partition of a transparent material is disclosed.
  • U.S. Patent No. 595876 discloses a tubular photobioreactor using a complex parabolic concentrator to improve the light collection efficiency of sunlight.
  • a bioreactor system for culturing published photosynthetic organisms includes a container having an outer surface and an inner surface, an inner surface defining an isolated space configured to hold a plurality of photosynthetic organisms and culture medium, and one or more contained in the isolated space of the container. Equipped with a lighting system that includes a light emitting substrate.
  • the present invention is to solve the above problems, and the planar photobioreactor module that can prevent the light irradiated from the light source to be transmitted to the photobiotic organisms by irradiating the surface light source from the outside of the photobiological culture vessel and
  • the purpose is to provide a photobiological culture system using the same.
  • Another object of the present invention is to provide a flat-type photobioreactor module and a photobiological culture system using the same, which enables continuous culture by maintaining the culture environment of the photobiotic organism in an optimal state.
  • Another object of the present invention is to increase the degree of freedom of design of the flat-type photobiological culture vessel and the light for irradiating the light, and to maximize the light irradiation efficiency and the uniformity of light distribution, the flat photo-organism can increase the productivity of the photobioorganisms
  • the present invention provides a reactor module and a photobiological culture system using the same.
  • the plate-type photobioreactor module of the present invention for achieving the above object is provided with a culture space is coupled to each other to be cultured by injecting the photobioorganism therein, the first surface is provided with support ribs at regular intervals on the outer surface; 2 culture panel bodies, a gas supply pipe installed to penetrate the culture space formed by the first and second culture panel bodies in the transverse direction to discharge the gas introduced therein, and inside the first and second culture panel bodies.
  • a flat type photobiological culture vessel extending transversely to the wall and including at least one vortex forming partition wall formed in an arc shape so as to cause vortices with respect to the ascending air flow of the gas supplied through the gas supply pipe;
  • It is characterized in that it is provided on at least one side of the plate-shaped photobiological culture vessel provided with a surface light source unit for irradiating light for cultivation of the photobioorganism.
  • the culture panel body constituting the plate-shaped photobiological culture vessel is made of a synthetic resin and the support ribs formed in the culture panel bodies narrow the gap from the top to the bottom, and by reflecting the external light in multiple It is possible to increase the amount of light inflow of the plurality of horizontal high rigidity portion corresponding to the pressure of the culture medium, and consists of a vertical high rigidity portion formed in the same cross-section with the horizontal high rigidity portion.
  • the horizontal high rigidity part and the vertical high rigidity part are integrally formed with the culture panel body so that the cross-section of the culture panel body has one of a semi-circular, trapezoidal or polygonal shape.
  • the gas supply pipe has a plurality of discharge ports whose surface is expanded at a set pressure or more.
  • the culture panel main body is formed by fusion of the edges or coupled to both sides of the main body of the rectangular frame shape to form a culture space.
  • the vortex forming partition wall extends in the transverse direction from the inner wall of the main body at a position spaced upwardly from the gas supply pipe, the first lower end of the position that can be in close contact with the second main panel body is located on the front surface
  • the first vortex is formed in an arc shape having a shorter distance from the gas supply pipe than the first upper end facing the main panel main body, and spaced apart from the inner surface of the first main panel main body in which the first upper end is located in front.
  • a second main panel body extending laterally from an inner wall of the main body at a position spaced upwardly from the gas supply pipe, and having a second lower end of a position where the first main panel body can be in close contact with the first main panel body;
  • the second upper end is formed in an arc shape having a shorter distance from the gas supply pipe than the second upper end, and the second upper end is provided with a second vortex forming partition spaced apart from the inner surface of the second main panel main body located at the rear.
  • the first and second vortex forming partitions are provided with at least one independent vortex generating wing to cause vortices in a predetermined direction.
  • a plate inlet tube for injecting a medium for culturing the microalgae of the microalgae into the inside of the culture space in the plate fluorescent bio-culture vessel, and the upper side of the plate-type photobiological culture vessel.
  • a microalgae discharge tube for discharging the photobioorganism cultured from the inside of the culture space is installed, the gas discharge hole for discharging the gas rising in the culture space to the outside is formed on the upper end side of the flat fluorescent culture culture vessel.
  • the planar light source unit for irradiating light onto the flat panel optical biological culture container includes a light guide plate and a lamp module installed at an edge of the light guide plate, and the light emitted from the lamp module is provided on the rear surface of the light guide plate.
  • a light reflection pattern is formed to uniformly irradiate the reaction vessel.
  • the optical organism culture system of the present invention for achieving the above object is provided with a culture space is coupled to each other to be cultured by injecting the photobioorganism therein, the outer surface is provided with a support rib at a predetermined interval, the first, Two culture panel bodies, a gas supply pipe installed to penetrate the culture space formed by the first and second culture panel bodies in a transverse direction and discharging the gas introduced therein, and inside the first and second culture panel bodies
  • a flat type photobiological culture vessel extending transversely to the wall and including at least one vortex forming partition wall formed in an arc shape so as to cause vortices with respect to the ascending air flow of the gas supplied through the gas supply pipe;
  • a plate-type photobioreactor module installed on at least one side of the plate-type photobiological culture vessel and having a surface light source unit for irradiating light for culturing the photobioorganism;
  • the plate fluorescent bio-culture vessel is connected to a medium supply pipe having a lower side connected to a medium supplying pipe equipped with a pump for injecting microalgae into the culture space, and a medium supply tank for storing the medium, and connected to an upper end side of the plate fluorescent bio-culture vessel.
  • An optical biomass storage tank for storing the optical bioorganism cultured in connection with the microalgae discharge tube, a pH measuring sensor for measuring the pH value of the microalgal culture medium, which is installed and cultured in the flat optical culture vessel, oxygen and Dissolved amount measuring sensor for measuring the dissolved amount of carbon dioxide, biomass concentration measuring sensor, illuminance measuring sensor for measuring the illuminance of the light irradiated from the surface light source unit to the plate-type photobioreactor module,
  • control unit for controlling the continuous production of optical bio-organic on the basis of the signal detected from the pump, illuminance measuring sensor, PH measuring sensor, dissolved volume measuring sensor, biomass concentration measuring sensor.
  • the plate-type photobiological culture vessel further comprises a temperature measuring sensor for measuring the temperature of the cultured photobiological culture.
  • the plate type photobioreactor module and the photobiological culture system using the same can prevent the plate type photobiological reaction vessel from being deformed by the pressure of the culture solution stored therein during the culture of the photobiological organism, and the surface light source. Since light can be irradiated from the outside to the inside by the unit, the heat generated from the surface light source unit can be prevented from being transferred directly to the photobioreactor, thereby preventing necrosis of the photo organism.
  • the plate-type photobioreactor module of the present invention and the photobiological culture system using the same are capable of continual production of photobioorganisms by optimizing the cultivation conditions of the photobiotic organism and further improving the productivity.
  • FIG. 1 is a perspective view showing a plate-type photobioreactor module and a photobiological culture system using the same according to the present invention
  • FIG. 2 is an exploded perspective view of the flat photoreactor module shown in FIG. 1;
  • FIG. 3 is a cross-sectional view of the plate-type photobiological reaction vessel shown in FIG.
  • FIG. 4 is a view showing another embodiment of a flat panel photobioreactor module according to the present invention.
  • FIG. 5 is a cross-sectional view of the flat plate type photobiological culture vessel shown in FIG. 4;
  • FIG. 6 is a perspective view showing a surface light source device according to the present invention.
  • 7, 10, 11, 12 are plan views conceptually showing the surface light source device
  • FIG 8 and 9 are views showing another embodiment of the photobiological culture system.
  • the photobiological culture system using the plate-type photobioreactor module according to the present invention is capable of continuously culturing photobioorganisms, and an embodiment thereof is illustrated in FIGS. 1 to 4.
  • the plate-type photobioreactor module and the photobiological culture system 10 using the same is a plate-type photobiological culture vessel having a culture space that can be cultured by injecting photobiological organisms therein (20) ),
  • a gas supply pipe (71) installed at the lower side of the culture space of the plate-type photobiological culture vessel 20, and at least one side of the plate-type photobiological culture vessel (20) (20) includes a flat type photobioreactor module including a surface light source unit 80 for irradiating light for culturing photobioorganisms. It is provided with a gas supply unit 70 for supplying oxygen and carbon dioxide to the culture space in which the photobiotic organisms cultured through the gas supply pipe 71 is stored.
  • a medium inlet tube 92 having a pump 91 for injecting microalgae and / or a medium into the lower side of the plate-type photobiological culture vessel 20 and the inside of the culture space, and incubating the microalgae.
  • Culture medium supply unit (90) comprising a medium storage tank (93) for storing a medium for storing the light and the cultured in connection with the microalgae discharge pipe (101) connected to the upper end side of the flat optical culture vessel (20)
  • the optical bioorganic storage tank 100 for storing the biological organisms is installed in the optical bioorganic storage unit 110 and the flat optical culture vessel, and the PH for measuring the pH value of the cultured microalgal culture liquid Measuring sensor 120, dissolved amount measuring sensor 130 for measuring the dissolved amount of oxygen and carbon dioxide, and for measuring the illuminance of the light irradiated to the planar photobioreactor module from the surface light source unit 80 Illuminance measuring sensor 140, Control to control the continuous production of the photobioorganic gas based on the signal detected from the ion mass concentration sensor 145, the pump, roughness sensor, PH measurement sensor, dissolved volume measurement sensor, biomass concentration measurement sensor
  • the unit 150 is provided.
  • the plate-type photobiological culture vessel 20 constituting the plate-type photobioreactor module 10 is cultured by being coupled to each other so that the photobioorganism is injected and cultured therein as shown in FIGS. 1 and 3.
  • First and second cultured panel bodies 22 and 23 forming 21 are provided, and the first and second cultured panel bodies 22 and 23 are made of a transparent material, glass or synthetic resin material.
  • the first and second culture panel bodies 22 and 23 are coupled to both sides of the main body 24 having a lattice shape (square frame) by the fastening member 25 to form a culture space 21.
  • the first and second culture panel bodies 22 and 23 are supported by support ribs 30 supported on the main body 24 to be installed on or in contact with the surface.
  • the support ribs 30 are supported at both ends by brackets 31 provided at mutually opposite sides of the main body 24.
  • the support rib is composed of a plate-like member (32).
  • the support rib 30 made of a plate-shaped member is installed to be perpendicular to the surface of the first or second culture panel bodies 22 and 23.
  • the support ribs 30 are the first and second culture panel main body 22, 23 and the main body 24 by the water pressure generated by the culture medium in the culture space of the plate-shaped photobiological culture vessel 20 Deformation is prevented.
  • the vortex forming partition 40 increases the dissolved capacity of oxygen or carbon dioxide supplied from the gas supply pipe 71 and circulates the culture solution. Is formed.
  • the vortex forming partition 40 is formed with a first vortex forming partition 41 extending laterally from an inner wall of the main body 24 at a position spaced upwardly from the gas supply pipe 71.
  • Vortex forming partition 41 is the gas supply pipe than the first upper end (41b) of the first lower end 41a of the position where the first culture panel body can be in close contact with the second culture panel body located on the front side
  • a spaced distance from 71 is formed in a short arc shape.
  • a second vortex forming partition 42 is formed on an upper side of the first vortex forming partition 41, wherein the second vortex forming partition 42 is spaced upwardly from the gas supply pipe 71.
  • a second lower end 42a extending laterally from the inner wall of the upper surface 24 and in close contact with the second main panel main body of the front surface is opposed to the second upper end 42b facing the first culture panel main body.
  • the separation distance from the gas supply pipe 71 is formed in a short arc shape.
  • At least one independent vortex generating wing 43 is formed in the first and second vortex forming partitions 41 and 42 to cause vortices in a predetermined direction.
  • the first and second vortex forming partitions 41 and 42 may be provided in plural and spaced apart from the gas supply pipe 71 by a predetermined interval above the culture space.
  • the first and second vortex forming partitions are not limited to the above-described embodiments, and a plurality of guide vanes (wings) are installed at predetermined intervals on the inner surface of the first and second culture panel bodies 22 and 23 forming a culture space. It may be made of).
  • the plate fluorescent biological reaction container 50 is made by combining the first and second case members 51, 55 vacuum-molded by a synthetic resin material.
  • the first case member 51 constituting the plate-type photobiological reaction vessel 50 is formed by vacuum injection molding, and is perpendicular to the first plane portion 52 and the edge of the first plane portion 52, respectively. And a first skirt portion 53 bent in a direction and a first connecting portion 54 extending radially from the skirt portion 53.
  • the second case member 55 like the first case member 51, is perpendicular to the second flat portion 56 corresponding to the first flat portion 52 and an edge of the second flat portion 56.
  • the second skirt portion 57 bent in a direction and a second connecting portion 58 extending radially from the second skirt portion 57 and engaged with the first connecting portion 54.
  • the first connection portion 54 and the second connection portion 58 are ultrasonically fused or vibration-fused. Bonding of the first and second connectors 54 and 58 is not limited to the above-described embodiment, and may be coupled by a coupling member such as a bolt, a nut, and a clip in a state of bonding or packing.
  • the first and second flat portions 52 and 56 of the first and second case members 51 and 55 are formed with horizontal high rigidity portions 61 which gradually become narrower from the upper end side to the lower end side.
  • the horizontal high rigidity portion 61 may increase the amount of light flowing into the inside by multi-reflecting the external light, and can improve the structural strength of the first and second case members 51 and 55.
  • the planar portions 52 and 56 may be formed parallel to each other in a direction perpendicular to the longitudinal direction, or may be formed in an inclined direction in consideration of an irradiation area or structural strength of light.
  • the horizontal high rigidity portion 61 may be formed by combining a horizontal direction and an inclined direction in the first and second flat portions 52 and 56 or a combination of the horizontal direction and the curved direction.
  • the pressure acting on the first and second case members 51 and 55 by the load of the culture solution filled therein increases from the upper side to the lower side. Accordingly, the spacing of the horizontal high rigidity portion 61 is preferably formed closer to the lower side.
  • the first and second case members 51 and 55 may have a vertically rigid portion 66 formed in the longitudinal direction of the first and second planar portions 52 and 56.
  • the vertical high rigidity portion 62 is formed to intersect the horizontal high rigidity portion 61, but is not limited thereto.
  • the horizontal high rigidity portion 61 and the vertical high rigidity portion 62 respectively formed on the first and second flat portions 52 and 56 of the first and second case members 51 and 55 are external light introduced from the outside.
  • the first and second flat portions 52 and 56 may have a cross-sectional shape in one of semi-circular, trapezoidal, or polygonal shapes so as to multi-reflect light emitted from sunlight or a lamp. It is formed by drawing in from the surfaces of the two flat portions 52 and 56.
  • a lens portion having a negative power or a lens portion having a positive power is formed on the bottom and both sides of the horizontal high rigidity portion 61 and the vertical high rigidity portion 62 having the first and second flat portions 52 and 56 introduced therein. Can be.
  • the inner surface of the first and second flat parts 52, 56, the plurality of vortex generators 63 (64) on the inner surfaces facing each other so as to interfere with the flow of the culture medium in which the microalgae are cultured. ) Are formed, protruding from the inner surface of the first and second cases to the inside of the culture space and formed alternately.
  • the surface light source unit 80 is installed on both sides of the flat photobiological reaction vessel 20 for irradiating light to the flat photobiological reaction vessel 20
  • a light guide plate 81 made of a transparent plate-like member and lamp modules 85 as light sources are installed at edges of the light guide plate 81 to irradiate light regardless of the weather.
  • a diffusion pattern 82 is formed on at least one side of the light guide plate 81 to scatter or reflect the optical fiber or the light emitted from the lamp module 85 to the front side.
  • the diffusion pattern 82 may be formed of a reflective pattern formed on the rear surface of the light guide plate 81 using ink or may be formed on the rear surface of the light guide plate 81 by laser beam or mechanical processing.
  • the diffusion pattern 82 may be formed by forming a groove (eg, a V-shaped groove) on a rear surface of the light guide plate 81 in a predetermined pattern.
  • the groove forming pattern may include a scroll shape, a grid shape, a shape of an overlapping polygon, and horizontal or vertical grooves having different pitches.
  • the diffusion pattern 82 formed on the light guide plate 81 is formed in a lattice form from an edge formed in a lattice shape and a central portion of the light guide plate 81 to an edge, that is, an edge at which the lamp module 85 is installed.
  • the light guide plate 81 may be sparsely formed from the center in the horizontal and vertical directions toward the most up and down direction and both sides.
  • a reflector plate 89 may be installed on the rear surface of the light guide plate 81 so as to reflect the light irradiated from the optical fiber and the lamp module 85 onto the rear surface of the light guide plate 81, and the front surface of the light guide plate 81.
  • a diffusion plate (not shown) may be attached.
  • the light guide plate may be made of transparent synthetic resin, glass, quartz, and the like.
  • the lamp module 85 is installed on the edge of the light guide plate 81 is installed on both sides of the light guide plate 81 as shown in Figure 6, the first lamp module (installed on the side of the light guide plate 81 ( 86 and a second lamp module 87 installed at an edge or a lower surface thereof.
  • the first and second lamp modules 86 and 87 have substantially the same structure, and each of the circuit boards 86a and 87a having the same width as that of the side or bottom surface of the light guide plate 81, and Light emitting diodes 86b and 87b are provided on the circuit boards 86a and 87a at predetermined intervals to irradiate light from the edge of the light guide plate 81.
  • inlet grooves 81a are formed in the side and bottom surfaces of the light guide plate 81 corresponding to the light emitting diodes 86b and 87b, so that the light emitting diodes 86b and 87b are inserted into the inlet grooves 82a. It is preferable to prevent the light from being scattered around the edge of the light guide plate, and it is preferable to form irregularities for scattering the light on the inner surface of the drawing groove 82a.
  • the lamp module for irradiating light to the light guide plate 81 is not limited to the above-described embodiment and may use cold cathode fluorescent lamps (CCFL).
  • CCFL cold cathode fluorescent lamps
  • a cold cathode fluorescent lamp in close contact with the edge of the light guide plate 81 and a reflective member may be provided to surround the edge of the light guide plate to prevent light emitted from the cold cathode fluorescent lamp from being irradiated to a region other than the light guide plate.
  • the surface light source unit is not limited to the above-described embodiment, and a plurality of light emitting diodes may be installed in the flat member.
  • the surface light source unit collects sunlight using the condenser lens 160 and then irradiates the edge of the light guide plate 81 to irradiate the sunlight into a flat optical culture vessel. .
  • the condensed light is irradiated to the edge of the light guide plate 81 using the optical fiber 161. Sunlight can be irradiated to the plate-type photobiological culture vessel 20 through.
  • the irradiation of sunlight irradiates light onto the flat type photobiological culture vessel 20 using sunlight on a sunny day, and is installed at the edge of the light guide plate 81 on a cloudy day or at night. Irradiate light using the lamp module.
  • an end portion of the optical fiber connected to the condenser lens may be installed at the edge of the light guide plate, and lamp modules may be installed at both side and bottom edges of the light guide plate, as shown in FIG. 11.
  • the lamp module may be installed at both edges of the lamp module, and the optical fiber connected to the condenser lens may be installed at the lower edge of the lamp module.
  • the reflective pattern may form a densely formed upper edge corresponding to the center portion in the vertical direction and the portion connected to the optical fiber.
  • an optical fiber and a lamp module for irradiating the light collected by the collecting lens may be installed at the edge of each light guide plate to irradiate light onto the flat optical culture vessel.
  • the gas supply unit 70 for supplying oxygen or carbon dioxide to the gas supply pipe 71 is connected to a connection pipe 72 in which a valve is installed at the gas supply pipe 71, and connected to the connection pipe 72.
  • the carbon dioxide tank 75 and the oxygen tank 76 are connected by the branch pipes 73 and 74.
  • the branch pipes 73 and 74 are provided with valves 77 and 78 for controlling the supply of gas.
  • the gas supply pipe 71 is made of a flexible and elastic tube, the discharge hole 71a is formed in the gas supply pipe 71 at predetermined intervals.
  • the discharge hole 71a is formed so that the tube can be opened while expanding when the pressure in the gas supply pipe 71 becomes equal to or higher than the set pressure.
  • the discharge hole formed in the gas supply pipe is preferably formed in 0.01 to 0.05mm to be normally blocked by the elastic force of the gas supply pipe (71).
  • the medium supply pipe 92 of the medium supply unit 90 may be provided with a valve for intermittent supply of the medium, the culture of the photobioorganic discharge pipe 101 constituting the optical bioorganic storage unit 110 is cultured
  • a control valve 103 may be installed to control the discharge of the completed photobioorganic gas.
  • control unit 150 enables continuous production of the photobioorganism, and each sensor, that is, the PH measuring sensor 120 and the dissolved amount measuring sensor 130 for measuring the dissolved amount of oxygen and carbon dioxide. And a system for controlling the system based on a signal of an illuminance measuring sensor 140 and a biomass concentration measuring sensor 145 for measuring illuminance of light irradiated from the surface light source unit 70 to the flat panel bioreactor module. Equipped with a microcomputer.
  • the biomass concentration measurement sensor is Opt is preferably used ASD19-N, the dissolved oxygen sensor is preferably used Mettler toledo M300.
  • control unit may be further provided with a temperature sensor 151 for measuring the temperature of the photo organisms cultured by the plate-type photobiological culture vessel.
  • the plate-type photobioreactor module and the photobiological culture system using the same according to the present invention configured as described above are capable of culturing continuous photobioorganisms.
  • a medium including a microalgae for culturing the photobioorganisms is supplied to the culture space 21 of the plate-type photobioreactor 20 through the medium supply unit 90.
  • the planar photobiological reaction vessel 20 is irradiated with light using the surface light source unit 80, and the medium for culturing stored in the storage space 21 using the gas supply unit 70. Feed oxygen and carbon dioxide.
  • the discharge hole of the gas supply pipe 71 is opened when the pressure is higher than the set pressure, it is possible to prevent the medium for culturing through the gas supply pipe 71 to flow back through the discharge pipe.
  • the control unit 150 includes an illuminance sensor 140, a dissolved-quantity sensor 130, a temperature sensor 151, a PH sensor 120 and a biomass concentration measuring sensor ( By optimizing the culture atmosphere by the signal detected from 145) it is possible to maximize the culture efficiency.
  • the cultured photobioorganisms are stored in the photobioorganic storage tank through the photobioorganic discharge pipe. This process enables the continuous production of photobioorganisms.
  • the plate-type photobioreactor module and the photobiological culture system using the same are irradiated with light from the outside of the plate-type photobioreactor using the surface light source unit, so that heat generated from the lamp module of the light source unit is cultured. It can be prevented from being delivered directly to the photobiological organism in question.
  • the photobiological culture system according to the present invention can be irradiated to a flat-type photobiological culture vessel using light irradiated from a lamp such as sunlight and a light emitting diode, so that the degree of freedom of design can be increased, and the light guide plate is used. Irradiation of the photobioreactor can maximize the uniformity of light distribution.
  • this photobiological culture system can be easily adjusted in the high concentration culture by microalgae by optimizing the culture conditions of photobiotic organisms, and can increase the spatial efficiency.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Clinical Laboratory Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A photobiological culture system of the present invention comprises: a flat-panel type photobiological culture container comprising culture panel bodies coupled to each other in order to provide a culturing space in which photobiological organisms can be injected so as to be cultured and having support ribs on the outer surface thereof at a predetermined interval, a gas supply pipe provided to penetrate, in a horizontal direction, the culturing space formed by the culture panel bodies and to discharge an inflow gas, and at least one eddy-forming partition extended from the inner wall of the culture panel bodies in the horizontal direction and formed in an arc shape so as to generate an eddy with respect to an ascending current of the gas supplied through the gas supply pipe; and a flat-panel type photobioreactor module provided with a surface light source unit provided on at least one side of the flat-panel type photobiological culture container so as to irradiate light for culturing the photobiological organisms.

Description

평판형 광생물반응기 모듈과 이를 이용한 광생물 배양 시스템Plate-type photobioreactor module and photobioculture system using the same
본 발명은 평판형 광생물 반응기 모듈과 이를 이용한 광생물 배양시스템에 관한 것으로, 더 상세하게는 광생물배양용기와 이 광생물배양용기에 광을 조사하기 위한 광조사구조가 개선된 평판형 광생물 반응기 모듈과 이를 이용한 광생물 배양시스템에 관한 것이다. The present invention relates to a flat panel bioreactor module and a photobiological culture system using the same, and more particularly, to a flat biofilm and an improved light irradiation structure for irradiating light to the photobiological culture vessel. It relates to a reactor module and a photobiological culture system using the same.
최근 산업체 배출 CO₂가 지구 온난화의 주범으로 지목됨에 따라 CO₂를 고정화하기 위해 미세조류를 활용하려는 연구가 활발하게 진행되고 있다.Recently, as industrial emission CO₂ is pointed out as the main culprit of global warming, researches are actively underway to utilize microalgae to fix CO₂.
미세조류는 다양한 능력에 기인하여, 폐수의 처리, 이산화탄소의 고정화 등의 역할을 수행할 수 있으며 연료물질, 화장품, 사료, 식용 색소와 의약용 원료 물질 등의 유용 물질을 생산하는 목적으로 사용되어 왔고, 유용한 고부가가치 물질들이 지속적으로 발견되어 그 활용범위를 넓혀 가고 있다.Microalgae can play a role in the treatment of wastewater, immobilization of carbon dioxide, etc., due to their various capabilities, and have been used for the production of useful substances such as fuels, cosmetics, feed, food coloring and pharmaceutical raw materials. In the meantime, useful and high value added substances are constantly being discovered and expanding their applications.
미세조류의 생체 중량 및 유용생산물 증가에 영향을 미치는 것으로써 배지의 조성, 온도, pH, 광도 등의 많은 요인들이 존재 하지만, 그 중에서도 광합성 미세조류의 특성상 빛이 차지하는 비중이 가장 크다. 일반적으로 이산화탄소 고정화를 목적으로 광합성 미세조류를 배양하는 장치는 크게 옥외에서 대량 배양을 하는 것(open system)과 광생물 반응기를 이용하는 것(closed system)으로 나눌 수 있다. 연못형(pond)을 포함하는 옥외 대량 배양장치의 경우 주로 호수 내지 대형 연못과 같은 형태의 반응시설을 사용하여 오고 있으며 일부 국가에서 상용화되어 있다. There are many factors such as the composition of the medium, temperature, pH, and brightness as it affects the increase in biomass and useful products of microalgae, but among them, light accounts for the largest portion of photosynthetic algae. In general, a device for culturing photosynthetic microalgae for the purpose of immobilizing carbon dioxide can be largely divided into a mass culture (open system) and a photobioreactor (closed system) outdoors. Outdoor mass cultivation apparatus including pond type has been mainly used in the form of reaction facilities such as lakes or large ponds and is commercially available in some countries.
그러나 이러한 형태의 배양시설은 초기 투자비가 적고 유지관리가 용이한 장점은 있으나, 오염, 분리 및 정제의 어려움, 낮은 세포농도, 많은 기질량(특히,질소원), 높은 수질 및 수량의 요구, 불규칙한 기후 조건, 비싼 인건 비 등의 문제들 때문에 그 설치가 극히 제한적일 수 밖에 없다. 특히 배양장치 내부로 효과적인 빛 전달이 이루어 지지 않아 균체의 성장속도가 느리고 균체의 성장 수율이 낮으며, 많은 양의 이산화탄소를 제거하기 위해서는 넓은 설치 공간이 필요한 단점을 가지고 있다. However, this type of cultivation facility has the advantages of low initial investment and easy maintenance, but it is difficult to contaminate, isolate and purify, low cell concentration, high mass (especially nitrogen source), high water quality and quantity demand, and irregular climate. Due to problems such as conditions, expensive labor costs, the installation is extremely limited. In particular, the effective growth of light is not achieved inside the culture apparatus, the growth rate of the cells is low, the growth yield of the cells is low, and a large installation space is required to remove a large amount of carbon dioxide.
현재 개발되어 있는 형태로는 일반 교반형 반응기, 판형 반응기, 관형 반응기, 칼럼형 반응기 등이 있고, 이러한 모든 종류의 반응기는 빛의 효율적인 전달이 반응기 설계에 있어서 가장 중요한 점이 되고 있다. 미세 조류세포의 농도가 낮을 때에는 배지, 기체 주입 등이 세포의 증식에 가장 중요한 요인이 되지만, 고농도에 도달하면 광도가 가장 중요한 인자가 된다. 왜냐하면 농도가 높아질수록 빛의 투과 길이가 짧아지기 때문이다.Currently developed forms include general stirred reactors, plate reactors, tubular reactors, column reactors, etc., and in all these types of reactors, efficient transmission of light is the most important point in reactor design. When the concentration of microalgae cells is low, medium and gas injection are the most important factors for cell proliferation, but when the high concentration is reached, the brightness is the most important factor. This is because the higher the concentration, the shorter the light transmission length.
즉, 미세조류가 배양되는 동안 가해지는 빛은 미세조류가 성장하면서 점점 부피가 커지게 되며 이로 인하여 반응기 표면에 있는 미세조류는 빛을 계속 공급 받을 수 있으나 반응기 내부에 있는 미세조류는 표면의 미세조류로 인하여 그림자 효과가 생기므로 성장하는데 필요한 빛의 양을 충분히 공급받을 수 없게 된다. 그러나 현재까지 고안된 대부분의 미세조류용 광생물 반응기들은 이러한 점을 극복하지 못하였고, 그 때문에 여타의 미생물용 생물 반응기에 비하여 그 생산 효율이 떨어졌다. 이를 극복하여 효율적으로 빛을 전달하기 위해. 최근에는 내부광원을 이용한 광생물 반응기가 연구되어지고 있다. 널리 사용되고 있는 광생물 반응기로는 외부광원으로 태양광을 이용하는 관형 광생물 반응기와 수직원주형 광생물 반응기 등이 알려져 있다. 상기 반응기는 태양광에 노출되는 조사 면적을 최대화하고 배양액 내부로의 빛 투과 거리를 짧게 하기 위하여, 좁고 긴 직사각형 또는 원통형 파이프를 조밀하게 밀착시켜 배양액을 순환시키는 구조를 갖는다.That is, the light applied while the microalgae is incubated becomes more and more bulky as the microalgae grows, so that the microalgae on the surface of the reactor can continue to receive light, but the microalgae inside the reactor are microalgae on the surface. Because of the shadow effect will not be able to receive enough light to grow. However, most of the microalgae photobioreactors designed to date do not overcome this point, and thus the production efficiency thereof is lower than that of other microbial bioreactors. To overcome this and to transmit light efficiently. Recently, photobioreactors using internal light sources have been studied. Widely used photobioreactors include tubular photoreactors and vertical columnar photobioreactors that use sunlight as an external light source. The reactor has a structure in which the narrow and long rectangular or cylindrical pipes are densely adhered to circulate the culture in order to maximize the irradiation area exposed to sunlight and to shorten the light transmission distance into the culture.
이러한 광생물 반응기는 각각의 형태에 있어서 장단점을 가지고 있다. 특히, 내부광원으로써 섬유를 이용한 반응기는 광효율은 좋으나 세포가 광섬유 표면에 부착하는 문제점이 있다. 또한, 내부광원으로써 형광등 등의 인공광원만을 사용하는 경우, 전기(에너지)를 과도하게 사용하므로 에너지 생산관점에서 효율적이지 못하다는 문제점이 있다. Such photobioreactors have advantages and disadvantages in their respective forms. In particular, the reactor using the fiber as the internal light source has a good light efficiency, but there is a problem that the cell adheres to the optical fiber surface. In addition, when only an artificial light source such as a fluorescent lamp is used as the internal light source, there is a problem in that it is not efficient in terms of energy production because of excessive use of electricity (energy).
이러한 문제점을 해결하기 위하여 대한민국 등록특허 제 0933741호에는 미세조류 대량 배양을 위한 광생물 반응기가 게시되어 있다. 게시된 반응기는 엘이디, 플랙시블 엘이디를 이용한 것으로 광원이 직접 배양액에 접촉된 구조를 가진다. 이러한 구조는 광원의 표면에 미세 조류가 부착되어 광효율이 떨어지게 된다.In order to solve this problem, Korean Patent No. 0933741 discloses a photobioreactor for culturing microalgae. The published reactor uses LEDs and flexible LEDs and has a structure in which the light source is directly in contact with the culture solution. In such a structure, micro algae are attached to the surface of the light source, thereby reducing light efficiency.
그리고 대한민국 특허 공개 제 2009-0055170호에는 원통형 광생물 반응기가 게시되어 있으며, 대한민국 등록 특허 제 0897019호에는 고효율 미세조류 배양용 광생물 반응기가 게시되어 있다. 이 반응기는 반사형 집광기와 광섬유를 이용하여 태양광을 광생물 반응기에 조사하는 구조를 가진다. 미국 등록출원 제 2009/0211150호에는 관형 광생물 반응기를 이용하여 미세조류인 글로렐라를 고농도로 배양하여 바이오매스 및 바이오디젤을 생산하는 기술적 구성이 개시되어 있으며, 미국 등록출원 제 2005/0255584호에는 광효율 향상을 위하여 투명소재의 칸막이를 사용함과 아울러 표면적 증가된 관형 광생물 반응기가 개시되어 있다. In addition, the Republic of Korea Patent Publication No. 2009-0055170 discloses a cylindrical photobioreactor, and the Republic of Korea Patent No. 0897019 discloses a photobiological reactor for high efficiency microalgae culture. This reactor has a structure in which sunlight is irradiated to the photobioreactor using a reflective collector and an optical fiber. US Patent Application No. 2009/0211150 discloses a technical configuration for producing biomass and biodiesel by culturing microalgae gloella at high concentration using a tubular photobioreactor, and US Patent Application No. 2005/0255584. In order to improve the light efficiency, a tubular photobioreactor having a surface area increased while using a partition of a transparent material is disclosed.
미국 특허등록 제 595876호에는 복합 포물형 집속기를 사용하여 태양광의 집광효율을 향상시킨 관형 광생물 반응기가 개시되어 있다. U.S. Patent No. 595876 discloses a tubular photobioreactor using a complex parabolic concentrator to improve the light collection efficiency of sunlight.
그리고 미국 특허출원 공개 US2009/0047722호(2009.02.19))에는 바이오매스 생산을 위한 시스템이 게시되어 있다. 게시된 광합성 유기체를 배양하기 위한 바이오리액터 시스템은 외부 표면과 내부 표면, 다수의 광합성 유기체와 배양 매체를 유지하기 위해 구성된 고립 공간을 한정하는 내부 표면을 가지는 컨테이너와, 컨테이너의 고립 공간에 수용된 하나 이상의 발광기판을 포함하는 조명 시스템을 구비하고 있습니다. And US 2009/0047722 (2009.02.19) discloses a system for the production of biomass. A bioreactor system for culturing published photosynthetic organisms includes a container having an outer surface and an inner surface, an inner surface defining an isolated space configured to hold a plurality of photosynthetic organisms and culture medium, and one or more contained in the isolated space of the container. Equipped with a lighting system that includes a light emitting substrate.
상술한 바와 같이 구성된 종래의 바이오리액터 시스템은 광생물 유기체를 배양하기 위한 컨테이너의 내부에 조명시스템이 설치되어 있으므로 상술한 바와 같이 광생물 유기체가 표면에 부착되는 문제점을 근본적으로 해결할 수 없다.In the conventional bioreactor system configured as described above, since the lighting system is installed inside the container for culturing the photobiotic organism, the problem of attaching the photobiotic organism to the surface as described above cannot be fundamentally solved.
특히, 조명시스템이 컨테이너의 내부에 설치되는 경우, 조명시스템으로부터 발생되는 열이 광생물 유기체에 직접적으로 전달되게 됨으로써 광생물이 괴사하거나 성장이 억제되는 문제점이 있다. In particular, when the lighting system is installed inside the container, heat generated from the lighting system is directly transmitted to the photobiotic organisms, so that the photo organisms may be necrotic or growth is suppressed.
본 발명은 상기 문제점을 해결하기 위한 것으로서, 광생물배양용기의 외부로부터 면광원을 조사하여 광의 조사 시 광원으로부터 조사되는 광이 광생물 유기체에 전달되는 것을 방지 할 수 있는 평판형 광생물반응기 모듈과 이를 이용한 광생물 배양 시스템을 제공함에 그 목적이 있다.The present invention is to solve the above problems, and the planar photobioreactor module that can prevent the light irradiated from the light source to be transmitted to the photobiotic organisms by irradiating the surface light source from the outside of the photobiological culture vessel and The purpose is to provide a photobiological culture system using the same.
본 발명의 다른 목적은 광생물 유기체의 배양환경을 최적의 상태로 유지하여 연속적인 배양이 가능한 평판형 광생물반응기 모듈과 이를 이용한 광생물 배양 시스템을 제공함에 있다. Another object of the present invention is to provide a flat-type photobioreactor module and a photobiological culture system using the same, which enables continuous culture by maintaining the culture environment of the photobiotic organism in an optimal state.
본 발명의 또 다른 목적은 평판형 광생물배양용기와 이에 광을 조사하기 위한 조명의 설계자유도를 높일 수 있으며, 광조사효율과 배광균일도 극대화시켜서 광생물유기체의 생산성을 높일 수 있는 평판형 광생물반응기 모듈과 이를 이용한 광생물 배양 시스템을 제공함에 있다.Another object of the present invention is to increase the degree of freedom of design of the flat-type photobiological culture vessel and the light for irradiating the light, and to maximize the light irradiation efficiency and the uniformity of light distribution, the flat photo-organism can increase the productivity of the photobioorganisms The present invention provides a reactor module and a photobiological culture system using the same.
상기 목적을 달성하기 위한 본 발명의 평판형 광생물반응기 모듈은 내부에 광생물유기체가 주입되어 배양될 수 있도록 상호 결합되어 배양공간이 마련되며, 외측표면에 일정간격으로 지지리브가 구비된 제1,2배양패널본체들과, 상기 제 1,2배양패널본체들에 의해 형성된 상기 배양공간을 횡방향으로 관통되게 설치되어 유입된 기체를 토출하는 기체공급관과, 상기 제1,2배양패널본체들의 내측 벽에 횡방향으로 연장되며 상기 기체공급관을 통해 공급된 기체의 상승기류에 대해 와류를 일으킬 수 있도록 호형으로 형성된 적어도 하나 이상의 와류형성격벽을 포함하는 평판형 광생물배양용기와;The plate-type photobioreactor module of the present invention for achieving the above object is provided with a culture space is coupled to each other to be cultured by injecting the photobioorganism therein, the first surface is provided with support ribs at regular intervals on the outer surface; 2 culture panel bodies, a gas supply pipe installed to penetrate the culture space formed by the first and second culture panel bodies in the transverse direction to discharge the gas introduced therein, and inside the first and second culture panel bodies. A flat type photobiological culture vessel extending transversely to the wall and including at least one vortex forming partition wall formed in an arc shape so as to cause vortices with respect to the ascending air flow of the gas supplied through the gas supply pipe;
상기 평판형 광생물배양용기의 적어도 일측에 설치되어 광생물유기체의 배양을 위한 광을 조사하는 면광원유닛을 구비한 것을 그 특징으로 한다. It is characterized in that it is provided on at least one side of the plate-shaped photobiological culture vessel provided with a surface light source unit for irradiating light for cultivation of the photobioorganism.
본 발명에 있어서, 상기 평판형 광생물배양용기를 구성하는 배양패널본체는 합성수지로 이루어지며 상기 배양패널본체들에 형성된 지지리브는 상부로부터 하부로 갈수록 간격이 좁아지며, 외광을 다중반사시켜 내부로의 광유입량을 증가시킬 수 있으며 배양액의 압력에 대응하는 복수개의 수평고강성부들과, 상기 수평고강성부와 단면이 동일하게 성형된 수직고강성부로 이루어진다. In the present invention, the culture panel body constituting the plate-shaped photobiological culture vessel is made of a synthetic resin and the support ribs formed in the culture panel bodies narrow the gap from the top to the bottom, and by reflecting the external light in multiple It is possible to increase the amount of light inflow of the plurality of horizontal high rigidity portion corresponding to the pressure of the culture medium, and consists of a vertical high rigidity portion formed in the same cross-section with the horizontal high rigidity portion.
상기 수평고강성부와 수직고강성부는 상기 배양패널본체에 단면이 반원형, 사다리꼴 또는 다각형의 형상중 하나의 형상을 가지도록 배양패널본체와 일체로 형성된다. The horizontal high rigidity part and the vertical high rigidity part are integrally formed with the culture panel body so that the cross-section of the culture panel body has one of a semi-circular, trapezoidal or polygonal shape.
상기 기체공급관은 설정된 압력 이상 시에 표면이 확장되는 복수개의 토출구를 구비한다. The gas supply pipe has a plurality of discharge ports whose surface is expanded at a set pressure or more.
상기 배양패널본체들을 가장자리가 상호 융착되어 이루어지거나 사각틀형상의 메인바디의 양측에 결합되어 배양공간을 형성한다. The culture panel main body is formed by fusion of the edges or coupled to both sides of the main body of the rectangular frame shape to form a culture space.
상기 와류형성격벽은 상기 기체공급관으로부터 상방으로 이격된 위치의 상기 메인바디의 내벽에서 횡방향으로 연장되고, 상기 제2메인패널본체의 밀착될 수 있는 위치의 제 1하단이 상기 전면에 위치되는 제1메인패널본체와 대향되는 제 1상단 보다 상기 기체공급관과의 이격거리가 짧은 호형으로 형성되며, 상기 제 1상단이 전면에 위치되는 제1메인패널본체의 내면으로부터 소정간격 이격되는 제 1와류형성격벽과,The vortex forming partition wall extends in the transverse direction from the inner wall of the main body at a position spaced upwardly from the gas supply pipe, the first lower end of the position that can be in close contact with the second main panel body is located on the front surface The first vortex is formed in an arc shape having a shorter distance from the gas supply pipe than the first upper end facing the main panel main body, and spaced apart from the inner surface of the first main panel main body in which the first upper end is located in front. Bulkhead,
상기 기체공급관으로부터 상방으로 이격된 위치의 상기 메인바디의 내벽에서 횡방향으로 연장되고, 상기 제1 메인패널본체의 밀착될 수 있는 위치의 제 2하단이 상기 후면에 위치되는 제2메인패널본체와 대향되는 제 2상단 보다 상기 기체공급관과의 이격거리가 짧은 호형으로 형성되며, 상기 제 2상단이 후면에 위치되는 제 2메인패널본체의 내면으로부터 소정간격 이격되는 제 2와류형성격벽을 구비한다. A second main panel body extending laterally from an inner wall of the main body at a position spaced upwardly from the gas supply pipe, and having a second lower end of a position where the first main panel body can be in close contact with the first main panel body; The second upper end is formed in an arc shape having a shorter distance from the gas supply pipe than the second upper end, and the second upper end is provided with a second vortex forming partition spaced apart from the inner surface of the second main panel main body located at the rear.
상기 제 1,2와류형성격벽에는 일정한 방향으로 와류를 일으킬 수 있도록 적어도 하나의 독립와류발생날개를 구비한다. The first and second vortex forming partitions are provided with at least one independent vortex generating wing to cause vortices in a predetermined direction.
그리고 상기 평판형광생물배양용기에는 하부측을 상기 배양공간의 내부로 미세조류인 광생물유기체의 배양을 위한 배지를 주입하기 위한 배지주입관이 설치되고, 상기 평판형 광생물배양용기의 상단부측에는 상기 배양공간의 내부로부터 배양된 광생물유기체를 배출하기 위한 미세조류배출관이 설치되며, 평판형광생물배양용기의 상단부측에는 상기 배양공간에서 상승하는 기체를 외부로 배출하기 위한 기체배출홀이 형성된다. And a plate inlet tube for injecting a medium for culturing the microalgae of the microalgae into the inside of the culture space in the plate fluorescent bio-culture vessel, and the upper side of the plate-type photobiological culture vessel. A microalgae discharge tube for discharging the photobioorganism cultured from the inside of the culture space is installed, the gas discharge hole for discharging the gas rising in the culture space to the outside is formed on the upper end side of the flat fluorescent culture culture vessel.
상기 평판형 광생물배양용기에 광을 조사하기 위한 면광원유닛은 도광판과, 상기 도광판의 가장자리에 설치되는 램프모듈을 구비하며, 상기 도광판의 배면에는 상기 램프모듈로부터 조사되는 광을 평판형 광생물 반응용기에 균일하게 조사하기 위해 광반사패턴이 형성된다.The planar light source unit for irradiating light onto the flat panel optical biological culture container includes a light guide plate and a lamp module installed at an edge of the light guide plate, and the light emitted from the lamp module is provided on the rear surface of the light guide plate. A light reflection pattern is formed to uniformly irradiate the reaction vessel.
한편, 상기 목적을 달성하기 위한 본 발명의 광생물 배양 시스템은 내부에 광생물유기체가 주입되어 배양될 수 있도록 상호 결합되어 배양공간이 마련되며, 외측표면에 일정간격으로 지지리브가 구비된 제1,2배양패널본체들과, 상기 제1,2배양패널본체들에 의해 형성된 상기 배양공간을 횡방향으로 관통되게 설치되어 유입된 기체를 토출하는 기체공급관과, 상기 제1,2배양패널본체들의 내측 벽에 횡방향으로 연장되며 상기 기체공급관을 통해 공급된 기체의 상승기류에 대해 와류를 일으킬 수 있도록 호형으로 형성된 적어도 하나 이상의 와류형성격벽을 포함하는 평판형 광생물배양용기와; 상기 평판형 광생물배양용기의 적어도 일측에 설치되어 광생물유기체의 배양을 위한 광을 조사하는 면광원유닛을 구비한 평판형 광생물반응기 모듈과,On the other hand, the optical organism culture system of the present invention for achieving the above object is provided with a culture space is coupled to each other to be cultured by injecting the photobioorganism therein, the outer surface is provided with a support rib at a predetermined interval, the first, Two culture panel bodies, a gas supply pipe installed to penetrate the culture space formed by the first and second culture panel bodies in a transverse direction and discharging the gas introduced therein, and inside the first and second culture panel bodies A flat type photobiological culture vessel extending transversely to the wall and including at least one vortex forming partition wall formed in an arc shape so as to cause vortices with respect to the ascending air flow of the gas supplied through the gas supply pipe; A plate-type photobioreactor module installed on at least one side of the plate-type photobiological culture vessel and having a surface light source unit for irradiating light for culturing the photobioorganism;
상기 평판형광생물배양용기에는 하부측을 상기 배양공간의 내부로 미세조류를 주입하기 위한 펌프가 설치된 배지공급관과 연결되며 배지가 저장되는 배지공급탱크와, 상기 평판형광생물배양용기의 상단부측과 연결된 미세조류배출관과 연결되어 배양된 광생물유기체를 저장하기 위한 광생물저장탱크와, 상기 평판형 광생물배양용기에 설치되어 배양되는 미세조류배양액의 PH값을 측정하기 위한 PH측정센서와, 산소 및 이산화 탄소의 용존량을 측정하기 위한 용존량측정센서와, 바이오매스농도측정센서와, 상기 면광원유닛으로부터 평판형 광생물반응기 모듈에 조사되는 광의 조도를 측정하기 위한 조도측정센서와,The plate fluorescent bio-culture vessel is connected to a medium supply pipe having a lower side connected to a medium supplying pipe equipped with a pump for injecting microalgae into the culture space, and a medium supply tank for storing the medium, and connected to an upper end side of the plate fluorescent bio-culture vessel. An optical biomass storage tank for storing the optical bioorganism cultured in connection with the microalgae discharge tube, a pH measuring sensor for measuring the pH value of the microalgal culture medium, which is installed and cultured in the flat optical culture vessel, oxygen and Dissolved amount measuring sensor for measuring the dissolved amount of carbon dioxide, biomass concentration measuring sensor, illuminance measuring sensor for measuring the illuminance of the light irradiated from the surface light source unit to the plate-type photobioreactor module,
상기 펌프, 조도측정센서, PH측정센서, 용존량측정센서, 바이오매스농도측정센서로부터 검출된 신호에 근거하여 광생물유기체를 연속생산 할 수 있도록 제어하는 제어유닛을 구비한 것을 그 특징으로 한다. It characterized in that it comprises a control unit for controlling the continuous production of optical bio-organic on the basis of the signal detected from the pump, illuminance measuring sensor, PH measuring sensor, dissolved volume measuring sensor, biomass concentration measuring sensor.
본 발명에 있어서, 상기 평판형 광생물배양용기에는 상기 배양되는 광생물 배양액의 온도를 측정하는 온도측정센서를 더 구비한다.In the present invention, the plate-type photobiological culture vessel further comprises a temperature measuring sensor for measuring the temperature of the cultured photobiological culture.
본 발명에 따른 평판형 광생물반응기 모듈과 이를 이용한 광생물 배양 시스템은 광생물 유기체의 배양 시 내부에 저장되는 배양액의 압력에 의해 평판형 광생물반응용기가 변형되는 것을 방지할 수 있으며, 면광원유닛에 의해 외부에서 내부로 광을 조사할 수 있으므로 면광원유닛으로부터 발생되는 열이 광생물반응기에 직접적으로 전달되는 것을 방지하여 광생물의 괴사를 방지 할 수 있다. The plate type photobioreactor module and the photobiological culture system using the same according to the present invention can prevent the plate type photobiological reaction vessel from being deformed by the pressure of the culture solution stored therein during the culture of the photobiological organism, and the surface light source. Since light can be irradiated from the outside to the inside by the unit, the heat generated from the surface light source unit can be prevented from being transferred directly to the photobioreactor, thereby preventing necrosis of the photo organism.
그리고 본 발명의 평판형 광생물반응기 모듈과 이를 이용한 광생물 배양 시스템은 광생물 유기체의 배양조건을 최적화 하여 광생물유기체의 연속생산이 가능하며 나아가서는 생산성의 향상을 도모할 수 있다.In addition, the plate-type photobioreactor module of the present invention and the photobiological culture system using the same are capable of continual production of photobioorganisms by optimizing the cultivation conditions of the photobiotic organism and further improving the productivity.
도 1은 본 발명에 따른 평판형 광생물반응기 모듈과 이를 이용한 광생물 배양 시스템을 나타내 보인 사시도,1 is a perspective view showing a plate-type photobioreactor module and a photobiological culture system using the same according to the present invention,
도 2는 도 1에 도시된 평판형 광생물반응기 모듈을 도시한 분리사시도,FIG. 2 is an exploded perspective view of the flat photoreactor module shown in FIG. 1;
도 3은 도 2에 도시된 평판형 광생물 반응용기의 단면도,3 is a cross-sectional view of the plate-type photobiological reaction vessel shown in FIG.
도 4는 본 발명에 따른 평판형 광생물반응기 모듈의 다른 실시예를 도시한 시시도,4 is a view showing another embodiment of a flat panel photobioreactor module according to the present invention;
도 5는 도 4에 도시된 평판형 광생물 배양용기의 단면도,FIG. 5 is a cross-sectional view of the flat plate type photobiological culture vessel shown in FIG. 4;
도 6은 본 발명에 따른 면광원 장치를 도시한 사시도,6 is a perspective view showing a surface light source device according to the present invention;
도 7, 10,11,12는 면광원장치를 개념적으로 도시한 평면도,7, 10, 11, 12 are plan views conceptually showing the surface light source device;
도 8 및 도 9는 광생물 배양시스템의 다른 실시예를 도시한 시시도. 8 and 9 are views showing another embodiment of the photobiological culture system.
본 발명에 따른 평판형 광생물반응기 모듈를 이용한 광생물 배양 시스템은 광생물유기체를 연속 배양생산 할 수 있는 것으로, 그 일 실시예를 도 1 내지 도 4에 나타내 보였다.The photobiological culture system using the plate-type photobioreactor module according to the present invention is capable of continuously culturing photobioorganisms, and an embodiment thereof is illustrated in FIGS. 1 to 4.
도면을 참조하면, 본 발명에 따른 평판형 광생물반응기 모듈과 이를 이용한 광생물 배양 시스템(10)은 내부에 광생물 유기체가 주입되어 배양될 수 있는 배양공간을 가지는 평판형 광생물배양용기(20)와, 상기 평판형 광생물배양용기(20)의 배양공간 하부측에 설치되는 기체공급관(71)과, 상기 평판형 광생물배양용기(20)의 적어도 일측에 설치되어 평판형 광생물배양용기(20)에 광생물유기체의 배양을 위한 광을 조사하는 면광원유닛(80)을 포함하는 평판형 광생물반응기 모듈을 포함한다. 상기 기체공급관(71)을 통하여 배양되는 광생물 유기체가 저장된 배양공간에 산소와 이산화탄소를 공급하기 위한 가스공급유닛(70)을 구비한다. Referring to the drawings, the plate-type photobioreactor module and the photobiological culture system 10 using the same according to the present invention is a plate-type photobiological culture vessel having a culture space that can be cultured by injecting photobiological organisms therein (20) ), A gas supply pipe (71) installed at the lower side of the culture space of the plate-type photobiological culture vessel 20, and at least one side of the plate-type photobiological culture vessel (20) (20) includes a flat type photobioreactor module including a surface light source unit 80 for irradiating light for culturing photobioorganisms. It is provided with a gas supply unit 70 for supplying oxygen and carbon dioxide to the culture space in which the photobiotic organisms cultured through the gas supply pipe 71 is stored.
그리고 상기 평판형 광생물배양용기(20)의 하부측과 상기 배양공간의 내부로 미세조류 및/또는 배지를 주입하기 위한 펌프(91)가 설치된 배지주입관(92)과 연결되며 미세조류를 배양하기 위한 배지가 저장되는 배지저장탱크(93)를 포함하는 배지공급유닛(90)과, 상기 평판형 광생물배양용기(20)의 상단부측과 연결된 미세조류배출관(101)과 연결되어 배양된 광생물유기체를 저장하기 위한 광생물유기체저장탱크(100)를 광생물유기체저장유닛(110)과, 상기 평판형 광생물배양용기에 설치되는 것으로, 배양되는 미세조류배양액의 PH값을 측정하기 위한 PH측정센서(120)와, 산소 및 이산화 탄소의 용존량을 측정하기 위한 용존량측정센서(130)와, 상기 면광원유닛(80)으로부터 평판형 광생물반응기 모듈에 조사되는 광의 조도를 측정하기 위한 조도측정센서(140)와, 바이오매스농도측정센서(145)와, 상기 펌프, 조도측정센서, PH측정센서, 용존량측정센서, 바이오매스농도측정센서로부터 검출된 신호에 근거하여 광생물유기체를 연속생산 할 수 있도록 제어하는 제어유닛(150)을 구비한다. And a medium inlet tube 92 having a pump 91 for injecting microalgae and / or a medium into the lower side of the plate-type photobiological culture vessel 20 and the inside of the culture space, and incubating the microalgae. Culture medium supply unit (90) comprising a medium storage tank (93) for storing a medium for storing the light and the cultured in connection with the microalgae discharge pipe (101) connected to the upper end side of the flat optical culture vessel (20) The optical bioorganic storage tank 100 for storing the biological organisms is installed in the optical bioorganic storage unit 110 and the flat optical culture vessel, and the PH for measuring the pH value of the cultured microalgal culture liquid Measuring sensor 120, dissolved amount measuring sensor 130 for measuring the dissolved amount of oxygen and carbon dioxide, and for measuring the illuminance of the light irradiated to the planar photobioreactor module from the surface light source unit 80 Illuminance measuring sensor 140, Control to control the continuous production of the photobioorganic gas based on the signal detected from the ion mass concentration sensor 145, the pump, roughness sensor, PH measurement sensor, dissolved volume measurement sensor, biomass concentration measurement sensor The unit 150 is provided.
상술한 바와 같이 구성된 본 발명에 따른 광생물 배양 시스템(10)을 구성요소별로 보다 상세하게 설명하면 다음과 같다. Referring to the photobiological culture system 10 according to the present invention configured as described in more detail by component as follows.
상기 평판형 광생물 반응기 모듈(10)을 구성하는 평판형 광생물배양용기(20)는 도 1 및 도 3에 도시된 바와 같이 내부에 광생물유기체가 주입되어 배양될 수 있도록 상호 결합되어 배양공간(21)을 형성하는 제 1,2배양패널본체(22)(23)를 구비하는데, 이 제1,2배양패널본체(22)(23)는 투명한 재질, 유리 또는 합성수지재로 이루어진다. 상기 제 1,2배양패널본체(22)(23)는 격자상(사각틀) 형상의 메인바디(24)의 양측에 체결부재(25)에 의해 결합되어 배양공간(21)을 형성하게 된다. The plate-type photobiological culture vessel 20 constituting the plate-type photobioreactor module 10 is cultured by being coupled to each other so that the photobioorganism is injected and cultured therein as shown in FIGS. 1 and 3. First and second cultured panel bodies 22 and 23 forming 21 are provided, and the first and second cultured panel bodies 22 and 23 are made of a transparent material, glass or synthetic resin material. The first and second culture panel bodies 22 and 23 are coupled to both sides of the main body 24 having a lattice shape (square frame) by the fastening member 25 to form a culture space 21.
상기 제 1,2배양패널본체(22)(23)에는 표면에 설치되거나 이에 접촉되도록 상기 메인바디(24)에 지지되는 지지리브(30)에 의해 지지된다. 상기 지지리브(30)는 메인바디(24)의 상호 대응되는 측에 설치되는 브라켓(31)들에 의해 양단부가 지지된다. 이때에 지지리브는 판상의 부재(32)로 이루어진다. 판상의 부재로 이루어진 지지리브(30)는 제 1 또는 제 2배양패널본체(22)(23)의 표면과 직각을 이루도록 설치된다. 이러한 지지리브(30)는 평판형 광생물배양용기(20)의 배양공간에 내에서 배양액에 의해 발생되는 수압에 의해 제 1,2배양패널본체(22)(23) 및 메인바디(24)가 변형되는 것이 방지된다. The first and second culture panel bodies 22 and 23 are supported by support ribs 30 supported on the main body 24 to be installed on or in contact with the surface. The support ribs 30 are supported at both ends by brackets 31 provided at mutually opposite sides of the main body 24. At this time, the support rib is composed of a plate-like member (32). The support rib 30 made of a plate-shaped member is installed to be perpendicular to the surface of the first or second culture panel bodies 22 and 23. The support ribs 30 are the first and second culture panel main body 22, 23 and the main body 24 by the water pressure generated by the culture medium in the culture space of the plate-shaped photobiological culture vessel 20 Deformation is prevented.
그리고 상기 제 1,2배양패널본체(22)(23)에 의해 형성되는 배양공간에는 상기 기체공급관(71)로부터 공급되는 산소 또는 이산화탄소의 용존력을 높이고 배양액의 순환을 위한 와류형성격벽(40)이 형성된다. In the culture space formed by the first and second culture panel bodies 22 and 23, the vortex forming partition 40 increases the dissolved capacity of oxygen or carbon dioxide supplied from the gas supply pipe 71 and circulates the culture solution. Is formed.
상기 와류형성격벽(40)은 상기 기체공급관(71)으로부터 상방으로 이격된 위치의 상기 메인바디(24)의 내벽에서 횡방향으로 연장된 제 1와류형성격벽(41)이 형성되는데, 이 제 1와류형성격벽(41)은 상기 제1 배양패널본체의 밀착될 수 있는 위치의 제 1하단(41a)이 상기 전면에 위치되는 제2배양패널본체와 대향되는 제 1상단(41b) 보다 상기 기체공급관(71)과의 이격거리가 짧은 호형으로 형성된다. 그리고 제 1와류형성격벽(41)의 상부측에는 제 2와류형성격벽(42)가 형성되는데, 상기 제 2와류형성격벽(42)은 상기 기체공급관(71)으로부터 상방으로 이격된 위치의 상기 메인바디(24)의 내벽에서 횡방향으로 연장되고, 상기 전면 상기 제2메인패널본체의 밀착될 수 있는 위치의 제 2하단(42a)이 상기 제1배양패널본체와 대향되는 제 2상단(42b) 보다 상기 기체공급관(71)과의 이격거리가 짧은 호형으로 형성된다. 그리고 상기 제 1,2와류형성격벽(41)(42)에는 일정한 방향으로 와류를 일으킬 수 있도록 적어도 하나의 독립와류발생날개(43)들이 형성된다. The vortex forming partition 40 is formed with a first vortex forming partition 41 extending laterally from an inner wall of the main body 24 at a position spaced upwardly from the gas supply pipe 71. Vortex forming partition 41 is the gas supply pipe than the first upper end (41b) of the first lower end 41a of the position where the first culture panel body can be in close contact with the second culture panel body located on the front side A spaced distance from 71 is formed in a short arc shape. In addition, a second vortex forming partition 42 is formed on an upper side of the first vortex forming partition 41, wherein the second vortex forming partition 42 is spaced upwardly from the gas supply pipe 71. A second lower end 42a extending laterally from the inner wall of the upper surface 24 and in close contact with the second main panel main body of the front surface is opposed to the second upper end 42b facing the first culture panel main body. The separation distance from the gas supply pipe 71 is formed in a short arc shape. At least one independent vortex generating wing 43 is formed in the first and second vortex forming partitions 41 and 42 to cause vortices in a predetermined direction.
상기 제 1,2와류형성격벽(41)(42)은 기체공급관(71)으로부터 배양공간의 상방으로 소정간격 이격되면서 복수개 설치될 수 있다. 상기 제 1,2와류형성격벽은 상술한 실시예에 의해 한정되지 않고 배양공간을 이루는 제1,2배양패널본체(22)(23)의 내면에 소정의 간격으로 설치되는 복수개의 유도깃(날개)로 이루어질 수도 있다. The first and second vortex forming partitions 41 and 42 may be provided in plural and spaced apart from the gas supply pipe 71 by a predetermined interval above the culture space. The first and second vortex forming partitions are not limited to the above-described embodiments, and a plurality of guide vanes (wings) are installed at predetermined intervals on the inner surface of the first and second culture panel bodies 22 and 23 forming a culture space. It may be made of).
도 4 내지 도 5에는 본 발명에 따른 평판형 광생물반응용기의 다른 실시예를 나타내 보였다. 4 to 5 show another embodiment of a flat plate type photoreaction vessel according to the present invention.
도면을 참조하면, 본 발명에 따른 평판형광생물 반응용기(50)는 합성수지재에 의해 진공 사출성형 된 1,2케이스부재(51)(55)가 상호 결합되어 이루어진다.Referring to the drawings, the plate fluorescent biological reaction container 50 according to the present invention is made by combining the first and second case members 51, 55 vacuum-molded by a synthetic resin material.
상기 평판형 광생물 반응용기(50)를 이루는 제 1케이스부재(51)는 진공사출성형에 의해 이루어진 것으로, 각각 제1평면부(52)와, 상기 제1 평면부(52)의 가장자리로부터 수직방향으로 절곡된 제1스커트부(53)와, 상기 스커트부(53)로부터 반경방향으로 연장되는 제 1연결부(54)를 구비한다. 그리고 상기 제 2케이스부재(55)는 제 1케이스부재(51)와 같이 제 1평면부(52)와 대응되는 제 2평면부(56)와, 상기 제2 평면부(56)의 가장자리로부터 수직방향으로 절곡된 제2스커트부(57)와, 상기 제 2스커트부(57)로부터 반경방향으로 연장되어 제 1연결부(54)와 결합되는 제 2연결부(58)를 구비한다. The first case member 51 constituting the plate-type photobiological reaction vessel 50 is formed by vacuum injection molding, and is perpendicular to the first plane portion 52 and the edge of the first plane portion 52, respectively. And a first skirt portion 53 bent in a direction and a first connecting portion 54 extending radially from the skirt portion 53. The second case member 55, like the first case member 51, is perpendicular to the second flat portion 56 corresponding to the first flat portion 52 and an edge of the second flat portion 56. The second skirt portion 57 bent in a direction and a second connecting portion 58 extending radially from the second skirt portion 57 and engaged with the first connecting portion 54.
상기 제 1연결부(54)와 제 2연결부(58)는 초음파 융착 또는 진동융착 된다. 상기 제1,2연결부(54)(58)의 접합은 상술한 실시예에 의해 한정되지 않고, 접합 또는 패킹을 개재시킨 상태에서 볼트와 너트, 클립 등과 같은 결합부재에 의해 결합될 수 있다.  The first connection portion 54 and the second connection portion 58 are ultrasonically fused or vibration-fused. Bonding of the first and second connectors 54 and 58 is not limited to the above-described embodiment, and may be coupled by a coupling member such as a bolt, a nut, and a clip in a state of bonding or packing.
상기 제 1,2케이스부재(51)(55)의 제1,2평면부(52)(56)에는 상단부측으로부터 하단부측으로 갈수록 점차적으로 간격이 좁아지는 수평고강성부(61)들이 형성된다. 상기 수평고강성부(61)는 외광을 다중반사시켜 내부로의 광유입량을 증가시킬 수 있으며, 제1,2케이스부재(51)(55)의 구조적 강도를 향상시킬 수 있는 것으로, 제 1,2평면부(52)(56)의 길이 방향에 대해 직각 방향으로 상호 나란하게 형성되거나 광의 조사영역 또는 구조적 강도를 감안하여 경사방향으로 형성될 수 있다. 또한 상기 수평고강성부(61)는 제 1,2평면부(52)(56)에 수평방향과 경사방향이 조합되어 형성되거나 수평방향과 곡선방향이 조합되어 형성될 수 있다. 상기 광생물 반응용용기는 대형화됨에 따라 내부에 채워진 배양액의 하중에 의해 제1,2케이스부재(51)(55)에 작용하는 압력은 상부측으로부터 하부측으로 갈수록 증가되는데, 이 증가된 압력상태에 따라 수평고강성부(61)의 간격은 하부측으로 갈수록 조밀하게 형성함이 바람직하다. The first and second flat portions 52 and 56 of the first and second case members 51 and 55 are formed with horizontal high rigidity portions 61 which gradually become narrower from the upper end side to the lower end side. The horizontal high rigidity portion 61 may increase the amount of light flowing into the inside by multi-reflecting the external light, and can improve the structural strength of the first and second case members 51 and 55, The planar portions 52 and 56 may be formed parallel to each other in a direction perpendicular to the longitudinal direction, or may be formed in an inclined direction in consideration of an irradiation area or structural strength of light. In addition, the horizontal high rigidity portion 61 may be formed by combining a horizontal direction and an inclined direction in the first and second flat portions 52 and 56 or a combination of the horizontal direction and the curved direction. As the photobiological reaction vessel is enlarged, the pressure acting on the first and second case members 51 and 55 by the load of the culture solution filled therein increases from the upper side to the lower side. Accordingly, the spacing of the horizontal high rigidity portion 61 is preferably formed closer to the lower side.
그리고 제 1,2케이스부재(51)(55)에는 제 1,2평면부(52)(56)의 길이 방향으로 수직고강성부(66)가 형성될 수 있다. 상기 수직고강성부(62)는 상기 수평고강성부(61)와 교차되도록 형성되는데, 이에 한정되지는 않는다. The first and second case members 51 and 55 may have a vertically rigid portion 66 formed in the longitudinal direction of the first and second planar portions 52 and 56. The vertical high rigidity portion 62 is formed to intersect the horizontal high rigidity portion 61, but is not limited thereto.
상기와 같이 제 1,2케이스부재(51)(55)의 제1,2평면부(52)(56)에 각각 형성된 수평고강성부(61)와 수직고강성부(62)는 외부로부터 유입되는 외광 즉, 태양광 또는 램프로부터 조사되는 광을 다중반사시킬 수 있도록 제1,2평면부(52)(56)에 단면이 반원형, 사다리꼴 또는 다각형의 형상중 하나의 형상을 가지도록 성형 시 제1,2평면부(52)(56)의 표면으로부터 인입되어 형성된다. As described above, the horizontal high rigidity portion 61 and the vertical high rigidity portion 62 respectively formed on the first and second flat portions 52 and 56 of the first and second case members 51 and 55 are external light introduced from the outside. In other words, the first and second flat portions 52 and 56 may have a cross-sectional shape in one of semi-circular, trapezoidal, or polygonal shapes so as to multi-reflect light emitted from sunlight or a lamp. It is formed by drawing in from the surfaces of the two flat portions 52 and 56.
그리고 제 1,2평면부(52)(56)가 인입 형성된 수평고강성부(61)와 수직고강성부(62)의 저면과 양측면에는 음의 파워를 가지는 렌즈부 또는 양의 파워를 가지는 렌즈부가 형성될 수 있다. In addition, a lens portion having a negative power or a lens portion having a positive power is formed on the bottom and both sides of the horizontal high rigidity portion 61 and the vertical high rigidity portion 62 having the first and second flat portions 52 and 56 introduced therein. Can be.
한편, 상기 제 1,2평면부(52)(56)의 내면에는 상호 대향되는 내면에는 미세조류가 배양되는 배양액의 흐름을 간섭하여 와류를 발생시킬 수 있도록 다수의 와류발생부(63)(64)들이 형성되는데, 제1,2케이스의 내면으로부터 배양공간의 내측으로 돌출되며 상호 교호적으로 형성된다. On the other hand, the inner surface of the first and second flat parts 52, 56, the plurality of vortex generators 63 (64) on the inner surfaces facing each other so as to interfere with the flow of the culture medium in which the microalgae are cultured. ) Are formed, protruding from the inner surface of the first and second cases to the inside of the culture space and formed alternately.
그리고 한편, 광생물 배양 시스템(10)에 있어서, 상기 평판형 광생물반응용기(20)의 양측에 설치되어 평판형 광생물 반응용기(20)에 광을 조사하기 위한 면광원유닛(80)은 도 6 및 도 7에 도시된 바와 같이 투명한 판상의 부재로 이루어진 도광판(81)과, 상기 도광판(81)의 가장자리에는 날씨에 관계없이 광을 조사할 수 있도록 광원인 램프 모듈(85)들이 설치된다. 상기 도광판(81)의 적어도 일측에는 광파이버 또는 상기 램프 모듈(85)로부터 조사되는 광을 전면 측으로 조사될 수 있도록 산란 또는 반사시키기 위한 확산패턴(82)이 형성된다. 상기 확산패턴(82)은 도광판(81)의 배면에 잉크를 이용하여 형성된 반사 패턴으로 이루어지거나 레이저빔 또는 기계적인 가공에 의해 도광판(81)의 배면에 형성될 수 있다. 상기 확산패턴(82)은 도광판(81)의 배면에 그루브(예컨대, 단면 V 형상의 홈)가 소정의 패턴으로 형성되어 이루어질 수 있다. 상기 그루브의 형성패턴는 스크롤 형상, 격자형상, 중첩된 다각형의 형상, 피치가 다른 수평 또는 수직의 홈들로 이루어질 수 있다. 상기 도광판(81)에 형성된 확산패턴(82)이 격자상으로 형성된 가장자리와 나라한 중앙부로부터 가장자리 즉, 램프모듈(85)이 설치된 가장자리로 갈수록 성글게형성(격자의 패턴의 커지도록 형성)함이 바람직하다. 또는 도광판(81)의 수평 및 수직방향으로의 중앙부로부터 가장 상하방향 및 양측으로 갈수록 성글게 형성될 수 있다. On the other hand, in the photobiological culture system 10, the surface light source unit 80 is installed on both sides of the flat photobiological reaction vessel 20 for irradiating light to the flat photobiological reaction vessel 20 As illustrated in FIGS. 6 and 7, a light guide plate 81 made of a transparent plate-like member and lamp modules 85 as light sources are installed at edges of the light guide plate 81 to irradiate light regardless of the weather. . A diffusion pattern 82 is formed on at least one side of the light guide plate 81 to scatter or reflect the optical fiber or the light emitted from the lamp module 85 to the front side. The diffusion pattern 82 may be formed of a reflective pattern formed on the rear surface of the light guide plate 81 using ink or may be formed on the rear surface of the light guide plate 81 by laser beam or mechanical processing. The diffusion pattern 82 may be formed by forming a groove (eg, a V-shaped groove) on a rear surface of the light guide plate 81 in a predetermined pattern. The groove forming pattern may include a scroll shape, a grid shape, a shape of an overlapping polygon, and horizontal or vertical grooves having different pitches. Preferably, the diffusion pattern 82 formed on the light guide plate 81 is formed in a lattice form from an edge formed in a lattice shape and a central portion of the light guide plate 81 to an edge, that is, an edge at which the lamp module 85 is installed. Do. Alternatively, the light guide plate 81 may be sparsely formed from the center in the horizontal and vertical directions toward the most up and down direction and both sides.
그리고 상기 도광판(81)의 배면에는 광파이버와 램프모듈(85)로부터 조사되어 도광판(81)의 배면으로 조사되는 광을 반시시키기 위하여 반사판(89)이 설치될 수 있으며, 상기 도광판(81)의 전면에는 각 부위에서 조사되는 광의 조도를 일정하게 하기 위하여 확산판(미도시)이 부착될 수도 있다. 상기 도광판은 투명한 합성수지, 유리, 석영 등으로 이루어질 수 있다. In addition, a reflector plate 89 may be installed on the rear surface of the light guide plate 81 so as to reflect the light irradiated from the optical fiber and the lamp module 85 onto the rear surface of the light guide plate 81, and the front surface of the light guide plate 81. In order to make the illuminance of light irradiated from each site constant, a diffusion plate (not shown) may be attached. The light guide plate may be made of transparent synthetic resin, glass, quartz, and the like.
그리고 도광판(81)의 가장자리에 설치되는 램프모듈(85)은 도 6에 도시된 바와 같이 도광판(81)의 양 측면에 각각 설치되는 것으로, 도광판(81)의 측면에 설치되는 제 1램프 모듈(86)과, 이와 대응되는 가장자리 또는 하면에 설치되는 제 2램프 모듈(87)을 구비한다. 상기 제 1,2램프 모듈(86)(87)은 실질적으로 동일한 구조를 가지는 것으로, 각각 도광판(81)의 측면 또는 하면의 폭과 동일한 폭을 가지는 회로기판(86a),(87a)과, 상기 회로기판(86a)(87a)에 소정의 간격으로 설치되어 상기 도광판(81)의 가장자리로부터 광을 조사하기 위한 발광다이오드(86b),(87b)를 구비한다. And the lamp module 85 is installed on the edge of the light guide plate 81 is installed on both sides of the light guide plate 81 as shown in Figure 6, the first lamp module (installed on the side of the light guide plate 81 ( 86 and a second lamp module 87 installed at an edge or a lower surface thereof. The first and second lamp modules 86 and 87 have substantially the same structure, and each of the circuit boards 86a and 87a having the same width as that of the side or bottom surface of the light guide plate 81, and Light emitting diodes 86b and 87b are provided on the circuit boards 86a and 87a at predetermined intervals to irradiate light from the edge of the light guide plate 81.
여기에서 상기 발광다이오드(86b),(87b)와 대응되는 도광판(81)의 측면과 하면에는 인입홈(81a)이 형성되어 발광다이오드(86b),(87b)가 이 인입홈(82a)에 삽입됨으로써 광이 도광판 가장자리의 주변으로 산란되지 않도록 함이 바람직하고, 이 인입홈(82a)의 내면에는 광을 산란하기 위한 요철을 형성함이 바람직하다. Here, inlet grooves 81a are formed in the side and bottom surfaces of the light guide plate 81 corresponding to the light emitting diodes 86b and 87b, so that the light emitting diodes 86b and 87b are inserted into the inlet grooves 82a. It is preferable to prevent the light from being scattered around the edge of the light guide plate, and it is preferable to form irregularities for scattering the light on the inner surface of the drawing groove 82a.
상기 도광판(81)에 광을 조사하기 위한 램프 모듈은 상술한 실시예에 의해 한정되지 않고 냉음극형광램프(CCFL;cold cathode fluorescent lamp)들을 사용할 수 있다. 이 경우 도광판(81)의 가장자리에 밀착된 냉음극형광램프와 도광판의 가장자리를 감싸 냉음극형광램프로부터 조사되는 광이 도광판 이외의 영역으로 조사되는 것을 방지하는 반사부재가 설치될 수 있다. The lamp module for irradiating light to the light guide plate 81 is not limited to the above-described embodiment and may use cold cathode fluorescent lamps (CCFL). In this case, a cold cathode fluorescent lamp in close contact with the edge of the light guide plate 81 and a reflective member may be provided to surround the edge of the light guide plate to prevent light emitted from the cold cathode fluorescent lamp from being irradiated to a region other than the light guide plate.
상기 도광판(81)이 상기 평판형 광생물 반응용기(20)의 사이에 위치되는 경우, 각각의 평판형 광생물 반응용기(20)에 조사될 수 있도록 복수개의 도광판(81)을 설치할 수 있다. 상기 면광원유닛은 상술한 실시예에 의해 한정되지 않고, 평판형부재에 다수의 발광다이오드들이 설치되어 구성될 수 있다. When the light guide plate 81 is positioned between the flat photobiological reaction vessels 20, a plurality of light guide plates 81 may be installed to be irradiated to each flat photobiological reaction vessel 20. The surface light source unit is not limited to the above-described embodiment, and a plurality of light emitting diodes may be installed in the flat member.
한편, 면광원유닛은 도 8에 도시된 바와 같이 집광렌즈(160)를 이용하여 태양광을 집광한 후 도광판(81)의 가장자리에 조사하여 태양광을 평판형 광생물배양용기에 조사할 수 있다. 또한 , 도 9 내지 도 11에 도시된 바와 같이 태양광을 집광렌즈(160)를 이용하여 집광한 후 집광된 광을 광파이버(161)를 이용하여 도광판(81)의 가장자리에 조사함으로써 도광판(81)을 통하여 평판형 광생물배양용기(20)에 태양광을 조사할 수 있다. 이러한 태양광의 조사는 광생물 배양시스템이 외부에 설치된 경우 맑은 날에는 태양광을 이용하여 평판형 광생물 배양용기(20)에 광을 조사하고, 흐린 날이나 밤에는 도광판(81)의 가장자리에 설치된 램프모듈을 이용하여 광을 조사한다. 여기에서 도 10 및 도 11에 도시된 바와 같이 도광판의 가장자리에 집광렌즈와 연결된 광파이버의 단부를 설치하고, 도광판의 양측 및 하면측 가장자리에 램프모듈을 설치할 수 있으며, 도 11에 도시된 바와 같이 도광판의 양측 가장자리에 램프모듈의 설치하고 하부측 가장자리에 집광렌즈와 연결된 광파이버를 설치할 수 있는데, 이 경우 반사패턴은 수직방향의 중앙부와 광파이버와 접속된 부위와 대응되는 상부측 가장자리를 조밀하게 형성할 수 있다. 그리고 도 12에 도시된 바와 같이 집관렌즈에 의해 집광된광을 조사하기 위한 광파이버와 램프모듈을 각 도광판의 가장자리에 설치하여 평판형 광생물배양용기에 광을 조사할 수 있다. Meanwhile, as shown in FIG. 8, the surface light source unit collects sunlight using the condenser lens 160 and then irradiates the edge of the light guide plate 81 to irradiate the sunlight into a flat optical culture vessel. . In addition, as illustrated in FIGS. 9 to 11, after the solar light is collected using the condenser lens 160, the condensed light is irradiated to the edge of the light guide plate 81 using the optical fiber 161. Sunlight can be irradiated to the plate-type photobiological culture vessel 20 through. When the photovoltaic culture system is installed outside, the irradiation of sunlight irradiates light onto the flat type photobiological culture vessel 20 using sunlight on a sunny day, and is installed at the edge of the light guide plate 81 on a cloudy day or at night. Irradiate light using the lamp module. Here, as shown in FIGS. 10 and 11, an end portion of the optical fiber connected to the condenser lens may be installed at the edge of the light guide plate, and lamp modules may be installed at both side and bottom edges of the light guide plate, as shown in FIG. 11. The lamp module may be installed at both edges of the lamp module, and the optical fiber connected to the condenser lens may be installed at the lower edge of the lamp module. In this case, the reflective pattern may form a densely formed upper edge corresponding to the center portion in the vertical direction and the portion connected to the optical fiber. have. As shown in FIG. 12, an optical fiber and a lamp module for irradiating the light collected by the collecting lens may be installed at the edge of each light guide plate to irradiate light onto the flat optical culture vessel.
상기 기체공급관(71)에 산소 또는 이산화 탄소를 공급하기 위한 가스공급유닛(70)은 상기 기체공급관(71)에 밸브가 설치되는 연결관(72)이 연결되고, 이 연결관(72)과 연결된 분기관(73)(74)들에 의해 이산화탄소탱크(75)와 산소탱크(76)이 연결된다. 상기 분기관(73)(74)들에는 가스의 공급을 단속하는 밸브(77)(78)들이 설치된다. 상기 기체공급관(71)은 플랙시블하며 탄성력을 가지는 튜브로 이루어지며, 이 기체공급관(71)에는 토출공(71a)들이 소정의 간격으로 형성된다. 이 토출공(71a)은 기체공급관(71) 내의 압력이 설정된 압력 이상이 될 때에 상기 튜브가 팽창하면서 열릴 수 있도록 형성된다. 이를 위해 상기 기체공급관에 형성된 토출공은 0.01 내지 0.05mm 로 형성되어 기체공급관(71)의 탄성력에 의해 평상시에는 차단되도록 함이 바람직하다. The gas supply unit 70 for supplying oxygen or carbon dioxide to the gas supply pipe 71 is connected to a connection pipe 72 in which a valve is installed at the gas supply pipe 71, and connected to the connection pipe 72. The carbon dioxide tank 75 and the oxygen tank 76 are connected by the branch pipes 73 and 74. The branch pipes 73 and 74 are provided with valves 77 and 78 for controlling the supply of gas. The gas supply pipe 71 is made of a flexible and elastic tube, the discharge hole 71a is formed in the gas supply pipe 71 at predetermined intervals. The discharge hole 71a is formed so that the tube can be opened while expanding when the pressure in the gas supply pipe 71 becomes equal to or higher than the set pressure. To this end, the discharge hole formed in the gas supply pipe is preferably formed in 0.01 to 0.05mm to be normally blocked by the elastic force of the gas supply pipe (71).
상기 배지공급유닛(90)의 배지공급관(92)에는 배지의 공급을 단속하기 위한 밸브가 설치될 수 있으며, 상기 광생물유기체 저장유닛(110)을 구성하는 광생물유기체 배출관(101)에는 배양이 완료된 광생물유기체의 배출을 단속하기 위한 컨트롤밸브(103)이 설치될 수 있다. The medium supply pipe 92 of the medium supply unit 90 may be provided with a valve for intermittent supply of the medium, the culture of the photobioorganic discharge pipe 101 constituting the optical bioorganic storage unit 110 is cultured A control valve 103 may be installed to control the discharge of the completed photobioorganic gas.
그리고 상기 제어유닛(150)은 광생물유기체를 연속생산 가능하게 한 것으로, 각각의 센서 즉, PH측정센서(120)와, 산소 및 이산화 탄소의 용존량을 측정하기 위한 용존량측정센서(130)와, 상기 면광원유닛(70)으로부터 평판형 광생물반응기 모듈에 조사되는 광의 조도를 측정하기 위한 조도측정센서(140)와, 바이오매스농도측정센서(145)의 신호에 근거하여 시스템을 제어하는 마이크로 컴퓨터를 구비한다. 상기 바이오매스농도측정센서(탁도센서)는 Opt다 ASD19-N을 사용함이 바람직하며, 상기 용존산소센서는 Mettler toledo M300을 사용함이 바람직하다. In addition, the control unit 150 enables continuous production of the photobioorganism, and each sensor, that is, the PH measuring sensor 120 and the dissolved amount measuring sensor 130 for measuring the dissolved amount of oxygen and carbon dioxide. And a system for controlling the system based on a signal of an illuminance measuring sensor 140 and a biomass concentration measuring sensor 145 for measuring illuminance of light irradiated from the surface light source unit 70 to the flat panel bioreactor module. Equipped with a microcomputer. The biomass concentration measurement sensor (turbidity sensor) is Opt is preferably used ASD19-N, the dissolved oxygen sensor is preferably used Mettler toledo M300.
그리고 상기 제어유닛은 상기 평판형 광생물배양용기에 의해 배양된 광생물의 온도를 측정하기 위한 온도센서(151)가 더 구비 될 수 있다.And the control unit may be further provided with a temperature sensor 151 for measuring the temperature of the photo organisms cultured by the plate-type photobiological culture vessel.
상술한 바와 같이 구성된 본 발명에 따른 평판형 광생물반응기 모듈과 이를 이용한 광생물 배양 시스템은 연속적인 광생물유기체의 배양이 가능하다. 먼저 광생물유기체를 배양하기 위해서는 상기 배지공급유닛(90)을 통하여 상기 평판형 광생물반응용기(20)의 배양공간(21)에 광생물유기체를 배양하기 위한 미세조류를 포함하는 배지를 공급한다. 이 상태에서 면광원유닛(80)을 이용하여 평판형 광생물 반응용기(20)에 광을 조사함과 아울러 상기 가스공급유닛(70)을 이용하여 상기 저장공간(21)에 저장된 배양을 위한 배지에 산소와 이산화탄소를 공급한다. 이때에 상기 기체공급관(71)의 토출공은 설정된 압력 이상이 될 때에 열리게 되므로 기체공급관(71)을 통하여 배양을 위한 배지가 배출관을 통하여 역류하는 것을 방지할 수 있다. The plate-type photobioreactor module and the photobiological culture system using the same according to the present invention configured as described above are capable of culturing continuous photobioorganisms. First, in order to incubate the photobioorganisms, a medium including a microalgae for culturing the photobioorganisms is supplied to the culture space 21 of the plate-type photobioreactor 20 through the medium supply unit 90. . In this state, the planar photobiological reaction vessel 20 is irradiated with light using the surface light source unit 80, and the medium for culturing stored in the storage space 21 using the gas supply unit 70. Feed oxygen and carbon dioxide. At this time, the discharge hole of the gas supply pipe 71 is opened when the pressure is higher than the set pressure, it is possible to prevent the medium for culturing through the gas supply pipe 71 to flow back through the discharge pipe.
상기와 같이 광생물유기체의 배양이 이루어지는 과정에서 제어유닛(150) 은 조도센서(140), 용존량측정센서(130), 온도센서(151),PH 센서(120)와 바이오매스농도측정센서(145)로부터 검출되는 신호에 의해 최적의 배양분위기를 조정함으로써 배양효율을 극대화 할 수 있다. 상술한 바와 같이 배양이 이루어지면, 배양이 완료된 광생물유기체는 광생물유기체배출관을 통하여 광생물유기체 저장탱크에 저장한다. 이러한 과정을 통하여 광생물유기체의 연속생산이 가능하다. In the process of culturing the photobioorganic as described above, the control unit 150 includes an illuminance sensor 140, a dissolved-quantity sensor 130, a temperature sensor 151, a PH sensor 120 and a biomass concentration measuring sensor ( By optimizing the culture atmosphere by the signal detected from 145) it is possible to maximize the culture efficiency. When the culture is carried out as described above, the cultured photobioorganisms are stored in the photobioorganic storage tank through the photobioorganic discharge pipe. This process enables the continuous production of photobioorganisms.
본 발명에 따른 평판형 광생물반응기 모듈과 이를 이용한 광생물 배양 시스템은 면광원유닛을 이용하여 평판형 광생물반응용기의 외부로부터 광을 조사하게 되므로 명광원유닛의 램프모듈로부터 발생된 열이 배양중인 광생물 유기체에 직접적으로 전달되는 것을 방지할 수 있다. The plate-type photobioreactor module and the photobiological culture system using the same are irradiated with light from the outside of the plate-type photobioreactor using the surface light source unit, so that heat generated from the lamp module of the light source unit is cultured. It can be prevented from being delivered directly to the photobiological organism in question.
또한, 본 발명에 따른 광생물 배양 시스템은 태양광과 발광다이오드등과 같은 램프로부터 조사되는 광을 이용하여 평판형 광생물 배양용기에 조사할 수 있으므로 설계의 자유도를 높일 수 있으며, 도광판을 이용하여 광생물 반응기를 조사함으로써 배광균일도를 극대화 할 수 있다. 그리고 본 광생물 배양시스템은 광생물 유기체의 배양조건을 최적화하여 미세 조류에 의한 고농도 배양 시 그 생산량의 조절이 용이하고, 공간적 효율성을 높일 수 있다. In addition, the photobiological culture system according to the present invention can be irradiated to a flat-type photobiological culture vessel using light irradiated from a lamp such as sunlight and a light emitting diode, so that the degree of freedom of design can be increased, and the light guide plate is used. Irradiation of the photobioreactor can maximize the uniformity of light distribution. In addition, this photobiological culture system can be easily adjusted in the high concentration culture by microalgae by optimizing the culture conditions of photobiotic organisms, and can increase the spatial efficiency.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 사람이라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록 청구 범위의 기술적 사상에 의해 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (14)

  1. 내부에 광생물유기체가 주입되어 배양될 수 있도록 상호 결합되어 배양공간이 마련되며, 외측표면에 일정간격으로 지지리브가 구비된 제 1,2배양패널본체들과, 상기 제 1,2배양패널본체들에 의해 형성된 상기 배양공간을 횡방향으로 관통되게 설치되어 유입된 기체를 토출하는 기체공급관과, 상기 제 1,2배양패널본체들의 내측 벽에 횡방향으로 연장되며 상기 기체공급관을 통해 공급된 기체의 상승기류에 대해 와류를 일으킬 수 있도록 호형으로 형성된 적어도 하나 이상의 와류형성격벽을 포함하는 평판형 광생물배양용기와;The first and second culture panel bodies and the first and second culture panel bodies are provided with a support rib at a predetermined interval on the outer surface so as to be combined with each other so that the photobioorganism can be injected and cultured therein. A gas supply pipe installed to penetrate the culture space formed by a transverse direction and discharging the introduced gas, and a gas supply pipe extending laterally to the inner walls of the first and second culture panel main bodies and supplied through the gas supply pipe. A flat type photobiological culture vessel including at least one or more vortex forming partitions formed in an arc so as to cause vortices with respect to an upward air stream;
    상기 평판형 광생물배양용기의 적어도 일측에 설치되어 광생물유기체의 배양을 위한 광을 조사하는 면광원유닛을 구비한 것을 특징으로 하는 평판형 광생물반응기 모듈.A plate-type photobioreactor module is provided on at least one side of the plate-type photobiological culture vessel provided with a surface light source unit for irradiating light for cultivation of the photobioorganism.
  2. 제 1항에 있어서, The method of claim 1,
    상기 기체공급관은 설정된 압력 이상 시에 표면이 확장되는 복수개의 토출구를 구비한 것을 특징으로 하는 평판형 광생물반응기 모듈. The gas supply pipe is a flat-panel photoreactor module, characterized in that it comprises a plurality of discharge ports that the surface is expanded at a set pressure or more.
  3. 제 1항에 있어서, The method of claim 1,
    상기 배양패널본체들을 가장자리가 상호 융착되어 이루어지거나 사각틀형상의 메인바디의 양측에 결합되어 배양공간을 형성한 것을 특징으로 하는 평판형 광생물반응기 모듈. Flat panel photobioreactor module characterized in that the culture panel main body is formed by fusion of the edges or coupled to both sides of the main body of the rectangular frame shape to form a culture space.
  4. 제 1항에 있어서, The method of claim 1,
    상기 와류형성격벽은 상기 기체공급관으로부터 상방으로 이격된 위치의 상기 메인바디의 내벽에서 횡방향으로 연장되고, 상기 제2 메인패널본체의 밀착될 수 있는 위치의 제 1하단이 상기 제 1메인패널본체와 대향되는 제 1상단 보다 상기 기체공급관과의 이격거리가 짧은 호형으로 형성되며, 상기 제 1상단이 제1메인패널본체의 내면으로부터 소정간격 이격되는 제 1와류형성격벽과,The vortex forming partition wall extends in the transverse direction from the inner wall of the main body at a position spaced upwardly from the gas supply pipe, the first lower end of the position that can be in close contact with the second main panel body is the first main panel body A first vortex forming partition wall which is formed in an arc shape having a shorter distance from the gas supply pipe than the first upper end of which is opposed to the first upper panel, and the first upper end is spaced a predetermined distance from an inner surface of the first main panel body;
    상기 기체공급관으로부터 상방으로 이격된 위치의 상기 메인바디의 내벽에서 횡방향으로 연장되고, 상기 제1메인패널본체의 밀착될 수 있는 위치의 제 2하단이 상기 제 2 메인패널본체와 대향되는 제 2상단 보다 상기 기체공급관과의 이격거리가 짧은 호형으로 형성되며, 상기 제 2상단이 후면에 위치되는 제2메인패널본체의 내면으로부터 소정간격 이격되는 제 2와류형성격벽을 구비한 것을 특징으로 하는 평판형 광생물반응기 모듈.A second end extending in a lateral direction from an inner wall of the main body at a position spaced upwardly from the gas supply pipe, and a second lower end of a position where the first main panel body may be in close contact with the second main panel body; A flat plate is formed in an arc shape having a shorter distance from the gas supply pipe than the upper end, and having a second vortex forming partition wall spaced a predetermined distance from an inner surface of the second main panel main body having the second upper end located at the rear side. Fluorescent bioreactor module.
  5. 제 4항에 있어서, The method of claim 4, wherein
    상기 제 1,2와류형성격벽에는 일정한 방향으로 와류를 일으킬 수 있도록 적어도 하나의 독립와류발생날개를 구비한 것을 특징으로 하는 평판형 광생물반응기 모듈. The first and second vortex forming partition wall has a flat optical bioreactor module, characterized in that provided with at least one independent vortex generating wing to cause the vortex in a predetermined direction.
  6. 제 1항에 있어서, The method of claim 1,
    상기 평판형광생물배양용기에는 하부측을 상기 배양공간의 내부로 미세조류를 주입하기 위한 배지공급관이 설치되고, 상기 평판형광생물배양용기의 상단부측에는 상기 배양공간의 내부로부터 배양된 미세조류를 배출하기 위한 미세조류배출관이 설치되며, 평판형광생물배양용기의 상단부측에는 상기 배양공간에서 상승하는 기체를 외부로 배출하기위한 기체배출홀이 형성된 것을 특징으로 하는 평판형광생물 반응기 모듈. The plate fluorescent bioculture vessel is provided with a medium supply pipe for injecting a microalgae into the inside of the culture space on the lower side, and discharge the microalgae cultured from the inside of the culture space on the upper side of the plate fluorescent bioculture vessel The microalgae discharge tube is installed, the plate fluorescent bioreactor module, characterized in that the gas discharge hole for discharging the gas rising in the culture space to the upper end side of the plate fluorescent biological culture vessel to the outside.
  7. 제 1항에 있어서,The method of claim 1,
    상기 평판형 광생물배양용기에 광을 조사하기 위한 면광원유닛은 도광판과, 상기 도광판의 가장자리에 설치되는 램프모듈을 구비하며, 상기 도광판의 배면에는 상기 램프모듈로부터 조사되는 광을 평판형 광생물 반응용기에 균일하게 조사하기 위해 광반사패턴이 형성된 것을 특징으로 하는 평판형 광생물반응기 모듈.The planar light source unit for irradiating light onto the flat panel optical biological culture container includes a light guide plate and a lamp module installed at an edge of the light guide plate, and the light emitted from the lamp module is provided on the rear surface of the light guide plate. Flat photoreactor module, characterized in that the light reflection pattern is formed to uniformly irradiate the reaction vessel.
  8. 제 1항에 있어서, The method of claim 1,
    태양광을 집광하기 위한 집광유닛과, 상기 평판형광생물 반응용기에 광을 조사하기 위하여 집광유닛과, 상기 도광판의 가장자리를 연결하는 광파이버를 구비 것을 특징으로 하는 평판형 광생물반응기 모듈. And a light condensing unit for condensing sunlight, a light condensing unit, and an optical fiber connecting an edge of the light guide plate to irradiate light onto the flat light bioreactor.
  9. 제 8항에 있어서, The method of claim 8,
    상기 평판형광생물 반응용기에 광을 조사하기 위하여 상기 도광판의 가장자리에 설치되는 램프모듈을 구비한 것을 특징으로 하는 평판형 광생물반응기 모듈. And a lamp module installed at an edge of the light guide plate to irradiate light onto the plate fluorescent bioreactor.
  10. 제 1항에 있어서, The method of claim 1,
    상기 도광판의 상부측에 설치되어 태양광을 집광하기 위하여 도광판의 가장자리에 조사하기 위한 집광유닛을 더 구비한 것을 특징으로 하는 평판형 광생물반응기 모듈.And a light collecting unit installed at an upper side of the light guide plate and configured to irradiate the edge of the light guide plate to collect sunlight.
  11. 내부에 광생물유기체가 주입되어 배양될 수 있도록 상호 결합되어 배양공간이 마련되며, 외측표면에 일정간격으로 지지리브가 구비된 배양패널본체들과, 상기 배양패널본체들에 의해 형성된 상기 배양공간을 횡방향으로 관통되게 설치되어 유입된 기체를 토출하는 기체공급관과, 상기 배양패널본체들의 내측 벽에 횡방향으로 연장되며 상기 기체공급관을 통해 공급된 기체의 상승기류에 대해 와류를 일으킬 수 있도록 호형으로 형성된 적어도 하나 이상의 와류형성격벽을 포함하는 평판형 광생물배양용기와; 상기 평판형 광생물배양용기의 적어도 일측에 설치되어 광생물유기체의 배양을 위한 광을 조사하는 면광원유닛을 구비한 평판형 광생물반응기 모듈과,  A culture space is provided by being coupled to each other so that the photobioorganism can be injected and cultured therein, and the culture panel main bodies provided with support ribs on the outer surface at regular intervals, and the culture space formed by the culture panel main bodies. And a gas supply pipe installed to penetrate in a direction and extending in the transverse direction to the inner walls of the culture panel bodies, and formed in an arc shape so as to cause vortices with respect to the rising air flow of the gas supplied through the gas supply pipe. A plate-type photobiological culture vessel including at least one vortex forming partition wall; A plate-type photobioreactor module installed on at least one side of the plate-type photobiological culture vessel and having a surface light source unit for irradiating light for culturing the photobioorganism;
    상기 평판형광생물배양용기에는 하부측을 상기 배양공간의 내부로 배지를 주입하기 위한 펌프가 설치된 배지주입관과 연결되며 배지가 저장되는 배지저정탱크와, 상기 평판형광생물배양용기의 상단부측과 연결된 미세조류배출관과 연결되어 배양된 광생물유기체를 저장하기 위한 광생물저장탱크와, 산소 및 이산화 탄소의 용존량을 측정하기 위한 용존량측정센서와, 배양되는 미세조류의 농도를 측정하는 바이오매스농도측정세선와,The plate fluorescent bio-culture vessel is connected to a medium inlet tube equipped with a pump for injecting a medium into the culture space at the lower side thereof, and a medium storage tank in which the medium is stored, and connected to an upper end side of the plate-fluorescent bio-culture vessel. Optical biostorage tank for storing the cultured bioorganisms connected to the microalgae drainage pipe, a dissolution measurement sensor for measuring the dissolved amount of oxygen and carbon dioxide, and a biomass concentration for measuring the concentration of the cultured microalgae Measuring line,
    상기 펌프, 용존량측정센서 및 바이오매스농도측정센서로부터 검출된 신호에 근거하여 광생물유기체를 연속생산 할 수 있도록 제어하는 제어유닛을 구비한 것을 특징으로 하는 광생물 배양 시스템. And a control unit for controlling the continuous production of the photobioorganisms based on the signals detected from the pump, the dissolved flow rate sensor and the biomass concentration measurement sensor.
  12. 제 11항에 있어서, The method of claim 11,
    상기 평판형 광생물배양용기에는 상기 배양되는 광생물 배양액의 온도를 측정하는 온도측정센서, 상기 면광원유닛으로부터 평판형 광생물반응기 모듈에 조사되는 광의 조도를 측정하기 위한 조도측정센서, 상기 평판형 광생물배양용기에 설치되어 배양되는 미세조류배양액의 PH값을 측정하기 위한 PH측정센서를 더 구비한 것을 특징으로 하는 광생물 배양시스템.The plate-type photobiological culture vessel has a temperature measuring sensor for measuring the temperature of the cultured photobiological culture medium, an illuminance measuring sensor for measuring the illuminance of light irradiated from the surface light source unit to the plate-type photobioreactor module, the plate-type The photobiological culture system, characterized in that it further comprises a PH measuring sensor for measuring the pH value of the microalgal culture solution is installed and cultured in the photobiological culture vessel.
  13. 제 11항에 있어서, The method of claim 11,
    상기 기체공급관은 설정된 압력 이상 시에 표면이 확장되는 복수개의 토출구를 구비한 것을 특징으로 하는 광생물 배양 시스템. The gas supply pipe is a photobiological culture system, characterized in that provided with a plurality of discharge ports that the surface is expanded at a predetermined pressure or more.
  14. 제 11항에 있어서, The method of claim 11,
    상기 와류형성격벽은 상기 기체공급관으로부터 상방으로 이격된 위치의 상기 메인바디의 내벽에서 횡방향으로 연장되고, 상기 제2 메인패널본체의 밀착될 수 있는 위치의 제 1하단이 상기 제 1메인패널본체와 대향되는 제 1상단 보다 상기 기체공급관과의 이격거리가 짧은 호형으로 형성되며, 상기 제 1상단이 제1메인패널본체의 내면으로부터 소정간격 이격되는 제 1와류형성격벽과,The vortex forming partition wall extends in the transverse direction from the inner wall of the main body at a position spaced upwardly from the gas supply pipe, the first lower end of the position that can be in close contact with the second main panel body is the first main panel body A first vortex forming partition wall which is formed in an arc shape having a shorter distance from the gas supply pipe than the first upper end of which is opposed to the first upper panel, and the first upper end is spaced a predetermined distance from an inner surface of the first main panel body;
    상기 기체공급관으로부터 상방으로 이격된 위치의 상기 메인바디의 내벽에서 횡방향으로 연장되고, 상기 제1메인패널본체의 밀착될 수 있는 위치의 제 2하단이 상기 제 2 메인패널본체와 대향되는 제 2상단 보다 상기 기체공급관과의 이격거리가 짧은 호형으로 형성되며, 상기 제 2상단이 후면에 위치되는 제2메인패널본체의 내면으로부터 소정간격 이격되는 제 2와류형성격벽을 구비한 것을 특징으로 하는 광생물 배양 시스템.A second end extending in a lateral direction from an inner wall of the main body at a position spaced upwardly from the gas supply pipe, and a second lower end of a position where the first main panel body may be in close contact with the second main panel body; An arc having a shorter distance from the gas supply pipe than the upper end is formed in an arc shape, and the second upper end has a second vortex forming partition wall spaced apart from the inner surface of the second main panel main body located at the rear side. Biological culture system.
PCT/KR2013/001451 2013-01-25 2013-02-22 Flat-panel type photobioreactor module and photobiological culture system using same WO2014115924A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130008908A KR101381951B1 (en) 2013-01-25 2013-01-25 Photobioreactor module and phtobiological culturing system utilizing the same
KR10-2013-0008908 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014115924A1 true WO2014115924A1 (en) 2014-07-31

Family

ID=50656724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001451 WO2014115924A1 (en) 2013-01-25 2013-02-22 Flat-panel type photobioreactor module and photobiological culture system using same

Country Status (2)

Country Link
KR (1) KR101381951B1 (en)
WO (1) WO2014115924A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022090962A3 (en) * 2020-10-29 2022-06-09 Zolend Kft. Closed aseptic photobioreactor and procedure for its use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289069B1 (en) * 2021-04-27 2021-08-12 농업회사법인 상상텃밭 주식회사 Apparatus and method for inferring algae concentration in hydroponic nutrient solution through dissolved oxygen concentration and dissolved carbon dioxide concentration analysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535961A (en) * 2004-05-06 2007-12-13 グラクソ グループ リミテッド Bioreactor
US20100035343A1 (en) * 2008-08-06 2010-02-11 Cheng Alan T Y System and method for controlling a mammalian cell culture process
KR101222145B1 (en) * 2011-12-29 2013-01-14 조선대학교산학협력단 Photobioreactor
KR101222696B1 (en) * 2012-06-19 2013-01-17 조선대학교산학협력단 Photobioreactor for micro algae cultivation comprising arc type partition structure for forming vortex

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535961A (en) * 2004-05-06 2007-12-13 グラクソ グループ リミテッド Bioreactor
US20100035343A1 (en) * 2008-08-06 2010-02-11 Cheng Alan T Y System and method for controlling a mammalian cell culture process
KR101222145B1 (en) * 2011-12-29 2013-01-14 조선대학교산학협력단 Photobioreactor
KR101222696B1 (en) * 2012-06-19 2013-01-17 조선대학교산학협력단 Photobioreactor for micro algae cultivation comprising arc type partition structure for forming vortex

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022090962A3 (en) * 2020-10-29 2022-06-09 Zolend Kft. Closed aseptic photobioreactor and procedure for its use

Also Published As

Publication number Publication date
KR101381951B1 (en) 2014-04-07

Similar Documents

Publication Publication Date Title
Assunção et al. Enclosed “non-conventional” photobioreactors for microalga production: A review
Posten Design principles of photo‐bioreactors for cultivation of microalgae
KR101222145B1 (en) Photobioreactor
KR101148194B1 (en) Photobioreactor with Transparent Film
CN102134553B (en) Tubular photobioreactor and system and method for culturing microalgae cells
WO2011069372A1 (en) Photobioreactor system for high-density culture of microalgae
KR100897018B1 (en) Photo-bioreactor for culturing micro algae and apparatus for production of micro algae having the same
WO2012050325A2 (en) Photobioreactor
CN1201826A (en) Spirulina light illuminating tower-tray optic bio-reactor culturing system and its controlling method
KR101043583B1 (en) Photobioreactor having baffles integrally provided with internal light source for high density cultivation of microalgae
WO2019165689A1 (en) Microbubble photobioreactor for economic microalgae cultivation
CN114606103A (en) Hybrid photobioreactor
CN216712124U (en) Photobioreactor for microalgae culture
CN201924010U (en) Scale flat-plate type photobiological reaction system with efficient solar energy utilization
WO2014115924A1 (en) Flat-panel type photobioreactor module and photobiological culture system using same
CN2303849Y (en) Optical-radiation tower plate type photobiological reactor
KR20120073432A (en) Apparatus for producing microalgae using wastewater
AU730424B2 (en) Apparatus to carry out photochemical and photocatalytic reactions and photoinduced processes
CN111676126A (en) Airlift photobioreactor for microalgae culture
US11518970B2 (en) System for obtaining biomass
AU2014344323A1 (en) Hollow optical waveguide with openings, particularly for supplying a photobioreactor with light and nutrients
CN107034135B (en) Flat plate airlift circulating type photosynthetic microorganism culture device
KR101319241B1 (en) photobioreactor
KR101415553B1 (en) Device for culturing micro algae
CN220745891U (en) Light-guiding type photo-bioreactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872348

Country of ref document: EP

Kind code of ref document: A1