WO2014115823A1 - Fluorine-containing aromatic compound, production method therefor, and organic semiconductor material - Google Patents

Fluorine-containing aromatic compound, production method therefor, and organic semiconductor material Download PDF

Info

Publication number
WO2014115823A1
WO2014115823A1 PCT/JP2014/051424 JP2014051424W WO2014115823A1 WO 2014115823 A1 WO2014115823 A1 WO 2014115823A1 JP 2014051424 W JP2014051424 W JP 2014051424W WO 2014115823 A1 WO2014115823 A1 WO 2014115823A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
carbon atoms
compound represented
formula
Prior art date
Application number
PCT/JP2014/051424
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 孝
重之 山田
今日子 山本
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014115823A1 publication Critical patent/WO2014115823A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • C07C22/02Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
    • C07C22/04Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings
    • C07C22/08Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic semiconductor material, a novel fluorine-containing aromatic compound useful as the organic semiconductor material, and a method for producing the same. Furthermore, this invention relates to the organic-semiconductor thin film, organic-semiconductor element, and organic-semiconductor transistor containing a fluorine-containing aromatic compound.
  • organic semiconductor elements using organic compounds as semiconductor materials are easier to process than semiconductor elements using conventional inorganic semiconductor materials such as silicon.
  • organic compound semiconductor materials are structurally flexible, it is expected to realize devices such as flexible displays by using them in combination with a plastic substrate.
  • the organic semiconductor processing process includes a dry process by vapor deposition and a wet process using an organic solvent such as coating, printable, and inkjet.
  • organic solvent such as coating, printable, and inkjet.
  • Conventional organic semiconductor materials have low solubility in organic solvents, and it has been difficult to apply wet processes, and thus dry processes have been widely used.
  • the wet process is an easy and inexpensive manufacturing process with a low environmental load.
  • Patent Document 1 discloses a technique for increasing solubility in an organic solvent by introducing a group such as an alkyl group into an acene skeleton in order to use an acene compound as an organic semiconductor material by a wet process.
  • Patent Document 2 discloses a method for producing an acene compound having a perfluoroalkyl group by a coupling reaction using a heavy metal.
  • Patent Documents 1 and 2 do not disclose any acene-based condensed polycyclic compounds having a skeleton as in the present invention.
  • the present invention provides an acene-type condensed polycyclic compound having a structure that can be applied to both a dry process and a wet process and has a high carrier mobility, a method for producing the same, and an organic semiconductor material containing the compound The purpose is to do.
  • the present inventors have newly found a fluorine-containing aromatic compound having a specific structure that is relatively soluble in a low-polar solvent, and completed the present invention.
  • the present invention relates to the following ⁇ 1> to ⁇ 10>.
  • ⁇ 1> A fluorine-containing aromatic compound represented by the following formula (1).
  • R f1 and R f2 are groups different from each other, R f1 is a linear perfluoroalkyl group having 1 to 3 carbon atoms, and R f2 is a linear perfluoroalkyl group having 2 to 12 carbon atoms. It is a group.
  • R may be the same or different and is selected from a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, and a hydrogen atom. It is a group.
  • At least one of the hydrogen atoms is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. It may be substituted with a group selected from a perfluoroalkyl group and a phenyl group.
  • a and B are symbols for distinguishing benzene rings, and the order in which the benzene ring structure A attached with A and the benzene ring structure B attached with B are bonded is not limited.
  • n is the repeating number of the benzene ring structure B
  • m is an integer of 0 or more
  • n is an integer of 1 or more
  • m + n is 3-6.
  • ⁇ 4> An organic semiconductor material comprising the fluorine-containing aromatic compound according to any one of the above items ⁇ 1> to ⁇ 3>.
  • ⁇ 5> An organic semiconductor thin film composed of the organic semiconductor material according to ⁇ 4>.
  • ⁇ 6> An organic semiconductor thin film made of the organic semiconductor material according to ⁇ 4> and having crystallinity.
  • ⁇ 7> An organic semiconductor element in which the organic semiconductor thin film according to ⁇ 5> or ⁇ 6> is formed on a substrate.
  • a transistor comprising a gate electrode, a dielectric layer, a source electrode, a drain electrode, and a semiconductor layer, wherein the semiconductor layer is composed of the organic semiconductor thin film according to ⁇ 5> or ⁇ 6>.
  • a compound represented by the following formula (2) is reacted with a compound represented by the formula R f1 —Si (CH 3 ) 3 to obtain a compound represented by the following formula (3).
  • a compound represented by the following formula (4) is obtained by reacting a compound represented by the formula (3) with a compound represented by the formula R f2 -X. Next, the compound represented by the formula (4) is obtained.
  • R f1 and R f2 are groups different from each other, R f1 is a linear perfluoroalkyl group having 1 to 3 carbon atoms, and R f2 is a linear perfluoroalkyl group having 2 to 12 carbon atoms. It is a group.
  • R may be the same or different and is selected from a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, and a hydrogen atom. It is a group.
  • At least one of the hydrogen atoms is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. It may be substituted with a group selected from a perfluoroalkyl group and a phenyl group.
  • a and B are symbols for distinguishing benzene rings, and the order in which the benzene ring structure A attached with A and the benzene ring structure B attached with B are bonded is not limited.
  • n is the repeating number of the benzene ring structure B
  • m is an integer of 0 or more
  • n is an integer of 1 or more
  • m + n is 3-6.
  • X is an iodine atom or a bromine atom.
  • the compound represented by the formula (4A) is represented.
  • the compound represented by the following formula (1A) is obtained by performing a deprotection reaction and an aromatization reaction on the compound, and then R A is a halogen atom in the compound represented by the formula (1A).
  • R f1 and R f2 are groups different from each other, R f1 is a linear perfluoroalkyl group having 1 to 3 carbon atoms, and R f2 is a linear perfluoroalkyl group having 2 to 12 carbon atoms. It is a group.
  • R A may be the same or different and is selected from a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, and a hydrogen atom.
  • R A represents a halogen atom.
  • R B is a group corresponding to R A
  • R B corresponding to R A is a halogen atom, a monovalent hydrocarbon group having 1 to 12 carbon atoms, monovalent aromatic hydrocarbon group, a monovalent heteroaromatic And a group selected from a halogen atom.
  • R B there is a hydrogen atom bonded to the carbon atom in R B, 1 or more alkyl groups of 1 to 6 carbon atoms hydrogen atom, an alkoxy group having 1 to 6 carbon atoms, 1 to 6 carbon atoms
  • the perfluoroalkyl group and a group selected from phenyl groups may be substituted.
  • R B corresponding to R A other than a halogen atom is the same group as R A.
  • a and B are symbols for distinguishing benzene rings, and the order in which the benzene ring structure A attached with A and the benzene ring structure B attached with B are bonded is not limited.
  • n is the repeating number of the benzene ring structure B
  • m is an integer of 0 or more
  • n is an integer of 1 or more
  • m + n is 3-6.
  • X is an iodine atom or a bromine atom.
  • the fluorine-containing aromatic compound of the present invention is a compound in which a fluorine-containing alkyl group is introduced into a carbon atom forming an aromatic skeleton, and is a compound having high solubility in an organic solvent. For this reason, in the manufacture of the organic semiconductor material, it is possible to manufacture using a wet process. Furthermore, since the fluorine-containing alkyl group is an electron-attracting group, the cohesive force becomes strong and the intermolecular interaction is strengthened based on the fluorophyric effect, so that it exhibits high carrier mobility as an organic semiconductor material. That is, the organic semiconductor material using the fluorine-containing aromatic compound of the present invention can form a high-performance organic semiconductor thin film and can be applied to an organic semiconductor element.
  • FIG. 1 is a graph showing measurement results of output characteristics of the compound (e4).
  • FIG. 2 is a diagram showing an Out-of-plane X-ray diffraction pattern of a vapor-deposited thin film of compound (e4).
  • the fluorine-containing aromatic compound according to the present invention is represented by the following formula (1).
  • R f1 and R f2 are groups different from each other, R f1 is a linear perfluoroalkyl group having 1 to 3 carbon atoms, and R f2 is a linear perfluoroalkyl group having 2 to 12 carbon atoms. It is. R may be the same or different and is selected from a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, and a hydrogen atom. It is a group.
  • At least one of the hydrogen atoms is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. It may be substituted with a group selected from a perfluoroalkyl group and a phenyl group.
  • a and B are symbols for distinguishing benzene rings, and the order in which the benzene ring structure A attached with A and the benzene ring structure B attached with B are bonded is not limited. When there are a plurality of each of the ring structures A and B, they may be connected in a block shape or may be bonded at random.
  • n is the repeating number of the benzene ring structure B
  • m is an integer of 0 or more
  • n is an integer of 1 or more
  • m + n is 3-6.
  • the fluorine-containing aromatic compound according to the present invention has different linear perfluoroalkyl groups R f1 and R f2 in the minor axis direction of the compound, that is, the direction perpendicular to the condensation direction of the aromatic ring.
  • the perfluoroalkyl group refers to a group in which all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms.
  • intermolecular interaction due to ⁇ - ⁇ stacking increases as the number of condensed rings increases, and an increase in carrier mobility is expected.
  • strong intermolecular interactions also lead to a decrease in solubility in organic solvents.
  • the compound of the present invention drastically improved the solubility in an organic solvent by introducing one or more pairs of R f1 and R f2 which are such linear perfluoroalkyl groups into the molecule.
  • R f1 and R f2 are in a para-position, which means that when a fluorine-containing aromatic compound is used as an organic semiconductor material, the orientation with respect to the substrate is improved and the crystallinity of the thin film To preferred.
  • the perfluoroalkyl group is preferably linear, from the viewpoint of improving the intermolecular interaction due to the interaction of fluorine atoms.
  • the carbon number of the perfluoroalkyl group is R f1 of 1 to 3, and R f2 is 2-12. Further, from the viewpoint of the balance between the intermolecular interaction and the improvement in solubility, the carbon number of R f1 is preferably 1 to 3, and R f2 is preferably 2 to 10.
  • a plurality of R in the formula may be the same or different from each other, and are a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, And a group selected from a hydrogen atom.
  • the monovalent hydrocarbon group having 1 to 12 carbon atoms is preferably an alkyl group, an alkoxy group, an alkenyl group, or an alkynyl group from the viewpoint of improving solubility.
  • the monovalent aromatic hydrocarbon group is preferably a phenyl group, an aryl group, a 2-thienyl group, or a 3-thienyl group from the viewpoint of improving solubility.
  • halogen atom a bromine atom and an iodine atom are preferable from the viewpoint that they can be converted into other substituents and can impart a function according to the purpose to the fluorinated aromatic compound.
  • R is a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, or a monovalent heteroaromatic group, the solubility in an organic solvent can be further improved. it can.
  • the halogen atom can be further converted into a substituent having a desired function, and a function according to the purpose can be imparted to the fluorinated aromatic compound.
  • Examples of the substituent to be converted include the aforementioned monovalent hydrocarbon group having 1 to 12 carbon atoms, monovalent aromatic hydrocarbon group, monovalent heteroaromatic group and the like.
  • a hydrogen atom bonded to a carbon atom is present in R, at least one of the hydrogen atoms is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, It may be substituted with a group selected from 6 perfluoroalkyl groups and a phenyl group.
  • the structure of R can be variously selected according to the purpose.
  • a and B are symbols for distinguishing benzene rings, and the order in which the benzene ring structure A attached with A and the benzene ring structure B attached with B are bonded is not limited.
  • m is the number of repetitions of the benzene ring structure A, and is an integer of 0 or more, preferably 1 to 2.
  • n is the repeating number of the benzene ring structure B, and is an integer of 1 or more, preferably 1 or 2.
  • m + n is an integer of 3 to 6, preferably 3 to 5.
  • the fluorine-containing aromatic compound according to the present invention is preferably a compound represented by the following formula (1-1).
  • the symbols in the formula have the same meaning as described above.
  • the fluorine-containing aromatic compound according to the present invention is preferably a compound represented by the following formula (1-10) to the following formula (1-12).
  • the symbols in the formula have the same meaning as described above.
  • Formula (1-10) is a compound wherein m is 2 and n is 1
  • Formula (1-11) is a compound where m is 4 and n is 1
  • Formula (1-12) is a compound where m is 3 This corresponds to a compound in which n is 2.
  • fluorine-containing aromatic compound according to the present invention include the following compounds in which R is a hydrogen atom.
  • the fluorine-containing aromatic compound in the present invention is useful as an organic semiconductor material because it has a high carrier mobility. In addition, because it has good solubility in organic solvents, it can be formed in large quantities with high-performance organic semiconductor thin films using a wet process that is simple and does not damage the substrate. An organic semiconductor element and an organic semiconductor device can be obtained.
  • the fluorine-containing aromatic compound of the present invention can be produced by the route shown below. That is, a compound represented by the following formula (2) is reacted with a compound represented by the formula R f1 —Si (CH 3 ) 3 to obtain a compound represented by the following formula (3). A compound represented by the following formula (4) is obtained by reacting a compound represented by the formula (3) with a compound represented by the formula R f2 —X, and then represented by the formula (4). It can manufacture by performing the deprotection reaction in a compound, obtaining the compound represented by the following Formula (5), and performing the aromatization reaction of the compound represented by this Formula (5).
  • X is an iodine atom or a bromine atom, and an iodine atom is preferable in terms of a good yield.
  • each of the keto groups in the para-position can be converted step by step into a perfluoroalkyl group, so that perfluoroalkyl groups R f1 and R f2 having different structures can be introduced into the acene compound. .
  • R in the compound (1) When one or more of R in the compound (1) is a halogen atom, the halogen atom may be converted into another substituent. That is, a compound represented by the following formula (2A) is reacted with a compound represented by the formula R f1 —Si (CH 3 ) 3 to obtain a compound represented by the following formula (3A).
  • a compound represented by the following formula (4A) is obtained by reacting a compound represented by the formula (3A) with a compound represented by the formula R f2 —X, and then represented by the formula (4A).
  • a deprotection reaction is performed on the compound to obtain a compound represented by the following formula (5A)
  • an aromatization reaction is performed on the compound represented by the formula (5A)
  • a halogen atom is essential.
  • a plurality of R A may be the same or different and each is a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, and a hydrogen atom And one or more of R A represents a halogen atom.
  • R A represents a hydrogen atom bonded to a carbon atom.
  • at least one of the hydrogen atoms is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
  • R B is R B corresponding to R A is a halogen atom, selected monovalent hydrocarbon group having 1 to 12 carbon atoms, monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, and a halogen atom Group.
  • R B corresponding to R A is a halogen atom, selected monovalent hydrocarbon group having 1 to 12 carbon atoms, monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, and a halogen atom Group.
  • R B corresponding to R A is the same group as R A.
  • a known quinone compound can be used as the starting compound (2) and compound (2A) (hereinafter, the two compounds are collectively referred to as “compound (2)”).
  • compound (2) 9,10-anthraquinone, 2-bromo-9,10-anthraquinone, 2-iodo-9,10-anthraquinone, 2,6-dibromo-9,10-anthraquinone, 2,6-diiodo-9,10- And anthraquinone, 6,13-pentacenequinone, 5,7,12,14-tetrahydropentacene-5,7,12,14-tetraone, and the like.
  • the compound (2) the following compounds are preferable.
  • R f1 TMS The compound represented by the formula R f1 —Si (CH 3 ) 3 (hereinafter also referred to as “R f1 TMS”) to be reacted with the quinone compound (2) is a commercially available compound or a known production method. It can obtain by manufacturing with.
  • R f1 TMS is added in an amount of 1.0 to 2.0 mol and cesium fluoride is added in an amount of 0.1 to 1 mol with respect to 1 mol of the compound (2). It is preferable to react at 1-30 ° C. for 1-5 hours to obtain compound (3). According to this condition, compound (3) in which only one of the keto groups is converted is obtained.
  • the organic solvent tetrahydrofuran, diethyl ether and the like are preferable.
  • the compound represented by the formula R f2 —X to be reacted with the compound (3) can also be obtained from a commercially available compound or by producing it by a known production method.
  • 1.0 to 3.0 mol of R f2 -X and 1.0 to 3.0 mol of MeLi-LiBr are added to 1 mol of the compound (3), and the mixture is added in an organic solvent.
  • the compound (4) is preferably obtained by reacting at a temperature of ⁇ 80 ° C. or lower for 1 to 5 hours. According to this condition, the other of the keto group is also converted to obtain compound (4).
  • the organic solvent tetrahydrofuran, diethyl ether and the like are preferable.
  • the compound (5) is obtained by deprotecting the trimethylsilyl group (TMS group) of the compound (4).
  • the reaction is preferably performed by a deprotection reaction by acid treatment using concentrated hydrochloric acid.
  • the reaction is particularly preferably carried out by reacting with 1 to 20 mol of concentrated hydrochloric acid per 1 mol of compound (4) in an organic solvent under reflux for 3 to 24 hours.
  • the organic solvent a water-soluble organic solvent is preferable, and ethanol and tetrahydrofuran are particularly preferable.
  • This deprotection of the TMS group can also be carried out using a fluoride source such as tetrabutylammonium fluoride.
  • the compound (5) is aromatized via elimination of the hydroxyl group to obtain the compound (1).
  • the reaction conditions for the reaction are not limited, but in order to avoid contamination of the metal in the final product as much as possible, a reaction using a heavy metal (for example, tin chloride) used in a general aromatization reaction is not adopted. preferable.
  • Examples of the reaction without using a heavy metal include a reaction by heat treatment at 220 ° C. or higher in a vacuum and a reaction using triphenylphosphine / carbon tetrabromide.
  • the obtained compound (1) becomes the fluorine-containing aromatic compound (1) of the present invention and can be used for the intended use.
  • R in the compound (1) is a halogen atom (that is, in the case of the compound (1A) in which R is R A )
  • the halogen atom R A in the compound (1A) is substituted with R B
  • R B Can be derived into compound (1B).
  • substitution reaction a known reaction for producing a C—C bond from a C—X bond can be employed.
  • a Suzuki coupling reaction or a Sonogashira coupling reaction is preferable.
  • the fluorine-containing aromatic compound of the present invention can be used as various functional materials, and is particularly a compound that can be usefully used as an organic semiconductor material.
  • the organic semiconductor material is a material that contains the fluorine-containing aromatic compound of the present invention and can be used for an organic semiconductor.
  • the organic semiconductor material may be a material composed only of a fluorine-containing aromatic compound, or may be a material including a fluorine-containing aromatic compound and another material.
  • Other materials include other organic semiconductor materials, various dopants, and the like.
  • the dopant for example, when used as a light emitting layer of an organic EL device, coumarin, quinacridone, rubrene, stilbene derivatives, fluorescent dyes, and the like can be used.
  • fluorine-containing aromatic compound of the present invention adjacent molecules aggregate due to the affinity between perfluoroalkyl groups (this effect is referred to as a fluorophyric effect), and contribute to more efficient charge transfer. Therefore, by using the fluorine-containing aromatic compound of the present invention, it is possible to produce an organic semiconductor thin film having high carrier mobility and an electronic device such as a transistor using the organic semiconductor thin film.
  • anthracene and pentacene that do not have a perfluoroalkyl group behave as a p-type semiconductor when gold is used for the electrode.
  • the perfluoroalkyl group which is an electron withdrawing substituent is introduced into the fluorine-containing aromatic compound of the present invention, the conductivity can be changed depending on the substituent. Therefore, the fluorine-containing compound of the present invention can change the electron transition energy by a perfluoroalkyl group present in a part of the skeleton, can control the conductivity type, and can be a preferable material as an organic semiconductor material.
  • Organic semiconductor material according to the present invention can form a film on an organic semiconductor on a substrate using a dry process or a wet process according to a normal manufacturing method.
  • the film include a thin film, a thick film, and a film having crystallinity.
  • a known method such as a vacuum deposition method, an MBE (Molecular Beam Epitaxy) method, a sputtering method, a laser deposition method, or a vapor transport growth method can be used. Since these thin films and the like function as charge transporting members for various functional elements such as photoelectric conversion elements, thin film transistor elements, and light emitting elements, various electronic devices having the thin films can be manufactured.
  • a vapor obtained by heating and sublimating an organic semiconductor material is used in a high vacuum, a vacuum, a low vacuum, or a normal vacuum. It is transported to the substrate surface by pressure.
  • the thin film can be formed according to known methods and conditions. Specifically, the substrate temperature is preferably 20 to 200 ° C., and the thin film growth rate is preferably 0.001 to 1000 nm / sec. By setting it as this condition, a film having crystallinity and a thin surface smoothness can be formed.
  • the thin film tends to be amorphous, and when the substrate temperature is high, the surface smoothness of the thin film tends to decrease. Further, if the growth rate of the thin film is slow, the crystallinity tends to decrease, and if it is too fast, the surface smoothness of the thin film tends to decrease.
  • an organic semiconductor thin film can be formed by covering a substrate with a solution obtained by dissolving an organic semiconductor material containing a fluorine-containing aromatic compound in an organic solvent.
  • the fluorine-containing aromatic compound of the present invention is a compound having an advantage that the solubility in an organic solvent is improved as compared with a conventional organic semiconductor material and a wet process can be applied.
  • the reason is that the organic semiconductor material according to the present invention exhibits lipophilicity due to the presence of the perfluoroalkyl group in the fluorine-containing compound, and thus becomes soluble in various organic solvents. Therefore, the organic semiconductor material according to the present invention can be applied with a wet process, and can be processed without damaging the semiconductor material.
  • Examples of the film forming method (method for coating the substrate) in the wet process include coating, spraying, and contact. Specific examples include known methods such as spin coating, casting, dip coating, ink jet, doctor blade, screen printing, and dispensing. Moreover, when taking the form of a flat crystal or a thick film state, a casting method or the like can be adopted. It is preferable to select a combination suitable for the device to be produced for the film forming method and the organic solvent.
  • crystal growth can be controlled by applying at least one selected from a temperature gradient, an electric field, and a magnetic field to the interface between the solution of the fluorine-containing aromatic compound and the substrate.
  • a highly crystalline organic semiconductor thin film can be produced, and excellent semiconductor characteristics based on the performance of the highly crystalline thin film can be obtained.
  • a high crystalline organic semiconductor thin film can be manufactured by controlling the vapor pressure in solvent drying by making the environmental atmosphere a solvent atmosphere during wet process film formation.
  • non-halogen solvents such as group hydrocarbons; ethers such as diethyl ether, tert-butyl methyl ether, tetrahydrofuran and dioxane; alcohols such as methanol, ethanol and 2-propanol; or mixtures thereof It is done.
  • halogen-containing solvent examples include chlorinated hydrocarbons, fluorinated hydrocarbons, chlorinated fluorinated hydrocarbons, and fluorine-containing ether compounds. Specifically, methylene chloride, chloroform, 2,3,3-trichloroheptafluorobutane, 1,1,1,3-tetrachlorotetrafluoropropane, 1,1,1-trichloropentafluoropropane, 1,1- Dichloro-2,2,3,3,3-pentafluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, carbon tetrachloride, 1,2-dichloroethane, dichloropentafluoropropane NC 6 F 13 -C 2 H 5 , nC 4 F 9 OCH 3 , nC 4 F 9 OC 2 H 5 and the like.
  • a solvent may use only 1 type or may use 2 or more types together. When using 2 or more types together, it is preferable to use a non-halogen type solvent and a halogen-containing solvent together, and the solvent which mixed these in arbitrary ratios is preferable.
  • the amount of the organic semiconductor material dissolved in the organic solvent is preferably 0.01% by weight or more from the viewpoint of work efficiency, About 0.2% by weight is more preferable. Further, the amount of the organic semiconductor material in the organic solvent is preferably 0.01 to 10% by weight, and particularly preferably 0.2 to 10% by weight.
  • the fluorine-containing aromatic compound obtained by the above production method can be highly purified by a simple purification method such as column chromatography or recrystallization. May be.
  • the substrate surface can be coated by a wet process in the air or in an inert gas atmosphere.
  • the solution of the semiconductor material is easily oxidized, it is preferably in an inert gas atmosphere, and nitrogen, argon, or the like can be used.
  • the organic semiconductor thin film is formed by volatilizing the solvent. If the residual amount of the solvent in the thin film is large, the stability of the thin film and the semiconductor properties may be deteriorated. Therefore, it is preferable to remove the remaining solvent by performing heat treatment or reduced pressure treatment again after the thin film is formed. .
  • the shape of the substrate that can be used in the wet process is not particularly limited, and a sheet-like substrate or a plate-like substrate is usually preferable.
  • the material used for the substrate is not particularly limited, and examples thereof include ceramics, metal substrates, semiconductors, resins, paper, and nonwoven fabrics.
  • Examples of when the substrate is a ceramic substrate include substrates such as glass, quartz, aluminum oxide, sapphire, silicon nitride, and silicon carbide.
  • Examples of the metal substrate include gold, copper, and silver substrates.
  • Examples of the semiconductor substrate include silicon (crystalline silicon, amorphous silicon), germanium, gallium arsenide, gallium phosphide, gallium nitride, and the like.
  • Polyester polyethylene, polypropylene, polyvinyl, polyvinyl alcohol, ethylene vinyl alcohol copolymer, cyclic polyolefin, polyimide, polyamide, polystyrene, polycarbonate, polyether sulfone, polysulfone, polymethyl methacrylate, polyethylene terephthalate, triacetyl
  • the substrate include cellulose and norbornene.
  • the organic semiconductor thin film using the fluorine-containing aromatic compound can be a crystalline thin film.
  • a crystalline thin film is preferable from the viewpoint that high carrier mobility can be expected due to high crystallinity and thereby excellent organic semiconductor device characteristics are exhibited.
  • the crystalline state of the thin film can be known by oblique incidence X-ray diffraction measurement of the thin film, transmission electron diffraction, or a method of measuring diffraction by making X-rays incident on the edge of the thin film. In particular, oblique incidence X-ray diffraction, which is a crystal analysis technique in the thin film field, is used.
  • the Out-of-plane XRD method is a method for observing a lattice plane parallel to the substrate.
  • the In-plane XRD method is a method for observing a lattice plane perpendicular to the substrate. That the thin film is crystalline means that a diffraction peak derived from the organic semiconductor material forming the thin film is observed.
  • diffraction based on crystal lattice of organic semiconductor material diffraction derived from molecular length, or characteristic diffraction peak appearing when molecules have alignment parallel or perpendicular to the substrate are observed. Means that. In the case of a non-crystalline film, this diffraction is not observed, which means that the thin film in which the diffraction peak appears is a crystalline thin film.
  • the thickness of the organic semiconductor thin film layer used in the organic semiconductor element is usually preferably 10 to 1,000 nm.
  • Organic semiconductor transistor Organic semiconductor transistor>
  • the fluorine-containing aromatic compound in the present invention has a high carrier mobility. Therefore, an organic semiconductor material containing a fluorine-containing aromatic compound can form an organic semiconductor thin film without impairing the high carrier mobility of the fluorine-containing compound.
  • An organic semiconductor element including a semiconductor layer formed by laminating layers of organic semiconductor thin films is very useful for various semiconductor devices.
  • Examples of semiconductor devices include organic semiconductor transistors, organic semiconductor lasers, organic photoelectric conversion devices, and organic molecular memories. Among these, an organic semiconductor transistor is preferable as the semiconductor device, and a field effect transistor (FET) is more preferable.
  • FET field effect transistor
  • An organic semiconductor transistor is usually composed of a substrate, a gate electrode, an insulator layer (dielectric layer), a source electrode, a drain electrode, and a semiconductor layer.
  • a back gate or a bulk may be included.
  • the order in which the components in the organic semiconductor transistor are arranged There are no particular restrictions on the order in which the components in the organic semiconductor transistor are arranged.
  • a plurality of gate electrodes, source electrodes, drain electrodes, and semiconductor layers may be provided. When there are a plurality of semiconductor layers, they may be provided in the same plane or stacked.
  • FT-IR Fourier transform infrared spectrophotometer
  • FT / IR-4100 manufactured by JASCO Corporation
  • elemental analysis a fully automatic elemental analyzer 2400 series II manufactured by PerkinElmer was used.
  • melting point measurement a melting point measuring device MP-21 manufactured by Yamato Kagaku was used.
  • Example 8 (1) Synthesis of Compound (h2) (6- (Henicosafluordecyl) -13- (Trifluoromethyl) -13- (trimethylsilyl) pentacen-6-ol) In the synthesis of Compound (e2), CF 3 (CF 2 ) 2 CF 2 The target compound (h2) was similarly obtained as a white solid (0.552 g, 0.57 mmol, yield 57%) except that I was changed to CF 3 (CF 2 ) 8 CF 2 I.
  • ⁇ Ionization potential measurement> The ionization potentials of the compounds (e4) to (h4) obtained in Examples 5 to 8 were measured using an atmospheric photoelectron spectrometer (AC-1 manufactured by Riken Keiki Co., Ltd.). A measurement sample was obtained by vacuum-depositing compounds (e4) to (h4) on a silicon substrate (back pressure to 10 ⁇ 4 Pa, deposition rate 0.1 ⁇ / s, substrate temperature 25 ° C., film thickness: 70 nm). Made. The pentacene vapor deposition film produced similarly was used as a comparative example. The measurement results are shown in Table 2 below.
  • the compounds (e4) to (h4) had a low HOMO level and excellent oxidation resistance. This is considered to be caused by the electron withdrawing properties of the fluorine atoms of the compounds (e4) to (h4).
  • the cleaned silicon substrate with a silicon oxide film was immersed in a toluene solution of n-octyltrichlorosilane to treat the surface of the silicon oxide film.
  • the compounds (e4) to (g4) obtained in Examples 5 to 7 were vacuum-deposited (back pressure to 10 ⁇ 4 Pa, deposition rate 0.1 ⁇ / s, substrate temperature 25 ° C., film thickness: 70 nm), an organic semiconductor layer was formed.
  • Gold was vacuum-deposited on this organic semiconductor layer using a shadow mask (back pressure ⁇ 10 ⁇ 4 Pa, deposition rate 1 ⁇ 2 ⁇ / s, film thickness: 50 nm) to form source and drain electrodes (channel length 50 ⁇ m). , Channel width 1 mm).
  • the organic semiconductor layer and the silicon oxide film at portions different from the electrodes were scraped, and a conductive paste (Dotite D-550, manufactured by Fujikura Kasei Co., Ltd.) was attached to the portions, and the solvent was dried.
  • FET field effect transistor
  • the electrical characteristics of the obtained vapor-deposited FET element were evaluated in vacuum ( ⁇ 5 ⁇ 10 ⁇ 3 Pa) using a semiconductor device analyzer B1500A manufactured by Agilent.
  • a voltage was applied to the silicon substrate, and the current / voltage curve between the source and drain electrodes was measured by scanning the gate voltage.
  • the field effect mobility carrier mobility
  • Carrier mobility was determined from the saturation region in the current-voltage characteristics of the organic thin film transistor. The measurement results are shown in Table 3 below. Moreover, the result of the output characteristic of a compound (e4) is shown in FIG. From these results, it can be seen that the compounds (e4) to (g4) have high carrier mobility and show sufficient semiconductor characteristics.
  • Out-of-plane X-ray diffraction pattern measurement (diffraction by a lattice plane parallel to the substrate surface) of the vapor-deposited thin film of compound (e4) obtained in Example 5 was performed.
  • Out-of-plane X-ray diffraction measurement was performed by oblique incidence measurement using TTR-III manufactured by Rigaku. The measurement results are shown in FIG.
  • In-plane X-ray diffraction pattern measurement (diffraction by a lattice plane perpendicular to the substrate surface) of the deposited thin film of the compound (e4) obtained in Example 5 was performed.
  • Compound (e4) formed ⁇ - ⁇ stacking in the thin film, and the thin film was found to have crystallinity.
  • the present invention provides an organic semiconductor material containing a fluorine-containing aromatic compound that can be used in either a dry process or a wet process and is expected to have high mobility.
  • a fluorine-containing aromatic compound that is soluble in an organic solvent and has high carrier mobility as an organic semiconductor material by introducing a perfluoroalkyl group with an acene compound that is a condensed aromatic ring compound as a core. Is obtained.
  • the organic semiconductor material containing the compound of the present invention can be used for organic semiconductor (thin film) transistors, organic EL elements for next-generation flat panel displays, and organic thin film solar cells as lightweight and flexible power sources.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention pertains to a fluorine-containing aromatic compound indicated by formula (1) (in the formula, Rf1 and Rf2 are different groups; Rf1 is a C1-3 linear perfluoroalkyl group; Rf2 is a C2-12 linear perfluoroalkyl group; R can be the same or different and are groups selected from C1-12 monovalent hydrocarbon groups, monovalent aromatic hydrocarbon groups, monovalent heteroaromatic groups, halogen atoms, and hydrogen atoms; m is an integer of at least 0; n is an integer of at least 1; and m+n is 3-6.)

Description

含フッ素芳香族化合物及びその製造方法、ならびに有機半導体材料Fluorine-containing aromatic compound, method for producing the same, and organic semiconductor material
 本発明は、有機半導体材料、ならびに該有機半導体材料として有用な新規な含フッ素芳香族化合物及びその製造方法に関する。さらに、本発明は、含フッ素芳香族化合物を含む有機半導体薄膜、有機半導体素子及び有機半導体トランジスタに関する。 The present invention relates to an organic semiconductor material, a novel fluorine-containing aromatic compound useful as the organic semiconductor material, and a method for producing the same. Furthermore, this invention relates to the organic-semiconductor thin film, organic-semiconductor element, and organic-semiconductor transistor containing a fluorine-containing aromatic compound.
 近年、有機化合物を半導体材料として用いた有機半導体素子は、従来のシリコン等の無機半導体材料を用いた半導体素子と比べて、その加工性が容易であることから、低価格なデバイスの実現が期待されている。また、有機化合物の半導体材料は、構造的に柔軟であることから、プラスチック基板と組み合わせて用いることで、フレキシブルなディスプレイ等のデバイスを実現することが期待されている。 In recent years, organic semiconductor elements using organic compounds as semiconductor materials are easier to process than semiconductor elements using conventional inorganic semiconductor materials such as silicon. Has been. Further, since organic compound semiconductor materials are structurally flexible, it is expected to realize devices such as flexible displays by using them in combination with a plastic substrate.
 有機半導体の加工プロセスには、蒸着によるドライプロセスと、塗布やプリンタブル、インクジェットなど、有機溶媒を用いたウェットプロセスとが知られている。従来の有機半導体材料は有機溶媒に対して溶解性が低く、ウェットプロセスの適用が困難であったため、ドライプロセスが広く利用されてきた。一方、ウェットプロセスは、容易で安価であり、環境負荷が小さい製造プロセスとなる。 The organic semiconductor processing process includes a dry process by vapor deposition and a wet process using an organic solvent such as coating, printable, and inkjet. Conventional organic semiconductor materials have low solubility in organic solvents, and it has been difficult to apply wet processes, and thus dry processes have been widely used. On the other hand, the wet process is an easy and inexpensive manufacturing process with a low environmental load.
 一般に、有機半導体材料にはキャリア移動度の向上が求められている。有機半導体材料において、キャリア移動度の向上のための手段としては、未だ有効な手段は確立していないが、分子間相互作用の強化や、分子配列の制御が重要と考えられている。例えば、縮合多環系化合物は、平面構造により共役系が拡張され、π-πスタックによる強い分子間相互作用を持つとして、有機半導体材料としての利用が試みられている(非特許文献1)。 Generally, improvement of carrier mobility is required for organic semiconductor materials. In organic semiconductor materials, effective means have not yet been established as means for improving carrier mobility, but enhancement of intermolecular interaction and control of molecular arrangement are considered important. For example, a condensed polycyclic compound has been tried to be used as an organic semiconductor material because its conjugated system is expanded by a planar structure and has a strong intermolecular interaction due to a π-π stack (Non-patent Document 1).
 縮合多環系化合物のうちアセン化合物は有機半導体材料として優れた機能が期待されている。たとえば、特許文献1には、ウェットプロセスによりアセン化合物を有機半導体材料として使用するために、アセン骨格にアルキル基等の基を導入することで、有機溶媒への溶解性を高める手法が開示されている。特許文献2には、重金属を用いたカップリング反応によるペルフルオロアルキル基を有するアセン化合物の製造方法が開示されている。 Among the condensed polycyclic compounds, acene compounds are expected to have excellent functions as organic semiconductor materials. For example, Patent Document 1 discloses a technique for increasing solubility in an organic solvent by introducing a group such as an alkyl group into an acene skeleton in order to use an acene compound as an organic semiconductor material by a wet process. Yes. Patent Document 2 discloses a method for producing an acene compound having a perfluoroalkyl group by a coupling reaction using a heavy metal.
日本国特開2007-13097号公報Japanese Unexamined Patent Publication No. 2007-13097 国際公開第2011/022678号International Publication No. 2011/022678
 しかし特許文献1及び2には、本発明のような骨格を有するアセン系の縮合多環系化合物については、一切開示がない。 However, Patent Documents 1 and 2 do not disclose any acene-based condensed polycyclic compounds having a skeleton as in the present invention.
 本発明は、ドライプロセス及びウェットプロセスのいずれにも適用可能であり、かつキャリア移動度が高い構造を有するアセン型の縮合多環系化合物及びその製造方法と、当該化合物を含む有機半導体材料を提供することを目的とする。 The present invention provides an acene-type condensed polycyclic compound having a structure that can be applied to both a dry process and a wet process and has a high carrier mobility, a method for producing the same, and an organic semiconductor material containing the compound The purpose is to do.
 本発明者らは、低極性溶媒にも比較的可溶な特定構造の含フッ素芳香族化合物を新たに見出し、本発明を完成するに至った。 The present inventors have newly found a fluorine-containing aromatic compound having a specific structure that is relatively soluble in a low-polar solvent, and completed the present invention.
 すなわち、本発明は下記<1>~<10>に関する。
<1> 下式(1)で表される含フッ素芳香族化合物。
That is, the present invention relates to the following <1> to <10>.
<1> A fluorine-containing aromatic compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[上記式において、Rf1、Rf2は、互いに異なる基であり、Rf1は炭素数1~3の直鎖状ペルフルオロアルキル基であり、Rf2は炭素数2~12の直鎖状ペルフルオロアルキル基である。
 Rは、同一であっても異なっていてもよく、炭素数1~12の1価炭化水素基、1価芳香族炭化水素基、1価複素芳香族基、ハロゲン原子、及び水素原子から選ばれる基である。該R中に炭素原子に結合した水素原子が存在する場合には、該水素原子の1個以上は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のペルフルオロアルキル基、及びフェニル基から選ばれる基で置換されていてよい。
 AとBは、ベンゼン環を区別する記号であり、Aを付したベンゼン環構造AとBを付したベンゼン環構造Bが結合する順序は制限されない。
 mは、ベンゼン環構造Aの繰り返し数、nはベンゼン環構造Bの繰り返し数であり、mは0以上の整数、nは1以上の整数、m+nは3~6である。]
<2> 式(1)で表される化合物が下式(1-1)で表される化合物である上記<1>に記載の含フッ素芳香族化合物。
[In the above formula, R f1 and R f2 are groups different from each other, R f1 is a linear perfluoroalkyl group having 1 to 3 carbon atoms, and R f2 is a linear perfluoroalkyl group having 2 to 12 carbon atoms. It is a group.
R may be the same or different and is selected from a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, and a hydrogen atom. It is a group. When a hydrogen atom bonded to a carbon atom is present in the R, at least one of the hydrogen atoms is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. It may be substituted with a group selected from a perfluoroalkyl group and a phenyl group.
A and B are symbols for distinguishing benzene rings, and the order in which the benzene ring structure A attached with A and the benzene ring structure B attached with B are bonded is not limited.
m is the repeating number of the benzene ring structure A, n is the repeating number of the benzene ring structure B, m is an integer of 0 or more, n is an integer of 1 or more, and m + n is 3-6. ]
<2> The fluorine-containing aromatic compound according to <1>, wherein the compound represented by the formula (1) is a compound represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[ただし、式中の記号は前記と同じ意味を示す。]
<3> 式(1)で表される化合物が下式(1-11)で表される化合物である上記<1>に記載の含フッ素芳香族化合物。
[However, the symbols in the formula have the same meaning as described above. ]
<3> The fluorine-containing aromatic compound according to <1>, wherein the compound represented by the formula (1) is a compound represented by the following formula (1-11).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[ただし、式中の記号は前記と同じ意味を示す。]
<4> 上記<1>~<3>のいずれか1に記載の含フッ素芳香族化合物を含む有機半導体材料。
<5> 上記<4>に記載の有機半導体材料で構成される有機半導体薄膜。
<6> 上記<4>に記載の有機半導体材料で構成され、結晶性を有する有機半導体薄膜。
<7> 基板上に、上記<5>又は<6>に記載の有機半導体薄膜が形成された有機半導体素子。
<8> ゲート電極、誘電体層、ソース電極、ドレイン電極、及び半導体層を備えるトランジスタにおいて、前記半導体層が上記<5>又は<6>に記載の有機半導体薄膜で構成されるトランジスタ。
<9> 下式(2)で示される化合物を、式Rf1-Si(CHで表される化合物と反応させて下式(3)で表される化合物を得て、つぎに該式(3)で表される化合物と式Rf2-Xで表される化合物とを反応させて下式(4)で表される化合物を得て、つぎに、該式(4)で表される化合物において脱保護反応及び芳香族化反応を行うことを特徴とする下式(1)で表される含フッ素芳香族化合物の製造方法。
[However, the symbols in the formula have the same meaning as described above. ]
<4> An organic semiconductor material comprising the fluorine-containing aromatic compound according to any one of the above items <1> to <3>.
<5> An organic semiconductor thin film composed of the organic semiconductor material according to <4>.
<6> An organic semiconductor thin film made of the organic semiconductor material according to <4> and having crystallinity.
<7> An organic semiconductor element in which the organic semiconductor thin film according to <5> or <6> is formed on a substrate.
<8> A transistor comprising a gate electrode, a dielectric layer, a source electrode, a drain electrode, and a semiconductor layer, wherein the semiconductor layer is composed of the organic semiconductor thin film according to <5> or <6>.
<9> A compound represented by the following formula (2) is reacted with a compound represented by the formula R f1 —Si (CH 3 ) 3 to obtain a compound represented by the following formula (3). A compound represented by the following formula (4) is obtained by reacting a compound represented by the formula (3) with a compound represented by the formula R f2 -X. Next, the compound represented by the formula (4) is obtained. A method for producing a fluorine-containing aromatic compound represented by the following formula (1), wherein a deprotection reaction and an aromatization reaction are performed on the compound.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[上記式において、Rf1、Rf2は、互いに異なる基であり、Rf1は炭素数1~3の直鎖状ペルフルオロアルキル基であり、Rf2は炭素数2~12の直鎖状ペルフルオロアルキル基である。
 Rは、同一であっても異なっていてもよく、炭素数1~12の1価炭化水素基、1価芳香族炭化水素基、1価複素芳香族基、ハロゲン原子、及び水素原子から選ばれる基である。該R中に炭素原子に結合した水素原子が存在する場合には、該水素原子の1個以上は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のペルフルオロアルキル基、及びフェニル基から選ばれる基で置換されていてよい。
 AとBは、ベンゼン環を区別する記号であり、Aを付したベンゼン環構造AとBを付したベンゼン環構造Bが結合する順序は制限されない。
 mは、ベンゼン環構造Aの繰り返し数、nはベンゼン環構造Bの繰り返し数であり、mは0以上の整数、nは1以上の整数、m+nは3~6である。
 Xはヨウ素原子又は臭素原子である。]
<10> 下式(2A)で表される化合物を、式Rf1-Si(CHで表される化合物と反応させて下式(3A)で表される化合物を得て、つぎに該式(3A)で表される化合物と式Rf2-Xで表される化合物と反応させて下式(4A)で表される化合物を得て、つぎに、該式(4A)で表される化合物において脱保護反応及び芳香族化反応を行い下式(1A)で表される化合物を得て、つぎに、該式(1A)で表される化合物中のハロゲン原子であるRをRに置換することを特徴とする下式(1B)で表される化合物の製造方法。
[In the above formula, R f1 and R f2 are groups different from each other, R f1 is a linear perfluoroalkyl group having 1 to 3 carbon atoms, and R f2 is a linear perfluoroalkyl group having 2 to 12 carbon atoms. It is a group.
R may be the same or different and is selected from a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, and a hydrogen atom. It is a group. When a hydrogen atom bonded to a carbon atom is present in the R, at least one of the hydrogen atoms is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. It may be substituted with a group selected from a perfluoroalkyl group and a phenyl group.
A and B are symbols for distinguishing benzene rings, and the order in which the benzene ring structure A attached with A and the benzene ring structure B attached with B are bonded is not limited.
m is the repeating number of the benzene ring structure A, n is the repeating number of the benzene ring structure B, m is an integer of 0 or more, n is an integer of 1 or more, and m + n is 3-6.
X is an iodine atom or a bromine atom. ]
<10> A compound represented by the following formula (2A) is reacted with a compound represented by the formula R f1 —Si (CH 3 ) 3 to obtain a compound represented by the following formula (3A). The compound represented by the formula (3A) and the compound represented by the formula R f2 -X are reacted to obtain a compound represented by the following formula (4A). Next, the compound represented by the formula (4A) is represented. The compound represented by the following formula (1A) is obtained by performing a deprotection reaction and an aromatization reaction on the compound, and then R A is a halogen atom in the compound represented by the formula (1A). A method for producing a compound represented by the following formula (1B), wherein B is substituted.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[上記式において、Rf1、Rf2は、互いに異なる基であり、Rf1は炭素数1~3の直鎖状ペルフルオロアルキル基であり、Rf2は炭素数2~12の直鎖状ペルフルオロアルキル基である。
 Rは、同一であっても異なっていてもよく、炭素数1~12の1価炭化水素基、1価芳香族炭化水素基、1価複素芳香族基、ハロゲン原子、及び水素原子から選ばれる基であり、Rの1つ以上はハロゲン原子を示す。該R中に炭素原子に結合した水素原子が存在する場合には、該水素原子の1個以上は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のペルフルオロアルキル基、及びフェニル基から選ばれる基で置換されていてよい。
 RはRに対応する基であり、ハロゲン原子であるRに対応するRは、炭素数1~12の1価炭化水素基、1価芳香族炭化水素基、1価複素芳香族基、及びハロゲン原子から選ばれる基である。該R中に炭素原子に結合した水素原子が存在する場合には、該水素原子の1個以上は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のペルフルオロアルキル基、及びフェニル基から選ばれる基で置換されていてよい。
 ハロゲン原子以外のRに対応するRは、Rと同一の基である。
 AとBは、ベンゼン環を区別する記号であり、Aを付したベンゼン環構造AとBを付したベンゼン環構造Bが結合する順序は制限されない。
 mは、ベンゼン環構造Aの繰り返し数、nはベンゼン環構造Bの繰り返し数であり、mは0以上の整数、nは1以上の整数、m+nは3~6である。
 Xはヨウ素原子又は臭素原子である。]
[In the above formula, R f1 and R f2 are groups different from each other, R f1 is a linear perfluoroalkyl group having 1 to 3 carbon atoms, and R f2 is a linear perfluoroalkyl group having 2 to 12 carbon atoms. It is a group.
R A may be the same or different and is selected from a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, and a hydrogen atom. One or more of R A represents a halogen atom. When a hydrogen atom bonded to a carbon atom is present in the RA , at least one of the hydrogen atoms is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. The perfluoroalkyl group and a group selected from phenyl groups may be substituted.
R B is a group corresponding to R A, is R B corresponding to R A is a halogen atom, a monovalent hydrocarbon group having 1 to 12 carbon atoms, monovalent aromatic hydrocarbon group, a monovalent heteroaromatic And a group selected from a halogen atom. The If there is a hydrogen atom bonded to the carbon atom in R B, 1 or more alkyl groups of 1 to 6 carbon atoms hydrogen atom, an alkoxy group having 1 to 6 carbon atoms, 1 to 6 carbon atoms The perfluoroalkyl group and a group selected from phenyl groups may be substituted.
R B corresponding to R A other than a halogen atom is the same group as R A.
A and B are symbols for distinguishing benzene rings, and the order in which the benzene ring structure A attached with A and the benzene ring structure B attached with B are bonded is not limited.
m is the repeating number of the benzene ring structure A, n is the repeating number of the benzene ring structure B, m is an integer of 0 or more, n is an integer of 1 or more, and m + n is 3-6.
X is an iodine atom or a bromine atom. ]
 本発明の含フッ素芳香族化合物は、芳香族骨格を形成する炭素原子に含フッ素アルキル基を導入した化合物であり、有機溶媒への溶解性が高い化合物である。このため、有機半導体材料の製造において、ウェットプロセスを使った製造が可能になる。さらに、含フッ素アルキル基は電子求引性基であるために凝集力が強くなり、フルオロフィリック効果に基づき分子間相互作用を強めることから、有機半導体材料として高いキャリア移動度を発揮する。
 すなわち、本発明の含フッ素芳香族化合物を用いた有機半導体材料は、高性能な有機半導体薄膜を形成でき、有機半導体素子に適用することができる。
The fluorine-containing aromatic compound of the present invention is a compound in which a fluorine-containing alkyl group is introduced into a carbon atom forming an aromatic skeleton, and is a compound having high solubility in an organic solvent. For this reason, in the manufacture of the organic semiconductor material, it is possible to manufacture using a wet process. Furthermore, since the fluorine-containing alkyl group is an electron-attracting group, the cohesive force becomes strong and the intermolecular interaction is strengthened based on the fluorophyric effect, so that it exhibits high carrier mobility as an organic semiconductor material.
That is, the organic semiconductor material using the fluorine-containing aromatic compound of the present invention can form a high-performance organic semiconductor thin film and can be applied to an organic semiconductor element.
図1は化合物(e4)の出力特性の測定結果を示す図である。FIG. 1 is a graph showing measurement results of output characteristics of the compound (e4). 図2は化合物(e4)の蒸着薄膜のOut-of-planeX線回折パターンを示す図である。FIG. 2 is a diagram showing an Out-of-plane X-ray diffraction pattern of a vapor-deposited thin film of compound (e4).
 以下、本発明を詳細に説明するが、本発明は以下の形態に限定されず、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
 本明細書においては、式(X)で表される化合物を「化合物(X)」とも称する。
 本明細書においては、重量%と質量%とは同義として扱う。
Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be arbitrarily modified and implemented without departing from the gist of the present invention.
In the present specification, the compound represented by the formula (X) is also referred to as “compound (X)”.
In this specification, weight% and mass% are treated as synonymous.
<含フッ素芳香族化合物>
 本発明にかかる含フッ素芳香族化合物は、下式(1)で表される。
<Fluorine-containing aromatic compound>
The fluorine-containing aromatic compound according to the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式において、Rf1、Rf2は、互いに異なる基であり、Rf1は炭素数1~3の直鎖状ペルフルオロアルキル基であり、Rf2は炭素数2~12の直鎖状ペルフルオロアルキル基である。
 Rは、同一であっても異なっていてもよく、炭素数1~12の1価炭化水素基、1価芳香族炭化水素基、1価複素芳香族基、ハロゲン原子、及び水素原子から選ばれる基である。該R中に炭素原子に結合した水素原子が存在する場合には、該水素原子の1個以上は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のペルフルオロアルキル基、及びフェニル基から選ばれる基で置換されていてよい。
 AとBは、ベンゼン環を区別する記号であり、Aを付したベンゼン環構造AとBを付したベンゼン環構造Bが結合する順序は制限されない。環構造AとBが、それぞれ、複数存在する場合、ブロック状になって連結していても、ランダムで結合していてもよい。
 mは、ベンゼン環構造Aの繰り返し数、nはベンゼン環構造Bの繰り返し数であり、mは0以上の整数、nは1以上の整数、m+nは3~6である。
In the above formula, R f1 and R f2 are groups different from each other, R f1 is a linear perfluoroalkyl group having 1 to 3 carbon atoms, and R f2 is a linear perfluoroalkyl group having 2 to 12 carbon atoms. It is.
R may be the same or different and is selected from a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, and a hydrogen atom. It is a group. When a hydrogen atom bonded to a carbon atom is present in the R, at least one of the hydrogen atoms is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. It may be substituted with a group selected from a perfluoroalkyl group and a phenyl group.
A and B are symbols for distinguishing benzene rings, and the order in which the benzene ring structure A attached with A and the benzene ring structure B attached with B are bonded is not limited. When there are a plurality of each of the ring structures A and B, they may be connected in a block shape or may be bonded at random.
m is the repeating number of the benzene ring structure A, n is the repeating number of the benzene ring structure B, m is an integer of 0 or more, n is an integer of 1 or more, and m + n is 3-6.
 本発明にかかる含フッ素芳香族化合物は、異なる直鎖状ペルフルオロアルキル基Rf1及びRf2を、化合物の短軸方向すなわち芳香族環の縮合方向と垂直の方向に有する。ペルフルオロアルキル基とは、アルキル基の水素原子の全てがフッ素原子に置換された基をいう。縮合多環系化合物は、縮合環の数が増えるにつれてπ-πスタッキングによる分子間相互作用が強まり、キャリア移動度の増加が見込まれる。その一方、強い分子間相互作用は有機溶媒への溶解性の低下も招く。
 本発明の化合物は、このような直鎖状ペルフルオロアルキル基であるRf1及びRf2を、分子中に一組以上導入することにより、有機溶媒への溶解性を飛躍的に高めた。また、Rf1とRf2とはパラ位の関係にあり、このことは、含フッ素芳香族化合物を有機半導体材料として用いた場合に、基板に対する配向性の向上、及び、薄膜の結晶性の観点から好ましい。さらにペルフルオロアルキル基は直鎖状であることで、フッ素原子の相互作用による分子間相互作用の向上の点で好ましい。
The fluorine-containing aromatic compound according to the present invention has different linear perfluoroalkyl groups R f1 and R f2 in the minor axis direction of the compound, that is, the direction perpendicular to the condensation direction of the aromatic ring. The perfluoroalkyl group refers to a group in which all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms. In the condensed polycyclic compound, intermolecular interaction due to π-π stacking increases as the number of condensed rings increases, and an increase in carrier mobility is expected. On the other hand, strong intermolecular interactions also lead to a decrease in solubility in organic solvents.
The compound of the present invention drastically improved the solubility in an organic solvent by introducing one or more pairs of R f1 and R f2 which are such linear perfluoroalkyl groups into the molecule. Also, R f1 and R f2 are in a para-position, which means that when a fluorine-containing aromatic compound is used as an organic semiconductor material, the orientation with respect to the substrate is improved and the crystallinity of the thin film To preferred. Further, the perfluoroalkyl group is preferably linear, from the viewpoint of improving the intermolecular interaction due to the interaction of fluorine atoms.
 ペルフルオロアルキル基は、炭素数が多すぎると、立体障害のために縮合環同士の分子間相互作用を弱める傾向がある。π-πスタッキングによる強い分子間相互作用を損なうことなく、アセン化合物の有機溶媒への溶解性を向上させるために、ペルフルオロアルキル基の炭素数は、Rf1は1~3であり、Rf2は2~12である。また、分子間相互作用と溶解性向上とのバランスの観点から、炭素数は、Rf1は1~3が好ましく、Rf2は2~10が好ましい。 If the perfluoroalkyl group has too many carbon atoms, it tends to weaken the intermolecular interaction between the condensed rings due to steric hindrance. In order to improve the solubility of the acene compound in the organic solvent without impairing the strong intermolecular interaction due to π-π stacking, the carbon number of the perfluoroalkyl group is R f1 of 1 to 3, and R f2 is 2-12. Further, from the viewpoint of the balance between the intermolecular interaction and the improvement in solubility, the carbon number of R f1 is preferably 1 to 3, and R f2 is preferably 2 to 10.
 式中の複数のRは、互いに同一であっても異なっていてもよく、炭素数1~12の1価炭化水素基、1価芳香族炭化水素基、1価複素芳香族基、ハロゲン原子、及び水素原子から選ばれる基である。
 炭素数1~12の1価炭化水素基としては、溶解性の向上の観点からアルキル基、アルコキシ基、アルケニル基、アルキニル基が好ましい。
 1価芳香族炭化水素基としては、溶解性の向上の観点からフェニル基、アリール基、2-チエニル基、3-チエニル基が好ましい。
 ハロゲン原子としては、他の置換基に変換することができ、目的に応じた機能を含フッ素芳香族化合物に付与できる観点から臭素原子、ヨウ素原子が好ましい。
 Rのうち少なくとも一つが、炭素数1~12の1価炭化水素基、1価芳香族炭化水素基、又は1価複素芳香族基であれば、有機溶媒への溶解性をさらに向上させることができる。
 またRのうち少なくとも一つがハロゲン原子であれば、ハロゲン原子をさらに所望の機能を有する置換基に変換することができ、目的に応じた機能を含フッ素芳香族化合物に付与することができる。変換する置換基としては、上記した炭素数1~12の1価炭化水素基、1価芳香族炭化水素基、1価複素芳香族基等が挙げられる。
 さらに、R中に、炭素原子に結合した水素原子が存在する場合には、該水素原子の1個以上は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のペルフルオロアルキル基、及びフェニル基から選ばれる基で置換されていてよい。このように、Rの構造は目的に応じて種々選択することができる。
A plurality of R in the formula may be the same or different from each other, and are a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, And a group selected from a hydrogen atom.
The monovalent hydrocarbon group having 1 to 12 carbon atoms is preferably an alkyl group, an alkoxy group, an alkenyl group, or an alkynyl group from the viewpoint of improving solubility.
The monovalent aromatic hydrocarbon group is preferably a phenyl group, an aryl group, a 2-thienyl group, or a 3-thienyl group from the viewpoint of improving solubility.
As the halogen atom, a bromine atom and an iodine atom are preferable from the viewpoint that they can be converted into other substituents and can impart a function according to the purpose to the fluorinated aromatic compound.
If at least one of R is a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, or a monovalent heteroaromatic group, the solubility in an organic solvent can be further improved. it can.
When at least one of R is a halogen atom, the halogen atom can be further converted into a substituent having a desired function, and a function according to the purpose can be imparted to the fluorinated aromatic compound. Examples of the substituent to be converted include the aforementioned monovalent hydrocarbon group having 1 to 12 carbon atoms, monovalent aromatic hydrocarbon group, monovalent heteroaromatic group and the like.
Further, when a hydrogen atom bonded to a carbon atom is present in R, at least one of the hydrogen atoms is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, It may be substituted with a group selected from 6 perfluoroalkyl groups and a phenyl group. Thus, the structure of R can be variously selected according to the purpose.
 AとBは、ベンゼン環を区別する記号であり、Aを付したベンゼン環構造AとBを付したベンゼン環構造Bが結合する順序は制限されない。
 mは、ベンゼン環構造Aの繰り返し数であり、0以上の整数であり、好ましくは1~2である。
 nはベンゼン環構造Bの繰り返し数であり、1以上の整数であり、好ましくは1~2である。
 m+nは3~6の整数であり、好ましくは3~5である。
A and B are symbols for distinguishing benzene rings, and the order in which the benzene ring structure A attached with A and the benzene ring structure B attached with B are bonded is not limited.
m is the number of repetitions of the benzene ring structure A, and is an integer of 0 or more, preferably 1 to 2.
n is the repeating number of the benzene ring structure B, and is an integer of 1 or more, preferably 1 or 2.
m + n is an integer of 3 to 6, preferably 3 to 5.
 本発明に係る含フッ素芳香族化合物は、下式(1-1)で表される化合物が好ましい。ただし、式中の記号は前記と同じ意味を示す。 The fluorine-containing aromatic compound according to the present invention is preferably a compound represented by the following formula (1-1). However, the symbols in the formula have the same meaning as described above.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 さらに、本発明に係る含フッ素芳香族化合物は、下式(1-10)~下式(1-12)で表される化合物が好ましい。ただし、式中の記号は前記と同じ意味を示す。式(1-10)はmが2でありnが1である化合物、式(1-11)はmが4でありnが1である化合物、式(1-12)はmが3でありnが2である化合物に該当する。 Furthermore, the fluorine-containing aromatic compound according to the present invention is preferably a compound represented by the following formula (1-10) to the following formula (1-12). However, the symbols in the formula have the same meaning as described above. Formula (1-10) is a compound wherein m is 2 and n is 1, Formula (1-11) is a compound where m is 4 and n is 1, Formula (1-12) is a compound where m is 3 This corresponds to a compound in which n is 2.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 本発明に係る含フッ素芳香族化合物の具体例としては、Rが水素原子である下記化合物が挙げられる。 Specific examples of the fluorine-containing aromatic compound according to the present invention include the following compounds in which R is a hydrogen atom.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 本発明における含フッ素芳香族化合物は、高いキャリア移動度を有することから、有機半導体材料として有用である。また、有機溶媒への良好な溶解性を有することから、簡便かつ基板を損傷させないウェットプロセスを用いて、高性能の有機半導体薄膜を大量に製膜でき、該有機半導体薄膜を使った、優れた有機半導体素子及び有機半導体デバイスを得ることが可能となる。 The fluorine-containing aromatic compound in the present invention is useful as an organic semiconductor material because it has a high carrier mobility. In addition, because it has good solubility in organic solvents, it can be formed in large quantities with high-performance organic semiconductor thin films using a wet process that is simple and does not damage the substrate. An organic semiconductor element and an organic semiconductor device can be obtained.
<含フッ素芳香族化合物の製造方法>
 本発明の含フッ素芳香族化合物は下記に示すルートにより製造できる。すなわち、下式(2)で示される化合物を、式Rf1-Si(CHで表される化合物と反応させて下式(3)で表される化合物を得て、つぎに該式(3)で表される化合物と式Rf2-Xで表される化合物とを反応させて下式(4)で表される化合物を得て、つぎに、該式(4)で表される化合物において脱保護反応を行って下式(5)で表される化合物を得て、該式(5)で表される化合物の芳香族化反応を行うことにより、製造できる。
<Method for producing fluorine-containing aromatic compound>
The fluorine-containing aromatic compound of the present invention can be produced by the route shown below. That is, a compound represented by the following formula (2) is reacted with a compound represented by the formula R f1 —Si (CH 3 ) 3 to obtain a compound represented by the following formula (3). A compound represented by the following formula (4) is obtained by reacting a compound represented by the formula (3) with a compound represented by the formula R f2 —X, and then represented by the formula (4). It can manufacture by performing the deprotection reaction in a compound, obtaining the compound represented by the following Formula (5), and performing the aromatization reaction of the compound represented by this Formula (5).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記式中の記号の意味、及び好ましい態様は、前記の意味及び好ましい態様と同様である。Xはヨウ素原子又は臭素原子であり、収率が良い点でヨウ素原子が好ましい。 The meanings and preferred embodiments of the symbols in the above formula are the same as the above-mentioned meanings and preferred embodiments. X is an iodine atom or a bromine atom, and an iodine atom is preferable in terms of a good yield.
 上記製造方法によれば、パラ位の関係にあるケト基の一方ずつを段階的にペルフルオロアルキル基に変換できるため、構造の異なるペルフルオロアルキル基Rf1、Rf2をアセン化合物に導入することができる。 According to the above production method, each of the keto groups in the para-position can be converted step by step into a perfluoroalkyl group, so that perfluoroalkyl groups R f1 and R f2 having different structures can be introduced into the acene compound. .
 化合物(1)のRの1以上がハロゲン原子である場合、ハロゲン原子を別の置換基に変換してもよい。すなわち、下式(2A)で表される化合物を、式Rf1-Si(CHで表される化合物と反応させて下式(3A)で表される化合物を得て、つぎに該式(3A)で表される化合物と式Rf2-Xで表される化合物と反応させて下式(4A)で表される化合物を得て、つぎに、該式(4A)で表される化合物において脱保護反応を行って下式(5A)で表される化合物を得て、該式(5A)で表される化合物の芳香族化反応を行いハロゲン原子を必須とする下式(1A)で表される化合物を得て、つぎに、該式(1A)で表される化合物中のハロゲン原子であるRをRに置換することにより、式(1B)で表される本発明の含フッ素芳香族化合物を製造することができる。 When one or more of R in the compound (1) is a halogen atom, the halogen atom may be converted into another substituent. That is, a compound represented by the following formula (2A) is reacted with a compound represented by the formula R f1 —Si (CH 3 ) 3 to obtain a compound represented by the following formula (3A). A compound represented by the following formula (4A) is obtained by reacting a compound represented by the formula (3A) with a compound represented by the formula R f2 —X, and then represented by the formula (4A). A deprotection reaction is performed on the compound to obtain a compound represented by the following formula (5A), an aromatization reaction is performed on the compound represented by the formula (5A), and a halogen atom is essential. Next, by substituting R B for R A which is a halogen atom in the compound represented by the formula (1A), a compound represented by the formula (1B) is obtained. A fluorine-containing aromatic compound can be produced.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記式中の記号の意味及び好ましい態様は前記と同様である。
 複数のRは、同一であっても異なっていてもよく、炭素数1~12の1価炭化水素基、1価芳香族炭化水素基、1価複素芳香族基、ハロゲン原子、および水素原子から選ばれる基であり、Rの1つ以上はハロゲン原子を示す。該R中に炭素原子に結合した水素原子が存在する場合には、該水素原子の1個以上は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のペルフルオロアルキル基、およびフェニル基から選ばれる基で置換されていてよい。
 Rについては、ハロゲン原子であるRに対応するRは、炭素数1~12の1価炭化水素基、1価芳香族炭化水素基、1価複素芳香族基、およびハロゲン原子から選ばれる基である。該R中に炭素原子に結合した水素原子が存在する場合には、該水素原子の1個以上は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のペルフルオロアルキル基、およびフェニル基から選ばれる基で置換されていてよい。ハロゲン原子以外のRに対応するRは、Rと同一の基である。
The meanings and preferred embodiments of the symbols in the above formula are the same as described above.
A plurality of R A may be the same or different and each is a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, and a hydrogen atom And one or more of R A represents a halogen atom. When a hydrogen atom bonded to a carbon atom is present in the RA , at least one of the hydrogen atoms is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. A perfluoroalkyl group and a group selected from phenyl groups.
For R B is R B corresponding to R A is a halogen atom, selected monovalent hydrocarbon group having 1 to 12 carbon atoms, monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, and a halogen atom Group. The If there is a hydrogen atom bonded to the carbon atom in R B, 1 or more alkyl groups of 1 to 6 carbon atoms hydrogen atom, an alkoxy group having 1 to 6 carbon atoms, 1 to 6 carbon atoms A perfluoroalkyl group and a group selected from phenyl groups. R B corresponding to R A other than a halogen atom is the same group as R A.
 出発原料である化合物(2)および化合物(2A)(以下、2つの化合物をまとめて「化合物(2)」とも記す。)には公知のキノン系化合物を用いることができる。例えば、9,10-アントラキノン、2-ブロモ-9,10-アントラキノン、2-ヨード-9,10-アントラキノン、2,6-ジブロモ-9,10-アントラキノン、2,6-ジヨード-9,10-アントラキノン、6,13-ペンタセンキノン、5,7,12,14-テトラヒドロペンタセン-5,7,12,14-テトラオン、等が挙げられる。
 化合物(2)としては、下記化合物が好ましい。
A known quinone compound can be used as the starting compound (2) and compound (2A) (hereinafter, the two compounds are collectively referred to as “compound (2)”). For example, 9,10-anthraquinone, 2-bromo-9,10-anthraquinone, 2-iodo-9,10-anthraquinone, 2,6-dibromo-9,10-anthraquinone, 2,6-diiodo-9,10- And anthraquinone, 6,13-pentacenequinone, 5,7,12,14-tetrahydropentacene-5,7,12,14-tetraone, and the like.
As the compound (2), the following compounds are preferable.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 キノン系化合物(2)に反応させる式Rf1-Si(CH(以下「Rf1TMS」とも記載する。)で表される化合物も、市販されている化合物から、又は公知の製造方法で製造することにより入手できる。
 本発明の製造方法では、化合物(2)の1モルに対して、Rf1TMSを1.0~2.0モル、フッ化セシウムを0.1~1モル加え、有機溶媒中で、温度10~30℃下で1~5時間反応させて化合物(3)を得るのが好ましい。該条件によれば、ケト基の一方のみが変換された化合物(3)が得られる。有機溶媒としてはテトラヒドロフラン、ジエチルエーテル等が好ましい。
The compound represented by the formula R f1 —Si (CH 3 ) 3 (hereinafter also referred to as “R f1 TMS”) to be reacted with the quinone compound (2) is a commercially available compound or a known production method. It can obtain by manufacturing with.
In the production method of the present invention, R f1 TMS is added in an amount of 1.0 to 2.0 mol and cesium fluoride is added in an amount of 0.1 to 1 mol with respect to 1 mol of the compound (2). It is preferable to react at 1-30 ° C. for 1-5 hours to obtain compound (3). According to this condition, compound (3) in which only one of the keto groups is converted is obtained. As the organic solvent, tetrahydrofuran, diethyl ether and the like are preferable.
 化合物(3)に反応させる式Rf2-Xで表される化合物も、市販されている化合物から、又は公知の製造方法で製造することにより入手できる。
 本発明の製造方法では、化合物(3)の1モルに対して、Rf2-Xを1.0~3.0モル、MeLi-LiBrを1.0~3.0モル加え、有機溶媒中で、温度-80℃以下で1~5時間反応させて化合物(4)を得るのが好ましい。該条件によれば、ケト基の他方も変換されて化合物(4)が得られる。有機溶媒としてはテトラヒドロフラン、ジエチルエーテル等が好ましい。
The compound represented by the formula R f2 —X to be reacted with the compound (3) can also be obtained from a commercially available compound or by producing it by a known production method.
In the production method of the present invention, 1.0 to 3.0 mol of R f2 -X and 1.0 to 3.0 mol of MeLi-LiBr are added to 1 mol of the compound (3), and the mixture is added in an organic solvent. The compound (4) is preferably obtained by reacting at a temperature of −80 ° C. or lower for 1 to 5 hours. According to this condition, the other of the keto group is also converted to obtain compound (4). As the organic solvent, tetrahydrofuran, diethyl ether and the like are preferable.
 つぎに化合物(4)のトリメチルシリル基(TMS基)の脱保護反応により化合物(5)を得る。該反応は濃塩酸を用いた酸処理による脱保護反応によるのが好ましい。該反応は、化合物(4)の1モルに対して、濃塩酸を1~20モル用いて、有機溶媒中で、還流下3~24時間反応させる方法によるのが特に好ましい。有機溶媒としては、水溶性有機溶媒が好ましく、エタノール、テトラヒドロフランが特に好ましい。
 このTMS基の脱保護は、テトラブチルアンモニウムフルオリドのようなフッ化物源を用いても実施できる。この場合、化合物(4)の1gに対して、テトラブチルアンモニウムフルオリドを1~5モル加え、有機溶媒中で、0℃付近の温度で0.5~5時間反応させる方法によるのが好ましい。
Next, the compound (5) is obtained by deprotecting the trimethylsilyl group (TMS group) of the compound (4). The reaction is preferably performed by a deprotection reaction by acid treatment using concentrated hydrochloric acid. The reaction is particularly preferably carried out by reacting with 1 to 20 mol of concentrated hydrochloric acid per 1 mol of compound (4) in an organic solvent under reflux for 3 to 24 hours. As the organic solvent, a water-soluble organic solvent is preferable, and ethanol and tetrahydrofuran are particularly preferable.
This deprotection of the TMS group can also be carried out using a fluoride source such as tetrabutylammonium fluoride. In this case, it is preferable to use a method in which 1 to 5 mol of tetrabutylammonium fluoride is added to 1 g of the compound (4) and reacted in an organic solvent at a temperature of about 0 ° C. for 0.5 to 5 hours.
 続いて、化合物(5)の水酸基の脱離を経由した芳香族化を行い化合物(1)を得る。該反応の反応条件は限定されないが、最終生成物中への金属の混入をできるだけ避けるために一般的な芳香族化反応に用いられる重金属(例として塩化スズ)を用いた反応は採用しないのが好ましい。重金属を用いない反応としては、真空中で220℃以上の熱処理による反応、トリフェニルホスフィン/四臭化炭素を用いた反応が挙げられる。
 後者の反応においては、化合物(5)の1gに対して、四臭化炭素を3~10モル、トリフェニルホスフィンを2~10モル加えて、有機溶媒中で、10~40℃、還流下で3~24時間反応させる方法を採用するのが好ましい。有機溶媒としては、塩素系溶媒が好ましく、ジクロロメタン、クロロホルム、四塩化炭素が挙げられる。ジクロロメタンが特に好ましい。
 得られた化合物(1)は本発明の含フッ素芳香族化合物(1)となり、目的とする用途に用いることができる。
Subsequently, the compound (5) is aromatized via elimination of the hydroxyl group to obtain the compound (1). The reaction conditions for the reaction are not limited, but in order to avoid contamination of the metal in the final product as much as possible, a reaction using a heavy metal (for example, tin chloride) used in a general aromatization reaction is not adopted. preferable. Examples of the reaction without using a heavy metal include a reaction by heat treatment at 220 ° C. or higher in a vacuum and a reaction using triphenylphosphine / carbon tetrabromide.
In the latter reaction, 3 to 10 mol of carbon tetrabromide and 2 to 10 mol of triphenylphosphine are added to 1 g of compound (5), and the mixture is refluxed at 10 to 40 ° C. in an organic solvent. It is preferable to employ a method of reacting for 3 to 24 hours. The organic solvent is preferably a chlorinated solvent, and examples thereof include dichloromethane, chloroform, and carbon tetrachloride. Dichloromethane is particularly preferred.
The obtained compound (1) becomes the fluorine-containing aromatic compound (1) of the present invention and can be used for the intended use.
 さらに、化合物(1)のRの1以上がハロゲン原子である場合(すなわちRがRである化合物(1A)である場合)、化合物(1A)の該ハロゲン原子RをRで置換し、化合物(1B)に誘導することができる。置換反応は、C-X結合からC-C結合を生成する公知の反応が採用でき、例えば、鈴木カップリング反応や薗頭カップリング反応が好ましい。 Furthermore, when one or more of R in the compound (1) is a halogen atom (that is, in the case of the compound (1A) in which R is R A ), the halogen atom R A in the compound (1A) is substituted with R B , Can be derived into compound (1B). As the substitution reaction, a known reaction for producing a C—C bond from a C—X bond can be employed. For example, a Suzuki coupling reaction or a Sonogashira coupling reaction is preferable.
<有機半導体材料>
 本発明の含フッ素芳香族化合物は、種々の機能性材料として用いることができ、特に有機半導体材料として有用に用い得る化合物である。
 該有機半導体材料とは、本発明の含フッ素芳香族化合物を含み、有機半導体用として用いうる材料である。有機半導体材料は、含フッ素芳香族化合物のみからなる材料であってみよく、含フッ素芳香族化合物と他の材料とを含む材料であってもよい。他の材料としては、他の有機半導体材料や、種々のドーパント等が挙げられる。ドーパントとしては、例えば有機EL素子の発光層として用いる場合には、クマリン、キナクリドン、ルブレン、スチルベン系誘導体、蛍光色素等を用いることができる。
<Organic semiconductor materials>
The fluorine-containing aromatic compound of the present invention can be used as various functional materials, and is particularly a compound that can be usefully used as an organic semiconductor material.
The organic semiconductor material is a material that contains the fluorine-containing aromatic compound of the present invention and can be used for an organic semiconductor. The organic semiconductor material may be a material composed only of a fluorine-containing aromatic compound, or may be a material including a fluorine-containing aromatic compound and another material. Other materials include other organic semiconductor materials, various dopants, and the like. As the dopant, for example, when used as a light emitting layer of an organic EL device, coumarin, quinacridone, rubrene, stilbene derivatives, fluorescent dyes, and the like can be used.
 本発明の含フッ素芳香族化合物は、ペルフルオロアルキル基間の親和力により隣接分子が凝集し(該効果をフルオロフィリック効果という。)、より効率的な電荷移動に寄与する。したがって、本発明の含フッ素芳香族化合物を用いれば、高いキャリア移動度を保持した有機半導体薄膜、およびこれを利用したトランジスタ等の電子素子の作製が実現できる。 In the fluorine-containing aromatic compound of the present invention, adjacent molecules aggregate due to the affinity between perfluoroalkyl groups (this effect is referred to as a fluorophyric effect), and contribute to more efficient charge transfer. Therefore, by using the fluorine-containing aromatic compound of the present invention, it is possible to produce an organic semiconductor thin film having high carrier mobility and an electronic device such as a transistor using the organic semiconductor thin film.
 本発明の含フッ素芳香族化合物に対して、ペルフルオロアルキル基を有していないアントラセン、ペンタセンは電極に金を用いた場合、p型半導体としてふるまう。しかし、本発明の含フッ素芳香族化合物は、電子求引性置換基であるペルフルオロアルキル基が導入されているため、置換基によって導電性が変わりうる。よって、本発明の含フッ素化合物は、骨格の一部に存在するペルフルオロアルキル基によって電子遷移エネルギーを変化させることでき、導電型を制御することが可能となり、有機半導体材料として好ましい材料になりうる。 In contrast to the fluorine-containing aromatic compound of the present invention, anthracene and pentacene that do not have a perfluoroalkyl group behave as a p-type semiconductor when gold is used for the electrode. However, since the perfluoroalkyl group which is an electron withdrawing substituent is introduced into the fluorine-containing aromatic compound of the present invention, the conductivity can be changed depending on the substituent. Therefore, the fluorine-containing compound of the present invention can change the electron transition energy by a perfluoroalkyl group present in a part of the skeleton, can control the conductivity type, and can be a preferable material as an organic semiconductor material.
<有機半導体薄膜>
 本発明に係る有機半導体材料は、ドライプロセス又はウェットプロセスを用い、通常の製造方法にしたがって、基板上に有機半導体に膜を形成できる。該膜としては、薄膜、厚膜、及び結晶性を有する膜が挙げられる。
<Organic semiconductor thin film>
The organic semiconductor material according to the present invention can form a film on an organic semiconductor on a substrate using a dry process or a wet process according to a normal manufacturing method. Examples of the film include a thin film, a thick film, and a film having crystallinity.
 ドライプロセスで薄膜を形成する場合、真空蒸着法、MBE(Molecular Beam Epitaxy)法、スパッタリング法、レーザー蒸着法、気相輸送成長法等の公知の方法を用いうる。
 これらの薄膜等は、光電変換素子、薄膜トランジスタ素子、発光素子など種々の機能素子の電荷輸送性部材として機能することから、該薄膜を有する多様な電子デバイスを作製することが可能である。
When a thin film is formed by a dry process, a known method such as a vacuum deposition method, an MBE (Molecular Beam Epitaxy) method, a sputtering method, a laser deposition method, or a vapor transport growth method can be used.
Since these thin films and the like function as charge transporting members for various functional elements such as photoelectric conversion elements, thin film transistor elements, and light emitting elements, various electronic devices having the thin films can be manufactured.
 ドライプロセスとして、真空蒸着法、MBE法、又は気相輸送成長法を用いて薄膜を形成する場合には、有機半導体材料を加熱して昇華した蒸気を、高真空、真空、低真空、又は常圧で基板表面に輸送する。薄膜の形成は、公知の方法や条件に従って実施でき、具体的には、基板温度は20~200℃、薄膜成長速度は0.001~1000nm/secが好ましい。該条件とすることで、結晶性があり、かつ、薄膜の表面平滑性がある膜を形成しうる。
 基板温度は、低温であると薄膜がアモルファス状になりやすく、高温であると薄膜の表面平滑性が低下する傾向がある。また、薄膜成長速度が遅いと結晶性が低下しやすく、速すぎると薄膜の表面平滑性が低下する傾向がある。
In the case of forming a thin film using a vacuum deposition method, an MBE method, or a vapor transport growth method as a dry process, a vapor obtained by heating and sublimating an organic semiconductor material is used in a high vacuum, a vacuum, a low vacuum, or a normal vacuum. It is transported to the substrate surface by pressure. The thin film can be formed according to known methods and conditions. Specifically, the substrate temperature is preferably 20 to 200 ° C., and the thin film growth rate is preferably 0.001 to 1000 nm / sec. By setting it as this condition, a film having crystallinity and a thin surface smoothness can be formed.
When the substrate temperature is low, the thin film tends to be amorphous, and when the substrate temperature is high, the surface smoothness of the thin film tends to decrease. Further, if the growth rate of the thin film is slow, the crystallinity tends to decrease, and if it is too fast, the surface smoothness of the thin film tends to decrease.
 ウェットプロセスで薄膜を形成する場合、含フッ素芳香族化合物を含む有機半導体材料を有機溶媒に溶解して溶液化したものを、基板上に被覆することによって有機半導体薄膜を形成することができる。
 本発明の含フッ素芳香族化合物は、従来の有機半導体材料に比して有機溶媒に対する溶解性が改善され、ウェットプロセスの適用ができる利点を有する化合物である。その理由は、含フッ素化合物中のペルフルオロアルキル基の存在により、本発明に係る有機半導体材料は親油性を示すことから、種々の有機溶媒に可溶となるためである。そのため、本発明に係る有機半導体材料はウェットプロセスの適用が可能となり、半導体材料にダメージを与えることなく加工できる。
When forming a thin film by a wet process, an organic semiconductor thin film can be formed by covering a substrate with a solution obtained by dissolving an organic semiconductor material containing a fluorine-containing aromatic compound in an organic solvent.
The fluorine-containing aromatic compound of the present invention is a compound having an advantage that the solubility in an organic solvent is improved as compared with a conventional organic semiconductor material and a wet process can be applied. The reason is that the organic semiconductor material according to the present invention exhibits lipophilicity due to the presence of the perfluoroalkyl group in the fluorine-containing compound, and thus becomes soluble in various organic solvents. Therefore, the organic semiconductor material according to the present invention can be applied with a wet process, and can be processed without damaging the semiconductor material.
 ウェットプロセスにおける製膜方法(基板を被覆する方法)としては、塗布、噴霧、および接触等が挙げられる。具体的には、スピンコート法、キャスト法、ディップコート法、インクジェット法、ドクターブレード法、スクリーン印刷法、ディスペンス法等の公知の方法が挙げられる。また、平板状結晶や厚膜状態の形態を取る場合には、キャスト法等が採用できる。製膜方法および有機溶媒は、作製するデバイスに適した組み合わせを選択することが好ましい。 Examples of the film forming method (method for coating the substrate) in the wet process include coating, spraying, and contact. Specific examples include known methods such as spin coating, casting, dip coating, ink jet, doctor blade, screen printing, and dispensing. Moreover, when taking the form of a flat crystal or a thick film state, a casting method or the like can be adopted. It is preferable to select a combination suitable for the device to be produced for the film forming method and the organic solvent.
 ウェットプロセスにおいては、含フッ素芳香族化合物の溶液と基板との界面に、温度勾配、電場、および磁場から選ばれる少なくとも1つを印加して、結晶成長を制御することもできる。該方法を採用すれば、より高結晶性の有機半導体薄膜を製造でき、かつ、高結晶性の薄膜の性能に基づく優れた半導体特性を得ることができる。また、ウェットプロセス製膜時に、環境雰囲気を溶媒雰囲気にすることにより、溶媒乾燥における蒸気圧を制御して、高結晶性の有機半導体薄膜を製造することもできる。 In the wet process, crystal growth can be controlled by applying at least one selected from a temperature gradient, an electric field, and a magnetic field to the interface between the solution of the fluorine-containing aromatic compound and the substrate. By adopting this method, a highly crystalline organic semiconductor thin film can be produced, and excellent semiconductor characteristics based on the performance of the highly crystalline thin film can be obtained. In addition, a high crystalline organic semiconductor thin film can be manufactured by controlling the vapor pressure in solvent drying by making the environmental atmosphere a solvent atmosphere during wet process film formation.
 ウェットプロセスにおいて、含フッ素芳香族化合物を溶解できる有機溶媒の例としては、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素類;シクロヘキサン等の脂環式炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジエチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;メタノール、エタノール、2-プロパノール等のアルコール類;又はこれらの混合物等の、非ハロゲン系の溶媒の例が挙げられる。 Examples of organic solvents that can dissolve fluorine-containing aromatic compounds in the wet process include aliphatic hydrocarbons such as pentane, hexane, and heptane; alicyclic hydrocarbons such as cyclohexane; aromatics such as benzene, toluene, and xylene. Examples of non-halogen solvents such as group hydrocarbons; ethers such as diethyl ether, tert-butyl methyl ether, tetrahydrofuran and dioxane; alcohols such as methanol, ethanol and 2-propanol; or mixtures thereof It is done.
 含ハロゲン溶媒の例としては、塩素化炭化水素類、フッ素化炭化水素類、塩素化フッ素化炭化水素類、含フッ素エーテル化合物が例示できる。具体的には、塩化メチレン、クロロホルム、2,3,3-トリクロロヘプタフルオロブタン、1,1,1,3-テトラクロロテトラフルオロプロパン、1,1,1-トリクロロペンタフルオロプロパン、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパン、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、四塩化炭素、1,2-ジクロロエタン、ジクロロペンタフルオロプロパン、n-C13-C、n-COCH、n-COC等が挙げられる。
 溶媒は1種のみを用いても2種以上を併用してもよい。2種以上を併用する場合には、非ハロゲン系溶媒と、含ハロゲン溶媒とを併用するのが好ましく、これらを任意の割合で混合した溶媒が好ましい。
Examples of the halogen-containing solvent include chlorinated hydrocarbons, fluorinated hydrocarbons, chlorinated fluorinated hydrocarbons, and fluorine-containing ether compounds. Specifically, methylene chloride, chloroform, 2,3,3-trichloroheptafluorobutane, 1,1,1,3-tetrachlorotetrafluoropropane, 1,1,1-trichloropentafluoropropane, 1,1- Dichloro-2,2,3,3,3-pentafluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, carbon tetrachloride, 1,2-dichloroethane, dichloropentafluoropropane NC 6 F 13 -C 2 H 5 , nC 4 F 9 OCH 3 , nC 4 F 9 OC 2 H 5 and the like.
A solvent may use only 1 type or may use 2 or more types together. When using 2 or more types together, it is preferable to use a non-halogen type solvent and a halogen-containing solvent together, and the solvent which mixed these in arbitrary ratios is preferable.
 本発明における含フッ素芳香族化合物を有機溶媒に溶解させて、ウェットプロセスを行う場合には、作業効率の観点等から有機溶媒に溶解させる有機半導体材料の量は0.01重量%以上が好ましく、0.2重量%程度がより好ましい。さらに、有機溶媒中の有機半導体材料量は、0.01~10重量%が好ましく、0.2~10重量%が特に好ましい。
 また、本発明の含フッ素芳香族化合物は有機溶媒に対する溶解性に優れるため、上記の製造方法で得た含フッ素芳香族化合物をカラムクロマトグラフィーや再結晶などの簡易な精製方法によって、高純度化してもよい。
When the fluorine-containing aromatic compound in the present invention is dissolved in an organic solvent and a wet process is performed, the amount of the organic semiconductor material dissolved in the organic solvent is preferably 0.01% by weight or more from the viewpoint of work efficiency, About 0.2% by weight is more preferable. Further, the amount of the organic semiconductor material in the organic solvent is preferably 0.01 to 10% by weight, and particularly preferably 0.2 to 10% by weight.
In addition, since the fluorine-containing aromatic compound of the present invention is excellent in solubility in an organic solvent, the fluorine-containing aromatic compound obtained by the above production method can be highly purified by a simple purification method such as column chromatography or recrystallization. May be.
 ウェットプロセスによる基板表面の被覆は、大気下又は不活性ガス雰囲気下で行うことができる。特に半導体材料の溶液が酸化しやすい場合には、不活性ガス雰囲気下にすることが好ましく、窒素やアルゴン等を用いることができる。
 基板表面を被覆した後、溶媒を揮発させることで有機半導体薄膜が形成される。当該薄膜中の溶媒残存量が多いと薄膜の安定性や半導体特性が低下するおそれがあるため、薄膜形成の後に、再度加熱処理や減圧処理を施し、残存している溶媒を除去することが好ましい。
The substrate surface can be coated by a wet process in the air or in an inert gas atmosphere. In particular, when the solution of the semiconductor material is easily oxidized, it is preferably in an inert gas atmosphere, and nitrogen, argon, or the like can be used.
After coating the substrate surface, the organic semiconductor thin film is formed by volatilizing the solvent. If the residual amount of the solvent in the thin film is large, the stability of the thin film and the semiconductor properties may be deteriorated. Therefore, it is preferable to remove the remaining solvent by performing heat treatment or reduced pressure treatment again after the thin film is formed. .
 ウェットプロセスに使用しうる基板の形状は特に限定されず、通常はシート状の基板や板状の基板が好ましい。基板に用いられる材料も特に限定されずセラミックス、金属基板、半導体、樹脂、紙、不織布等が挙げられる。 The shape of the substrate that can be used in the wet process is not particularly limited, and a sheet-like substrate or a plate-like substrate is usually preferable. The material used for the substrate is not particularly limited, and examples thereof include ceramics, metal substrates, semiconductors, resins, paper, and nonwoven fabrics.
 基板がセラミックス基板である場合の例としては、ガラス、石英、酸化アルミニウム、サファイア、チッ化ケイ素、炭化ケイ素等の基板が挙げられる。金属基板としては金、銅、銀等の基板が挙げられる。半導体基板としては、シリコン(結晶性シリコン、アモルファスシリコン)、ゲルマニウム、ガリウムヒ素、ガリウムリン、チッ化ガリウム等の基板が挙げられる。樹脂基板としては、ポリエステル、ポリエチレン、ポリプロピレン、ポリビニル、ポリビニルアルコール、エチレンビニルアルコール共重合体、環状ポリオレフィン、ポリイミド、ポリアミド、ポリスチレン、ポリカーボネート、ポリエーテルスルフォン、ポリスルフォン、ポリメチルメタクリレート、ポリエチレンテレフタレート、トリアセチルセルロース、ノルボルネン等の基板が挙げられる。 Examples of when the substrate is a ceramic substrate include substrates such as glass, quartz, aluminum oxide, sapphire, silicon nitride, and silicon carbide. Examples of the metal substrate include gold, copper, and silver substrates. Examples of the semiconductor substrate include silicon (crystalline silicon, amorphous silicon), germanium, gallium arsenide, gallium phosphide, gallium nitride, and the like. Polyester, polyethylene, polypropylene, polyvinyl, polyvinyl alcohol, ethylene vinyl alcohol copolymer, cyclic polyolefin, polyimide, polyamide, polystyrene, polycarbonate, polyether sulfone, polysulfone, polymethyl methacrylate, polyethylene terephthalate, triacetyl Examples of the substrate include cellulose and norbornene.
 含フッ素芳香族化合物を用いた有機半導体薄膜は、結晶性の薄膜とすることができる。結晶性の薄膜は高い結晶性によって高いキャリア移動度が望め、それによる優れた有機半導体デバイス特性を発現する点から好ましい。
 薄膜の結晶状態は、当該薄膜の斜入射X線回折測定、透過型電子線回折、薄膜のエッジ部にX線を入射させ回折を測定する方法により知ることができる。特に薄膜分野の結晶解析手法である斜入射X線回折が用いられる。X線回折において、測定する格子面の方向によって、Out-of-planeXRD法とIn-planeXRD法がある。Out-of-planeXRD法は基板に対して平行な格子面を観察する手法である。In-planeXRD法は基板に対して垂直な格子面を観察する手法である。薄膜が結晶性であるとは、薄膜を形成する有機半導体材料に由来する回折ピークが観察されることを意味する。具体的には有機半導体材料の結晶格子に基づく回折、分子長さ由来の回折、あるいは分子が基板に対して平行、あるいは垂直に並ぶ配向性を有する際に現れる特徴的な回折ピークが観察されることを意味する。非結晶状態の膜の場合はこの回折は観察されず、回折ピークが現れた薄膜は結晶性の薄膜であることを意味する。
The organic semiconductor thin film using the fluorine-containing aromatic compound can be a crystalline thin film. A crystalline thin film is preferable from the viewpoint that high carrier mobility can be expected due to high crystallinity and thereby excellent organic semiconductor device characteristics are exhibited.
The crystalline state of the thin film can be known by oblique incidence X-ray diffraction measurement of the thin film, transmission electron diffraction, or a method of measuring diffraction by making X-rays incident on the edge of the thin film. In particular, oblique incidence X-ray diffraction, which is a crystal analysis technique in the thin film field, is used. In X-ray diffraction, there are an Out-of-plane XRD method and an In-plane XRD method depending on the direction of the lattice plane to be measured. The Out-of-plane XRD method is a method for observing a lattice plane parallel to the substrate. The In-plane XRD method is a method for observing a lattice plane perpendicular to the substrate. That the thin film is crystalline means that a diffraction peak derived from the organic semiconductor material forming the thin film is observed. Specifically, diffraction based on crystal lattice of organic semiconductor material, diffraction derived from molecular length, or characteristic diffraction peak appearing when molecules have alignment parallel or perpendicular to the substrate are observed. Means that. In the case of a non-crystalline film, this diffraction is not observed, which means that the thin film in which the diffraction peak appears is a crystalline thin film.
 有機半導体素子に使用する有機半導体薄膜層の厚さは、通常10~1,000nmであることが好ましい。 The thickness of the organic semiconductor thin film layer used in the organic semiconductor element is usually preferably 10 to 1,000 nm.
<有機半導体素子、有機半導体トランジスタ>
 本発明における含フッ素芳香族化合物は高いキャリア移動度を有する。よって、含フッ素芳香族化合物を含む有機半導体材料は含フッ素化合物の高いキャリア移動度を損なうことなく、有機半導体薄膜を形成することができる。
 有機半導体薄膜の層を積層することにより形成した半導体層を含む有機半導体素子は、様々な半導体デバイスに非常に有用である。
<Organic semiconductor element, organic semiconductor transistor>
The fluorine-containing aromatic compound in the present invention has a high carrier mobility. Therefore, an organic semiconductor material containing a fluorine-containing aromatic compound can form an organic semiconductor thin film without impairing the high carrier mobility of the fluorine-containing compound.
An organic semiconductor element including a semiconductor layer formed by laminating layers of organic semiconductor thin films is very useful for various semiconductor devices.
 半導体デバイスの例としては、有機半導体トランジスタ、有機半導体レーザー、有機光電変換デバイス、有機分子メモリ等が挙げられる。このうち半導体デバイスとしては有機半導体トランジスタが好ましく、さらに電界効果トランジスタ(FET)がより好ましい。 Examples of semiconductor devices include organic semiconductor transistors, organic semiconductor lasers, organic photoelectric conversion devices, and organic molecular memories. Among these, an organic semiconductor transistor is preferable as the semiconductor device, and a field effect transistor (FET) is more preferable.
 有機半導体トランジスタは、通常、基板、ゲート電極、絶縁体層(誘電体層)、ソース電極、ドレイン電極、および半導体層で構成される。その他にバックゲートやバルクなどが含まれていてもよい。
 有機半導体トランジスタ中の構成要素が配置される順序等については、特に限定されない。また、上記構成要素のうち、ゲート電極、ソース電極、ドレイン電極、および半導体層は複数層設けてもよい。複数層の半導体層が存在する場合には、同一平面内に設けても、積層して設けてもよい。
An organic semiconductor transistor is usually composed of a substrate, a gate electrode, an insulator layer (dielectric layer), a source electrode, a drain electrode, and a semiconductor layer. In addition, a back gate or a bulk may be included.
There are no particular restrictions on the order in which the components in the organic semiconductor transistor are arranged. Further, among the above components, a plurality of gate electrodes, source electrodes, drain electrodes, and semiconductor layers may be provided. When there are a plurality of semiconductor layers, they may be provided in the same plane or stacked.
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.
(評価方法)
 実施例において、合成した化合物は、以下の分析方法および分析条件により構造を同定した。
(Evaluation methods)
In the examples, the structures of the synthesized compounds were identified by the following analysis methods and analysis conditions.
 核磁気共鳴分析は、日本電子社製フーリエ変換高分解能核磁気共鳴装置(JNM-AL400)により同定を行った。
 H NMR(300MHz) 溶媒:クロロホルム-d(CDCl),メタノール-d(CDOD)又はアセトン-d(Acetone-d)。内部標準:テトラメチルシラン(TMS).
 13C NMR(75MHz) 溶媒:クロロホルム-d(CDCl),メタノール-d(CDOD)又はアセトン-d(Acetone-d)。内部標準:クロロホルム-d(CDCl).
 19F NMR(283MHz) 溶媒:クロロホルム-d(CDCl),メタノール-d(CDOD)又はアセトン-d(Acetone-d)。内部標準:ヘキサフルオロベンゼン(C)を-163ppmとした(CFClを0ppmとする).
Nuclear magnetic resonance analysis was performed using a Fourier transform high resolution nuclear magnetic resonance apparatus (JNM-AL400) manufactured by JEOL.
1 H NMR (300 MHz) Solvent: chloroform-d (CDCl 3 ), methanol-d 4 (CD 3 OD) or acetone-d 6 (acetone-d 6 ). Internal standard: Tetramethylsilane (TMS).
13 C NMR (75 MHz) Solvent: chloroform-d (CDCl 3 ), methanol-d 4 (CD 3 OD) or acetone-d 6 (acetone-d 6 ). Internal standard: Chloroform-d (CDCl 3 ).
19 F NMR (283 MHz) Solvent: chloroform-d (CDCl 3 ), methanol-d 4 (CD 3 OD) or acetone-d 6 (acetone-d 6 ). Internal standard: hexafluorobenzene (C 6 F 6 ) was set to −163 ppm (CFCl 3 was set to 0 ppm).
 赤外吸収分光は、日本分光社製フーリエ変換赤外分光高度計(FT-IR)、FT/IR-4100を使用した。元素分析は、パーキンエルマー社製全自動元素分析装置2400シリーズIIを使用した。融点測定は、ヤマト科学社製融点測定器MP-21を使用した。 For infrared absorption spectroscopy, Fourier transform infrared spectrophotometer (FT-IR), FT / IR-4100 manufactured by JASCO Corporation was used. For elemental analysis, a fully automatic elemental analyzer 2400 series II manufactured by PerkinElmer was used. For the melting point measurement, a melting point measuring device MP-21 manufactured by Yamato Kagaku was used.
<実施例1>
(1)化合物(a1)(9-(Trifluoromethyl)-9-(trimethylsiloxy)anthrcen-10-one)の合成
 300mL三口フラスコにCsF(0.304g、2.0mmol)を加え、加熱乾燥した後、Ar置換を行った。THF(150mL)、アントラセン-9,10-ジオン(4.164g、20.0mmol)を加え、THF(25mL)に溶かしたTMSCF(3.55mL、24.0mmol)を滴下ロートを用いてゆっくり滴下した。室温で3時間撹拌した後、飽和NHCl水溶液でクエンチを行い、酢酸エチルで抽出を行った。有機層を無水NaSOで乾燥させ、溶媒を除去した。カラムクロマトグラフィー(展開溶媒 ヘキサン:CHCl=2:1)で単離精製を行い、目的の化合物(a1)を白色固体として得た(6.311g,18.0mmol,収率90%)。
<Example 1>
(1) Synthesis of Compound (a1) (9- (Trifluoromethyl) -9- (trimethylsilyl) anthrcen-10-one) CsF (0.304 g, 2.0 mmol) was added to a 300 mL three-necked flask and dried by heating. Replacement was performed. THF (150 mL) and anthracene-9,10-dione (4.164 g, 20.0 mmol) were added, and TMSCF 3 (3.55 mL, 24.0 mmol) dissolved in THF (25 mL) was slowly added dropwise using a dropping funnel. did. After stirring at room temperature for 3 hours, the reaction was quenched with saturated aqueous NH 4 Cl and extracted with ethyl acetate. The organic layer was dried over anhydrous Na 2 SO 4 and the solvent was removed. The product was isolated and purified by column chromatography (developing solvent hexane: CH 2 Cl 2 = 2: 1) to obtain the target compound (a1) as a white solid (6.311 g, 18.0 mmol, yield 90%). .
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(分析結果)
 M.P. 84~86℃.
 H NMR(CDCl) δ -0.09(s,9H),7.63(td,2H,J=7.6,0.9Hz),7.74(td,2H,J=7.2,1.8Hz),8.15(dt,2H,J=6.3,1.5Hz),8.34(dd,2H,J=7.8,1.2Hz).
 19F NMR(CDCl) δ -81.66 (s).
 13C NMR(CDCl) δ 1.7,74.6(q,J=29.8Hz),123.8(q,J=286.6Hz),127.5,129.0(d,J=1.8Hz),129.9,131.4,133.0,139.0,182.7.
 IR(KBr)ν 3006,2971,2905,1668,1599,1457,1253,1082,956,818,712,679cm-1
 HRMS(APCI) Calcd for (M+H) C181712Si: 350.1028, Found 349.1008.
(result of analysis)
M.M. P. 84-86 ° C.
1 H NMR (CDCl 3 ) δ −0.09 (s, 9H), 7.63 (td, 2H, J = 7.6, 0.9 Hz), 7.74 (td, 2H, J = 7.2) 1.8 Hz), 8.15 (dt, 2H, J = 6.3, 1.5 Hz), 8.34 (dd, 2H, J = 7.8, 1.2 Hz).
19 F NMR (CDCl 3 ) δ −81.66 (s).
13 C NMR (CDCl 3 ) δ 1.7, 74.6 (q, J = 29.8 Hz), 123.8 (q, J = 286.6 Hz), 127.5, 129.0 (d, J = 1.8 Hz), 129.9, 131.4, 133.0, 139.0, 182.7.
IR (KBr) ν 3006, 2971, 2905, 1668, 1599, 1457, 1253, 1082, 956, 818, 712, 679 cm −1 .
HRMS (APCI) Calcd for (M + H) C 18 H 17 F 12 O 2 Si: 350.1028, Found 349.1008.
(2)化合物(a2)(9-(Nonafluorobutyl)-10-(trifluoromethyl)-10-(trimethylsiloxy)anthracen-9-ol)の合成
 Ar置換した30mL三口フラスコに、化合物(a1)(0.350g(1.0mmol))、ジエチルエーテル(10mL)、CF(CFCFI(0.36mL(2.1mmol))を加え、-80℃まで冷却した。滴下ロートを用いて1.5MのMeLi-LiBrエーテル溶液(1.33mL(2.0mmol))をゆっくり滴下した後、80℃のまま2時間撹拌した。1NのHCl水溶液を加え反応を停止し、酢酸エチルで抽出後、有機層を無水NaSOで乾燥させた。減圧下で濃縮した後、カラムクロマトグラフィー(展開溶媒ヘキサン:CHCl=2:1)で単離精製を行い、目的の化合物(a2)を白色固体として得た(0.449g,0.79mmol,収率79%)。
(2) Synthesis of Compound (a2) (9- (Nonafluorbutyl) -10- (trifluoromethyl) -10- (trimethylsilyl) anthracen-9-ol) Compound (a1) (0.350 g (0.350 g) 1.0 mmol)), diethyl ether (10 mL), CF 3 (CF 2 ) 2 CF 2 I (0.36 mL (2.1 mmol)) were added, and the mixture was cooled to −80 ° C. A 1.5 M MeLi-LiBr ether solution (1.33 mL (2.0 mmol)) was slowly added dropwise using a dropping funnel, followed by stirring at 80 ° C. for 2 hours. 1N HCl aqueous solution was added to stop the reaction, extraction was performed with ethyl acetate, and the organic layer was dried over anhydrous Na 2 SO 4 . After concentration under reduced pressure, isolation and purification were performed by column chromatography (developing solvent hexane: CH 2 Cl 2 = 2: 1) to obtain the target compound (a2) as a white solid (0.449 g, 0. 79 mmol, yield 79%).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(分析結果)
 M.P. 99~101℃.
 H NMR(CDCl) δ 0.03(s,9H),2.98(s,1H),7.50-7.60(m,4H),7.91-7.98(m,2H),8.00-8.09(m,2H).
 19F NMR(CDCl) δ -81.55(s,3F),-82.21(t,J=9.0Hz,3F),-116.49(m,2F),-120.15(m,2F),-127.28(m,2F).
 13C NMR(CDCl) δ 1.8,74.2(tt,J=19.8,1.8Hz),76.0(q,J=27.3Hz),124.1(q,J=289.0Hz),128.6(tt,J=5.6,1.8Hz), 129.0,129.5,129.6,132.8,133.4.
 IR (KBr) ν 3589,3563,2963,1449,1357,1235,1170,940,878,763cm-1. 
 HRMS(FAB) Calcd for (M-H) C221712Si: 569.0806, Found 569.0824.
(result of analysis)
M.M. P. 99-101 ° C.
1 H NMR (CDCl 3 ) δ 0.03 (s, 9H), 2.98 (s, 1H), 7.50-7.60 (m, 4H), 7.91-7.98 (m, 2H) ), 8.00-8.09 (m, 2H).
19 F NMR (CDCl 3 ) δ −81.55 (s, 3F), −82.21 (t, J = 9.0 Hz, 3F), −116.49 (m, 2F), −120.15 (m , 2F), -127.28 (m, 2F).
13 C NMR (CDCl 3 ) δ 1.8, 74.2 (tt, J = 19.8, 1.8 Hz), 76.0 (q, J = 27.3 Hz), 124.1 (q, J = 289.0 Hz), 128.6 (tt, J = 5.6, 1.8 Hz), 129.0, 129.5, 129.6, 132.8, 133.4.
IR (KBr) ν 3589, 3563, 2963, 1449, 1357, 1235, 1170, 940, 878, 763 cm −1 .
HRMS (FAB) Calcd for (M−H) C 22 H 17 F 12 O 2 Si: 569.0806, Found 569.0824.
(3)化合物(a3)(9-(Nonafluorobutyl)-10-(trifluoromethyl)anthracene-9,10-diol)の合成
 ジムロート冷却管を付けた、30mL二口ナス型フラスコに、化合物(a2)(0.506g(0.89mmol))、THF(5mL)、濃塩酸(0.5mL)を加え、3時間還流した。酢酸エチルで抽出後、有機層を無水NaSOで乾燥させたのち、減圧下で濃縮した。カラムクロマトグラフィー(展開溶媒 ヘキサン:CHCl=2:1)で単離精製を行い、目的の化合物(a3)を白色固体として得た(0.351g,0.71mmol,収率79%)。
(3) Synthesis of Compound (a3) (9- (Nonafluorbutyl) -10- (trifluoromethyl) anthracene-9,10-diol) To a 30 mL two-necked eggplant type flask equipped with a Dimroth condenser, compound (a2) .506 g (0.89 mmol)), THF (5 mL) and concentrated hydrochloric acid (0.5 mL) were added, and the mixture was refluxed for 3 hours. After extraction with ethyl acetate, the organic layer was dried over anhydrous Na 2 SO 4 and then concentrated under reduced pressure. Isolation and purification were performed by column chromatography (developing solvent hexane: CH 2 Cl 2 = 2: 1) to obtain the target compound (a3) as a white solid (0.351 g, 0.71 mmol, yield 79%). .
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(分析結果)
 M.P. 118~120℃.
 H NMR(CDCl) δ 2.88(s,1H),3.15(d,J=1.2Hz,1H),7.55-7.63(m,4H),8.00-8.08(m,4H).
 19F NMR(CDCl) δ -79.19(s,3F),-82.19(t,J=9.0Hz,3F), -119.32(m,2F),-121.64(m,2F),-127.47(m,2F).
 13C NMR(CDCl) δ 73.3(q,J=27.9Hz),73.7(tt,J=18.6,2.5Hz),124.0(q,J=287.8Hz),128.3(q,J=3.1Hz),128.4(t,J=5.6Hz),129.8,129.9,132.6,132.8. 
 IR(KBr) ν 3610,3481,3083,1450,1363,1202,1185,1135,1026,804,767cm-1. 
 HRMS(FAB) Calcd for (M-H) C1912: 497.0411, Found 497.0401.
(result of analysis)
M.M. P. 118-120 ° C.
1 H NMR (CDCl 3 ) δ 2.88 (s, 1H), 3.15 (d, J = 1.2 Hz, 1H), 7.55-7.63 (m, 4H), 8.00-8 .08 (m, 4H).
19 F NMR (CDCl 3 ) δ −79.19 (s, 3F), −82.19 (t, J = 9.0 Hz, 3F), −119.32 (m, 2F), −121.64 (m , 2F), -127.47 (m, 2F).
13 C NMR (CDCl 3 ) δ 73.3 (q, J = 27.9 Hz), 73.7 (tt, J = 18.6, 2.5 Hz), 124.0 (q, J = 287.8 Hz) , 128.3 (q, J = 3.1 Hz), 128.4 (t, J = 5.6 Hz), 129.8, 129.9, 132.6, 132.8.
IR (KBr) ν 3610, 3481, 3083, 1450, 1363, 1202, 1185, 1135, 1026, 804, 767 cm −1 .
HRMS (FAB) Calcd for (M−H) C 19 H 9 F 12 O 2 : 497.0411, Found 497.0401.
(4)化合物(a4)(9-(Nonafluorobutyl)-10-(trifluoromethyl)anthracene)の合成
 Ar置換した30mL二口ナス型フラスコに、化合物(a3)(0.232g(0.47mmol))、四臭化炭素(0.468g(1.4mmol))を加え、5mLのCHClに溶解させた。トリフェニルホスフィン(0.551g(2.1mmol))を加え、室温で15時間撹拌した後、飽和NHCl水溶液を加え反応を停止した。CHClで抽出後、有機層を無水NaSOで乾燥させたのち、減圧下で濃縮した。カラムクロマトグラフィー(展開溶媒 ヘキサン)より単離精製を行い目的の化合物(a4)を黄色固体として得た(0.205g,0.44mmol,収率93%)。
(4) Synthesis of Compound (a4) (9- (Nonafluorbutyl) -10- (Trifluoromethyl) anthracene) Compound (a3) (0.232 g (0.47 mmol)), Four Carbon bromide (0.468 g (1.4 mmol)) was added and dissolved in 5 mL of CH 2 Cl 2 . Triphenylphosphine (0.551 g (2.1 mmol)) was added and stirred at room temperature for 15 hours, and then the reaction was stopped by adding a saturated aqueous NH 4 Cl solution. After extraction with CH 2 Cl 2 , the organic layer was dried over anhydrous Na 2 SO 4 and then concentrated under reduced pressure. Isolation and purification were performed from column chromatography (developing solvent hexane) to obtain the target compound (a4) as a yellow solid (0.205 g, 0.44 mmol, yield 93%).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(分析結果)
 M.P. 89~91℃. 
 H NMR(CDCl) δ 7.57-7.65(m,4H),8.35-8.45(m,2H),8.50-8.55(m,2H). 
 19F NMR (CDCl) δ -49.62(s,3F),-81.87(t,J=9.0Hz,3F),-93.04(t,J=16.1Hz,2F),-119.39(q,J=11.6Hz,2F),-126.86(m,2F). 
 13C NMR(CDCl) δ 124.8(q,J=6.3Hz),125.4(tt,J=9.9,4.3Hz),125.6(q,J=277.9Hz),126.4,126.9(q,J=1.2Hz),127.2(t,J=2.3Hz),129.4,131.0(t,J=2.5Hz). 
 IR(KBr) ν 3155,3100,3052,1350,1290,1238,1134,1032,932,829,765cm-1. 
 HRMS(FAB) Calcd for (M+) C1912: 464.0434, Found 464.0402.
(result of analysis)
M.M. P. 89-91 ° C.
1 H NMR (CDCl 3 ) δ 7.57-7.65 (m, 4H), 8.35-8.45 (m, 2H), 8.50-8.55 (m, 2H).
19 F NMR (CDCl 3 ) δ −49.62 (s, 3F), −81.87 (t, J = 9.0 Hz, 3F), −93.04 (t, J = 16.1 Hz, 2F), −119.39 (q, J = 11.6 Hz, 2F), −126.86 (m, 2F).
13 C NMR (CDCl 3 ) δ 124.8 (q, J = 6.3 Hz), 125.4 (tt, J = 9.9, 4.3 Hz), 125.6 (q, J = 277.9 Hz) , 126.4, 126.9 (q, J = 1.2 Hz), 127.2 (t, J = 2.3 Hz), 129.4, 131.0 (t, J = 2.5 Hz).
IR (KBr) ν 3155, 3100, 3052, 1350, 1290, 1238, 1134, 1032, 932, 829, 765 cm −1 .
HRMS (FAB) Calcd for (M +) C 19 H 8 F 12 : 464.0434, Found 464.0402.
<実施例2>
(1)化合物(b2)(9-(Tridecafluorohexyl)-10-(trifluoromethyl)-10-(trimethylsiloxy)anthracen-9-ol)の合成
 化合物(a2)の合成において、CF(CFCFIをCF(CFCFIに変更した以外は同様として、目的の化合物(b2)を白色固体として得た(0.456g,0.68mmol,収率68%)。
<Example 2>
(1) Synthesis of Compound (b2) (9- (Tridecafluorohexyl) -10- (trifluoromethyl) -10- (trimethylsilyl) anthracen-9-ol) In the synthesis of Compound (a2), CF 3 (CF 2 ) 2 CF 2 The target compound (b2) was obtained as a white solid in the same manner except that I was changed to CF 3 (CF 2 ) 4 CF 2 I (0.456 g, 0.68 mmol, yield 68%).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(分析結果)
 M.P. 58~60℃. 
 H NMR(CDCl) δ 0.04(s,9H),3.01(s,1H),7.50-7.60(m,4H),7.91-8.00(m,2H),8.03-8.09(m,2H).
 19F NMR (CDCl) δ -81.62(s,3F),-82.17(t,J=9.0Hz,3F),-116.45(m,2F),-119.28(m,2F),-123.11(brs,2F),-124.20(brs,2F),-127.449(m,2F).
 13C NMR(CDCl) δ 2.3,74.6(tt,J=19.8,1.9Hz),76.4(q,J=27.9Hz),124.5(q,J=289.0Hz),129.0(tt,J=5.6,1.2Hz),129.4,129.9,130.0,133.2,133.8.
 IR(KBr) ν 3585,3445,2966,1237,1198,1151,1032,937,848,761cm-1
 HRMS(APCI) Calcd for (M+) C241716Si: 670.0821, Found 669.0778.
(result of analysis)
M.M. P. 58-60 ° C.
1 H NMR (CDCl 3 ) δ 0.04 (s, 9H), 3.01 (s, 1H), 7.50-7.60 (m, 4H), 7.91-8.00 (m, 2H) ), 8.03-8.09 (m, 2H).
19 F NMR (CDCl 3 ) δ −81.62 (s, 3F), −82.17 (t, J = 9.0 Hz, 3F), −116.45 (m, 2F), −119.28 (m , 2F), -123.11 (brs, 2F), -124.20 (brs, 2F), -127.449 (m, 2F).
13 C NMR (CDCl 3 ) δ 2.3, 74.6 (tt, J = 19.8, 1.9 Hz), 76.4 (q, J = 27.9 Hz), 124.5 (q, J = 289.0 Hz), 129.0 (tt, J = 5.6, 1.2 Hz), 129.4, 129.9, 130.0, 133.2, 133.8.
IR (KBr) ν 3585, 3445, 2966, 1237, 1198, 1151, 1032, 937, 848, 761 cm −1 .
HRMS (APCI) Calcd for (M +) C 24 H 17 F 16 O 2 Si: 670.0821, Found 669.0778.
(2)化合物(b3)(9-(Tridecafluorohexyl)-10-(trifluoromethyl)anthracen-9,10-diol)の合成
 化合物(a3)の合成において、化合物(a2)を化合物(b2)に変更した以外は同様として、目的の化合物(b3)を白色固体として得た(0.409g,0.68mmol,収率77%)。
(2) Synthesis of Compound (b3) (9- (Tridecafluorohexyl) -10- (trifluoromethyl) anthracen-9,10-diol) In the synthesis of Compound (a3), Compound (a2) was changed to Compound (b2) Similarly, the target compound (b3) was obtained as a white solid (0.409 g, 0.68 mmol, yield 77%).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(分析結果)
 M.P. 91-93°C.
 H NMR(CDCl) δ 2.88(d,J=3.0Hz,1H),3.16(dd,J=3.9,1.2Hz,1H),7.58-7.63(m,4H),8.01-8.07(m,4H). 
 19F NMR(CDCl) δ -79.17(s,3F),-82.17(t,J=9.0Hz,3F),-119.15(m,2F),-120.06(m,2F),-123.28(brs,2F),-124.15(brs,2F),-127.56(m,2F). 
 13C NMR(CDCl) δ 73.2(q,J=27.9Hz),73.7(tt,J=19.2,1.8Hz),124.0(q,J=287.2Hz),128.3(q,J=2.5Hz),128.4(t,J=5.6Hz),129.6,129.8,132.7,132.9. 
 IR (KBr) ν 3489,3228,1453,1360,1244,1182,1025,924,768cm-1. 
 HRMS(FAB) Calcd for (M-H) C2116:597.0347, Found 597.0385.
(result of analysis)
M.M. P. 91-93 ° C.
1 H NMR (CDCl 3 ) δ 2.88 (d, J = 3.0 Hz, 1H), 3.16 (dd, J = 3.9, 1.2 Hz, 1H), 7.58-7.63 ( m, 4H), 8.01-8.07 (m, 4H).
19 F NMR (CDCl 3 ) δ −79.17 (s, 3F), −82.17 (t, J = 9.0 Hz, 3F), −119.15 (m, 2F), −120.06 (m , 2F), −123.28 (brs, 2F), −124.15 (brs, 2F), −127.56 (m, 2F).
13 C NMR (CDCl 3 ) δ 73.2 (q, J = 27.9 Hz), 73.7 (tt, J = 19.2, 1.8 Hz), 124.0 (q, J = 287.2 Hz) , 128.3 (q, J = 2.5 Hz), 128.4 (t, J = 5.6 Hz), 129.6, 129.8, 132.7, 132.9.
IR (KBr) ν 3489, 3228, 1453, 1360, 1244, 1182, 1025, 924, 768 cm −1 .
HRMS (FAB) Calcd for (M−H) C 21 H 9 F 16 O 2 : 597.0347, Found 597.0385.
(3)化合物(b4)(9-(Tridecafluorohexyl)-10-(trifluoromethyl)anthracene)の合成
 化合物(a4)の合成において、化合物(a3)を化合物(b3)に変更した以外は同様として、目的の化合物(b4)を黄色固体として得た(0.169g,0.30mmol,収率64%)。
(3) Synthesis of Compound (b4) (9- (Tridecafluorohexyl) -10- (trifluoromethyl) anthracene) In the synthesis of Compound (a4), except that Compound (a3) was changed to Compound (b3), Compound (b4) was obtained as a yellow solid (0.169 g, 0.30 mmol, yield 64%).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(分析結果)
 M.P. 101-103°C. 
 H NMR(CDCl) δ 7.57-7.65(m,4H),8.36-8.46(m,2H),8.46-8.56(m,2H). 
 19F NMR(CDCl) δ -49.64(s,3F),-81.94(t,J=9.0Hz,3F),-92.92(t,J=15.8Hz,2F),-118.52(m,2F),-122.76(m,2F),-123.74(m,2F),-127.22(m,2F). 
 13C NMR(CDCl) δ 124.7(q,J=5.6Hz),125.4(tt,J=9.3,4.4Hz),125.5(q,J=277.3Hz),125.8,126.4,126.8,127.2,129.4,131.0.
 IR (KBr) ν 3165,3048,2927,1364,1243,1223,1146,1115,1063,937,774cm-1
 HRMS(FAB) Calcd for (M+) C2116: 564.0370, Found 564.0394.
(result of analysis)
M.M. P. 101-103 ° C.
1 H NMR (CDCl 3 ) δ 7.57-7.65 (m, 4H), 8.36-8.46 (m, 2H), 8.46-8.56 (m, 2H).
19 F NMR (CDCl 3 ) δ −49.64 (s, 3F), −81.94 (t, J = 9.0 Hz, 3F), −92.92 (t, J = 15.8 Hz, 2F), -118.52 (m, 2F), -122.76 (m, 2F), -123.74 (m, 2F), -127.22 (m, 2F).
13 C NMR (CDCl 3 ) δ 124.7 (q, J = 5.6 Hz), 125.4 (tt, J = 9.3, 4.4 Hz), 125.5 (q, J = 277.3 Hz) 125.8, 126.4, 126.8, 127.2, 129.4, 131.0.
IR (KBr) ν 3165, 3048, 2927, 1364, 1243, 1223, 1146, 1115, 1063, 937, 774 cm −1 .
HRMS (FAB) Calcd for (M +) C 21 H 8 F 16 : 564.0370, Found 564.0394.
<実施例3>
(1)化合物(c2)(9-(Heptadecafluorooctyl)-10-(trifluoromethyl)-10-(trimethylsiloxy)anthracen-9-ol)の合成
 化合物(a2)の合成において、CF(CFCFIをCF(CFCFIに変更した以外は同様として、目的の化合物(c2)を白色固体として得た(0.539g,0.70mmol,収率70%)。
<Example 3>
(1) Synthesis of Compound (c2) (9- (Heptadecafluorooctyl) -10- (trifluoromethyl) -10- (trimethylsilyl) anthracen-9-ol) In the synthesis of Compound (a2), CF 3 (CF 2 ) 2 CF 2 The target compound (c2) was obtained as a white solid in the same manner except that I was changed to CF 3 (CF 2 ) 6 CF 2 I (0.539 g, 0.70 mmol, yield 70%).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(分析結果)
 M.P. 84-86 °C. 
 H NMR(CDCl) δ 0.03(s,9H),2.98(s,1H),7.50-7.59(m,4H),7.91-7.97(m,2H),8.03-8.09(m,2H).
 19F NMR(CDCl) δ -81.59(s,3F),-82.07(t,J=9.0Hz,3F),-116.40(m,2F),-119.18(brs,2F),-122.90(brs,2F),-123.22(brs,4F),-124.08(brs,2F),-127.44(m,2F). 
 13C NMR(CDCl) δ 1.8,74.3(tt,J=19.9,2.4Hz),76.0(q,J=27.9Hz),124.2(q,J=289.0Hz),128.6(t,J=5.6Hz),128.9,129.5,129.6,132.8,133.5.
 IR (KBr) ν 3586,3078,2971,1371,1235,1180,1155,1035,908,877,763cm-1. 
 HRMS(APCI) Calcd for (M+) C261820Si: 770.0757, Found 769.0758.
(result of analysis)
M.M. P. 84-86 ° C.
1 H NMR (CDCl 3 ) δ 0.03 (s, 9H), 2.98 (s, 1H), 7.50-7.59 (m, 4H), 7.91-7.97 (m, 2H) ), 8.03-8.09 (m, 2H).
19 F NMR (CDCl 3 ) δ −81.59 (s, 3F), −82.07 (t, J = 9.0 Hz, 3F), −116.40 (m, 2F), −119.18 (brs) , 2F), −122.90 (brs, 2F), −123.22 (brs, 4F), −124.08 (brs, 2F), −127.44 (m, 2F).
13 C NMR (CDCl 3 ) δ 1.8, 74.3 (tt, J = 19.9, 2.4 Hz), 76.0 (q, J = 27.9 Hz), 124.2 (q, J = 289.0 Hz), 128.6 (t, J = 5.6 Hz), 128.9, 129.5, 129.6, 132.8, 133.5.
IR (KBr) ν 3586, 3078, 2971, 1371, 1235, 1180, 1155, 1035, 908, 877, 763 cm −1 .
HRMS (APCI) Calcd for (M +) C 26 H 18 F 20 O 2 Si: 770.0757, Found 769.0758.
(2)化合物(c3)(9-(Heptadecafluorooctyl)-10-(trifluoromethyl)anthracene-9,10-diol)の合成
 化合物(a3)の合成において、化合物(a2)を化合物(c2)に変更した以外は同様として、目的の化合物(c3)を白色固体として得た(0.416g,0.60mmol,収率67%)。
(2) Synthesis of Compound (c3) (9- (Heptadecafluorooctyl) -10- (trifluoromethyl) anthracene-9,10-diol) In the synthesis of Compound (a3), Compound (a2) was changed to Compound (c2) Similarly, the target compound (c3) was obtained as a white solid (0.416 g, 0.60 mmol, yield 67%).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(分析結果)
 M.P. 117-119°C. 
 H NMR(CDCl) δ 2.87(s,1H),3.15(d,J=1.2Hz,1H),7.54-7.63(m,4H),8.00-8.08(m,4H). 
 19F NMR(CDCl) δ -79.17(s,3F),-82.09(t,J=9.0Hz,3F),-119.12(m,2F),-120.58(m,2F),-123.10(m,4F),-123.34(m,2F),-124.13(brs,2F),-127.47(m,2F).
 IR (KBr) ν 3596,3440,3086,1450,1368,1211,1151,1019,919,766cm-1. 
 HRMS(APCI) Calcd for (M-H) C2320: 697.0283, Found 697.0316.
(result of analysis)
M.M. P. 117-119 ° C.
1 H NMR (CDCl 3 ) δ 2.87 (s, 1H), 3.15 (d, J = 1.2 Hz, 1H), 7.54-7.63 (m, 4H), 8.00-8 .08 (m, 4H).
19 F NMR (CDCl 3 ) δ −79.17 (s, 3F), −82.09 (t, J = 9.0 Hz, 3F), −119.12 (m, 2F), −120.58 (m , 2F), -123.10 (m, 4F), -123.34 (m, 2F), -124.13 (brs, 2F), -127.47 (m, 2F).
IR (KBr) ν 3596, 3440, 3086, 1450, 1368, 1211, 1151, 1019, 919, 766 cm −1 .
HRMS (APCI) Calcd for (M -H) C 23 H 9 F 20 O 2: 697.0283, Found 697.0316.
(3)化合物(c4)(9-(Heptadecafluorooctyl)-10-(trifluoromethyl)anthracene)の合成
 化合物(a4)の合成において、化合物(a3)を化合物(c3)に変更した以外は同様として、目的の化合物(c4)を黄色固体として得た(0.197g,0.29mmol,収率63%)。
(3) Synthesis of Compound (c4) (9- (Heptadecafluorooctyl) -10- (trifluoromethyl) anthracene) In the synthesis of Compound (a4), except that Compound (a3) was changed to Compound (c3), Compound (c4) was obtained as a yellow solid (0.197 g, 0.29 mmol, yield 63%).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(分析結果)
 M.P. 114-116°C. 
 H NMR(CDCl) δ 7.55-7.65(m,4H),8.32-8.45(m,2H),8.46-8.57(m,2H). 
 19F NMR(CDCl) δ -49.65(s,3F),-81.97(t,J=9.0Hz,3F),-92.91(t,J=16.1Hz,2F),-118.46(m,2F),-122.52to-123.04(m,6F),-123.88(brs,2F),-127.33(m,2F). 
 13C NMR(CDCl) δ 124.7(q,J=8.0Hz),125.4(tt,J=9.4,5.0Hz),125.5(q,J=277.9Hz),125.8,126.3,126.8,127.2,129.3,131.0. 
 IR (KBr) ν 3156,3098,3051,1446,1368,1241,1148,990,766cm-1. 
 HRMS(FAB) Calcd for (M+) C2320: 664.0307, Found 664.0336.
(result of analysis)
M.M. P. 114-116 ° C.
1 H NMR (CDCl 3 ) δ 7.55-7.65 (m, 4H), 8.32-8.45 (m, 2H), 8.46-8.57 (m, 2H).
19 F NMR (CDCl 3 ) δ −49.65 (s, 3F), −81.97 (t, J = 9.0 Hz, 3F), −92.91 (t, J = 16.1 Hz, 2F), -118.46 (m, 2F), -122.52 to -123.04 (m, 6F), -123.88 (brs, 2F), -127.33 (m, 2F).
13 C NMR (CDCl 3 ) δ 124.7 (q, J = 8.0 Hz), 125.4 (tt, J = 9.4, 5.0 Hz), 125.5 (q, J = 277.9 Hz) , 125.8, 126.3, 126.8, 127.2, 129.3, 131.0.
IR (KBr) ν 3156, 3098, 3051, 1446, 1368, 1241, 1148, 990, 766 cm −1 .
HRMS (FAB) Calcd for (M +) C 23 H 8 F 20: 664.0307, Found 664.0336.
<実施例4>
(1)化合物(d2)(9-(Henicosafluorodecyl)-10-(trifluoromethyl)-10-(trimethylsiloxy)anthracen-9-ol)の合成
 化合物(a2)の合成において、CF(CFCFIをCF(CFCFIに変更した以外は同様として、目的の化合物(d2)を白色固体として得た(0.461g,0.53mmol,収率53%)。
<Example 4>
(1) Synthesis of Compound (d2) (9- (Henicosafluordecyl) -10- (trifluoromethyl) -10- (trimethylsilyl) anthracen-9-ol) In the synthesis of Compound (a2), CF 3 (CF 2 ) 2 CF 2 The target compound (d2) was similarly obtained as a white solid (0.461 g, 0.53 mmol, yield 53%) except that I was changed to CF 3 (CF 2 ) 8 CF 2 I.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(分析結果)
 M.P. 107-109°C. 
 H NMR(CDCl) δ 0.04(s,9H),3.01(s,1H),7.50-7.59(m,4H),7.92-7.97(m,2H),8.03-8.09(m,2H). 
 19F NMR(CDCl) δ -81.60(s,3F),―82.05(t,J=9.3Hz,3F),-116.41(brs,2F),-119.20(brs,2F),-123.13(brs,10F),-124.04(brs,2F),-127.42(brs,2F). 
 13C NMR(CDCl) δ 2.1,74.6(tt,J=19.8,1.9Hz),76.4(q,J=27.9Hz),124.5(q,J=289.0Hz),129.0(t,J=5.6Hz),129.4,129.9,130.0,133.2,133.8. 
 IR(KBr) ν 3585,3076,2973,1339,1224,1173,1160,1037,940,879,763cm-1. 
 HRMS(FAB) Calcd for (M+) C281824Si:870.0693, Found 870.0744.
(result of analysis)
M.M. P. 107-109 ° C.
1 H NMR (CDCl 3 ) δ 0.04 (s, 9H), 3.01 (s, 1H), 7.50-7.59 (m, 4H), 7.92-7.97 (m, 2H) ), 8.03-8.09 (m, 2H).
19 F NMR (CDCl 3 ) δ −81.60 (s, 3F), −82.05 (t, J = 9.3 Hz, 3F), −116.41 (brs, 2F), −119.20 (brs) , 2F), -123.13 (brs, 10F), -124.04 (brs, 2F), -127.42 (brs, 2F).
13 C NMR (CDCl 3 ) δ 2.1, 74.6 (tt, J = 19.8, 1.9 Hz), 76.4 (q, J = 27.9 Hz), 124.5 (q, J = 289.0 Hz), 129.0 (t, J = 5.6 Hz), 129.4, 129.9, 130.0, 133.2, 133.8.
IR (KBr) (nu) 3585,3076,2973,1339,1224,1173,1160,1037,940,879,763cm < -1 >.
HRMS (FAB) Calcd for (M +) C 28 H 18 F 24 O 2 Si: 870.0693, Found 870.0744.
(2)化合物(d3)(9-(Henicosafluorodecyl)-10-(trifluoromethyl)anthracene-9,10-diol)の合成
 化合物(a3)の合成において、化合物(a2)を化合物(d2)に変更した以外は同様として、目的の化合物(d3)を白色固体として得た(0.562g,0.71mmol,収率80%)。
(2) Synthesis of Compound (d3) (9- (Henicosafluordecyl) -10- (trifluoromethyl) anthracene-9,10-diol) Similarly, the target compound (d3) was obtained as a white solid (0.562 g, 0.71 mmol, yield 80%).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(分析結果)
 M.P. 132-134°C. 
 H NMR(CDCl) δ 2.86(s,1H),3.14(d,J=0.6Hz,1H),7.55-7.64(m,4H),8.01-8.08(m,4H). 
 19F NMR(CDCl) δ -79.17(s,3F),-82.05(t,J=9.3Hz,3F),-119.11(brs,2F),-120.57(brs,2F),-123.14(brs,10F),-124.06(brs,2F),-127.45(brs,2F). 
 13C NMR(CDCl) δ 73.2(q,J=27.9Hz),73.7(tt,J=14.3,1.8Hz),124.0(q,J=287.2Hz),128.3(q,J=3.1Hz),128.4(t,J=5.6Hz),129.7,129.8,132.6,132.8. 
 IR(KBr) ν 3585,3077,2910,1450,1338,1222,1175,1037,939,879,763cm-1. 
 HRMS(APCI) Calcd for (M-H) C2524: 797.0219, Found 797.0199.
(result of analysis)
M.M. P. 132-134 ° C.
1 H NMR (CDCl 3 ) δ 2.86 (s, 1H), 3.14 (d, J = 0.6 Hz, 1H), 7.55-7.64 (m, 4H), 8.01-8 .08 (m, 4H).
19 F NMR (CDCl 3 ) δ −79.17 (s, 3F), −82.05 (t, J = 9.3 Hz, 3F), −119.11 (brs, 2F), −120.57 (brs) , 2F), -123.14 (brs, 10F), -124.06 (brs, 2F), -127.45 (brs, 2F).
13 C NMR (CDCl 3 ) δ 73.2 (q, J = 27.9 Hz), 73.7 (tt, J = 14.3, 1.8 Hz), 124.0 (q, J = 287.2 Hz) , 128.3 (q, J = 3.1 Hz), 128.4 (t, J = 5.6 Hz), 129.7, 129.8, 132.6, 132.8.
IR (KBr) ν 3585, 3077, 2910, 1450, 1338, 1222, 1175, 1037, 939, 879, 763 cm −1 .
HRMS (APCI) Calcd for (M -H) C 25 H 9 F 24 O 2: 797.0219, Found 797.0199.
(3)化合物(d4)(9-(Henicosafluorodecyl)-10-(trifluoromethyl)anthracene)の合成
 化合物(a4)の合成において、化合物(a3)を化合物(d3)に変更した以外は同様として、目的の化合物(d4)を黄色固体として得た(0.313g,0.41mmol,収率87%)。
(3) Synthesis of Compound (d4) (9- (Henicosafluordecyl) -10- (Trifluoromethyl) anthracene) The same as the synthesis of Compound (a4) except that Compound (a3) was changed to Compound (d3). Compound (d4) was obtained as a yellow solid (0.313 g, 0.41 mmol, yield 87%).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(分析結果)
 M.P. 115-117°C. 
 H NMR(CDCl) δ 7.57-7.65(m,4H),8.35-8.45(m,2H),8.48-8.55(m,2H). 
 19F NMR(CDCl) δ -49.65(s,3F),―81.98(t,J=9.0Hz,3F),-92.91(t,J=15.8Hz,2F),-118.46(m,2F),-122.25to-123.22(m,10F),-123.94(m,2F),-127.34(m,2F). 
 13C NMR(CDCl) δ 124.7(q,J=5.6Hz),125.4(tt,J=10.0,4.4Hz),125.5(q,J=276.7Hz),125.8,126.4,126.8,127.2,129.3,130.9.
 IR(KBr) ν 3098,3075,3048,1340,1215,1153,1115,917,841,776cm-1. 
 HRMS(FAB) Calcd for (M+) C2524: 764.0243, Found 764.0210.
(result of analysis)
M.M. P. 115-117 ° C.
1 H NMR (CDCl 3 ) δ 7.57-7.65 (m, 4H), 8.35-8.45 (m, 2H), 8.48-8.55 (m, 2H).
19 F NMR (CDCl 3 ) δ −49.65 (s, 3F), −81.98 (t, J = 9.0 Hz, 3F), −92.91 (t, J = 15.8 Hz, 2F), -118.46 (m, 2F), -122.25 to -123.22 (m, 10F), -123.94 (m, 2F), -127.34 (m, 2F).
13 C NMR (CDCl 3 ) δ 124.7 (q, J = 5.6 Hz), 125.4 (tt, J = 10.0, 4.4 Hz), 125.5 (q, J = 276.7 Hz) , 125.8, 126.4, 126.8, 127.2, 129.3, 130.9.
IR (KBr) ν 3098, 3075, 3048, 1340, 1215, 1153, 1115, 917, 841, 776 cm −1 .
HRMS (FAB) Calcd for (M +) C 25 H 8 F 24: 764.0243, Found 764.0210.
<実施例5>
(1)化合物(e1)(6-(Trifluoromethyl)-6-(trimethylsiloxy)pentacen-13-one)の合成
 化合物(a1)の合成において、アントラセン-9,10-ジオンをペンタセン-6,13-ジオンに変更した以外は同様として、目的化合物(e1)を白色固体として得た(5.31g,11.8mmol,収率59%)。
<Example 5>
(1) Synthesis of Compound (e1) (6- (Trifluoromethyl) -6- (trimethylsilyl) pentacen-13-one) In the synthesis of Compound (a1), anthracene-9,10-dione was converted to pentacene-6,13-dione. The target compound (e1) was similarly obtained as a white solid (5.31 g, 11.8 mmol, yield 59%), except that
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(分析結果)
 M.P. 220-221°C. 
 H NMR(CDCl) δ -0.04(s,9H),7.68(m,4H),8.02(d,2H,J=7.2Hz),8.13(d,J=2H,J=7.8Hz),8.53(s,2H),8.97(s,2H).
 19F NMR(CDCl) δ -81.42(s,3F). 
 13C NMR(CDCl) δ 1.9,75.2(q,J=29.8Hz),124.2(q,J=286.6Hz),127.9,128.3,129.1,129.2,129.5(q,J=1.9Hz),129.6,129.8,133.0,134.4,135.0. 
 IR(KBr) ν 3066,2961,1669,1624,1454,1344,1193,991,844,748,476cm-1. 
 HRMS(FAB) Calcd for (M+) C2621Si: 450.1263, Found 450.1276.
(result of analysis)
M.M. P. 220-221 ° C.
1 H NMR (CDCl 3 ) δ −0.04 (s, 9H), 7.68 (m, 4H), 8.02 (d, 2H, J = 7.2 Hz), 8.13 (d, J = 2H, J = 7.8 Hz), 8.53 (s, 2H), 8.97 (s, 2H).
19 F NMR (CDCl 3 ) δ −81.42 (s, 3F).
13 C NMR (CDCl 3 ) δ 1.9, 75.2 (q, J = 29.8 Hz), 124.2 (q, J = 286.6 Hz), 127.9, 128.3, 129.1, 129.2, 129.5 (q, J = 1.9 Hz), 129.6, 129.8, 133.0, 134.4, 135.0.
IR (KBr) ν 3066, 2961, 1669, 1624, 1454, 1344, 1193, 991, 844, 748, 476 cm −1 .
HRMS (FAB) Calcd for (M +) C 26 H 21 F 3 O 2 Si: 450.1263, Found 450.1276.
(2)化合物(e2)(6-(Nonafluorobutyl)-13-(trifluoromethyl)-13-(trimethylsiloxy)pentacen-6-ol)の合成
 化合物(a2)の合成において、化合物(a1)を化合物(e1)に変更した以外は同様として、目的の化合物(e2)を白色固体として得た(0.407g,0.60mmol,収率60%)。
(2) Synthesis of Compound (e2) (6- (Nonafluorbutyl) -13- (trifluoromethyl) -13- (trimethylsilyl) pentacen-6-ol) In the synthesis of Compound (a2), Compound (a1) was converted to Compound (e1) The target compound (e2) was similarly obtained as a white solid (0.407 g, 0.60 mmol, yield 60%), except that
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(分析結果)
 M.P. 180~181 °C. 
 H NMR(CDCl) δ 0.15(s,9H),3.32(s,1H),7.59-7.67(m,4H),7.98-8.03(m,4H),8.49(s,2H),8.65(s,2H). 
 19F NMR(CDCl) δ -82.10(s,3F),-82.21(t,J=9.3Hz,3F),-116.66(m,2F),-119.91(m,2F),-127.22(m,2F). 
 13C NMR(CDCl) δ 2.1,75.6(tt,J=20.4,1.8Hz),76.8(q,J=27.3Hz),124.4(q,J=288.3Hz),127.6,127.8,128.2,128.5,129.3(t,J=5.0Hz),130.0(q,J=2.5Hz),130.4,132.7,133.1. 
 IR(KBr) ν 3586,3563,3078,2962,2902,1235,1170,878,852,763,703cm-1. 
 HRMS(FAB) Calcd for (M+) C302212Si:670.1197, Found 670.1174.
(result of analysis)
M.M. P. 180-181 ° C.
1 H NMR (CDCl 3 ) δ 0.15 (s, 9H), 3.32 (s, 1H), 7.59-7.67 (m, 4H), 7.98-8.03 (m, 4H) ), 8.49 (s, 2H), 8.65 (s, 2H).
19 F NMR (CDCl 3 ) δ −82.10 (s, 3F), −82.21 (t, J = 9.3 Hz, 3F), −116.66 (m, 2F), −119.91 (m , 2F), -127.22 (m, 2F).
13 C NMR (CDCl 3 ) δ 2.1, 75.6 (tt, J = 20.4, 1.8 Hz), 76.8 (q, J = 27.3 Hz), 124.4 (q, J = 288.3 Hz), 127.6, 127.8, 128.2, 128.5, 129.3 (t, J = 5.0 Hz), 130.0 (q, J = 2.5 Hz), 130.4 132.7, 133.1.
IR (KBr) ν 3586, 3563, 3078, 2962, 2902, 1235, 1170, 878, 852, 763, 703 cm −1 .
HRMS (FAB) Calcd for (M +) C 30 H 22 F 12 O 2 Si: 670.1197, Found 670.1174.
(3)化合物(e3)(6-(Nonafluorobutyl)-13-(trifluoromethyl)pentacene-6,13-diol)の合成
 化合物(a3)の合成において、化合物(a2)を化合物(e2)に変更した以外は同様として、目的の化合物(e3)を白色固体として得た(0.532g,0.76mmol,収率85%)。
(3) Synthesis of Compound (e3) (6- (Nonafluorbutyl) -13- (trifluoromethyl) pentacene-6,13-diol) In the synthesis of Compound (a3), Compound (a2) was changed to Compound (e2) Similarly, the target compound (e3) was obtained as a white solid (0.532 g, 0.76 mmol, yield 85%).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(分析結果)
 M.P. 228~229°C. 
 H NMR(CDCl) δ 3.19(s,1H),3.43(s,1H),7.63-7.66(m,4H),8.00-8.04(m,4H),8.63(s,4H). 
 19F NMR(CDCl) δ -79.84(s,3F),-82.20(t,J=9.0Hz,3F),-119.63(m,2F),-121.12(m,2F),-127.39(m,2F). 
 13C NMR(CDCl) δ 74.1(q,J=27.9Hz),73.7(tt,J=18.6,2.5Hz),124.3(q,J=287.2Hz),127.8,127.9,128.3,128.5,129.0(q,J=2.9Hz),129.2(t,J=4.7Hz),129.6,133.1,133.2. 
 IR (KBr) ν 3598,3452,3059,1219,1185,754,479cm-1. 
 HRMS(FAB) Calcd for (M-H) C271312: 597.0724, Found 597.0752.
(result of analysis)
M.M. P. 228-229 ° C.
1 H NMR (CDCl 3 ) δ 3.19 (s, 1H), 3.43 (s, 1H), 7.63-7.66 (m, 4H), 8.00-8.04 (m, 4H) ), 8.63 (s, 4H).
19 F NMR (CDCl 3 ) δ −79.84 (s, 3F), −82.20 (t, J = 9.0 Hz, 3F), −119.63 (m, 2F), −121.12 (m , 2F), -127.39 (m, 2F).
13 C NMR (CDCl 3 ) δ 74.1 (q, J = 27.9 Hz), 73.7 (tt, J = 18.6, 2.5 Hz), 124.3 (q, J = 287.2 Hz) , 127.8, 127.9, 128.3, 128.5, 129.0 (q, J = 2.9 Hz), 129.2 (t, J = 4.7 Hz), 129.6, 133.1 , 133.2.
IR (KBr) ν 3598, 3452, 3059, 1219, 1185, 754, 479 cm −1 .
HRMS (FAB) Calcd for (MH) C 27 H 13 F 12 O 2 : 597.0724, Found 597.0752.
(4)化合物(e4)(6-(Nonafluorobutyl)-13-(trifluoromethyl)pentacene)の合成
 化合物(a4)の合成において、化合物(a3)を化合物(e3)に変更した以外は同様として、目的の化合物(e4)を暗青色結晶として得た(0.078g,0.14mmol,収率30%)。
(4) Synthesis of Compound (e4) (6- (Nonafluorbutyl) -13- (trifluoromethyl) pentacene) The same as the synthesis of Compound (a4) except that Compound (a3) was changed to Compound (e3). Compound (e4) was obtained as dark blue crystals (0.078 g, 0.14 mmol, yield 30%).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(分析結果)
 M.P. 200°C(分解). 
 H NMR(CDCl) δ 7.26-7.47(m,4H),7.91-7.97(m,4H),9.02(s,2H),9.13(s,2H). 
 19F NMR(CDCl) δ -49.43(s,3F),-81.73(t,J=9.0Hz,3F),-92.98(t,J=14.0Hz,2F),-118.17(q,J=9.3Hz,2F),-126.80(m,2F). 
 IR(KBr) ν 3155,1353,1229,1132,1106,876,743,729cm-1. 
 HRMS(FAB) Calcd for (M+) C271212: 564.0747, Found 564.0736.
(result of analysis)
M.M. P. 200 ° C. (decomposition).
1 H NMR (CDCl 3 ) δ 7.26-7.47 (m, 4H), 7.91-7.97 (m, 4H), 9.02 (s, 2H), 9.13 (s, 2H ).
19 F NMR (CDCl 3 ) δ −49.43 (s, 3F), −81.73 (t, J = 9.0 Hz, 3F), −92.98 (t, J = 14.0 Hz, 2F), -118.17 (q, J = 9.3 Hz, 2F), -126.80 (m, 2F).
IR (KBr) [nu] 3155,1353,1229,1132,1106,876,743,729 cm < -1 >.
HRMS (FAB) Calcd for (M +) C 27 H 12 F 12: 564.0747, Found 564.0736.
<実施例6>
(1)化合物(f2)(6-(Tridecafluorohexyl)-13-(trifluoromethyl)-13-(trimethylsiloxy)pentacen-6-ol)の合成
 化合物(e2)の合成において、CF(CFCFIをCF(CFCFIに変更した以外は同様として、目的の化合物(f2)を白色固体として得た(0.475g,0.61mmol,収率61%)。
<Example 6>
(1) Synthesis of Compound (f2) (6- (Tridecafluorohexyl) -13- (trifluoromethyl) -13- (trimethylsilyl) pentacen-6-ol) In the synthesis of Compound (e2), CF 3 (CF 2 ) 2 CF 2 The target compound (f2) was obtained as a white solid in the same manner except that I was changed to CF 3 (CF 2 ) 4 CF 2 I (0.475 g, 0.61 mmol, yield 61%).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(分析結果)
 M.P. 175~177°C. 
 H NMR(CDCl) δ 0.15(s,9H),3.32(s,1H),7.59-7.67(m,4H),7.98-8.03(m,4H),8.49(s,2H),8.65(s,2H). 
 19F NMR(CDCl) δ -82.12(s,3F),-82.21(t,J=9.0Hz,3F),-116.58(brs,2F),-118.93(brs,2F),-123.02(brs,2F),-124.16(brs,2F),-127.52(brs,2F).
 13C NMR(CDCl) δ 2.1,75.1(tt,J=20.1,1.8Hz),76.7(q,J=27.9Hz),124.3(q,J=289.0Hz),127.6,127.8,128.1,128.5,129.3(t,J=5.0Hz),129.9(q,J=2.5Hz),130.3,132.7,133.1. 
 IR(KBr) ν 3528,3062,2960,2902,1243,1170,1149,905,848,641,520cm-1. 
 HRMS(FAB) Calcd for (M-H) C322116Si: 769.1055, Found 769.1010.
(result of analysis)
M.M. P. 175-177 ° C.
1 H NMR (CDCl 3 ) δ 0.15 (s, 9H), 3.32 (s, 1H), 7.59-7.67 (m, 4H), 7.98-8.03 (m, 4H) ), 8.49 (s, 2H), 8.65 (s, 2H).
19 F NMR (CDCl 3 ) δ −82.12 (s, 3F), −82.21 (t, J = 9.0 Hz, 3F), −116.58 (brs, 2F), −118.93 (brs) , 2F), −123.02 (brs, 2F), −124.16 (brs, 2F), −127.52 (brs, 2F).
13 C NMR (CDCl 3 ) δ 2.1, 75.1 (tt, J = 20.1, 1.8 Hz), 76.7 (q, J = 27.9 Hz), 124.3 (q, J = 289.0 Hz), 127.6, 127.8, 128.1, 128.5, 129.3 (t, J = 5.0 Hz), 129.9 (q, J = 2.5 Hz), 130.3 132.7, 133.1.
IR (KBr) ν 3528, 3062, 2960, 2902, 1243, 1170, 1149, 905, 848, 641, 520 cm −1 .
HRMS (FAB) Calcd for (M−H) C 32 H 21 F 16 O 2 Si: 769.1055, Found 769.10.10.
(2)化合物(f3)(6-(Tridecafluorohexyl)-13-(trifluoromethyl)pentacene-6,13-diol)の合成
 化合物(e3)の合成において、化合物(e2)を化合物(f2)に変更した以外は同様として、目的の化合物(f3)を白色固体として得た(0.572g,0.82mmol,収率92%)。
(2) Synthesis of Compound (f3) (6- (Tridecafluorohexyl) -13- (trifluoromethyl) pentacene-6,13-diol) In the synthesis of Compound (e3), Compound (e2) was changed to Compound (f2) Similarly, the target compound (f3) was obtained as a white solid (0.572 g, 0.82 mmol, yield 92%).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
(分析結果)
 M.P. 230~231°C. 
 H NMR(CDCl) δ 3.20(s,1H),3.44(s,1H),7.62-7.65(m,4H),8.00-8.03(m,4H),8.62(d,J=2.4Hz,4H). 
 19F NMR(CDCl) δ -79.82(s,3F),-82.24(t,J=9.0Hz,3F),-119.48(brs,2F),-120.17(brs,2F),-123.25(brs,2F),-124.16(brs,2F),-127.63(m,2F).
 IR(KBr) ν 3551,3478,3065,1197,1166,753,647,480cm-1. 
 HRMS(FAB) Calcd for (M-H) C291316: 697.0660, Found 697.0684.
(result of analysis)
M.M. P. 230-231 ° C.
1 H NMR (CDCl 3 ) δ 3.20 (s, 1H), 3.44 (s, 1H), 7.62-7.65 (m, 4H), 8.00-8.03 (m, 4H) ), 8.62 (d, J = 2.4 Hz, 4H).
19 F NMR (CDCl 3 ) δ −79.82 (s, 3F), −82.24 (t, J = 9.0 Hz, 3F), −119.48 (brs, 2F), −120.17 (brs) , 2F), -123.25 (brs, 2F), -124.16 (brs, 2F), -127.63 (m, 2F).
IR (KBr) ν 3551, 3478, 3065, 1197, 1166, 753, 647, 480 cm −1 .
HRMS (FAB) Calcd for (M -H) C 29 H 13 F 16 O 2: 697.0660, Found 697.0684.
(3)化合物(f4)(6-(Tridecafluorohexyl)-13-(trifluoromethyl)pentacene)の合成
 化合物(e4)の合成において、化合物(e3)を化合物(f3)に変更した以外は同様として、目的の化合物(f4)を暗青色結晶として得た(0.068g,0.10mmol,収率22%)。
(3) Synthesis of Compound (f4) (6- (Tridecafluorohexyl) -13- (trifluoromethyl) pentacene) In the synthesis of Compound (e4), except that Compound (e3) was changed to Compound (f3), Compound (f4) was obtained as dark blue crystals (0.068 g, 0.10 mmol, yield 22%).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(分析結果)
 M.P. 195°C(分解). 
 H NMR(CDCl) δ 7.42-7.49(m,4H),7.93-7.97(m,4H),9.03(s,2H),9.13(s,2H). 
 19F NMR(CDCl) δ -49.42(s,3F),-81.90(t,J=9.0Hz,3F),-92.82(brs,2F),-117.94(m,2F),-122.65(brs,2F),-123.60(m,2F),-127.15(m,2F). 
 IR(KBr) ν 3060,1233,1145,1105,740,713,679cm-1. 
 HRMS(FAB) Calcd for (M+) C291216: 664.0684, Found 664.0701.
(result of analysis)
M.M. P. 195 ° C (decomposition).
1 H NMR (CDCl 3 ) δ 7.42-7.49 (m, 4H), 7.93-7.97 (m, 4H), 9.03 (s, 2H), 9.13 (s, 2H ).
19 F NMR (CDCl 3 ) δ −49.42 (s, 3F), −81.90 (t, J = 9.0 Hz, 3F), −92.82 (brs, 2F), −117.94 (m , 2F), −122.65 (brs, 2F), −123.60 (m, 2F), −127.15 (m, 2F).
IR (KBr) ν 3060, 1233, 1145, 1105, 740, 713, 679 cm −1 .
HRMS (FAB) Calcd for (M +) C 29 H 12 F 16 : 664.0684, Found 664.0701.
<実施例7>
(1)化合物(g2)の合成:
 化合物(e2)の合成において、CF(CFCFIをCF(CFCFIに変更した以外は同様として、目的の化合物(g2)を白色固体として得た(0.548g,0.63mmol,収率63%)。
<Example 7>
(1) Synthesis of compound (g2):
In the synthesis of Compound (e2), as similar except for changing CF 3 and (CF 2) 2 CF 2 I in CF 3 (CF 2) 6 CF 2 I, to give the desired compound (g2) as a white solid ( 0.548 g, 0.63 mmol, yield 63%).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(分析結果)
 M.P. 181~183°C. 
 H NMR(CDCl) δ 0.15(s,9H),3.32(s,1H),7.59-7.67(m,4H),7.98-8.03(m,4H),8.49(s,2H),8.65(s,2H). 
 19F NMR(CDCl) δ -82.12(m,6F),-116.56(brs,2F),-118.88(brs,2F),-122.82(brs,2F),-123.25(brs,4F),-124.14(brs,2F),-127.49(brs,2F). 
 13C NMR(CDCl) δ 2.1,75.2(tt,J=20.4,2.5Hz),77.0(q,J=30.4Hz),124.3(q,J=288.3Hz),127.6,127.8,128.2,128.5,129.3(t,J=4.9Hz),130.0(q,J=2.5Hz),130.4,132.7,133.1. 
 IR(KBr) ν 3582,3064,2955,2898,1237,1173,881,747,558,524cm-1. 
 HRMS(APCI) Calcd for (M-H) C342120Si: 869.0991, Found 869.1067.
(result of analysis)
M.M. P. 181-183 ° C.
1 H NMR (CDCl 3 ) δ 0.15 (s, 9H), 3.32 (s, 1H), 7.59-7.67 (m, 4H), 7.98-8.03 (m, 4H) ), 8.49 (s, 2H), 8.65 (s, 2H).
19 F NMR (CDCl 3 ) δ −82.12 (m, 6F), −116.56 (brs, 2F), −118.88 (brs, 2F), −122.82 (brs, 2F), −123 .25 (brs, 4F), -124.14 (brs, 2F), -127.49 (brs, 2F).
13 C NMR (CDCl 3 ) δ 2.1, 75.2 (tt, J = 20.4, 2.5 Hz), 77.0 (q, J = 30.4 Hz), 124.3 (q, J = 288.3 Hz), 127.6, 127.8, 128.2, 128.5, 129.3 (t, J = 4.9 Hz), 130.0 (q, J = 2.5 Hz), 130.4 132.7, 133.1.
IR (KBr) ν 3582, 3064, 2955, 2898, 1237, 1173, 881, 747, 558, 524 cm −1 .
HRMS (APCI) Calcd for (M -H) C 34 H 21 F 20 O 2 Si: 869.0991, Found 869.1067.
(2)化合物(g3)(6-(Heptadecafluorooctyl)-13-(trifluoromethyl)pentacene-6,13-diol)の合成
 化合物(e3)の合成において、化合物(e2)を化合物(g2)に変更した以外は同様として、目的の化合物(g3)を白色固体として得た(0.535g,0.67mmol,収率75%)。
(2) Synthesis of Compound (g3) (6- (Heptadecafluorooctyl) -13- (trifluoromethyl) pentacene-6,13-diol) In the synthesis of Compound (e3), Compound (e2) was changed to Compound (g2) Similarly, the target compound (g3) was obtained as a white solid (0.535 g, 0.67 mmol, yield 75%).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
(分析結果)
 M.P. 233~234 °C. 
 H NMR (CDCl) δ 3.18(s,1H),3.42(s,1H),7.63-7.65(m,4H),8.00-8.03(m,4H),8.62(s,4H). 
 19F NMR(CDCl) δ -79.67(s,3F),-81.96(t,J=9.0Hz,3F),-119.29(brs,2F),-119.95(brs,2F),-122.93(brs,4F),-123.27(brs,2F),-124.00(brs,2F),-127.34(brs,2F). 
 IR(KBr) ν 3599,3578,3454,3061,1206,1150,754,660,548,415cm-1. 
 HRMS(FAB) Calcd for (M+) C311420: 798.0674, Found 798.0721.
(result of analysis)
M.M. P. 233-234 ° C.
1 H NMR (CDCl 3 ) δ 3.18 (s, 1H), 3.42 (s, 1H), 7.63-7.65 (m, 4H), 8.00-8.03 (m, 4H) ), 8.62 (s, 4H).
19 F NMR (CDCl 3 ) δ −79.67 (s, 3F), −81.96 (t, J = 9.0 Hz, 3F), −119.29 (brs, 2F), −119.95 (brs) , 2F), −122.93 (brs, 4F), −123.27 (brs, 2F), −124.00 (brs, 2F), −127.34 (brs, 2F).
IR (KBr) ν 3599, 3578, 3454, 3061, 1206, 1150, 754, 660, 548, 415 cm −1 .
HRMS (FAB) Calcd for (M +) C 31 H 14 F 20 O 2: 798.0674, Found 798.0721.
(3)化合物(g4)(6-(Heptadecafluorooctyl)-13-(trifluoromethyl)pentacene)の合成
 化合物(e4)の合成において、化合物(e3)を化合物(g3)に変更した以外は同様として、目的の化合物(g4)を暗青色結晶として得た(0.19g,0.25mmol,収率54%)。
(3) Synthesis of Compound (g4) (6- (Heptadecafluorooctyl) -13- (trifluoromethyl) pentacene) In the synthesis of Compound (e4), except that Compound (e3) was changed to Compound (g3), Compound (g4) was obtained as dark blue crystals (0.19 g, 0.25 mmol, yield 54%).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(分析結果)
 M.P. 192°C(分解). 
 H NMR(CDCl) δ 7.42-7.48(m,4H),7.93-7.97(m,4H),9.03(s,2H),9.13(s,2H). 
 19F NMR(CDCl) δ -49.42(s,3F),-81.94(t,J=9.0Hz,3F),-92.79(brs,2F),-117.85(brs,2F),-122.50(m,4F),-122.93(m,2F),-123.82(m,2F),-127.26(brs,2F). 
 IR(KBr) ν 3061,1217,1153,1106,735,672,646,630,554cm-1. 
 HRMS(FAB) Calcd for (M+) C291216: 664.0684, Found 664.0701.
(result of analysis)
M.M. P. 192 ° C (decomposition).
1 H NMR (CDCl 3 ) δ 7.42-7.48 (m, 4H), 7.93-7.97 (m, 4H), 9.03 (s, 2H), 9.13 (s, 2H ).
19 F NMR (CDCl 3 ) δ −49.42 (s, 3F), −81.94 (t, J = 9.0 Hz, 3F), −92.79 (brs, 2F), −117.85 (brs) , 2F), −122.50 (m, 4F), −122.93 (m, 2F), −123.82 (m, 2F), −127.26 (brs, 2F).
IR (KBr) [nu] 3061, 1217, 1153, 1106, 735, 672, 646, 630, 554 cm < -1 >.
HRMS (FAB) Calcd for (M +) C 29 H 12 F 16 : 664.0684, Found 664.0701.
<実施例8>
(1)化合物(h2)(6-(Henicosafluorodecyl)-13-(trifluoromethyl)-13-(trimethylsiloxy)pentacen-6-ol)の合成
 化合物(e2)の合成において、CF(CFCFIをCF(CFCFIに変更した以外は同様として、目的の化合物(h2)を白色固体として得た(0.552g,0.57mmol,収率57%)。
<Example 8>
(1) Synthesis of Compound (h2) (6- (Henicosafluordecyl) -13- (Trifluoromethyl) -13- (trimethylsilyl) pentacen-6-ol) In the synthesis of Compound (e2), CF 3 (CF 2 ) 2 CF 2 The target compound (h2) was similarly obtained as a white solid (0.552 g, 0.57 mmol, yield 57%) except that I was changed to CF 3 (CF 2 ) 8 CF 2 I.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
(分析結果)
 M.P. 194~195 °C. 
 H NMR(CDCl) δ 0.15(s,9H),3.30(s,1H),7.60-7.66(m,4H),7.98-8.03(m,4H),8.49(s,2H),8.65(s,2H).
 19F NMR(CDCl) δ -82.06(t,J=9.0Hz,3F),-82.14(s,3F),-116.58(brs,2F),-118.88(brs,2F),-122.83(brs,2F),-123.15(brs,2F),-124.04(brs,8F),-127.44(brs,2F). 
 IR(KBr) ν 3582,3065,2955,2897,1220,1173,848,747,547cm-1. 
 HRMS(FAB) Calcd for (M-H) C362124Si: 969.0928, Found 969.0960.
(result of analysis)
M.M. P. 194-195 ° C.
1 H NMR (CDCl 3 ) δ 0.15 (s, 9H), 3.30 (s, 1H), 7.60-7.66 (m, 4H), 7.98-8.03 (m, 4H) ), 8.49 (s, 2H), 8.65 (s, 2H).
19 F NMR (CDCl 3 ) δ −82.06 (t, J = 9.0 Hz, 3F), −82.14 (s, 3F), −116.58 (brs, 2F), −118.88 (brs) , 2F), −122.83 (brs, 2F), −123.15 (brs, 2F), −124.04 (brs, 8F), −127.44 (brs, 2F).
IR (KBr) ν 3582, 3065, 2955, 2897, 1220, 1173, 848, 747, 547 cm −1 .
HRMS (FAB) Calcd for (M−H) C 36 H 21 F 24 O 2 Si: 969.0928, Found 969.960.
(2)化合物(h3)(9-(Henicosafluorodecyl)-10-(trifluoromethyl)anthracene-9,10-diol)の合成
 化合物(e3)の合成において、化合物(e2)を化合物(h2)に変更した以外は同様として、目的の化合物(h3)を白色固体として得た(0.598g,0.667mmol,収率75%)。
(2) Synthesis of Compound (h3) (9- (Henicosafluordecyl) -10- (trifluoromethyl) anthracene-9,10-diol) Except that Compound (e2) was changed to Compound (h2) Similarly, the target compound (h3) was obtained as a white solid (0.598 g, 0.667 mmol, yield 75%).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(分析結果)
 M.P. 240-242 °C.
 H NMR(CDCl) δ 3.40(s,1H),3.71(s,1H),7.62-7.65(m,4H),8.00-8.04(m,4H),8.62-8.64(m,4H). 
 19F NMR(CDCl) δ -79.86(s,3F),-82.07(t,J=9.3Hz,3F),-119.47(brs,2F),-119.09(brs,2F),-123.19(brs,10F),-124.04(brs,2F),-127.45(brs,2F).
 IR(KBr) ν 3595,3477,3056,1206,1155,657,646,554,450cm-1. 
 HRMS(FAB) Calcd for (M-H) C331324: 897.0533, Found 897.0557.
(result of analysis)
M.M. P. 240-242 ° C.
1 H NMR (CDCl 3 ) δ 3.40 (s, 1H), 3.71 (s, 1H), 7.62-7.65 (m, 4H), 8.00-8.04 (m, 4H) ), 8.62-8.64 (m, 4H).
19 F NMR (CDCl 3 ) δ −79.86 (s, 3F), −82.07 (t, J = 9.3 Hz, 3F), −119.47 (brs, 2F), −119.09 (brs) , 2F), -123.19 (brs, 10F), -124.04 (brs, 2F), -127.45 (brs, 2F).
IR (KBr) ν 3595, 3477, 3056, 1206, 1155, 657, 646, 554, 450 cm −1 .
HRMS (FAB) Calcd for (M−H) C 33 H 13 F 24 O 2 : 897.0533, Found 897.557.
(3)化合物(h4)(6-(Henicosafluorodecyl)-13-(trifluoromethyl)pentacene)の合成
 化合物(e4)の合成において、化合物(e3)を化合物(h3)に変更した以外は同様として、目的の化合物(h4)を暗緑色結晶として得た(0.096g,0.112mmol,収率24%)。
(3) Synthesis of Compound (h4) (6- (Henicosafluordecyl) -13- (trifluoromethyl) pentacene) The same as the synthesis of Compound (e4) except that Compound (e3) was changed to Compound (h3). Compound (h4) was obtained as dark green crystals (0.096 g, 0.112 mmol, yield 24%).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
(分析結果)
 M.P. 199°C(分解).
 H NMR(CDCl) δ 7.26-7.47(m,4H),7.93-7.97(m,4H),9.03(s,2H),9.13(s,2H). 
 19F NMR(CDCl) δ -49.42(s,3F),-81.97(t,J=9.3Hz,3F),-92.79(brs,2F),-117.86(brs,2F),-122.41to-123.09(m,10F),-123.90(brs,2F),-127.34(brs,2F). 
 IR(KBr) ν 3061,1211,1152,1105,744,558,455,418cm-1. 
 HRMS(FAB) Calcd for (M+) C331224: 864.0556, Found 864.0576.
(result of analysis)
M.M. P. 199 ° C (decomposition).
1 H NMR (CDCl 3 ) δ 7.26-7.47 (m, 4H), 7.93-7.97 (m, 4H), 9.03 (s, 2H), 9.13 (s, 2H ).
19 F NMR (CDCl 3 ) δ −49.42 (s, 3F), −81.97 (t, J = 9.3 Hz, 3F), −92.79 (brs, 2F), −117.86 (brs) , 2F), −122.41 to −123.09 (m, 10F), −123.90 (brs, 2F), −127.34 (brs, 2F).
IR (KBr) [nu] 3061, 1211, 1152, 1105, 744, 558, 455, 418 cm < -1 >.
HRMS (FAB) Calcd for (M +) C 33 H 12 F 24: 864.0556, Found 864.0576.
<溶解性試験>
 実施例5~8で得られた化合物(e4)~(h4)のウェットプロセスへの適用性を検討するため、各種溶媒に対する溶解性試験を行った。具体的には、試料20mgを量りとり、室温で溶媒10gへの溶解性(0.2重量%)を目視により判断した。溶媒はトルエン、テトラヒドロフラン(THF)、クロロホルムおよびo-ジクロロベンゼンの4種類を用いた。比較例として、縮合多環系化合物で環の数が同じ5環であるペンタセン(比較例1)の溶解性試験の結果も併せて示す。
<Solubility test>
In order to examine the applicability of the compounds (e4) to (h4) obtained in Examples 5 to 8 to the wet process, solubility tests in various solvents were conducted. Specifically, 20 mg of a sample was weighed, and the solubility (0.2% by weight) in 10 g of solvent at room temperature was judged visually. Four types of solvents were used: toluene, tetrahydrofuran (THF), chloroform and o-dichlorobenzene. As a comparative example, the results of the solubility test of pentacene (Comparative Example 1), which is a condensed polycyclic compound and has five rings having the same number of rings, are also shown.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 溶解性試験の結果、化合物はペンタセンと比較して、有機溶媒への高い溶解性を有することが明らかになった。これは、化合物にパーフルオロアルキル基を持つためであると考えられる。
 これにより、ペンタセンがドライプロセスである蒸着法以外にデバイスに適用が困難な一方で、化合物(e4)~(h4)は塗布やスピンコート法、インクジェット法などに代表されるウェットプロセスの適用が可能であると言える。
As a result of the solubility test, it was found that the compound has higher solubility in organic solvents than pentacene. This is presumably because the compound has a perfluoroalkyl group.
This makes it difficult to apply to devices other than the vapor deposition method in which pentacene is a dry process, while compounds (e4) to (h4) can be applied to wet processes such as coating, spin coating, and inkjet methods. It can be said that.
<イオン化ポテンシャル測定>
 実施例5~8で得られた化合物(e4)~(h4)のイオン化ポテンシャルを、大気中光電子分光装置(理研計器株式会社製、AC-1)を用いて測定した。測定サンプルはシリコン基板に対して、化合物(e4)~(h4)を真空蒸着(背圧~10-4Pa、蒸着レート0.1Å/s、基板温度25℃、膜厚:70nm)することにより、作製した。比較例として同様に作製したペンタセン蒸着膜を用いた。
 測定の結果を下記の表2に示す。
<Ionization potential measurement>
The ionization potentials of the compounds (e4) to (h4) obtained in Examples 5 to 8 were measured using an atmospheric photoelectron spectrometer (AC-1 manufactured by Riken Keiki Co., Ltd.). A measurement sample was obtained by vacuum-depositing compounds (e4) to (h4) on a silicon substrate (back pressure to 10 −4 Pa, deposition rate 0.1 Å / s, substrate temperature 25 ° C., film thickness: 70 nm). Made. The pentacene vapor deposition film produced similarly was used as a comparative example.
The measurement results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 イオン化ポテンシャル測定の結果、化合物(e4)~(h4)はHOMOレベルが低く、耐酸化性に優れていることが分かった。これは、化合物(e4)~(h4)のフッ素原子の電子求引性に起因するものであると考えられる。 As a result of measuring the ionization potential, it was found that the compounds (e4) to (h4) had a low HOMO level and excellent oxidation resistance. This is considered to be caused by the electron withdrawing properties of the fluorine atoms of the compounds (e4) to (h4).
<有機半導体材料特性>
 化合物(e4)~(g4)の有機半導体材料としての特性評価のため蒸着電界効果型トランジスタ(蒸着FET)素子を作製し、電界効果移動度(キャリア移動度)を求めた。以下に蒸着FET素子の作製方法と半導体特性の評価手法を以下に示す。
<Characteristics of organic semiconductor materials>
In order to evaluate the characteristics of the compounds (e4) to (g4) as an organic semiconductor material, a deposited field effect transistor (deposited FET) element was fabricated, and field effect mobility (carrier mobility) was obtained. A method for producing a vapor-deposited FET element and a method for evaluating semiconductor characteristics are shown below.
 洗浄済みのシリコン酸化膜付きシリコン基板をn-オクチルトリクロロシランのトルエン溶液に浸漬させ、シリコン酸化膜表面を処理した。上記基板に対して、実施例5~7で得た化合物(e4)~(g4)を真空蒸着(背圧~10-4Pa、蒸着レート0.1Å/s、基板温度25℃、膜厚:70nm)することにより、有機半導体層を形成した。 The cleaned silicon substrate with a silicon oxide film was immersed in a toluene solution of n-octyltrichlorosilane to treat the surface of the silicon oxide film. With respect to the substrate, the compounds (e4) to (g4) obtained in Examples 5 to 7 were vacuum-deposited (back pressure to 10 −4 Pa, deposition rate 0.1 Å / s, substrate temperature 25 ° C., film thickness: 70 nm), an organic semiconductor layer was formed.
 この有機半導体層上部にシャドウマスクを用いて金を真空蒸着し(背圧~10-4Pa、蒸着レート1~2Å/s、膜厚:50nm)、ソース、ドレイン電極を形成した(チャネル長50μm、チャネル幅1mm)。電極とは異なる部位の有機半導体層およびシリコン酸化膜を削り取り、その部分に導電性ペースト(藤倉化成社製、ドータイトD-550)を付け溶媒を乾燥させた。このようにして、トップコンタクト・ボトムゲート構造の電界効果型トランジスタ(FET)素子を作製した。 Gold was vacuum-deposited on this organic semiconductor layer using a shadow mask (back pressure˜10 −4 Pa, deposition rate 1˜2 Å / s, film thickness: 50 nm) to form source and drain electrodes (channel length 50 μm). , Channel width 1 mm). The organic semiconductor layer and the silicon oxide film at portions different from the electrodes were scraped, and a conductive paste (Dotite D-550, manufactured by Fujikura Kasei Co., Ltd.) was attached to the portions, and the solvent was dried. Thus, a field effect transistor (FET) element having a top contact / bottom gate structure was produced.
 得られた蒸着FET素子の電気特性はAgilent社製の半導体デバイスアナライザーB1500Aを用いて真空中(<5×10-3Pa)で評価した。作製した蒸着FET素子のシリコン基板をゲート電極として用い、シリコン基板に電圧を印加し、ソース・ドレイン電極間の電流/電圧曲線をゲート電圧をスキャンさせて測定した。
 その結果、蒸着FET素子のゲート電圧によるドレイン電流のon/off動作が観測され、このドレイン電流/ゲート電圧の傾きから電界効果移動度(キャリア移動度)を求めた。化合物(e4)~(g4)を用いて形成した有機半導体素子は、p型トランジスタ素子としての特性を示した。この有機薄膜トランジスタの電流-電圧特性における飽和領域から、キャリア移動度を求めた。
 測定の結果を下記の表3に示す。
 また、化合物(e4)の出力特性の結果を図1に示す。
 これらの結果から、化合物(e4)~(g4)は高いキャリア移動度を有し、十分な半導体特性を示すことが分かる。
The electrical characteristics of the obtained vapor-deposited FET element were evaluated in vacuum (<5 × 10 −3 Pa) using a semiconductor device analyzer B1500A manufactured by Agilent. Using the silicon substrate of the vapor deposition FET element thus produced as a gate electrode, a voltage was applied to the silicon substrate, and the current / voltage curve between the source and drain electrodes was measured by scanning the gate voltage.
As a result, on / off operation of the drain current due to the gate voltage of the deposited FET element was observed, and the field effect mobility (carrier mobility) was obtained from the slope of the drain current / gate voltage. Organic semiconductor elements formed using the compounds (e4) to (g4) exhibited characteristics as p-type transistor elements. Carrier mobility was determined from the saturation region in the current-voltage characteristics of the organic thin film transistor.
The measurement results are shown in Table 3 below.
Moreover, the result of the output characteristic of a compound (e4) is shown in FIG.
From these results, it can be seen that the compounds (e4) to (g4) have high carrier mobility and show sufficient semiconductor characteristics.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
<薄膜X線回折>
 実施例5で得られた化合物(e4)の蒸着薄膜のOut-of-planeX線回折パターン測定(基板表面に平行な格子面による回折)を行った。Out-of-planeX線回折測定はRigaku社製のTTR-IIIを用いて、斜入射測定によって行った。測定の結果を図2に示す。一般に秩序性の高い配向性を持った薄膜のサンプルは、2θ=5°以下に回折線が確認され、特に秩序性の高い試料は高次の回折線も確認される。化合物(e4)の蒸着薄膜は、2θ=4.7°(d=18.8Å)および2θ=14.1°(d=6.2Å)に2本の回折線が確認され、化合物(e4)は薄膜内において秩序性の高い配向性と結晶性を有していることが分かった。
<Thin film X-ray diffraction>
Out-of-plane X-ray diffraction pattern measurement (diffraction by a lattice plane parallel to the substrate surface) of the vapor-deposited thin film of compound (e4) obtained in Example 5 was performed. Out-of-plane X-ray diffraction measurement was performed by oblique incidence measurement using TTR-III manufactured by Rigaku. The measurement results are shown in FIG. In general, a sample of a thin film having a highly ordered orientation shows a diffraction line at 2θ = 5 ° or less, and a sample with a particularly high order also shows a high-order diffraction line. In the deposited thin film of the compound (e4), two diffraction lines were confirmed at 2θ = 4.7 ° (d = 18.8 °) and 2θ = 14.1 ° (d = 6.2 °), and the compound (e4) Was found to have highly ordered orientation and crystallinity in the thin film.
 また、実施例5で得られた化合物(e4)の蒸着薄膜のIn-planeX線回折パターン測定(基板表面に垂直な格子面による回折)を行った。In-planeX線回折測定はRigaku社製のATX-Gを用いて評価した。パーフルオロアルキル基のパッキング由来の回折線が2θχ/φ=16°付近に、分子間のπ-πスタッキングに起因する回折線である2θχ/φ=23°(d=3.8Å)が観測され、化合物(e4)は薄膜内において、π-πスタッキングを形成し、薄膜は結晶性を有していることが分かった。 Further, In-plane X-ray diffraction pattern measurement (diffraction by a lattice plane perpendicular to the substrate surface) of the deposited thin film of the compound (e4) obtained in Example 5 was performed. In-plane X-ray diffraction measurement was evaluated using ATX-G manufactured by Rigaku. A diffraction line derived from the packing of the perfluoroalkyl group is observed at 2θχ / φ = 16 °, and 2θχ / φ = 23 ° (d = 3.8Å), which is a diffraction line caused by π-π stacking between molecules. Compound (e4) formed π-π stacking in the thin film, and the thin film was found to have crystallinity.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2013年1月28日出願の日本特許出願(特願2013-013179)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on January 28, 2013 (Japanese Patent Application No. 2013-013179), the contents of which are incorporated herein by reference.
 本発明は、ドライプロセス・ウェットプロセスのいずれにも使用可能で、高移動度が期待される含フッ素芳香族化合物を含む有機半導体材料を提供する。
 本発明によれば、縮合芳香環化合物であるアセン化合物をコアとして、ペルフルオロアルキル基を導入することで、有機溶媒に可溶になり、有機半導体材料として高いキャリア移動度がある含フッ素芳香族化合物が得られる。
 本発明の化合物を含む有機半導体材料は、有機半導体(薄膜)トランジスタ、次世代フラットパネルディスプレイ用の有機EL素子、および軽量かつフレキシブル電源としての有機薄膜太陽電池等へ利用されうる。
The present invention provides an organic semiconductor material containing a fluorine-containing aromatic compound that can be used in either a dry process or a wet process and is expected to have high mobility.
According to the present invention, a fluorine-containing aromatic compound that is soluble in an organic solvent and has high carrier mobility as an organic semiconductor material by introducing a perfluoroalkyl group with an acene compound that is a condensed aromatic ring compound as a core. Is obtained.
The organic semiconductor material containing the compound of the present invention can be used for organic semiconductor (thin film) transistors, organic EL elements for next-generation flat panel displays, and organic thin film solar cells as lightweight and flexible power sources.

Claims (10)

  1.  下式(1)で表される含フッ素芳香族化合物。
    Figure JPOXMLDOC01-appb-C000001

    [上記式において、Rf1、Rf2は、互いに異なる基であり、Rf1は炭素数1~3の直鎖状ペルフルオロアルキル基であり、Rf2は炭素数2~12の直鎖状ペルフルオロアルキル基である。
     Rは、同一であっても異なっていてもよく、炭素数1~12の1価炭化水素基、1価芳香族炭化水素基、1価複素芳香族基、ハロゲン原子、および水素原子から選ばれる基である。該R中に炭素原子に結合した水素原子が存在する場合には、該水素原子の1個以上は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のペルフルオロアルキル基、およびフェニル基から選ばれる基で置換されていてよい。
     AとBは、ベンゼン環を区別する記号であり、Aを付したベンゼン環構造AとBを付したベンゼン環構造Bが結合する順序は制限されない。
     mは、ベンゼン環構造Aの繰り返し数、nはベンゼン環構造Bの繰り返し数であり、mは0以上の整数、nは1以上の整数、m+nは3~6である。]
    A fluorine-containing aromatic compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    [In the above formula, R f1 and R f2 are groups different from each other, R f1 is a linear perfluoroalkyl group having 1 to 3 carbon atoms, and R f2 is a linear perfluoroalkyl group having 2 to 12 carbon atoms. It is a group.
    R may be the same or different and is selected from a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, and a hydrogen atom. It is a group. When a hydrogen atom bonded to a carbon atom is present in the R, at least one of the hydrogen atoms is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. It may be substituted with a group selected from a perfluoroalkyl group and a phenyl group.
    A and B are symbols for distinguishing benzene rings, and the order in which the benzene ring structure A attached with A and the benzene ring structure B attached with B are bonded is not limited.
    m is the repeating number of the benzene ring structure A, n is the repeating number of the benzene ring structure B, m is an integer of 0 or more, n is an integer of 1 or more, and m + n is 3-6. ]
  2.  式(1)で表される化合物が下式(1-1)で表される化合物である請求項1に記載の含フッ素芳香族化合物。
    Figure JPOXMLDOC01-appb-C000002

    [ただし、式中の記号は前記と同じ意味を示す。]
    The fluorine-containing aromatic compound according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the following formula (1-1).
    Figure JPOXMLDOC01-appb-C000002

    [However, the symbols in the formula have the same meaning as described above. ]
  3.  式(1)で表される化合物が下式(1-11)で表される化合物である請求項1に記載の含フッ素芳香族化合物。
    Figure JPOXMLDOC01-appb-C000003

    [ただし、式中の記号は前記と同じ意味を示す。]
    The fluorine-containing aromatic compound according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the following formula (1-11).
    Figure JPOXMLDOC01-appb-C000003

    [However, the symbols in the formula have the same meaning as described above. ]
  4.  請求項1~3のいずれか1項に記載の含フッ素芳香族化合物を含む有機半導体材料。 An organic semiconductor material comprising the fluorine-containing aromatic compound according to any one of claims 1 to 3.
  5.  請求項4に記載の有機半導体材料で構成される有機半導体薄膜。 An organic semiconductor thin film comprising the organic semiconductor material according to claim 4.
  6.  請求項4に記載の有機半導体材料で構成され、結晶性を有する有機半導体薄膜。 An organic semiconductor thin film made of the organic semiconductor material according to claim 4 and having crystallinity.
  7.  基板上に、請求項5又は6に記載の有機半導体薄膜が形成された有機半導体素子。 An organic semiconductor element in which the organic semiconductor thin film according to claim 5 or 6 is formed on a substrate.
  8.  ゲート電極、誘電体層、ソース電極、ドレイン電極、および半導体層を備えるトランジスタにおいて、該半導体層が請求項5又は6に記載の有機半導体薄膜で構成されることを特徴とするトランジスタ。 A transistor comprising a gate electrode, a dielectric layer, a source electrode, a drain electrode, and a semiconductor layer, wherein the semiconductor layer is composed of the organic semiconductor thin film according to claim 5 or 6.
  9.  下式(2)で示される化合物を、式Rf1-Si(CHで表される化合物と反応させて下式(3)で表される化合物を得て、つぎに該式(3)で表される化合物と式Rf2-Xで表される化合物とを反応させて下式(4)で表される化合物を得て、つぎに、該式(4)で表される化合物において脱保護反応および芳香族化反応を行うことを特徴とする下式(1)で表される含フッ素芳香族化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004

    [上記式において、Rf1、Rf2は、互いに異なる基であり、Rf1は炭素数1~3の直鎖状ペルフルオロアルキル基であり、Rf2は炭素数2~12の直鎖状ペルフルオロアルキル基である。
     Rは、同一であっても異なっていてもよく、炭素数1~12の1価炭化水素基、1価芳香族炭化水素基、1価複素芳香族基、ハロゲン原子、および水素原子から選ばれる基である。該R中に炭素原子に結合した水素原子が存在する場合には、該水素原子の1個以上は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のペルフルオロアルキル基、およびフェニル基から選ばれる基で置換されていてよい。
     AとBは、ベンゼン環を区別する記号であり、Aを付したベンゼン環構造AとBを付したベンゼン環構造Bが結合する順序は制限されない。
     mは、ベンゼン環構造Aの繰り返し数、nはベンゼン環構造Bの繰り返し数であり、mは0以上の整数、nは1以上の整数、m+nは3~6である。
     Xはヨウ素原子又は臭素原子である。]
    A compound represented by the following formula (2) is reacted with a compound represented by the formula R f1 —Si (CH 3 ) 3 to obtain a compound represented by the following formula (3). ) And a compound represented by the formula R f2 —X are reacted to obtain a compound represented by the following formula (4). Next, in the compound represented by the formula (4) A method for producing a fluorine-containing aromatic compound represented by the following formula (1), wherein a deprotection reaction and an aromatization reaction are performed.
    Figure JPOXMLDOC01-appb-C000004

    [In the above formula, R f1 and R f2 are groups different from each other, R f1 is a linear perfluoroalkyl group having 1 to 3 carbon atoms, and R f2 is a linear perfluoroalkyl group having 2 to 12 carbon atoms. It is a group.
    R may be the same or different and is selected from a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, and a hydrogen atom. It is a group. When a hydrogen atom bonded to a carbon atom is present in the R, at least one of the hydrogen atoms is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. It may be substituted with a group selected from a perfluoroalkyl group and a phenyl group.
    A and B are symbols for distinguishing benzene rings, and the order in which the benzene ring structure A attached with A and the benzene ring structure B attached with B are bonded is not limited.
    m is the repeating number of the benzene ring structure A, n is the repeating number of the benzene ring structure B, m is an integer of 0 or more, n is an integer of 1 or more, and m + n is 3-6.
    X is an iodine atom or a bromine atom. ]
  10.  下式(2A)で表される化合物を、式Rf1-Si(CHで表される化合物と反応させて下式(3A)で表される化合物を得て、つぎに該式(3A)で表される化合物と式Rf2-Xで表される化合物と反応させて下式(4A)で表される化合物を得て、つぎに、該式(4A)で表される化合物において脱保護反応および芳香族化反応を行い下式(1A)で表される化合物を得て、つぎに、該式(1A)で表される化合物中のハロゲン原子であるRをRに置換することを特徴とする下式(1B)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005

    [上記式において、Rf1、Rf2は、互いに異なる基であり、Rf1は炭素数1~3の直鎖状ペルフルオロアルキル基であり、Rf2は炭素数2~12の直鎖状ペルフルオロアルキル基である。
     Rは、同一であっても異なっていてもよく、炭素数1~12の1価炭化水素基、1価芳香族炭化水素基、1価複素芳香族基、ハロゲン原子、および水素原子から選ばれる基であり、Rの1つ以上はハロゲン原子を示す。該R中に炭素原子に結合した水素原子が存在する場合には、該水素原子の1個以上は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のペルフルオロアルキル基、およびフェニル基から選ばれる基で置換されていてよい。
     RはRに対応する基であり、ハロゲン原子であるRに対応するRは、炭素数1~12の1価炭化水素基、1価芳香族炭化水素基、1価複素芳香族基、およびハロゲン原子から選ばれる基である。該R中に炭素原子に結合した水素原子が存在する場合には、該水素原子の1個以上は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のペルフルオロアルキル基、およびフェニル基から選ばれる基で置換されていてよい。
     ハロゲン原子以外のRに対応するRは、Rと同一の基である。
     AとBは、ベンゼン環を区別する記号であり、Aを付したベンゼン環構造AとBを付したベンゼン環構造Bが結合する順序は制限されない。
     mは、ベンゼン環構造Aの繰り返し数、nはベンゼン環構造Bの繰り返し数であり、mは0以上の整数、nは1以上の整数、m+nは3~6である。
     Xはヨウ素原子又は臭素原子である。]
    A compound represented by the following formula (2A) is reacted with a compound represented by the formula R f1 —Si (CH 3 ) 3 to obtain a compound represented by the following formula (3A). The compound represented by the following formula (4A) is obtained by reacting the compound represented by 3A) with the compound represented by the formula R f2 -X. Next, in the compound represented by the formula (4A) A deprotection reaction and an aromatization reaction are performed to obtain a compound represented by the following formula (1A), and then R A which is a halogen atom in the compound represented by the formula (1A) is substituted with R B A process for producing a compound represented by the following formula (1B):
    Figure JPOXMLDOC01-appb-C000005

    [In the above formula, R f1 and R f2 are groups different from each other, R f1 is a linear perfluoroalkyl group having 1 to 3 carbon atoms, and R f2 is a linear perfluoroalkyl group having 2 to 12 carbon atoms. It is a group.
    R A may be the same or different and is selected from a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent heteroaromatic group, a halogen atom, and a hydrogen atom. One or more of R A represents a halogen atom. When a hydrogen atom bonded to a carbon atom is present in the RA , at least one of the hydrogen atoms is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. A perfluoroalkyl group and a group selected from phenyl groups.
    R B is a group corresponding to R A, is R B corresponding to R A is a halogen atom, a monovalent hydrocarbon group having 1 to 12 carbon atoms, monovalent aromatic hydrocarbon group, a monovalent heteroaromatic And a group selected from a halogen atom. The If there is a hydrogen atom bonded to the carbon atom in R B, 1 or more alkyl groups of 1 to 6 carbon atoms hydrogen atom, an alkoxy group having 1 to 6 carbon atoms, 1 to 6 carbon atoms A perfluoroalkyl group and a group selected from phenyl groups.
    R B corresponding to R A other than a halogen atom is the same group as R A.
    A and B are symbols for distinguishing benzene rings, and the order in which the benzene ring structure A attached with A and the benzene ring structure B attached with B are bonded is not limited.
    m is the repeating number of the benzene ring structure A, n is the repeating number of the benzene ring structure B, m is an integer of 0 or more, n is an integer of 1 or more, and m + n is 3-6.
    X is an iodine atom or a bromine atom. ]
PCT/JP2014/051424 2013-01-28 2014-01-23 Fluorine-containing aromatic compound, production method therefor, and organic semiconductor material WO2014115823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013013179A JP2016056098A (en) 2013-01-28 2013-01-28 Fluorine-containing aromatic compound and method for producing same, and organic semiconductor material
JP2013-013179 2013-01-28

Publications (1)

Publication Number Publication Date
WO2014115823A1 true WO2014115823A1 (en) 2014-07-31

Family

ID=51227612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051424 WO2014115823A1 (en) 2013-01-28 2014-01-23 Fluorine-containing aromatic compound, production method therefor, and organic semiconductor material

Country Status (2)

Country Link
JP (1) JP2016056098A (en)
WO (1) WO2014115823A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019133A1 (en) * 2004-08-20 2006-02-23 Matsushita Electric Industrial Co., Ltd. Coating liquid for forming organic multilayer film, method for manufacturing field effect transistor, and field effect transistor
JP2006335720A (en) * 2005-06-03 2006-12-14 Asahi Kasei Corp Method for producing polyacene compound and organic semiconductor element
WO2011022678A1 (en) * 2009-08-21 2011-02-24 The University Of South Dakota Fluorinated aromatic materials and their use in optoelectronics
JP2012528196A (en) * 2009-05-29 2012-11-12 スリーエム イノベイティブ プロパティズ カンパニー Fluorinated silylethynylpentacene compounds and compositions, and methods of making and using the same
WO2013122174A1 (en) * 2012-02-17 2013-08-22 旭硝子株式会社 Fluorine-containing aromatic compound and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019133A1 (en) * 2004-08-20 2006-02-23 Matsushita Electric Industrial Co., Ltd. Coating liquid for forming organic multilayer film, method for manufacturing field effect transistor, and field effect transistor
JP2006335720A (en) * 2005-06-03 2006-12-14 Asahi Kasei Corp Method for producing polyacene compound and organic semiconductor element
JP2012528196A (en) * 2009-05-29 2012-11-12 スリーエム イノベイティブ プロパティズ カンパニー Fluorinated silylethynylpentacene compounds and compositions, and methods of making and using the same
WO2011022678A1 (en) * 2009-08-21 2011-02-24 The University Of South Dakota Fluorinated aromatic materials and their use in optoelectronics
WO2013122174A1 (en) * 2012-02-17 2013-08-22 旭硝子株式会社 Fluorine-containing aromatic compound and production method thereof

Also Published As

Publication number Publication date
JP2016056098A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5685832B2 (en) Dibenzo [g, p] chrysene compound, light emitting layer material containing the compound, and organic electroluminescence device using the same
CN111187228B (en) Organic electronic material based on phenanthrene and benzonitrile and application thereof
US9087996B2 (en) Fluorine-containing aromatic compound and production method thereof
JP5799772B2 (en) Electron transport material and organic electroluminescent device using the same
CN112174835B (en) Organic electroluminescent material and preparation method and application thereof
CN110835318A (en) Organic compound with azafluorene as core and preparation method and application thereof
CN113549059B (en) Organic compound, and electronic device and electronic apparatus including the same
US9067857B2 (en) Fluorine-containing aromatic compound and manufacturing method therefor
CN111362936A (en) Compound with olefinic bond-containing seven-membered ring as core and application thereof
JP2021113188A (en) Polycyclic aromatic compounds
CN110003019B (en) High-mobility organic compound with mesitylene as core and application thereof
Li et al. Hole-transporting material based on spirobifluorene unit with perfect amorphous and high stability for efficient OLEDs
CN113121515A (en) Compound with dibenzo five-membered heterocycle as core and application thereof
WO2014115823A1 (en) Fluorine-containing aromatic compound, production method therefor, and organic semiconductor material
JP2014122189A (en) Fluorine-containing compound and method for producing the same
JP2014150237A (en) Organic semiconductor material, and fluorine-containing aromatic compound and production method therefor
JP2015155381A (en) Fluorine-containing aromatic compounds and production methods thereof
JP2015155382A (en) Fluorine-containing aromatic compounds and production methods thereof
JP6539821B2 (en) Compound and organic electronic device using the same
Park et al. Thermally stable triphenylene-based hole-transporting materials for organic light-emitting devices
JP4416546B2 (en) Organic electroluminescence device
CN111961019B (en) Organic photoelectric material containing butterfly structure and preparation method and application thereof
JP2014136700A (en) Fluorine-containing compound and organic thin-film transistor using the same
TWI844726B (en) Condensed polycyclic aromatic compound
CN113135881B (en) Triarylamine organic compound containing dibenzofuran and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP