WO2014115682A1 - Personal authentication device - Google Patents

Personal authentication device Download PDF

Info

Publication number
WO2014115682A1
WO2014115682A1 PCT/JP2014/050969 JP2014050969W WO2014115682A1 WO 2014115682 A1 WO2014115682 A1 WO 2014115682A1 JP 2014050969 W JP2014050969 W JP 2014050969W WO 2014115682 A1 WO2014115682 A1 WO 2014115682A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
imaging
optical element
holographic optical
personal authentication
Prior art date
Application number
PCT/JP2014/050969
Other languages
French (fr)
Japanese (ja)
Inventor
堀米 秀嘉
梅崎 太造
Original Assignee
合同会社3Dragons
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合同会社3Dragons filed Critical 合同会社3Dragons
Priority to JP2014558554A priority Critical patent/JP6339025B2/en
Publication of WO2014115682A1 publication Critical patent/WO2014115682A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • A61B5/1172Identification of persons based on the shapes or appearances of their bodies or parts thereof using fingerprinting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1341Sensing with light passing through the finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns

Definitions

  • the present invention relates to a personal authentication technique for verifying identity based on biometric information, and more particularly to a personal authentication device using a holographic optical element.
  • the technology for authenticating individuals based on the shape, pattern, various features (hereinafter referred to as “biological information”) of fingerprints, veins, irises, retinas, faces, hands, etc. has attracted attention.
  • the vein pattern is useful as biometric information used for personal authentication because it is not easily affected by the skin surface condition and is difficult to imitate.
  • a personal authentication device using a vein pattern has been proposed (see, for example, Patent Document 1).
  • Patent Literature 1 a light source that emits light from two directions to the left and right, an imaging unit that images light transmitted through the finger, and light from two left and right directions are irradiated. Accordingly, a personal authentication device including a control device that performs control so as to capture images a plurality of times is described. According to the apparatus described in Patent Document 1, it is said that when a finger blood vessel pattern is imaged with transmitted light, a compact authentication apparatus that does not have a feeling of pressure for the user and is strong against external light can be provided.
  • Patent Document 1 irradiates light from the left and right sides of a finger placed on a guide unit, and acquires a finger vein pattern by an imaging unit disposed below the guide unit. It is configured. For this reason, it is more compact than a transmission light type device in which a finger is sandwiched between a light source and an imaging system and a finger vein pattern is imaged by transmitted light.
  • the light source unit that irradiates the illumination light and the light shielding plate for controlling the optical path of the illumination light so as to protrude above the surface of the imaging opening where the finger is placed Since it is configured, it is difficult to realize a thin, compact and flat structure.
  • a certain amount of optical path (distance) is required between the subject and the photographing means (CCD or CMOS), so the volume increases accordingly, and the size of the device is reduced. There was a problem of getting bigger.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a personal authentication device that can solve at least a part of the problems.
  • a personal authentication device of the present invention is a personal authentication device that performs identity verification based on biometric information in an authentication target, a light source, and a stage in which the authentication target is arranged on the front side, An imaging means for imaging the biological information of the authentication target, an illumination holographic optical element that is arranged on a part of the stage and irradiates the authentication target with light from the light source, and another part of the stage And an imaging holographic optical element arranged to collect light from the authentication target on the imaging means.
  • the imaging holographic optical element condenses light incident from a first direction out of light from the authentication target onto a part of an imaging surface of the imaging unit, and It is preferable that the light incident from the second direction different from the direction of is condensed on another part of the imaging surface of the imaging means. Two images of the biological information are created based on the light incident from the first direction and the light incident from the second direction, and the three-dimensional image of the biological information is created using the two images. Is preferably formed.
  • the imaging holographic optical element preferably has a function of blocking light other than a specific wavelength.
  • Another personal authentication device of the present invention is a personal authentication device that performs identity verification based on biometric information in an authentication target, and includes a light source, a stage on which the authentication target is disposed, a light guide, and one of the stages.
  • a holographic optical element for illumination that is disposed in a portion and irradiates the authentication target with light from the light source, a holographic optical element for light guide disposed in another part of the stage, and the light guide holo
  • the stage may be used as the light guide.
  • An imaging holographic optical element is provided in the vicinity of the imaging means of the light guide, and the imaging holographic optical element collects light reflected and propagated inside the light guide to the imaging means. May shine.
  • any one of the personal authentication devices described above further comprises contact detection means for detecting contact of the authentication target, and the imaging means captures the biometric information of the authentication target when the contact detection means detects contact of the authentication target. It is preferable to do.
  • the light source can supply light of first and second different wavelengths
  • the imaging means has a variable focus mechanism
  • the personal authentication device is connected to an authentication target placed on the stage.
  • the object to be authenticated placed on the authentication object is irradiated with light having a second wavelength without passing through the holographic optical element for illumination, and the biological information light generated from the object to be authenticated is captured using the variable focus mechanism.
  • the means is imaged.
  • the light of the first wavelength is infrared light
  • the biological information light related to the vein is acquired from the authentication target
  • the light of the second wavelength is visible light
  • the biological information related to the vein from the authentication target It is preferable to acquire biological information light different from light. It is preferable that a position where the authentication target is to be placed can be displayed on at least a part of the stage.
  • At least one of the illumination holographic optical element, the imaging holographic optical element, and the light guiding holographic optical element is preferably formed in a hologram sheet disposed on the back side of the stage.
  • the light source may irradiate the illumination holographic optical element from an end of the stage.
  • the illumination holographic optical element preferably irradiates the authentication target with light from the light source at an angle of 45 ° or more with respect to the normal line of the stage.
  • the biometric information in the authentication target may be a finger vein, a finger fingerprint, a palm vein, a back vein, a retina of the eye, or an iris of the eye.
  • the illumination holographic optical element, the imaging holographic optical element or the light guiding holographic optical element is produced by irradiating a reference light and an object light having a wavelength different from the light of the light source, When light having the same wavelength as the light source is irradiated, it is preferable to generate light having a predetermined angle. Further, the illumination holographic optical element, the imaging holographic optical element or the light guiding holographic optical element is produced by irradiating a green photosensitive material with reference light and object light from a green laser. It is preferable to generate light at a predetermined angle when external light is irradiated.
  • a portable information terminal device including any of the above personal authentication devices may be configured.
  • the portable information terminal device of the present invention is a portable information terminal device having a personal authentication function based on biometric information to be authenticated, which constitutes a screen, the transparent substrate on which the authentication target is arranged, A light source arranged on the back side of the transparent substrate, an imaging means for imaging the biometric information to be authenticated arranged on the back side of the transparent substrate, a holographic optical element for illumination arranged on the back side of the transparent substrate, A light-guiding holographic optical element disposed on the back side of the transparent substrate, and an imaging holographic optical element disposed on the back side of the transparent substrate, wherein the illumination holographic optical element is from the light source Is irradiated to the authentication target, and the light guide holographic optical element emits biological information light from the authentication target at an angle larger than a predetermined threshold angle of the transparent substrate.
  • the light reflected at an angle larger than the predetermined threshold angle is reflected inside the transparent substrate and propagates in the direction of the imaging holographic optical element, and the imaging holographic optical element is connected to the transparent substrate.
  • the light propagating through the inside is condensed on the imaging means.
  • the optical path length in the thickness direction of the apparatus can be shortened, and is thinner (for example, a thickness of 10 mm or less) than when a lens is used.
  • a personal authentication device with a simple configuration can be realized, and the cost can be reduced.
  • the personal authentication device of the present invention eliminates the need to place a light source or an imaging means facing the authentication target by propagating light from the light source and light from the authentication target through the light guide. There are also advantages such as a reduction in thickness and a high degree of freedom in design.
  • a flat stage on which an authentication target is arranged can be used as a light guide, and can be easily applied to an existing multi-function mobile phone.
  • the illumination light can be irradiated to the authentication target at a large angle with respect to the normal line by the holographic optical element, so that the reflected light from the surface of the authentication target that becomes noise can be reduced it can.
  • the personal authentication device of the present invention uses a holographic optical element, it can have wavelength selectivity, use only light of a predetermined wavelength for personal authentication, and use light of other wavelengths for other Can be used for applications.
  • a stereo image having parallax can be obtained by using light from two different directions among the light from the authentication target by the holographic optical element. Other effects will be described in the mode for carrying out the invention.
  • FIG. 1 Schematic configuration diagram of a personal authentication device according to an embodiment of the present invention
  • Example of sectional view of personal authentication device viewed from the Y-axis direction are examples of the arrangement of the light source and imaging means of the personal authentication device.
  • (A) to (E) are examples of optical paths by holographic optical elements.
  • (A) (B) is another example of the arrangement of the light source and the imaging means of the personal authentication device.
  • Other embodiments of personal authentication device of the present invention Still another embodiment of the personal authentication device of the present invention
  • Example of applying the personal authentication device of the present invention to a multi-function mobile phone Explanatory drawing showing an apparatus and method for producing a holographic optical element
  • the present invention is a personal authentication device that performs identity verification based on biometric information in an authentication target, and uses a holographic optical element (hereinafter sometimes simply referred to as “HOE”).
  • HOE holographic optical element
  • the thinning is realized without providing a projection such as a light source on the surface of the stage where the authentication target is arranged.
  • the finger vein is described below as an example, but it can be used not only for finger veins, but also for example, palm veins and back veins. Fingerprints, iris, retina, face, hands, ears
  • the present invention can also be applied to various biological information such as shapes, patterns, and various features.
  • a holographic optical element is an optical member on which a hologram having a predetermined optical characteristic is recorded.
  • a photosensitive material is applied on a hard, soft, or flexible substrate, and a hologram having a predetermined optical characteristic is recorded on the photosensitive material.
  • a hologram is a recording of an interference pattern of two lights (generally called object light and reference light). By irradiating one light onto the hologram, the other light can be reproduced by diffraction. . Also, depending on the direction of the two lights when recording, the reflection type (two lights are incident on the hologram from the opposite surface) can be a transmission type (two lights are incident on the hologram from the same surface side). ).
  • the hologram can also multiplex-record holograms having different properties at the same position.
  • a plurality of holograms having different angle selectivity angle ranges can be multiplex-recorded. It is also possible to multiplex-record with a reflection hologram. Note that the intensity of diffracted light varies depending on the diffraction efficiency of the hologram.
  • the personal authentication apparatus of the present invention includes at least a stage 2 on which an authentication target is arranged, an imaging unit 4 that images biometric information 12 of the authentication target 10, and a light source 5 that supplies light. And an illumination holographic optical element (illumination HOE) 31 for irradiating light from the light source 5 to the authentication target and light from the authentication target (hereinafter referred to as “biological information light”) 53 are collected on the imaging means 4.
  • the personal authentication device of the present invention includes a light guide holographic optical element (light guide HOE) that guides the biological information light 53 to a predetermined position by a light guide (for example, a stage) instead of the imaging HOE 32.
  • a light guide for example, a stage
  • an imaging HOE for condensing the light propagated by the light guiding HOE on the imaging means 4 may be provided (see FIG. 7).
  • the illumination HOE 31 is provided at a position where it can receive light from the light source and can irradiate the illumination target to the authentication target arranged on the front side of the stage 2.
  • the illumination HOE 31 is preferably arranged on the back side or the front side of the stage 2 on the left and right (may be separated) of the opposing positions of the authentication target.
  • the imaging HOE 32 receives at least a part of the biological information light and is provided at a position where it can be condensed on the imaging means 4.
  • the imaging HOE 32 is preferably arranged at a position facing the authentication target on the back side or the front side of the stage 2.
  • the illumination HOE 31 and the imaging HOE 32 are preferably environmentally stable when arranged on the back side of the stage 2, but may be arranged on the front side of the stage 2 in order to avoid the influence of light refraction by the stage.
  • the lighting HOE 31 and the imaging HOE 32 are preferably formed as one holographic optical element, but may be provided independently. Further, the illumination HOE 31 may be arranged on one side of the stage 2 and the imaging HOE 32 may be arranged on the other side of the stage 2. If necessary, the illumination HOE 31 and the imaging HOE 32 are arranged on both sides of the stage 2. Also good.
  • the imaging unit 4 and the light source 5 are preferably arranged on the back side of the stage 2, but the light source 5 may be arranged at the end or inside of the stage 2 as shown in FIG.
  • the imaging unit 4 and the light source 5 are not necessarily limited to the back side of the stage 2.
  • the personal authentication device of the present invention is preferable because the stage 2 can be configured on a substantially flat surface without providing a protrusion on the stage 2 that increases the thickness of the device.
  • a flat structure without protrusions on the stage can be realized, and the apparatus can be made compact.
  • the present invention is not limited to this, and a gentle depression for placing the authentication target may be provided in a part of the stage 2, or a fine LED may be provided on the stage as an auxiliary light source, Braille or the like indicating a position for placing the image may be provided.
  • the personal authentication device of the present invention can be applied to various devices that require an authentication function (such as an automatic teller machine, an automatic transaction device, an automatic teller machine, etc.), and as a part of an entrance / exit management system, It can also be arranged perpendicular to the wall. Further, it may be attached to or incorporated in a personal computer, various portable information terminal devices (including multi-function mobile phone devices, PDA (Personal Digital Assistant), tablet terminals, etc.), automobiles, and the like.
  • an authentication function such as an automatic teller machine, an automatic transaction device, an automatic teller machine, etc.
  • PDA Personal Digital Assistant
  • the quantity and arrangement of the light source 5, the lighting HOE 31 and the imaging HOE 32 can be arbitrarily set.
  • the illumination HOE 31 can appropriately set the angle and azimuth of the illumination light 52 by utilizing the optical characteristics (angle selectivity, diffraction efficiency, wavelength selectivity, etc.) of the hologram.
  • the imaging HOE 32 can appropriately set the angle and orientation for receiving the biological information light 53 from the authentication target and the angle and orientation of the focused light 55 to the imaging means 4.
  • the imaging HOE 32 is configured so that light (for example, reference numerals 53R and 53L in FIG. 2) from at least two directions of the biological information light is condensed in different regions of the imaging means 4, the authentication object is observed.
  • a plurality of images having different directions can be acquired.
  • a so-called stereo image having parallax can also be acquired.
  • the dimension in the X-axis direction is called the length
  • the dimension in the Y-axis direction is called the width
  • the dimension in the Z-axis direction is called the thickness.
  • a line perpendicular to a plane defined by length (X) ⁇ width (Y) is referred to as a normal line N.
  • the + Z direction is referred to as the front side
  • the -Z direction is referred to as the back side.
  • the + Y direction is referred to as the right side
  • the -Y direction direction as the left side
  • the -X direction as the upper side
  • the + X direction as the lower side.
  • the angle of light refers to an angle formed by the light traveling direction and the normal N (Z axis) unless otherwise specified.
  • the azimuth refers to an angle formed with the X axis when projected onto the XY plane.
  • the authentication target only needs to be arranged in a predetermined space (hereinafter also referred to as “authenticable space”) illuminated by the illumination HOE 31 on the front side of the stage 2, and even if the authentication target is in contact with the stage, the stage It may be separated from the contactless state.
  • authenticable space a predetermined space illuminated by the illumination HOE 31 on the front side of the stage 2, and even if the authentication target is in contact with the stage, the stage It may be separated from the contactless state.
  • the ability to authenticate without touching the stage means that the finger or hand does not touch the stage directly, so there is little psychological resistance and hygiene for the user who seeks authentication.
  • a relatively wide authenticable space can be realized on the front side of the stage by appropriately setting the quantity and arrangement of the light sources and the HOE and the diffraction of the light by the HOE. For this reason, not only a finger but a comparatively large thing, such as a palm, can also be made into an authentication object.
  • the stage can also be configured to have a curved surface.
  • the appearance including the stage may be freely designed.
  • the personal authentication device of the present invention has a hermetically sealed casing (not shown) integrated with members constituting the stage so as to block outside air, moisture, ultraviolet rays, moisture, chemicals, and the like.
  • FIG. 1 is a schematic configuration diagram of a personal authentication device according to the present embodiment.
  • 2 and 3 are a cross-sectional view of the personal authentication device shown in FIG. 1 viewed from the X-axis direction and a cross-sectional view viewed from the Y-axis direction, respectively.
  • the personal authentication device includes a stage 2, a hologram sheet 3, and an electronic substrate unit 8 in order from the front side on which an authentication target is arranged.
  • the stage 2 and the hologram sheet 3 may be in close contact with each other or may be provided at an appropriate interval.
  • the stage 2 and the hologram sheet 3 are configured integrally, they may be collectively referred to as a hologram plate 30.
  • the hologram sheet 3 and the electronic substrate 8 are shown separated from each other, but in an actual apparatus, the interval may be set to approximately 10 mm or less. As shown, the thickness is reduced.
  • Stage 2 is a member that covers at least part of the surface of the housing, and is preferably made of glass or resin.
  • the stage 2 may be provided with illumination windows 21L and 21R for irradiating illumination light, and an imaging window 22 for allowing light (biological information light) from an authentication target to pass at the time of authentication. It is preferable that a portion other than each window of the stage 2 is provided with a light shielding layer 24 that blocks outside light.
  • the above is an example, and the present invention is not limited to this. It is sufficient that at least part or all of the stage 2 has translucency at the wavelengths of illumination light and biological information light (for example, 830 to 890 nm).
  • each window transmits light from the left and right illumination windows 21L and 21R and one imaging window, but the number and arrangement of each window (translucent region) depends on the form of the apparatus. Can be set as appropriate. Further, instead of each window and the light shielding layer 24, a light shielding mask may be formed on the hologram sheet.
  • the finger 10 is disposed on the front side of the stage 2 so as to face the imaging window 22.
  • the hologram sheet 3 is a film-like sheet containing a photosensitive material for hologram recording, and a transmissive illumination HOE 31 and an imaging HOE 32 are formed in areas corresponding to the illumination window 21 and the imaging window 22, respectively. Is done.
  • Each HOE is a hologram having predetermined optical characteristics (angle selectivity, diffraction efficiency, wavelength selectivity, etc.), and has a function of emitting light at a set angle and direction. It is preferable to form a light-shielding mask that does not transmit external light except in the region where the illumination HOE 31 and the imaging HOE 32 are formed.
  • external light may include light close to the near-infrared wavelength used for imaging, and this light may become noise and reduce the authentication rate.
  • the imaging HOE 32 has a filtering function that blocks components other than the predetermined wavelength.
  • the apparatus can be manufactured at a lower cost compared to the case where the narrow band filter is provided in the imaging means.
  • the hologram sheet 3 may be attached to the back surface of the stage 2 or the like.
  • each HOE having a predetermined size may be individually produced and arranged at an appropriate position, or each HOE may be produced by applying a photosensitive material on the back surface of the stage 2 and recording a hologram. .
  • the imaging means 4 and the light source 5 are arranged at positions corresponding to the illumination HOE 31 and the imaging HOE 32.
  • FIGS. 1 to 3 show examples in which the lighting HOEs 31L and 31R and the light sources 5L and 5R are arranged on the left and right, and the imaging HOE 32 and the imaging unit 4 are arranged in the center, the present invention is not limited to this.
  • the quantity and arrangement of each component can be appropriately set according to the form of the apparatus.
  • the imaging means 4 is a sensor that converts incident light into an electrical signal, acquires biological information light, and captures an image of the biological information 12 in the authentication target 10.
  • the imaging means 4 has an imaging surface 40 having a predetermined size.
  • a CMOS (Complementary Metal-Oxide Semiconductor) sensor, a CCD (CCD: Charge Coupled Device) sensor, or the like can be used.
  • the imaging surface 40 receives light (for example, 53R) generated in a first direction and light (for example, 53L) generated in a second direction different from the first direction among the biological information light. , It may be divided into two regions (40L, 40R). However, in order to receive light in the first direction and light in the second direction, two imaging means may be arranged.
  • a collimating HOE 42 for converting incident light into parallel light may be provided on the front side of the imaging surface. As a result, it is not necessary to provide an optical lens for collimation, so that the structure of the apparatus is simplified and the thickness can
  • the light source 5 supplies illumination for capturing an image of biometric information on the authentication target.
  • an LED Light Emitting Diode
  • a laser or the like can be used.
  • the light source should be capable of irradiating light having a wavelength in the near-infrared region (700 to 2500 nm, particularly preferably 830 to 890 nm) having a high absorption rate for the hemoglobin component in blood. preferable.
  • the vein portion absorbs light more than the surrounding tissue, so the finger vein is imaged as a dark shadow pattern.
  • the personal authentication device includes a power source that supplies power to various components, a control unit (including an image processing unit, an authentication processing unit, and the like) that controls the various components, a storage unit that stores captured images, and a display unit (For example, a liquid crystal display), an input unit (for example, a keyboard), an interface for connecting to an external device (storage system), etc., and an audio input / output unit (speaker, microphone, etc.) may be provided (not shown).
  • a control unit including an image processing unit, an authentication processing unit, and the like
  • a storage unit that stores captured images
  • a display unit for example, a liquid crystal display
  • an input unit for example, a keyboard
  • an interface for connecting to an external device storage system
  • an audio input / output unit sound input / output unit
  • the operation of the personal authentication device of this embodiment will be described with reference to FIG. 2 (and FIG. 3).
  • the light beam 51L emitted from the light source (left) 5L enters the illumination HOE (left) 31L.
  • the illumination HOE (left) 31L changes the traveling direction of the incident light beam 51L by the diffraction action of the hologram, and irradiates the authentication target as illumination light with the irradiation angle ⁇ 1 at the irradiation angle ⁇ 1 .
  • the light beam 52L may be parallel light, or may be diffused or focused light (hereinafter, the light beam is simply referred to as light for simplicity).
  • the irradiation angle ⁇ 1 of the illumination light is an angle formed by the normal line N of the stage 2 and the direction of light, and is set when the HOE is manufactured.
  • the illumination HOE 31 is shown as diffracting and transmitting the light from the light source 5 at the irradiation angle ⁇ 1 , but the light emitted from the illumination HOE 31 is actually the refractive index of the stage 2. Is further refracted on the surface of the stage 2.
  • the illumination HOE 31 may be set so as to obtain a desired irradiation angle ⁇ 1 for the authentication target including the refraction angle on the surface of the stage 2.
  • the illumination HOE 31 emits light at the irradiation angle ⁇ 1 unless otherwise specified.
  • the irradiation angle ⁇ 1 includes an angle of refraction at the stage surface or the like.
  • the irradiation angle ⁇ 1 is preferably 45 ° or more, more preferably 60 ° or more, and most preferably 75 ° by the previous experiment. If the irradiation angle ⁇ 1 is up to about 75 °, even if the light from the illumination HOE 31 is parallel light, not only the vicinity of the stage of the authentication target 10 but also the side surface can be irradiated to some extent. This is preferable.
  • the lighting HOE 31 irradiates light in the YZ plane, but the light from the light source 5 may be deflected in a direction (different orientation) different from the YZ plane.
  • a near-infrared LED (890 nm) is used as a virtual point light source, the near-infrared LED is placed 70 mm away from the side of the finger to be authenticated, and the CCD camera is placed on the lower surface of the finger.
  • the relationship between the irradiation angle ⁇ 1 and the authentication rate was examined. Specifically, the irradiation angle ⁇ 1 was changed every 15 ° from 30 ° to 90 °, and 10 images of four fingers of five subjects were captured, for a total of 200 images. The captured image was compared with the registered image of the subject registered in advance, and the authentication rate was measured. The authentication rate is obtained by subtracting the average error rate obtained from the acceptance rate of others and the rejection rate of identity from 100%.
  • the irradiation angle ⁇ is preferably 45 ° or more, more preferably 60 ° or more, and most preferably 75 °.
  • a large irradiation angle for example, , 60 ° or more
  • a relatively large irradiation angle can be set as appropriate by the action of the HOE.
  • the personal authentication device is less likely to image the reflected light directly reflected by the surface of the finger skin, so that the vein pattern can be imaged clearly. it can.
  • the illumination light 52L irradiates, for example, the left side surface of the authentication target from the left diagonal back side, and the light reaches various tissues inside the finger and is scattered.
  • the imaging HOE (left) 32L diffracts and transmits light (for example, biological information light 53R) incident from the first direction among the light scattered inside the finger, and the imaging surface (right) of the imaging unit 4 Condensate to 40R.
  • the imaging HOE (right) 32R diffracts and transmits light (for example, biological information light 53L) incident from the second direction among the light scattered inside the finger, and the imaging surface (left) of the imaging unit 4 Concentrate to 40L.
  • the situation where the light beam 51R emitted from the light source (right) 5R reaches the imaging means 4 is the same.
  • the imaging unit 4 can acquire the image of the biometric information to be authenticated viewed from two different directions.
  • the first direction is a direction from the upper right to the lower left and the second direction is from the upper left to the lower right, but this is merely an example. is there.
  • Two or more different directions may be defined as appropriate, whereby two or more images viewed from different directions can be acquired.
  • a stereo image having left and right parallaxes is simultaneously imaged on the imaging surface divided into left and right, but the present invention is not limited to this.
  • Control means (not shown) may appropriately control the irradiation timing and imaging timing of the left and right light sources 5 to separately acquire the left and right stereos.
  • the illumination light 52 irradiated through the illumination HOE 31 and the biological information light 53 received by the imaging HOE 32 are set in parallel to the YZ plane. It is not limited to.
  • the illumination light 52 and the biological information light 53 may be set with a predetermined azimuth around the Z axis according to the usage mode of the apparatus.
  • the authentication process performed by the personal authentication apparatus will be briefly described below.
  • the user registers, for example, his / her finger vein pattern in advance according to a predetermined procedure.
  • the personal authentication device may store the registered image in a built-in or connected external storage means (including a database).
  • the registered image preferably includes at least two images of the finger vein pattern viewed from different directions.
  • the device used for registration may be a device different from the personal authentication device used for authentication.
  • a user who requests authentication places his / her finger in a predetermined area of the apparatus (for example, the imaging window 22).
  • the finger to be authenticated may be disposed so as to come into contact with the stage, or may be disposed in a state of being lifted from the stage.
  • the personal authentication device activates the light source and applies illumination light to the finger. This illumination light is scattered in various directions inside the finger.
  • the imaging means receives the biological information light that has arrived from a predetermined direction and images a finger vein pattern.
  • the personal authentication device may store the acquired image in the storage means.
  • the authentication processing means compares the registered image with the captured image, calculates the correlation and similarity between the images, and determines the success or failure of the authentication (if it has a certain similarity, it is the person himself / herself) Check).
  • the authentication process is not particularly limited. For example, a method using template matching, Log-Polar conversion (see JP 2007-233981 A), DP matching (see JP 2011-253365 A), etc.
  • a technique using template matching see JP 2007-233981 A
  • DP matching see JP 2011-253365 A
  • the stage on which the authentication target is arranged is generally flat, and a thin personal authentication device can be realized.
  • the lighting HOE it is possible to irradiate the illumination light onto the side surface to be authenticated at a relatively large irradiation angle, and to improve the authentication rate.
  • the imaging HOE it is possible to collect biological information light from an authentication target that arrives at least from two different directions on the imaging unit, so that an image having parallax can be acquired. Thereby, an authentication rate can be improved compared with the case where the image seen from one direction is used, and a three-dimensional image can also be comprised as needed.
  • the quantity and arrangement of each component such as the light source and the imaging means can be appropriately set according to the form of the apparatus.
  • the quantity and arrangement of the lighting HOE and the imaging HOE can be appropriately set according to the form of the apparatus.
  • FIG. 4 is a modified example of the arrangement of the light source and the imaging means of the personal authentication device of this embodiment.
  • FIG. 4A shows an example in which the light sources 5 are arranged in 4 ⁇ 2 rows, and the imaging unit 4 is arranged to be shifted in the + X direction from the center of the imaging HOE 32.
  • the imaging HOE 32 collects the biological information light from the authentication target on the imaging unit 4.
  • the imaging means 4 is arranged on the back side of the light shielding mask, the noise of external light incident from the front side of the stage 2 is reduced, the signal-to-noise ratio is improved, and a clear image of biological information can be acquired. it can.
  • FIG. 4B shows an example in which two image pickup means 4 are used and one of them is shifted from the center of the imaging HOE 32 in the + X direction and the other is shifted in the -X direction.
  • the biological information light incident on the + X half of the imaging HOE 32 is condensed on the imaging means 4 arranged so as to be shifted to the + X side, and is incident on the ⁇ X half of the imaging HOE 32.
  • the imaging HOE 32 may be configured so that the information light is condensed on the imaging means 4 that is arranged shifted to the ⁇ X side. With this configuration, for example, even if a problem occurs in one imaging unit, an image can be captured by the other imaging unit, so that the personal authentication device can be made redundant.
  • FIG. 5 shows a specific example of an optical path by each holographic optical element in one aspect of the personal authentication device shown in FIG. 4 (A).
  • FIG. 5A is a front view of the personal authentication device.
  • An imaging HOE 32 is disposed approximately at the center of the hologram plate 30 in the Y-axis direction, and illumination HOEs 31L and 31R are disposed on the left and right sides thereof.
  • the imaging HOE 32 has different diffraction characteristics between the left region 32L and the right region 32R from the approximate center in the Y-axis direction, and the illumination HOEs 31L and 31R also have different diffraction properties on the left and right.
  • each diffraction laterality is line-symmetric with respect to the Y-axis center.
  • FIGS. 5B and 5C are a left side view and a top view, respectively, of the personal authentication device, showing the optical path of the light supplied from the light source 5.
  • the lighting HOE (left) 31L diffracts the light from the light source (left) 5L and irradiates the left side surface of the authentication target with the illumination light 52L.
  • the lighting HOE (right) 31R diffracts the light from the light source (right) 5R and irradiates the right side surface of the authentication target with the illumination light 52R.
  • FIGS. 5D and 5E are a bottom view and a central cross section of the personal authentication device as viewed from the right, respectively, and show an optical path of light condensed on the imaging means.
  • the imaging HOE (left) 31L diffracts the biological information light 53R that arrives obliquely from the right and concentrates it on the imaging surface (left) 40L of the imaging means 4.
  • the light 54R is deflected.
  • the imaging HOE (right) 31R diffracts the biological information light 53L that arrives obliquely from the left, and deflects it into parallel light 54L that is collected on the imaging surface (right) 40R of the imaging means 4.
  • optical path is merely an example, and various changes can be made according to the arrangement and size of various components or the use mode of the apparatus.
  • FIG. 6 is a modification of the personal authentication device of this embodiment.
  • the example shown in FIG. 6A is a cross-sectional top view of a personal authentication device in which the light source 5 is provided at the end of the stage 2, and the arrangement of the light sources is different from that of the personal authentication device shown in FIG.
  • the illumination HOE 31 has a reflection hologram recorded thereon, and is placed in close contact with the back surface of the transparent stage 2 that functions as a light guide.
  • Light from the light source (left) 5L arranged at the edge portion of the light guide is incident on the lighting HOE (left) 31L through the light guide, and has a predetermined irradiation angle ⁇ 1 as light 52L to be authenticated. Irradiates the left side.
  • the light 52L may be parallel light, or may be light that is diffused or focused.
  • Light from the light source (right) 5R propagates in the same manner.
  • FIG. 6B is a cross-sectional side view of a personal authentication device in which a plurality of imaging means and imaging HOEs are arranged.
  • a plurality of imaging means and imaging HOEs are arranged in an array in the X-axis direction.
  • a plurality of light sources may be provided as appropriate so as to correspond. If the HOE is manufactured, it can be easily mass-produced by duplicating the master. Therefore, an apparatus in which the imaging HOEs are arranged in an array can be realized at a relatively low cost.
  • the personal authentication device of this example it is possible to secure a wider authenticable space than the example shown in FIG. This example is suitable for, for example, a wall-mounted authentication device used for entrance / exit management and the like.
  • the personal authentication device may include a sensor that detects the height, eyes, shoulder height, and the like of the user.
  • the personal authentication device predicts a position where an authentication target (palm or the like) is placed, and activates a light source and an imaging unit corresponding to the predicted position.
  • you may show the position where a user should put a hand by lighting a guide light.
  • a guidance HOE may be formed on the hologram sheet, and a three-dimensional guide mark (a frame indicating a hand position, an arrow, etc.) may be projected onto the stage or space by the guidance HOE during authentication.
  • the user can place his / her hand or the like in the authenticable space of the apparatus at an optimal position without taking an unreasonable posture or twisting the wrist according to his / her physique.
  • the apparatus of this example has a flat stage and can secure a relatively wide authenticable space, it can be used for animals (for example, dogs, cats, etc.) that are difficult to fully understand human instructions. It can also be applied to individual authentication.
  • FIG. 7 is an example of another embodiment of the personal authentication device of the present invention.
  • the light guide 6 and the holographic optical element 33 for light guide are used, and the biological information light 53 from the authentication target 10 is propagated through the light guide 6 by the light guide holographic optical element 33.
  • the imaging unit 4 is disposed at a position away from the central axis C of the light guide HOE 33, and FIG. 7 shows an optical path until the biological information light 53 is incident on the imaging unit 4. It is shown.
  • the light guide 6 is a flat plate made of glass or resin, and reflects light having an angle larger than a predetermined threshold angle ⁇ th on its surface.
  • a predetermined threshold angle ⁇ th When light travels from a medium with a large refractive index to a medium with a small refractive index, light with an incident angle larger than the critical angle is totally reflected at the boundary surface.
  • the glass surface itself can be used, and the critical angle of the glass determined by the ratio of the refractive index in the glass and the refractive index of the air outside the glass becomes the threshold angle.
  • the stage 2 of the personal authentication device is a medium having a higher refractive index than glass or air, it can be used as a light guide having a critical angle as a threshold angle. Also in FIG. 7, the stage is used as a light guide. However, separately from the stage 2, a light guide 6 made of glass or resin may be provided. Further, the separately provided are the light guide and the stage 2 or stage 2 is used as a light guide, on the surface of HOE33 facing light guide, for reflecting light incident at an angle greater than a predetermined threshold angle theta th It is preferable to provide a reflective film having angle selectivity.
  • the light guide between the light guiding HOE 33 and the reflective film having angle selectivity does not need to be a medium having a high refractive index, and the light guiding HOE 33 and the reflective film having angle selectivity are separated from each other. And the space between them may be guided (in this case, the light guide is air).
  • the light guiding HOE 33 is a reflection-type holographic optical element in FIG. 7, and reflects the biological information light 53 from the authentication target 10 at a reflection angle ⁇ 2 larger than a predetermined threshold angle ⁇ th to generate the biological information light 54. Is repeatedly reflected inside the light guide 6 and propagates in the direction of the imaging means 4 disposed at a position away from the central axis C of the light guide HOE 33.
  • the biological information light 54 is imaged on the imaging unit 4 by an imaging HOE 32 (formed on the hologram sheet 3 so as to face the imaging unit 4 in FIG. 7) formed in the vicinity of the imaging unit 4.
  • the biological information light is propagated by the light guide HOE 33 and the light guide 6, so that the arrangement of the imaging means 4 can be designed relatively freely, especially when there is room in space.
  • the biological information light may be imaged on the imaging means 4 by other means.
  • the imaging HOE 32 is not an essential configuration in the present embodiment.
  • the personal authentication device of FIG. 7 has the contact detection means 9, and the contact detection means 9 may detect that the authentication target has touched a predetermined position. For example, when the contact detection unit 9 detects that the authentication target is in contact with the stage 2 in the authenticable space, the contact detection unit 9 sends a signal to a control device (not shown), emits light from the light source 5, and captures biological information by the imaging unit. You may make it operate.
  • a control device not shown
  • the stage 2 is used as the light guide 6 and the hologram sheet 3 is disposed on the back side of the stage. However, when the light guide 6 is disposed on the back side of the hologram sheet 3, the light guide HOE 33 is transmitted.
  • a holographic optical element of a type may be used.
  • the personal authentication device of the present embodiment is preferably applied to a portable information terminal, particularly a multi-function mobile phone (smart phone, iPhone (registered trademark)).
  • the imaging unit 4 is configured to receive parallel biological information light and acquire an image of one piece of biological information, but is not limited thereto. In the personal authentication device shown in FIG.
  • the light guiding HOE 33 propagates the light generated in the first direction and the light generated in the second direction of the biological information light in the direction of the imaging means 4, and the imaging HOE 32 is
  • the biological information light in the first and second directions is condensed on the imaging means 4, and the imaging means 4 acquires two images of biological information based on the biological information in the first and second directions. It may be configured. That is, the personal authentication device 2 shown in FIG. 7 can also acquire a stereo image having parallax observed from different directions, similarly to the personal authentication device shown in FIG.
  • FIG. 8 shows an example of still another embodiment of the personal authentication device of the present invention.
  • the imaging unit 4 includes a variable focus mechanism, and the position of the front focal plane 45 on the object side can be changed in the Z-axis direction by the variable focus mechanism.
  • a personal authentication device that can acquire the second biological information using the second biological information and the light of the second wavelength will be described.
  • the first biological information and the second biological information are preferably different biological information (for example, vein and fingerprint, glow and retina, etc.), but the same biological information is duplicated with light of different wavelengths. May be obtained to improve accuracy.
  • FIG. 1 for example, vein and fingerprint, glow and retina, etc.
  • infrared LEDs 5L and 5R are employed as the first light sources, infrared rays are irradiated from the infrared LEDs 5L and 5R, information on veins inside the finger is acquired, and the surface light source 50 is used as the second light source.
  • separate light sources are used in FIG. 8, when light of a plurality of wavelengths is emitted from one light source, both the first biological information and the second biological information are acquired with one light source. Is also possible.
  • the image intensity may be detected by filtering the signal intensity of a predetermined wavelength. For example, if an imaging means provided with RGB color filters is used, biometric information of fingerprints is obtained using information from GB pixels, and biometric information of veins is obtained using R pixels sensitive to infrared. can do.
  • FIG. 8A is a diagram for explaining a situation in which biological information related to veins is acquired by the infrared LEDs 5L and 5R, and is basically the same operation as FIG. 2 already described. That is, as described above, the infrared lights 51L and 51R emitted from the infrared LEDs 5L and 5R that are the light sources are inclined at a predetermined angle by the irradiation HOEs 31L and 31R, and the illumination lights 52L and 52R are emitted to the authentication target 10. Irradiated.
  • the biological information light 53 generated from the authentication target 10 enters the imaging HOE 32 and forms an image on the imaging unit 4 by the imaging HOE 32.
  • the imaging unit 4 is adjusted with a built-in variable focus mechanism so that a front focal plane (object plane) 45 is arranged inside the finger.
  • FIG. 8B is a diagram for explaining a situation in which the biometric information related to the fingerprint is obtained by the surface light source 50. Since the hologram sheet 3 diffracts infrared light and does not diffract visible light so much, the visible light irradiated from the surface light source 50 is not diffracted by the irradiation HOE and imaging HOE of the hologram sheet 3, and is subject to authentication 10 Illuminate as is. The visible light reflected from the surface of the authentication target 10 is not affected by the hologram sheet 3, and an image is obtained by the imaging unit 4.
  • a built-in variable focus mechanism is adjusted so that a front focal plane (object plane) 45 is arranged on the surface of the finger. Furthermore, if the position of the front focal plane 45 is changed as appropriate, it is possible to image the belly and the inside of the finger that is the authentication target 10. The fingerprint engraved on the surface of the finger can be acquired.
  • the imaging means 4 includes the variable focus mechanism, so that different biological information can be detected.
  • the wavelength selectivity of the hologram due to the wavelength selectivity of the hologram, light of different wavelengths generates different biological information light through different optical paths.
  • the personal authentication device of the present embodiment can continuously acquire two types of images of veins and fingerprints by changing the wavelength of light supplied from the light source and the position of the front focal plane 45. It is possible to perform more accurate authentication.
  • a part of the stage 2 that is, the position where the authentication target is to be placed (here, the position of the light guiding HOE 33). It is also preferable to radiate visible light to guide and display the arrangement of the authentication target. Thus, the user can easily know the position where the finger should be placed without providing a physical mark or the like on the stage 2. Note that it is preferable to use a display device as means for displaying visible light because the position to be arranged can be specified more clearly.
  • FIG. 9 shows an example in which the personal authentication device is applied to the multi-function mobile phone 100.
  • the multi-function mobile phone 100 has a display screen 102, a camera 104, and operation buttons 110, and the display screen is a touch panel system.
  • a glass substrate covering the surface including the region of the display screen 102 and the camera 104 is used as the stage 2 and the light guide 6.
  • An illumination HOE 31, a light guide HOE 33, and an imaging HOE 32 are disposed on the back surface of the glass substrate (stage), and the imaging HOE 32 preferably has substantially the same refractive index as the light guide 6.
  • a hologram sheet on which an illumination HOE 31, a light guide HOE 33, and an imaging HOE 32 are formed may be attached to the back side of the glass substrate (stage).
  • the arrangement and quantity of each HOE can be appropriately set according to the configuration of the multi-function mobile phone.
  • a camera 104 mounted on a multi-function mobile phone can be used.
  • the camera 104 normally has a variable focus mechanism for changing the focus, and as described with reference to FIG. 8, the front focal plane (object plane) 45 can be changed, and a plurality of pieces of biological information can be acquired. This is preferable.
  • the personal authentication device no longer requires a protrusion on the surface, so a mark for placing the authentication target is required. This can be solved by displaying this on the display screen 102.
  • the biological information light generated from the authentication target when the light from the light source is irradiated on the authentication target (not shown) by the lighting HOE 31 is guided from the central axis C of FIG. 9 by the light guiding HOE 33. It propagates to the camera 104 provided at the far right upper position. Thereafter, the biological information light propagating through the light guide 6 is imaged on the imaging means 104 by the imaging HOE 32 provided facing the camera 104 as the imaging means. And the control apparatus which is not shown in figure compares the imaged biometric information with what is registered, and authenticates a user.
  • the HOE used in the personal authentication device of the present embodiment is reproduced using a near-infrared LED light source in order to image a vein. Therefore, it is preferably produced (recorded) using a laser having a near-infrared wavelength similar to that used during reproduction.
  • a laser having a near-infrared wavelength similar to that used during reproduction is preferably produced (recorded) using a laser having a near-infrared wavelength similar to that used during reproduction.
  • there are few near-infrared laser devices suitable for producing HOE there are few near-infrared laser devices suitable for producing HOE, and there is no photosensitive material suitable for such near-infrared lasers.
  • a general and inexpensive photosensitive material (hereinafter referred to as “green-based photosensitive material”), which is a material that can be photosensitive by a green laser, is used for near infrared illumination HOE and imaging.
  • the HOE was prepared (recorded).
  • the green light-sensitive material preferably contains a titanocene compound as a photopolymerization initiator or a combination of a benzophenone compound and a sensitizing dye.
  • the method for producing HOE at a wavelength different from the wavelength at the time of reproduction is described in, for example, “Toshihiro Kubota,“ Introduction to New Version Holography—Principle and Practice ””, Asakura Shoten, November 1995, pp. 26-31. Has been.
  • FIG. 10 is an explanatory view showing an apparatus and a method for producing a holographic optical element.
  • a laser light source 70 is disposed.
  • the green laser light 60 irradiated from the laser light source 70 is separated via the beam splitter 65.
  • One of the separated laser beams 61 (recording reference beam) passes through the aperture 66, is focused by the focusing lens 67, and is applied to the photosensitive material 31.
  • the focus P r of time can be regarded as a point light source of the recording-specific reference light 61.
  • the distance from the focal point P r to the reference point O is R r .
  • the other separated laser beam 62 (recording object beam) passes through the aperture 68, is reflected by the mirror 69, and is irradiated onto the recording target portion 31 of the photosensitive material.
  • reproduction beam 52 is generated by diffraction. Since the wavelength of the recording reference light and the wavelength of the reproduction reference light are different, the reproduction light 52 differs from the object light 62 in that the central axis L has an angle ⁇ i with respect to the optical axis N.
  • a reproduction image point P i (the position of the virtual image of the hologram) is generated at infinity on the central axis of the reproduction light 52.
  • the reproduction reference light 51 and the reproduction light 52 correspond to the light 51 from the light source 5 and the illumination light 52 to the authentication target, respectively, in the personal authentication device of the present invention.
  • the distance from Formula 1 and Formula 3, from the reference point O to the light source P r point of the recording reference beam R r is as follows.
  • the recording reference light is irradiated by a point light source separated by 16.73 mm from the HOE. That's fine.
  • the mirror may be arranged so that the illumination angle of the recording object light is 35.3 °.
  • a hologram sheet 3 that can be used in the personal authentication device of the present invention was produced using the HOE production device shown in FIG. First, a holographic recording medium in which a green photosensitive material was applied on a film substrate was attached to a glass substrate serving as the stage 2 of the personal authentication device. At the time of hologram recording of the lighting HOE 31, a laser beam of 532 nm is used, an object beam having an angle of ⁇ 35.3 ° with respect to the optical axis, and a point light source disposed at a position away from the reference point by 16.73 mm. The green light-sensitive material was exposed to the reference light.
  • Such a hologram may generate reproduction light having an angle of 75 ° with respect to the normal N when irradiated with 890 nm laser light from a point light source disposed at a position 10 mm away from the reference point during reproduction.
  • the illumination HOE 31 capable of emitting light from the light source at an irradiation angle of 75 ° in an apparatus having a thickness of 10 mm was realized.
  • the object light and the reference light are set at a desired angle, the green photosensitive material is exposed, and during reproduction, from the vein Receiving 890 nm biological information light incident at a desired angle to generate reproduction light.
  • the reproduction light is 10 mm away from the stage in the Z direction and is located at a position 70 mm away from the central axis of the imaging HOE 32 in the X direction.
  • a hologram capable of forming a vein image was produced.
  • the imaging HOE 32 capable of concentrating the biological information light from the authentication target on the imaging means can be realized.
  • a personal authentication device was produced, which was formed into a thin rectangular parallelepiped shape and confirmed the identity based on the finger vein pattern placed on the substantially central part of the stage.
  • the personal authentication device according to the present embodiment has a length (dimension in the X-axis direction) of 50 mm, a width (dimension in the Y-axis direction) of 50 mm, and a thickness (dimension in the Z-axis direction) of about 10 mm. (See FIG. 1 or FIG. 2).
  • Stage 2 was made of glass.
  • the side surface and back surface of the apparatus are similarly made of glass, and the entire apparatus has a sealed structure.
  • the imaging HOE 32 is an array of 8 mm square HOEs arranged in 4 ⁇ 2 rows, and the center thereof is attached to the back surface of the stage in accordance with the central axis C of the imaging means 4.
  • the lighting HOEs 31 ⁇ / b> L and R are formed by arranging 4 mm ⁇ 8 mm square HOEs in 4 ⁇ 1 rows and arranged on the back surface of the stage in accordance with the position of the light source 5.
  • the illumination angle ⁇ 1 of the illumination light is 75 °.
  • a personal authentication device with a thin structure (for example, a thickness of 10 mm or less) and a simple structure.
  • the stage on which the authentication object is arranged can be configured to be generally flat.
  • the lighting HOE it is possible to irradiate the illumination light on the side surface to be authenticated at a relatively large irradiation angle, and to clearly capture the pattern of biological information, thereby improving the authentication rate. Can do.
  • the imaging HOE the biological information light from the authentication target reaching at least two different directions can be condensed on the imaging means, so that a stereo image having parallax can be acquired. Thereby, an authentication rate can be improved compared with the case where the image seen from one direction is used, and a three-dimensional image can also be comprised as needed.
  • the user can place the authentication target at a desired position in a contact or non-contact state at the time of authentication.
  • Imaging means 5 Light source 6 Light guide 8 Electronic board part 10 Authentication object 12 Biological information 30 Irradiation angle 31 Illumination holographic optical element 32 Imaging holographic optical element 33 Light guiding holographic optical element 40 Imaging surface 51 Light from light source 52 Illumination light 53 Biological information light 55 Focused light

Abstract

[Problem] To provide a personal authentication device having a thin and simple structure using a holographic optical element. [Solution] A personal authentication device verifies identity on the basis of biometric information of an object to be authenticated, and is provided with: a light source; a stage on the front side of which the object to be authenticated is disposed; an image capturing means which captures an image of the biometric information of the object to be authenticated; a holographic optical element for lighting which is disposed on a part of the stage and irradiates the object to be authenticated with light from the light source; and a holographic optical element for image capturing which is disposed on another part of the stage and collects light from the object to authenticated into the image capturing means.

Description

個人認証装置Personal authentication device
 本発明は、生体情報に基づいて本人確認をする個人認証技術に関し、特に、ホログラフィック光学素子を利用した個人認証装置に関する。 The present invention relates to a personal authentication technique for verifying identity based on biometric information, and more particularly to a personal authentication device using a holographic optical element.
 指紋、静脈、虹彩、網膜、顔、手などの形状、パターン、各種の特徴など(以下、「生体情報」という)に基づいて、個人の認証を行う技術が注目されている。特に、静脈のパターンは、皮膚表面の状態の影響を受けにくく、模倣も困難であるので個人認証に利用する生体情報として有用である。静脈のパターンを利用した個人認証装置が提案されている(例えば、特許文献1参照)。特許文献1には、指に対して左右二方向から光を照射する光源と、指を透過した光を撮像する撮像部と、左右二方向からの光を照射させ、上記撮像部が上記タイミングに応じて複数回撮像するように制御する制御装置を備えた個人認証装置が記載されている。特許文献1に記載の装置によれば、透過光による指血管パターンの撮像をする際、ユーザにとって圧迫感がなく、外光に強い、コンパクトな認証装置を提供できるとされている。 The technology for authenticating individuals based on the shape, pattern, various features (hereinafter referred to as “biological information”) of fingerprints, veins, irises, retinas, faces, hands, etc. has attracted attention. In particular, the vein pattern is useful as biometric information used for personal authentication because it is not easily affected by the skin surface condition and is difficult to imitate. A personal authentication device using a vein pattern has been proposed (see, for example, Patent Document 1). In Patent Literature 1, a light source that emits light from two directions to the left and right, an imaging unit that images light transmitted through the finger, and light from two left and right directions are irradiated. Accordingly, a personal authentication device including a control device that performs control so as to capture images a plurality of times is described. According to the apparatus described in Patent Document 1, it is said that when a finger blood vessel pattern is imaged with transmitted light, a compact authentication apparatus that does not have a feeling of pressure for the user and is strong against external light can be provided.
特許第3770241号公報Japanese Patent No. 3770241
 特許文献1に記載された装置は、ガイド部に置かれた指に対してその左右側方から光を照射し、ガイド部の下方に配置された撮像部によって指の静脈のパターンを取得するように構成されている。このため、光源と撮像系との間に指を挟みこむようにして配置し、透過光によって指の静脈のパターンを撮像する透過光方式の装置よりもコンパクトである。 The apparatus described in Patent Document 1 irradiates light from the left and right sides of a finger placed on a guide unit, and acquires a finger vein pattern by an imaging unit disposed below the guide unit. It is configured. For this reason, it is more compact than a transmission light type device in which a finger is sandwiched between a light source and an imaging system and a finger vein pattern is imaged by transmitted light.
 しかしながら、特許文献1に記載の装置では、照明光を照射する光源部及び照明光の光路を制御するための遮光板が、指の配置される撮影開口部の面よりも上部に張り出すように構成されているので、薄くコンパクトで平坦な構造を実現することが難しい。また、光学機器の設計において、一般的には、被写体と撮影手段(CCDやCMOS)との間にある程度の光路(距離)が必要であるため、その分だけ容積が大きくなり、機器のサイズが大きくなる問題があった。 However, in the apparatus described in Patent Document 1, the light source unit that irradiates the illumination light and the light shielding plate for controlling the optical path of the illumination light so as to protrude above the surface of the imaging opening where the finger is placed. Since it is configured, it is difficult to realize a thin, compact and flat structure. In designing optical devices, generally, a certain amount of optical path (distance) is required between the subject and the photographing means (CCD or CMOS), so the volume increases accordingly, and the size of the device is reduced. There was a problem of getting bigger.
 そして、近年の多機能携帯電話(スマートフォン、iPhone(登録商標))などは、タッチパネル式の広い画面を有するおおむね平坦なデザインとなっている。このため、特許文献1に記載されたような突起部を有する認証装置は、これらの多機能携帯電話などに実装するには適当でない。さらに、凹凸を有する構造は、汚れが溜まりやすく、清掃手入れの点からも好ましくない。認証を求める利用者は、装置のガイド部に自己の指を接触させなければならないため、心理的な抵抗を感じることがあり、衛生上の観点からも好ましくない。 And, recent multifunctional mobile phones (smartphones, iPhone (registered trademark)) and the like have a generally flat design with a wide screen of a touch panel type. For this reason, an authentication device having a protrusion as described in Patent Document 1 is not suitable for mounting on these multifunctional mobile phones. Furthermore, the structure having irregularities tends to accumulate dirt, which is not preferable from the viewpoint of cleaning care. A user who seeks authentication must feel his / her finger in contact with the guide portion of the apparatus, and may feel psychological resistance, which is not preferable from the viewpoint of hygiene.
 また、特許文献1に記載の装置によれば、指の左右側方からタイミングをずらして光を照射して複数の画像を取得することができる。取得した複数の画像は、それぞれ光の当たり方によって鮮明に撮像される領域が異なったものとなるが、いずれも指の特定の範囲を撮像系の光学軸を中心にして一方向から捉えたものであり、視差を有するいわゆるステレオ画像ではない。また、認証時において、初回の登録時と指の置き方が異なっている場合(例えば、指のローリング(指の長手軸を中心とした回転)などによる)、正しく認証されない可能性もある。 In addition, according to the apparatus described in Patent Document 1, it is possible to acquire a plurality of images by irradiating light with shifting timing from the left and right sides of the finger. The acquired images differ in the areas that are clearly captured depending on how the light hits, but each captured a specific range of the finger from one direction around the optical axis of the imaging system It is not a so-called stereo image having parallax. Also, at the time of authentication, if the way of placing the finger is different from that at the first registration (for example, due to finger rolling (rotation around the longitudinal axis of the finger)), there is a possibility that authentication is not performed correctly.
 加えて、特許文献1に記載の装置では、光源、撮像部、ガイド部などの配置が制限されるため、それ以上の小型化、薄型化を実現するのが難しい。そして、照明範囲、撮像範囲が限られているので、かかる装置は、指よりも大きな認証対象(例えば、手のひらなど)についてそのまま適用することも難しい。 In addition, in the apparatus described in Patent Document 1, since the arrangement of the light source, the imaging unit, the guide unit, and the like is limited, it is difficult to realize further downsizing and thinning. And since the illumination range and the imaging range are limited, it is difficult to apply the apparatus as it is to an authentication target (for example, palm) larger than a finger.
 本発明は、前述した問題に鑑みてなされたものであって、かかる問題の少なくとも一部を解決することができる個人認証装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a personal authentication device that can solve at least a part of the problems.
 前述した課題を解決するため、本発明の個人認証装置は、認証対象における生体情報に基づいて本人確認をする個人認証装置であって、光源と、表側に前記認証対象が配置されるステージと、前記認証対象の生体情報を撮像する撮像手段と、前記ステージの一部に配置され、前記光源からの光を前記認証対象に照射する照明用ホログラフィック光学素子と、前記ステージの他の一部に配置され、前記認証対象からの光を前記撮像手段に集光させる撮像用ホログラフィック光学素子と、を備えることを特徴とする。 In order to solve the above-described problem, a personal authentication device of the present invention is a personal authentication device that performs identity verification based on biometric information in an authentication target, a light source, and a stage in which the authentication target is arranged on the front side, An imaging means for imaging the biological information of the authentication target, an illumination holographic optical element that is arranged on a part of the stage and irradiates the authentication target with light from the light source, and another part of the stage And an imaging holographic optical element arranged to collect light from the authentication target on the imaging means.
 上記個人認証装置において、前記撮像用ホログラフィック光学素子は、前記認証対象からの光のうち、第1の方向から入射する光を前記撮像手段における撮像面の一部に集光し、前記第1の方向とは異なる第2の方向から入射する光を前記撮像手段における撮像面の他の一部に集光することが好ましい。前記第1の方向から入射する光、及び前記第2の方向から入射する光に基づいて、前記生体情報の二枚の画像を作成し、前記二枚の画像を用いて前記生体情報の立体像を形成することが好ましい。また、前記撮像用ホログラフィック光学素子は、特定の波長以外の光を遮断する機能を有することが好ましい。 In the personal authentication apparatus, the imaging holographic optical element condenses light incident from a first direction out of light from the authentication target onto a part of an imaging surface of the imaging unit, and It is preferable that the light incident from the second direction different from the direction of is condensed on another part of the imaging surface of the imaging means. Two images of the biological information are created based on the light incident from the first direction and the light incident from the second direction, and the three-dimensional image of the biological information is created using the two images. Is preferably formed. The imaging holographic optical element preferably has a function of blocking light other than a specific wavelength.
 本発明の別の個人認証装置は、認証対象における生体情報に基づいて本人確認をする個人認証装置であって、光源と、前記認証対象を配置するステージと、導光体と、前記ステージの一部に配置され、前記光源からの光を前記認証対象に照射する照明用ホログラフィック光学素子と、前記ステージの他の一部に配置される導光用ホログラフィック光学素子と、前記導光用ホログラフィック光学素子の中心軸から離れた位置に配置され、前記認証対象の生体情報を撮像する撮像手段と、を備え、前記導光用ホログラフィック光学素子が、前記認証対象からの光を前記導光体の所定の閾値角度よりも大きな角度で反射させ、前記所定の閾値角度よりも大きな角度で反射した光を前記導光体の内部で反射させて前記撮像手段の方向へ伝搬することを特徴とする。 Another personal authentication device of the present invention is a personal authentication device that performs identity verification based on biometric information in an authentication target, and includes a light source, a stage on which the authentication target is disposed, a light guide, and one of the stages. A holographic optical element for illumination that is disposed in a portion and irradiates the authentication target with light from the light source, a holographic optical element for light guide disposed in another part of the stage, and the light guide holo An imaging means for imaging the biometric information of the authentication target, the holographic optical element for light guide guiding the light from the authentication target Reflecting at a larger angle than a predetermined threshold angle of the body, and reflecting the light reflected at an angle larger than the predetermined threshold angle inside the light guide to propagate in the direction of the imaging means And features.
 上記個人認証装置において、前記ステージを前記導光体として使用してもよい。また、前記導光体の前記撮像手段の近傍に撮像用ホログラフィック光学素子を備え、前記撮像用ホログラフィック光学素子が、前記導光体の内部で反射して伝搬した光を前記撮像手段に集光してもよい。 In the personal authentication device, the stage may be used as the light guide. An imaging holographic optical element is provided in the vicinity of the imaging means of the light guide, and the imaging holographic optical element collects light reflected and propagated inside the light guide to the imaging means. May shine.
 上記いずれかの個人認証装置において、前記認証対象の接触を検知する接触検知手段を備え、前記撮像手段は、前記接触検知手段が前記認証対象の接触を検知すると、前記認証対象の生体情報を撮像することが好ましい。また、前記光源は、第1及び第2の異なる波長の光を供給可能であり、前記撮像手段は可変焦点機構を有し、前記個人認証装置は、前記ステージに載置された認証対象に対し、第1の波長の光を前記照明用ホログラフィック光学素子を介して照射し、認証対象から生成された生体情報光を前記可変焦点機構を用いて前記撮像手段に結像させ、また、前記ステージに載置された認証対象に対し、第2の波長の光を前記照明用ホログラフィック光学素子を介さずに照射し、認証対象から生成された生体情報光を前記可変焦点機構を用いて前記撮像手段に結像させることが好ましい。 Any one of the personal authentication devices described above further comprises contact detection means for detecting contact of the authentication target, and the imaging means captures the biometric information of the authentication target when the contact detection means detects contact of the authentication target. It is preferable to do. The light source can supply light of first and second different wavelengths, the imaging means has a variable focus mechanism, and the personal authentication device is connected to an authentication target placed on the stage. Irradiating light of the first wavelength through the holographic optical element for illumination, and forming biological information light generated from an authentication object on the imaging means using the variable focus mechanism, and the stage The object to be authenticated placed on the authentication object is irradiated with light having a second wavelength without passing through the holographic optical element for illumination, and the biological information light generated from the object to be authenticated is captured using the variable focus mechanism. Preferably, the means is imaged.
 さらに、前記第1の波長の光は赤外光であり、前記認証対象から静脈に関する生体情報光を取得し、前記第2の波長の光は可視光であり、前記認証対象から静脈に関する生体情報光とは異なる生体情報光を取得することが好ましい。前記ステージの少なくとも一部に前記認証対象が載置されるべき位置を表示可能なことが好ましい。 Furthermore, the light of the first wavelength is infrared light, the biological information light related to the vein is acquired from the authentication target, the light of the second wavelength is visible light, and the biological information related to the vein from the authentication target It is preferable to acquire biological information light different from light. It is preferable that a position where the authentication target is to be placed can be displayed on at least a part of the stage.
 加えて、前記照明用ホログラフィック光学素子、前記撮像用ホログラフィック光学素子、前記導光用ホログラフィック光学素子の少なくとも一つは、前記ステージの裏側に配置されたホログラムシートにおいて形成されることが好ましい。前記光源は、前記ステージの端部から前記照明用ホログラフィック光学素子に光を照射してもよい。前記照明用ホログラフィック光学素子は、前記光源からの光を、前記ステージの法線に対して45°以上の角度で前記認証対象に照射することが好ましい。前記認証対象における生体情報は、指の静脈、指の指紋、手のひらの静脈、手の甲の静脈、目の網膜、又は目の虹彩であってもよい。 In addition, at least one of the illumination holographic optical element, the imaging holographic optical element, and the light guiding holographic optical element is preferably formed in a hologram sheet disposed on the back side of the stage. . The light source may irradiate the illumination holographic optical element from an end of the stage. The illumination holographic optical element preferably irradiates the authentication target with light from the light source at an angle of 45 ° or more with respect to the normal line of the stage. The biometric information in the authentication target may be a finger vein, a finger fingerprint, a palm vein, a back vein, a retina of the eye, or an iris of the eye.
 前記照明用ホログラフィック光学素子、前記撮像用ホログラフィック光学素子又は前記導光用ホログラフィック光学素子は、前記光源の光とは異なった波長を有する参照光及び物体光を照射して作製され、前記光源と同じ波長の光を照射すると所定の角度の光を生じることが好ましい。さらに、前記照明用ホログラフィック光学素子、前記撮像用ホログラフィック光学素子又は前記導光用ホログラフィック光学素子は、緑色レーザーによる参照光及び物体光を緑色系感光材料に照射して作製され、近赤外光を照射すると所定の角度の光を生じることが好ましい。 The illumination holographic optical element, the imaging holographic optical element or the light guiding holographic optical element is produced by irradiating a reference light and an object light having a wavelength different from the light of the light source, When light having the same wavelength as the light source is irradiated, it is preferable to generate light having a predetermined angle. Further, the illumination holographic optical element, the imaging holographic optical element or the light guiding holographic optical element is produced by irradiating a green photosensitive material with reference light and object light from a green laser. It is preferable to generate light at a predetermined angle when external light is irradiated.
 上記何れかの個人認証装置を含む携帯情報端末装置を構成してもよい。 A portable information terminal device including any of the above personal authentication devices may be configured.
 そして、本発明の携帯情報端末装置は、認証対象の生体情報に基づく個人認証機能を有する携帯情報端末装置であって、画面を構成し、表側に前記認証対象が配置される透明基板と、前記透明基板の裏側に配置される光源と、前記透明基板の裏側に配置される前記認証対象の生体情報を撮像する撮像手段と、前記透明基板の裏側に配置され、照明用ホログラフィック光学素子と、前記透明基板の裏側に配置される導光用ホログラフィック光学素子と、前記透明基板の裏側に配置される撮像用ホログラフィック光学素子と、を備え、前記照明用ホログラフィック光学素子が、前記光源からの光を前記認証対象に照射し、前記導光用ホログラフィック光学素子が、前記認証対象からの生体情報光を前記透明基板の所定の閾値角度よりも大きな角度で反射させ、前記所定の閾値角度よりも大きな角度で反射した光を前記透明基板の内部で反射させて撮像用ホログラフィック光学素子の方向へ伝搬させ、撮像用ホログラフィック光学素子が前記透明基板の内部を伝搬した光を前記撮像手段に集光することを特徴とする。 And the portable information terminal device of the present invention is a portable information terminal device having a personal authentication function based on biometric information to be authenticated, which constitutes a screen, the transparent substrate on which the authentication target is arranged, A light source arranged on the back side of the transparent substrate, an imaging means for imaging the biometric information to be authenticated arranged on the back side of the transparent substrate, a holographic optical element for illumination arranged on the back side of the transparent substrate, A light-guiding holographic optical element disposed on the back side of the transparent substrate, and an imaging holographic optical element disposed on the back side of the transparent substrate, wherein the illumination holographic optical element is from the light source Is irradiated to the authentication target, and the light guide holographic optical element emits biological information light from the authentication target at an angle larger than a predetermined threshold angle of the transparent substrate. And the light reflected at an angle larger than the predetermined threshold angle is reflected inside the transparent substrate and propagates in the direction of the imaging holographic optical element, and the imaging holographic optical element is connected to the transparent substrate. The light propagating through the inside is condensed on the imaging means.
 本発明によれば、ホログラフィック光学素子を利用することによって、装置の厚さ方向の光路長を短くすることができ、レンズを用いる場合に比べて、薄型(例えば、厚さが10mm以下)で、簡単な構成の個人認証装置を実現することができ、低コスト化することもできる。また、平坦で出っ張りのない個人認証装置を提供することができる。さらに、本発明の個人認証装置は、光源からの光も、認証対象からの光も、導光体によって伝搬させることにより、認証対象に対向して光源や撮像手段を配置する必要がなくなり、より薄型化することや、設計の自由度が高いという利点もある。特に認証対象を配置する平坦なステージを導光体として利用することもでき、既存の多機能携帯電話などに容易に適用することができる。また、静脈認証などに使用する場合は、ホログラフィック光学素子によって法線に対して大きな角度で認証対象に照明光を照射できるので、ノイズとなる認証対象の表面からの反射光を低減することができる。また、本発明の個人認証装置は、ホログラフィック光学素子を使用するため、波長選択性を持たせることができ、所定の波長の光のみを個人認証に使用し、その他の波長の光を他の用途に用いることができる。また、ホログラフィック光学素子によって、認証対象からの光のうち、異なる二方向からの光を利用することにより、視差を有するステレオ画像を取得することができる。その他の効果については、発明を実施するための形態において述べる。 According to the present invention, by using a holographic optical element, the optical path length in the thickness direction of the apparatus can be shortened, and is thinner (for example, a thickness of 10 mm or less) than when a lens is used. Thus, a personal authentication device with a simple configuration can be realized, and the cost can be reduced. Further, it is possible to provide a personal authentication device that is flat and has no protrusion. Furthermore, the personal authentication device of the present invention eliminates the need to place a light source or an imaging means facing the authentication target by propagating light from the light source and light from the authentication target through the light guide. There are also advantages such as a reduction in thickness and a high degree of freedom in design. In particular, a flat stage on which an authentication target is arranged can be used as a light guide, and can be easily applied to an existing multi-function mobile phone. In addition, when used for vein authentication or the like, the illumination light can be irradiated to the authentication target at a large angle with respect to the normal line by the holographic optical element, so that the reflected light from the surface of the authentication target that becomes noise can be reduced it can. Further, since the personal authentication device of the present invention uses a holographic optical element, it can have wavelength selectivity, use only light of a predetermined wavelength for personal authentication, and use light of other wavelengths for other Can be used for applications. In addition, a stereo image having parallax can be obtained by using light from two different directions among the light from the authentication target by the holographic optical element. Other effects will be described in the mode for carrying out the invention.
本発明の実施形態の個人認証装置の概略構成図Schematic configuration diagram of a personal authentication device according to an embodiment of the present invention 個人認証装置をX軸方向から観た断面図の例Example of a cross-sectional view of the personal authentication device viewed from the X-axis direction 個人認証装置をY軸方向から観た断面図の例Example of sectional view of personal authentication device viewed from the Y-axis direction (A)(B)は個人認証装置の光源及び撮像手段の配置の例(A) and (B) are examples of the arrangement of the light source and imaging means of the personal authentication device. (A)乃至(E)はホログラフィック光学素子による光路の例(A) to (E) are examples of optical paths by holographic optical elements. (A)(B)は個人認証装置の光源及び撮像手段の配置の別の例(A) (B) is another example of the arrangement of the light source and the imaging means of the personal authentication device. 本発明の個人認証装置の他の実施形態Other embodiments of personal authentication device of the present invention 本発明の個人認証装置のさらに他の実施形態Still another embodiment of the personal authentication device of the present invention 本発明の個人認証装置を多機能携帯電話に適用した例Example of applying the personal authentication device of the present invention to a multi-function mobile phone ホログラフィック光学素子を作製する装置及び方法を示す説明図Explanatory drawing showing an apparatus and method for producing a holographic optical element
 [本発明の概要]
 本発明は、認証対象における生体情報に基づいて本人確認をする個人認証装置であって、ホログラフィック光学素子(Holographic Optical Element:以下、単に「HOE」と記載することもある)を利用することによって、認証対象を配置するステージの表面に光源などの突起物を設けることなく、薄型化を実現したものである。なお、本明細書は、以下指の静脈を一例として説明するが、指の静脈だけでなく、例えば、手のひらの静脈、手の甲の静脈にも使用でき、指紋、虹彩、網膜、顔、手、耳などの形状、パターン、各種の特徴などの様々な生体情報にも適用することができる。
[Outline of the present invention]
The present invention is a personal authentication device that performs identity verification based on biometric information in an authentication target, and uses a holographic optical element (hereinafter sometimes simply referred to as “HOE”). The thinning is realized without providing a projection such as a light source on the surface of the stage where the authentication target is arranged. In this specification, the finger vein is described below as an example, but it can be used not only for finger veins, but also for example, palm veins and back veins. Fingerprints, iris, retina, face, hands, ears The present invention can also be applied to various biological information such as shapes, patterns, and various features.
 ホログラフィック光学素子は、所定の光学特性を具備したホログラムが記録された光学部材であり、硬質、軟質又はフレキシブルの基板上に感光材料が塗布され、感光材料に所定の光学特性のホログラムが記録されている。ホログラムは、二つの光(一般的には物体光と参照光と呼ばれる)の干渉パターンを記録したものであり、一方の光をホログラムに照射することによって他方の光を回折によって再生することができる。また、記録する際の二つの光の向きによって、反射型(二つの光がホログラムに対して反対の面から入射)とすることも透過型(二つの光がホログラムに対して同一面側から入射)とすることもできる。このため、一方の光として特定の角度範囲の光を選択し、他方の光として必要な所定方向の光を選択することにより、特定の角度範囲の光が照射された際に、所定方向の反射光又は透過光を再生させることができ、角度選択性を持たせることができる。また、一方の光の入射角と他方の光の入射角を異ならせることで、屈折性を持たせることもできる。さらに、一方の光の進行方向と他方の光の進行方向とを異ならせること、例えば方位角において異ならせれば、偏向性を持たせることもできる。さらに、ホログラムは、同一の位置に異なる性質のホログラムを多重記録することもでき、例えば、同一の位置において、角度選択性の角度範囲が異なる複数のホログラムを多重記録させたり、透過型のホログラムと反射型のホログラムとを多重記録させたりすることもできるのである。なお、ホログラムは、その回折効率に応じて回折する光の強度が異なる。 A holographic optical element is an optical member on which a hologram having a predetermined optical characteristic is recorded. A photosensitive material is applied on a hard, soft, or flexible substrate, and a hologram having a predetermined optical characteristic is recorded on the photosensitive material. ing. A hologram is a recording of an interference pattern of two lights (generally called object light and reference light). By irradiating one light onto the hologram, the other light can be reproduced by diffraction. . Also, depending on the direction of the two lights when recording, the reflection type (two lights are incident on the hologram from the opposite surface) can be a transmission type (two lights are incident on the hologram from the same surface side). ). For this reason, when light in a specific angle range is selected as one light and light in a predetermined direction required as the other light is selected, reflection in a predetermined direction is performed when light in a specific angle range is irradiated. Light or transmitted light can be regenerated and angle selectivity can be provided. Further, by making the incident angle of one light different from the incident angle of the other light, it is possible to provide refraction. Further, by making the traveling direction of one light different from the traveling direction of the other light, for example, by making the azimuth angle different, it is possible to provide a deflecting property. Furthermore, the hologram can also multiplex-record holograms having different properties at the same position. For example, at the same position, a plurality of holograms having different angle selectivity angle ranges can be multiplex-recorded. It is also possible to multiplex-record with a reflection hologram. Note that the intensity of diffracted light varies depending on the diffraction efficiency of the hologram.
 本発明の個人認証装置(以下、図1又は図2参照)は、少なくとも、認証対象を配置するステージ2と、認証対象10の生体情報12を撮像する撮像手段4と、光を供給する光源5と、光源5からの光を認証対象に照射する照明用ホログラフィック光学素子(照明用HOE)31と、認証対象からの光(以下、「生体情報光」という)53を撮像手段4に集光させる撮像用ホログラフィック光学素子(撮像用HOE)32と、を備える。なお、本発明の個人認証装置は、撮像用HOE32の代わりに生体情報光53を導光体(例えばステージ)によって所定の位置まで導光させる導光用ホログラフィック光学素子(導光用HOE)を設けてもよく、これに加えて、導光用HOEによって伝搬された光を撮像手段4に集光させる撮像用HOEを設けてもよい(図7参照)。 The personal authentication apparatus of the present invention (refer to FIG. 1 or FIG. 2 hereinafter) includes at least a stage 2 on which an authentication target is arranged, an imaging unit 4 that images biometric information 12 of the authentication target 10, and a light source 5 that supplies light. And an illumination holographic optical element (illumination HOE) 31 for irradiating light from the light source 5 to the authentication target and light from the authentication target (hereinafter referred to as “biological information light”) 53 are collected on the imaging means 4. An imaging holographic optical element (imaging HOE) 32. The personal authentication device of the present invention includes a light guide holographic optical element (light guide HOE) that guides the biological information light 53 to a predetermined position by a light guide (for example, a stage) instead of the imaging HOE 32. In addition to this, an imaging HOE for condensing the light propagated by the light guiding HOE on the imaging means 4 may be provided (see FIG. 7).
 照明用HOE31は、光源からの光を受け、ステージ2の表側に配置される認証対象に照明用の光を照射可能な位置に設けられる。照明用HOE31は、ステージ2の裏側又は表側において、認証対象の対向する位置の左右(離間していてもよい)に配置されることが好ましい。 The illumination HOE 31 is provided at a position where it can receive light from the light source and can irradiate the illumination target to the authentication target arranged on the front side of the stage 2. The illumination HOE 31 is preferably arranged on the back side or the front side of the stage 2 on the left and right (may be separated) of the opposing positions of the authentication target.
 撮像用HOE32は、生体情報光の少なくとも一部を受け、撮像手段4に集光可能な位置に設けられる。撮像用HOE32は、ステージ2の裏側又は表側において、認証対象の対向する位置に配置されることが好ましい。 The imaging HOE 32 receives at least a part of the biological information light and is provided at a position where it can be condensed on the imaging means 4. The imaging HOE 32 is preferably arranged at a position facing the authentication target on the back side or the front side of the stage 2.
 照明用HOE31及び撮像用HOE32は、ステージ2よりも裏側に配置されると環境的に安定となり好ましいが、ステージによる光の屈折等の影響を避けるため、ステージ2の表側に配置してもよい。また、照明用HOE31及び撮像用HOE32は、一つのホログラフィック光学素子として形成することが好ましいが、個々に独立して設けてもよい。また、照明用HOE31をステージ2の一方の側、撮像用HOE32をステージ2の他方の側に配置してもよいし、必要であれば照明用HOE31及び撮像用HOE32はステージ2の両側に設けてもよい。 The illumination HOE 31 and the imaging HOE 32 are preferably environmentally stable when arranged on the back side of the stage 2, but may be arranged on the front side of the stage 2 in order to avoid the influence of light refraction by the stage. The lighting HOE 31 and the imaging HOE 32 are preferably formed as one holographic optical element, but may be provided independently. Further, the illumination HOE 31 may be arranged on one side of the stage 2 and the imaging HOE 32 may be arranged on the other side of the stage 2. If necessary, the illumination HOE 31 and the imaging HOE 32 are arranged on both sides of the stage 2. Also good.
 撮像手段4及び光源5は、ステージ2よりも裏側に配置されることが好ましいが、例えば図6に示すように、光源5をステージ2の端部又は内部に配置してもよいし、導光体によって生体情報光を伝搬させる場合には、撮像手段4及び光源5は、必ずしもステージ2の裏側に限定されない。 The imaging unit 4 and the light source 5 are preferably arranged on the back side of the stage 2, but the light source 5 may be arranged at the end or inside of the stage 2 as shown in FIG. When the biological information light is propagated by the body, the imaging unit 4 and the light source 5 are not necessarily limited to the back side of the stage 2.
 このように、本発明の個人認証装置は、ステージ2の上に装置の厚みを増すような突起物を設けずに、略平坦な面でステージ2を構成することができるので好ましい。これによって、ステージ上に突起物のない平坦な構造を実現し、装置をコンパクトにすることができる。ただし、これに限定されず、ステージ2の一部に、認証対象を載置するための緩やかな窪みを設けてもよいし、補助的な光源として、微細なLEDをステージ上に設けたり、指を載置する位置を示す点字などを設けたりしてもよい。 Thus, the personal authentication device of the present invention is preferable because the stage 2 can be configured on a substantially flat surface without providing a protrusion on the stage 2 that increases the thickness of the device. As a result, a flat structure without protrusions on the stage can be realized, and the apparatus can be made compact. However, the present invention is not limited to this, and a gentle depression for placing the authentication target may be provided in a part of the stage 2, or a fine LED may be provided on the stage as an auxiliary light source, Braille or the like indicating a position for placing the image may be provided.
 本発明の個人認証装置は、認証機能を必要とする各種装置(現金自動預け払い機、自動取引装置、自動窓口機など)に適用することができ、入退室管理システムの一部としてドア近傍の壁面に垂直に配置することもできる。また、パーソナルコンピュータ、各種携帯情報端末装置(多機能携帯電話装置、PDA(Personal Digital Assistant)、タブレット端末などを含む)、自動車などに取付け又は組み込んでもよい。 The personal authentication device of the present invention can be applied to various devices that require an authentication function (such as an automatic teller machine, an automatic transaction device, an automatic teller machine, etc.), and as a part of an entrance / exit management system, It can also be arranged perpendicular to the wall. Further, it may be attached to or incorporated in a personal computer, various portable information terminal devices (including multi-function mobile phone devices, PDA (Personal Digital Assistant), tablet terminals, etc.), automobiles, and the like.
 本発明では、光源5、照明用HOE31及び撮像用HOE32の数量、配置を任意に設定することができる。照明用HOE31は、ホログラムの光学特性(角度選択性、回折効率、波長選択性など)を利用して、照明光52の角度及び方位を適宜設定することができる。撮像用HOE32も、同様に、認証対象からの生体情報光53を受け入れる角度及び方位、並びに撮像手段4への集束光55の角度及び方位を適宜設定することができる。 In the present invention, the quantity and arrangement of the light source 5, the lighting HOE 31 and the imaging HOE 32 can be arbitrarily set. The illumination HOE 31 can appropriately set the angle and azimuth of the illumination light 52 by utilizing the optical characteristics (angle selectivity, diffraction efficiency, wavelength selectivity, etc.) of the hologram. Similarly, the imaging HOE 32 can appropriately set the angle and orientation for receiving the biological information light 53 from the authentication target and the angle and orientation of the focused light 55 to the imaging means 4.
 撮像用HOE32によって、生体情報光のうち、少なくとも二方向からの光(例えば、図2の符号53R、53L)をそれぞれ撮像手段4の異なる領域に集光させるように構成すれば、認証対象について観察方向の異なる複数の画像を取得することができ、例えば、視差を有するいわゆるステレオ画像を取得することもできる。また、適当な画像処理手段を用い、必要に応じて、これらのステレオ画像から認証対象における生体情報の立体画像を構成してもよい。登録画像を立体像とし、認証時に撮像した画像も同様に立体像に構成すれば、より精度の高い認証を実施することができる。 If the imaging HOE 32 is configured so that light (for example, reference numerals 53R and 53L in FIG. 2) from at least two directions of the biological information light is condensed in different regions of the imaging means 4, the authentication object is observed. A plurality of images having different directions can be acquired. For example, a so-called stereo image having parallax can also be acquired. Moreover, you may comprise the stereo image of the biometric information in authentication object from these stereo images using an appropriate image processing means as needed. If the registered image is a stereoscopic image and the image captured at the time of authentication is similarly configured as a stereoscopic image, more accurate authentication can be performed.
 なお、本発明の個人認証装置において、X軸方向の寸法を長さ、Y軸方向の寸法を幅、Z軸方向の寸法を厚さという。長さ(X)×幅(Y)で規定される平面に垂直な線を法線Nという。また、+Zの向きを表側、-Zの向きを裏側という。そして、+Yの向きを右側、-Yの向き方向を左側、-Xの向きを上側、+Xの向きを下側という。本明細書では、光の角度とは、特に断らない限り、光の進行方向と法線N(Z軸)とのなす角をいう。方位とは、XY平面に投射した際のX軸とのなす角をいう。 In the personal authentication device of the present invention, the dimension in the X-axis direction is called the length, the dimension in the Y-axis direction is called the width, and the dimension in the Z-axis direction is called the thickness. A line perpendicular to a plane defined by length (X) × width (Y) is referred to as a normal line N. The + Z direction is referred to as the front side, and the -Z direction is referred to as the back side. The + Y direction is referred to as the right side, the -Y direction direction as the left side, the -X direction as the upper side, and the + X direction as the lower side. In this specification, the angle of light refers to an angle formed by the light traveling direction and the normal N (Z axis) unless otherwise specified. The azimuth refers to an angle formed with the X axis when projected onto the XY plane.
 認証対象は、ステージ2の表側の照明用HOE31によって照明が照射される所定の空間(以下、「認証可能空間」とも呼ぶ)に配置されれば足り、認証対象がステージに接触した状態でも、ステージから離間し、非接触の状態でもよい。ステージに非接触な状態で認証可能なことは、指や手が直接ステージに触れないので、認証を求める利用者にとって、心理的な抵抗が少なく、また衛生的でもある。上記のとおり、光源及びHOEの数量及び配置、並びにHOEによる光の回折を適宜設定することによって、ステージの表側に比較的広い認証可能空間を実現することができる。このため、指だけでなく、手のひらなどの比較的大きなものも認証対象とすることができる。 The authentication target only needs to be arranged in a predetermined space (hereinafter also referred to as “authenticable space”) illuminated by the illumination HOE 31 on the front side of the stage 2, and even if the authentication target is in contact with the stage, the stage It may be separated from the contactless state. The ability to authenticate without touching the stage means that the finger or hand does not touch the stage directly, so there is little psychological resistance and hygiene for the user who seeks authentication. As described above, a relatively wide authenticable space can be realized on the front side of the stage by appropriately setting the quantity and arrangement of the light sources and the HOE and the diffraction of the light by the HOE. For this reason, not only a finger but a comparatively large thing, such as a palm, can also be made into an authentication object.
 また、HOEは比較的自由に形状や大きさを設計することができるので、ステージは曲面を有する形状に構成することもできる。装置の使用態様に応じて、ステージを含む外観は自由に設計してよい。また、本発明の個人認証装置は、外気、湿気、紫外線、水分、化学薬品などを遮断できるように、ステージを構成する部材と一体となった密閉の筺体(図示省略)を有することが好ましい。 Also, since the shape and size of the HOE can be designed relatively freely, the stage can also be configured to have a curved surface. Depending on how the apparatus is used, the appearance including the stage may be freely designed. Moreover, it is preferable that the personal authentication device of the present invention has a hermetically sealed casing (not shown) integrated with members constituting the stage so as to block outside air, moisture, ultraviolet rays, moisture, chemicals, and the like.
 以下、本発明の実施形態について図面を参照して説明する。以下は、認証対象として指の腹を装置のステージ2中央に装置の長さ方向に沿って指を配置して指の静脈のパターンを撮像する場合の例である。ただし、本発明は、以下の例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following is an example of imaging a finger vein pattern by placing a finger along the length of the apparatus at the center of the apparatus stage 2 as an authentication target. However, the present invention is not limited to the following examples.
 [装置構成]
 図1は、本実施形態の個人認証装置の概略構成図である。図2及び図3は、各々、図1に示した本個人認証装置をX軸方向から観た断面図及びY軸方向から観た断面図である。本個人認証装置は、認証対象が配置される表側から順に、ステージ2、ホログラムシート3、電子基板部8を備える。ステージ2とホログラムシート3は、密着していてもよいし、適当な間隔をもって設けられてもよい。ステージ2とホログラムシート3とが一体に構成される場合は、これらをまとめてホログラムプレート30ということもある。図1では、説明のため、ホログラムシート3と電子基板8とは離隔した状態で図示されているが、実際の装置ではその間隔はおおよそ10mm以下に設定してもよく、図2又は図3に示すように薄型化を実現している。
[Device configuration]
FIG. 1 is a schematic configuration diagram of a personal authentication device according to the present embodiment. 2 and 3 are a cross-sectional view of the personal authentication device shown in FIG. 1 viewed from the X-axis direction and a cross-sectional view viewed from the Y-axis direction, respectively. The personal authentication device includes a stage 2, a hologram sheet 3, and an electronic substrate unit 8 in order from the front side on which an authentication target is arranged. The stage 2 and the hologram sheet 3 may be in close contact with each other or may be provided at an appropriate interval. When the stage 2 and the hologram sheet 3 are configured integrally, they may be collectively referred to as a hologram plate 30. In FIG. 1, for the sake of explanation, the hologram sheet 3 and the electronic substrate 8 are shown separated from each other, but in an actual apparatus, the interval may be set to approximately 10 mm or less. As shown, the thickness is reduced.
 ステージ2は、筺体の少なくとも表面の一部を覆う部材であり、ガラス又は樹脂から構成されることが好ましい。ステージ2には、照明光を照射するための照明用窓21L、21R、及び、認証時において認証対象からの光(生体情報光)を通過させるための撮像用窓22が設けられてもよい。ステージ2の各窓以外の部分には外光を遮断する遮光層24が設けられるのが好ましい。ただし、上記は一例であって、これに限定されない。ステージ2は、少なくとも一部又は全部が照明光及び生体情報光の波長(例えば、830~890nm)において透光性を有していればよい。図1では、左右の2個の照明用窓21L、21R及び1個の撮像用窓が図示されているが、各窓(透光性を有する領域)の数量及び配置は、装置の形態に応じて適宜設定することができる。また、各窓及び遮光層24の代わりにホログラムシートに遮光マスクを形成してもよい。なお、指10は、撮像用窓22に対向するようにステージ2の表側に配置される。 Stage 2 is a member that covers at least part of the surface of the housing, and is preferably made of glass or resin. The stage 2 may be provided with illumination windows 21L and 21R for irradiating illumination light, and an imaging window 22 for allowing light (biological information light) from an authentication target to pass at the time of authentication. It is preferable that a portion other than each window of the stage 2 is provided with a light shielding layer 24 that blocks outside light. However, the above is an example, and the present invention is not limited to this. It is sufficient that at least part or all of the stage 2 has translucency at the wavelengths of illumination light and biological information light (for example, 830 to 890 nm). In FIG. 1, the left and right illumination windows 21L and 21R and one imaging window are illustrated, but the number and arrangement of each window (translucent region) depends on the form of the apparatus. Can be set as appropriate. Further, instead of each window and the light shielding layer 24, a light shielding mask may be formed on the hologram sheet. The finger 10 is disposed on the front side of the stage 2 so as to face the imaging window 22.
 ホログラムシート3は、ホログラム記録用の感光材料を含むフィルム状のシートであり、照明用窓21及び撮像用窓22に対応する領域には、各々、透過型の照明用HOE31及び撮像用HOE32が形成される。各HOEは、所定の光学特性(角度選択性、回折効率、波長選択性など)を有するホログラムであり、設定された角度及び方位に光を出射する機能を有する。照明用HOE31及び撮像用HOE32が形成される領域以外は、外光を透過させない遮光マスクを形成することが好ましい。また、外光にも撮像に使用する近赤外の波長に近い光が含まれていることがあり、この光がノイズとなって認証率を低下させる虞がある。このため、撮像用HOE32は、所定の波長以外の成分を遮断するフィルタリング機能を有することが好ましい。これによって、撮像手段に狭帯域フィルタを設けるのに比べて低コストで装置を製造することができる。また、ホログラムシート3は、ステージ2の裏面等に貼付されていてもよい。なお、図2には、ホログラムシート3の一部にHOE31、32を形成する例を示したが、これに限定されない。例えば、所定の大きさの各HOEを個々に作製し、適宜の位置に配置してもよいし、ステージ2裏面に感光材料を塗布してホログラムを記録することで各HOEを作製してもよい。 The hologram sheet 3 is a film-like sheet containing a photosensitive material for hologram recording, and a transmissive illumination HOE 31 and an imaging HOE 32 are formed in areas corresponding to the illumination window 21 and the imaging window 22, respectively. Is done. Each HOE is a hologram having predetermined optical characteristics (angle selectivity, diffraction efficiency, wavelength selectivity, etc.), and has a function of emitting light at a set angle and direction. It is preferable to form a light-shielding mask that does not transmit external light except in the region where the illumination HOE 31 and the imaging HOE 32 are formed. In addition, external light may include light close to the near-infrared wavelength used for imaging, and this light may become noise and reduce the authentication rate. For this reason, it is preferable that the imaging HOE 32 has a filtering function that blocks components other than the predetermined wavelength. As a result, the apparatus can be manufactured at a lower cost compared to the case where the narrow band filter is provided in the imaging means. Further, the hologram sheet 3 may be attached to the back surface of the stage 2 or the like. In addition, although the example which forms HOE31 and 32 in a part of hologram sheet 3 was shown in FIG. 2, it is not limited to this. For example, each HOE having a predetermined size may be individually produced and arranged at an appropriate position, or each HOE may be produced by applying a photosensitive material on the back surface of the stage 2 and recording a hologram. .
 電子基板8には、照明用HOE31及び撮像用HOE32に対応する位置に、撮像手段4及び光源5が配置される。図1~図3では、左右に照明用HOE31L、31R及び光源5L、5Rを、中央に撮像用HOE32及び撮像手段4を配置した例を示したが、これに限定されない。各構成要素の数量及び配置は、装置の形態に応じて適宜設定することができる。 On the electronic board 8, the imaging means 4 and the light source 5 are arranged at positions corresponding to the illumination HOE 31 and the imaging HOE 32. Although FIGS. 1 to 3 show examples in which the lighting HOEs 31L and 31R and the light sources 5L and 5R are arranged on the left and right, and the imaging HOE 32 and the imaging unit 4 are arranged in the center, the present invention is not limited to this. The quantity and arrangement of each component can be appropriately set according to the form of the apparatus.
 撮像手段4は、入射した光を電気信号に変換するセンサであり、生体情報光を取得して認証対象10における生体情報12の画像を撮像する。撮像手段4は所定の大きさの撮像面40を有する。撮像手段4には、CMOS(Complementary Metal-oxide Semiconductor)センサ、CCD(CCD:Charge Coupled Device)センサ等を使用することができる。撮像面40は、生体情報光のうち第1の方向に生じた光(例えば、53R)、及び第1の方向とは異なる第2の方向に生じた光(例えば、53L)を受光するために、二つの領域(40L、40R)に分割されてもよい。ただし、第1の方向の光と第2の方向の光を受光するため、撮像手段を二つ配置してもよい。撮像面の表側には、入射した光を平行な光に変換するためのコリメート用HOE42を設けてもよい。これによって、コリメート用の光学レンズを設けなくてもよいので、装置の構造が簡単となり、薄型化を実現できる。 The imaging means 4 is a sensor that converts incident light into an electrical signal, acquires biological information light, and captures an image of the biological information 12 in the authentication target 10. The imaging means 4 has an imaging surface 40 having a predetermined size. As the imaging means 4, a CMOS (Complementary Metal-Oxide Semiconductor) sensor, a CCD (CCD: Charge Coupled Device) sensor, or the like can be used. The imaging surface 40 receives light (for example, 53R) generated in a first direction and light (for example, 53L) generated in a second direction different from the first direction among the biological information light. , It may be divided into two regions (40L, 40R). However, in order to receive light in the first direction and light in the second direction, two imaging means may be arranged. A collimating HOE 42 for converting incident light into parallel light may be provided on the front side of the imaging surface. As a result, it is not necessary to provide an optical lens for collimation, so that the structure of the apparatus is simplified and the thickness can be reduced.
 光源5は、認証対象における生体情報の画像を撮像するための照明を供給する。例えば、LED(Light Emitting Diode)、レーザーなどを使用することができる。生体情報として静脈の撮像する場合は、血液中のヘモグロビン成分に対する吸収率が高い近赤外領域(700~2500nm、特に好ましくは830~890nm)の波長を有する光を照射可能な光源であることが好ましい。近赤外の光源を使用すると、静脈部分は周囲の組織よりも光を吸収するため、指静脈が暗い影のパターンとして撮像される。 The light source 5 supplies illumination for capturing an image of biometric information on the authentication target. For example, an LED (Light Emitting Diode), a laser, or the like can be used. When imaging veins as biological information, the light source should be capable of irradiating light having a wavelength in the near-infrared region (700 to 2500 nm, particularly preferably 830 to 890 nm) having a high absorption rate for the hemoglobin component in blood. preferable. When a near-infrared light source is used, the vein portion absorbs light more than the surrounding tissue, so the finger vein is imaged as a dark shadow pattern.
 また、本個人認証装置は、各種構成要素に電力を供給する電源、各種構成要素を制御する制御手段(画像処理手段、認証処理手段などを含む)、撮像した画像を格納する記憶手段、表示部(例えば、液晶ディスプレイなど)、入力部(例えば、キーボードなど)、外部装置(ストレージシステム)などと接続するためのインターフェース、音声入出部(スピーカ、マイクなど)を備えてもよい(図示省略)。 In addition, the personal authentication device includes a power source that supplies power to various components, a control unit (including an image processing unit, an authentication processing unit, and the like) that controls the various components, a storage unit that stores captured images, and a display unit (For example, a liquid crystal display), an input unit (for example, a keyboard), an interface for connecting to an external device (storage system), etc., and an audio input / output unit (speaker, microphone, etc.) may be provided (not shown).
 以下、図2(及び図3)を用いて、本実施形態の個人認証装置の動作について説明する。電子基板8の左側に配置された光源(左)5Lを例にとると、光源(左)5Lから発せられた光束51Lは、照明用HOE(左)31Lに入射する。照明用HOE(左)31Lは、ホログラムの回折作用によって、入射した光束51Lの進行方向を変え、光束52Lを照射角度θ1で照明光として認証対象に照射する。光束52Lは、平行光であってもよいし、拡散又は集束する光であってもよい(以下、簡単のため、光束について単に光と記載する)。 Hereinafter, the operation of the personal authentication device of this embodiment will be described with reference to FIG. 2 (and FIG. 3). Taking the light source (left) 5L disposed on the left side of the electronic substrate 8 as an example, the light beam 51L emitted from the light source (left) 5L enters the illumination HOE (left) 31L. The illumination HOE (left) 31L changes the traveling direction of the incident light beam 51L by the diffraction action of the hologram, and irradiates the authentication target as illumination light with the irradiation angle θ 1 at the irradiation angle θ 1 . The light beam 52L may be parallel light, or may be diffused or focused light (hereinafter, the light beam is simply referred to as light for simplicity).
 ここで、照明光の照射角度θ1とは、ステージ2の法線Nと光の方向とのなす角であり、HOEの作製時に設定されるものである。図2では、簡単のため、照明用HOE31が光源5からの光を照射角度θ1で回折透過するように示されているが、実際は、照明用HOE31を出射した光は、ステージ2の屈折率によってステージ2の表面でさらに屈折する。照明用HOE31は、ステージ2の表面における屈折角を含めて、認証対象に対し所望の照射角度θ1を得られるように設定すればよい。以下、特に断わらない限り、単に、照明用HOE31が照射角度θ1で光を照射すると記載するが、照射角度θ1はステージ表面などで屈折する角度も含むものとする。 Here, the irradiation angle θ 1 of the illumination light is an angle formed by the normal line N of the stage 2 and the direction of light, and is set when the HOE is manufactured. In FIG. 2, for the sake of simplicity, the illumination HOE 31 is shown as diffracting and transmitting the light from the light source 5 at the irradiation angle θ 1 , but the light emitted from the illumination HOE 31 is actually the refractive index of the stage 2. Is further refracted on the surface of the stage 2. The illumination HOE 31 may be set so as to obtain a desired irradiation angle θ 1 for the authentication target including the refraction angle on the surface of the stage 2. Hereinafter, it is described that the illumination HOE 31 emits light at the irradiation angle θ 1 unless otherwise specified. However, the irradiation angle θ 1 includes an angle of refraction at the stage surface or the like.
 本発明者らは、照射角度θ1について、先の実験により、45°以上が好ましく、60°以上がさらに好ましく、75°が最も好ましいことを見出した。照射角度θ1がおおむね75°程度までであれば、照明用HOE31からの光が平行光の場合であっても、認証対象10のステージ近傍だけではなく、側面にもある程度光を照射することができ好ましい。なお、簡単のため、図2では、照明用HOE31は、YZ平面内で光を照射しているが、光源5からの光をYZ平面とは異なる方向(異なる方位)に偏向させてもよい。 The present inventors have found that the irradiation angle θ 1 is preferably 45 ° or more, more preferably 60 ° or more, and most preferably 75 ° by the previous experiment. If the irradiation angle θ 1 is up to about 75 °, even if the light from the illumination HOE 31 is parallel light, not only the vicinity of the stage of the authentication target 10 but also the side surface can be irradiated to some extent. This is preferable. For simplicity, in FIG. 2, the lighting HOE 31 irradiates light in the YZ plane, but the light from the light source 5 may be deflected in a direction (different orientation) different from the YZ plane.
 本発明者らの実験では、仮想的な点光源として近赤外LED(890nm)を用い、かかる近赤外LEDを認証対象である指の側面から70mm離して配置し、CCDカメラを指の下面から70mm離して配置し、照射角度θ1と認証率の関係について検討した。具体的には、照射角度θ1を30~90°まで15°毎に変更して、被験者5名の4指をそれぞれ10枚ずつ、合計200枚撮像した。撮像した画像とあらかじめ登録された被験者本人の登録画像とを比較し、認証率を計測した。認証率とは、他人受け入れ率と本人拒否率から求められる平均誤り率を100%から減じたものである。 In our experiment, a near-infrared LED (890 nm) is used as a virtual point light source, the near-infrared LED is placed 70 mm away from the side of the finger to be authenticated, and the CCD camera is placed on the lower surface of the finger. The relationship between the irradiation angle θ 1 and the authentication rate was examined. Specifically, the irradiation angle θ 1 was changed every 15 ° from 30 ° to 90 °, and 10 images of four fingers of five subjects were captured, for a total of 200 images. The captured image was compared with the registered image of the subject registered in advance, and the authentication rate was measured. The authentication rate is obtained by subtracting the average error rate obtained from the acceptance rate of others and the rejection rate of identity from 100%.
 かかる実験によれば、照射角度30°で97.13%、照射角度45°で98.10%、照射角度60°で98.18%、照射角度75°で98.82%、照射角度90°で98.02%の認証率が得られた。これらの結果により、照射角度θは、45°以上が好ましく、60°以上がさらに好ましく、75°が最も好ましいことが分かった
 従来の光学部材では、反射式の認証装置において、大きな照射角度(例えば、60°以上)を実現するのは困難であった。本発明によれば、HOEの作用によって比較的大きな照射角度も適宜設定できる。これによって、本個人認証装置は、従来の反射式の装置とは異なって、指の皮膚の表面で直接反射した反射光を撮像してしまう虞が少ないため、静脈パターンを鮮明に撮像することができる。
According to this experiment, 97.13% at an irradiation angle of 30 °, 98.10% at an irradiation angle of 45 °, 98.18% at an irradiation angle of 60 °, 98.82% at an irradiation angle of 75 °, and an irradiation angle of 90 °. An authentication rate of 98.02% was obtained. From these results, it was found that the irradiation angle θ is preferably 45 ° or more, more preferably 60 ° or more, and most preferably 75 °. In the conventional optical member, in the reflection type authentication device, a large irradiation angle (for example, , 60 ° or more) was difficult to achieve. According to the present invention, a relatively large irradiation angle can be set as appropriate by the action of the HOE. As a result, unlike the conventional reflection type device, the personal authentication device is less likely to image the reflected light directly reflected by the surface of the finger skin, so that the vein pattern can be imaged clearly. it can.
 なお、装置の外部から到達する外光の大部分は、照明用HOE31及び撮像用HOE32に記録された干渉縞では回折しないため、外光は、照明用HOE31及び撮像用HOE32によって偏向されない。このため、例えば、照射光52Lと同じ光路を反対に進む外光は、進路を変えずに透過し、装置の外側に向かうので、撮像手段4に対するノイズとなりにくい。 Note that most of the external light reaching from the outside of the apparatus is not diffracted by the interference fringes recorded in the illumination HOE 31 and the imaging HOE 32, so that the external light is not deflected by the illumination HOE 31 and the imaging HOE 32. For this reason, for example, the external light traveling in the opposite direction along the same optical path as the irradiation light 52L is transmitted without changing the path and travels to the outside of the apparatus, so that it is less likely to cause noise for the imaging unit 4.
 再び図2の説明に戻ると、照明光52Lは、例えば、左斜め裏側から認証対象の左側面を照射し、その光は、指の内部の各種組織に到達して散乱する。撮像用HOE(左)32Lは、指の内部で散乱した光のうち、第1の方向から入射する光(例えば、生体情報光53R)を回折透過させて、撮像手段4の撮像面(右)40Rに集光させる。撮像用HOE(右)32Rは、指の内部で散乱した光のうち、第2の方向から入射する光(例えば、生体情報光53L)を回折透過させて、撮像手段4の撮像面(左)40Lに集光させる。光源(右)5Rから発せられた光束51Rが撮像手段4に到達する様子も同様である。 Returning to the description of FIG. 2 again, the illumination light 52L irradiates, for example, the left side surface of the authentication target from the left diagonal back side, and the light reaches various tissues inside the finger and is scattered. The imaging HOE (left) 32L diffracts and transmits light (for example, biological information light 53R) incident from the first direction among the light scattered inside the finger, and the imaging surface (right) of the imaging unit 4 Condensate to 40R. The imaging HOE (right) 32R diffracts and transmits light (for example, biological information light 53L) incident from the second direction among the light scattered inside the finger, and the imaging surface (left) of the imaging unit 4 Concentrate to 40L. The situation where the light beam 51R emitted from the light source (right) 5R reaches the imaging means 4 is the same.
 これによって、撮像手段4は、異なる二方向から観た認証対象の生体情報の画像を取得することができる。説明のため、図2では、第1の方向は、右斜め上から左斜め下に向かう方向、第2の方向は、左斜め上から右斜め下に向かう方向としているが、これは単なる例示である。異なる二つ以上の方向を適宜規定すればよく、これによって、異なる方向から観た二つ以上の画像を取得することができる。なお、本例では、左右の視差を有するステレオ画像を左右に分割された撮像面で同時に撮像しているが、これに限定されない。図示しない制御手段が左右の光源5の照射タイミング及び撮像タイミングを適宜制御して、別々に左右のステレオを取得してもよい。 Thereby, the imaging unit 4 can acquire the image of the biometric information to be authenticated viewed from two different directions. For explanation, in FIG. 2, the first direction is a direction from the upper right to the lower left and the second direction is from the upper left to the lower right, but this is merely an example. is there. Two or more different directions may be defined as appropriate, whereby two or more images viewed from different directions can be acquired. In this example, a stereo image having left and right parallaxes is simultaneously imaged on the imaging surface divided into left and right, but the present invention is not limited to this. Control means (not shown) may appropriately control the irradiation timing and imaging timing of the left and right light sources 5 to separately acquire the left and right stereos.
 また、本例では、図3に示すように、照明用HOE31を介して照射される照明光52、及び撮像用HOE32が受け入れる生体情報光53は、YZ平面に平行に設定されているが、これに限定されない。照明光52及び生体情報光53は、装置の使用態様に応じて、Z軸の周りに所定の方位角をもって設定されてもよい。 In this example, as shown in FIG. 3, the illumination light 52 irradiated through the illumination HOE 31 and the biological information light 53 received by the imaging HOE 32 are set in parallel to the YZ plane. It is not limited to. The illumination light 52 and the biological information light 53 may be set with a predetermined azimuth around the Z axis according to the usage mode of the apparatus.
 [認証処理]
 以下、本個人認証装置による認証の処理について簡単に説明する。登録時において、利用者は、あらかじめ所定の手順に従って、例えば、自己の指静脈パターンを登録しておく。個人認証装置は、登録画像を内蔵の又は接続された外部の記憶手段(データベースなどを含む)に格納してもよい。登録画像は、指静脈パターンを異なる方向から観た少なくとも2枚以上を含むことが好ましい。なお、登録時に使用する装置は、認証時に使用する個人認証装置とは別の装置であってもよい。
[Authentication process]
The authentication process performed by the personal authentication apparatus will be briefly described below. At the time of registration, the user registers, for example, his / her finger vein pattern in advance according to a predetermined procedure. The personal authentication device may store the registered image in a built-in or connected external storage means (including a database). The registered image preferably includes at least two images of the finger vein pattern viewed from different directions. The device used for registration may be a device different from the personal authentication device used for authentication.
 認証時において、認証を要求する利用者は自己の指を装置の所定の領域(例えば、撮像用窓22)に配置する。認証対象である指は、ステージに接触するように配置されてもよいし、ステージから浮かせた状態で配置されてもよい。個人認証装置は、光源を作動させ、指に対して照明光を当てる。この照明光は、指の内部で様々な方向に散乱する。撮像手段は、所定の方向から到達した生体情報光を受けて指静脈パターンの画像を撮像する。個人認証装置は、取得した画像を記憶手段に格納してもよい。次いで、認証処理手段は、登録画像と撮像した画像とを比較し、各画像間の相関、類似度などを算出し、認証の成否を判定する(一定の類似度を有する場合は本人であると確認する)。認証処理に際しては、特に限定されるものではなく、例えば、テンプレートマッチング、Log-Polar変換を用いた手法(特開2007-233981号公報参照)、DPマッチング(特開2011-253365号公報参照)等のパターンマッチングに基づく照合により、指静脈の位置・回転ずれにより生じる位置ずれを補正し、高精度な認証を実現する技術を用いることができる。 At the time of authentication, a user who requests authentication places his / her finger in a predetermined area of the apparatus (for example, the imaging window 22). The finger to be authenticated may be disposed so as to come into contact with the stage, or may be disposed in a state of being lifted from the stage. The personal authentication device activates the light source and applies illumination light to the finger. This illumination light is scattered in various directions inside the finger. The imaging means receives the biological information light that has arrived from a predetermined direction and images a finger vein pattern. The personal authentication device may store the acquired image in the storage means. Next, the authentication processing means compares the registered image with the captured image, calculates the correlation and similarity between the images, and determines the success or failure of the authentication (if it has a certain similarity, it is the person himself / herself) Check). The authentication process is not particularly limited. For example, a method using template matching, Log-Polar conversion (see JP 2007-233981 A), DP matching (see JP 2011-253365 A), etc. By the matching based on the pattern matching, it is possible to use a technique that corrects the positional deviation caused by the positional / rotational deviation of the finger vein and realizes highly accurate authentication.
 以上説明したように、本例によれば、認証対象を配置するステージがおおむね平坦であり、かつ薄型の個人認証装置を実現することができる。また、かかる個人認証装置では、照明用HOEを適宜設計することにより、認証対象の側面に対して照明光を比較的大きな照射角度で照射することができ、認証率を向上させることができる。また、撮像用HOEを適宜設計することにより、少なくとも異なる二方向から到達する認証対象からの生体情報光を撮像手段に集光することができるので、視差を有する画像を取得することができる。これにより、一方向から観た画像を用いる場合に比べて認証率を向上させることができ、必要に応じて立体像を構成することもできる。 As described above, according to this example, the stage on which the authentication target is arranged is generally flat, and a thin personal authentication device can be realized. Further, in such a personal authentication device, by appropriately designing the lighting HOE, it is possible to irradiate the illumination light onto the side surface to be authenticated at a relatively large irradiation angle, and to improve the authentication rate. In addition, by appropriately designing the imaging HOE, it is possible to collect biological information light from an authentication target that arrives at least from two different directions on the imaging unit, so that an image having parallax can be acquired. Thereby, an authentication rate can be improved compared with the case where the image seen from one direction is used, and a three-dimensional image can also be comprised as needed.
 ところで、光源、撮像手段などの各構成要素の数量及び配置は、装置の形態に応じて適宜設定することができる。また、照明用HOE及び撮像用HOEの数量及び配置も、装置の形態に応じて適宜設定することができる。 By the way, the quantity and arrangement of each component such as the light source and the imaging means can be appropriately set according to the form of the apparatus. In addition, the quantity and arrangement of the lighting HOE and the imaging HOE can be appropriately set according to the form of the apparatus.
 [変形例]
 図4は、本実施形態の個人認証装置の光源及び撮像手段の配置の変形例である。図4(A)は、光源5を4×2列に配置し、撮像手段4を撮像用HOE32の中央から+Xの向きにずらして配置した例である。撮像用HOE32は、認証対象からの生体情報光を撮像手段4に集光させる。このように撮像手段4を撮像用HOE32の位置からずらして配置(オフセット)することによって、撮像用HOE32と撮像手段4との間のZ方向の距離を増加させずに、光学的な距離を確保できる。さらに、HOEに対して大きな角度で光が入射された場合は波長に応じて回折角が大きく異なるため、波長選択性を効果的に発現させることができる。また、撮像手段4が遮光マスクの裏側に配置されるので、ステージ2の表側から入射する外光のノイズが低減され、信号対雑音比が向上し、鮮明な生体情報の画像を取得することができる。
[Modification]
FIG. 4 is a modified example of the arrangement of the light source and the imaging means of the personal authentication device of this embodiment. FIG. 4A shows an example in which the light sources 5 are arranged in 4 × 2 rows, and the imaging unit 4 is arranged to be shifted in the + X direction from the center of the imaging HOE 32. The imaging HOE 32 collects the biological information light from the authentication target on the imaging unit 4. Thus, by arranging the image pickup means 4 so as to be shifted from the position of the image pickup HOE 32 (offset), an optical distance is secured without increasing the distance in the Z direction between the image pickup HOE 32 and the image pickup means 4. it can. Furthermore, when light is incident on the HOE at a large angle, the diffraction angle varies greatly depending on the wavelength, so that wavelength selectivity can be effectively expressed. Further, since the imaging means 4 is arranged on the back side of the light shielding mask, the noise of external light incident from the front side of the stage 2 is reduced, the signal-to-noise ratio is improved, and a clear image of biological information can be acquired. it can.
 図4(B)は、二つの撮像手段4を用いて、一方を撮像用HOE32の中央から+Xの向きにずらして配置し、他方を-Xの向きにずらして配置した例である。この場合、例えば、撮像用HOE32の+X側の半分に入射した生体情報光は、+X側にずらして配置された撮像手段4に集光し、撮像用HOE32の-X側の半分に入射した生体情報光は、-X側にずらして配置された撮像手段4に集光するように撮像用HOE32が構成されてもよい。このように構成すると、例えば、一方の撮像手段に不具合が生じても、他方の撮像手段により画像を撮像可能であるので、個人認証装置に冗長性を持たせることができる。 FIG. 4B shows an example in which two image pickup means 4 are used and one of them is shifted from the center of the imaging HOE 32 in the + X direction and the other is shifted in the -X direction. In this case, for example, the biological information light incident on the + X half of the imaging HOE 32 is condensed on the imaging means 4 arranged so as to be shifted to the + X side, and is incident on the −X half of the imaging HOE 32. The imaging HOE 32 may be configured so that the information light is condensed on the imaging means 4 that is arranged shifted to the −X side. With this configuration, for example, even if a problem occurs in one imaging unit, an image can be captured by the other imaging unit, so that the personal authentication device can be made redundant.
 図5は、図4(A)に示した個人認証装置の一態様について、各ホログラフィック光学素子による光路の具体的な例を示したものである。図5(A)は個人認証装置の正面図である。ホログラムプレート30のY軸方向の略中央には撮像用HOE32が配置され、その左右には照明用HOE31L、31Rが配置される。撮像用HOE32は、Y軸方向の略中央から左の領域32Lと右の領域32Rとで回折特性が異なっており、また、照明用HOE31L、31Rも左右で回折特性が異なっている。なお、図5においては、各回折側性はY軸中央に対して線対称となっている。 FIG. 5 shows a specific example of an optical path by each holographic optical element in one aspect of the personal authentication device shown in FIG. 4 (A). FIG. 5A is a front view of the personal authentication device. An imaging HOE 32 is disposed approximately at the center of the hologram plate 30 in the Y-axis direction, and illumination HOEs 31L and 31R are disposed on the left and right sides thereof. The imaging HOE 32 has different diffraction characteristics between the left region 32L and the right region 32R from the approximate center in the Y-axis direction, and the illumination HOEs 31L and 31R also have different diffraction properties on the left and right. In FIG. 5, each diffraction laterality is line-symmetric with respect to the Y-axis center.
 図5(B)(C)は、それぞれ個人認証装置の左側面図及び上面図であり、光源5から供給される光の光路を示す。照明用HOE(左)31Lは、光源(左)5Lからの光を回折し、照明光52Lを認証対象の左側面に照射する。照明用HOE(右)31Rは、光源(右)5Rからの光を回折し、照明光52Rを認証対象の右側面に照射する。 FIGS. 5B and 5C are a left side view and a top view, respectively, of the personal authentication device, showing the optical path of the light supplied from the light source 5. The lighting HOE (left) 31L diffracts the light from the light source (left) 5L and irradiates the left side surface of the authentication target with the illumination light 52L. The lighting HOE (right) 31R diffracts the light from the light source (right) 5R and irradiates the right side surface of the authentication target with the illumination light 52R.
 図5(D)(E)は、それぞれ個人認証装置の下面図及び中央断面を右から見た図であり、撮像手段へ集光する光の光路を示す。図5(D)に示すように、撮像用HOE(左)31Lは、斜め右から到達する生体情報光53Rを回折させて、撮像手段4の撮像面(左)40Lに集光するような平行光54Rに偏向させる。撮像用HOE(右)31Rは、斜め左から到達する生体情報光53Lを回折させて、撮像手段4の撮像面(右)40Rに集光する平行光54Lに偏向させる。 FIGS. 5D and 5E are a bottom view and a central cross section of the personal authentication device as viewed from the right, respectively, and show an optical path of light condensed on the imaging means. As shown in FIG. 5D, the imaging HOE (left) 31L diffracts the biological information light 53R that arrives obliquely from the right and concentrates it on the imaging surface (left) 40L of the imaging means 4. The light 54R is deflected. The imaging HOE (right) 31R diffracts the biological information light 53L that arrives obliquely from the left, and deflects it into parallel light 54L that is collected on the imaging surface (right) 40R of the imaging means 4.
 なお、上記の光路は、単なる一例であって、各種構成要素の配置及び大きさ、又は装置の使用態様に応じて、種々変更が可能である。 Note that the above optical path is merely an example, and various changes can be made according to the arrangement and size of various components or the use mode of the apparatus.
 図6は、本実施形態の個人認証装置の変形例である。図6(A)に示す例は、ステージ2の端部に光源5を設けた個人認証装置の断面上面図であり、図2に示した個人認証装置とは光源の配置が異なる。本変形例では、照明用HOE31は、反射型ホログラムが記録されており、導光体として機能する透明なステージ2の裏面に密着して配置される。この導光体のエッジ部分に配置された光源(左)5Lからの光は導光体を介して照明用HOE(左)31Lに入射し、所定の照射角度θ1をもって光52Lとして認証対象の左側面に照射される。光52Lは平行光であってもよいし、拡散又は集束する光であってもよい。光源(右)5Rからの光も同様に伝搬する。 FIG. 6 is a modification of the personal authentication device of this embodiment. The example shown in FIG. 6A is a cross-sectional top view of a personal authentication device in which the light source 5 is provided at the end of the stage 2, and the arrangement of the light sources is different from that of the personal authentication device shown in FIG. In this modification, the illumination HOE 31 has a reflection hologram recorded thereon, and is placed in close contact with the back surface of the transparent stage 2 that functions as a light guide. Light from the light source (left) 5L arranged at the edge portion of the light guide is incident on the lighting HOE (left) 31L through the light guide, and has a predetermined irradiation angle θ 1 as light 52L to be authenticated. Irradiates the left side. The light 52L may be parallel light, or may be light that is diffused or focused. Light from the light source (right) 5R propagates in the same manner.
 また、図6(B)は、撮像手段及び撮像用HOEを複数配置した個人認証装置の断面側面図である。図6(B)では、撮像手段及び撮像用HOEをX軸方向にアレイ状に複数配置した。光源も対応するように適宜複数設ければよい。HOEは、マスターを作製すれば、それを複製することで容易に量産することができるので、撮像用HOEをアレイ状に配置した装置も比較的低コストで実現できる。また、本例の個人認証装置によれば、図1などに示した例よりも広い認証可能空間を確保することができる。本例は、例えば、入退室管理等に用いられる壁面設置型の認証装置に適している。この個人認証装置は、例えば、利用者の身長、目、肩の高さなどを検知するセンサを搭載してもよい。認証時において、このセンサが利用者の身長などを検知すると、この個人認証装置は、認証対象(手のひらなど)が置かれる位置を予測し、その予想位置に対応する光源及び撮像手段を作動させる。また、誘導灯を点灯させることによって、利用者に手が置かれるべき位置を示してもよい。また、ホログラムシートに誘導用HOEを形成し、誘導用HOEによって認証時に立体のガイドマーク(手の位置の示すフレーム、矢印など)をステージ又は空間中に投影してもよい。これによって、利用者は、自己の体格に応じて、無理な姿勢をとったり、手首を捻ったりすることなく、最適の位置で自己の手などを装置の認証可能空間に置くことができる。また、本例の装置は、ステージがフラットでかつ比較的広い認証可能空間を確保することができるので、人間からの指示を十分に解することが困難な動物(例えば、犬、猫など)の個体認証にも適用することができる。 FIG. 6B is a cross-sectional side view of a personal authentication device in which a plurality of imaging means and imaging HOEs are arranged. In FIG. 6B, a plurality of imaging means and imaging HOEs are arranged in an array in the X-axis direction. A plurality of light sources may be provided as appropriate so as to correspond. If the HOE is manufactured, it can be easily mass-produced by duplicating the master. Therefore, an apparatus in which the imaging HOEs are arranged in an array can be realized at a relatively low cost. Further, according to the personal authentication device of this example, it is possible to secure a wider authenticable space than the example shown in FIG. This example is suitable for, for example, a wall-mounted authentication device used for entrance / exit management and the like. For example, the personal authentication device may include a sensor that detects the height, eyes, shoulder height, and the like of the user. When the sensor detects the height of the user at the time of authentication, the personal authentication device predicts a position where an authentication target (palm or the like) is placed, and activates a light source and an imaging unit corresponding to the predicted position. Moreover, you may show the position where a user should put a hand by lighting a guide light. Alternatively, a guidance HOE may be formed on the hologram sheet, and a three-dimensional guide mark (a frame indicating a hand position, an arrow, etc.) may be projected onto the stage or space by the guidance HOE during authentication. Accordingly, the user can place his / her hand or the like in the authenticable space of the apparatus at an optimal position without taking an unreasonable posture or twisting the wrist according to his / her physique. In addition, since the apparatus of this example has a flat stage and can secure a relatively wide authenticable space, it can be used for animals (for example, dogs, cats, etc.) that are difficult to fully understand human instructions. It can also be applied to individual authentication.
 [他の実施形態]
 図7は、本発明の個人認証装置の他の実施形態の一例である。本実施形態では、導光体6及び導光用ホログラフィック光学素子33を利用し、認証対象10からの生体情報光53を導光用ホログラフィック光学素子33によって導光体6中を伝搬させる構成を採用している。図7の個人認証装置において、撮像手段4は、導光用HOE33の中心軸Cから離れた位置に配置されており、図7には、生体情報光53を撮像手段4に入射させるまでの光路が示されている。
[Other Embodiments]
FIG. 7 is an example of another embodiment of the personal authentication device of the present invention. In this embodiment, the light guide 6 and the holographic optical element 33 for light guide are used, and the biological information light 53 from the authentication target 10 is propagated through the light guide 6 by the light guide holographic optical element 33. Is adopted. In the personal authentication device of FIG. 7, the imaging unit 4 is disposed at a position away from the central axis C of the light guide HOE 33, and FIG. 7 shows an optical path until the biological information light 53 is incident on the imaging unit 4. It is shown.
 導光体6は、ガラス又は樹脂の平板であり、所定の閾値角度θthよりも大きい角度の光をその表面で反射する。屈折率の大きい媒質から小さい媒質へ光が進むとき、入射角が臨界角より大きい光は境界面で全反射されることから、屈折率の大きい媒質は、臨界角を閾値角度とする導光体として使用することができる。ただし、屈折率の小さい媒質から屈折率の大きい媒質へ光が進む場合には、全反射は生じない。境界面として、ガラスの表面それ自体を使用することもでき、ガラス内の屈折率とガラス外の空気等の屈折率との比によって定まるガラスの臨界角が閾値角度となり、ガラスは、ガラス内からの光の入射角が、臨界角よりも大きい場合は全反射してガラス外には透過せず導光体として使用することができるのである。個人認証装置のステージ2がガラスや空気よりも屈折率の高い媒質であれば、臨界角を閾値角度とする導光体として利用することができる。図7においてもステージを導光体として利用している。ただし、ステージ2とは別に、ガラス又は樹脂で構成された導光体6を設けてもよい。また、導光体として用いるステージ2又はステージ2とは別に設けられる導光体において、導光用HOE33と対向する面には、所定の閾値角度θthよりも大きい角度で入射する光を反射する角度選択性を有する反射膜を設けることが好ましい。なお、導光用HOE33と角度選択性を有する反射膜との間の導光体は、屈折率の高い媒質である必要はなく、導光用HOE33と角度選択性を有する反射膜とを離間させて配置し、その間の空間を導光させてもよい(この場合、導光体は空気である)。 The light guide 6 is a flat plate made of glass or resin, and reflects light having an angle larger than a predetermined threshold angle θth on its surface. When light travels from a medium with a large refractive index to a medium with a small refractive index, light with an incident angle larger than the critical angle is totally reflected at the boundary surface. Can be used as However, total reflection does not occur when light travels from a medium with a low refractive index to a medium with a high refractive index. As the boundary surface, the glass surface itself can be used, and the critical angle of the glass determined by the ratio of the refractive index in the glass and the refractive index of the air outside the glass becomes the threshold angle. When the incident angle of the light is larger than the critical angle, the light is totally reflected and does not pass outside the glass and can be used as a light guide. If the stage 2 of the personal authentication device is a medium having a higher refractive index than glass or air, it can be used as a light guide having a critical angle as a threshold angle. Also in FIG. 7, the stage is used as a light guide. However, separately from the stage 2, a light guide 6 made of glass or resin may be provided. Further, the separately provided are the light guide and the stage 2 or stage 2 is used as a light guide, on the surface of HOE33 facing light guide, for reflecting light incident at an angle greater than a predetermined threshold angle theta th It is preferable to provide a reflective film having angle selectivity. The light guide between the light guiding HOE 33 and the reflective film having angle selectivity does not need to be a medium having a high refractive index, and the light guiding HOE 33 and the reflective film having angle selectivity are separated from each other. And the space between them may be guided (in this case, the light guide is air).
 導光用HOE33は、図7では反射型のホログラフィック光学素子であり、認証対象10からの生体情報光53を所定の閾値角度θthよりも大きい反射角度θ2で反射させ、生体情報光54を導光体6の内部で反射を繰り返させ、導光用HOE33の中心軸Cから離れた位置に配置される撮像手段4の方向へ伝搬させる。生体情報光54は、撮像手段4の近傍に形成された撮像用HOE32(図7では撮像手段4に対向するようにホログラムシート3に形成されている)によって、撮像手段4に結像される。ただし、本実施形態では、導光用HOE33及び導光体6によって生体情報光を伝搬させるので、撮像手段4の配置を比較的自由に設計することができ、特にスペース的に余裕がある場合は、薄型の撮像用HOE32ではなく、その他の手段によって撮像手段4に生体情報光を結像させてもよい。この点において、本実施形態では撮像用HOE32は必須の構成ではない。 The light guiding HOE 33 is a reflection-type holographic optical element in FIG. 7, and reflects the biological information light 53 from the authentication target 10 at a reflection angle θ 2 larger than a predetermined threshold angle θ th to generate the biological information light 54. Is repeatedly reflected inside the light guide 6 and propagates in the direction of the imaging means 4 disposed at a position away from the central axis C of the light guide HOE 33. The biological information light 54 is imaged on the imaging unit 4 by an imaging HOE 32 (formed on the hologram sheet 3 so as to face the imaging unit 4 in FIG. 7) formed in the vicinity of the imaging unit 4. However, in the present embodiment, the biological information light is propagated by the light guide HOE 33 and the light guide 6, so that the arrangement of the imaging means 4 can be designed relatively freely, especially when there is room in space. Instead of the thin imaging HOE 32, the biological information light may be imaged on the imaging means 4 by other means. In this respect, the imaging HOE 32 is not an essential configuration in the present embodiment.
 また、図7の個人認証装置は接触検知手段9を有しており、接触検知手段9によって認証対象が所定の位置に接触したことを検知させてもよい。例えば、接触検知手段9は、認証対象が認証可能空間においてステージ2に接触したことを検知すると、図示しない制御装置に信号を送り、光源5から光を照射し、撮像手段で生体情報を撮像するよう動作させてもよい。なお、接触検知手段9としては、特に制限はなく、抵抗膜方式、静電容量方式などのタッチパネルセンサを適宜使用することが可能である。 Further, the personal authentication device of FIG. 7 has the contact detection means 9, and the contact detection means 9 may detect that the authentication target has touched a predetermined position. For example, when the contact detection unit 9 detects that the authentication target is in contact with the stage 2 in the authenticable space, the contact detection unit 9 sends a signal to a control device (not shown), emits light from the light source 5, and captures biological information by the imaging unit. You may make it operate. In addition, there is no restriction | limiting in particular as the contact detection means 9, It is possible to use suitably a touchscreen sensor, such as a resistive film system and an electrostatic capacitance system.
 図7では、ステージ2を導光体6として利用し、ステージの裏側にホログラムシート3を配置したが、ホログラムシート3の裏側に導光体6を配置した場合は、導光用HOE33は、透過型のホログラフィック光学素子とすればよい。本実施形態の個人認証装置は、携帯情報端末、特に多機能携帯電話(スマートフォン、iPhone(登録商標))に適用することが好ましい。また、図7では、撮像手段4は、平行な生体情報光を受光して、一枚の生体情報の画像を取得するように構成されているが、これに限定されない。図7に示す個人認証装置において、導光用HOE33が生体情報光のうち第1の方向に生じた光と第2の方向に生じた光を撮像手段4の方向へ伝搬させ、撮像用HOE32が第1及び第2の方向の生体情報光を撮像手段4に集光し、撮像手段4が第1及び第2の方向の生体情報に基づいて、二枚の生体情報の画像を取得するように構成してもよい。すなわち、図7に示す個人認証装置2も図2に示した個人認証装置と同様に、異なる方向から観察した視差を有するステレオ画像を取得することができる。 In FIG. 7, the stage 2 is used as the light guide 6 and the hologram sheet 3 is disposed on the back side of the stage. However, when the light guide 6 is disposed on the back side of the hologram sheet 3, the light guide HOE 33 is transmitted. A holographic optical element of a type may be used. The personal authentication device of the present embodiment is preferably applied to a portable information terminal, particularly a multi-function mobile phone (smart phone, iPhone (registered trademark)). In FIG. 7, the imaging unit 4 is configured to receive parallel biological information light and acquire an image of one piece of biological information, but is not limited thereto. In the personal authentication device shown in FIG. 7, the light guiding HOE 33 propagates the light generated in the first direction and the light generated in the second direction of the biological information light in the direction of the imaging means 4, and the imaging HOE 32 is The biological information light in the first and second directions is condensed on the imaging means 4, and the imaging means 4 acquires two images of biological information based on the biological information in the first and second directions. It may be configured. That is, the personal authentication device 2 shown in FIG. 7 can also acquire a stereo image having parallax observed from different directions, similarly to the personal authentication device shown in FIG.
 図8は、本発明の個人認証装置のさらに他の実施形態の一例である。本実施形態では、撮像手段4に可変焦点機構を内蔵し、可変焦点機構によって、物体側の前側焦点面45の位置をZ軸方向に変更することができ、第1の波長の光による第1の生体情報と第2の波長の光による第2の生体情報を取得することを可能とした個人認証装置について説明する。なお、第1の生体情報と第2の生体情報は、異なる生体情報(例えば、静脈と指紋、光彩と網膜等)であることが好ましいが、異なる波長の光で同じ生体情報について2重に情報を取得して精度を向上させてもよい。図8では、第1の光源として赤外LED5L、5Rを採用し、赤外LED5L、5Rから赤外線を照射して、指の内部の静脈に関する情報を取得し、第2の光源として面光源50を採用し、面光源50から可視光を照射して、指の表面の凹凸から指紋に関する情報を取得する実施態様である。ただし、図8では別々の光源を使用したが、一つの光源から複数の波長の光が照射される場合は、一つの光源で第1の生体情報と第2の生体情報の両方を取得することも可能である。一つの光源に含まれる複数の波長の光を利用する場合、撮像手段において所定の波長の信号強度をフィルタリングして検出すればよい。例えば、RGBのカラーフィルターが設けられた撮像手段を使用すれば、GB画素からの情報を用いて指紋の生体情報を取得し、赤外まで感度のあるR画素を用いて静脈の生体情報を取得することができる。 FIG. 8 shows an example of still another embodiment of the personal authentication device of the present invention. In the present embodiment, the imaging unit 4 includes a variable focus mechanism, and the position of the front focal plane 45 on the object side can be changed in the Z-axis direction by the variable focus mechanism. A personal authentication device that can acquire the second biological information using the second biological information and the light of the second wavelength will be described. The first biological information and the second biological information are preferably different biological information (for example, vein and fingerprint, glow and retina, etc.), but the same biological information is duplicated with light of different wavelengths. May be obtained to improve accuracy. In FIG. 8, infrared LEDs 5L and 5R are employed as the first light sources, infrared rays are irradiated from the infrared LEDs 5L and 5R, information on veins inside the finger is acquired, and the surface light source 50 is used as the second light source. This is an embodiment in which visible light is irradiated from the surface light source 50 and information related to the fingerprint is acquired from the irregularities on the surface of the finger. However, although separate light sources are used in FIG. 8, when light of a plurality of wavelengths is emitted from one light source, both the first biological information and the second biological information are acquired with one light source. Is also possible. When light of a plurality of wavelengths included in one light source is used, the image intensity may be detected by filtering the signal intensity of a predetermined wavelength. For example, if an imaging means provided with RGB color filters is used, biometric information of fingerprints is obtained using information from GB pixels, and biometric information of veins is obtained using R pixels sensitive to infrared. can do.
 図8(A)は、赤外LED5L、5Rによって静脈に関する生体情報を取得する状況を説明する図であり、基本的には既に説明した図2と同様の動作である。つまり、光源である赤外LED5L、5Rから照射された赤外光51L、51Rは、前述したとおり、照射用HOE31L、31Rによって所定の角度に傾けられ、認証対象10に対し照明光52L、52Rが照射される。認証対象10から生成した生体情報光53は、撮像用HOE32に入射し、撮像用HOE32によって撮像手段4に結像する。ここで、撮像手段4は、指の内部の静脈を観察するため、指の内部に、前側焦点面(物体面)45が配置されるように内蔵された可変焦点機構が調整されている。 FIG. 8A is a diagram for explaining a situation in which biological information related to veins is acquired by the infrared LEDs 5L and 5R, and is basically the same operation as FIG. 2 already described. That is, as described above, the infrared lights 51L and 51R emitted from the infrared LEDs 5L and 5R that are the light sources are inclined at a predetermined angle by the irradiation HOEs 31L and 31R, and the illumination lights 52L and 52R are emitted to the authentication target 10. Irradiated. The biological information light 53 generated from the authentication target 10 enters the imaging HOE 32 and forms an image on the imaging unit 4 by the imaging HOE 32. Here, in order to observe the vein inside the finger, the imaging unit 4 is adjusted with a built-in variable focus mechanism so that a front focal plane (object plane) 45 is arranged inside the finger.
 次に、図8(B)は、面光源50によって指紋に関する生体情報を得する状況を説明する図である。ホログラムシート3は、赤外光を回折し、可視光をあまり回折しないため、面光源50から照射された可視光は、ホログラムシート3の照射用HOE、撮像用HOEによって回折されず、認証対象10をそのまま照明する。認証対象10の表面で反射した可視光も、ホログラムシート3の影響を受けず、撮像手段4によって画像が得られる。ここで、撮像手段4は、認証対象10の表面を観察するため、指の表面に、前側焦点面(物体面)45が配置されるように内蔵された可変焦点機構が調整されている。さらに前側焦点面45の位置を適宜変更すれば、認証対象10である指の腹及び内部を撮像することができる。そして、指の表面に刻まれた指紋を取得できるのである。 Next, FIG. 8B is a diagram for explaining a situation in which the biometric information related to the fingerprint is obtained by the surface light source 50. Since the hologram sheet 3 diffracts infrared light and does not diffract visible light so much, the visible light irradiated from the surface light source 50 is not diffracted by the irradiation HOE and imaging HOE of the hologram sheet 3, and is subject to authentication 10 Illuminate as is. The visible light reflected from the surface of the authentication target 10 is not affected by the hologram sheet 3, and an image is obtained by the imaging unit 4. Here, in order for the imaging means 4 to observe the surface of the authentication target 10, a built-in variable focus mechanism is adjusted so that a front focal plane (object plane) 45 is arranged on the surface of the finger. Furthermore, if the position of the front focal plane 45 is changed as appropriate, it is possible to image the belly and the inside of the finger that is the authentication target 10. The fingerprint engraved on the surface of the finger can be acquired.
 このように、本実施形態においては、撮像手段4が可変焦点機構を具備していることによって、異なる生体情報を検出することが可能となっている。しかも、ホログラムの波長選択性により、波長の異なる光が、異なる光路を経て、異なる生体情報光を生成させるのである。こうして、本実施形態の個人認証装置は、光源から供給する光の波長及び前側焦点面45の位置を変更することによって、連続的に、静脈と指紋の二種の画像を取得することができ、より高精度の認証を行うことが可能なのである。 As described above, in the present embodiment, the imaging means 4 includes the variable focus mechanism, so that different biological information can be detected. In addition, due to the wavelength selectivity of the hologram, light of different wavelengths generates different biological information light through different optical paths. Thus, the personal authentication device of the present embodiment can continuously acquire two types of images of veins and fingerprints by changing the wavelength of light supplied from the light source and the position of the front focal plane 45. It is possible to perform more accurate authentication.
 また、本実施形態のように、可視光の光源を有する場合は、認証処理を開始する際、ステージ2の一部、すなわち認証対象が配置されるべき位置(ここでは、導光用HOE33の位置)に可視光を照射して、認証対象の配置を案内表示することも好ましい。これによって、ステージ2上に特に物理的な目印などを設けなくても、利用者は指を配置すべき位置を容易に知ることができる。なお、可視光を表示する手段として、表示装置を利用すれば、より明確に配置すべき位置を特定することができるので好ましい。 In addition, in the case of having a visible light source as in the present embodiment, when starting the authentication process, a part of the stage 2, that is, the position where the authentication target is to be placed (here, the position of the light guiding HOE 33). It is also preferable to radiate visible light to guide and display the arrangement of the authentication target. Thus, the user can easily know the position where the finger should be placed without providing a physical mark or the like on the stage 2. Note that it is preferable to use a display device as means for displaying visible light because the position to be arranged can be specified more clearly.
 図9は、本個人認証装置を多機能携帯電話100に適用した例である。多機能携帯電話100は、表示画面102、カメラ104及び操作ボタン110を有しており、表示画面はタッチパネル方式である。本実施形態の多機能携帯電話100は表示画面102の領域及びカメラ104の部分を含む表面を覆うガラス基板をステージ2及び導光体6として利用した。ガラス基板(ステージ)の裏面に、照明用HOE31、導光用HOE33、撮像用HOE32が配置されており、撮像用HOE32は、導光体6と略同一の屈折率を有することが好ましい。なお、ガラス基板(ステージ)の裏側に、照明用HOE31、導光用HOE33、撮像用HOE32が形成されたホログラムシートを貼付してもよい。各HOEの配置、数量は、多機能携帯電話の構成に応じて適宜設定することができる。 FIG. 9 shows an example in which the personal authentication device is applied to the multi-function mobile phone 100. The multi-function mobile phone 100 has a display screen 102, a camera 104, and operation buttons 110, and the display screen is a touch panel system. In the multi-function mobile phone 100 of the present embodiment, a glass substrate covering the surface including the region of the display screen 102 and the camera 104 is used as the stage 2 and the light guide 6. An illumination HOE 31, a light guide HOE 33, and an imaging HOE 32 are disposed on the back surface of the glass substrate (stage), and the imaging HOE 32 preferably has substantially the same refractive index as the light guide 6. Note that a hologram sheet on which an illumination HOE 31, a light guide HOE 33, and an imaging HOE 32 are formed may be attached to the back side of the glass substrate (stage). The arrangement and quantity of each HOE can be appropriately set according to the configuration of the multi-function mobile phone.
 生体情報光を取得する撮像手段としては、多機能携帯電話に搭載されたカメラ104(CMOS又はCCD)を利用することができる。カメラ104は、通常、焦点を変更する可変焦点機構を有しており、図8で説明したように、前側焦点面(物体面)45を変更することができ、複数の生体情報を取得可能であるので好ましい。 As an imaging means for acquiring biological information light, a camera 104 (CMOS or CCD) mounted on a multi-function mobile phone can be used. The camera 104 normally has a variable focus mechanism for changing the focus, and as described with reference to FIG. 8, the front focal plane (object plane) 45 can be changed, and a plurality of pieces of biological information can be acquired. This is preferable.
 また、多機能携帯電話100の表示画面102には、認証対象が配置されるべき位置を表示することも好ましい。従来とは異なり本発明の個人認証装置では表面に突起物が必要なくなったので、認証対象を配置する目印が必要となるが、これを表示画面102に表示させることで解決できる。 In addition, it is also preferable to display the position where the authentication target is to be displayed on the display screen 102 of the multi-function mobile phone 100. Unlike the prior art, the personal authentication device according to the present invention no longer requires a protrusion on the surface, so a mark for placing the authentication target is required. This can be solved by displaying this on the display screen 102.
 図9では、光源からの光が照明用HOE31によって認証対象(図示せず)に照射されることによって認証対象から生成された生体情報光は、導光用HOE33によって、図9の中心軸Cから離れた右上の位置に設けられたカメラ104まで伝搬させる。その後、撮像手段であるカメラ104に対向して設けられた撮像用HOE32によって、導光体6を伝搬してきた生体情報光を撮像手段104に結像するのである。そして、図示しない制御装置は、結像した生体情報を登録されているものと比較して、利用者の認証を行うのである。 In FIG. 9, the biological information light generated from the authentication target when the light from the light source is irradiated on the authentication target (not shown) by the lighting HOE 31 is guided from the central axis C of FIG. 9 by the light guiding HOE 33. It propagates to the camera 104 provided at the far right upper position. Thereafter, the biological information light propagating through the light guide 6 is imaged on the imaging means 104 by the imaging HOE 32 provided facing the camera 104 as the imaging means. And the control apparatus which is not shown in figure compares the imaged biometric information with what is registered, and authenticates a user.
 [ホログラフィック光学素子作製方法]
 ところで、本実施形態の個人認証装置に利用するHOEは、静脈を撮像するために、近赤外のLED光源を用いて再生されるものである。したがって、本来、再生時と同様の近赤外の波長を有するレーザーを用いて作製(記録)されることが好ましい。しかしながら、本出願人の知る限り、現時点では、HOEを作製するのに適した近赤外のレーザー装置が少なく、かかる近赤外のレーザーに適する感光材料もない。
[Method for producing holographic optical element]
By the way, the HOE used in the personal authentication device of the present embodiment is reproduced using a near-infrared LED light source in order to image a vein. Therefore, it is preferably produced (recorded) using a laser having a near-infrared wavelength similar to that used during reproduction. However, as far as the present applicant knows, at present, there are few near-infrared laser devices suitable for producing HOE, and there is no photosensitive material suitable for such near-infrared lasers.
 そこで、本発明では、緑色レーザーによって感光可能な材料であって、一般的で安価な感光材料(以下、「緑色系感光材料」という)を使用して、近赤外用の照明用HOE及び撮像用HOEを作製(記録)することとした。緑色系感光材料は、例えば、光重合開始剤として、チタノセン系化合物を含むもの、又はベンゾフェノン系化合物と増感色素とを組み合わせたものが好ましい。再生時の波長とは異なる波長でHOEを作製する方法については、例えば、「久保田敏弘著、「新版ホログラフィ入門-原理と実際-」、朝倉書店、1995年11月、26-31頁」に記載されている。 Therefore, in the present invention, a general and inexpensive photosensitive material (hereinafter referred to as “green-based photosensitive material”), which is a material that can be photosensitive by a green laser, is used for near infrared illumination HOE and imaging. The HOE was prepared (recorded). For example, the green light-sensitive material preferably contains a titanocene compound as a photopolymerization initiator or a combination of a benzophenone compound and a sensitizing dye. The method for producing HOE at a wavelength different from the wavelength at the time of reproduction is described in, for example, “Toshihiro Kubota,“ Introduction to New Version Holography—Principle and Practice ””, Asakura Shoten, November 1995, pp. 26-31. Has been.
 図10は、ホログラフィック光学素子を作製する装置及び方法を示す説明図である。緑色系感光材料の記録対象部分を基準点Oに合わせて配置し、基準点Oを含み、緑色系感光材料3に対して垂直な軸Nを光軸として、緑色(波長λo=532nm)のレーザー光源70を配置する。 FIG. 10 is an explanatory view showing an apparatus and a method for producing a holographic optical element. The recording target portion of the green photosensitive material is arranged in alignment with the reference point O, and the green (wavelength λ o = 532 nm) of the optical axis is an axis N including the reference point O and perpendicular to the green photosensitive material 3. A laser light source 70 is disposed.
 ホログラム記録時において、レーザー光源70から照射された緑色レーザー光60は、ビームスプリッタ65を介して分離する。分離した一方のレーザー光61(記録用参照光)は、アパーチャ66を通過した後、集束レンズ67によって集束し、感光材料31に照射される。このときの焦点Prは、記録用参照光61の点光源とみなすことができる。ここで、焦点Prから基準点Oまでの距離をRrとする。 At the time of hologram recording, the green laser light 60 irradiated from the laser light source 70 is separated via the beam splitter 65. One of the separated laser beams 61 (recording reference beam) passes through the aperture 66, is focused by the focusing lens 67, and is applied to the photosensitive material 31. The focus P r of time can be regarded as a point light source of the recording-specific reference light 61. Here, the distance from the focal point P r to the reference point O is R r .
 そして、分離した他方のレーザー光62(記録用物体光)は、アパーチャ68を通過した後、ミラー69によって反射され、感光材料の記録対象部分31に照射される。記録用物体光の中心軸Lは光軸Nに対して角度θoを有する。記録用物体光を平行光とみなした場合、その中心軸Lに沿って無限遠方に置かれた点Poは記録用物体光62の点光源としてよい。本例の場合、基準点Oから点Poまでの距離はRo=∞となる。記録用参照光61と記録用物体光62との干渉により、感光材料の記録対象部分31にホログラムが記録される。 The other separated laser beam 62 (recording object beam) passes through the aperture 68, is reflected by the mirror 69, and is irradiated onto the recording target portion 31 of the photosensitive material. The central axis L of the object light for recording has an angle θ o with respect to the optical axis N. If regarded recording object beam parallel, the P o point placed at infinity along the central axis L a good as a point light source of the recording object beam 62. In this example, the distance from the reference point O to the point P o is R o = ∞. Due to the interference between the recording reference beam 61 and the recording object beam 62, a hologram is recorded on the recording target portion 31 of the photosensitive material.
 ホログラム再生時において、近赤外(波長λc=890nm)の再生用参照光の点光源Pcを基準点OからRcの距離に配置する。点光源Pcから照射された再生用参照光51がホログラム31を透過すると、回折により再生光52が生じる。記録用参照光の波長と再生用参照光の波長とが異なるため、再生光52は、物体光62とは異なり、その中心軸Lが光軸Nに対して角度θiを有するものとなる。再生光52の中心軸上の無限遠方には再生像点Pi(ホログラムの虚像の位置)が生じる。本例の場合、距離OPiは、Ri=∞としてよい。なお、再生用参照光51及び再生光52は、本発明の個人認証装置において、それぞれ、光源5からの光51及び認証対象への照明光52に相当する。 At the time of hologram reproduction, a point light source P c of reproduction reference light in the near infrared (wavelength λ c = 890 nm) is arranged at a distance of R c from the reference point O. When the reproduction reference beam 51 emitted from the point light source Pc passes through the hologram 31, reproduction beam 52 is generated by diffraction. Since the wavelength of the recording reference light and the wavelength of the reproduction reference light are different, the reproduction light 52 differs from the object light 62 in that the central axis L has an angle θ i with respect to the optical axis N. A reproduction image point P i (the position of the virtual image of the hologram) is generated at infinity on the central axis of the reproduction light 52. In this example, the distance OP i may be R i = ∞. Note that the reproduction reference light 51 and the reproduction light 52 correspond to the light 51 from the light source 5 and the illumination light 52 to the authentication target, respectively, in the personal authentication device of the present invention.
 ここで、上記文献「新版ホログラフィ入門-原理と実際-」によれば、ホログラム記録時の波長とホログラム再生時の波長が異なる場合、参照光、物体光及び再生光の関係は、一般に以下の式によって表わされると記載されている。 Here, according to the above document “Introduction to New Version Holography—Principle and Practice”, when the wavelength at the time of hologram recording and the wavelength at the time of hologram reproduction are different, the relationship between the reference light, the object light and the reproduction light is generally It is described that it is represented by.
   1/Ri=1/Rc+μ(1/Ro-1/Rr)      (式1)
   sinθi=sinθc+μ(sinθo-sinθr)  (式2)
   μ=λc/λo                    (式3)
 図10に示した例では、式1において、物体光源点Po及び再生像点Piは無限遠方にあるので、1/Ri=0、1/Ro=0である。また、式2において、θc=∠NPcN=0°、θr=∠NPrN=0°であるので、sinθc=0、sinθr=0である。また、式3において、λc=890nm、λo=532nmであるので、μ=1.673である。上記式に基づいて、所望の再生用参照光の点光源の位置、及び再生光の照射角度を設定することができる。
1 / R i = 1 / R c + μ (1 / R o −1 / R r ) (Formula 1)
sin θ i = sin θ c + μ (sin θ o −sin θ r ) (Formula 2)
μ = λ c / λ o (Formula 3)
In the example shown in FIG. 10, in Equation 1, the object light source point P o and the reproduction image point P i are at infinity, so 1 / R i = 0 and 1 / R o = 0. In Equation 2, since θ c = ∠NP c N = 0 ° and θ r = ∠NP r N = 0 °, sin θ c = 0 and sin θ r = 0. In Equation 3, since λ c = 890 nm and λ o = 532 nm, μ = 1.673. Based on the above equation, the position of the point light source of the desired reproduction reference light and the irradiation angle of the reproduction light can be set.
 例えば、基準点Oから再生用参照光の点光源Pcまでの距離Rcを10mmに設定する場合、式1及び式3から、基準点Oから記録用参照光の点光源Prまでの距離Rrは、以下のとおりとなる。 For example, if the reference point O to set the distance R c to the light source P c points of the reproducing reference beam to 10 mm, the distance from Formula 1 and Formula 3, from the reference point O to the light source P r point of the recording reference beam R r is as follows.
 Rr=(λc/λo)・Rc=16.73mm
 また、再生光の照射角度θiを-75°(時計回りを正の向きとする)に設定する場合、式2及び式3から、記録用物体光の照射角度θoは以下のとおりとなる。
R r = (λ c / λ o ) · R c = 16.73 mm
Further, when the reproduction light irradiation angle θ i is set to −75 ° (clockwise is a positive direction), the irradiation angle θ o of the recording object light is as follows from Equations 2 and 3. .
 sinθo=1/μ(sinθi)=-0.577
 θo=-35.3°
 つまり、ホログラム記録時において、532nmのレーザー光を用い、光軸に対して-35.3°の角度を有する物体光と、基準点から16.73mm離れた位置に配置された点光源からの参照光によって緑色系感光材料を露光させると、それに記録されたホログラムについては、再生時において、基準点から10mm離れた位置に配置された点光源からの波長λc=890nmの参照光を照射した場合、光軸に対して-75°の角度を有する再生光が発生する。
sin θ o = 1 / μ (sin θ i ) = − 0.577
θ o = -35.3 °
In other words, at the time of hologram recording, a laser beam of 532 nm is used, an object beam having an angle of −35.3 ° with respect to the optical axis, and a reference from a point light source disposed at a position away from the reference point by 16.73 mm When a green photosensitive material is exposed to light, the hologram recorded thereon is irradiated with reference light having a wavelength λ c = 890 nm from a point light source disposed at a position 10 mm away from the reference point during reproduction. Reproduction light having an angle of −75 ° with respect to the optical axis is generated.
 換言すると、本個人認証装置のHOE作製時において、装置の厚み(光源5からHOE31までの距離)を10mmに設定したい場合は、HOEから16.73mm離した点光源により記録用参照光を照射すればよい。また、照明光52の照射角度を75°に設定する場合は、記録用物体光の照射角度を35.3°となるようにミラーを配置すればよいのである。このように、本発明では、認証時に用いる光とは異なる光を用いて、所望の回折効率、角度選択性などを有するホログラフィック光学素子を作製することができる。 In other words, when manufacturing the HOE of the personal authentication device, if it is desired to set the thickness of the device (distance from the light source 5 to the HOE 31) to 10 mm, the recording reference light is irradiated by a point light source separated by 16.73 mm from the HOE. That's fine. When the illumination angle of the illumination light 52 is set to 75 °, the mirror may be arranged so that the illumination angle of the recording object light is 35.3 °. As described above, in the present invention, a holographic optical element having desired diffraction efficiency, angle selectivity, and the like can be manufactured using light different from light used for authentication.
 [実施例]
 図10に示したHOE作製装置を用いて本発明の個人認証装置で使用可能なホログラムシート3を作製した。まず、フィルム基板上に緑色系感光材料を塗布したホログラフィック記録媒体を個人認証装置のステージ2となるガラス基板に貼りつけて使用した。照明用HOE31のホログラム記録時において、532nmのレーザー光を用い、光軸に対して-35.3°の角度を有する物体光と、基準点から16.73mm離れた位置に配置された点光源からの参照光によって緑色系感光材料を露光させた。かかるホログラムは、再生時において、基準点から10mm離れた位置に配置された点光源からの890nmのレーザー光を照射すると、法線Nに対して75°の角度を有する再生光を発生することができ、厚さ10mmの装置において光源からの光を75°の照射角度で照射可能な照明用HOE31を実現できた。
[Example]
A hologram sheet 3 that can be used in the personal authentication device of the present invention was produced using the HOE production device shown in FIG. First, a holographic recording medium in which a green photosensitive material was applied on a film substrate was attached to a glass substrate serving as the stage 2 of the personal authentication device. At the time of hologram recording of the lighting HOE 31, a laser beam of 532 nm is used, an object beam having an angle of −35.3 ° with respect to the optical axis, and a point light source disposed at a position away from the reference point by 16.73 mm. The green light-sensitive material was exposed to the reference light. Such a hologram may generate reproduction light having an angle of 75 ° with respect to the normal N when irradiated with 890 nm laser light from a point light source disposed at a position 10 mm away from the reference point during reproduction. The illumination HOE 31 capable of emitting light from the light source at an irradiation angle of 75 ° in an apparatus having a thickness of 10 mm was realized.
 また、撮像用HOE32のホログラム記録の際は、上記と同様のホログラムの露光手法を用い、物体光と参照光を所望の角度に設定し、緑色系感光材料を露光させ、再生時において、静脈から所望の角度で入射する890nmの生体情報光を受けて再生光を生じ、かかる再生光をステージからZ方向へ10mm離れ、撮像用HOE32の中心軸からX方向に70mm離れた位置に配置された撮像手段(図示省略)に、静脈の画像を結像可能なホログラムを作製した。このように、認証対象からの生体情報光を撮像手段に集光可能な撮像用HOE32を実現できた。 Further, when recording the hologram of the imaging HOE 32, the same hologram exposure method as described above is used, the object light and the reference light are set at a desired angle, the green photosensitive material is exposed, and during reproduction, from the vein Receiving 890 nm biological information light incident at a desired angle to generate reproduction light. The reproduction light is 10 mm away from the stage in the Z direction and is located at a position 70 mm away from the central axis of the imaging HOE 32 in the X direction. As a means (not shown), a hologram capable of forming a vein image was produced. As described above, the imaging HOE 32 capable of concentrating the biological information light from the authentication target on the imaging means can be realized.
 さらに、上記の方法で作製したHOEを用いて、薄型直方体の形状に形成され、ステージの略中央部分に載置される指の静脈のパターンに基づいて本人確認をする個人認証装置を作製した。本実施例の個人認証装置は、長さ(X軸方向の寸法)が50mm、幅(Y軸方向の寸法)が50mm、厚さ(Z軸方向の寸法)が約10mmであり、直方体である(図1又は図2参照)。ステージ2は、ガラスによって構成した。装置の側面、背面も同様にガラスで構成され、装置全体は密閉構造を有する。 Furthermore, using the HOE produced by the above method, a personal authentication device was produced, which was formed into a thin rectangular parallelepiped shape and confirmed the identity based on the finger vein pattern placed on the substantially central part of the stage. The personal authentication device according to the present embodiment has a length (dimension in the X-axis direction) of 50 mm, a width (dimension in the Y-axis direction) of 50 mm, and a thickness (dimension in the Z-axis direction) of about 10 mm. (See FIG. 1 or FIG. 2). Stage 2 was made of glass. The side surface and back surface of the apparatus are similarly made of glass, and the entire apparatus has a sealed structure.
 光源5L、5Rとして、近赤外のLED(波長890nm)を使用し、撮像手段4として、CCDカメラを使用した。以下、図5を参照する。撮像用HOE32は、8mm角の正方形のHOEを4×2列に配置したものであり、その中心を撮像手段4の中心軸Cに合わせてステージの裏面に貼付した。照明用HOE31L、Rは、8mm角の正方形のHOEを4×1列に配置したものであり、光源5の位置に合わせてステージの裏面に配置した。照明光の照射角度θ1は75°である。 Near-infrared LEDs (wavelength 890 nm) were used as the light sources 5L and 5R, and a CCD camera was used as the imaging means 4. Reference is now made to FIG. The imaging HOE 32 is an array of 8 mm square HOEs arranged in 4 × 2 rows, and the center thereof is attached to the back surface of the stage in accordance with the central axis C of the imaging means 4. The lighting HOEs 31 </ b> L and R are formed by arranging 4 mm × 8 mm square HOEs in 4 × 1 rows and arranged on the back surface of the stage in accordance with the position of the light source 5. The illumination angle θ 1 of the illumination light is 75 °.
 以上説明したとおり、本発明によれば、薄型(例えば、厚さが10mm以下)で簡単な構造の個人認証装置を提供することができる。認証対象を配置するステージをおおむね平坦に構成することができる。 As described above, according to the present invention, it is possible to provide a personal authentication device with a thin structure (for example, a thickness of 10 mm or less) and a simple structure. The stage on which the authentication object is arranged can be configured to be generally flat.
 また、照明用HOEを適宜設計することにより、認証対象の側面に対して照明光を比較的大きな照射角度で照射することができ、生体情報のパターンを鮮明に撮像でき、認証率を向上させることができる。さらに、撮像用HOEを適宜設計することにより、少なくとも異なる二方向から到達する認証対象からの生体情報光を撮像手段に集光することができるので、視差を有するステレオ画像を取得することができる。これにより、一方向から観た画像を用いる場合に比べて認証率を向上させることができ、必要に応じて立体像を構成することもできる。 In addition, by appropriately designing the lighting HOE, it is possible to irradiate the illumination light on the side surface to be authenticated at a relatively large irradiation angle, and to clearly capture the pattern of biological information, thereby improving the authentication rate. Can do. Furthermore, by appropriately designing the imaging HOE, the biological information light from the authentication target reaching at least two different directions can be condensed on the imaging means, so that a stereo image having parallax can be acquired. Thereby, an authentication rate can be improved compared with the case where the image seen from one direction is used, and a three-dimensional image can also be comprised as needed.
 加えて、ステージの表側に比較的大きな認証可能空間を確保することができるので、利用者は、認証時において、認証対象を接触又は非接触状態で、所望の位置に配置することができる。 In addition, since a relatively large authenticable space can be secured on the front side of the stage, the user can place the authentication target at a desired position in a contact or non-contact state at the time of authentication.
2 ステージ
3 ホログラムシート
4 撮像手段
5 光源
6 導光体
8 電子基板部
10 認証対象
12 生体情報
30 照射角度
31 照明用ホログラフィック光学素子
32 撮像用ホログラフィック光学素子
33 導光用ホログラフィック光学素子
40 撮像面
51 光源からの光
52 照明光
53 生体情報光
55 集束光
2 Stage 3 Hologram sheet 4 Imaging means 5 Light source 6 Light guide 8 Electronic board part 10 Authentication object 12 Biological information 30 Irradiation angle 31 Illumination holographic optical element 32 Imaging holographic optical element 33 Light guiding holographic optical element 40 Imaging surface 51 Light from light source 52 Illumination light 53 Biological information light 55 Focused light

Claims (19)

  1.  認証対象における生体情報に基づいて本人確認をする個人認証装置であって、
     光源と、
     表側に前記認証対象が配置されるステージと、
     前記認証対象の生体情報を撮像する撮像手段と、
     前記ステージの一部に配置され、前記光源からの光を前記認証対象に照射する照明用ホログラフィック光学素子と、
     前記ステージの他の一部に配置され、前記認証対象からの光を前記撮像手段に集光させる撮像用ホログラフィック光学素子と、を備えることを特徴とする個人認証装置。
    A personal authentication device for verifying identity based on biometric information in an authentication target,
    A light source;
    A stage where the authentication target is arranged on the front side;
    Imaging means for imaging the biometric information to be authenticated;
    A holographic optical element for illumination that is arranged on a part of the stage and irradiates the authentication target with light from the light source;
    A personal authentication apparatus, comprising: an imaging holographic optical element that is disposed on another part of the stage and collects light from the authentication target on the imaging means.
  2.  前記撮像用ホログラフィック光学素子は、前記認証対象からの光のうち、第1の方向から入射する光を前記撮像手段における撮像面の一部に集光し、前記第1の方向とは異なる第2の方向から入射する光を前記撮像手段における撮像面の他の一部に集光することを特徴とする請求項1に記載の個人認証装置。 The imaging holographic optical element condenses light incident from a first direction out of light from the authentication target on a part of an imaging surface of the imaging means, and is different from the first direction. The personal authentication apparatus according to claim 1, wherein light incident from the direction of 2 is condensed on another part of the imaging surface of the imaging unit.
  3.  前記第1の方向から入射する光、及び前記第2の方向から入射する光に基づいて、前記生体情報の二枚の画像を作成し、前記二枚の画像を用いて前記生体情報の立体像を形成することを特徴とする請求項2に記載の個人認証装置。 Two images of the biological information are created based on the light incident from the first direction and the light incident from the second direction, and the three-dimensional image of the biological information is created using the two images. The personal authentication device according to claim 2, wherein:
  4.  前記撮像用ホログラフィック光学素子は、特定の波長以外の光を遮断する機能を有することを特徴とする請求項1乃至3の何れか1項に記載の個人認証装置。 4. The personal authentication apparatus according to claim 1, wherein the imaging holographic optical element has a function of blocking light other than a specific wavelength.
  5.  認証対象における生体情報に基づいて本人確認をする個人認証装置であって、
     光源と、
     前記認証対象を配置するステージと、
     導光体と、
     前記ステージの一部に配置され、前記光源からの光を前記認証対象に照射する照明用ホログラフィック光学素子と、
     前記ステージの他の一部に配置される導光用ホログラフィック光学素子と、
     前記導光用ホログラフィック光学素子の中心軸から離れた位置に配置され、前記認証対象の生体情報を撮像する撮像手段と、を備え、
     前記導光用ホログラフィック光学素子が、前記認証対象からの光を前記導光体の所定の閾値角度よりも大きな角度で反射させ、前記所定の閾値角度よりも大きな角度で反射した光を前記導光体の内部で反射させて前記撮像手段の方向へ伝搬することを特徴とする個人認証装置。
    A personal authentication device for verifying identity based on biometric information in an authentication target,
    A light source;
    A stage for placing the authentication target;
    A light guide;
    A holographic optical element for illumination that is arranged on a part of the stage and irradiates the authentication target with light from the light source;
    A holographic optical element for light guide disposed in another part of the stage;
    An imaging unit that is disposed at a position away from the central axis of the light guiding holographic optical element, and that images the biological information to be authenticated,
    The light guide holographic optical element reflects light from the authentication target at an angle larger than a predetermined threshold angle of the light guide, and guides light reflected at an angle larger than the predetermined threshold angle. A personal authentication device, wherein the personal authentication device reflects the light inside the light body and propagates the light toward the imaging means.
  6.  前記ステージを前記導光体として使用することを特徴とする請求項5に記載の個人認証装置。 The personal authentication apparatus according to claim 5, wherein the stage is used as the light guide.
  7.  前記導光体の前記撮像手段の近傍に撮像用ホログラフィック光学素子を備え、
     前記撮像用ホログラフィック光学素子が、前記導光体の内部で反射して伝搬した光を前記撮像手段に集光することを特徴とする請求項5又は6に記載の個人認証装置。
    An imaging holographic optical element is provided in the vicinity of the imaging means of the light guide,
    7. The personal authentication apparatus according to claim 5, wherein the imaging holographic optical element condenses the light reflected and propagated inside the light guide onto the imaging means.
  8.  前記認証対象の接触を検知する接触検知手段を備え、
     前記撮像手段は、前記接触検知手段が前記認証対象の接触を検知すると、前記認証対象の生体情報を撮像することを特徴とする請求項1乃至7の何れか1項に記載の個人認証装置。
    Comprising contact detection means for detecting the contact of the authentication object,
    8. The personal authentication device according to claim 1, wherein the imaging unit captures the biometric information of the authentication target when the contact detection unit detects the contact of the authentication target. 9.
  9.  前記光源は、第1及び第2の異なる波長の光を供給可能であり、
     前記撮像手段は可変焦点機構を有し、
     前記個人認証装置は、
     前記ステージに載置された認証対象に対し、第1の波長の光を前記照明用ホログラフィック光学素子を介して照射し、認証対象から生成された生体情報光を前記可変焦点機構を用いて前記撮像手段に結像させ、
     また、前記ステージに載置された認証対象に対し、第2の波長の光を前記照明用ホログラフィック光学素子を介さずに照射し、認証対象から生成された生体情報光を前記可変焦点機構を用いて前記撮像手段に結像させることを特徴とする請求項1乃至8の何れか1項に記載の個人認証装置。
    The light source is capable of supplying light of first and second different wavelengths;
    The imaging means has a variable focus mechanism,
    The personal authentication device includes:
    The authentication object placed on the stage is irradiated with light having a first wavelength via the illumination holographic optical element, and the biological information light generated from the authentication object is used for the authentication using the variable focus mechanism. Form an image on the imaging means,
    In addition, the authentication target placed on the stage is irradiated with light having a second wavelength without passing through the illumination holographic optical element, and the biometric information light generated from the authentication target is irradiated with the variable focus mechanism. The personal authentication device according to claim 1, wherein an image is formed on the imaging unit.
  10.  前記第1の波長の光は赤外光であり、前記認証対象から静脈に関する生体情報光を取得し、前記第2の波長の光は可視光であり、前記認証対象から静脈に関する生体情報光とは異なる生体情報光を取得することを特徴とする請求項9に記載の個人認証装置。 The light of the first wavelength is infrared light, the biological information light related to the vein is acquired from the authentication target, the light of the second wavelength is visible light, and the biological information light related to the vein from the authentication target The personal authentication device according to claim 9, wherein different biometric information lights are acquired.
  11.  前記ステージの少なくとも一部に前記認証対象が載置されるべき位置を表示可能なことを特徴とする請求項1乃至10の何れか1項に記載の個人認証装置。 The personal authentication device according to any one of claims 1 to 10, wherein a position where the authentication target is to be placed can be displayed on at least a part of the stage.
  12.  前記照明用ホログラフィック光学素子、前記撮像用ホログラフィック光学素子、前記導光用ホログラフィック光学素子の少なくとも一つは、前記ステージの裏側に配置されたホログラムシートにおいて形成されることを特徴とする請求項1乃至11の何れか1項に記載の個人認証装置。 At least one of the illumination holographic optical element, the imaging holographic optical element, and the light guiding holographic optical element is formed in a hologram sheet disposed on the back side of the stage. Item 12. The personal authentication device according to any one of Items 1 to 11.
  13.  前記光源は、前記ステージの端部から前記照明用ホログラフィック光学素子に光を照射することを特徴とする請求項1乃至12の何れか1項に記載の個人認証装置。 13. The personal authentication apparatus according to claim 1, wherein the light source irradiates light to the illumination holographic optical element from an end portion of the stage.
  14.  前記照明用ホログラフィック光学素子は、前記光源からの光を、前記ステージの法線に対して45°以上の角度で前記認証対象に照射することを特徴とする請求項1乃至13の何れか1項に記載の個人認証装置。 The holographic optical element for illumination irradiates the authentication target with light from the light source at an angle of 45 ° or more with respect to the normal line of the stage. The personal authentication device according to item.
  15.  前記認証対象における生体情報は、指の静脈、指の指紋、手のひらの静脈、手の甲の静脈、目の網膜、又は目の虹彩であることを特徴とする請求項1乃至14の何れか1項に記載の個人認証装置。 The biometric information in the authentication target is a finger vein, a finger fingerprint, a palm vein, a back vein, a retina of an eye, or an iris of an eye according to any one of claims 1 to 14. The personal authentication device described.
  16.  前記照明用ホログラフィック光学素子、前記撮像用ホログラフィック光学素子又は前記導光用ホログラフィック光学素子は、前記光源の光とは異なった波長を有する参照光及び物体光を照射して作製され、前記光源と同じ波長の光を照射すると所定の角度の光を生じることを特徴とする請求項1乃至15の何れか1項に記載の個人認証装置。 The illumination holographic optical element, the imaging holographic optical element or the light guiding holographic optical element is produced by irradiating a reference light and an object light having a wavelength different from the light of the light source, The personal authentication apparatus according to claim 1, wherein when the light having the same wavelength as that of the light source is irradiated, light having a predetermined angle is generated.
  17.  前記照明用ホログラフィック光学素子、前記撮像用ホログラフィック光学素子又は前記導光用ホログラフィック光学素子は、緑色レーザーによる参照光及び物体光を緑色系感光材料に照射して作製され、近赤外光を照射すると所定の角度の光を生じることを特徴とする請求項16に記載の個人認証装置。 The illumination holographic optical element, the imaging holographic optical element, or the light guiding holographic optical element is produced by irradiating a green photosensitive material with a reference light and object light from a green laser, and emits near-infrared light. The personal authentication apparatus according to claim 16, wherein when the light is irradiated, light having a predetermined angle is generated.
  18.  請求項1乃至17の何れか1項に記載の個人認証装置を含む携帯情報端末装置。 A portable information terminal device including the personal authentication device according to any one of claims 1 to 17.
  19.  認証対象の生体情報に基づく個人認証機能を有する携帯情報端末装置であって、
     画面を構成し、表側に前記認証対象が配置される透明基板と、
     前記透明基板の裏側に配置される光源と、
     前記透明基板の裏側に配置され、前記認証対象の生体情報を撮像する撮像手段と、
     前記透明基板の裏側に配置される照明用ホログラフィック光学素子と、
     前記透明基板の裏側に配置される導光用ホログラフィック光学素子と、
     前記透明基板の裏側に配置される撮像用ホログラフィック光学素子と、を備え、
     前記照明用ホログラフィック光学素子が、前記光源からの光を前記認証対象に照射し、
     前記導光用ホログラフィック光学素子が、前記認証対象からの生体情報光を前記透明基板の所定の閾値角度よりも大きな角度で反射させ、前記所定の閾値角度よりも大きな角度で反射した光を前記透明基板の内部で反射させて撮像用ホログラフィック光学素子の方向へ伝搬させ、
     撮像用ホログラフィック光学素子が前記透明基板の内部を伝搬した光を前記撮像手段に集光することを特徴とする携帯情報端末装置。
    A portable information terminal device having a personal authentication function based on biometric information to be authenticated,
    A transparent substrate on which the authentication object is arranged on the front side, constituting a screen;
    A light source disposed on the back side of the transparent substrate;
    An imaging means disposed on the back side of the transparent substrate and imaging the biometric information to be authenticated;
    A holographic optical element for illumination disposed on the back side of the transparent substrate;
    A holographic optical element for light guide disposed on the back side of the transparent substrate;
    An imaging holographic optical element disposed on the back side of the transparent substrate,
    The illumination holographic optical element irradiates the authentication target with light from the light source,
    The light guide holographic optical element reflects biological information light from the authentication target at an angle larger than a predetermined threshold angle of the transparent substrate, and reflects light reflected at an angle larger than the predetermined threshold angle. Reflected inside the transparent substrate and propagated in the direction of the imaging holographic optical element,
    A portable information terminal device, wherein the imaging holographic optical element condenses the light propagating through the transparent substrate onto the imaging means.
PCT/JP2014/050969 2013-01-23 2014-01-20 Personal authentication device WO2014115682A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014558554A JP6339025B2 (en) 2013-01-23 2014-01-20 Personal authentication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013010424 2013-01-23
JP2013-010424 2013-05-13

Publications (1)

Publication Number Publication Date
WO2014115682A1 true WO2014115682A1 (en) 2014-07-31

Family

ID=51227473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050969 WO2014115682A1 (en) 2013-01-23 2014-01-20 Personal authentication device

Country Status (2)

Country Link
JP (1) JP6339025B2 (en)
WO (1) WO2014115682A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016039124A (en) * 2014-08-07 2016-03-22 現代自動車株式会社Hyundaimotor Company Lamp for vehicle
KR20170083774A (en) * 2016-01-11 2017-07-19 엘지이노텍 주식회사 Iris recognition camera system, terminal including the same
WO2018042778A1 (en) * 2016-08-29 2018-03-08 ソニーセミコンダクタソリューションズ株式会社 Imaging apparatus
KR20180043307A (en) * 2015-09-18 2018-04-27 시냅틱스 인코포레이티드 Optical Fingerprint Sensor Package
CN108200098A (en) * 2018-02-27 2018-06-22 中国信息安全认证中心 A kind of method for controlling multilevel access and system based on more secret visual passwords
WO2017119726A3 (en) * 2016-01-06 2018-08-02 엘지이노텍(주) Lens module and iris recognition camera module comprising same, and iris recognition camera system and terminal comprising same
CN109151283A (en) * 2018-09-30 2019-01-04 联想(北京)有限公司 Electronic equipment and image procossing mould group
CN110198392A (en) * 2018-02-27 2019-09-03 索尼公司 Electronic equipment
JP2019215498A (en) * 2018-06-14 2019-12-19 大日本印刷株式会社 Light modulation element and information recording medium
WO2022196154A1 (en) * 2021-03-16 2022-09-22 パナソニックIpマネジメント株式会社 Contactless authentication system and authentication method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205776A (en) * 1987-02-20 1988-08-25 Fujitsu Ltd Rugged information detector
JPH09509490A (en) * 1994-02-18 1997-09-22 イメッジ・テクノロジー・インコーポレーテッド Method for generating and detecting a high-contrast image of the surface shape of an object and a compact device for implementing the method
JPH11133232A (en) * 1997-10-27 1999-05-21 Dainippon Printing Co Ltd Composite hologram
JP2006305154A (en) * 2005-04-28 2006-11-09 Sony Corp Imaging device
JP2012091802A (en) * 2010-10-25 2012-05-17 Dainippon Printing Co Ltd Windowed envelope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205776A (en) * 1987-02-20 1988-08-25 Fujitsu Ltd Rugged information detector
JPH09509490A (en) * 1994-02-18 1997-09-22 イメッジ・テクノロジー・インコーポレーテッド Method for generating and detecting a high-contrast image of the surface shape of an object and a compact device for implementing the method
JPH11133232A (en) * 1997-10-27 1999-05-21 Dainippon Printing Co Ltd Composite hologram
JP2006305154A (en) * 2005-04-28 2006-11-09 Sony Corp Imaging device
JP2012091802A (en) * 2010-10-25 2012-05-17 Dainippon Printing Co Ltd Windowed envelope

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016039124A (en) * 2014-08-07 2016-03-22 現代自動車株式会社Hyundaimotor Company Lamp for vehicle
KR20180043307A (en) * 2015-09-18 2018-04-27 시냅틱스 인코포레이티드 Optical Fingerprint Sensor Package
KR102459731B1 (en) * 2015-09-18 2022-10-28 베이징 지오브이 테크놀로지 컴퍼니 리미티드 Optical Fingerprint Sensor Package
US11151375B2 (en) 2016-01-06 2021-10-19 Lg Innotek Co., Ltd. Lens module and iris recognition camera module comprising same, and iris recognition camera system and terminal comprising same
WO2017119726A3 (en) * 2016-01-06 2018-08-02 엘지이노텍(주) Lens module and iris recognition camera module comprising same, and iris recognition camera system and terminal comprising same
KR20170083774A (en) * 2016-01-11 2017-07-19 엘지이노텍 주식회사 Iris recognition camera system, terminal including the same
KR102531670B1 (en) * 2016-01-11 2023-05-11 엘지이노텍 주식회사 Iris recognition camera system, terminal including the same
US11922715B2 (en) 2016-08-29 2024-03-05 Sony Semiconductor Solutions Corporation Imaging device
WO2018042778A1 (en) * 2016-08-29 2018-03-08 ソニーセミコンダクタソリューションズ株式会社 Imaging apparatus
US11386688B2 (en) 2016-08-29 2022-07-12 Sony Semiconductor Solutions Corporation Imaging device
CN108200098A (en) * 2018-02-27 2018-06-22 中国信息安全认证中心 A kind of method for controlling multilevel access and system based on more secret visual passwords
CN110198392A (en) * 2018-02-27 2019-09-03 索尼公司 Electronic equipment
US11443544B2 (en) 2018-02-27 2022-09-13 Sony Corporation Electronic device
JP2019215498A (en) * 2018-06-14 2019-12-19 大日本印刷株式会社 Light modulation element and information recording medium
JP7263702B2 (en) 2018-06-14 2023-04-25 大日本印刷株式会社 Optical modulator and information recording medium
CN109151283A (en) * 2018-09-30 2019-01-04 联想(北京)有限公司 Electronic equipment and image procossing mould group
WO2022196154A1 (en) * 2021-03-16 2022-09-22 パナソニックIpマネジメント株式会社 Contactless authentication system and authentication method

Also Published As

Publication number Publication date
JP6339025B2 (en) 2018-06-06
JPWO2014115682A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6339025B2 (en) Personal authentication device
KR900006061B1 (en) Uneuen-surface data detection apparatus
TWI446223B (en) Pointing device and electronic apparatus
TWM553019U (en) Biological feature identification device
EP3461292A1 (en) Anti-spoofing sensing for rejecting fake fingerprint patterns in under-screen optical sensor module for on-screen fingerprint sensing
JP5828371B2 (en) Image acquisition device, biometric authentication device, electronic device
TWI637326B (en) Biological feature identification device
TWI637327B (en) Biological feature identification device
TWM592604U (en) Sensing module and image capturing apparatus
EP3628089B1 (en) Under-screen optical fingerprint sensor based on lens-pinhole imaging with an off-axis pinhole
TWM553015U (en) Biological feature identification device
TWM553018U (en) Biological feature identification device
TWI617845B (en) Image sensing apparatus
WO2018113102A1 (en) Biometric identification device
KR101147137B1 (en) Apparatus for extracting fingerprint and finger-vein information
WO2018113103A1 (en) Biometric identification device
JP5229490B2 (en) Biometric authentication device
TWM553016U (en) Biological feature identification device
TWM553017U (en) Biological feature identification device
JP6065083B2 (en) Image acquisition device, biometric authentication device, electronic device
KR101799074B1 (en) Mouse capable of finger vein authentication and measuring method of finger vein the same
TWM553003U (en) Biological feature identification device
JP2002123822A (en) Fingerprint image input device
WO2020191595A1 (en) Biological feature recognition device and method, and electronic device
TWM594271U (en) Image capture device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14742924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014558554

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14742924

Country of ref document: EP

Kind code of ref document: A1