WO2014115595A1 - Irreversible circuit element - Google Patents

Irreversible circuit element Download PDF

Info

Publication number
WO2014115595A1
WO2014115595A1 PCT/JP2014/050417 JP2014050417W WO2014115595A1 WO 2014115595 A1 WO2014115595 A1 WO 2014115595A1 JP 2014050417 W JP2014050417 W JP 2014050417W WO 2014115595 A1 WO2014115595 A1 WO 2014115595A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
capacitor
center electrode
ground
characteristic
Prior art date
Application number
PCT/JP2014/050417
Other languages
French (fr)
Japanese (ja)
Inventor
田口 義規
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2014115595A1 publication Critical patent/WO2014115595A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/36Isolators

Definitions

  • the present invention relates to non-reciprocal circuit elements, and more particularly to non-reciprocal circuit elements such as isolators and circulators used in the microwave band.
  • nonreciprocal circuit elements such as isolators and circulators have a characteristic of transmitting a signal only in a predetermined specific direction and not transmitting in a reverse direction. Utilizing this characteristic, for example, an isolator is used in a transmission circuit unit of a mobile communication device such as a mobile phone.
  • the first center electrode and the second center electrode are arranged on the surface of the ferrite so as to cross each other in an insulated state.
  • a resistor is connected between one end of the first center electrode connected to the output port and one end of the second center electrode connected to the output port, and an inductor and a capacitor are connected in series with the resistor. It has been. According to this isolator, it is possible to improve the isolation characteristic while maintaining the insertion loss characteristic by connecting a series resonance circuit including an inductor and a capacitor to the resistor.
  • Patent Document 2 describes a two-port isolator in which a parallel resonant circuit composed of an inductor and a capacitor is connected between the other end of the second center electrode and the ground. The band can be widened.
  • Patent Document 3 describes a three-port isolator in which the end portions of three center electrodes are connected to the ground via a series resonance circuit composed of an inductor and a capacitor, respectively, and operates in a wide band by providing this series resonance circuit. Is possible.
  • Patent Document 4 describes a two-port isolator in which the value of the other capacitor connected in parallel with the capacitor provided between the input port and the output port (in parallel with the first center electrode) is variable. By making the value of one capacitance variable, it is possible to accurately shift (adjust) the center frequency of isolation to a predetermined band.
  • the isolator described in Patent Document 1 has a limit in widening the bandwidth. With the isolator described in Patent Document 2, isolation cannot be made in a wide band.
  • the isolator described in Patent Document 3 is a three-port type, and is difficult to apply to a two-port type because the insertion loss increases and the input reflection characteristic becomes narrow.
  • the isolator described in Patent Document 4 cannot adjust the impedance.
  • An object of the present invention is to provide a non-reciprocal circuit device capable of obtaining good isolation characteristics over a wide band and capable of adjusting impedance.
  • the nonreciprocal circuit device is With permanent magnets, A ferrite to which a DC magnetic field is applied by the permanent magnet; A first center electrode and a second center electrode, which are arranged to intersect the ferrite in an insulated state; With The first center electrode has one end connected to the input port and the other end connected to the output port.
  • the second center electrode has one end connected to the output port or the input port, the other end connected to the ground, A first capacitor is connected between the input port and the output port; A second capacitor is connected between the output port and ground; A resistor is connected between the input port and the output port, and a third capacitor and a first inductor are connected in series with the resistor, A fourth capacitor and a second inductor are connected in series between the other end of the second center electrode and the ground, A fifth capacitor is connected between the input port and the ground; A capacitance value of at least one of the second capacitor and the fifth capacitor is variable; It is characterized by.
  • the non-reciprocal circuit device is With permanent magnets, A ferrite to which a DC magnetic field is applied by the permanent magnet; A first center electrode and a second center electrode, which are arranged to intersect the ferrite in an insulated state; With The first center electrode has one end connected to the input port and the other end connected to the output port.
  • the second center electrode has one end connected to the output port or the input port, the other end connected to the ground, A first capacitor is connected between the input port and the output port; A second capacitor is connected between the output port and ground; A resistor is connected between the input port and the output port, and a third capacitor and a first inductor are connected in series with the resistor, A fifth capacitor is connected between the input port and the ground; A capacitance value of at least one of the second capacitor and the fifth capacitor is variable; It is characterized by.
  • a third capacitor and a first inductor are connected in series with a resistor inserted between the input port and the output port, and the other end of the second center electrode and the ground Since the fourth capacitor and the second inductor are connected in series between them, a good isolation characteristic can be obtained over a wide band. Furthermore, the input impedance and / or the output impedance can be adjusted by changing the capacitance value of at least one of the second capacitor and the fifth capacitor.
  • FIG. 1 is an equivalent circuit diagram showing a first embodiment (2-port isolator) of a non-reciprocal circuit device.
  • FIG. It is a perspective view which shows the ferrite magnet assembly which comprises 1st Example. It is a graph which shows the 1st characteristic in 1st Example. It is a graph which shows the 2nd characteristic in 1st Example. It is a graph which shows the 3rd characteristic in 1st Example. It is a Smith chart which shows the said 3rd characteristic. It is a graph which shows the 4th characteristic in the 1st example. It is a Smith chart which shows the said 4th characteristic. It is an equivalent circuit diagram which shows 2nd Example (2 port type isolator) of a nonreciprocal circuit device.
  • FIG. 1 shows an equivalent circuit of the nonreciprocal circuit device (2-port isolator) according to the first embodiment.
  • the two-port isolator 1A is a lumped constant isolator, and is arranged on a ferrite 32 such that a first center electrode 35 constituting the inductor L1 and a second center electrode 36 constituting the inductor L2 are crossed in an insulated state. It is a thing.
  • One end (port P1) of the first center electrode 35 is connected to the input terminal 51 via a matching capacitor Cs1.
  • the other end (port P2) of the first center electrode 35 and one end (port P2) of the second center electrode 36 are connected to the output terminal 52 via a matching capacitor Cs2, and the other end (port P3) of the second center electrode 36.
  • a capacitor Cg and an inductor Lg are connected in series between the other end of the second center electrode 36 and the ground.
  • a matching capacitor C1 is connected in parallel with the first center electrode 35 between the port P1 and the port P2, and a matching capacitor C2 is connected in parallel with the second center electrode 36 between the port P2 and the ground.
  • a resistor R and an LC series resonance circuit (comprising an inductor L3 and a capacitor C3) are connected in parallel with the first center electrode 35 between the port P1 and the port P2.
  • an impedance adjustment capacitor Ca connected to the ground is connected to one end of the first center electrode 35.
  • the 2-port isolator 1A having the above circuit configuration, when a high-frequency current is input from the terminal 51 to the port P1, a large high-frequency current flows through the second center electrode 36, and almost all the high-frequency current flows through the first center electrode 35. Does not flow, insertion loss is small, and it operates in a wide band. During this operation, almost no high-frequency current flows through the resistor R or the LC series resonance circuit (inductor L3 and capacitor C3). Therefore, the loss due to the LC series resonance circuit can be ignored and the insertion loss does not increase.
  • a capacitor C3 and an inductor L3 are connected in series with the resistor R inserted between the port P1 and the port P2, and a capacitor Cg and an inductor Lg are connected in series between the port P3 and the ground. Therefore, good isolation characteristics can be obtained over a wide band.
  • the capacitors Ca and C2 are variable capacitance capacitors.
  • the input impedance and the output impedance can be adjusted by appropriately changing the capacitance values of the capacitors Ca and C2.
  • at least one of the capacitors Ca and C2 may be a variable capacitance capacitor.
  • the lumped constant type two-port isolator 1A includes a ferrite magnet assembly 30 in which permanent magnets 41 are bonded to the front and back surfaces of a ferrite 32 via an adhesive 42, respectively.
  • the first center electrode 35 is wound around the front and back surfaces of the ferrite 32 by one turn, and one end electrode 35a is a port P1 and the other end electrode 35b is a port P2.
  • the second center electrode 36 is wound four turns on the front and back surfaces of the ferrite 32 so as to intersect with the first center electrode 35 while maintaining an insulating state at a predetermined angle. The number of windings is arbitrary.
  • One end of the second center electrode 36 is common to the electrode 35b (port P2), and the other end electrode 36a is the port P3.
  • the illustration of the electrode on the back side of the ferrite 32 is omitted to avoid complication.
  • FIG. 3 shows the first characteristic of the 2-port isolator 1A by a solid line.
  • A is an input reflection characteristic
  • B is an isolation characteristic
  • C is an insertion loss characteristic
  • D is an output reflection characteristic.
  • the characteristics of the 2-port isolator described in Patent Document 1 are indicated by a dotted line for reference.
  • This first characteristic is simulation data in the following specifications.
  • Capacitor C1 16 pF Capacitor C2: 3.8 pF Capacitor C3: 4.6 pF Inductor L3: 8.2 nH Resistance R: 30 ⁇ Capacitor Ca: 1.2 pF Capacitor Cs1: 10 pF Capacitor Cs2: 9pF Capacitor Cg: 18pF Inductor Lg: 1.5 nH
  • the capacitor C3 and the inductor L3 connected in series with the resistor R inserted between the port P1 and the port P2, and the other end of the second center electrode 36 and the ground. Isolation of 7 dB or more can be secured over a wide band of 699 to 915 MHz (relative band 26%) by the capacitor Cg and the inductor Lg connected in series therebetween.
  • FIG. 4 shows the second characteristic of the 2-port isolator 1A by a solid line.
  • A is an input reflection characteristic
  • B is an isolation characteristic
  • C is an insertion loss characteristic
  • D is an output reflection characteristic.
  • the second characteristic is that the capacitance of the capacitor Cg is changed to 12 pF and the isolation is set to 9 dB.
  • FIG. 5 shows the third characteristic of the 2-port isolator 1A by a solid line.
  • A is an input reflection characteristic
  • B is an isolation characteristic
  • C is an insertion loss characteristic
  • D is an output reflection characteristic.
  • the isolation is substantially the same as in the first example, and only the input impedance is adjusted to the use frequency band.
  • the input impedance can be adjusted to 50 ⁇ 5 ⁇ from Band 12 to Band 8, and the capacitance of the capacitors Ca and C2 is adjusted to be adjusted to Band 8 (880 to 915 MHz).
  • the impedance characteristics are shown by solid lines, where (A) is the input impedance and (B) is the output impedance.
  • FIGS. 5 and 6 the characteristics when adjusted to Band 5 (824 to 849 MHz) are shown by dotted lines for reference.
  • FIG. 7 shows the fourth characteristic of the 2-port isolator 1A by a solid line.
  • A is an input reflection characteristic
  • B is an isolation characteristic
  • C is an insertion loss characteristic
  • D is an output reflection characteristic.
  • the isolation is substantially the same as in the first example, and the capacitances of the capacitors Ca and C2 are adjusted to be adjusted to Band 12 (699 to 716 MHz).
  • FIG. 8 shows the impedance characteristics with solid lines, where (A) is the input impedance and (B) is the output impedance. 7 and 8 also show the characteristics when adjusted to Band 5 (824 to 849 MHz) for reference.
  • FIG. 9 shows an equivalent circuit of the nonreciprocal circuit device (2-port isolator) according to the second embodiment.
  • the two-port isolator 1B includes capacitors Caa, Cab, Cac and capacitors C2a.
  • C2b and C2c are arranged in parallel, and the capacitors Cab and Cac and the capacitors C2b and C2c are switched (including the neutral position) by the switching elements 55 and 56, respectively.
  • Capacitors Caa and C2a constitute reference capacitances, respectively, and capacitors Cab and Cac and capacitors C2b and C2c perform adjustment functions for adding capacitance.
  • the operational effects of the 2-port isolator 1B are basically the same as those of the 2-port isolator 1A.
  • FIG. 10 shows an equivalent circuit of the nonreciprocal circuit device (2-port isolator) according to the third embodiment.
  • this 2-port isolator 1C one end of the second center electrode 36 is connected to one end (port P1) of the first center electrode 35, and an inductor L4 is added between the capacitor Cs1 and the input terminal 51.
  • the other configuration is the same as that of the two-port isolator 1B according to the second embodiment.
  • the first center electrode 35 is wound around the front and back surfaces of the ferrite 32 by one turn, the one end electrode 35a is the port P1, and the other end electrode 35b is the port. P2.
  • the second center electrode 36 is wound four turns on the front and back surfaces of the ferrite 32 so as to intersect with the first center electrode 35 while maintaining an insulating state at a predetermined angle. The number of windings is arbitrary.
  • One end of the second center electrode 36 is common (port P1) with the electrode 35a, and the other end electrode 36a is the port P3.
  • the illustration of the electrode on the back side of the ferrite 32 is omitted to avoid complication.
  • the two-port isolator 1C by setting the inductance of the second center electrode 36 to be larger than the inductance of the first center electrode 35, when a high frequency current is input from the terminal 51 to the port P1, the second center electrode 36 36 and resistor R hardly flow current, current flows through the first center electrode 35, insertion loss is small, and the device operates in a wide band. During this operation, almost no high-frequency current flows through the resistor R or the LC series resonance circuit (inductor L3 and capacitor C3). Therefore, the loss due to the LC series resonance circuit can be ignored and the insertion loss does not increase.
  • a capacitor C3 and an inductor L3 are connected in series with the resistor R inserted between the port P1 and the port P2, and a capacitor Cg and an inductor Lg are connected in series between the port P3 and the ground. Therefore, good isolation characteristics can be obtained over a wide band.
  • the first center electrode 35 and the second center electrode 36 are magnetically coupled, and the impedance on the input side (P1) is reduced by adjusting the mutual inductance. That is, in the non-reciprocal circuit element, the conductor provided in the microwave magnetic body has an impedance conversion function, and it is not necessary to add an inductor as a separate part, so that the insertion loss is reduced or the size is increased. A reduction in input impedance can be achieved without incurring.
  • a high-frequency current is input from the terminal 52 to the port P2
  • it is matched in a wide band by the impedance characteristics of the resistor R and the LC series resonance circuit, and the isolation characteristics are improved.
  • FIG. 12 shows an equivalent circuit of the nonreciprocal circuit device (2-port isolator) according to the fourth embodiment.
  • This 2-port isolator 1D is a series resonant circuit (capacitor Cg and inductor Lg) connected between the other end (port P3) of the second center electrode 36 and the ground in the 2-port isolator 1A of the first embodiment. ) Is omitted. Therefore, the operation and effect of the two-port isolator 1D are basically the same as those of the two-port isolator 1A, and the capacitor C3 is connected in series with the resistor R inserted between the ports P1 and P2. And the inductor L3 are connected, a good isolation characteristic can be obtained over a wide band.
  • FIG. 13 shows the first characteristic of the 2-port isolator 1D by a solid line.
  • (A) is an input reflection characteristic
  • (B) is an isolation characteristic
  • (C) is an insertion loss characteristic
  • (D) is an output reflection characteristic.
  • FIG. 14 shows the impedance characteristics with a solid line, where (A) is the input impedance and (B) is the output impedance.
  • This first characteristic is simulation data in the following specifications.
  • Capacitor C1 16 pF Capacitor C2: 2.2 pF Capacitor C3: 16pF Inductor L3: 4.6 nH Resistance R: 25 ⁇ Capacitor Ca: 0.3 pF Capacitor Cs1: 6pF Capacitor Cs2: 6pF
  • a capacitor C3 and an inductor L3 connected in series with a resistor R inserted between the port P1 and the port P2 are used to provide a band 5 (isolation of 5 dB or more over a wide band of 824 to 849 MHz).
  • the impedance is 57.5 ⁇ j2.8 ⁇ in Band 8 and 33.7 + j2.7 ⁇ in Band 12, which is not 50 ⁇ .
  • FIG. 15 shows the second characteristic of the 2-port isolator 1D by a solid line.
  • (A) is an input reflection characteristic
  • (B) is an isolation characteristic
  • (C) is an insertion loss characteristic
  • (D) is an output reflection characteristic.
  • the impedance characteristics are shown by solid lines, where (A) is the input impedance and (B) is the output impedance.
  • the second characteristic is adjusted to be compatible with Band 8 by changing the capacitances of the capacitors Ca and C2 to 0.1 and 1.6 pF, respectively. In Band 8, it can be adjusted to about 50 ⁇ . Isolation has hardly changed.
  • FIG. 17 shows the third characteristic of the 2-port isolator 1D by a solid line.
  • (A) is an input reflection characteristic
  • (B) is an isolation characteristic
  • (C) is an insertion loss characteristic
  • (D) is an output reflection characteristic.
  • FIG. 18 shows the impedance characteristics with solid lines, where (A) is the input impedance and (B) is the output impedance.
  • the third characteristic is adjusted to be compatible with Band 12 by changing the capacitances of the capacitors Ca and C2 to 0.8 and 3.4 pF, respectively. In Band 8, it can be adjusted to about 50 ⁇ . Isolation has hardly changed.
  • the two-port isolator 1 (1A, 1B, 1C, 1D) is mounted on, for example, a transmission circuit shown in FIG.
  • a two-port isolator 1 is inserted between a power amplifier 62 connected to a high frequency IC 61 and a duplexer 64 connected to an antenna 65.
  • the output side of the power amplifier 62 is connected to the terminal 51, and the input side of the duplexer 64 is connected to the terminal 52.
  • the non-reciprocal circuit device according to the present invention is not limited to the above-described embodiments, and can be variously modified within the scope of the gist thereof.
  • the input port P1 and the output port P2 are switched. In this case, the input / output impedance can be lowered.
  • the shapes of the first and second center electrodes 35 and 36 are arbitrary.
  • the present invention is useful for non-reciprocal circuit devices, and is particularly excellent in that good isolation characteristics can be obtained over a wide band and impedance can be adjusted.

Abstract

The present invention obtains good isolation characteristics across a wide bandwidth, and allows adjustment of impedance. An irreversible circuit element provided with a first center electrode (35) and a second center electrode (36) that are disposed intersecting in a mutually insulated state with a ferrite (32) to which a direct-current magnetic field is applied by a permanent magnet. The first center electrode (35) is connected at one end to an input port (P1), and at the other end to an output port (P2). The second center electrode (36) is connected at one end to the port (P2) or the port (P1), and at the other end to a ground. A capacitor (C1) is connected between the port (P1) and the port (P2), and a capacitor (C2) is connected between the port (P2) and the ground. A resistor (R) is connected between the port (P1) and the port (P2). A capacitor (C3) and an inductor (L3) are connected serially to the resistor (R). A capacitor (Cg) and an inductor (Lg) are connected serially between the other end of the second center electrode (36) and the ground. A capacitor (Ca) is connected between the port (P1) and the ground. At least one of the capacitor (C2) and the capacitor (Ca) has variable capacitance.

Description

非可逆回路素子Non-reciprocal circuit element
 本発明は、非可逆回路素子、特に、マイクロ波帯で使用されるアイソレータやサーキュレータなどの非可逆回路素子に関する。 The present invention relates to non-reciprocal circuit elements, and more particularly to non-reciprocal circuit elements such as isolators and circulators used in the microwave band.
 従来より、アイソレータやサーキュレータなどの非可逆回路素子は、予め定められた特定方向にのみ信号を伝送し、逆方向には伝送しない特性を有している。この特性を利用して、例えば、アイソレータは、携帯電話などの移動体通信機器の送信回路部に使用されている。 Conventionally, nonreciprocal circuit elements such as isolators and circulators have a characteristic of transmitting a signal only in a predetermined specific direction and not transmitting in a reverse direction. Utilizing this characteristic, for example, an isolator is used in a transmission circuit unit of a mobile communication device such as a mobile phone.
 この種の非可逆回路素子として2ポート型アイソレータとしては、特許文献1に記載のように、フェライトの表面に第1中心電極及び第2中心電極を互いに絶縁状態で交差して配置し、入力ポートに接続された第1中心電極の一端と、出力ポートに接続された第2中心電極の一端との間に抵抗が接続され、かつ、該抵抗と直列にインダクタと容量とを接続したものが知られている。このアイソレータによれば、抵抗にインダクタと容量からなる直列共振回路を接続することによって挿入損失特性を維持した状態でアイソレーション特性を向上させることができる。 As a non-reciprocal circuit device of this type, as a two-port type isolator, as described in Patent Document 1, the first center electrode and the second center electrode are arranged on the surface of the ferrite so as to cross each other in an insulated state. A resistor is connected between one end of the first center electrode connected to the output port and one end of the second center electrode connected to the output port, and an inductor and a capacitor are connected in series with the resistor. It has been. According to this isolator, it is possible to improve the isolation characteristic while maintaining the insertion loss characteristic by connecting a series resonance circuit including an inductor and a capacitor to the resistor.
 また、特許文献2には、第2中心電極の他端とグランドとの間に、インダクタと容量からなる並列共振回路を接続した2ポート型アイソレータが記載され、この並列共振回路を設けることで通過帯域を広帯域化することが可能となる。 Patent Document 2 describes a two-port isolator in which a parallel resonant circuit composed of an inductor and a capacitor is connected between the other end of the second center electrode and the ground. The band can be widened.
 特許文献3には、三つの中心電極の端部をそれぞれインダクタと容量からなる直列共振回路を介してグランドに接続した3ポート型アイソレータが記載され、この直列共振回路を設けることで広帯域での動作が可能となる。 Patent Document 3 describes a three-port isolator in which the end portions of three center electrodes are connected to the ground via a series resonance circuit composed of an inductor and a capacitor, respectively, and operates in a wide band by providing this series resonance circuit. Is possible.
 特許文献4には、入力ポートと出力ポートとの間(第1中心電極と並列)に設けた容量と並列に接続したいま一つの容量の値を可変とした2ポート型アイソレータが記載され、いま一つの容量の値を可変とすることでアイソレーションの中心周波数を精度よく所定の帯域へシフト(調整)することができる。 Patent Document 4 describes a two-port isolator in which the value of the other capacitor connected in parallel with the capacitor provided between the input port and the output port (in parallel with the first center electrode) is variable. By making the value of one capacitance variable, it is possible to accurately shift (adjust) the center frequency of isolation to a predetermined band.
 しかしながら、特許文献1に記載のアイソレータでは広帯域化に限界を有している。特許文献2に記載のアイソレータではアイソレーションを広帯域にできない。特許文献3に記載のアイソレータは3ポート型であって2ポート型への適用には挿入損失が大きくなったり、入力反射特性が狭帯域になるので困難である。特許文献4に記載のアイソレータではインピーダンスを調整することができない。 However, the isolator described in Patent Document 1 has a limit in widening the bandwidth. With the isolator described in Patent Document 2, isolation cannot be made in a wide band. The isolator described in Patent Document 3 is a three-port type, and is difficult to apply to a two-port type because the insertion loss increases and the input reflection characteristic becomes narrow. The isolator described in Patent Document 4 cannot adjust the impedance.
特許第4155342号公報Japanese Patent No. 4155342 特開2006-50543号公報JP 2006-50543 A 特開2011-55222号公報JP 2011-55222 A 国際公開特開2012/20613号International Publication No. 2012/20613
 本発明の目的は、広帯域にわたって良好なアイソレーション特性を得ることができ、かつ、インピーダンスの調整が可能な非可逆回路素子を提供することにある。 An object of the present invention is to provide a non-reciprocal circuit device capable of obtaining good isolation characteristics over a wide band and capable of adjusting impedance.
 本発明の第1の形態である非可逆回路素子は、
 永久磁石と、
 前記永久磁石により直流磁界が印加されるフェライトと、
 前記フェライトに互いに絶縁状態で交差して配置された第1中心電極及び第2中心電極と、
 を備え、
 第1中心電極は、一端が入力ポートに接続され、他端が出力ポートに接続され、
 第2中心電極は、一端が出力ポート又は入力ポートに接続され、他端がグランドに接続され、
 前記入力ポートと前記出力ポートとの間に第1容量が接続され、
 前記出力ポートとグランドとの間に第2容量が接続され、
 前記入力ポートと前記出力ポートとの間に抵抗が接続されているとともに、該抵抗に対して直列に第3容量と第1インダクタが接続され、
 第2中心電極の他端とグランドとの間に直列に第4容量と第2インダクタとが接続され、
 前記入力ポートとグランドとの間に第5容量が接続され、
 前記第2容量及び前記第5容量の少なくともいずれかは容量値が可変であること、
 を特徴とする。
The nonreciprocal circuit device according to the first aspect of the present invention is
With permanent magnets,
A ferrite to which a DC magnetic field is applied by the permanent magnet;
A first center electrode and a second center electrode, which are arranged to intersect the ferrite in an insulated state;
With
The first center electrode has one end connected to the input port and the other end connected to the output port.
The second center electrode has one end connected to the output port or the input port, the other end connected to the ground,
A first capacitor is connected between the input port and the output port;
A second capacitor is connected between the output port and ground;
A resistor is connected between the input port and the output port, and a third capacitor and a first inductor are connected in series with the resistor,
A fourth capacitor and a second inductor are connected in series between the other end of the second center electrode and the ground,
A fifth capacitor is connected between the input port and the ground;
A capacitance value of at least one of the second capacitor and the fifth capacitor is variable;
It is characterized by.
 本発明の第2の形態である非可逆回路素子は、
 永久磁石と、
 前記永久磁石により直流磁界が印加されるフェライトと、
 前記フェライトに互いに絶縁状態で交差して配置された第1中心電極及び第2中心電極と、
 を備え、
 第1中心電極は、一端が入力ポートに接続され、他端が出力ポートに接続され、
 第2中心電極は、一端が出力ポート又は入力ポートに接続され、他端がグランドに接続され、
 前記入力ポートと前記出力ポートとの間に第1容量が接続され、
 前記出力ポートとグランドとの間に第2容量が接続され、
 前記入力ポートと前記出力ポートとの間に抵抗が接続されているとともに、該抵抗に対して直列に第3容量と第1インダクタが接続され、
 前記入力ポートとグランドとの間に第5容量が接続され、
 前記第2容量及び前記第5容量の少なくともいずれかは容量値が可変であること、
 を特徴とする。
The non-reciprocal circuit device according to the second aspect of the present invention is
With permanent magnets,
A ferrite to which a DC magnetic field is applied by the permanent magnet;
A first center electrode and a second center electrode, which are arranged to intersect the ferrite in an insulated state;
With
The first center electrode has one end connected to the input port and the other end connected to the output port.
The second center electrode has one end connected to the output port or the input port, the other end connected to the ground,
A first capacitor is connected between the input port and the output port;
A second capacitor is connected between the output port and ground;
A resistor is connected between the input port and the output port, and a third capacitor and a first inductor are connected in series with the resistor,
A fifth capacitor is connected between the input port and the ground;
A capacitance value of at least one of the second capacitor and the fifth capacitor is variable;
It is characterized by.
 前記非可逆回路素子においては、入力ポートと出力ポートとの間に挿入された抵抗に対して直列に第3容量と第1インダクタが接続され、かつ、第2中心電極の他端とグランドとの間に直列に第4容量と第2インダクタとが接続されているため、広帯域にわたって良好なアイソレーション特性が得られる。さらに、第2容量及び第5容量の少なくともいずれかは容量値が可変であることにより、入力インピーダンス及び/又は出力インピーダンスを調整することができる。 In the nonreciprocal circuit device, a third capacitor and a first inductor are connected in series with a resistor inserted between the input port and the output port, and the other end of the second center electrode and the ground Since the fourth capacitor and the second inductor are connected in series between them, a good isolation characteristic can be obtained over a wide band. Furthermore, the input impedance and / or the output impedance can be adjusted by changing the capacitance value of at least one of the second capacitor and the fifth capacitor.
 本発明によれば、広帯域にわたって良好なアイソレーション特性を得ることができ、かつ、インピーダンスの調整が可能である。 According to the present invention, good isolation characteristics can be obtained over a wide band, and the impedance can be adjusted.
非可逆回路素子の第1実施例(2ポート型アイソレータ)を示す等価回路図である。1 is an equivalent circuit diagram showing a first embodiment (2-port isolator) of a non-reciprocal circuit device. FIG. 第1実施例を構成するフェライト・磁石組立体を示す斜視図である。It is a perspective view which shows the ferrite magnet assembly which comprises 1st Example. 第1実施例における第1の特性を示すグラフである。It is a graph which shows the 1st characteristic in 1st Example. 第1実施例における第2の特性を示すグラフである。It is a graph which shows the 2nd characteristic in 1st Example. 第1実施例における第3の特性を示すグラフである。It is a graph which shows the 3rd characteristic in 1st Example. 前記第3の特性を示すスミスチャート図である。It is a Smith chart which shows the said 3rd characteristic. 第1実施例における第4の特性を示すグラフである。It is a graph which shows the 4th characteristic in the 1st example. 前記第4の特性を示すスミスチャート図である。It is a Smith chart which shows the said 4th characteristic. 非可逆回路素子の第2実施例(2ポート型アイソレータ)を示す等価回路図である。It is an equivalent circuit diagram which shows 2nd Example (2 port type isolator) of a nonreciprocal circuit device. 非可逆回路素子の第3実施例(2ポート型アイソレータ)を示す等価回路図である。It is an equivalent circuit diagram showing a third embodiment (2-port isolator) of a non-reciprocal circuit device. 第3実施例を構成するフェライト・磁石組立体を示す斜視図である。It is a perspective view which shows the ferrite magnet assembly which comprises 3rd Example. 非可逆回路素子の第4実施例を示す等価回路図である。It is an equivalent circuit schematic which shows 4th Example of a nonreciprocal circuit device. 第4実施例における第1の特性を示すグラフである。It is a graph which shows the 1st characteristic in 4th Example. 前記第1の特性を示すスミスチャート図である。It is a Smith chart which shows the said 1st characteristic. 第4実施例における第2の特性を示すグラフである。It is a graph which shows the 2nd characteristic in 4th Example. 前記第2の特性を示すスミスチャート図である。It is a Smith chart which shows the said 2nd characteristic. 第4実施例における第3の特性を示すグラフである。It is a graph which shows the 3rd characteristic in 4th Example. 前記第3の特性を示すスミスチャート図である。It is a Smith chart which shows the said 3rd characteristic. 2ポート型アイソレータを備えた送信回路の一例を示すブロック図である。It is a block diagram which shows an example of the transmission circuit provided with the 2 port type isolator.
 以下、本発明に係る非可逆回路素子の実施例について添付図面を参照して説明する。なお、各図において同じ部材、部分には共通する符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the non-reciprocal circuit device according to the present invention will be described with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the same member and part in each figure, and the overlapping description is abbreviate | omitted.
 (第1実施例、図1~図8参照)
 第1実施例である非可逆回路素子(2ポート型アイソレータ)の等価回路を図1に示す。この2ポート型アイソレータ1Aは、集中定数型アイソレータであり、フェライト32に、インダクタL1を構成する第1中心電極35とインダクタL2を構成する第2中心電極36とを互いに絶縁状態で交差させて配置したものである。
(Refer to the first embodiment, FIGS. 1 to 8)
FIG. 1 shows an equivalent circuit of the nonreciprocal circuit device (2-port isolator) according to the first embodiment. The two-port isolator 1A is a lumped constant isolator, and is arranged on a ferrite 32 such that a first center electrode 35 constituting the inductor L1 and a second center electrode 36 constituting the inductor L2 are crossed in an insulated state. It is a thing.
 第1中心電極35の一端(ポートP1)は整合用コンデンサCs1を介して入力端子51に接続されている。第1中心電極35の他端(ポートP2)と第2中心電極36の一端(ポートP2)は整合用コンデンサCs2を介して出力端子52に接続され、第2中心電極36の他端(ポートP3)はグランドに接続されている。本第1実施例では、第2中心電極36の他端とグランドとの間に、直列にコンデンサCgとインダクタLgとが接続されている。 One end (port P1) of the first center electrode 35 is connected to the input terminal 51 via a matching capacitor Cs1. The other end (port P2) of the first center electrode 35 and one end (port P2) of the second center electrode 36 are connected to the output terminal 52 via a matching capacitor Cs2, and the other end (port P3) of the second center electrode 36. ) Is connected to ground. In the first embodiment, a capacitor Cg and an inductor Lg are connected in series between the other end of the second center electrode 36 and the ground.
 ポートP1とポートP2との間には第1中心電極35と並列に整合用コンデンサC1が接続され、ポートP2とグランドとの間には第2中心電極36と並列に整合用コンデンサC2が接続されている。ポートP1とポートP2との間には、抵抗RとLC直列共振回路(インダクタL3とコンデンサC3とからなる)とが第1中心電極35と並列に接続されている。さらに、第1中心電極35の一端にはグランドに接続されたインピーダンス調整用コンデンサCaが接続されている。 A matching capacitor C1 is connected in parallel with the first center electrode 35 between the port P1 and the port P2, and a matching capacitor C2 is connected in parallel with the second center electrode 36 between the port P2 and the ground. ing. A resistor R and an LC series resonance circuit (comprising an inductor L3 and a capacitor C3) are connected in parallel with the first center electrode 35 between the port P1 and the port P2. Further, an impedance adjustment capacitor Ca connected to the ground is connected to one end of the first center electrode 35.
 以上の回路構成からなる2ポート型アイソレータ1Aにおいては、端子51からポートP1に高周波電流が入力されると、第2中心電極36に大きな高周波電流が流れ、第1中心電極35にはほとんど高周波電流が流れず、挿入損失が小さく、広帯域で動作する。この動作時において、抵抗RやLC直列共振回路(インダクタL3とコンデンサC3)にも高周波電流はほとんど流れないため、該LC直列共振回路による損失は無視でき、挿入損失が増大することはない。また、ポートP1とポートP2との間に挿入された抵抗Rに対して直列にコンデンサC3とインダクタL3が接続され、かつ、ポートP3とグランドとの間に直列にコンデンサCgとインダクタLgとが接続されているため、広帯域にわたって良好なアイソレーション特性が得られる。 In the 2-port isolator 1A having the above circuit configuration, when a high-frequency current is input from the terminal 51 to the port P1, a large high-frequency current flows through the second center electrode 36, and almost all the high-frequency current flows through the first center electrode 35. Does not flow, insertion loss is small, and it operates in a wide band. During this operation, almost no high-frequency current flows through the resistor R or the LC series resonance circuit (inductor L3 and capacitor C3). Therefore, the loss due to the LC series resonance circuit can be ignored and the insertion loss does not increase. Further, a capacitor C3 and an inductor L3 are connected in series with the resistor R inserted between the port P1 and the port P2, and a capacitor Cg and an inductor Lg are connected in series between the port P3 and the ground. Therefore, good isolation characteristics can be obtained over a wide band.
 一方、端子52からポートP2に高周波電流が入力されると、抵抗RとLC直列共振回路のインピーダンス特性によって広帯域に整合され、アイソレーション特性が向上する。なお、このようなアイソレーション及び挿入損失の特性については、後に図3~図8を参照して説明する。 On the other hand, when a high-frequency current is input from the terminal 52 to the port P2, it is matched in a wide band by the impedance characteristics of the resistor R and the LC series resonance circuit, and the isolation characteristics are improved. Such isolation and insertion loss characteristics will be described later with reference to FIGS.
 さらに、本第1実施例では、前記コンデンサCa,C2は容量可変コンデンサが用いられている。コンデンサCa,C2の容量値を適宜変更することにより、入力インピーダンス及び出力インピーダンスを調整することができる。なお、コンデンサCa,C2は少なくともいずれかが容量可変コンデンサであればよい。 Furthermore, in the first embodiment, the capacitors Ca and C2 are variable capacitance capacitors. The input impedance and the output impedance can be adjusted by appropriately changing the capacitance values of the capacitors Ca and C2. Note that at least one of the capacitors Ca and C2 may be a variable capacitance capacitor.
 ここで、2ポート型アイソレータ1Aにおける要部の構成について、図2を参照して説明する。この集中定数型の2ポート型アイソレータ1Aは、フェライト32の表裏面にそれぞれ永久磁石41を接着剤42を介して貼着したフェライト・磁石組立体30を備えている。第1中心電極35はフェライト32の表裏面に1ターン巻回されており、一端電極35aがポートP1であり、他端電極35bがポートP2である。第2中心電極36はフェライト32の表裏面に第1中心電極35と所定の角度で絶縁状態を保って交差して4ターン巻回されている。なお、この巻回数は任意である。第2中心電極36の一端は前記電極35bと共通(ポートP2)であり、他端電極36aがポートP3である。なお、図2では煩雑さをさけるためにフェライト32の背面側の電極は図示を省略している。 Here, the configuration of the main part of the 2-port isolator 1A will be described with reference to FIG. The lumped constant type two-port isolator 1A includes a ferrite magnet assembly 30 in which permanent magnets 41 are bonded to the front and back surfaces of a ferrite 32 via an adhesive 42, respectively. The first center electrode 35 is wound around the front and back surfaces of the ferrite 32 by one turn, and one end electrode 35a is a port P1 and the other end electrode 35b is a port P2. The second center electrode 36 is wound four turns on the front and back surfaces of the ferrite 32 so as to intersect with the first center electrode 35 while maintaining an insulating state at a predetermined angle. The number of windings is arbitrary. One end of the second center electrode 36 is common to the electrode 35b (port P2), and the other end electrode 36a is the port P3. In FIG. 2, the illustration of the electrode on the back side of the ferrite 32 is omitted to avoid complication.
 図3に、前記2ポート型アイソレータ1Aにおける第1の特性を実線で示す。(A)は入力反射特性、(B)はアイソレーション特性、(C)は挿入損失特性、(D)は出力反射特性を示す。図3においては特許文献1に記載の2ポート型アイソレータにおける特性を点線で参考のために記載している。この第1の特性は以下のスペックにおけるシミュレーションデータである。 FIG. 3 shows the first characteristic of the 2-port isolator 1A by a solid line. (A) is an input reflection characteristic, (B) is an isolation characteristic, (C) is an insertion loss characteristic, and (D) is an output reflection characteristic. In FIG. 3, the characteristics of the 2-port isolator described in Patent Document 1 are indicated by a dotted line for reference. This first characteristic is simulation data in the following specifications.
 コンデンサC1: 16pF
 コンデンサC2: 3.8pF
 コンデンサC3: 4.6pF
 インダクタL3: 8.2nH
 抵抗R: 30Ω
 コンデンサCa: 1.2pF
 コンデンサCs1: 10pF
 コンデンサCs2: 9pF
 コンデンサCg: 18pF
 インダクタLg: 1.5nH
Capacitor C1: 16 pF
Capacitor C2: 3.8 pF
Capacitor C3: 4.6 pF
Inductor L3: 8.2 nH
Resistance R: 30Ω
Capacitor Ca: 1.2 pF
Capacitor Cs1: 10 pF
Capacitor Cs2: 9pF
Capacitor Cg: 18pF
Inductor Lg: 1.5 nH
 本第1実施例においては、ポートP1とポートP2との間に挿入された抵抗Rに対して直列に接続されたコンデンサC3とインダクタL3、及び、第2中心電極36の他端とグランドとの間に直列に接続されたコンデンサCgとインダクタLgによって、699~915MHz(比帯域26%)の広帯域にわたって、7dB以上のアイソレーションを確保できる。 In the first embodiment, the capacitor C3 and the inductor L3 connected in series with the resistor R inserted between the port P1 and the port P2, and the other end of the second center electrode 36 and the ground. Isolation of 7 dB or more can be secured over a wide band of 699 to 915 MHz (relative band 26%) by the capacitor Cg and the inductor Lg connected in series therebetween.
 図4に、前記2ポート型アイソレータ1Aにおける第2の特性を実線で示す。(A)は入力反射特性、(B)はアイソレーション特性、(C)は挿入損失特性、(D)は出力反射特性を示す。図4においても特許文献1に記載の2ポート型アイソレータにおける特性を点線で参考のために記載している。この第2の特性は、コンデンサCgの容量を12pFに変更し、アイソレーションを9dBになるように設定している。 FIG. 4 shows the second characteristic of the 2-port isolator 1A by a solid line. (A) is an input reflection characteristic, (B) is an isolation characteristic, (C) is an insertion loss characteristic, and (D) is an output reflection characteristic. In FIG. 4 as well, the characteristics of the 2-port isolator described in Patent Document 1 are indicated by dotted lines for reference. The second characteristic is that the capacitance of the capacitor Cg is changed to 12 pF and the isolation is set to 9 dB.
 図5に、前記2ポート型アイソレータ1Aにおける第3の特性を実線で示す。(A)は入力反射特性、(B)はアイソレーション特性、(C)は挿入損失特性、(D)は出力反射特性を示す。この第3の特性は、アイソレーションを前記第1例とほぼ同じくし、入力インピーダンスのみを使用周波数帯に調整している。入力インピーダンスはBand12からBand8にわたって50±5Ωに調整可能であり、コンデンサCa,C2の容量を調整してBand8(880~915MHz)に調整している。図6にインピーダンス特性を実線で示し、(A)は入力インピーダンス、(B)は出力インピーダンスである。また、図5及び図6においてはBand5(824~849MHz)に調整した場合の特性を点線で参考のために示している。 FIG. 5 shows the third characteristic of the 2-port isolator 1A by a solid line. (A) is an input reflection characteristic, (B) is an isolation characteristic, (C) is an insertion loss characteristic, and (D) is an output reflection characteristic. In the third characteristic, the isolation is substantially the same as in the first example, and only the input impedance is adjusted to the use frequency band. The input impedance can be adjusted to 50 ± 5Ω from Band 12 to Band 8, and the capacitance of the capacitors Ca and C2 is adjusted to be adjusted to Band 8 (880 to 915 MHz). In FIG. 6, the impedance characteristics are shown by solid lines, where (A) is the input impedance and (B) is the output impedance. In FIGS. 5 and 6, the characteristics when adjusted to Band 5 (824 to 849 MHz) are shown by dotted lines for reference.
 図7に、前記2ポート型アイソレータ1Aにおける第4の特性を実線で示す。(A)は入力反射特性、(B)はアイソレーション特性、(C)は挿入損失特性、(D)は出力反射特性を示す。この第4の特性は、アイソレーションを前記第1例とほぼ同じくし、コンデンサCa,C2の容量を調整してBand12(699~716MHz)に調整している。図8にインピーダンス特性を実線で示し、(A)は入力インピーダンス、(B)は出力インピーダンスである。また、図7及び図8においてもBand5(824~849MHz)に調整した場合の特性を点線で参考のために示している。 FIG. 7 shows the fourth characteristic of the 2-port isolator 1A by a solid line. (A) is an input reflection characteristic, (B) is an isolation characteristic, (C) is an insertion loss characteristic, and (D) is an output reflection characteristic. In the fourth characteristic, the isolation is substantially the same as in the first example, and the capacitances of the capacitors Ca and C2 are adjusted to be adjusted to Band 12 (699 to 716 MHz). FIG. 8 shows the impedance characteristics with solid lines, where (A) is the input impedance and (B) is the output impedance. 7 and 8 also show the characteristics when adjusted to Band 5 (824 to 849 MHz) for reference.
 (第2実施例、図9参照)
 第2実施例である非可逆回路素子(2ポート型アイソレータ)の等価回路を図9に示す。この2ポート型アイソレータ1Bは、第1実施例である前記2ポート型アイソレータ1Aにおける容量可変コンデンサCa,C2に代えて、コンデンサCaa,Cab,Cac及びコンデンサC2a.C2b,C2cをそれぞれ並列に配置し、スイッチング素子55,56でコンデンサCab,Cac及びコンデンサC2b,C2cをそれぞれ切り換える(中立位置を含む)ようにしたものである。コンデンサCaa,C2aがそれぞれ基準となる容量を構成し、コンデンサCab,Cac及びコンデンサC2b,C2cが容量を付加する調整機能を奏する。
(Refer to the second embodiment, FIG. 9)
FIG. 9 shows an equivalent circuit of the nonreciprocal circuit device (2-port isolator) according to the second embodiment. The two-port isolator 1B includes capacitors Caa, Cab, Cac and capacitors C2a. C2b and C2c are arranged in parallel, and the capacitors Cab and Cac and the capacitors C2b and C2c are switched (including the neutral position) by the switching elements 55 and 56, respectively. Capacitors Caa and C2a constitute reference capacitances, respectively, and capacitors Cab and Cac and capacitors C2b and C2c perform adjustment functions for adding capacitance.
 本2ポート型アイソレータ1Bにおける作用効果は前記2ポート型アイソレータ1Aと基本的には同様である。 The operational effects of the 2-port isolator 1B are basically the same as those of the 2-port isolator 1A.
 (第3実施例、図10及び図11参照)
 第3実施例である非可逆回路素子(2ポート型アイソレータ)の等価回路を図10に示す。この2ポート型アイソレータ1Cは、第2中心電極36の一端を第1中心電極35の一端(ポートP1)に接続し、さらに、コンデンサCs1と入力端子51との間にインダクタL4を追加したものであり、他の構成は第2実施例である前記2ポート型アイソレータ1Bと同様である。
(Refer to the third embodiment, FIGS. 10 and 11)
FIG. 10 shows an equivalent circuit of the nonreciprocal circuit device (2-port isolator) according to the third embodiment. In this 2-port isolator 1C, one end of the second center electrode 36 is connected to one end (port P1) of the first center electrode 35, and an inductor L4 is added between the capacitor Cs1 and the input terminal 51. The other configuration is the same as that of the two-port isolator 1B according to the second embodiment.
 フェライト・磁石組立体30は、図11に示すように、第1中心電極35はフェライト32の表裏面に1ターン巻回されており、一端電極35aがポートP1であり、他端電極35bがポートP2である。第2中心電極36はフェライト32の表裏面に第1中心電極35と所定の角度で絶縁状態を保って交差して4ターン巻回されている。なお、この巻回数は任意である。第2中心電極36の一端は前記電極35aと共通(ポートP1)であり、他端電極36aがポートP3である。なお、図11では煩雑さをさけるためにフェライト32の背面側の電極は図示を省略している。 As shown in FIG. 11, in the ferrite / magnet assembly 30, the first center electrode 35 is wound around the front and back surfaces of the ferrite 32 by one turn, the one end electrode 35a is the port P1, and the other end electrode 35b is the port. P2. The second center electrode 36 is wound four turns on the front and back surfaces of the ferrite 32 so as to intersect with the first center electrode 35 while maintaining an insulating state at a predetermined angle. The number of windings is arbitrary. One end of the second center electrode 36 is common (port P1) with the electrode 35a, and the other end electrode 36a is the port P3. In FIG. 11, the illustration of the electrode on the back side of the ferrite 32 is omitted to avoid complication.
 本2ポート型アイソレータ1Cにおいては、第2中心電極36のインダクタンスを第1中心電極35のインダクタンスよりも大きく設定することにより、端子51からポートP1に高周波電流が入力されると、第2中心電極36や抵抗Rにほとんど電流が流れず、第1中心電極35に電流が流れ、挿入損失が小さく、広帯域で動作する。この動作時において、抵抗RやLC直列共振回路(インダクタL3とコンデンサC3)にも高周波電流はほとんど流れないため、該LC直列共振回路による損失は無視でき、挿入損失が増大することはない。また、ポートP1とポートP2との間に挿入された抵抗Rに対して直列にコンデンサC3とインダクタL3が接続され、かつ、ポートP3とグランドとの間に直列にコンデンサCgとインダクタLgとが接続されているため、広帯域にわたって良好なアイソレーション特性が得られる。 In the two-port isolator 1C, by setting the inductance of the second center electrode 36 to be larger than the inductance of the first center electrode 35, when a high frequency current is input from the terminal 51 to the port P1, the second center electrode 36 36 and resistor R hardly flow current, current flows through the first center electrode 35, insertion loss is small, and the device operates in a wide band. During this operation, almost no high-frequency current flows through the resistor R or the LC series resonance circuit (inductor L3 and capacitor C3). Therefore, the loss due to the LC series resonance circuit can be ignored and the insertion loss does not increase. Further, a capacitor C3 and an inductor L3 are connected in series with the resistor R inserted between the port P1 and the port P2, and a capacitor Cg and an inductor Lg are connected in series between the port P3 and the ground. Therefore, good isolation characteristics can be obtained over a wide band.
 第1中心電極35及び第2中心電極36はそれぞれ磁気的に結合しており、相互インダクタンスを調整することにより、入力側(P1)のインピーダンスが低下する。即ち、前記非可逆回路素子にあっては、マイクロ波用磁性体に設けた導体がインピーダンス変換機能を有し、別部品としてインダクタを追加する必要がなく、挿入損失を低下させたり、大型化を招来することなく、入力インピーダンスの低下を達成できる。一方、端子52からポートP2に高周波電流が入力されると、抵抗RとLC直列共振回路のインピーダンス特性によって広帯域に整合され、アイソレーション特性が向上する。 The first center electrode 35 and the second center electrode 36 are magnetically coupled, and the impedance on the input side (P1) is reduced by adjusting the mutual inductance. That is, in the non-reciprocal circuit element, the conductor provided in the microwave magnetic body has an impedance conversion function, and it is not necessary to add an inductor as a separate part, so that the insertion loss is reduced or the size is increased. A reduction in input impedance can be achieved without incurring. On the other hand, when a high-frequency current is input from the terminal 52 to the port P2, it is matched in a wide band by the impedance characteristics of the resistor R and the LC series resonance circuit, and the isolation characteristics are improved.
 (第4実施例、図12~図18参照)
 第4実施例である非可逆回路素子(2ポート型アイソレータ)の等価回路を図12に示す。この2ポート型アイソレータ1Dは、第1実施例である前記2ポート型アイソレータ1Aにおいて第2中心電極36の他端(ポートP3)とグランドとの間に接続した直列共振回路(コンデンサCgとインダクタLg)を省略したものである。従って、本2ポート型アイソレータ1Dの動作及び作用効果は前記2ポート型アイソレータ1Aと基本的には同様であり、ポートP1とポートP2との間に挿入された抵抗Rに対して直列にコンデンサC3とインダクタL3が接続されていることにより、広帯域にわたって良好なアイソレーション特性が得られる。
(Refer to the fourth embodiment, FIGS. 12 to 18)
FIG. 12 shows an equivalent circuit of the nonreciprocal circuit device (2-port isolator) according to the fourth embodiment. This 2-port isolator 1D is a series resonant circuit (capacitor Cg and inductor Lg) connected between the other end (port P3) of the second center electrode 36 and the ground in the 2-port isolator 1A of the first embodiment. ) Is omitted. Therefore, the operation and effect of the two-port isolator 1D are basically the same as those of the two-port isolator 1A, and the capacitor C3 is connected in series with the resistor R inserted between the ports P1 and P2. And the inductor L3 are connected, a good isolation characteristic can be obtained over a wide band.
 図13に、前記2ポート型アイソレータ1Dにおける第1の特性を実線で示す。(A)は入力反射特性、(B)はアイソレーション特性、(C)は挿入損失特性、(D)は出力反射特性を示す。図14にインピーダンス特性を実線で示し、(A)は入力インピーダンス、(B)は出力インピーダンスである。この第1の特性は以下のスペックにおけるシミュレーションデータである。 FIG. 13 shows the first characteristic of the 2-port isolator 1D by a solid line. (A) is an input reflection characteristic, (B) is an isolation characteristic, (C) is an insertion loss characteristic, and (D) is an output reflection characteristic. FIG. 14 shows the impedance characteristics with a solid line, where (A) is the input impedance and (B) is the output impedance. This first characteristic is simulation data in the following specifications.
 コンデンサC1: 16pF
 コンデンサC2: 2.2pF
 コンデンサC3: 16pF
 インダクタL3: 4.6nH
 抵抗R: 25Ω
 コンデンサCa: 0.3pF
 コンデンサCs1: 6pF
 コンデンサCs2: 6pF
Capacitor C1: 16 pF
Capacitor C2: 2.2 pF
Capacitor C3: 16pF
Inductor L3: 4.6 nH
Resistance R: 25Ω
Capacitor Ca: 0.3 pF
Capacitor Cs1: 6pF
Capacitor Cs2: 6pF
 本第4実施例においては、ポートP1とポートP2との間に挿入された抵抗Rに対して直列に接続されたコンデンサC3とインダクタL3によって、Band5(824~849MHzの広帯域にわたって、5dB以上のアイソレーションを確保できる。インピーダンスはBand8において57.5-j2.8Ω、Band12において33.7+j2.7Ωと50Ωからはずれている。 In the fourth embodiment, a capacitor C3 and an inductor L3 connected in series with a resistor R inserted between the port P1 and the port P2 are used to provide a band 5 (isolation of 5 dB or more over a wide band of 824 to 849 MHz). The impedance is 57.5−j2.8Ω in Band 8 and 33.7 + j2.7Ω in Band 12, which is not 50Ω.
 図15に、前記2ポート型アイソレータ1Dにおける第2の特性を実線で示す。(A)は入力反射特性、(B)はアイソレーション特性、(C)は挿入損失特性、(D)は出力反射特性を示す。図16にインピーダンス特性を実線で示し、(A)は入力インピーダンス、(B)は出力インピーダンスである。この第2の特性は、コンデンサCa,C2の容量をそれぞれ0.1、1.6pFに変更することで、Band8に適合するように調整している。Band8において約50Ωに調整可能である。アイソレーションはほとんど変化していない。 FIG. 15 shows the second characteristic of the 2-port isolator 1D by a solid line. (A) is an input reflection characteristic, (B) is an isolation characteristic, (C) is an insertion loss characteristic, and (D) is an output reflection characteristic. In FIG. 16, the impedance characteristics are shown by solid lines, where (A) is the input impedance and (B) is the output impedance. The second characteristic is adjusted to be compatible with Band 8 by changing the capacitances of the capacitors Ca and C2 to 0.1 and 1.6 pF, respectively. In Band 8, it can be adjusted to about 50Ω. Isolation has hardly changed.
 図17に、前記2ポート型アイソレータ1Dにおける第3の特性を実線で示す。(A)は入力反射特性、(B)はアイソレーション特性、(C)は挿入損失特性、(D)は出力反射特性を示す。図18にインピーダンス特性を実線で示し、(A)は入力インピーダンス、(B)は出力インピーダンスである。この第3の特性は、コンデンサCa,C2の容量をそれぞれ0.8、3.4pFに変更することで、Band12に適合するように調整している。Band8において約50Ωに調整可能である。アイソレーションはほとんど変化していない。 FIG. 17 shows the third characteristic of the 2-port isolator 1D by a solid line. (A) is an input reflection characteristic, (B) is an isolation characteristic, (C) is an insertion loss characteristic, and (D) is an output reflection characteristic. FIG. 18 shows the impedance characteristics with solid lines, where (A) is the input impedance and (B) is the output impedance. The third characteristic is adjusted to be compatible with Band 12 by changing the capacitances of the capacitors Ca and C2 to 0.8 and 3.4 pF, respectively. In Band 8, it can be adjusted to about 50Ω. Isolation has hardly changed.
 (送信回路の一例、図19参照)
 前記2ポート型アイソレータ1(1A,1B,1C,1D)は、例えば、図19に示す送信回路に実装される。この送信回路は、高周波IC61に接続されたパワーアンプ62とアンテナ65に接続されたデュプレクサ64との間に2ポート型アイソレータ1を挿入したものである。パワーアンプ62の出力側が端子51に接続され、デュプレクサ64の入力側が端子52に接続されている。
(Example of transmission circuit, see FIG. 19)
The two-port isolator 1 (1A, 1B, 1C, 1D) is mounted on, for example, a transmission circuit shown in FIG. In this transmission circuit, a two-port isolator 1 is inserted between a power amplifier 62 connected to a high frequency IC 61 and a duplexer 64 connected to an antenna 65. The output side of the power amplifier 62 is connected to the terminal 51, and the input side of the duplexer 64 is connected to the terminal 52.
 (他の実施例)
 なお、本発明に係る非可逆回路素子は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更することができる。
(Other examples)
The non-reciprocal circuit device according to the present invention is not limited to the above-described embodiments, and can be variously modified within the scope of the gist thereof.
 例えば、永久磁石41のN極とS極を反転させれば、入力ポートP1と出力ポートP2が入れ替わる。この場合、入出力インピーダンスを低くすることができる。また、第1及び第2中心電極35,36の形状などは任意である。 For example, if the N pole and S pole of the permanent magnet 41 are reversed, the input port P1 and the output port P2 are switched. In this case, the input / output impedance can be lowered. The shapes of the first and second center electrodes 35 and 36 are arbitrary.
 以上のように、本発明は、非可逆回路素子に有用であり、特に、広帯域にわたって良好なアイソレーション特性を得ることができ、かつ、インピーダンスの調整が可能である点で優れている。 As described above, the present invention is useful for non-reciprocal circuit devices, and is particularly excellent in that good isolation characteristics can be obtained over a wide band and impedance can be adjusted.
 1A~1D…2ポート型アイソレータ
 32…フェライト
 35…第1中心電極
 36…第2中心電極
 41…永久磁石
 55,56…スイッチング素子
 P1,P2,P3…ポート
 C1,C2,C3,Ca、Cg…コンデンサ
 L3,Lg…インダクタ
1A to 1D ... 2 port type isolator 32 ... Ferrite 35 ... First center electrode 36 ... Second center electrode 41 ... Permanent magnet 55, 56 ... Switching elements P1, P2, P3 ... Ports C1, C2, C3, Ca, Cg ... Capacitors L3, Lg ... Inductors

Claims (3)

  1.  永久磁石と、
     前記永久磁石により直流磁界が印加されるフェライトと、
     前記フェライトに互いに絶縁状態で交差して配置された第1中心電極及び第2中心電極と、
     を備え、
     第1中心電極は、一端が入力ポートに接続され、他端が出力ポートに接続され、
     第2中心電極は、一端が出力ポート又は入力ポートに接続され、他端がグランドに接続され、
     前記入力ポートと前記出力ポートとの間に第1容量が接続され、
     前記出力ポートとグランドとの間に第2容量が接続され、
     前記入力ポートと前記出力ポートとの間に抵抗が接続されているとともに、該抵抗に対して直列に第3容量と第1インダクタが接続され、
     第2中心電極の他端とグランドとの間に直列に第4容量と第2インダクタとが接続され、
     前記入力ポートとグランドとの間に第5容量が接続され、
     前記第2容量及び前記第5容量の少なくともいずれかは容量値が可変であること、
     を特徴とする非可逆回路素子。
    With permanent magnets,
    A ferrite to which a DC magnetic field is applied by the permanent magnet;
    A first center electrode and a second center electrode, which are arranged to intersect the ferrite in an insulated state;
    With
    The first center electrode has one end connected to the input port and the other end connected to the output port.
    The second center electrode has one end connected to the output port or the input port, the other end connected to the ground,
    A first capacitor is connected between the input port and the output port;
    A second capacitor is connected between the output port and ground;
    A resistor is connected between the input port and the output port, and a third capacitor and a first inductor are connected in series with the resistor,
    A fourth capacitor and a second inductor are connected in series between the other end of the second center electrode and the ground,
    A fifth capacitor is connected between the input port and the ground;
    A capacitance value of at least one of the second capacitor and the fifth capacitor is variable;
    A nonreciprocal circuit device characterized by the above.
  2.  永久磁石と、
     前記永久磁石により直流磁界が印加されるフェライトと、
     前記フェライトに互いに絶縁状態で交差して配置された第1中心電極及び第2中心電極と、
     を備え、
     第1中心電極は、一端が入力ポートに接続され、他端が出力ポートに接続され、
     第2中心電極は、一端が出力ポート又は入力ポートに接続され、他端がグランドに接続され、
     前記入力ポートと前記出力ポートとの間に第1容量が接続され、
     前記出力ポートとグランドとの間に第2容量が接続され、
     前記入力ポートと前記出力ポートとの間に抵抗が接続されているとともに、該抵抗に対して直列に第3容量と第1インダクタが接続され、
     前記入力ポートとグランドとの間に第5容量が接続され、
     前記第2容量及び前記第5容量の少なくともいずれかは容量値が可変であること、
     を特徴とする非可逆回路素子。
    With permanent magnets,
    A ferrite to which a DC magnetic field is applied by the permanent magnet;
    A first center electrode and a second center electrode, which are arranged to intersect the ferrite in an insulated state;
    With
    The first center electrode has one end connected to the input port and the other end connected to the output port.
    The second center electrode has one end connected to the output port or the input port, the other end connected to the ground,
    A first capacitor is connected between the input port and the output port;
    A second capacitor is connected between the output port and ground;
    A resistor is connected between the input port and the output port, and a third capacitor and a first inductor are connected in series with the resistor,
    A fifth capacitor is connected between the input port and the ground;
    A capacitance value of at least one of the second capacitor and the fifth capacitor is variable;
    A nonreciprocal circuit device characterized by the above.
  3.  前記第2容量及び前記第5容量の少なくともいずれかは複数のコンデンサからなり、該コンデンサの動作をスイッチング素子によって切り換えること、を特徴とする請求項1又は請求項2に記載の非可逆回路素子。 3. The nonreciprocal circuit device according to claim 1, wherein at least one of the second capacitor and the fifth capacitor includes a plurality of capacitors, and the operation of the capacitors is switched by a switching device.
PCT/JP2014/050417 2013-01-23 2014-01-14 Irreversible circuit element WO2014115595A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013009825 2013-01-23
JP2013-009825 2013-05-01

Publications (1)

Publication Number Publication Date
WO2014115595A1 true WO2014115595A1 (en) 2014-07-31

Family

ID=51227387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050417 WO2014115595A1 (en) 2013-01-23 2014-01-14 Irreversible circuit element

Country Status (1)

Country Link
WO (1) WO2014115595A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017949A (en) * 1973-06-19 1975-02-25
JP2006033482A (en) * 2004-07-16 2006-02-02 Murata Mfg Co Ltd Two-port isolator and communication apparatus
JP2008085981A (en) * 2006-08-31 2008-04-10 Ntt Docomo Inc Irreversible circuit element
JP4155342B1 (en) * 2007-08-31 2008-09-24 株式会社村田製作所 Non-reciprocal circuit element
JP2011055222A (en) * 2009-09-01 2011-03-17 Murata Mfg Co Ltd Non-reciprocal circuit element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017949A (en) * 1973-06-19 1975-02-25
JP2006033482A (en) * 2004-07-16 2006-02-02 Murata Mfg Co Ltd Two-port isolator and communication apparatus
JP2008085981A (en) * 2006-08-31 2008-04-10 Ntt Docomo Inc Irreversible circuit element
JP4155342B1 (en) * 2007-08-31 2008-09-24 株式会社村田製作所 Non-reciprocal circuit element
JP2011055222A (en) * 2009-09-01 2011-03-17 Murata Mfg Co Ltd Non-reciprocal circuit element

Similar Documents

Publication Publication Date Title
JP5158146B2 (en) Non-reciprocal circuit element
JP5679056B2 (en) Non-reciprocal circuit element
US8253510B2 (en) Non-reciprocal circuit element
JPWO2013168771A1 (en) Non-reciprocal circuit element
JP4155342B1 (en) Non-reciprocal circuit element
JP5983859B2 (en) Non-reciprocal circuit device and module
KR100969614B1 (en) Non-reciprocal circuit device
JP5874709B2 (en) Non-reciprocal circuit element, its module and transmission / reception module
US9088064B2 (en) Non-reciprocal circuit element
JP5655990B2 (en) Non-reciprocal circuit element
WO2014115595A1 (en) Irreversible circuit element
JP5672394B2 (en) Non-reciprocal circuit element
JP5880738B2 (en) 2-port nonreciprocal circuit device
JP6152896B2 (en) Non-reciprocal circuit element
WO2015093273A1 (en) Non-reciprocal circuit element
JP5136322B2 (en) Non-reciprocal circuit element
JP5652116B2 (en) Non-reciprocal circuit element
US20150303545A1 (en) Non-reciprocal circuit element
WO2015079792A1 (en) Non-reciprocal circuit element
JP2012090141A (en) Non-reciprocal circuit element
JPWO2016158044A1 (en) Non-reciprocal circuit element, high-frequency circuit, and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP