WO2014115354A1 - Container crane - Google Patents

Container crane Download PDF

Info

Publication number
WO2014115354A1
WO2014115354A1 PCT/JP2013/068731 JP2013068731W WO2014115354A1 WO 2014115354 A1 WO2014115354 A1 WO 2014115354A1 JP 2013068731 W JP2013068731 W JP 2013068731W WO 2014115354 A1 WO2014115354 A1 WO 2014115354A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
spreader
laser scanner
crane
coordinates
Prior art date
Application number
PCT/JP2013/068731
Other languages
French (fr)
Japanese (ja)
Inventor
小林 雅人
Original Assignee
三菱重工マシナリーテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工マシナリーテクノロジー株式会社 filed Critical 三菱重工マシナリーテクノロジー株式会社
Priority to SG11201408467QA priority Critical patent/SG11201408467QA/en
Priority to CN201380032493.0A priority patent/CN104379489B/en
Publication of WO2014115354A1 publication Critical patent/WO2014115354A1/en
Priority to HK15106640.4A priority patent/HK1205995A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • B66C19/007Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries for containers

Definitions

  • This invention relates to a container crane, and particularly relates to its container detection.
  • the present application claims priority based on Japanese Patent Application No. 2013-013468 filed in Japan on January 28, 2013, the contents of which are incorporated herein by reference.
  • Patent Document 1 proposes a technique for storing a suspended container by measuring the position of a target and the position of an obstacle using a laser scanner arranged in a trolley.
  • Patent Document 2 proposes a technique for attaching a CCD camera to a spreader and detecting each edge of a suspended container and a target container by image processing of a camera image.
  • Patent Document 3 describes that the position of a row adjacent to the target container is measured in advance and the envelope of the adjacent row is evaluated.
  • Patent Document 4 describes that an obstacle near the lower end of a suspended container is detected by an infrared beam sensor provided in the spreader.
  • Patent Document 1 since the technique described in Patent Document 1 described above is provided with a laser scanner in the trolley, there is a problem that an area in which measurement cannot be performed due to the spreader being disturbed occurs particularly when the spreader is lowered. In addition, there is a problem that it is difficult to improve detection accuracy because the distance between the target container on which the suspended container is placed, the row adjacent to the target container, and the above-described laser scanner is long.
  • the present invention has been made in view of the above circumstances, and can detect obstacles and the like in a wide range with high accuracy, and suppress an increase in cost due to an increase in the number of parts and a complicated control system.
  • a container crane that can be used is provided.
  • the container crane is suspended from the traveling device, the girder supported by the traveling device and extending in the horizontal direction, the trolley capable of traveling along the girder, and the trolley.
  • a spreader capable of engaging and disengaging the container, an elevating mechanism for raising and lowering the spreader, a laser scanner provided on the spreader for emitting the laser beam to obtain the coordinates of the light landing point of the object, and the laser scanner
  • a crane control device that drives and controls the trolley and the spreader based on the coordinates of the light spot acquired by the above.
  • the distance between the laser scanner, the target container, and the row adjacent to the target container can be shortened.
  • only the laser scanner disposed on the spreader can be used to connect the suspended container and the target container. The position can be detected and the position of the adjacent row can be measured.
  • the laser scanner may be provided on a lateral side of the spreader.
  • the crane control device scans the laser scanner in a horizontal range from below the spreader, and based on the coordinates of the light spot acquired by the laser scanner, Determining the amount of displacement for obtaining the envelope between the suspended container engaged with the spreader and the target container on which the suspended container is placed, and obtaining the amount of positional deviation between the suspended container and the target container based on the envelope May be provided.
  • the positional offset amount of a hanging container and a target container can be calculated
  • the crane control device determines the distance between the surrounding obstacle and the laser scanner based on the coordinates of the light spot acquired by the laser scanner.
  • a descent restriction control unit that restricts the descent operation of the spreader based on the distance between the surrounding obstacle and the laser scanner.
  • an accumulating unit that accumulates the coordinates of the light arrival point may be provided.
  • this configuration it is possible to accumulate the coordinates of the light arrival points detected at various trolley positions.
  • the spreader can be driven and controlled so that the suspended container does not interfere with the obstacles, including the coordinates of the light arrival points that cannot be detected at the current trolley position.
  • obstacles and the like can be detected in a wide range with high accuracy, and an increase in cost due to an increase in the number of parts and a complicated control system can be suppressed.
  • the container crane 1 in this embodiment is provided, for example, in a container yard of a container terminal that loads and unloads containers C, loads containers C, and the like on a container ship that touches a quay.
  • FIGS. 1 and 2 are diagrams showing a schematic configuration of a container crane 1 of this embodiment.
  • the container crane 1 is disposed in each of a plurality of lanes 2 provided in the container yard, and handles the container C.
  • the container crane 1 can be self-propelled by a traveling device 4 having wheels with tires.
  • the container crane 1 is formed in a substantially portal shape including two pairs of leg portions 5 supported by the traveling device 4 and a crane girder 6 connecting the upper end portions of the leg portions 5.
  • the container crane 1 includes a trolley 7 that can traverse the crane girder 6.
  • the trolley 7 is provided with a hoisting device 8 (see FIG. 1), and a spreader 10 is suspended from the hoisting device 8 via a suspension wire 9 so as to be lifted and lowered.
  • the container C stored in the lane 2 is a container such as an ISO standard container.
  • the container C is formed in a rectangular parallelepiped shape having a predetermined length represented by 20 feet or 40 feet.
  • Each lane 2 has a plurality of bays having a unit length of one longitudinal dimension of the container C in the longitudinal direction. In each bay, a plurality of rows 12 having a short length of the container C as a unit length are set. In these rows 12, a plurality of containers C can be stacked and stored.
  • the position of the container C can be specified based on the position of the bay, the position of the row 12, and the number of stages in the row 12. The interval between adjacent rows 12 is set as narrow as possible for the purpose of improving storage density.
  • a traveling path 14 of a transport carriage 13 such as AGV (Automated Guided Vehicle) is laid, and the container crane 1 is transported by the transport carriage 13. And the container C is stored in a predetermined storage position in the lane 2. On the other hand, the container crane 1 carries out the container C to the outside of the lane 2 by delivering the container C stored in the lane 2 to the transport carriage 13.
  • AGV Automated Guided Vehicle
  • the spreader 10 is a device for lifting the container C, and includes a spreader body 15, an engagement / disengagement mechanism 16, and a slide mechanism 17.
  • the spreader main body 15 is composed of a horizontal frame 15a and a vertical frame 15b that form the skeleton of the spreader 10, and a pulley 18 (see FIG. 1) around which the suspension wire 9 is wound is disposed at the center upper portion.
  • the engagement / disengagement mechanism 16 includes an engagement piece (not shown) such as a so-called twist lock that engages / disengages with respect to engagement holes (not shown) formed in the upper four corners of the container C.
  • the engagement / disengagement mechanism 16 can be disposed at a position facing the engagement hole of the container C. More specifically, the engagement / disengagement mechanism 16 is disposed at each end of the support frame 19 extending in parallel with the lateral frame 15a.
  • the slide mechanism 17 includes a guide rod 20 extending in the longitudinal direction of the container C.
  • the slide mechanism 17 slides the engagement / disengagement mechanism 16 along with the support frame 19 along the guide rod 20. That is, by adjusting the position of the engagement / disengagement mechanism 16 by the slide mechanism 17, even the containers C having different lengths can be lifted by one spreader 10.
  • the spreader 10 includes a sensor bracket 21 that extends from each end of the support frame 19 toward the spreader main body 15 and substantially parallel to the guide rod 20.
  • Laser scanners 22 are respectively attached to the end portions of the sensor brackets 21. That is, the laser scanner 22 is disposed on the outer side (side portion) in the width direction of a container suspended by the spreader 10 (hereinafter simply referred to as a suspended container C1).
  • the width direction of the container C is a horizontal direction orthogonal to the longitudinal direction of the container C.
  • the laser scanner 22 is a device that can acquire three-dimensional coordinate data of a measurement object using laser light. More specifically, the laser scanner 22 calculates the distance to the measurement object from the time until the laser light is reflected by the measurement object and returns. Then, the coordinates of the light receiving point (hereinafter simply referred to as the light receiving coordinates) are obtained from the distance to the measurement object and the irradiation angle of the laser light. The information is output to the crane control device 23 that controls the drive of the hoisting device 8, the trolley 7, and the skew device (not shown) described above.
  • the crane control device 23 includes a sensor data capturing unit 24, an envelope determination processing unit 25, a deviation amount deriving unit 26, and a control amount calculating unit 27.
  • the sensor data capturing unit 24, the envelope determination processing unit 25, the deviation amount deriving unit 26, and the control amount calculating unit 27 are set in advance on the ground of the lane 2 based on the detection result of the laser scanner 22. It is a control block that performs a series of controls when the suspended container C1 is lowered on a target or a container (hereinafter simply referred to as a target container C2) to be stacked (placed) on the upper surface of the suspended container C1.
  • the sensor data capturing unit 24 is an interface that captures detection results obtained by the laser scanners 22.
  • the data of the incoming light coordinates captured by the sensor data capturing unit 24 is output toward the envelope determination processing unit 25.
  • the envelope determination processing unit 25 determines the envelopes 28 of the suspended container C1 and the target container C2 based on the light arrival coordinates acquired via the sensor data acquisition unit 24.
  • the envelope 28 substantially coincides with the contours on the outer side surfaces in the width direction of the suspended container C1 and the target container C2.
  • the laser scanner 22 of this embodiment obtains an envelope 28 by scanning laser light from a vertically lower position to a substantially horizontal position in the extending direction of the bay (the traversing direction of the trolley 7).
  • the deviation amount deriving unit 26 derives a relative deviation amount L1 between the suspended container C1 and the target container C2 based on the envelope 28 obtained by the envelope determination processing unit 25. For example, when a horizontal shift occurs between the suspended container C1 and the target container C2, a clear step is formed in the distance to the laser light landing point as shown in FIG. Therefore, the landing points on the side closer to the laser scanner 22 are arranged in a substantially horizontal direction, and the horizontal lengths of the envelopes 28 at the positions where these landing points are arranged are obtained, whereby the suspended container C1 and the target container C2 are obtained. Deviation amount L1 can be derived.
  • the control amount calculation unit 27 obtains a control amount for moving the spreader 10 in a direction in which the deviation amount L1 decreases based on the deviation amount L1 derived by the deviation amount deriving unit 26. More specifically, the control amount by a skew device (not shown) for controlling the inclination of the winding device 8, the trolley 7 and the spreader 10 is derived.
  • the crane control device 23 performs drive control of the hoisting device 8, the trolley 7, and the spreader 10 based on the control amount information derived by the control amount calculation unit 27.
  • the crane control device 23 further includes an obstacle distance determination unit 29 and a lowering speed limit amount calculation unit 30.
  • the obstacle distance determination unit 29 and the lowering speed limit amount calculation unit 30 perform a series of control processes for preventing the suspended container C1 from colliding with the obstacle.
  • the obstacle distance determination unit 29 is an envelope in which the envelope determination processing unit 25 determines the distance between the suspended container C1 (suspended load) and the container C (surrounding obstacle) of the row 12 adjacent to the target container C2. The determination is made based on 28a and 28b. More specifically, as shown in FIG. 8, the envelope 28 calculated by the envelope determination processing unit 25 is adjacent to the target container C2 and the envelope 28a extending on the side surfaces of the suspended container C1 and the target container C2. And the envelope 28b of the container C stored in the row 12 (hereinafter simply referred to as the adjacent row 12a). The obstacle distance determination unit 29 obtains the distance between the suspended container C1 and the container C of the adjacent wax 12a based on the distance between the envelopes 28a and 28b, and sends the information to the unwinding speed limit amount calculation unit 30. Output.
  • the lowering speed limit amount calculation unit 30 determines whether or not the distance between the suspended container C1 and the container C of the adjacent wax 12a is less than a predetermined distance set in advance. When it is determined that the distance between the suspended container C1 and the container C of the adjacent row 12a is less than a predetermined distance, there is a possibility of collision between the suspended container C1 and the container C of the adjacent row 12a. It is determined that there is, and the lowering operation is restricted, for example, the spreader 10 is lowered by the hoisting device 8, that is, the unwinding speed of the hanging wire 9 is set to "0". Note that the lowering operation may be set to be slower as the distance between the suspended container C1 and the container C of the adjacent wax 12a becomes smaller.
  • the crane control device 23 further includes an incident light coordinate calculation unit 31, an arrival point data storage unit 32, and a container product shape determination unit 33.
  • the received light coordinate calculation unit 31, the received light spot data storage unit 32, and the container product shape determination unit 33 perform control processing for obtaining the container product shape in each bay of the lane 2.
  • the container product shape is substantially equal to the cross-sectional contour shape when it is assumed that all the containers C stored in one bay are integrated in the transverse direction of the trolley 7. This container product shape is obtained for each bay in one lane 2.
  • the height of the suspended container C1 is moved to an appropriate position when the suspended container C1 is transported in the horizontal direction regardless of the detection result of the distance between the spreader 10 and the obstacle. It becomes possible to convey quickly and efficiently.
  • the sensor data capturing unit 24 detects the position of the spreader 10, that is, the position of the laser scanner 22 from the encoder 34 and the shake sensor 35 provided in the trolley 7 in order to obtain the position of the spreader 10 in addition to the light receiving coordinates by the laser scanner 22 described above. Capture data.
  • the encoder 34 detects the traversing position of the trolley 7 and the traveling position of the container crane 1 by the traveling device 4.
  • the shake sensor 35 detects the shake amount of the spreader 10 suspended from the trolley 7.
  • the traveling position of the container crane 1 may be obtained by receiving a signal such as GPS (Global Positioning System).
  • the received light coordinate calculation unit 31 detects the received light coordinates by the laser scanner 22 while the suspended container C1 is being transported, for example.
  • the data of each light receiving coordinate is output to the light spot data storage unit 32 in association with the position information of the laser scanner 22.
  • the scanning range by the laser scanner 22 is shown surrounded by a sector of a two-dot difference line.
  • the received light spot data storage unit 32 includes storage means such as a memory, and stores the received light coordinate data input from the received light coordinate calculation unit 31 and the position information of the laser scanner 22 in association with each other. In addition, when a change occurs in the light arrival coordinates in the same bay, the light arrival point data accumulation unit 32 performs a process of deleting the old light arrival coordinate data and updating it to the latest light arrival coordinate data.
  • the container product shape determination unit 33 determines the container product shape of the target bay based on the light arrival coordinate data accumulated in the light arrival point data accumulation unit 32 and the position information of the laser scanner 22. From this container product shape, the container product height of each row 12 can be known.
  • the container product shape determination unit 33 determines the container product shape as shown by a thick line in FIG.
  • the shape indicated by a broken line in FIG. 12 is a container product shape at the maximum height of each row 12, and the default value for the container C of the row 12 where the laser beam does not reach as described above,
  • the coordinate of the maximum height position of the row 12 is used instead of the light arrival coordinate.
  • the container product shape determination unit 33 calculates the added container product shape (indicated by a thick line in FIG. 13) of the light arrival coordinates of the container C where the laser light can be received. It is calculated by.
  • the light receiving coordinates (Xt, Yt) are calculated based on the center coordinates (Xs, Ys) of the spreader 10. More specifically, the distance in the transverse direction from the center of the spreader 10 to the laser scanner 22 is “W”, the distance from the laser scanner 22 to the light spot is “L”, and the angle of the laser scanner 22 with respect to the vertical direction is “ ⁇ ”. ", The light arrival coordinates can be obtained by the following equations (1) and (2).
  • the received light coordinate calculation unit 31 performs the calculation of the received light coordinates for each angle at which the laser scanner 22 is scanned. Then, the obtained light arrival coordinates are sequentially accumulated in the light arrival point data accumulation unit 32.
  • the laser scanner 22 can be moved up and down together with the spreader 10, it is possible to prevent the spreader 10 from becoming an obstacle and causing an area that cannot be measured by the laser scanner 22. .
  • the distance between the laser scanner 22, the target container C2, and the container C of the adjacent row 12a can be shortened.
  • the suspended container C1 is provided only by the laser scanner 22 disposed on the spreader 10. And the position of the container C of the adjacent row 12a can be measured. As a result, obstacles and the like can be detected accurately over a wide range, the number of parts can be reduced, control can be simplified, and cost increase can be suppressed.
  • the gap between the adjacent rows 12 can be detected with high accuracy, even when the container crane 1 is unmanned and labor-saving, the gap between the containers C is minimized and the container C Storage density can be improved.
  • the suspended container C1 can be accurately landed on the target container C2.
  • the suspended container C1 is prevented from being damaged. it can.
  • the drive control of the spreader 10 can be performed so that the suspended container C1 does not interfere with the obstacle.
  • the height of the spreader 10 can be adjusted in advance based on the state of the bay of the container yard, so that it is more hung than when the spreader 10 is moved so as to avoid the obstacle by detecting the distance from the obstacle.
  • the conveyance time of the container C1 can be shortened.
  • this invention is not restricted to the structure of embodiment mentioned above, A design change is possible in the range which does not deviate from the summary.
  • the object to be detected is not limited to the container C, and is an object other than the container C. May be.
  • a transport carriage 13 that travels between the container cranes 1 may be detected. Furthermore, you may make it detect whether the conveyance trolley 13 is the state which loaded the container C, or an empty state. In this case, a dedicated sensor for detecting the transport carriage 13 can be omitted, and the number of parts can be further reduced.
  • the present invention is not limited to this.
  • the container C stored by the spreader 10 is grasped or the container C is stacked, the coordinates of the container C stacked on the row 12 are detected by the encoder or the like. The determination may be made based on the position, and the determination result may be accumulated in the light spot data accumulation unit 32.
  • the portal container crane has been described as an example.
  • the shape of the container crane is not limited to the portal shape, and is not limited to the one including the traveling device 4 having wheels with tires.
  • the present invention can be applied to a structure in which the traveling path 14 is not laid between the legs 5.
  • the suspended container C1 may be landed in the section of the row 12 on the ground. Further, in the case of the row 12 without the container C, the light arrival coordinates of the ground may be obtained.
  • This container crane can detect obstacles and the like in a wide range with high accuracy, and can suppress an increase in cost due to an increase in the number of parts and a complicated control system.

Abstract

In the present invention, a container crane comprises a travelling apparatus, a girder, a trolley, a splitter (10), an elevating mechanism, a laser scanner (22), and a crane control apparatus. The girder is supported by the travelling apparatus and extends in the horizontal direction. The trolley is capable of travelling along the girder. The splitter (10) is hung from the trolley and is capable of engaging and disengaging the container. The elevating mechanism moves the splitter (10) up and down. The laser scanner (22) is provided in the splitter (10) and emits laser light and obtains the coordinates of the point of incidence on an article of interest. The crane control apparatus controls the driving of the trolley and the splitter (10) based on the coordinates of the point of incidence obtained using the laser scanner (22).

Description

コンテナクレーンContainer crane
 この発明は、コンテナクレーンに関し、特にそのコンテナ検知に係るものである。本願は、2013年1月28日に、日本に出願された特願2013-013468号に基づき優先権を主張し、その内容をここに援用する。 This invention relates to a container crane, and particularly relates to its container detection. The present application claims priority based on Japanese Patent Application No. 2013-013468 filed in Japan on January 28, 2013, the contents of which are incorporated herein by reference.
 コンテナ船や、外来シャシ等に対してコンテナの積み込みや積み降ろし等を行うコンテナターミナルにあっては、コスト削減等の観点から無人化・省人化が進められている。
 とりわけ、コンテナを段積みして蔵置している場合、風やコンテナの変形などの影響により、蔵置コンテナの位置ずれが発生する場合がある。そのため、搬送中の吊コンテナと蔵置されたコンテナとの接触を避けるべく、吊コンテナの周囲の障害物を検知して、障害物の干渉を避ける必要がある。
In container terminals that load and unload containers on container ships and foreign chassis, unmanned and labor-saving efforts are being promoted from the viewpoint of cost reduction.
In particular, when containers are stacked and stored, the storage container may be displaced due to the influence of wind or deformation of the container. Therefore, in order to avoid contact between the suspended container being transported and the container stored, it is necessary to detect obstacles around the suspended container and avoid interference of the obstacles.
 そこで、特許文献1には、トロリーに配置されたレーザスキャナを用いて、ターゲットの位置や障害物の位置を計測して吊コンテナを蔵置する技術が提案されている。
 また、特許文献2には、CCDカメラをスプレッダに取り付けて、カメラ映像の画像処理により吊コンテナとターゲットコンテナとの各エッジを検出する技術が提案されている。
 さらに、特許文献3には、事前にターゲットコンテナに隣接するロウの位置を計測して、隣接するロウの包絡線を評価することが記載されている。
 また、特許文献4には、スプレッダに設けられた赤外線ビームセンサによって、吊コンテナの下端近傍にある障害物を検出することが記載されている。
Therefore, Patent Document 1 proposes a technique for storing a suspended container by measuring the position of a target and the position of an obstacle using a laser scanner arranged in a trolley.
Patent Document 2 proposes a technique for attaching a CCD camera to a spreader and detecting each edge of a suspended container and a target container by image processing of a camera image.
Furthermore, Patent Document 3 describes that the position of a row adjacent to the target container is measured in advance and the envelope of the adjacent row is evaluated.
Patent Document 4 describes that an obstacle near the lower end of a suspended container is detected by an infrared beam sensor provided in the spreader.
特表2002-527317号公報JP-T-2002-527317 特開2002-205891号公報JP 2002-205891 A 特開2003-034490号公報JP 2003-034490 A 特開2006-232496号公報JP 2006-232496 A
 しかしながら、上述した特許文献1に記載の技術は、レーザスキャナがトロリーに設けられているため、とりわけスプレッダの下降時などに、スプレッダが邪魔となり計測できない領域が生じてしまうという課題がある。また、吊コンテナを載置するターゲットコンテナや、ターゲットコンテナに隣接するロウと、上述したレーザスキャナとの距離が遠いため検出精度の向上が困難であるという課題がある。 However, since the technique described in Patent Document 1 described above is provided with a laser scanner in the trolley, there is a problem that an area in which measurement cannot be performed due to the spreader being disturbed occurs particularly when the spreader is lowered. In addition, there is a problem that it is difficult to improve detection accuracy because the distance between the target container on which the suspended container is placed, the row adjacent to the target container, and the above-described laser scanner is long.
 さらに、特許文献1~4に記載の技術の場合、吊コンテナとターゲットコンテナとの各エッジを検出する吊コンテナの着床用のセンサや、隣接するロウの位置を計測する衝突防止用のセンサなど、多数のセンサを個別に設ける必要がある。そのため、部品点数の増加や、制御システムの複雑化などによって、コストが増加してしまうという課題がある。 Further, in the case of the techniques described in Patent Documents 1 to 4, a landing container sensor for detecting each edge between the hanging container and the target container, a collision prevention sensor for measuring the position of the adjacent row, etc. It is necessary to provide a large number of sensors individually. Therefore, there is a problem that the cost increases due to an increase in the number of parts and a complicated control system.
 本発明は、上記事情に鑑みてなされたものであり、広範囲を精度よく障害物などを検出することができると共に、部品点数の増加や、制御システムの複雑化などによるコスト増加を抑制することができるコンテナクレーンを提供するものである。 The present invention has been made in view of the above circumstances, and can detect obstacles and the like in a wide range with high accuracy, and suppress an increase in cost due to an increase in the number of parts and a complicated control system. A container crane that can be used is provided.
 本発明の第一の態様によれば、コンテナクレーンは、走行装置と、前記走行装置に支持されて水平方向に延びるガーダと、前記ガーダに沿って走行可能なトロリーと、前記トロリーに吊り下げられるとともに、コンテナを係脱可能なスプレッダと、前記スプレッダを昇降させる昇降機構と、前記スプレッダに設けられ、レーザ光を発射して対象物の着光点の座標を取得するレーザスキャナと、前記レーザスキャナにより取得した着光点の座標に基づいて、前記トロリーおよび前記スプレッダを駆動制御するクレーン制御装置と、を備える。
 このように構成することで、スプレッダと共にレーザスキャナが上下に移動するため、スプレッダが邪魔となりレーザスキャナによって計測できない領域が生じてしまうことを防止できる。また、レーザスキャナと、ターゲットコンテナ、および、ターゲットコンテナに隣接するロウとの距離を短縮することができる。また、スプレッダに係合された吊コンテナを着床させるためのセンサや衝突を防止するためのセンサを個別に設けることなしに、スプレッダに配されたレーザスキャナのみで、吊コンテナとターゲットコンテナとの位置を検出するとともに、隣接するロウの位置を計測することができる。
According to the first aspect of the present invention, the container crane is suspended from the traveling device, the girder supported by the traveling device and extending in the horizontal direction, the trolley capable of traveling along the girder, and the trolley. And a spreader capable of engaging and disengaging the container, an elevating mechanism for raising and lowering the spreader, a laser scanner provided on the spreader for emitting the laser beam to obtain the coordinates of the light landing point of the object, and the laser scanner And a crane control device that drives and controls the trolley and the spreader based on the coordinates of the light spot acquired by the above.
With this configuration, since the laser scanner moves up and down together with the spreader, it is possible to prevent an area that cannot be measured by the laser scanner due to the spreader becoming an obstacle. In addition, the distance between the laser scanner, the target container, and the row adjacent to the target container can be shortened. Further, without separately providing a sensor for landing the suspended container engaged with the spreader and a sensor for preventing a collision, only the laser scanner disposed on the spreader can be used to connect the suspended container and the target container. The position can be detected and the position of the adjacent row can be measured.
 本発明の第二の態様によれば、上記レーザスキャナが、前記スプレッダの幅方向の側部に設けられるようにしてもよい。
 このように構成することで、隣接するコンテナ同士の隙間を精度良く検出することができる。
According to the second aspect of the present invention, the laser scanner may be provided on a lateral side of the spreader.
By comprising in this way, the clearance gap between adjacent containers can be detected accurately.
 本発明の第三の態様によれば、上記クレーン制御装置は、前記スプレッダの下方から水平方向の範囲で前記レーザスキャナを走査させ、前記レーザスキャナにより取得した着光点の座標に基づいて、前記スプレッダに係合されている吊コンテナと、この吊コンテナが上面に載置されるターゲットコンテナとの包絡線を求め、この包絡線に基づき吊コンテナとターゲットコンテナとの位置ずれ量を求めるずれ量導出部を備えていてもよい。
 このように構成することで、吊コンテナとターゲットコンテナとの位置ずれ量をレーザスキャナの検出結果に基づいて求めることができる。
According to a third aspect of the present invention, the crane control device scans the laser scanner in a horizontal range from below the spreader, and based on the coordinates of the light spot acquired by the laser scanner, Determining the amount of displacement for obtaining the envelope between the suspended container engaged with the spreader and the target container on which the suspended container is placed, and obtaining the amount of positional deviation between the suspended container and the target container based on the envelope May be provided.
By comprising in this way, the positional offset amount of a hanging container and a target container can be calculated | required based on the detection result of a laser scanner.
 本発明の第四の態様によれば、前記クレーン制御装置が、前記レーザスキャナにより取得した着光点の座標に基づいて、周囲の障害物と前記レーザスキャナとの距離を判定する障害物距離判定部と、前記周囲の障害物と前記レーザスキャナとの距離に基づいて、前記スプレッダの下降動作を制限する下降制限制御部と、を備えていていもよい。
 このように構成することで、レーザスキャナと障害物との距離に基づいて、吊コンテナが障害物に衝突する前にスプレッダの下降動作を制限することができる。
According to the fourth aspect of the present invention, the crane control device determines the distance between the surrounding obstacle and the laser scanner based on the coordinates of the light spot acquired by the laser scanner. And a descent restriction control unit that restricts the descent operation of the spreader based on the distance between the surrounding obstacle and the laser scanner.
With this configuration, the lowering operation of the spreader can be limited before the suspended container collides with the obstacle based on the distance between the laser scanner and the obstacle.
 本発明の第五の態様によれば、前記着光点の座標を蓄積する蓄積部を備えていてもよい。
 このように構成することで、様々なトロリー位置で検出した着光点の座標を蓄積できる。その結果、現在のトロリー位置では検出できない箇所の着光点の座標も含めて、吊コンテナが障害物に干渉しないようにスプレッダを駆動制御できる。
According to the fifth aspect of the present invention, an accumulating unit that accumulates the coordinates of the light arrival point may be provided.
With this configuration, it is possible to accumulate the coordinates of the light arrival points detected at various trolley positions. As a result, the spreader can be driven and controlled so that the suspended container does not interfere with the obstacles, including the coordinates of the light arrival points that cannot be detected at the current trolley position.
 上記本発明の態様に係わるコンテナクレーンによれば、広範囲に精度よく障害物などを検出することができると共に、部品点数の増加や、制御システムの複雑化などによるコスト増加を抑制することができる。 According to the container crane according to the aspect of the present invention, obstacles and the like can be detected in a wide range with high accuracy, and an increase in cost due to an increase in the number of parts and a complicated control system can be suppressed.
本発明の実施形態におけるコンテナクレーンの斜視図である。It is a perspective view of a container crane in an embodiment of the present invention. 上記コンテナクレーン、および、レーンの正面図である。It is a front view of the container crane and lane. 上記コンテナクレーンが有するスプレッダの平面図である。It is a top view of the spreader which the said container crane has. 上記コンテナクレーンのクレーン制御装置における、吊コンテナを積み重ねるターゲットコンテナ上に吊コンテナを降ろす制御を行うための機能ブロック図である。It is a functional block diagram for performing control which lowers a suspended container on the target container which piles up a suspended container in the crane control apparatus of the said container crane. 上記吊コンテナとターゲットコンテナとレーザスキャナの走査範囲を示す斜視図である。It is a perspective view which shows the scanning range of the said hanging container, a target container, and a laser scanner. 上記吊コンテナとターゲットコンテナとの包絡線の説明図である。It is explanatory drawing of the envelope of the said hanging container and a target container. 上記クレーン制御装置における、吊コンテナが障害物に衝突することを防止する制御を行うための機能ブロック図である。It is a functional block diagram for performing control which prevents that a hanging container collides with an obstacle in the above-mentioned crane control device. 上記吊コンテナと隣接ロウのコンテナとの包絡線の説明図である。It is explanatory drawing of the envelope of the said hanging container and the container of an adjacent wax. 上記クレーン制御装置における、レーンの各ベイにおけるコンテナ積形状を求めるための機能ブロック図である。It is a functional block diagram for calculating | requiring the container product shape in each bay of a lane in the said crane control apparatus. 上記コンテナクレーンにおいて、着光座標を検出するレーザスキャナの配置の一例を示す正面図である。In the said container crane, it is a front view which shows an example of arrangement | positioning of the laser scanner which detects a light arrival coordinate. 上記コンテナクレーンにおいて、着光座標を検出するレーザスキャナの上記図10とは異なる配置の一例を示す正面図である。In the said container crane, it is a front view which shows an example of arrangement | positioning different from the said FIG. 10 of the laser scanner which detects a light arrival coordinate. 図10のレーザスキャナの配置おいて判定されるコンテナ積形状を示す説明図である。It is explanatory drawing which shows the container product shape determined in arrangement | positioning of the laser scanner of FIG. 図11のレーザスキャナの配置おいて判定されるコンテナ積形状を示す説明図である。It is explanatory drawing which shows the container product shape determined in arrangement | positioning of the laser scanner of FIG. 上記コンテナクレーンにおける着光座標の求め方の説明図である。It is explanatory drawing of the method of calculating | requiring the light arrival coordinate in the said container crane.
 次に、本発明の実施形態におけるコンテナクレーンを図面に基づき説明する。この実施形態におけるコンテナクレーン1は、例えば、岸壁に接岸したコンテナ船に対してコンテナCの積み降ろし、および、コンテナCの積み込み等を行うコンテナターミナルのコンテナヤードに設けられている。 Next, a container crane according to an embodiment of the present invention will be described with reference to the drawings. The container crane 1 in this embodiment is provided, for example, in a container yard of a container terminal that loads and unloads containers C, loads containers C, and the like on a container ship that touches a quay.
 図1、図2は、この実施形態のコンテナクレーン1の概略構成を示す図である。
 図1、図2に示すように、コンテナクレーン1は、コンテナヤードに設けられた複数のレーン2にそれぞれ配されて、コンテナCの荷役を行う。コンテナクレーン1は、タイヤ付車輪を有する走行装置4により自走可能とされている。コンテナクレーン1は、走行装置4に支持される二対の脚部5と、これら脚部5の上端部同士を繋ぐクレーンガーダ6とを備える略門形に形成されている。そして、コンテナクレーン1は、クレーンガーダ6上を横行可能なトロリー7を備えている。トロリー7は、巻き上げ装置8(図1参照)を備えており、この巻き上げ装置8に吊ワイヤー9を介して、昇降可能にスプレッダ10が吊り下げられている。
1 and 2 are diagrams showing a schematic configuration of a container crane 1 of this embodiment.
As shown in FIGS. 1 and 2, the container crane 1 is disposed in each of a plurality of lanes 2 provided in the container yard, and handles the container C. The container crane 1 can be self-propelled by a traveling device 4 having wheels with tires. The container crane 1 is formed in a substantially portal shape including two pairs of leg portions 5 supported by the traveling device 4 and a crane girder 6 connecting the upper end portions of the leg portions 5. The container crane 1 includes a trolley 7 that can traverse the crane girder 6. The trolley 7 is provided with a hoisting device 8 (see FIG. 1), and a spreader 10 is suspended from the hoisting device 8 via a suspension wire 9 so as to be lifted and lowered.
 ここで、上記レーン2に蔵置されるコンテナCは、ISO規格コンテナなどのコンテナである。コンテナCは、20フィートや40フィートに代表される所定長さの直方体状に形成されている。各レーン2は、その長手方向にコンテナCの一つの長手寸法を単位長さとする複数のベイが設定されている。また、各ベイには、コンテナCの短手寸法を単位長さとする複数のロウ12が設定されている。これらロウ12には、コンテナCが複数段積み上げて蔵置可能となっている。各レーン2においては、ベイの位置、ロウ12の位置、および、ロウ12における段数に基づき、コンテナCの位置が特定可能となっている。隣接するロウ12同士の間隔は、蔵置密度を向上させる目的から可能な限り狭く設定される。 Here, the container C stored in the lane 2 is a container such as an ISO standard container. The container C is formed in a rectangular parallelepiped shape having a predetermined length represented by 20 feet or 40 feet. Each lane 2 has a plurality of bays having a unit length of one longitudinal dimension of the container C in the longitudinal direction. In each bay, a plurality of rows 12 having a short length of the container C as a unit length are set. In these rows 12, a plurality of containers C can be stacked and stored. In each lane 2, the position of the container C can be specified based on the position of the bay, the position of the row 12, and the number of stages in the row 12. The interval between adjacent rows 12 is set as narrow as possible for the purpose of improving storage density.
 また、コンテナクレーン1の脚部5間には、AGV(Automated Guided Vehicle)等の搬送台車13の走行路14が敷設されており、上記コンテナクレーン1は、搬送台車13によって搬送されてくるコンテナCを受け取って、前記コンテナCをレーン2の所定の蔵置位置に蔵置する。一方で、上記コンテナクレーン1は、レーン2に蔵置されているコンテナCを搬送台車13に受け渡すことで、コンテナCをレーン2の外部に搬出させる。 Further, between the legs 5 of the container crane 1, a traveling path 14 of a transport carriage 13 such as AGV (Automated Guided Vehicle) is laid, and the container crane 1 is transported by the transport carriage 13. And the container C is stored in a predetermined storage position in the lane 2. On the other hand, the container crane 1 carries out the container C to the outside of the lane 2 by delivering the container C stored in the lane 2 to the transport carriage 13.
 図3に示すように、スプレッダ10は、コンテナCを吊り上げるための装置であって、スプレッダ本体15と、係脱機構16と、スライド機構17とを備えている。
 スプレッダ本体15は、スプレッダ10の骨格を形成する横フレーム15aおよび縦フレーム15bからなり、その中央上部に上記吊ワイヤー9が掛け回されるプーリー18(図1参照)が配されている。
As shown in FIG. 3, the spreader 10 is a device for lifting the container C, and includes a spreader body 15, an engagement / disengagement mechanism 16, and a slide mechanism 17.
The spreader main body 15 is composed of a horizontal frame 15a and a vertical frame 15b that form the skeleton of the spreader 10, and a pulley 18 (see FIG. 1) around which the suspension wire 9 is wound is disposed at the center upper portion.
 係脱機構16は、コンテナCの上部四隅に形成されている係合孔(図示せず)に対して係脱する、いわゆるツイストロックなどの係止片(図示せず)を備えている。係脱機構16は、コンテナCの係合孔に対向する位置に配置可能とされる。より具体的には、係脱機構16は、横フレーム15aと平行に延びる支持フレーム19の端部に、それぞれ配される。 The engagement / disengagement mechanism 16 includes an engagement piece (not shown) such as a so-called twist lock that engages / disengages with respect to engagement holes (not shown) formed in the upper four corners of the container C. The engagement / disengagement mechanism 16 can be disposed at a position facing the engagement hole of the container C. More specifically, the engagement / disengagement mechanism 16 is disposed at each end of the support frame 19 extending in parallel with the lateral frame 15a.
 スライド機構17は、コンテナCの長手方向に延びるガイドロッド20を備えている。
 スライド機構17は、ガイドロッド20に沿って支持フレーム19と共に係脱機構16をスライド移動させる。すなわち、スライド機構17によって係脱機構16の位置を調整することで、長さの異なるコンテナCであっても、一つのスプレッダ10によって吊り上げることが可能となっている。
The slide mechanism 17 includes a guide rod 20 extending in the longitudinal direction of the container C.
The slide mechanism 17 slides the engagement / disengagement mechanism 16 along with the support frame 19 along the guide rod 20. That is, by adjusting the position of the engagement / disengagement mechanism 16 by the slide mechanism 17, even the containers C having different lengths can be lifted by one spreader 10.
 また、スプレッダ10は、支持フレーム19の各端部から、スプレッダ本体15側に向かって上記ガイドロッド20と略平行に延びるセンサブラケット21を備えている。これらセンサブラケット21の端部には、レーザスキャナ22がそれぞれ取り付けられている。
 つまり、レーザスキャナ22は、スプレッダ10に吊られたコンテナ(以下、単に吊コンテナC1と称する)の幅方向の外側(側部)に配置される。ここで、コンテナCの幅方向とは、コンテナCの長手方向に直交する水平方向である。
Further, the spreader 10 includes a sensor bracket 21 that extends from each end of the support frame 19 toward the spreader main body 15 and substantially parallel to the guide rod 20. Laser scanners 22 are respectively attached to the end portions of the sensor brackets 21.
That is, the laser scanner 22 is disposed on the outer side (side portion) in the width direction of a container suspended by the spreader 10 (hereinafter simply referred to as a suspended container C1). Here, the width direction of the container C is a horizontal direction orthogonal to the longitudinal direction of the container C.
 レーザスキャナ22は、レーザ光を用いて測定対象物の三次元座標データを取得可能な装置である。より具体的には、レーザスキャナ22は、レーザ光が測定対象物で反射して戻ってくるまでの時間から、測定対象物までの距離を算出する。そして、測定対象物までの距離と、レーザ光の照射角度とによって着光点の座標(以下、単に着光座標と称する)を求める。その情報を、上述した巻き上げ装置8、トロリー7、スキュー装置(図示せず)などの駆動制御を行うクレーン制御装置23へ出力する。 The laser scanner 22 is a device that can acquire three-dimensional coordinate data of a measurement object using laser light. More specifically, the laser scanner 22 calculates the distance to the measurement object from the time until the laser light is reflected by the measurement object and returns. Then, the coordinates of the light receiving point (hereinafter simply referred to as the light receiving coordinates) are obtained from the distance to the measurement object and the irradiation angle of the laser light. The information is output to the crane control device 23 that controls the drive of the hoisting device 8, the trolley 7, and the skew device (not shown) described above.
 図4に示すように、クレーン制御装置23は、センサデータ取込部24と、包絡線判定処理部25と、ずれ量導出部26と、制御量計算部27とを備えている。これらセンサデータ取込部24と、包絡線判定処理部25と、ずれ量導出部26と、制御量計算部27とは、レーザスキャナ22の検出結果に基づき、予めレーン2の地面に設定されたターゲット上、又は、吊コンテナC1を上面に積み重ねる(載置する)対象のコンテナ(以下、単にターゲットコンテナC2と称する)上に、吊コンテナC1を降ろす際の一連の制御を行う制御ブロックである。 As shown in FIG. 4, the crane control device 23 includes a sensor data capturing unit 24, an envelope determination processing unit 25, a deviation amount deriving unit 26, and a control amount calculating unit 27. The sensor data capturing unit 24, the envelope determination processing unit 25, the deviation amount deriving unit 26, and the control amount calculating unit 27 are set in advance on the ground of the lane 2 based on the detection result of the laser scanner 22. It is a control block that performs a series of controls when the suspended container C1 is lowered on a target or a container (hereinafter simply referred to as a target container C2) to be stacked (placed) on the upper surface of the suspended container C1.
 センサデータ取込部24は、各レーザスキャナ22による検出結果を取り込むインターフェースである。センサデータ取込部24に取り込まれた着光座標のデータは、包絡線判定処理部25に向けて出力される。 The sensor data capturing unit 24 is an interface that captures detection results obtained by the laser scanners 22. The data of the incoming light coordinates captured by the sensor data capturing unit 24 is output toward the envelope determination processing unit 25.
 包絡線判定処理部25は、センサデータ取込部24を介して取り込まれた着光座標に基づいて、吊コンテナC1およびターゲットコンテナC2の包絡線28を求める。ここで、この包絡線28は、吊コンテナC1およびターゲットコンテナC2の幅方向の外側面における輪郭と略一致する。図5に示すように、この実施形態のレーザスキャナ22は、鉛直下方からベイの延在方向(トロリー7の横行方向)の略水平位置までレーザ光を走査して包絡線28を求めている。 The envelope determination processing unit 25 determines the envelopes 28 of the suspended container C1 and the target container C2 based on the light arrival coordinates acquired via the sensor data acquisition unit 24. Here, the envelope 28 substantially coincides with the contours on the outer side surfaces in the width direction of the suspended container C1 and the target container C2. As shown in FIG. 5, the laser scanner 22 of this embodiment obtains an envelope 28 by scanning laser light from a vertically lower position to a substantially horizontal position in the extending direction of the bay (the traversing direction of the trolley 7).
 ずれ量導出部26は、包絡線判定処理部25によって求められた包絡線28に基づき、吊コンテナC1とターゲットコンテナC2との相対的なずれ量L1を導出する。例えば、吊コンテナC1とターゲットコンテナC2とに水平方向のずれが生じている場合、図6に示すように、レーザ光の着光点までの距離に明らかな段差ができる。そのため、レーザスキャナ22に近い側の段の着光点が略水平方向に並び、これら着光点が並ぶ位置の包絡線28の水平方向の長さを求めることで、吊コンテナC1とターゲットコンテナC2とのずれ量L1を導出できる。 The deviation amount deriving unit 26 derives a relative deviation amount L1 between the suspended container C1 and the target container C2 based on the envelope 28 obtained by the envelope determination processing unit 25. For example, when a horizontal shift occurs between the suspended container C1 and the target container C2, a clear step is formed in the distance to the laser light landing point as shown in FIG. Therefore, the landing points on the side closer to the laser scanner 22 are arranged in a substantially horizontal direction, and the horizontal lengths of the envelopes 28 at the positions where these landing points are arranged are obtained, whereby the suspended container C1 and the target container C2 are obtained. Deviation amount L1 can be derived.
 制御量計算部27は、ずれ量導出部26により導出されたずれ量L1に基づいて、ずれ量L1が減少する方向にスプレッダ10を移動させるための制御量を求める。より具体的には、巻き上げ装置8、トロリー7、および、スプレッダ10の傾きを制御するスキュー装置(図示せず)などによる制御量を導出する。クレーン制御装置23は、制御量計算部27により導出した制御量の情報に基づいて、巻き上げ装置8、トロリー7、および、スプレッダ10の駆動制御を行う。 The control amount calculation unit 27 obtains a control amount for moving the spreader 10 in a direction in which the deviation amount L1 decreases based on the deviation amount L1 derived by the deviation amount deriving unit 26. More specifically, the control amount by a skew device (not shown) for controlling the inclination of the winding device 8, the trolley 7 and the spreader 10 is derived. The crane control device 23 performs drive control of the hoisting device 8, the trolley 7, and the spreader 10 based on the control amount information derived by the control amount calculation unit 27.
 図7に示すように、クレーン制御装置23は、さらに、障害物距離判定部29と、巻下げ速度制限量計算部30とを備えている。これら障害物距離判定部29と、巻下げ速度制限量計算部30とは、吊コンテナC1が障害物に衝突することを防止する一連の制御処理を行う。 As shown in FIG. 7, the crane control device 23 further includes an obstacle distance determination unit 29 and a lowering speed limit amount calculation unit 30. The obstacle distance determination unit 29 and the lowering speed limit amount calculation unit 30 perform a series of control processes for preventing the suspended container C1 from colliding with the obstacle.
 障害物距離判定部29は、吊コンテナC1(吊荷)と、ターゲットコンテナC2に隣接するロウ12のコンテナC(周囲の障害物)との距離を、包絡線判定処理部25によって求められる包絡線28a,28bに基づいて判定する。より具体的には、図8に示すように、包絡線判定処理部25によって求められる包絡線28は、吊コンテナC1とターゲットコンテナC2との側面上を延びる包絡線28aと、ターゲットコンテナC2に隣接するロウ12(以下、単に隣接ロウ12aと称する)に蔵置されたコンテナCの包絡線28bとがある。障害物距離判定部29は、上記包絡線28a,28b同士の距離に基づいて、吊コンテナC1と隣接ロウ12aのコンテナCとの距離を求めて、その情報を巻下げ速度制限量計算部30に出力する。 The obstacle distance determination unit 29 is an envelope in which the envelope determination processing unit 25 determines the distance between the suspended container C1 (suspended load) and the container C (surrounding obstacle) of the row 12 adjacent to the target container C2. The determination is made based on 28a and 28b. More specifically, as shown in FIG. 8, the envelope 28 calculated by the envelope determination processing unit 25 is adjacent to the target container C2 and the envelope 28a extending on the side surfaces of the suspended container C1 and the target container C2. And the envelope 28b of the container C stored in the row 12 (hereinafter simply referred to as the adjacent row 12a). The obstacle distance determination unit 29 obtains the distance between the suspended container C1 and the container C of the adjacent wax 12a based on the distance between the envelopes 28a and 28b, and sends the information to the unwinding speed limit amount calculation unit 30. Output.
 巻下げ速度制限量計算部30は、吊コンテナC1と隣接ロウ12aのコンテナCとの距離が、予め設定された所定距離を下回ったか否かを判定する。そして、吊コンテナC1と隣接ロウ12aのコンテナCとの距離が、予め設定された所定距離を下回ったと判定された場合には、吊コンテナC1と隣接ロウ12aのコンテナCとの衝突の可能性があると判定して、巻き上げ装置8によるスプレッダ10の下降、すなわち吊ワイヤー9の巻き下ろし速度を「0」にするなど、巻下げ動作の制限を行う。なお、吊コンテナC1と隣接ロウ12aのコンテナCとの距離が狭くなるほど、巻下げ動作を遅くするように設定してもよい。 The lowering speed limit amount calculation unit 30 determines whether or not the distance between the suspended container C1 and the container C of the adjacent wax 12a is less than a predetermined distance set in advance. When it is determined that the distance between the suspended container C1 and the container C of the adjacent row 12a is less than a predetermined distance, there is a possibility of collision between the suspended container C1 and the container C of the adjacent row 12a. It is determined that there is, and the lowering operation is restricted, for example, the spreader 10 is lowered by the hoisting device 8, that is, the unwinding speed of the hanging wire 9 is set to "0". Note that the lowering operation may be set to be slower as the distance between the suspended container C1 and the container C of the adjacent wax 12a becomes smaller.
 図9に示すように、クレーン制御装置23は、さらに、着光座標計算部31と、着光点データ蓄積部32と、コンテナ積形状判定部33とを備えている。これら、着光座標計算部31と、着光点データ蓄積部32と、コンテナ積形状判定部33とは、レーン2の各ベイにおけるコンテナ積形状を求めるための制御処理を行う。ここで、コンテナ積形状とは、トロリー7の横行方向において、一つのベイに蔵置された全てのコンテナCを一体と仮定した場合の、その断面輪郭形状と略等しい。このコンテナ積形状は、一つのレーン2において、各ベイについて求められる。上記コンテナ積形状を求めることで、スプレッダ10と障害物との距離の検出結果によらず、吊コンテナC1を水平方向に搬送する際に、吊コンテナC1の高さを適正位置に移動させて、迅速且つ効率よく搬送させることが可能となる。 As shown in FIG. 9, the crane control device 23 further includes an incident light coordinate calculation unit 31, an arrival point data storage unit 32, and a container product shape determination unit 33. The received light coordinate calculation unit 31, the received light spot data storage unit 32, and the container product shape determination unit 33 perform control processing for obtaining the container product shape in each bay of the lane 2. Here, the container product shape is substantially equal to the cross-sectional contour shape when it is assumed that all the containers C stored in one bay are integrated in the transverse direction of the trolley 7. This container product shape is obtained for each bay in one lane 2. By determining the container product shape, the height of the suspended container C1 is moved to an appropriate position when the suspended container C1 is transported in the horizontal direction regardless of the detection result of the distance between the spreader 10 and the obstacle. It becomes possible to convey quickly and efficiently.
 センサデータ取込部24は、上述したレーザスキャナ22による着光座標に加えて、スプレッダ10の位置、すなわちレーザスキャナ22の位置を求めるべく、トロリー7などに設けられるエンコーダ34および振れセンサ35から検出データを取り込む。ここで、エンコーダ34は、トロリー7の横行位置、走行装置4によるコンテナクレーン1の走行位置を検出する。また、振れセンサ35は、トロリー7に対して吊り下げられたスプレッダ10の振れ量を検出する。なお、コンテナクレーン1の走行位置は、GPS(Global Positioning System)等の信号を受信して求めても良い。 The sensor data capturing unit 24 detects the position of the spreader 10, that is, the position of the laser scanner 22 from the encoder 34 and the shake sensor 35 provided in the trolley 7 in order to obtain the position of the spreader 10 in addition to the light receiving coordinates by the laser scanner 22 described above. Capture data. Here, the encoder 34 detects the traversing position of the trolley 7 and the traveling position of the container crane 1 by the traveling device 4. Further, the shake sensor 35 detects the shake amount of the spreader 10 suspended from the trolley 7. The traveling position of the container crane 1 may be obtained by receiving a signal such as GPS (Global Positioning System).
 着光座標計算部31は、図10、図11に示すように、例えば、吊コンテナC1の搬送中などに、レーザスキャナ22により着光座標を検出する。各着光座標のデータは、レーザスキャナ22の位置情報に関連付けて、着光点データ蓄積部32に向けて出力される。なお、図10、図11中、レーザスキャナ22による走査範囲を二点差線の扇形で囲んで示している。 As shown in FIGS. 10 and 11, the received light coordinate calculation unit 31 detects the received light coordinates by the laser scanner 22 while the suspended container C1 is being transported, for example. The data of each light receiving coordinate is output to the light spot data storage unit 32 in association with the position information of the laser scanner 22. In FIG. 10 and FIG. 11, the scanning range by the laser scanner 22 is shown surrounded by a sector of a two-dot difference line.
 着光点データ蓄積部32は、メモリなどの記憶手段を備えており、着光座標計算部31より入力される着光座標のデータと、レーザスキャナ22の位置情報とを関連付けて蓄積する。また、着光点データ蓄積部32は、同一ベイにおいて着光座標に変化が生じた場合、古い着光座標データを消去して、最新の着光座標データに更新する処理を行う。 The received light spot data storage unit 32 includes storage means such as a memory, and stores the received light coordinate data input from the received light coordinate calculation unit 31 and the position information of the laser scanner 22 in association with each other. In addition, when a change occurs in the light arrival coordinates in the same bay, the light arrival point data accumulation unit 32 performs a process of deleting the old light arrival coordinate data and updating it to the latest light arrival coordinate data.
 コンテナ積形状判定部33は、着光点データ蓄積部32に蓄積された着光座標データおよびレーザスキャナ22の位置情報に基づいて、対象ベイのコンテナ積形状を判定する。
 このコンテナ積形状により、各ロウ12のコンテナ積高さが分かる。
The container product shape determination unit 33 determines the container product shape of the target bay based on the light arrival coordinate data accumulated in the light arrival point data accumulation unit 32 and the position information of the laser scanner 22.
From this container product shape, the container product height of each row 12 can be known.
 ここで、例えば、図10に示す位置にスプレッダ10がある場合、図10中に一点鎖線で囲むロウ12(図10中、左から2番目のロウ)の最上段のコンテナCは、隣接ロウ12aのコンテナCに隠れてしまい、レーザスキャナ22から発射されるレーザ光が届かない。この場合、コンテナ積形状判定部33は、図12に太線で示すようなコンテナ積形状を判定する。ここで、図12中、破線で示す形状は、各ロウ12の最大高さでのコンテナ積形状であって、上記のようにレーザ光が届かないロウ12のコンテナCについては、デフォルト値として、そのロウ12の最大高さ位置の座標が着光座標の代わりに用いられる。 Here, for example, when the spreader 10 is located at the position shown in FIG. 10, the uppermost container C of the row 12 (second row from the left in FIG. 10) surrounded by the alternate long and short dash line in FIG. The laser beam emitted from the laser scanner 22 does not reach. In this case, the container product shape determination unit 33 determines the container product shape as shown by a thick line in FIG. Here, the shape indicated by a broken line in FIG. 12 is a container product shape at the maximum height of each row 12, and the default value for the container C of the row 12 where the laser beam does not reach as described above, The coordinate of the maximum height position of the row 12 is used instead of the light arrival coordinate.
 一方で、例えば、スプレッダ10が図10に示す位置から図11に示す位置に移動すると、図10の位置においてレーザ光が届かなかったコンテナCに対して、レーザスキャナ22からのレーザ光が着光可能となる。これにより、着光座標計算部31によって、新たな着光座標が検出される。すると、着光点データ蓄積部32に蓄積されている着光座標のデータに、新たに検出された位置の着光座標として、データが追加更新される。そして、図13に示すように、コンテナ積形状判定部33により、レーザ光が着光可能となったコンテナCの着光座標を、追加したコンテナ積形状(図13中、太線で示す)が計算により求められる。 On the other hand, for example, when the spreader 10 is moved from the position shown in FIG. 10 to the position shown in FIG. 11, the laser light from the laser scanner 22 is incident on the container C where the laser light did not reach at the position shown in FIG. It becomes possible. As a result, the new light arrival coordinate is detected by the light arrival coordinate calculation unit 31. Then, the data is additionally updated to the light coordinates of the newly detected position in the light coordinates data stored in the light spot data storage unit 32. Then, as shown in FIG. 13, the container product shape determination unit 33 calculates the added container product shape (indicated by a thick line in FIG. 13) of the light arrival coordinates of the container C where the laser light can be received. It is calculated by.
 ここで、図14に示すように、着光座標(Xt,Yt)は、スプレッダ10の中心座標(Xs,Ys)を基準として計算される。より具体的には、スプレッダ10中心からレーザスキャナ22までの横行方向の距離を「W」、レーザスキャナ22から着光点までの距離を「L」、レーザスキャナ22の鉛直方向に対する角度を「θ」とすると、着光座標は、以下の(1)式および(2)式で求めることができる。 Here, as shown in FIG. 14, the light receiving coordinates (Xt, Yt) are calculated based on the center coordinates (Xs, Ys) of the spreader 10. More specifically, the distance in the transverse direction from the center of the spreader 10 to the laser scanner 22 is “W”, the distance from the laser scanner 22 to the light spot is “L”, and the angle of the laser scanner 22 with respect to the vertical direction is “θ”. ", The light arrival coordinates can be obtained by the following equations (1) and (2).
 Xt=Xs+W+L・sinθ・・・(1)
 Yt=Ys-L・cosθ・・・(2)
Xt = Xs + W + L · sin θ (1)
Yt = Ys−L · cos θ (2)
 着光座標計算部31は、上記着光座標の計算を、レーザスキャナ22を走査する各角度に対して実施する。そして、求められた着光座標は、逐次、着光点データ蓄積部32に蓄積される。 The received light coordinate calculation unit 31 performs the calculation of the received light coordinates for each angle at which the laser scanner 22 is scanned. Then, the obtained light arrival coordinates are sequentially accumulated in the light arrival point data accumulation unit 32.
 したがって、上述した実施形態のコンテナクレーン1によれば、スプレッダ10と共に、レーザスキャナ22が上下に移動可能であるため、スプレッダ10が邪魔となりレーザスキャナ22によって計測できない領域が生じてしまうことを防止できる。また、レーザスキャナ22と、ターゲットコンテナC2、および、隣接ロウ12aのコンテナCとの距離を短縮することができる。
 さらに、スプレッダ10に係合された吊コンテナC1を着床させるためのセンサや衝突を防止するためのセンサを個別に設けることなしに、スプレッダ10に配されたレーザスキャナ22のみで、吊コンテナC1とターゲットコンテナC2との位置を検出するとともに、隣接ロウ12aのコンテナCの位置を計測することができる。
 その結果、広範囲に精度よく障害物等を検出することができると共に、部品点数の低減、および制御の簡素化を図り、コスト増加を抑制することができる。
Therefore, according to the container crane 1 of the above-described embodiment, since the laser scanner 22 can be moved up and down together with the spreader 10, it is possible to prevent the spreader 10 from becoming an obstacle and causing an area that cannot be measured by the laser scanner 22. . In addition, the distance between the laser scanner 22, the target container C2, and the container C of the adjacent row 12a can be shortened.
Further, without separately providing a sensor for landing the suspended container C1 engaged with the spreader 10 and a sensor for preventing a collision, the suspended container C1 is provided only by the laser scanner 22 disposed on the spreader 10. And the position of the container C of the adjacent row 12a can be measured.
As a result, obstacles and the like can be detected accurately over a wide range, the number of parts can be reduced, control can be simplified, and cost increase can be suppressed.
 また、隣接する各ロウ12同士の隙間を精度良く検出することができるため、コンテナクレーン1を無人化、省人化した場合であっても、コンテナC同士の隙間を最小限にしてコンテナCの蔵置密度を向上できる。 In addition, since the gap between the adjacent rows 12 can be detected with high accuracy, even when the container crane 1 is unmanned and labor-saving, the gap between the containers C is minimized and the container C Storage density can be improved.
 さらに、吊コンテナC1とターゲットコンテナC2との位置ずれ量をレーザスキャナ22の検出結果に基づいて求めることができるため、ターゲットコンテナC2に対して、正確に吊コンテナC1を着床させることができる。 Furthermore, since the amount of positional deviation between the suspended container C1 and the target container C2 can be obtained based on the detection result of the laser scanner 22, the suspended container C1 can be accurately landed on the target container C2.
 また、隣接ロウ12aのコンテナCなどの障害物との距離に基づいて、吊コンテナC1が障害物に衝突する前にスプレッダ10の下降動作を制限することができるため、吊コンテナC1の損傷を防止できる。 Further, since the descending operation of the spreader 10 can be restricted before the suspended container C1 collides with the obstacle based on the distance from the obstacle such as the container C of the adjacent row 12a, the suspended container C1 is prevented from being damaged. it can.
 さらに、様々なトロリー7の横行位置で検出した着光座標を蓄積するので、現在のトロリー7の横行位置では検出できない着光座標を蓄積して、対象ベイのコンテナ積形状をより正確に検出することができる。そのため、吊コンテナC1が障害物に干渉しないようにスプレッダ10の駆動制御を行うことができる。その結果、コンテナヤードのベイの状況に基づき予めスプレッダ10の高さを調整することができるため、障害物との距離を検出して障害物を避けるようにスプレッダ10を移動させる場合よりも、吊コンテナC1の搬送時間を短縮することができる。 Further, since the light arrival coordinates detected at the horizontal positions of the various trolleys 7 are accumulated, the light arrival coordinates that cannot be detected at the current horizontal position of the trolley 7 are accumulated, and the container product shape of the target bay is more accurately detected. be able to. Therefore, the drive control of the spreader 10 can be performed so that the suspended container C1 does not interfere with the obstacle. As a result, the height of the spreader 10 can be adjusted in advance based on the state of the bay of the container yard, so that it is more hung than when the spreader 10 is moved so as to avoid the obstacle by detecting the distance from the obstacle. The conveyance time of the container C1 can be shortened.
 なお、この発明は上述した実施形態の構成に限られるものではなく、その要旨を逸脱しない範囲で設計変更可能である。
 例えば、上述した実施形態では、ベイに蔵置されたコンテナCをレーザスキャナ22により検出する場合について説明したが、検出対象とする物体はコンテナCに限られるものではなく、コンテナC以外の物体であってもよい。
In addition, this invention is not restricted to the structure of embodiment mentioned above, A design change is possible in the range which does not deviate from the summary.
For example, in the above-described embodiment, the case where the container C stored in the bay is detected by the laser scanner 22 has been described, but the object to be detected is not limited to the container C, and is an object other than the container C. May be.
 例えば、図14に示すように、コンテナクレーン1の間を走行する搬送台車13を検出するようにしても良い。さらに、搬送台車13が、コンテナCを積載した状態か、空の状態かを検出するようにしても良い。このようにした場合、搬送台車13を検出するための専用のセンサを省略することができ、更なる部品点数の低減を図ることができる。 For example, as shown in FIG. 14, a transport carriage 13 that travels between the container cranes 1 may be detected. Furthermore, you may make it detect whether the conveyance trolley 13 is the state which loaded the container C, or an empty state. In this case, a dedicated sensor for detecting the transport carriage 13 can be omitted, and the number of parts can be further reduced.
 また、上述した実施形態では、レーザスキャナ22による着光座標にのみ基づき、対象ベイのコンテナ積形状を判定する場合について説明したが、これに限られるものではない。
 例えば、スプレッダ10により蔵置されたコンテナCを掴んだとき、又は、コンテナCを積み付けたときには、そのロウ12に積み上げられているコンテナCの座標を、エンコーダなどによって検出されるスプレッダ10の高さ位置に基づいて判定し、その判定結果を着光点データ蓄積部32に蓄積させるようにしてもよい。
In the above-described embodiment, the case where the container product shape of the target bay is determined based only on the light arrival coordinates by the laser scanner 22 is described, but the present invention is not limited to this.
For example, when the container C stored by the spreader 10 is grasped or the container C is stacked, the coordinates of the container C stacked on the row 12 are detected by the encoder or the like. The determination may be made based on the position, and the determination result may be accumulated in the light spot data accumulation unit 32.
 さらに、上述した実施形態においては、門形のコンテナクレーンを一例に説明したが、コンテナクレーンの形状は門形に限られず、また、タイヤ付車輪を有する走行装置4を具備するものに限られない。さらに、脚部5間に走行路14が敷設されていないものにも適用可能である。また、上述した実施形態においては、吊コンテナC1をターゲットコンテナC2上に着床させる場合について説明したが、地面上のロウ12の区画内に着床させても良い。また、コンテナCが無いロウ12の場合、地面の着光座標を求めても良い。 Furthermore, in the above-described embodiment, the portal container crane has been described as an example. However, the shape of the container crane is not limited to the portal shape, and is not limited to the one including the traveling device 4 having wheels with tires. . Further, the present invention can be applied to a structure in which the traveling path 14 is not laid between the legs 5. Moreover, although the case where the suspended container C1 is landed on the target container C2 has been described in the above-described embodiment, the suspended container C1 may be landed in the section of the row 12 on the ground. Further, in the case of the row 12 without the container C, the light arrival coordinates of the ground may be obtained.
 このコンテナクレーンによれば、広範囲に精度よく障害物などを検出することができると共に、部品点数の増加や、制御システムの複雑化などによるコスト増加を抑制することができる。 This container crane can detect obstacles and the like in a wide range with high accuracy, and can suppress an increase in cost due to an increase in the number of parts and a complicated control system.
 4 走行装置
 6 クレーンガーダ(ガーダ)
 7 トロリー
 10 スプレッダ
 8 巻き上げ装置(昇降機構)
 22 レーザスキャナ
 23 クレーン制御装置
 C1 吊コンテナ
 C2 ターゲットコンテナ
 26 ずれ量導出部
 29 障害物距離判定部
 30 巻下げ速度制限量計算部(下降制限制御部)
 32 着光点データ蓄積部(蓄積部)
4 traveling device 6 crane girder (girder)
7 Trolley 10 Spreader 8 Winding device (elevating mechanism)
22 Laser Scanner 23 Crane Control Device C1 Hanging Container C2 Target Container 26 Deviation Derivation Unit 29 Obstacle Distance Judgment Unit 30 Lowering Speed Limit Amount Calculation Unit (Descent Limit Control Unit)
32 Light spot data storage unit (storage unit)

Claims (5)

  1.  走行装置と、
     前記走行装置に支持されて水平方向に延びるガーダと、
     前記ガーダに沿って走行可能なトロリーと、
     前記トロリーに吊り下げられるとともに、コンテナを係脱可能なスプレッダと、
     前記スプレッダを昇降させる昇降機構と、
     前記スプレッダに設けられ、レーザ光を発射して対象物の着光点の座標を取得するレーザスキャナと、
     前記レーザスキャナにより取得した着光点の座標に基づいて、前記トロリーおよび前記スプレッダを駆動制御するクレーン制御装置と、を備えるコンテナクレーン。
    A traveling device;
    A girder supported by the traveling device and extending in a horizontal direction;
    A trolley that can travel along the girder;
    A spreader that can be suspended from the trolley and that can disengage a container;
    A lifting mechanism for lifting and lowering the spreader;
    A laser scanner that is provided in the spreader and that emits laser light to obtain the coordinates of the light landing point of the object;
    A container crane comprising: a crane control device that drives and controls the trolley and the spreader based on the coordinates of the light spot acquired by the laser scanner.
  2.  請求項1に記載のコンテナクレーンであって、
     前記レーザスキャナは、前記スプレッダの幅方向の側部に設けられるコンテナクレーン。
    The container crane according to claim 1,
    The laser scanner is a container crane provided on a lateral side of the spreader.
  3.  請求項2に記載のコンテナクレーンであって、
     前記クレーン制御装置は、前記スプレッダの下方から水平方向の範囲で前記レーザスキャナを走査させ、前記レーザスキャナにより取得した着光点の座標に基づいて前記スプレッダに係合されている吊コンテナと、この吊コンテナが上面に載置されるターゲットコンテナとの包絡線を求め、この包絡線に基づき吊コンテナとターゲットコンテナとの位置ずれ量を求めるずれ量導出部を備えるコンテナクレーン。
    The container crane according to claim 2,
    The crane control device scans the laser scanner in a horizontal direction from below the spreader, and a suspended container engaged with the spreader based on the coordinates of the landing point obtained by the laser scanner, A container crane including a deviation amount deriving unit that obtains an envelope line between a suspended container and a target container placed on an upper surface and obtains a positional deviation amount between the suspended container and the target container based on the envelope line.
  4.  請求項2又は3に記載のコンテナクレーンであって、
     前記クレーン制御装置は、
     前記レーザスキャナにより取得した着光点の座標に基づいて、周囲の障害物と前記レーザスキャナとの距離を判定する障害物距離判定部と、
     前記周囲の障害物と前記レーザスキャナとの距離に基づいて、前記スプレッダの下降動作を制限する下降制限制御部と、を備えるコンテナクレーン。
    The container crane according to claim 2 or 3,
    The crane control device
    An obstacle distance determination unit that determines a distance between a surrounding obstacle and the laser scanner, based on the coordinates of the landing point acquired by the laser scanner;
    A container crane comprising: a lowering restriction control unit that restricts a lowering operation of the spreader based on a distance between the surrounding obstacle and the laser scanner.
  5.  請求項1から4の何れか一項に記載のコンテナクレーンであって、
     前記着光点の座標を蓄積する蓄積部を備えるコンテナクレーン。
    The container crane according to any one of claims 1 to 4,
    A container crane comprising a storage unit for storing the coordinates of the light spot.
PCT/JP2013/068731 2013-01-28 2013-07-09 Container crane WO2014115354A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201408467QA SG11201408467QA (en) 2013-01-28 2013-07-09 Container crane
CN201380032493.0A CN104379489B (en) 2013-01-28 2013-07-09 Container crane
HK15106640.4A HK1205995A1 (en) 2013-01-28 2015-07-13 Container crane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-013468 2013-01-28
JP2013013468A JP2014144836A (en) 2013-01-28 2013-01-28 Container crane

Publications (1)

Publication Number Publication Date
WO2014115354A1 true WO2014115354A1 (en) 2014-07-31

Family

ID=51227163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068731 WO2014115354A1 (en) 2013-01-28 2013-07-09 Container crane

Country Status (5)

Country Link
JP (1) JP2014144836A (en)
CN (1) CN104379489B (en)
HK (1) HK1205995A1 (en)
SG (1) SG11201408467QA (en)
WO (1) WO2014115354A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112486169A (en) * 2020-11-23 2021-03-12 三一海洋重工有限公司 Unmanned overhead traveling crane board placing positioning method, system, equipment and storage medium
CN113291975A (en) * 2021-05-24 2021-08-24 万雄集团(沈阳)智能科技有限公司 A collection card parking is counterpointed and is prevented pounding and prevent hoisting device for tire crane
CN112486169B (en) * 2020-11-23 2024-04-26 三一海洋重工有限公司 Unmanned crown block board placing and positioning method, system, equipment and storage medium

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107001009B (en) * 2014-12-05 2018-04-03 住友重机械搬运系统工程株式会社 Crane system and processing method
JP6256702B2 (en) * 2014-12-25 2018-01-10 株式会社ダイフク Container lifting and lowering transport device for article transport
CN106044570B (en) * 2016-05-31 2018-06-26 河南卫华机械工程研究院有限公司 It is a kind of that automatic identification equipment and method are hung using the coil of strip of machine vision
DE102016119839A1 (en) * 2016-10-18 2018-04-19 Terex Mhps Gmbh Method for automatically positioning a straddle carrier for containers and straddle carriers therefor
CN106516989A (en) * 2016-12-27 2017-03-22 深圳市招科智控科技有限公司 Container collision preventing method and system
JP6792480B2 (en) * 2017-02-20 2020-11-25 住友重機械搬送システム株式会社 Container crane
WO2019008914A1 (en) * 2017-07-05 2019-01-10 住友重機械搬送システム株式会社 Crane apparatus
CN107857071B (en) * 2017-12-07 2023-06-02 中铁第四勘察设计院集团有限公司 Container automatic loading and unloading system based on top walking type empty rail
CN108249307B (en) * 2018-01-17 2020-06-05 北京建筑大学 Movement measurement and feedback control system and method for large crane
CN108190753B (en) * 2018-01-17 2020-03-27 潘莲英 Intelligent container handling system based on polar coordinates
CN108190750B (en) * 2018-01-17 2020-06-16 扬戈科技股份有限公司 Intelligent container crane based on polar coordinates
JP7013627B2 (en) 2018-01-25 2022-02-01 株式会社日立プラントメカニクス Crane work area registration device
JP2019182611A (en) * 2018-04-12 2019-10-24 東芝三菱電機産業システム株式会社 Safe driving support device for crane
CN108483208A (en) * 2018-06-04 2018-09-04 太仓秦风广告传媒有限公司 A kind of intelligent container crane based on cylindrical coordinates
EP3653563A1 (en) * 2018-11-15 2020-05-20 Siemens Aktiengesellschaft Reliable detection of container crane and tableware
JP7162555B2 (en) * 2019-03-08 2022-10-28 住友重機械搬送システム株式会社 Cranes and crane stowage methods
JP6740437B1 (en) * 2019-10-03 2020-08-12 日鉄エンジニアリング株式会社 Submarine structure installation jig and subsea structure installation method
JP7429151B2 (en) * 2020-04-15 2024-02-07 住友重機械搬送システム株式会社 Automatic RTG system, control device, and container transport route setting method
JP2022026315A (en) * 2020-07-30 2022-02-10 住友重機械搬送システム株式会社 Automatic crane system and method for controlling the same
CN112357774A (en) * 2020-10-14 2021-02-12 宁波大榭招商国际码头有限公司 Method for monitoring container hooked with lower container carried by lifting appliance or lifting appliance
CN112629408B (en) * 2020-11-30 2022-11-22 三一海洋重工有限公司 Alignment device and alignment method
CN112683162A (en) * 2020-11-30 2021-04-20 三一海洋重工有限公司 Relative position state detection device and relative position state detection method
CN113896107A (en) * 2021-08-20 2022-01-07 湖南天桥嘉成智能科技有限公司 Laser scanning recognition and gripping device and automatic transfer control method
CN114180353B (en) * 2021-12-28 2022-08-30 湖南天桥嘉成智能科技有限公司 Multi-type material preparation unmanned overhead crane intelligent control system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075355A (en) * 2002-08-21 2004-03-11 Mitsui Eng & Shipbuild Co Ltd Spreader collision preventive device of gantry crane

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19519741A1 (en) * 1995-06-02 1996-12-05 Siemens Ag Stacker crane sensor system
JP4598999B2 (en) * 2001-07-18 2010-12-15 三菱重工業株式会社 Crane and crane control method
DE19841570C2 (en) * 1998-09-11 2001-04-12 Telerob Ges Fuer Fernhantierun Quay crane for loading and unloading containers
SE513174C2 (en) * 1998-10-22 2000-07-24 Abb Ab Process for handling containers and apparatus for carrying out the process
JP4295591B2 (en) * 2003-09-30 2009-07-15 三井造船株式会社 Container collision prevention method and apparatus
JP4508904B2 (en) * 2005-02-25 2010-07-21 三菱重工業株式会社 Crane lowering collision prevention device
JP2006248705A (en) * 2005-03-11 2006-09-21 Tcm Corp Cargo handling device
JP2006256848A (en) * 2005-03-18 2006-09-28 Mitsui Eng & Shipbuild Co Ltd Cargo handling support method and cargo handling support system
JP4856394B2 (en) * 2005-05-09 2012-01-18 Ihi運搬機械株式会社 Object position measuring apparatus for container crane and automatic cargo handling apparatus using the object position measuring apparatus
JP2008265984A (en) * 2007-04-24 2008-11-06 Yaskawa Electric Corp Crane control systems device
CN201125130Y (en) * 2007-10-09 2008-10-01 上海明路绳网索具有限公司 Container handling anticollision device using laser to scan

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075355A (en) * 2002-08-21 2004-03-11 Mitsui Eng & Shipbuild Co Ltd Spreader collision preventive device of gantry crane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112486169A (en) * 2020-11-23 2021-03-12 三一海洋重工有限公司 Unmanned overhead traveling crane board placing positioning method, system, equipment and storage medium
CN112486169B (en) * 2020-11-23 2024-04-26 三一海洋重工有限公司 Unmanned crown block board placing and positioning method, system, equipment and storage medium
CN113291975A (en) * 2021-05-24 2021-08-24 万雄集团(沈阳)智能科技有限公司 A collection card parking is counterpointed and is prevented pounding and prevent hoisting device for tire crane
CN113291975B (en) * 2021-05-24 2023-10-24 万雄集团(沈阳)智能科技有限公司 A collection card parks and aims at and prevents pounding and prevent lifting device for tire crane

Also Published As

Publication number Publication date
CN104379489A (en) 2015-02-25
HK1205995A1 (en) 2015-12-31
SG11201408467QA (en) 2015-02-27
JP2014144836A (en) 2014-08-14
CN104379489B (en) 2016-06-22

Similar Documents

Publication Publication Date Title
WO2014115354A1 (en) Container crane
US10083847B2 (en) Ceiling transport vehicle
JP4295591B2 (en) Container collision prevention method and apparatus
CN104860203A (en) Method For Calibrating Laser Scanners To A Container Transportation Crane
WO2015022001A1 (en) Method and system for automatically landing containers on a landing target using a container crane
US11591197B2 (en) Load handling module for a material handling vehicle
CN113387302B (en) Mobile control system, mobile body, control method, and storage medium
JP5039385B2 (en) Misalignment amount calculation method, misalignment amount calculation device, crane, and cargo handling system
US20230137089A1 (en) Method for Controlling an Automatic Guided Vehicle and Control System Adapted to Execute the Method
JP6672530B2 (en) Crane equipment
JP2008265984A (en) Crane control systems device
JP6807131B2 (en) Cargo handling and transportation equipment
JP2022075659A (en) Automatic traveling vehicle, conveying device, control method for automatic traveling vehicle, and control method for conveying device
KR102159654B1 (en) Sensor trolley and corresponding container crane
WO2017082385A1 (en) Conveyance device, conveyance system, and conveyance method
JP6644955B2 (en) Crane equipment
JP7216582B2 (en) Vehicle cruise control system
JP5707833B2 (en) Transport vehicle and transport system
WO2020184025A1 (en) Crane and method for loading with crane
US11970378B2 (en) Warehouse inspection system
WO2015114768A1 (en) Container height detection device, crane system, container height detection method, and program
US20220260997A1 (en) Movable body, movement control system, method for controlling movable body, and program
JP5900403B2 (en) Transport cart control system
US20230202817A1 (en) Control method for mobile object, mobile object, and computer-readable storage medium
US20210276842A1 (en) Warehouse inspection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872878

Country of ref document: EP

Kind code of ref document: A1