WO2014115215A1 - Noncontact charger - Google Patents

Noncontact charger Download PDF

Info

Publication number
WO2014115215A1
WO2014115215A1 PCT/JP2013/007104 JP2013007104W WO2014115215A1 WO 2014115215 A1 WO2014115215 A1 WO 2014115215A1 JP 2013007104 W JP2013007104 W JP 2013007104W WO 2014115215 A1 WO2014115215 A1 WO 2014115215A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission coil
state
coil
arrangement direction
magnetic body
Prior art date
Application number
PCT/JP2013/007104
Other languages
French (fr)
Japanese (ja)
Inventor
北村 浩康
真美 鈴木
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014115215A1 publication Critical patent/WO2014115215A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-contact charger capable of charging a plurality of devices.
  • Patent Document 1 discloses a non-contact charger that includes four coils and charges a plurality of mobile phones simultaneously.
  • a charger that can charge two or more electric toothbrushes at the same time is larger and obstructive compared to a conventional charger for one unit.
  • An object of the present invention is to provide a non-contact charger whose size can be changed according to the number of devices used.
  • a non-contact charger is a non-contact charger capable of charging a plurality of devices, and generates a magnetic flux from a flux linkage surface, and is arranged along the magnetic flux linkage surface.
  • a transmission coil for transmitting power is included, and the width of the transmission coil in the arrangement direction of the devices can be varied.
  • FIG. 1 is a circuit diagram of a charging system according to Embodiment 1.
  • FIG. It is explanatory drawing of an effect
  • FIG. It is sectional drawing from the side view of a charger. It is the figure which showed a mode that the transmission coil rotated.
  • Embodiment 2 it is a figure which shows the relationship between the transmission coil in a 2nd state, and a receiving coil.
  • Embodiment 2 it is a figure which shows the relationship between the transmission coil in a 1st state, and a receiving coil.
  • FIG. 2 It is a block diagram of the charging system provided with the AC adapter. It is the figure which showed the charger by Embodiment 2.
  • FIG. It is sectional drawing from the upper surface view of a charger. It is a figure which shows the transmission coil in the top view at the time of removing a housing.
  • FIG. 6 is a configuration diagram of a transmission coil in a third embodiment.
  • Embodiment 3 it is the figure which showed the transmission coil when an auxiliary member is attached to the main coil part.
  • Embodiment 3 it is the figure which showed the transmission coil when an auxiliary member is removed from the main coil part.
  • FIG. 10 is a circuit diagram of a charger according to a sixth embodiment.
  • FIG. 10 is a configuration diagram of a transmission coil in a seventh embodiment.
  • FIG. 10 is a configuration diagram of a transmission coil in a seventh embodiment.
  • FIG. 1 is a diagram showing a toilet where a non-contact charger (hereinafter referred to as a charger 100) according to Embodiment 1 is installed.
  • a charger 100 is installed on the back side of the washstand 11.
  • the charger 100 charges the device 200 in a non-contact manner.
  • the charger 100 includes a support portion 12 that supports a magnetic flux linkage surface that generates magnetic flux.
  • the device 200 faces the magnetic flux linkage surface and is arranged on the wash basin 11 along the magnetic flux linkage surface.
  • the charger 100 generates a magnetic flux toward the front side to charge the device 200.
  • two devices 200 are placed.
  • any device that can be charged may be used.
  • an electric toothbrush is used.
  • an electric shaver, a facial device, or the like may be employed as the device 200.
  • the charger 100 and the device 200 constitute a charging system.
  • FIG. 2 is a block diagram of the charger 100 and the device 200 shown in FIG.
  • the charger 100 includes a smoothing circuit 101, an oscillation circuit 102, a transmission coil 103, and an outlet plug PG.
  • a commercial power supply voltage is supplied to the charger 100.
  • Smoothing circuit 101 rectifies and smoothes the power supply voltage.
  • the oscillation circuit 102 oscillates the rectified and smoothed power supply voltage at a predetermined frequency (for example, 400 kHz), and causes a high-frequency current to flow through the transmission coil 103. Thereby, the oscillation circuit 102 oscillates the transmission coil 103.
  • the transmission coil 103 generates magnetic flux when high-frequency current flows, and supplies power to the device 200.
  • the device 200 includes a power receiving coil 201, a smoothing circuit 202, and a secondary battery 203.
  • the power receiving coil 201 receives the magnetic flux from the transmission coil 103.
  • the smoothing circuit 202 rectifies and smoothes the voltage generated in the power receiving coil 201.
  • the secondary battery 203 is supplied with the voltage smoothed by the smoothing circuit 202 and stores the electric power supplied from the charger 100.
  • the secondary battery 203 for example, a Li ion secondary battery is employed.
  • FIG. 7 is a circuit diagram of the charging system according to the first embodiment.
  • the charger 100 includes a diode bridge 701, a smoothing capacitor 702, switching elements Q1 to Q4, a coil L1, a capacitor C1, and a control circuit 704.
  • the diode bridge 701 and the smoothing capacitor 702 constitute the smoothing circuit 101 of FIG.
  • the switching elements Q1 to Q4 and the control circuit 704 constitute the oscillation circuit 102 of FIG.
  • the coil L1 and the capacitor C1 constitute the transmission coil 103 in FIG.
  • the switching elements Q1 to Q4 are each connected to the control circuit 704 via the resistor R1.
  • the coil L1 and the capacitor C1 are connected in series.
  • the coil L1 is connected between the switching elements Q1 and Q3, and the capacitor C1 is connected between the switching elements Q2 and Q4.
  • the control circuit 704 turns on and off the switching elements Q1 and Q4 and the switching elements Q2 and Q3 alternately, and causes a high-frequency current to flow through the coil L1 and the capacitor C1.
  • the coil L1 generates magnetic flux by this high frequency current.
  • the device 200 includes a coil L2, a capacitor C2, a diode bridge 710, and a smoothing capacitor C3.
  • the coil L2 and the capacitor C2 constitute the power receiving coil 201 in FIG.
  • the diode bridge 710 and the smoothing capacitor C3 constitute the smoothing circuit 202 of FIG.
  • the voltage generated in the coil L2 is full-wave rectified by the diode bridge 710, smoothed by the smoothing capacitor C3, and converted into a DC voltage.
  • the transmission coil 103 has a rectangular shape when viewed from the front.
  • the transmission coil 103 includes a winding 301 and a magnetic body 302.
  • the winding 301 is attached to the outer peripheral region of the main surface 302a (magnetic flux linkage surface) of the magnetic body 302.
  • the magnetic body 302 has a flat main surface 302a and a flat plate shape.
  • the thickness t1 of the winding 301 is 2 mm, for example.
  • the thickness t2 of the magnetic body 302 is 2 mm, for example.
  • the permeability of the magnetic body 302 is 2300, for example.
  • the long side W12 of the transmission coil 103 is, for example, 70 mm
  • the short side W11 is, for example, 50 mm
  • the thickness (t1 + t2) is, for example, 4 mm.
  • the width t3 of the winding 301 is, for example, 10 mm.
  • the winding 301 is formed by winding 20 conductors with a diameter of 0.06 mm, for example, 20 times.
  • FIG. 4 is a configuration diagram of the power receiving coil 201, (A) is a front view, and (B) is a BB cross-sectional view.
  • the power receiving coil 201 is rectangular and includes a winding 401 and a magnetic body 402.
  • the magnetic body 402 has a main surface 402a that is rectangular and has a flat plate shape. Winding 401 is affixed to the outer peripheral region of main surface 402a.
  • the power receiving coil 201 has a long side W22 of, for example, 40 mm, a short side W21 of, for example, 20 mm, and a thickness t3 of, for example, 1 mm.
  • the power receiving coil 201 is attached to the device 200 so that the short side W21 faces the horizontal direction when the device 200 is erected on the washstand 11.
  • the long side W12 of the transmission coil 103 has a length about four times the short side W21 of the power receiving coil 201. Therefore, the transmission coil 103 can charge up to four devices 200 arranged in a line in the horizontal direction.
  • the direction in which the devices 200 are arranged is referred to as an arrangement direction.
  • said dimension is only an example and this invention is not limited to said dimension.
  • FIG. 5 is a cross-sectional view when the charger 100 and the device 200 are cut in the vertical direction.
  • the charger 100 includes a housing 501 that houses the transmission coil 103.
  • the housing 501 includes a main surface 501a facing the device 200 and emits a magnetic flux from the main surface 501a.
  • the device 200 includes a housing 502 that houses the power receiving coil 201.
  • the device 200 is arranged away from the charger 100 by a distance D1.
  • the distance D1 is, for example, 10 mm.
  • FIG. 6 is a cross-sectional view of the charger 100 and the device 200 as viewed from above.
  • four devices 200 are arranged along the arrangement direction 601.
  • the arrangement direction 601 is a direction parallel to the flux linkage surface of the transmission coil and parallel to the horizontal direction (the direction of the surface of the washbasin 11).
  • FIG. 8A and 8B are explanatory diagrams of the operation of the charger 100 according to the first embodiment.
  • FIG. 8A illustrates the charger 100 when charging one device 200
  • FIG. 8B illustrates four devices 200. The charger 100 in the case of charging is shown.
  • the transmission coil 103 is connected to the main body 801 via a rotation shaft 103 a provided in the main body 801, and is rotatable with respect to the main body 801.
  • the main body 801 is attached to the support 12 shown in FIG. 1 and includes the smoothing circuit 101 and the oscillation circuit 102 shown in FIG.
  • the transmission coil 103 has a rotating shaft 103a attached to the center O103, for example.
  • FIG. 9 is a cross-sectional view of the charger 100 as viewed from the side, (A) is a cross-sectional view when the transmission coil 103 is positioned in the first state, and (B) is a cross-sectional view of the transmission coil 103 in the second state. It is sectional drawing in the case of being positioned in the state.
  • the transmission coil 103 is accommodated in the housing 501.
  • a rotating shaft 103a is attached near the center of the surface of the housing 501 on the main body 801 side.
  • the housing 501 is rotatably attached to the rotation shaft 103a.
  • the rotating shaft 103a is fixed near the center of the surface of the housing 801a of the main body 801 on the transmission coil 103 side. Therefore, the transmission coil 103 can rotate with respect to the main body 801.
  • the transmission coil 103 When charging one device 200, the transmission coil 103 is positioned in a first state in which the long side W12 is orthogonal to the arrangement direction 601 as shown in FIG. Therefore, as shown in FIG. 9A, the long side W12 of the transmission coil 103 faces the vertical direction. Thereby, the transmission coil 103 is accommodated in the main body 801, and the empty space of the wash basin 11 is increased.
  • the transmission coil 103 when charging the four devices 200, as shown in FIG. 8B, the transmission coil 103 is rotated 90 degrees, and the long side W12 is positioned in the second state parallel to the arrangement direction 601. Therefore, as shown in FIG. 9B, the transmission coil 103 has the short side W11 facing the vertical direction. Thereby, the width
  • a person who always uses only one unit can reduce the spread of the arrangement direction 601 by using the transmission coil 103 in the vertical direction (first state), compared to using four units. Can be used effectively.
  • FIG. 10A and 10B are diagrams illustrating a state in which the transmission coil 103 rotates.
  • FIG. 10A illustrates the transmission coil 103 from a top view
  • FIG. 10B illustrates the transmission coil 103 rotating from the first state to the second state. It is the figure which showed a mode continuously
  • (C) is sectional drawing of the transmission coil 103.
  • FIG. In the leftmost diagram of FIG. 10B the transmission coil 103 is in the first state. At this time, when the transmission coil 103 is viewed from above, the transmission coil 103 does not protrude from the main body 801 as shown in the left diagram of FIG.
  • the transmission coil 103 When the transmission coil 103 is rotated by the user, the transmission coil 103 changes from the left side to the right side in FIG. 10B, and finally becomes the second state shown at the rightmost position. At this time, when the transmission coil 103 is viewed from the top, the width of the transmission coil 103 in the arrangement direction 601 increases as shown in the right diagram of FIG.
  • the transmission coil 103 is accommodated in a housing 501 having a rectangular parallelepiped shape.
  • One end 301 a and the other end 301 b of the winding 301 pass through the center hole of the magnetic body 302 and are electrically connected to the oscillation circuit 102 of the main body 801.
  • a bypass wire 301c for guiding the winding 301 to the hole is provided at the outer end 301d of the winding 301.
  • An insulation sheet 1001 is provided below the bypass line 301c to prevent a short circuit between the winding 301 and the bypass line 301c.
  • FIG. 11 is a diagram illustrating the relationship between the transmission coil 103 and the power receiving coil 201 in the second state in the second embodiment, where (A) shows only the transmission coil 103 and (B) shows only the power receiving coil 201. (C) shows the transmission coil 103 and the power receiving coil 201 in an overlapping manner.
  • FIG. 12 is a diagram illustrating the relationship between the transmission coil 103 and the power receiving coil 201 in the first state in the second embodiment, where (A) shows only the transmission coil 103 and (B) shows only the power receiving coil 201. (C) shows the transmission coil 103 and the power receiving coil 201 in an overlapping manner.
  • the shapes of the transmission coil 103 and the power receiving coil 201 are set so that the power receiving coil 201 is within the region of the transmission coil 103 in both the second state and the first state.
  • the height of the center O301 of the transmission coil 103 is determined.
  • the height of the center O301 of the transmission coil 103 and the center O201 of the power receiving coil 201 from the wash basin 11 are substantially the same, and the short side W11 of the transmission coil 103 is approximately the same as the long side W22 of the power receiving coil 201.
  • the long side W12 of the transmission coil 103 may be about four times as long as the short side W21 of the power receiving coil 201.
  • a gap D ⁇ b> 12 is provided between the transmission coil 103 and the washstand 11 so that the user can rotate the transmission coil 103 without lifting the charger 100 from the washstand 11. .
  • this is an example, and the gap D12 may be eliminated.
  • the smoothing circuit 101 is provided in the charger 100, but the invention is not limited thereto, and the smoothing circuit 101 may be omitted from the charger 100.
  • an AC adapter 1301 may be provided separately, and the charger 100 may be connected to an outlet via the AC adapter 1301.
  • FIG. 13 is a configuration diagram of a charging system provided with an AC adapter 1301.
  • the AC adapter 1301 includes the smoothing circuit 101 and the outlet plug PG shown in FIG. 2, and converts the power supply voltage of AC 100V into, for example, a DC voltage of 12V.
  • the AC adapter 1301 and the charger 100 are connected via a cable 1302, and the oscillation circuit 102 is supplied with a DC voltage from the AC adapter 1301.
  • the charger 100 has been described as being capable of charging a maximum of four devices 200, but this is only an example, and a maximum of n (two or more) such as two, three, five, etc. An integer) device 200 that can be charged may be used.
  • the long side W12 of the transmission coil 103 may be set according to the value of n.
  • FIG. 14A shows the charger 100 when charging one device 200
  • FIG. 14B shows charging four devices 200.
  • FIG. The charger 100 in the case of doing is shown.
  • the magnetic body portion 3020 including the magnetic body 302 is rotatable to the main body portion 801, and the winding portion 3010 including the winding 301 is Does not rotate.
  • the magnetic body portion 3020 is set to the first state in which the long side W12 is orthogonal to the arrangement direction 601.
  • the magnetic body portion 3020 is set to the second state in which the long side W12 is parallel to the arrangement direction 601.
  • the long side of the winding portion 3010 is orthogonal to the arrangement direction 601 and is fixed to the main body portion 801 even when the magnetic body portion 3020 is in the second state.
  • the magnetic body portion 3020 In the second state, only the magnetic body portion 3020 protrudes from the winding portion 3010 toward the arrangement direction 601, but the magnetic flux is interlinked even in the protruding region. Therefore, if the device 200 is arranged in front of the protruding area, the device 200 is charged.
  • FIG. 15 is a cross-sectional view of the battery charger 100 as viewed from above, (A) is a cross-sectional view when the magnetic body 3020 is positioned in the first state, and (B) is a cross-sectional view of the magnetic body 3020. It is sectional drawing in the case of being positioned in a 2nd state.
  • the magnetic body 302 is housed in a housing 3020 a of the magnetic body portion 3020.
  • Winding 301 is also housed in housing 3010 a of winding portion 3010.
  • the housing 3010a and the housing 801a of the main body 801 are connected by a rotating shaft 103a.
  • the housing 3010a and the housing 801a are fixed, the winding 301 does not rotate with respect to the main body 801.
  • the housing 3020a has a hole in the center, and the rotation shaft 103a passes through the hole, so that the housing 3020a can rotate with respect to the housing 801a. Therefore, the magnetic body 302 can rotate with respect to the main body 801.
  • the magnetic body portion 3020 does not protrude from the main body portion 801 toward the arrangement direction 601.
  • the magnetic body portion 3020 protrudes from the main body portion 801 in the arrangement direction 601 and the width in the arrangement direction 601 increases.
  • FIG. 16A and 16B are diagrams showing the transmission coil 103 in a top view when the housing is removed.
  • FIG. 16A shows a case where the magnetic body 302 is positioned in the first state
  • FIG. The case where it positions to the 2nd state is shown.
  • FIG. 16B it can be seen that when the magnetic body 302 is brought into the second state, the width in the arrangement direction 601 of the magnetic bodies 302 is increased as compared with the case of FIG. .
  • FIG. 17 is a diagram illustrating a relationship between the transmission coil 103 and the power receiving coil 201 when the magnetic body 302 is positioned in the second state in the modification of the second embodiment.
  • FIG. 17A illustrates only the transmission coil 103.
  • (B) shows only the receiving coil 201, and
  • (C) shows a state in which the receiving coil 201 is arranged in front of the transmission coil 103.
  • FIG. 18 is a diagram illustrating a relationship between the transmission coil 103 and the power receiving coil 201 when the magnetic body 302 is positioned in the first state in the modification of the second embodiment.
  • FIG. 18A illustrates only the transmission coil 103.
  • (B) shows only the receiving coil 201, and
  • (C) shows a state in which the receiving coil 201 is arranged in front of the transmission coil 103.
  • the long side of the winding 301 is orthogonal to the arrangement direction 601.
  • the long side of the winding 301 is the arrangement direction 601.
  • the areas of the magnetic flux linkage surfaces of the winding 301 and the magnetic body 302 are almost the same.
  • the area of the magnetic flux linkage surface of 302 is larger than the area of the magnetic flux linkage surface of the winding 301.
  • the user positions the magnetic body 302 in a first state in which the long side W12 of the magnetic body 302 is orthogonal to the arrangement direction 601 as shown in FIG. Thereby, the magnetic body 302 does not protrude from the main body 801 in the arrangement direction 601, and an empty space of the wash basin 11 can be secured.
  • the user positions the magnetic body 302 in the first state in which the long side W12 of the magnetic body 302 is parallel to the arrangement direction 601 as shown in FIG. Accordingly, the magnetic body 302 faces the power receiving coils 201 of the four devices 200 arranged in the arrangement direction 601. Therefore, the magnetic flux emitted from the magnetic body 302 can be linked to the power receiving coils 201 of the four devices 200, and the four devices 200 are charged.
  • the height from the wash basin 11 of the center O301 of the transmission coil 103 and the center O201 of the power receiving coil 201 as the rotation axis of the magnetic body 302 is made substantially the same, and the short side W11 of the magnetic body 302 is set to the power receiving coil. If the length is equal to or longer than the long side W22 of 201, and the long side W12 of the magnetic body 302 is equal to or longer than four times the short side W21 of the receiving coil 201, the length is increased. Good.
  • the charger 100 according to the third embodiment is characterized in that the transmission coil 103 includes a main coil portion 191 and a pair of auxiliary members 192 that can be attached to and detached from the main coil portion 191.
  • FIG. 19 is a configuration diagram of the transmission coil 103 according to the third embodiment.
  • the main coil portion 191 has grooves 1911 formed on the left and right side surfaces.
  • the auxiliary member 192 has a convex portion 1921 on one side surface. Therefore, the auxiliary member 192 is attached to the main coil portion 191 by fitting the convex portion 1921 into the groove 1911.
  • the main coil portion 191 includes a flat magnetic body 302 and a winding 301 attached to the main surface of the magnetic body 302.
  • a main body portion 801 is attached to the back surface of the main coil portion 191.
  • the auxiliary member 192 includes a flat magnetic body 1922.
  • the main surface of the magnetic body 1922 is disposed on the auxiliary member 192 so as to be aligned with the main surface of the magnetic body 302 when the auxiliary member 192 is attached to the main coil portion 191.
  • FIG. 20A and 20B are diagrams showing the transmission coil 103 when the auxiliary member 192 is attached to the main coil portion 191 in the third embodiment.
  • FIG. 20A shows only the transmission coil 103
  • FIG. Only the coil 201 is shown
  • (C) shows a state in which four devices 200 are placed in front of the transmission coil 103.
  • the width W31 in the arrangement direction 601 of the magnetic bodies 302 is about twice the short side W21 of the power receiving coil 201.
  • the vertical width W32 of the magnetic body 302 is approximately the same as the long side W22 of the power receiving coil 201.
  • the horizontal width W41 of the magnetic body 1922 is slightly larger than the short side W21 of the power receiving coil 201.
  • the vertical width W42 of the magnetic body 1922 is approximately the same as the width W32.
  • the user When charging four devices 200, the user attaches a pair of auxiliary members 192 to the main coil portion 191. Thereby, the width
  • the magnetic body 1922 is magnetically coupled to the magnetic body 302 and emits a magnetic flux toward the device 200. Therefore, magnetic flux is also supplied to the devices 200 placed at both ends of the arrangement direction 601, and the four devices 200 can be charged simultaneously.
  • FIG. 21 is a diagram illustrating the transmission coil 103 when the auxiliary member 192 is removed from the main coil portion 191 in the third embodiment, where (A) illustrates only the transmission coil 103 and (B) illustrates power reception. Only the coil 201 is shown, and (C) shows a state in which one device 200 is placed in front of the transmission coil 103.
  • the fourth embodiment is characterized in that, in the charger 100 of the second embodiment, the short side W11 of the magnetic body 302 is adjusted so that the change in inductance of the transmission coil 103 is minimized before and after the magnetic body 302 is rotated.
  • FIG. 22 is an explanatory diagram of the charger 100 according to the fourth embodiment. As shown in FIGS. 14A and 14B, when the magnetic body 302 is changed from the first state to the second state, the area S1 of the magnetic body 302 that is behind the winding 301 disappears, and the inductance is reduced. . The long sides of the magnetic body 302 and the winding 301 are the same.
  • the region S1 and the region S2 are the same, a decrease in inductance when the state is changed from the first state to the second state can be minimized.
  • the region S2 does not have the winding 301, so that the inductance of the transmission coil 103 in the second state is slightly lower than that in the first state.
  • the control of the oscillation circuit 102 is not changed by designing the short side W11 so that the inductance is substantially the same between the case where the magnetic body 302 is located in the first state and the case where the magnetic body 302 is located in the second state.
  • the device 200 can be charged without any problem.
  • the short side W11 of the magnetic body 302 when the short side W11 of the magnetic body 302 is made shorter than the short side W51 of the winding 301, the area of the region S2 is lower than the area of the region S1, and the inductance of the transmission coil 103 is reduced. Therefore, in the present embodiment, the short side W11 of the magnetic body 302 is made shorter than the short side W51 of the winding 301. Thereby, when the magnetic body 302 is positioned in the second state, the inductance of the transmission coil 103 can be reduced as compared with the case where the magnetic body 302 is positioned in the first state.
  • FIG. 23 is a waveform diagram showing the operation of the control circuit 704 according to the magnitude of the inductance of the transmission coil 103, where (A) shows a case where the inductance is small and (B) shows a case where the inductance is large.
  • the upper stage is a waveform diagram of the gate voltage applied by the control circuit 704 to the gates of the switching elements Q1 and Q4, and the middle stage is applied by the control circuit 704 to the gates of the switching elements Q2 and Q3.
  • the lower part is a waveform diagram of the current flowing through the transmission coil 103.
  • the inductance of the transmission coil 103 is reduced, so that the current flowing through the transmission coil 103 when the switching elements Q1 to Q4 are turned on is reduced.
  • Rise time is faster.
  • the energy stored in the transmission coil 103 increases, and the amplitude of the current flowing through the transmission coil 103 increases. Therefore, the power supplied to the device 200 can be increased.
  • the inductance of the transmission coil 103 becomes smaller when positioned in the second state than when positioned in the first state. Therefore, the control circuit 704 increases the power supplied to the device 200 in the second state than in the first state without changing the control of the switching elements Q1 to Q4 between the first state and the second state. Can do.
  • the sixth embodiment is characterized by providing a sensor, detecting whether the transmission coil 103 is in the first state or the second state, and changing the control to the switching elements Q1 to Q4.
  • FIG. 24 is a circuit diagram of charger 100 according to the sixth embodiment.
  • a sensor 231 is added to FIG.
  • FIG. 25 is a diagram illustrating an arrangement example of the sensor 231.
  • FIG. 25A illustrates a case where the transmission coil 103 is positioned in the first state
  • FIG. 25B illustrates that the transmission coil 103 is positioned in the second state. Indicates the case.
  • the sensor 231 is disposed on the left side of the main surface of the main body 801. Specifically, the sensor 231 is disposed at a position that is not shielded by the transmission coil 103 when the transmission coil 103 is positioned in the first state. More specifically, the transmission coil 103 is arranged on the left side in the arrangement direction 601 with respect to the center O103 of the transmission coil 103 at a position slightly apart from the half of the short side W11 of the transmission coil 103.
  • the sensor 231 is not significantly affected by the magnetic flux because there is no transmission coil 103 directly above the sensor 231.
  • the transmission coil 103 when the transmission coil 103 is positioned in the second state, the sensor 231 is shielded by the transmission coil 103 as shown in FIG. For this reason, since the transmission coil 103 is located directly above the sensor 231, the sensor 231 receives more magnetic flux than in the first state.
  • the sensor 231 can detect whether the transmission coil 103 is in the first state or the second state.
  • 26A and 26B are waveform diagrams showing the operation of the control circuit 704.
  • FIG. 26A shows the case where the transmission coil 103 is positioned in the first state
  • FIG. 26B shows the case where the transmission coil 103 is positioned in the second state.
  • the upper stage is a waveform diagram of the gate voltage applied by the control circuit 704 to the gates of the switching elements Q1 and Q4
  • the middle stage is applied by the control circuit 704 to the gates of the switching elements Q2 and Q3.
  • the lower part is a waveform diagram of the current flowing through the transmission coil 103.
  • the off period of the gate voltage is the same when the transmission coil 103 is in the first state and the second state.
  • the control circuit 704 lowers the frequency of the gate voltage compared to the first state, thereby turning on the duty of the gate voltage. To increase.
  • the control circuit 704 raises the frequency of the gate voltage and lowers the on-duty of the gate voltage compared to the second state.
  • the seventh embodiment is characterized in that a resonance circuit is employed as the auxiliary member 192 in the third embodiment.
  • 27 and 28 are configuration diagrams of the transmission coil 103 according to the seventh embodiment.
  • the transmission coil 103 includes a main coil portion 261 and a pair of auxiliary members 262 as in the third embodiment.
  • the auxiliary member 262 can be attached to and detached from the main coil portion 261 as in the third embodiment.
  • the main coil portion 261 is the same as that in the third embodiment.
  • the auxiliary member 262 includes a resonance circuit 2625.
  • the resonance circuit 2625 includes a magnetic body 2622, a winding 2623, and a capacitor 2624.
  • the magnetic body 2622 has a flat plate shape.
  • a winding 2623 is attached to the main surface of the magnetic body 2622.
  • a capacitor 2624 is electrically connected to the winding 2623.
  • the resonance frequency of the resonance circuit 2625 is set to a value close to the resonance frequency of the main coil portion 261.
  • the resonance circuit 2625 When the auxiliary member 262 is attached to the main coil portion 261, the resonance circuit 2625 resonates by magnetic coupling with the main coil portion 261 to generate magnetic flux. That is, the resonance circuit 2625 is not electrically connected to the main coil portion 261 but is magnetically coupled to the main coil portion 261 to generate a magnetic flux.
  • the user attaches a pair of auxiliary members 262 to the main coil portion 261. Thereby, the width
  • the user when charging one device 200, the user removes the auxiliary member 262 from the main coil portion 261. Thereby, the width
  • the sensor 231 described in Embodiment 6 may be provided in Embodiment 7.
  • a sensor 231 that is turned on when the auxiliary member 262 is attached and turned off when the auxiliary member 262 is removed may be provided in each of the pair of grooves 2611 of the main coil portion 2611.
  • control circuit 704 should just produce
  • the control circuit 704 may generate the gate voltage so that the on-duty is higher than when the auxiliary member 262 is attached.
  • This embodiment using the sensor 231 can also be applied to the third embodiment.
  • the non-contact charger according to the present embodiment is a non-contact charger capable of charging a plurality of devices, generates a magnetic flux from a magnetic flux linkage surface, and is arranged along the magnetic flux linkage surface.
  • a transmission coil that transmits power to the device is included, and the width of the transmission coil in the arrangement direction of the device can be varied.
  • the width of the transmission coil is adjusted to a size corresponding to the number of devices to be charged. Therefore, a user who charges only one device can charge the device by shortening the width of the transmission coil, and can secure an empty space in the washstand. On the other hand, a user who charges a plurality of devices can increase the width of the transmission coil and charge the plurality of devices simultaneously.
  • the transmission coil further includes a main body portion in which the magnetic flux linkage surface is rectangular and the transmission coil is rotatably attached, and the transmission coil rotates with respect to the main body portion, It is preferable that the width in the arrangement direction varies.
  • the transmission coil has a rectangular shape and is rotatably attached to the main body. Therefore, the user can increase the width of the transmission coil in the arrangement direction by rotating the transmission coil so that the long side of the transmission coil is directed in the arrangement direction. On the other hand, the user can reduce the width of the transmission coil in the arrangement direction by rotating the transmission coil so that the long side of the transmission coil is directed in a direction orthogonal to the arrangement direction.
  • the transmission coil is preferably rotatable from a first state in which a longitudinal direction is orthogonal to the arrangement direction to a second state in which the longitudinal direction is parallel to the arrangement direction.
  • the user when charging one device, the user positions two transmission coils in the first state, and when charging a plurality of devices, the user positions two transmission coils in the second state.
  • the device can be charged by switching the state.
  • the transmission coil includes a magnetic body portion and a winding portion, and only the magnetic body portion rotates with respect to the main body portion.
  • the width of the transmission coil is adjusted by rotating only the magnetic body portion constituting the transmission coil. Therefore, it is possible to prevent problems such as wire breakage.
  • the magnetic body portion is rotatable from a first state in which a longitudinal direction is perpendicular to the arrangement direction to a second state in which the longitudinal direction is parallel to the arrangement direction. It is preferable that the short side is set so that a change in inductance is suppressed between the state and the second state.
  • the magnetic body portion is rotatable from a first state in which a longitudinal direction is orthogonal to the arrangement direction to a second state in which the longitudinal direction is parallel to the arrangement direction, It is preferable that the short side is set so that the inductance is smaller when positioned in the state than when positioned in the first state.
  • the inductance of the transmission coil becomes small, so even if the control of the oscillation circuit is not switched between the first state and the second state, In this case, the power supply amount can be increased as compared with the case of the first state.
  • the transmission coil includes a main coil part and an auxiliary member magnetically coupled to the main coil part, and the auxiliary member is detachable from the main coil part in the arrangement direction. .
  • the width of the transmission coil can be adjusted by attaching / detaching the auxiliary member to / from the main coil portion.
  • the auxiliary member is preferably made of a magnetic material.
  • the auxiliary member is made of a magnetic material, when the auxiliary member is attached to the main coil portion, the magnetic material is magnetically coupled to the main coil portion, and magnetic flux can be generated from the auxiliary member. Therefore, it is possible to generate magnetic flux from the auxiliary member without electrically connecting the auxiliary member and the main coil portion using the conductive wire.
  • the auxiliary member is preferably constituted by a resonance circuit including a coil and a capacitor.
  • the auxiliary member is configured by the resonance circuit, when the auxiliary member is attached to the main coil portion, the coil of the resonance circuit is magnetically coupled to the main coil portion, and magnetic flux is generated from the auxiliary member. it can. Therefore, it is possible to generate magnetic flux from the auxiliary member without electrically connecting the auxiliary member and the main coil portion using the conductive wire.
  • the sensor further includes a sensor that detects that the width of the transmission coil in the arrangement direction is a second size longer than the first size, and an oscillation circuit that oscillates the transmission coil.
  • the sensor detects that the width of the transmission coils in the arrangement direction is the second size, it is preferable that the current flowing in the transmission coil is increased as compared with the case of the first size.
  • the amount of power supplied to the devices can be increased.
  • the present invention is useful for devices such as an electric shaver and an electric toothbrush because the width of the transmission coil can be adjusted according to the number of devices to be charged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

A transmission coil (103) is attached to a body unit (801) so as to be able to rotate. When one device (200) is to be charged, the transmission coil (103) is positioned in a first state in which a long side (W12) of the transmission coil (103) is orthogonal to an arrangement direction (601) of the device (200). When a plurality of devices (200) are to be charged, the transmission coil (103) is positioned in a second state in which the long side (W12) of the transmission coil (103) is parallel to the arrangement direction (601).

Description

非接触充電器Contactless charger
 本発明は、複数の機器が充電可能な非接触充電器に関するものである。 The present invention relates to a non-contact charger capable of charging a plurality of devices.
 現在、電動歯ブラシは、電気的接点のない非接触充電で充電するものが各社から発売されている。このような電動歯ブラシでは、1台の電動歯ブラシを充電するための充電器が一緒に売られている。電動歯ブラシは主に洗面所で使用されるため、使用後は充電器にセットした状態で洗面台に収納されるのが一般的である。しかしながら、洗面台の収納スペースは小さいため、例えば4人家族の各人が個別に電動歯ブラシを購入している家庭は少ない。この原因の1つが充電器のサイズ及びコンセント数である。 Currently, electric toothbrushes that are charged by non-contact charging without electrical contacts are available from various companies. In such an electric toothbrush, a charger for charging one electric toothbrush is sold together. Since an electric toothbrush is mainly used in a washroom, it is generally stored in a washstand in a state of being set in a charger after use. However, since the storage space for the wash basin is small, for example, there are few households in which each member of a family of four purchases an electric toothbrush individually. One of the causes is the size of the charger and the number of outlets.
 そのため、4台の電動歯ブラシを同時に充電することができる充電器が望ましいと考えられる。例えば、特許文献1では、4つのコイルを備え、複数の携帯電話を同時に充電する非接触充電器が開示されている。 Therefore, a charger that can charge four electric toothbrushes at the same time is considered desirable. For example, Patent Document 1 discloses a non-contact charger that includes four coils and charges a plurality of mobile phones simultaneously.
 しかしながら、一人暮らしの人は、1台の電動歯ブラシが充電できれば十分である。一人暮らしの人にとって、2台以上の電動歯ブラシを同時に充電することができる充電器は、従来の1台用の充電器に比べてサイズが大きくなり、邪魔である。 However, it is sufficient for a single person to be able to charge one electric toothbrush. For a person living alone, a charger that can charge two or more electric toothbrushes at the same time is larger and obstructive compared to a conventional charger for one unit.
特開2005-006440号公報Japanese Patent Laid-Open No. 2005-006440
 本発明の目的は、使用する機器の台数に応じてサイズを変更することができる非接触充電器を提供することである。 An object of the present invention is to provide a non-contact charger whose size can be changed according to the number of devices used.
 本発明の一態様による非接触充電器は、複数の機器が充電可能な非接触充電器であって、磁束鎖交面から磁束を発生させ、前記磁束鎖交面に沿って配列された機器に電力を伝送する伝送コイルを含み、前記伝送コイルは、前記機器の配列方向の幅が変動可能である。 A non-contact charger according to an aspect of the present invention is a non-contact charger capable of charging a plurality of devices, and generates a magnetic flux from a flux linkage surface, and is arranged along the magnetic flux linkage surface. A transmission coil for transmitting power is included, and the width of the transmission coil in the arrangement direction of the devices can be varied.
実施の形態1による充電器が設置された洗面台を示す図である。It is a figure which shows the washstand in which the charger by Embodiment 1 was installed. 図1に示す充電器及び機器のブロック図である。It is a block diagram of the charger and apparatus shown in FIG. 伝送コイルの構成図である。It is a block diagram of a transmission coil. 受電コイルの構成図である。It is a block diagram of a receiving coil. 充電器及び機器の鉛直方向の断面図である。It is sectional drawing of the vertical direction of a charger and an apparatus. 充電器及び機器の上面視からの断面図である。It is sectional drawing from the top view of a charger and an apparatus. 実施の形態1による充電システムの回路図である。1 is a circuit diagram of a charging system according to Embodiment 1. FIG. 実施の形態1の充電器の作用の説明図である。It is explanatory drawing of an effect | action of the charger of Embodiment 1. FIG. 充電器の側面視からの断面図である。It is sectional drawing from the side view of a charger. 伝送コイルが回転する様子を示した図である。It is the figure which showed a mode that the transmission coil rotated. 実施の形態2において、第2状態にある伝送コイルと受電コイルとの関係を示す図である。In Embodiment 2, it is a figure which shows the relationship between the transmission coil in a 2nd state, and a receiving coil. 実施の形態2において、第1状態にある伝送コイルと受電コイルとの関係を示す図である。In Embodiment 2, it is a figure which shows the relationship between the transmission coil in a 1st state, and a receiving coil. ACアダプタを設けた充電システムの構成図である。It is a block diagram of the charging system provided with the AC adapter. 実施の形態2による充電器を示した図である。It is the figure which showed the charger by Embodiment 2. FIG. 充電器の上面視からの断面図である。It is sectional drawing from the upper surface view of a charger. ハウジングを取り除いた場合の上面視における伝送コイルを示す図である。It is a figure which shows the transmission coil in the top view at the time of removing a housing. 実施の形態2の変形例において、磁性体が第2状態に位置決めされたときの伝送コイル及び受電コイルの関係を示す図である。In the modification of Embodiment 2, it is a figure which shows the relationship between the transmission coil and a receiving coil when a magnetic body is positioned to a 2nd state. 実施の形態2の変形例において、磁性体が第1状態に位置決めされたときの伝送コイル及び受電コイルの関係を示す図である。In the modification of Embodiment 2, it is a figure which shows the relationship between the transmission coil and a receiving coil when a magnetic body is positioned to a 1st state. 実施の形態3における伝送コイルの構成図である。FIG. 6 is a configuration diagram of a transmission coil in a third embodiment. 実施の形態3において、主コイル部に補助部材が取り付けられたときの伝送コイルを示した図である。In Embodiment 3, it is the figure which showed the transmission coil when an auxiliary member is attached to the main coil part. 実施の形態3において、主コイル部から補助部材が取り外されたときの伝送コイルを示した図である。In Embodiment 3, it is the figure which showed the transmission coil when an auxiliary member is removed from the main coil part. 実施の形態4の充電器の説明図である。It is explanatory drawing of the charger of Embodiment 4. 伝送コイルのインダクタンスの大小に応じた制御回路の動作を示す波形図である。It is a wave form diagram which shows operation | movement of the control circuit according to the magnitude of the inductance of a transmission coil. 実施の形態6による充電器の回路図である。FIG. 10 is a circuit diagram of a charger according to a sixth embodiment. センサの配置例を示す図である。It is a figure which shows the example of arrangement | positioning of a sensor. 制御回路の動作を示す波形図である。It is a wave form diagram which shows operation | movement of a control circuit. 実施の形態7における伝送コイルの構成図である。FIG. 10 is a configuration diagram of a transmission coil in a seventh embodiment. 実施の形態7における伝送コイルの構成図である。FIG. 10 is a configuration diagram of a transmission coil in a seventh embodiment.
 (実施の形態1)
 図1は、実施の形態1による非接触充電器(以下、充電器100と記述する)が設置された洗面所を示す図である。洗面台11の奥側に充電器100が設置されている。充電器100は、機器200を非接触で充電する。充電器100は、磁束を発生する磁束鎖交面を支える支持部12を備える。機器200は、磁束鎖交面と対向し、且つ磁束鎖交面に沿って洗面台11の上に配列される。充電器100は手前側に向けて磁束を発生させ、機器200を充電する。図1の例では2本の機器200が載置されている。機器200としては、充電可能な電気機器であればどのような機器を採用してもよく、図2の例では電動歯ブラシが採用されている。但し、これは一例であり、電動シェーバや美顔器等を機器200として採用してもよい。充電器100及び機器200により充電システムが構成される。
(Embodiment 1)
FIG. 1 is a diagram showing a toilet where a non-contact charger (hereinafter referred to as a charger 100) according to Embodiment 1 is installed. A charger 100 is installed on the back side of the washstand 11. The charger 100 charges the device 200 in a non-contact manner. The charger 100 includes a support portion 12 that supports a magnetic flux linkage surface that generates magnetic flux. The device 200 faces the magnetic flux linkage surface and is arranged on the wash basin 11 along the magnetic flux linkage surface. The charger 100 generates a magnetic flux toward the front side to charge the device 200. In the example of FIG. 1, two devices 200 are placed. As the device 200, any device that can be charged may be used. In the example of FIG. 2, an electric toothbrush is used. However, this is only an example, and an electric shaver, a facial device, or the like may be employed as the device 200. The charger 100 and the device 200 constitute a charging system.
 図2は、図1に示す充電器100及び機器200のブロック図である。充電器100は、平滑回路101、発振回路102、伝送コイル103、及びコンセントプラグPGを含む。コンセントプラグPGがコンセント21に接続されると、充電器100には商用の電源電圧が供給される。 FIG. 2 is a block diagram of the charger 100 and the device 200 shown in FIG. The charger 100 includes a smoothing circuit 101, an oscillation circuit 102, a transmission coil 103, and an outlet plug PG. When the outlet plug PG is connected to the outlet 21, a commercial power supply voltage is supplied to the charger 100.
 平滑回路101は電源電圧を整流及び平滑化する。発振回路102は、整流及び平滑化された電源電圧を所定周波数(例えば400kHz)で発振させ、伝送コイル103に高周波電流を流す。これにより、発振回路102は、伝送コイル103を発振させる。伝送コイル103は、高周波電流が流れることで磁束を発生し、機器200に電力を供給する。 Smoothing circuit 101 rectifies and smoothes the power supply voltage. The oscillation circuit 102 oscillates the rectified and smoothed power supply voltage at a predetermined frequency (for example, 400 kHz), and causes a high-frequency current to flow through the transmission coil 103. Thereby, the oscillation circuit 102 oscillates the transmission coil 103. The transmission coil 103 generates magnetic flux when high-frequency current flows, and supplies power to the device 200.
 機器200は、受電コイル201、平滑回路202、及び二次電池203を含む。受電コイル201は、伝送コイル103からの磁束を受ける。平滑回路202は、受電コイル201で発生する電圧を整流及び平滑化する。二次電池203は、平滑回路202で平滑化された電圧が供給され、充電器100から供給される電力を蓄電する。二次電池203としては、例えば、Liイオン二次電池が採用される。 The device 200 includes a power receiving coil 201, a smoothing circuit 202, and a secondary battery 203. The power receiving coil 201 receives the magnetic flux from the transmission coil 103. The smoothing circuit 202 rectifies and smoothes the voltage generated in the power receiving coil 201. The secondary battery 203 is supplied with the voltage smoothed by the smoothing circuit 202 and stores the electric power supplied from the charger 100. As the secondary battery 203, for example, a Li ion secondary battery is employed.
 図7は、実施の形態1による充電システムの回路図である。充電器100は、ダイオードブリッジ701、平滑コンデンサ702、スイッチング素子Q1~Q4、コイルL1、コンデンサC1、及び制御回路704を含む。ダイオードブリッジ701及び平滑コンデンサ702は、図2の平滑回路101を構成する。スイッチング素子Q1~Q4及び制御回路704は、図2の発振回路102を構成する。コイルL1及びコンデンサC1は図2の伝送コイル103を構成する。 FIG. 7 is a circuit diagram of the charging system according to the first embodiment. The charger 100 includes a diode bridge 701, a smoothing capacitor 702, switching elements Q1 to Q4, a coil L1, a capacitor C1, and a control circuit 704. The diode bridge 701 and the smoothing capacitor 702 constitute the smoothing circuit 101 of FIG. The switching elements Q1 to Q4 and the control circuit 704 constitute the oscillation circuit 102 of FIG. The coil L1 and the capacitor C1 constitute the transmission coil 103 in FIG.
 スイッチング素子Q1~Q4は、それぞれ、抵抗R1を介して制御回路704と接続されている。 The switching elements Q1 to Q4 are each connected to the control circuit 704 via the resistor R1.
 コイルL1及びコンデンサC1は直列接続されている。コイルL1はスイッチング素子Q1及びスイッチング素子Q3間に接続され、コンデンサC1はスイッチング素子Q2及びQ4間に接続されている。 The coil L1 and the capacitor C1 are connected in series. The coil L1 is connected between the switching elements Q1 and Q3, and the capacitor C1 is connected between the switching elements Q2 and Q4.
 制御回路704は、スイッチング素子Q1、Q4とスイッチング素子Q2、Q3とを交互にオン、オフさせ、コイルL1及びコンデンサC1に高周波電流を流す。この高周波電流によりコイルL1は磁束を発生する。 The control circuit 704 turns on and off the switching elements Q1 and Q4 and the switching elements Q2 and Q3 alternately, and causes a high-frequency current to flow through the coil L1 and the capacitor C1. The coil L1 generates magnetic flux by this high frequency current.
 機器200は、コイルL2、コンデンサC2、ダイオードブリッジ710、及び平滑コンデンサC3を含む。コイルL2及びコンデンサC2は図2の受電コイル201を構成する。ダイオードブリッジ710及び平滑コンデンサC3は図2の平滑回路202を構成する。 The device 200 includes a coil L2, a capacitor C2, a diode bridge 710, and a smoothing capacitor C3. The coil L2 and the capacitor C2 constitute the power receiving coil 201 in FIG. The diode bridge 710 and the smoothing capacitor C3 constitute the smoothing circuit 202 of FIG.
 コイルL2に発生した電圧は、ダイオードブリッジ710で全波整流され、平滑コンデンサC3で平滑化され、直流の電圧に変換される。 The voltage generated in the coil L2 is full-wave rectified by the diode bridge 710, smoothed by the smoothing capacitor C3, and converted into a DC voltage.
 図3は、伝送コイル103の構成図であり、(A)は正面図であり、(B)はB-B断面図である。伝送コイル103は、正面視において長方形の形状を持つ。伝送コイル103は、巻線301及び磁性体302を含む。巻線301は、磁性体302の主面302a(磁束鎖交面)の外周領域に貼り付けられている。磁性体302は、主面302aが四角形であり、平板状である。巻線301の厚みt1は例えば2mmである。磁性体302の厚みt2は例えば2mmである。磁性体302の透磁率は例えば2300である。 3 is a configuration diagram of the transmission coil 103, (A) is a front view, and (B) is a BB cross-sectional view. The transmission coil 103 has a rectangular shape when viewed from the front. The transmission coil 103 includes a winding 301 and a magnetic body 302. The winding 301 is attached to the outer peripheral region of the main surface 302a (magnetic flux linkage surface) of the magnetic body 302. The magnetic body 302 has a flat main surface 302a and a flat plate shape. The thickness t1 of the winding 301 is 2 mm, for example. The thickness t2 of the magnetic body 302 is 2 mm, for example. The permeability of the magnetic body 302 is 2300, for example.
 伝送コイル103の長辺W12は例えば70mmであり、短辺W11は例えば50mmであり、厚さ(t1+t2)は例えば4mmである。巻線301の幅t3は例えば10mmである。巻線301は、直径が例えば0.06mmの130本の導線を20回巻いて形成されている。 The long side W12 of the transmission coil 103 is, for example, 70 mm, the short side W11 is, for example, 50 mm, and the thickness (t1 + t2) is, for example, 4 mm. The width t3 of the winding 301 is, for example, 10 mm. The winding 301 is formed by winding 20 conductors with a diameter of 0.06 mm, for example, 20 times.
 図4は、受電コイル201の構成図であり、(A)は正面図であり、(B)はB-B断面図である。受電コイル201は長方形であり、巻線401及び磁性体402を含む。磁性体402は、主面402aが長方形であり、平板状である。巻線401は、主面402aの外周領域に貼り付けられている。受電コイル201は、長辺W22が例えば40mmであり、短辺W21が例えば20mmであり、厚みt3が例えば1mmである。受電コイル201は、機器200が洗面台11に立設されたとき、短辺W21が水平方向を向くように機器200に取り付けられている。 FIG. 4 is a configuration diagram of the power receiving coil 201, (A) is a front view, and (B) is a BB cross-sectional view. The power receiving coil 201 is rectangular and includes a winding 401 and a magnetic body 402. The magnetic body 402 has a main surface 402a that is rectangular and has a flat plate shape. Winding 401 is affixed to the outer peripheral region of main surface 402a. The power receiving coil 201 has a long side W22 of, for example, 40 mm, a short side W21 of, for example, 20 mm, and a thickness t3 of, for example, 1 mm. The power receiving coil 201 is attached to the device 200 so that the short side W21 faces the horizontal direction when the device 200 is erected on the washstand 11.
 伝送コイル103の長辺W12は、受電コイル201の短辺W21の4倍程度の長さを持っている。そのため、伝送コイル103は、水平方向に一列に並べられた機器200を最大4台充電することができる。ここで、機器200が並べられる方向を配列方向と呼ぶ。なお、上記の寸法は一例にすぎず、本発明は上記の寸法に限定されない。 The long side W12 of the transmission coil 103 has a length about four times the short side W21 of the power receiving coil 201. Therefore, the transmission coil 103 can charge up to four devices 200 arranged in a line in the horizontal direction. Here, the direction in which the devices 200 are arranged is referred to as an arrangement direction. In addition, said dimension is only an example and this invention is not limited to said dimension.
 図5は、充電器100及び機器200を鉛直方向に切ったときの断面図である。充電器100は、伝送コイル103を収納するハウジング501を備える。ハウジング501は機器200と対向する主面501aを含み、主面501aから磁束を出す。機器200は、受電コイル201を収納するハウジング502を備える。機器200は、充電器100から距離D1程度離間して配置される。距離D1としては、例えば10mmである。 FIG. 5 is a cross-sectional view when the charger 100 and the device 200 are cut in the vertical direction. The charger 100 includes a housing 501 that houses the transmission coil 103. The housing 501 includes a main surface 501a facing the device 200 and emits a magnetic flux from the main surface 501a. The device 200 includes a housing 502 that houses the power receiving coil 201. The device 200 is arranged away from the charger 100 by a distance D1. The distance D1 is, for example, 10 mm.
 図6は、充電器100及び機器200の上面視からの断面図である。図6の例では、機器200は、配列方向601に沿って4台配置されている。なお、本実施の形態では、配列方向601は、伝送コイルの磁束鎖交面と平行な方向であって、水平方向(洗面台11の面の方向)と平行な方向とする。 FIG. 6 is a cross-sectional view of the charger 100 and the device 200 as viewed from above. In the example of FIG. 6, four devices 200 are arranged along the arrangement direction 601. In the present embodiment, the arrangement direction 601 is a direction parallel to the flux linkage surface of the transmission coil and parallel to the horizontal direction (the direction of the surface of the washbasin 11).
 図8は、実施の形態1の充電器100の作用の説明図であり、(A)は1台の機器200を充電する場合の充電器100を示し、(B)は4台の機器200を充電する場合の充電器100を示す。 8A and 8B are explanatory diagrams of the operation of the charger 100 according to the first embodiment. FIG. 8A illustrates the charger 100 when charging one device 200, and FIG. 8B illustrates four devices 200. The charger 100 in the case of charging is shown.
 伝送コイル103は、本体部801に設けられた回転軸103aを介して本体部801に接続され、本体部801に対して回転可能である。本体部801は、図1に示す支持部12に取り付けられ、図2に示す平滑回路101及び発振回路102を備える。なお、伝送コイル103は例えば中心O103に回転軸103aが取り付けられている。これにより、長辺W12が配列方向601と平行な状態に伝送コイル103を位置決めした場合、伝送コイル103は配列方向601の幅が左右対称に増大するため、伝送コイル103をバランスよく位置決めすることができる。 The transmission coil 103 is connected to the main body 801 via a rotation shaft 103 a provided in the main body 801, and is rotatable with respect to the main body 801. The main body 801 is attached to the support 12 shown in FIG. 1 and includes the smoothing circuit 101 and the oscillation circuit 102 shown in FIG. The transmission coil 103 has a rotating shaft 103a attached to the center O103, for example. As a result, when the transmission coil 103 is positioned in a state where the long side W12 is parallel to the arrangement direction 601, the width of the arrangement direction 601 increases symmetrically in the transmission coil 103, so that the transmission coil 103 can be positioned in a balanced manner. it can.
 図9は、充電器100の側面視からの断面図であり、(A)は伝送コイル103が第1状態に位置決めされている場合の断面図であり、(B)は伝送コイル103が第2状態に位置決めされている場合の断面図である。 FIG. 9 is a cross-sectional view of the charger 100 as viewed from the side, (A) is a cross-sectional view when the transmission coil 103 is positioned in the first state, and (B) is a cross-sectional view of the transmission coil 103 in the second state. It is sectional drawing in the case of being positioned in the state.
 伝送コイル103はハウジング501に収納されている。ハウジング501の本体部801側の面の中心付近には回転軸103aが取り付けられる。ここで、ハウジング501は、回転軸103aに対して回転可能に取り付けられている。また、回転軸103aは、本体部801のハウジング801aの伝送コイル103側の面の中央付近に固定されている。よって、伝送コイル103は本体部801に対して回転可能となる。 The transmission coil 103 is accommodated in the housing 501. A rotating shaft 103a is attached near the center of the surface of the housing 501 on the main body 801 side. Here, the housing 501 is rotatably attached to the rotation shaft 103a. The rotating shaft 103a is fixed near the center of the surface of the housing 801a of the main body 801 on the transmission coil 103 side. Therefore, the transmission coil 103 can rotate with respect to the main body 801.
 1台の機器200を充電する場合、図8(A)に示すように、伝送コイル103は、長辺W12が配列方向601に直交する第1状態に位置決めされる。そのため、図9(A)に示すように、伝送コイル103は長辺W12が鉛直方向を向いている。これにより、伝送コイル103は、本体部801内に収まり、洗面台11の空きスペースが増大する。 When charging one device 200, the transmission coil 103 is positioned in a first state in which the long side W12 is orthogonal to the arrangement direction 601 as shown in FIG. Therefore, as shown in FIG. 9A, the long side W12 of the transmission coil 103 faces the vertical direction. Thereby, the transmission coil 103 is accommodated in the main body 801, and the empty space of the wash basin 11 is increased.
 一方、4台の機器200を充電する場合、図8(B)に示すように、伝送コイル103は、90度回転され、長辺W12が配列方向601と平行な第2状態に位置決めされる。そのため、図9(B)に示すように、伝送コイル103は、短辺W11が鉛直方向を向いている。これにより、伝送コイル103の配列方向601の幅が第1の状態の場合に比べて増大する。その結果、伝送コイル103から出た磁束は4台の機器200のそれぞれの受電コイル201と鎖交し、充電器100は、4台の機器200を同時に充電することができる。 On the other hand, when charging the four devices 200, as shown in FIG. 8B, the transmission coil 103 is rotated 90 degrees, and the long side W12 is positioned in the second state parallel to the arrangement direction 601. Therefore, as shown in FIG. 9B, the transmission coil 103 has the short side W11 facing the vertical direction. Thereby, the width | variety of the arrangement direction 601 of the transmission coil 103 increases compared with the case of a 1st state. As a result, the magnetic flux emitted from the transmission coil 103 is linked to the power receiving coils 201 of the four devices 200, and the charger 100 can charge the four devices 200 simultaneously.
 また、1台のみを常に使用する人は伝送コイル103を縦向け(第1状態)にしておくことで、4台で使うよりも配列方向601の広がりを低減することができ、洗面台のスペースを有効に使うことができる。 Also, a person who always uses only one unit can reduce the spread of the arrangement direction 601 by using the transmission coil 103 in the vertical direction (first state), compared to using four units. Can be used effectively.
 図10は、伝送コイル103が回転する様子を示した図であり、(A)は上面視からの伝送コイル103を示し、(B)は伝送コイル103が第1状態から第2状態まで回転する様子を連続的に示した図であり、(C)は伝送コイル103の断面図である。図10(B)の一番左の図では、伝送コイル103は第1状態にある。このとき、伝送コイル103を上面から見ると図10(A)の左図のように、伝送コイル103は本体部801からはみ出ていない。 10A and 10B are diagrams illustrating a state in which the transmission coil 103 rotates. FIG. 10A illustrates the transmission coil 103 from a top view, and FIG. 10B illustrates the transmission coil 103 rotating from the first state to the second state. It is the figure which showed a mode continuously, (C) is sectional drawing of the transmission coil 103. FIG. In the leftmost diagram of FIG. 10B, the transmission coil 103 is in the first state. At this time, when the transmission coil 103 is viewed from above, the transmission coil 103 does not protrude from the main body 801 as shown in the left diagram of FIG.
 ユーザにより伝送コイル103が回転されると、伝送コイル103は図10(B)の左側から右側の状態に向けて変化し、最終的に一番右に示す第2状態となる。このとき、伝送コイル103を上面から見ると、図10(A)の右図のように、伝送コイル103は配列方向601の幅が増大する。 When the transmission coil 103 is rotated by the user, the transmission coil 103 changes from the left side to the right side in FIG. 10B, and finally becomes the second state shown at the rightmost position. At this time, when the transmission coil 103 is viewed from the top, the width of the transmission coil 103 in the arrangement direction 601 increases as shown in the right diagram of FIG.
 図10(C)に示すように、伝送コイル103は、直方体形状を持つハウジング501に収納されている。巻線301の一端301a及び他端301bは磁性体302の中心の孔を通って、本体部801の発振回路102と電気的に接続されている。巻線301の外端301dには巻線301を孔に導くためのバイパス線301cが設けられている。バイパス線301cの下側には絶縁シート1001が設けられ、巻線301とバイパス線301cとのショートの防止が図られている。 As shown in FIG. 10C, the transmission coil 103 is accommodated in a housing 501 having a rectangular parallelepiped shape. One end 301 a and the other end 301 b of the winding 301 pass through the center hole of the magnetic body 302 and are electrically connected to the oscillation circuit 102 of the main body 801. A bypass wire 301c for guiding the winding 301 to the hole is provided at the outer end 301d of the winding 301. An insulation sheet 1001 is provided below the bypass line 301c to prevent a short circuit between the winding 301 and the bypass line 301c.
 図11は、実施の形態2において、第2状態にある伝送コイル103と受電コイル201との関係を示す図であり、(A)は伝送コイル103のみ示し、(B)は受電コイル201のみ示し、(C)は伝送コイル103と受電コイル201とを重ねて示している。 FIG. 11 is a diagram illustrating the relationship between the transmission coil 103 and the power receiving coil 201 in the second state in the second embodiment, where (A) shows only the transmission coil 103 and (B) shows only the power receiving coil 201. (C) shows the transmission coil 103 and the power receiving coil 201 in an overlapping manner.
 図12は、実施の形態2において、第1状態にある伝送コイル103と受電コイル201との関係を示す図であり、(A)は伝送コイル103のみ示し、(B)は受電コイル201のみ示し、(C)は伝送コイル103と受電コイル201とを重ねて示している。 FIG. 12 is a diagram illustrating the relationship between the transmission coil 103 and the power receiving coil 201 in the first state in the second embodiment, where (A) shows only the transmission coil 103 and (B) shows only the power receiving coil 201. (C) shows the transmission coil 103 and the power receiving coil 201 in an overlapping manner.
 図11(C)及び図12(C)に示すように、第2状態及び第1状態とも、受電コイル201が伝送コイル103の領域内に収まるように、伝送コイル103及び受電コイル201の形状と、伝送コイル103の中心O301の高さが決められている。 As shown in FIGS. 11C and 12C, the shapes of the transmission coil 103 and the power receiving coil 201 are set so that the power receiving coil 201 is within the region of the transmission coil 103 in both the second state and the first state. The height of the center O301 of the transmission coil 103 is determined.
 具体的には、伝送コイル103の中心O301と受電コイル201の中心O201との洗面台11からの高さをほぼ同じにし、伝送コイル103の短辺W11を受電コイル201の長辺W22と同程度の長さにし、伝送コイル103の長辺W12を受電コイル201の短辺W21の4倍程度の長さにすればよい。これにより、4台の機器200を充電する場合も、1台の機器200を充電する場合も、充電器100は効率よく充電することが可能となる。 Specifically, the height of the center O301 of the transmission coil 103 and the center O201 of the power receiving coil 201 from the wash basin 11 are substantially the same, and the short side W11 of the transmission coil 103 is approximately the same as the long side W22 of the power receiving coil 201. The long side W12 of the transmission coil 103 may be about four times as long as the short side W21 of the power receiving coil 201. As a result, the charger 100 can be charged efficiently both when charging four devices 200 and when charging one device 200.
 なお、第1状態においては、充電器100を洗面台11から持ち上げなくても、ユーザが伝送コイル103を回転できるように、伝送コイル103と洗面台11との間に隙間D12が設けられている。但し、これは一例であり、隙間D12をなくしてもよい。 In the first state, a gap D <b> 12 is provided between the transmission coil 103 and the washstand 11 so that the user can rotate the transmission coil 103 without lifting the charger 100 from the washstand 11. . However, this is an example, and the gap D12 may be eliminated.
 図2の例では、充電器100に平滑回路101を設けたがこれに限定されず、充電器100から平滑回路101を省いてもよい。この場合、図13に示すように、ACアダプタ1301を別途設け、ACアダプタ1301を介して充電器100をコンセントに接続すればよい。図13は、ACアダプタ1301を設けた充電システムの構成図である。ACアダプタ1301は、図2に示す平滑回路101及びコンセントプラグPGを含み、AC100Vの電源電圧を例えば、12Vの直流電圧に変換する。ACアダプタ1301及び充電器100間はケーブル1302を介して接続され、発振回路102はACアダプタ1301から直流電圧が供給される。 In the example of FIG. 2, the smoothing circuit 101 is provided in the charger 100, but the invention is not limited thereto, and the smoothing circuit 101 may be omitted from the charger 100. In this case, as shown in FIG. 13, an AC adapter 1301 may be provided separately, and the charger 100 may be connected to an outlet via the AC adapter 1301. FIG. 13 is a configuration diagram of a charging system provided with an AC adapter 1301. The AC adapter 1301 includes the smoothing circuit 101 and the outlet plug PG shown in FIG. 2, and converts the power supply voltage of AC 100V into, for example, a DC voltage of 12V. The AC adapter 1301 and the charger 100 are connected via a cable 1302, and the oscillation circuit 102 is supplied with a DC voltage from the AC adapter 1301.
 上記説明では、充電器100は、機器200を最大4台充電できるものとして説明したが、これは一例にすぎず、2台、3台、5台・・・というように最大n(2以上の整数)台の機器200を充電できるものであってもよい。この場合、nの値に応じて、伝送コイル103の長辺W12を設定すればよい。 In the above description, the charger 100 has been described as being capable of charging a maximum of four devices 200, but this is only an example, and a maximum of n (two or more) such as two, three, five, etc. An integer) device 200 that can be charged may be used. In this case, the long side W12 of the transmission coil 103 may be set according to the value of n.
 (実施の形態2)
 実施の形態2の充電器100は、磁性体のみを回転させて、伝送コイル103の配列方向601の幅を変更することを特徴とする。図14は、実施の形態2による充電器100を示した図であり、(A)は1台の機器200を充電する場合の充電器100を示し、(B)は4台の機器200を充電する場合の充電器100を示す。
(Embodiment 2)
The charger 100 according to the second embodiment is characterized in that only the magnetic material is rotated to change the width of the transmission coil 103 in the arrangement direction 601. 14A and 14B are diagrams showing a charger 100 according to the second embodiment, where FIG. 14A shows the charger 100 when charging one device 200, and FIG. 14B shows charging four devices 200. FIG. The charger 100 in the case of doing is shown.
 図14(A)、(B)に示すように、本実施の形態では、磁性体302を含む磁性体部3020のみが本体部801に回転可能であり、巻線301を含む巻線部3010は回転しない。1台の機器200を充電する場合、図14(A)に示すように、磁性体部3020は長辺W12が配列方向601と直交する第1状態にされる。4台の機器200を充電する場合、図14(B)に示すように、磁性体部3020は長辺W12が配列方向601と平行な第2状態にされる。一方、巻線部3010は、磁性体部3020が第2状態になっても、長辺が配列方向601と直交しており、本体部801に対して固定されている。なお、第2状態では、磁性体部3020のみが配列方向601に向けて巻線部3010からみ出ているが、はみ出た領域においても磁束が鎖交する。そのため、はみ出た領域の手前に機器200を配置すれば、その機器200は充電される。 As shown in FIGS. 14A and 14B, in the present embodiment, only the magnetic body portion 3020 including the magnetic body 302 is rotatable to the main body portion 801, and the winding portion 3010 including the winding 301 is Does not rotate. When charging one device 200, as shown in FIG. 14A, the magnetic body portion 3020 is set to the first state in which the long side W12 is orthogonal to the arrangement direction 601. When charging the four devices 200, as shown in FIG. 14B, the magnetic body portion 3020 is set to the second state in which the long side W12 is parallel to the arrangement direction 601. On the other hand, the long side of the winding portion 3010 is orthogonal to the arrangement direction 601 and is fixed to the main body portion 801 even when the magnetic body portion 3020 is in the second state. In the second state, only the magnetic body portion 3020 protrudes from the winding portion 3010 toward the arrangement direction 601, but the magnetic flux is interlinked even in the protruding region. Therefore, if the device 200 is arranged in front of the protruding area, the device 200 is charged.
 図15は、充電器100の上面視からの断面図であり、(A)は磁性体部3020が第1状態に位置決めされている場合の断面図であり、(B)は磁性体部3020が第2状態に位置決めされている場合の断面図である。図15(A)、(B)に示すように、磁性体302は磁性体部3020のハウジング3020aに収納されている。巻線301も巻線部3010のハウジング3010aに収納されている。ハウジング3010a及び本体部801のハウジング801aは回転軸103aにより連結されている。ここで、ハウジング3010a及びハウジング801aは固定されているため、巻線301は、本体部801に対して回転しない。 FIG. 15 is a cross-sectional view of the battery charger 100 as viewed from above, (A) is a cross-sectional view when the magnetic body 3020 is positioned in the first state, and (B) is a cross-sectional view of the magnetic body 3020. It is sectional drawing in the case of being positioned in a 2nd state. As shown in FIGS. 15A and 15B, the magnetic body 302 is housed in a housing 3020 a of the magnetic body portion 3020. Winding 301 is also housed in housing 3010 a of winding portion 3010. The housing 3010a and the housing 801a of the main body 801 are connected by a rotating shaft 103a. Here, since the housing 3010a and the housing 801a are fixed, the winding 301 does not rotate with respect to the main body 801.
 ハウジング3020aは、中心に孔が開けられ、その孔に回転軸103aが貫通され、ハウジング801aに対して回転可能である。そのため、磁性体302は、本体部801に対して回転可能である。第1状態では、図15(A)に示すように、磁性体部3020は本体部801から配列方向601に向けてはみ出していない。一方、第2状態では、図15(B)に示すように、磁性体部3020は本体部801から配列方向601に向けてはみ出し、配列方向601の幅が増大している。 The housing 3020a has a hole in the center, and the rotation shaft 103a passes through the hole, so that the housing 3020a can rotate with respect to the housing 801a. Therefore, the magnetic body 302 can rotate with respect to the main body 801. In the first state, as shown in FIG. 15A, the magnetic body portion 3020 does not protrude from the main body portion 801 toward the arrangement direction 601. On the other hand, in the second state, as shown in FIG. 15B, the magnetic body portion 3020 protrudes from the main body portion 801 in the arrangement direction 601 and the width in the arrangement direction 601 increases.
 図16は、ハウジングを取り除いた場合の上面視における伝送コイル103を示す図であり、(A)は磁性体302が第1状態に位置決めされている場合を示し、(B)は磁性体302が第2状態に位置決めされている場合を示す。図16(B)に示すように、磁性体302が第2状態にされると、図16(A)の場合に比べて、磁性体302の配列方向601の幅が増大していることが分かる。 16A and 16B are diagrams showing the transmission coil 103 in a top view when the housing is removed. FIG. 16A shows a case where the magnetic body 302 is positioned in the first state, and FIG. The case where it positions to the 2nd state is shown. As shown in FIG. 16B, it can be seen that when the magnetic body 302 is brought into the second state, the width in the arrangement direction 601 of the magnetic bodies 302 is increased as compared with the case of FIG. .
 実施の形態2の充電器100では、磁性体302のみが本体部801に対して回転されるため、巻線301の屈曲などによる断線故障を防止することができる。特に、磁性体302のサイズが巻線301に比べて大きい場合、本実施の形態による効果が大きい。 In the charger 100 of the second embodiment, since only the magnetic body 302 is rotated with respect to the main body 801, disconnection failure due to bending of the winding 301 can be prevented. In particular, when the size of the magnetic body 302 is larger than that of the winding 301, the effect of this embodiment is great.
 次に、図17、図18を用いて実施の形態2の変形例について説明する。図17は、実施の形態2の変形例において、磁性体302が第2状態に位置決めされたときの伝送コイル103及び受電コイル201の関係を示す図であり、(A)は伝送コイル103のみを示し、(B)は受電コイル201のみを示し、(C)は伝送コイル103の手前に受電コイル201が配置された状態を示している。 Next, a modification of the second embodiment will be described with reference to FIGS. FIG. 17 is a diagram illustrating a relationship between the transmission coil 103 and the power receiving coil 201 when the magnetic body 302 is positioned in the second state in the modification of the second embodiment. FIG. 17A illustrates only the transmission coil 103. (B) shows only the receiving coil 201, and (C) shows a state in which the receiving coil 201 is arranged in front of the transmission coil 103.
 図18は、実施の形態2の変形例において、磁性体302が第1状態に位置決めされたときの伝送コイル103及び受電コイル201の関係を示す図であり、(A)は伝送コイル103のみを示し、(B)は受電コイル201のみを示し、(C)は伝送コイル103の手前に受電コイル201が配置された状態を示している。 FIG. 18 is a diagram illustrating a relationship between the transmission coil 103 and the power receiving coil 201 when the magnetic body 302 is positioned in the first state in the modification of the second embodiment. FIG. 18A illustrates only the transmission coil 103. (B) shows only the receiving coil 201, and (C) shows a state in which the receiving coil 201 is arranged in front of the transmission coil 103.
 図14(A)、(B)の例では、巻線301は長辺が配列方向601と直交していたが、図17、図18に示す変形例では巻線301は長辺が配列方向601と平行である。また、図14(A)、(B)の例では、巻線301及び磁性体302の磁束鎖交面の面積はほぼ同じであったが、図17、図18に示す変形例では、磁性体302の磁束鎖交面の面積は巻線301の磁束鎖交面の面積よりも大きい。 In the example of FIGS. 14A and 14B, the long side of the winding 301 is orthogonal to the arrangement direction 601. However, in the modification shown in FIGS. 17 and 18, the long side of the winding 301 is the arrangement direction 601. And parallel. 14A and 14B, the areas of the magnetic flux linkage surfaces of the winding 301 and the magnetic body 302 are almost the same. However, in the modified examples shown in FIGS. The area of the magnetic flux linkage surface of 302 is larger than the area of the magnetic flux linkage surface of the winding 301.
 1台の機器200を充電する場合、ユーザは図18に示すように、磁性体302の長辺W12が配列方向601と直交とする第1状態に磁性体302を位置決めする。これにより、磁性体302が本体部801から配列方向601に向けてはみ出さず洗面台11の空きスペースを確保することができる。 When charging one device 200, the user positions the magnetic body 302 in a first state in which the long side W12 of the magnetic body 302 is orthogonal to the arrangement direction 601 as shown in FIG. Thereby, the magnetic body 302 does not protrude from the main body 801 in the arrangement direction 601, and an empty space of the wash basin 11 can be secured.
 一方、4台の機器200を充電する場合、ユーザは図17に示すように、磁性体302の長辺W12が配列方向601と平行な第1状態に磁性体302を位置決めする。これにより、磁性体302は、配列方向601に配列された4台の機器200の受電コイル201と対向する。よって、磁性体302から出た磁束は4台の機器200の受電コイル201と鎖交することができ、4台の機器200が充電される。 On the other hand, when charging the four devices 200, the user positions the magnetic body 302 in the first state in which the long side W12 of the magnetic body 302 is parallel to the arrangement direction 601 as shown in FIG. Accordingly, the magnetic body 302 faces the power receiving coils 201 of the four devices 200 arranged in the arrangement direction 601. Therefore, the magnetic flux emitted from the magnetic body 302 can be linked to the power receiving coils 201 of the four devices 200, and the four devices 200 are charged.
 なお、図17、図18に示す変形例において、第2状態及び第1状態とも、受電コイル201が磁性体302の領域内に収まるように、磁性体302及び受電コイル201の形状と、磁性体302及び受電コイル201の洗面台11からの高さが決められている。 In the modification shown in FIGS. 17 and 18, the shape of the magnetic body 302 and the power receiving coil 201 and the magnetic body so that the power receiving coil 201 is within the area of the magnetic body 302 in both the second state and the first state. 302 and the height of the power receiving coil 201 from the washstand 11 are determined.
 具体的には、磁性体302の回転軸となる伝送コイル103の中心O301と受電コイル201の中心O201との洗面台11からの高さをほぼ同じにし、磁性体302の短辺W11を受電コイル201の長辺W22と同じ又は一定のマージンを加えた長さにし、磁性体302の長辺W12を受電コイル201の短辺W21の4倍と同じ又は一定のマージンを加えた長さにすればよい。 Specifically, the height from the wash basin 11 of the center O301 of the transmission coil 103 and the center O201 of the power receiving coil 201 as the rotation axis of the magnetic body 302 is made substantially the same, and the short side W11 of the magnetic body 302 is set to the power receiving coil. If the length is equal to or longer than the long side W22 of 201, and the long side W12 of the magnetic body 302 is equal to or longer than four times the short side W21 of the receiving coil 201, the length is increased. Good.
 (実施の形態3)
 実施の形態3の充電器100は、伝送コイル103を主コイル部191と、主コイル部191に対して着脱可能な一対の補助部材192とで構成したことを特徴とする。なお、本実施の形態において、実施の形態1、2と同じものは説明を省く。図19は、実施の形態3における伝送コイル103の構成図である。主コイル部191は左右の側面に溝1911が形成されている。補助部材192は一方の側面に凸部1921が形成されている。よって、凸部1921を溝1911に嵌め込むことで、主コイル部191に補助部材192が取り付けられる。
(Embodiment 3)
The charger 100 according to the third embodiment is characterized in that the transmission coil 103 includes a main coil portion 191 and a pair of auxiliary members 192 that can be attached to and detached from the main coil portion 191. In the present embodiment, the same elements as those in the first and second embodiments are not described. FIG. 19 is a configuration diagram of the transmission coil 103 according to the third embodiment. The main coil portion 191 has grooves 1911 formed on the left and right side surfaces. The auxiliary member 192 has a convex portion 1921 on one side surface. Therefore, the auxiliary member 192 is attached to the main coil portion 191 by fitting the convex portion 1921 into the groove 1911.
 主コイル部191は、平板状の磁性体302と磁性体302の主面に貼り付けられた巻線301とを備える。主コイル部191の裏面には本体部801が取り付けられている。補助部材192は、平板状の磁性体1922を備える。磁性体1922の主面は、補助部材192が主コイル部191に取り付けられたとき、磁性体302の主面と揃うように補助部材192に配置されている。 The main coil portion 191 includes a flat magnetic body 302 and a winding 301 attached to the main surface of the magnetic body 302. A main body portion 801 is attached to the back surface of the main coil portion 191. The auxiliary member 192 includes a flat magnetic body 1922. The main surface of the magnetic body 1922 is disposed on the auxiliary member 192 so as to be aligned with the main surface of the magnetic body 302 when the auxiliary member 192 is attached to the main coil portion 191.
 図20は、実施の形態3において、主コイル部191に補助部材192が取り付けられたときの伝送コイル103を示した図であり、(A)は伝送コイル103のみを示し、(B)は受電コイル201のみを示し、(C)は伝送コイル103の手前に4台の機器200が置かれた状態を示している。 20A and 20B are diagrams showing the transmission coil 103 when the auxiliary member 192 is attached to the main coil portion 191 in the third embodiment. FIG. 20A shows only the transmission coil 103, and FIG. Only the coil 201 is shown, and (C) shows a state in which four devices 200 are placed in front of the transmission coil 103.
 磁性体302の配列方向601の幅W31は受電コイル201の短辺W21の2倍程度である。磁性体302の鉛直方向の幅W32は受電コイル201の長辺W22と同程度である。磁性体1922の水平方向の幅W41は受電コイル201の短辺W21よりも多少大きい。磁性体1922の鉛直方向の幅W42は幅W32と同程度である。 The width W31 in the arrangement direction 601 of the magnetic bodies 302 is about twice the short side W21 of the power receiving coil 201. The vertical width W32 of the magnetic body 302 is approximately the same as the long side W22 of the power receiving coil 201. The horizontal width W41 of the magnetic body 1922 is slightly larger than the short side W21 of the power receiving coil 201. The vertical width W42 of the magnetic body 1922 is approximately the same as the width W32.
 4台の機器200を充電する場合、ユーザは主コイル部191に一対の補助部材192を取り付ける。これにより、伝送コイル103の配列方向601の幅が長くなる。また、磁性体1922は磁性体302と磁気結合し、磁束を機器200に向けて出す。そのため、配列方向601の両端に置かれた機器200にも磁束が供給されることになり、4台の機器200を同時に充電することができる。 When charging four devices 200, the user attaches a pair of auxiliary members 192 to the main coil portion 191. Thereby, the width | variety of the arrangement direction 601 of the transmission coil 103 becomes long. The magnetic body 1922 is magnetically coupled to the magnetic body 302 and emits a magnetic flux toward the device 200. Therefore, magnetic flux is also supplied to the devices 200 placed at both ends of the arrangement direction 601, and the four devices 200 can be charged simultaneously.
 図21は、実施の形態3において、主コイル部191から補助部材192が取り外されたときの伝送コイル103を示した図であり、(A)は伝送コイル103のみを示し、(B)は受電コイル201のみを示し、(C)は伝送コイル103の手前に1台の機器200が置かれた状態を示している。 FIG. 21 is a diagram illustrating the transmission coil 103 when the auxiliary member 192 is removed from the main coil portion 191 in the third embodiment, where (A) illustrates only the transmission coil 103 and (B) illustrates power reception. Only the coil 201 is shown, and (C) shows a state in which one device 200 is placed in front of the transmission coil 103.
 1台の機器200を充電する場合、ユーザは主コイル部191から補助部材192を取り外す。これにより、伝送コイル103の配列方向601の幅が短くなり、洗面台11の空きスペースを確保することができる。なお、3台の機器200を充電する場合、1つの補助部材192を主コイル部191に取り付ければよい。 When charging one device 200, the user removes the auxiliary member 192 from the main coil portion 191. Thereby, the width | variety of the arrangement direction 601 of the transmission coil 103 becomes short, and the empty space of the washstand 11 can be ensured. In addition, what is necessary is just to attach the one auxiliary member 192 to the main coil part 191 when charging the three apparatuses 200. FIG.
 (実施の形態4)
 実施の形態4は、実施の形態2の充電器100において、磁性体302を回転させる前後で伝送コイル103のインダクタンスの変化が最小となるように磁性体302の短辺W11を調整したことを特徴とする。図22は、実施の形態4の充電器100の説明図である。図14(A)、(B)に示すように、磁性体302を第1状態から第2状態にすると、巻線301の背後にあった磁性体302の領域S1が無くなるため、インダクタンスが低下する。なお、磁性体302と巻線301の長辺は同じであるとする。
(Embodiment 4)
The fourth embodiment is characterized in that, in the charger 100 of the second embodiment, the short side W11 of the magnetic body 302 is adjusted so that the change in inductance of the transmission coil 103 is minimized before and after the magnetic body 302 is rotated. And FIG. 22 is an explanatory diagram of the charger 100 according to the fourth embodiment. As shown in FIGS. 14A and 14B, when the magnetic body 302 is changed from the first state to the second state, the area S1 of the magnetic body 302 that is behind the winding 301 disappears, and the inductance is reduced. . The long sides of the magnetic body 302 and the winding 301 are the same.
 しかしながら、磁性体302を第1状態から第2状態にすると、巻線301から配列方向601にはみ出る領域S2が発生するため、この領域S2の分だけインダクタンスが増大する。 However, when the magnetic body 302 is changed from the first state to the second state, a region S2 that protrudes from the winding 301 in the arrangement direction 601 is generated, so that the inductance increases by this region S2.
 したがって、領域S1と領域S2との面積を同一にすれば、第1状態から第2状態にした際のインダクタンスの低下を最小にすることができる。但し、領域S1と領域S2との面積を同じにしても、領域S2には巻線301がないため、第2状態の伝送コイル103のインダクタンスは第1状態に比べて多少低下する。 Therefore, if the areas of the region S1 and the region S2 are the same, a decrease in inductance when the state is changed from the first state to the second state can be minimized. However, even if the areas of the region S1 and the region S2 are the same, the region S2 does not have the winding 301, so that the inductance of the transmission coil 103 in the second state is slightly lower than that in the first state.
 そこで、磁性体302が第1状態に位置する場合と第2状態に位置する場合とで、インダクタンスがほぼ同じとなるように短辺W11を設計することで、発振回路102の制御を変更しなくても、機器200を問題なく充電することができる。 Therefore, the control of the oscillation circuit 102 is not changed by designing the short side W11 so that the inductance is substantially the same between the case where the magnetic body 302 is located in the first state and the case where the magnetic body 302 is located in the second state. However, the device 200 can be charged without any problem.
 (実施の形態5)
 実施の形態5は、実施の形態2において、磁性体302が第2状態に位置決めされた場合、第1状態に位置決めされた場合に比べて伝送コイル103のインダクタンスが小さくなるように、磁性体302の短辺W11が設定されていることを特徴とする。
(Embodiment 5)
In the fifth embodiment, in the second embodiment, when the magnetic body 302 is positioned in the second state, the magnetic body 302 has a smaller inductance than the case where the magnetic body 302 is positioned in the first state. The short side W11 is set.
 図22に示すように、磁性体302の短辺W11を巻線301の短辺W51よりも短くすると、領域S2の面積が領域S1の面積よりも低下し、伝送コイル103のインダクタンスが低下する。そこで、本実施の形態では、磁性体302の短辺W11を巻線301の短辺W51よりも短くする。これにより、第2状態に磁性体302を位置決めした場合、第1状態に位置決めした場合に比べて、伝送コイル103のインダクタンスを低下させることができる。 As shown in FIG. 22, when the short side W11 of the magnetic body 302 is made shorter than the short side W51 of the winding 301, the area of the region S2 is lower than the area of the region S1, and the inductance of the transmission coil 103 is reduced. Therefore, in the present embodiment, the short side W11 of the magnetic body 302 is made shorter than the short side W51 of the winding 301. Thereby, when the magnetic body 302 is positioned in the second state, the inductance of the transmission coil 103 can be reduced as compared with the case where the magnetic body 302 is positioned in the first state.
 図23は、伝送コイル103のインダクタンスの大小に応じた制御回路704の動作を示す波形図であり、(A)はインダクタンスが小さい場合を示し、(B)はインダクタンスが大きい場合を示す。図23(A)、(B)において、上段は制御回路704がスイッチング素子Q1、Q4のゲートに印加するゲート電圧の波形図であり、中段は制御回路704がスイッチング素子Q2、Q3のゲートに印加するゲート電圧の波形図であり、下段は伝送コイル103に流れる電流の波形図である。以下、図23(A)、(B)及び図7を用いて説明する。 FIG. 23 is a waveform diagram showing the operation of the control circuit 704 according to the magnitude of the inductance of the transmission coil 103, where (A) shows a case where the inductance is small and (B) shows a case where the inductance is large. In FIGS. 23A and 23B, the upper stage is a waveform diagram of the gate voltage applied by the control circuit 704 to the gates of the switching elements Q1 and Q4, and the middle stage is applied by the control circuit 704 to the gates of the switching elements Q2 and Q3. The lower part is a waveform diagram of the current flowing through the transmission coil 103. Hereinafter, description will be made with reference to FIGS.
 磁性体302が第2状態に位置決めされると、図23(A)に示すように、伝送コイル103のインダクタンスが小さくなるため、スイッチング素子Q1~Q4がオンしたときに伝送コイル103に流れる電流の立ち上がり時間が速くなる。その結果、伝送コイル103に蓄えられるエネルギーが増大し、伝送コイル103に流れる電流の振幅は大きくなる。したがって、機器200に供給する電力を増大させることができる。 When the magnetic body 302 is positioned in the second state, as shown in FIG. 23A, the inductance of the transmission coil 103 is reduced, so that the current flowing through the transmission coil 103 when the switching elements Q1 to Q4 are turned on is reduced. Rise time is faster. As a result, the energy stored in the transmission coil 103 increases, and the amplitude of the current flowing through the transmission coil 103 increases. Therefore, the power supplied to the device 200 can be increased.
 一方、磁性体302が第1状態に位置決めされると、図23(B)に示すように、インダクタンスが小さくなるため、伝送コイル103に流れる電流の振幅は小さくなり、機器200に供給する電力が減少する。 On the other hand, when the magnetic body 302 is positioned in the first state, as shown in FIG. 23B, the inductance is reduced, so that the amplitude of the current flowing through the transmission coil 103 is reduced, and the power supplied to the device 200 is reduced. Decrease.
 このように、実施の形態5では、第2状態に位置決めされると第1状態に位置決めされた場合に比べて伝送コイル103のインダクタンスが小さくなる。そのため、制御回路704は第1状態と第2状態とでスイッチング素子Q1~Q4への制御を変化させることなく、第2状態の方が第1状態よりも機器200に供給する電力を増大させることができる。 As described above, in the fifth embodiment, the inductance of the transmission coil 103 becomes smaller when positioned in the second state than when positioned in the first state. Therefore, the control circuit 704 increases the power supplied to the device 200 in the second state than in the first state without changing the control of the switching elements Q1 to Q4 between the first state and the second state. Can do.
 (実施の形態6)
 実施の形態6は、センサを設け、伝送コイル103が第1状態、第2状態にあるかを検知し、スイッチング素子Q1~Q4への制御を変更すること特徴とする。
(Embodiment 6)
The sixth embodiment is characterized by providing a sensor, detecting whether the transmission coil 103 is in the first state or the second state, and changing the control to the switching elements Q1 to Q4.
 図24は、実施の形態6による充電器100の回路図である。図7に対して図24では、センサ231が追加されている。センサ231としては、例えばホールセンサが採用される。図25は、センサ231の配置例を示す図であり、(A)は伝送コイル103が第1状態に位置決めされている場合を示し、(B)は伝送コイル103が第2状態に位置決めされている場合を示す。 FIG. 24 is a circuit diagram of charger 100 according to the sixth embodiment. In FIG. 24, a sensor 231 is added to FIG. As the sensor 231, for example, a hall sensor is employed. FIG. 25 is a diagram illustrating an arrangement example of the sensor 231. FIG. 25A illustrates a case where the transmission coil 103 is positioned in the first state, and FIG. 25B illustrates that the transmission coil 103 is positioned in the second state. Indicates the case.
 図25(A)に示すように、センサ231は、本体部801の主面の左側に配置されている。具体的には、センサ231は、伝送コイル103が第1状態に位置決めされた場合、伝送コイル103により遮蔽されない位置に配置されている。より具体的には、伝送コイル103の中心O103に対して配列方向601の左側に伝送コイル103の短辺W11の半分よりも多少離れた位置に配置されている。 25A, the sensor 231 is disposed on the left side of the main surface of the main body 801. Specifically, the sensor 231 is disposed at a position that is not shielded by the transmission coil 103 when the transmission coil 103 is positioned in the first state. More specifically, the transmission coil 103 is arranged on the left side in the arrangement direction 601 with respect to the center O103 of the transmission coil 103 at a position slightly apart from the half of the short side W11 of the transmission coil 103.
 そのため、伝送コイル103が第1状態に位置決めされると、センサ231の真上には伝送コイル103がないため、センサ231は磁束影響をあまり受けない。 Therefore, when the transmission coil 103 is positioned in the first state, the sensor 231 is not significantly affected by the magnetic flux because there is no transmission coil 103 directly above the sensor 231.
 一方、伝送コイル103が第2状態に位置決めされると、図25(B)に示すようにセンサ231は伝送コイル103により遮蔽される。そのため、センサ231の真上に伝送コイル103があるため、センサ231は第1状態の場合に比べて多くの磁束を受ける。 On the other hand, when the transmission coil 103 is positioned in the second state, the sensor 231 is shielded by the transmission coil 103 as shown in FIG. For this reason, since the transmission coil 103 is located directly above the sensor 231, the sensor 231 receives more magnetic flux than in the first state.
 これにより、センサ231は、伝送コイル103が第1状態にあるか第2状態にあるかを検知することができる。 Thereby, the sensor 231 can detect whether the transmission coil 103 is in the first state or the second state.
 図26は、制御回路704の動作を示す波形図であり、(A)は伝送コイル103が第1状態に位置決めされた場合を示し、(B)は伝送コイル103が第2状態に位置決めされた場合を示す。図26(A)、(B)において、上段は制御回路704がスイッチング素子Q1、Q4のゲートに印加するゲート電圧の波形図であり、中段は制御回路704がスイッチング素子Q2、Q3のゲートに印加するゲート電圧の波形図であり、下段は伝送コイル103に流れる電流の波形図である。 26A and 26B are waveform diagrams showing the operation of the control circuit 704. FIG. 26A shows the case where the transmission coil 103 is positioned in the first state, and FIG. 26B shows the case where the transmission coil 103 is positioned in the second state. Show the case. 26A and 26B, the upper stage is a waveform diagram of the gate voltage applied by the control circuit 704 to the gates of the switching elements Q1 and Q4, and the middle stage is applied by the control circuit 704 to the gates of the switching elements Q2 and Q3. The lower part is a waveform diagram of the current flowing through the transmission coil 103.
 図26(A)、(B)に示すように、伝送コイル103が第1状態及び第2状態にある場合とも、ゲート電圧のオフ期間は同じである。 As shown in FIGS. 26A and 26B, the off period of the gate voltage is the same when the transmission coil 103 is in the first state and the second state.
 一方、センサ231により、伝送コイル103が第1状態から第2状態にあることが検知されると、制御回路704は、第1状態に比べてゲート電圧の周波数を下げて、ゲート電圧のオンデューティーを高くする。一方、センサ231により伝送コイル103が第1状態にあることが検知されると、制御回路704は、第2状態に比べてゲート電圧の周波数を上げ、ゲート電圧のオンデューティーを低くする。 On the other hand, when the sensor 231 detects that the transmission coil 103 is in the second state from the first state, the control circuit 704 lowers the frequency of the gate voltage compared to the first state, thereby turning on the duty of the gate voltage. To increase. On the other hand, when the sensor 231 detects that the transmission coil 103 is in the first state, the control circuit 704 raises the frequency of the gate voltage and lowers the on-duty of the gate voltage compared to the second state.
 これにより、4台の機器200を充電する場合、1台の機器200を充電する場合に比べて機器200に供給する電力を増大させることができる。 Thereby, when charging four devices 200, it is possible to increase the power supplied to the device 200 as compared to charging one device 200.
 (実施の形態7)
 実施の形態7は、実施の形態3において、補助部材192として、共振回路を採用したことを特徴とする。図27、図28は、実施の形態7における伝送コイル103の構成図である。伝送コイル103は、実施の形態3と同様、主コイル部261及び一対の補助部材262を備える。補助部材262は、実施の形態3と同様、主コイル部261に着脱可能である。図28に示すように、主コイル部261は、実施の形態3と同じである。
(Embodiment 7)
The seventh embodiment is characterized in that a resonance circuit is employed as the auxiliary member 192 in the third embodiment. 27 and 28 are configuration diagrams of the transmission coil 103 according to the seventh embodiment. The transmission coil 103 includes a main coil portion 261 and a pair of auxiliary members 262 as in the third embodiment. The auxiliary member 262 can be attached to and detached from the main coil portion 261 as in the third embodiment. As shown in FIG. 28, the main coil portion 261 is the same as that in the third embodiment.
 補助部材262は、共振回路2625を備えている。共振回路2625は、磁性体2622、巻線2623、及びコンデンサ2624を備えている。 The auxiliary member 262 includes a resonance circuit 2625. The resonance circuit 2625 includes a magnetic body 2622, a winding 2623, and a capacitor 2624.
 磁性体2622は平板状である。磁性体2622の主面には巻線2623が貼り付けられている。巻線2623にはコンデンサ2624が電気的に接続されている。共振回路2625の共振周波数は、主コイル部261の共振周波数に近い値に設定されている。 The magnetic body 2622 has a flat plate shape. A winding 2623 is attached to the main surface of the magnetic body 2622. A capacitor 2624 is electrically connected to the winding 2623. The resonance frequency of the resonance circuit 2625 is set to a value close to the resonance frequency of the main coil portion 261.
 補助部材262が主コイル部261に取り付けられると、共振回路2625は、主コイル部261と磁気結合して共振し、磁束を発生させる。つまり、共振回路2625は、電気的には主コイル部261に接続していないが、磁気的に主コイル部261と結合し、磁束を発生させる。 When the auxiliary member 262 is attached to the main coil portion 261, the resonance circuit 2625 resonates by magnetic coupling with the main coil portion 261 to generate magnetic flux. That is, the resonance circuit 2625 is not electrically connected to the main coil portion 261 but is magnetically coupled to the main coil portion 261 to generate a magnetic flux.
 4台の機器200を充電する場合、ユーザは主コイル部261に一対の補助部材262を取り付ける。これにより、伝送コイル103の配列方向601の幅が長くなる。そして、共振回路2625は主コイル部と共振し、磁束を機器200に向けて出す。そのため、配列方向601の両端に置かれた機器200にも磁束が供給されることになり、4台の機器200を同時に充電することができる。 When charging four devices 200, the user attaches a pair of auxiliary members 262 to the main coil portion 261. Thereby, the width | variety of the arrangement direction 601 of the transmission coil 103 becomes long. Then, the resonance circuit 2625 resonates with the main coil portion and emits a magnetic flux toward the device 200. Therefore, magnetic flux is also supplied to the devices 200 placed at both ends of the arrangement direction 601, and the four devices 200 can be charged simultaneously.
 一方、1台の機器200を充電する場合、ユーザは主コイル部261から補助部材262を取り外す。これにより、伝送コイル103の配列方向601の幅が短くなり、洗面台11の空きスペースを確保することができる。なお、3台の機器200を充電する場合、1つの補助部材262を主コイル部261に取り付ければよい。なお、実施の形態7において、実施の形態6で説明したセンサ231を設けてもよい。この場合、主コイル部2611の一対の溝2611のそれぞれに、補助部材262が取り付けられるとオンし、補助部材262が取り外されるとオフするセンサ231を設ければよい。そして、制御回路704は、2つの補助部材262が取り付けられた場合、1つの補助部材262が取り付けられている場合に比べて、オンデューティーが高くなるようにゲート電圧を生成すればよい。また、制御回路704は、補助部材262が取り付けられていない場合、1つの補助部材262が取り付けられている場合に比べて、オンデューティーが高くなるようにゲート電圧を生成すればよい。このセンサ231を用いる態様は実施の形態3にも適用可能である。 On the other hand, when charging one device 200, the user removes the auxiliary member 262 from the main coil portion 261. Thereby, the width | variety of the arrangement direction 601 of the transmission coil 103 becomes short, and the empty space of the washstand 11 can be ensured. In addition, what is necessary is just to attach the one auxiliary member 262 to the main coil part 261, when charging the three apparatuses 200. FIG. Note that the sensor 231 described in Embodiment 6 may be provided in Embodiment 7. In this case, a sensor 231 that is turned on when the auxiliary member 262 is attached and turned off when the auxiliary member 262 is removed may be provided in each of the pair of grooves 2611 of the main coil portion 2611. And the control circuit 704 should just produce | generate a gate voltage so that an on-duty may become high compared with the case where the two auxiliary members 262 are attached compared with the case where the one auxiliary member 262 is attached. In addition, when the auxiliary member 262 is not attached, the control circuit 704 may generate the gate voltage so that the on-duty is higher than when the auxiliary member 262 is attached. This embodiment using the sensor 231 can also be applied to the third embodiment.
 (本実施の形態の纏め)
 (1)本実施の形態による非接触充電器は、複数の機器が充電可能な非接触充電器であって、磁束鎖交面から磁束を発生させ、前記磁束鎖交面に沿って配列された機器に電力を伝送する伝送コイルを含み、前記伝送コイルは、前記機器の配列方向の幅が変動可能である。
(Summary of this embodiment)
(1) The non-contact charger according to the present embodiment is a non-contact charger capable of charging a plurality of devices, generates a magnetic flux from a magnetic flux linkage surface, and is arranged along the magnetic flux linkage surface. A transmission coil that transmits power to the device is included, and the width of the transmission coil in the arrangement direction of the device can be varied.
 この構成によれば、充電する機器の台数に応じたサイズに伝送コイルの幅が調整される。そのため、1台の機器しか充電しないユーザは、伝送コイルの幅を短くして機器を充電することができ、洗面台の空きスペースを確保することができる。一方、複数の機器を充電するユーザは、伝送コイルの幅を長くして、複数の機器を同時に充電することができる。 According to this configuration, the width of the transmission coil is adjusted to a size corresponding to the number of devices to be charged. Therefore, a user who charges only one device can charge the device by shortening the width of the transmission coil, and can secure an empty space in the washstand. On the other hand, a user who charges a plurality of devices can increase the width of the transmission coil and charge the plurality of devices simultaneously.
 (2)前記伝送コイルは、前記磁束鎖交面が長方形であり、前記伝送コイルが回転可能に取り付けられた本体部を更に含み、前記伝送コイルは、前記本体部に対して回転することで、前記配列方向の幅が変動することが好ましい。 (2) The transmission coil further includes a main body portion in which the magnetic flux linkage surface is rectangular and the transmission coil is rotatably attached, and the transmission coil rotates with respect to the main body portion, It is preferable that the width in the arrangement direction varies.
 この構成によれば、伝送コイルは、長方形であり、本体部に対して回転可能に取り付けられている。そのため、ユーザは、伝送コイルの長辺が配列方向に向かうように伝送コイルを回転させることで、伝送コイルの配列方向の幅を増大させることができる。一方、ユーザは、伝送コイルの長辺が配列方向と直交する方向に向かうように伝送コイルを回転させることで、伝送コイルの配列方向の幅を減少させることができる。 According to this configuration, the transmission coil has a rectangular shape and is rotatably attached to the main body. Therefore, the user can increase the width of the transmission coil in the arrangement direction by rotating the transmission coil so that the long side of the transmission coil is directed in the arrangement direction. On the other hand, the user can reduce the width of the transmission coil in the arrangement direction by rotating the transmission coil so that the long side of the transmission coil is directed in a direction orthogonal to the arrangement direction.
 (3)前記伝送コイルは、長手方向が前記配列方向に対して直交する第1状態から、前記長手方向が前記配列方向に対して平行である第2状態まで回転可能であることが好ましい。 (3) The transmission coil is preferably rotatable from a first state in which a longitudinal direction is orthogonal to the arrangement direction to a second state in which the longitudinal direction is parallel to the arrangement direction.
 この構成によれば、1台の機器を充電する場合、伝送コイルを第1状態に位置決めし、複数の機器を充電する場合、伝送コイルを第2状態に位置決めするというように、ユーザは2つの状態を切り替えて機器を充電することができる。 According to this configuration, when charging one device, the user positions two transmission coils in the first state, and when charging a plurality of devices, the user positions two transmission coils in the second state. The device can be charged by switching the state.
 (4)前記伝送コイルは、磁性体部及び巻線部を含み、磁性体部のみ前記本体部に対して回転することが好ましい。 (4) It is preferable that the transmission coil includes a magnetic body portion and a winding portion, and only the magnetic body portion rotates with respect to the main body portion.
 この構成によれば、伝送コイルを構成する磁性体部のみを回転させて、伝送コイルの幅が調整される。そのため、巻線の断線等の不具合を防止することができる。 According to this configuration, the width of the transmission coil is adjusted by rotating only the magnetic body portion constituting the transmission coil. Therefore, it is possible to prevent problems such as wire breakage.
 (5)前記磁性体部は、長手方向が前記配列方向に対して直交する第1状態から、前記長手方向が前記配列方向に対して平行である第2状態まで回転可能であり、前記第1状態と前記第2状態とでインダクタンスの変化が抑制されるように短辺が設定されていることが好ましい。 (5) The magnetic body portion is rotatable from a first state in which a longitudinal direction is perpendicular to the arrangement direction to a second state in which the longitudinal direction is parallel to the arrangement direction. It is preferable that the short side is set so that a change in inductance is suppressed between the state and the second state.
 この構成によれば、第1状態と第2状態との切り替えの前後で伝送コイルのインダクタンスの減少が抑制されるため、第1状態と第2状態とで発振回路の制御を切り替えなくても、ほぼ同じ量の電力を機器に供給することができる。 According to this configuration, since the decrease in the inductance of the transmission coil is suppressed before and after switching between the first state and the second state, even if the control of the oscillation circuit is not switched between the first state and the second state, Approximately the same amount of power can be supplied to the device.
 (6)前記磁性体部は、長手方向が前記配列方向に対して直交する第1状態から、前記長手方向が前記配列方向に対して平行である第2状態まで回転可能であり、前記第2状態に位置決めされた場合、前記第1状態に位置決めされた場合に比べてインダクタンスが小さくなるように短辺が設定されていることが好ましい。 (6) The magnetic body portion is rotatable from a first state in which a longitudinal direction is orthogonal to the arrangement direction to a second state in which the longitudinal direction is parallel to the arrangement direction, It is preferable that the short side is set so that the inductance is smaller when positioned in the state than when positioned in the first state.
 この構成によれば、第1状態から第2状態に切り替えられると、伝送コイルのインダクタンスが小さくなるため、第1状態と第2状態とで発振回路の制御を切り替えなくても、第2状態の場合の電力供給量を第1状態の場合に比べて増大させることができる。 According to this configuration, when switching from the first state to the second state, the inductance of the transmission coil becomes small, so even if the control of the oscillation circuit is not switched between the first state and the second state, In this case, the power supply amount can be increased as compared with the case of the first state.
 (7)前記伝送コイルは、主コイル部と、前記主コイル部と磁気結合する補助部材とを含み、前記補助部材は、前記主コイル部に対して前記配列方向に着脱可能であることが好ましい。 (7) It is preferable that the transmission coil includes a main coil part and an auxiliary member magnetically coupled to the main coil part, and the auxiliary member is detachable from the main coil part in the arrangement direction. .
 この構成によれば、主コイル部に補助部材を着脱することで、伝送コイルの幅を調整することができる。 According to this configuration, the width of the transmission coil can be adjusted by attaching / detaching the auxiliary member to / from the main coil portion.
 (8)前記補助部材は、磁性体により構成されていることが好ましい。 (8) The auxiliary member is preferably made of a magnetic material.
 この構成によれば、補助部材が磁性体で構成されているため、補助部材を主コイル部に取り付けると、磁性体が主コイル部と磁気結合し、補助部材から磁束を発生させることができる。そのため、補助部材と主コイル部とを導線を用いて電気的に接続させなくても、補助部材から磁束を発生させることができる。 According to this configuration, since the auxiliary member is made of a magnetic material, when the auxiliary member is attached to the main coil portion, the magnetic material is magnetically coupled to the main coil portion, and magnetic flux can be generated from the auxiliary member. Therefore, it is possible to generate magnetic flux from the auxiliary member without electrically connecting the auxiliary member and the main coil portion using the conductive wire.
 (9)前記補助部材は、コイル及びコンデンサを含む共振回路により構成されていることが好ましい。 (9) The auxiliary member is preferably constituted by a resonance circuit including a coil and a capacitor.
 この構成によれば、補助部材が共振回路で構成されているため、補助部材を主コイル部に取り付けると、共振回路のコイルが主コイル部と磁気結合し、補助部材から磁束を発生させることができる。そのため、補助部材と主コイル部とを導線を用いて電気的に接続させなくても、補助部材から磁束を発生させることができる。 According to this configuration, since the auxiliary member is configured by the resonance circuit, when the auxiliary member is attached to the main coil portion, the coil of the resonance circuit is magnetically coupled to the main coil portion, and magnetic flux is generated from the auxiliary member. it can. Therefore, it is possible to generate magnetic flux from the auxiliary member without electrically connecting the auxiliary member and the main coil portion using the conductive wire.
 (10)前記伝送コイルの前記配列方向の幅が第1サイズよりも長い第2サイズになったことを検知するセンサと、前記伝送コイルを発振させる発振回路とを更に備え、前記発振回路は、前記伝送コイルの前記配列方向の幅が前記第2サイズになったことが前記センサにより検出された場合、前記第1サイズの場合に比べて前記伝送コイルに流れる電流を増大させることが好ましい。 (10) The sensor further includes a sensor that detects that the width of the transmission coil in the arrangement direction is a second size longer than the first size, and an oscillation circuit that oscillates the transmission coil. When the sensor detects that the width of the transmission coils in the arrangement direction is the second size, it is preferable that the current flowing in the transmission coil is increased as compared with the case of the first size.
 この構成によれば、複数の機器を充電する場合、機器に供給する電力量を増大させることができる。 According to this configuration, when charging a plurality of devices, the amount of power supplied to the devices can be increased.
 本発明は、充電する機器の台数に応じて伝送コイルの幅が調整できるため、電動シェーバ、電動歯ブラシ等の機器にとって有用である。 The present invention is useful for devices such as an electric shaver and an electric toothbrush because the width of the transmission coil can be adjusted according to the number of devices to be charged.

Claims (10)

  1.  複数の機器が充電可能な非接触充電器であって、
     磁束鎖交面から磁束を発生させ、前記磁束鎖交面に沿って配列された機器に電力を伝送する伝送コイルを含み、
     前記伝送コイルは、前記機器の配列方向の幅が変動可能である非接触充電器。
    A non-contact charger that can charge multiple devices,
    Including a transmission coil that generates magnetic flux from the magnetic flux linkage surface and transmits power to devices arranged along the magnetic flux linkage surface,
    The transmission coil is a non-contact charger whose width in the arrangement direction of the devices is variable.
  2.  前記伝送コイルは、前記磁束鎖交面が長方形であり、
     前記伝送コイルが回転可能に取り付けられた本体部を更に含み、
     前記伝送コイルは、前記本体部に対して回転することで、前記配列方向の幅が変動する請求項1記載の非接触充電器。
    The transmission coil has a rectangular magnetic flux linkage surface,
    The transmission coil further includes a main body portion rotatably attached,
    The non-contact charger according to claim 1, wherein the transmission coil rotates with respect to the main body to change a width in the arrangement direction.
  3.  前記伝送コイルは、長手方向が前記配列方向に対して直交する第1状態から、前記長手方向が前記配列方向に対して平行である第2状態まで回転可能である請求項2記載の非接触充電器。 The contactless charging according to claim 2, wherein the transmission coil is rotatable from a first state in which a longitudinal direction is orthogonal to the arrangement direction to a second state in which the longitudinal direction is parallel to the arrangement direction. vessel.
  4.  前記伝送コイルは、磁性体部及び巻線部を含み、磁性体部のみ前記本体部に対して回転する請求項2又は3記載の非接触充電器。 4. The non-contact charger according to claim 2, wherein the transmission coil includes a magnetic part and a winding part, and only the magnetic part rotates with respect to the main body part.
  5.  前記磁性体部は、長手方向が前記配列方向に対して直交する第1状態から、前記長手方向が前記配列方向に対して平行である第2状態まで回転可能であり、前記第1状態と前記第2状態とでインダクタンスの変化が抑制されるように短辺が設定されている請求項4記載の非接触充電器。 The magnetic body portion is rotatable from a first state in which a longitudinal direction is orthogonal to the arrangement direction to a second state in which the longitudinal direction is parallel to the arrangement direction, and the first state and the The non-contact charger according to claim 4, wherein a short side is set so that a change in inductance is suppressed in the second state.
  6.  前記磁性体部は、長手方向が前記配列方向に対して直交する第1状態から、前記長手方向が前記配列方向に対して平行である第2状態まで回転可能であり、前記第2状態に位置決めされた場合、前記第1状態に位置決めされた場合に比べてインダクタンスが小さくなるように短辺が設定されている請求項4記載の非接触充電器。 The magnetic body portion is rotatable from a first state in which a longitudinal direction is orthogonal to the arrangement direction to a second state in which the longitudinal direction is parallel to the arrangement direction, and is positioned in the second state. The non-contact charger according to claim 4, wherein the short side is set so that the inductance is smaller than that in the case of being positioned in the first state.
  7.  前記伝送コイルは、主コイル部と、前記主コイル部と磁気結合する補助部材とを含み、
     前記補助部材は、前記主コイル部に対して前記配列方向に着脱可能である請求項1記載の非接触充電器。
    The transmission coil includes a main coil part and an auxiliary member magnetically coupled to the main coil part,
    The non-contact charger according to claim 1, wherein the auxiliary member is detachable from the main coil portion in the arrangement direction.
  8.  前記補助部材は、磁性体により構成されている請求項7記載の非接触充電器。 The non-contact charger according to claim 7, wherein the auxiliary member is made of a magnetic material.
  9.  前記補助部材は、コイル及びコンデンサを含む共振回路により構成されている請求項7記載の非接触充電器。 The non-contact charger according to claim 7, wherein the auxiliary member is constituted by a resonance circuit including a coil and a capacitor.
  10.  前記伝送コイルの前記配列方向の幅が第1サイズよりも長い第2サイズになったことを検知するセンサと、
     前記伝送コイルを発振させる発振回路とを更に備え、
     前記発振回路は、前記伝送コイルの前記配列方向の幅が前記第2サイズになったことが前記センサにより検出された場合、前記第1サイズの場合に比べて前記伝送コイルに流れる電流を増大させる請求項1~9のいずれかに記載の非接触充電器。
    A sensor for detecting that the width in the arrangement direction of the transmission coils is a second size longer than the first size;
    An oscillation circuit for oscillating the transmission coil;
    The oscillation circuit increases the current flowing through the transmission coil when the sensor detects that the width of the arrangement direction of the transmission coils has reached the second size compared to the case of the first size. The non-contact charger according to any one of claims 1 to 9.
PCT/JP2013/007104 2013-01-23 2013-12-03 Noncontact charger WO2014115215A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013010171A JP2014143813A (en) 2013-01-23 2013-01-23 Non-contact charger
JP2013-010171 2013-01-23

Publications (1)

Publication Number Publication Date
WO2014115215A1 true WO2014115215A1 (en) 2014-07-31

Family

ID=51227033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007104 WO2014115215A1 (en) 2013-01-23 2013-12-03 Noncontact charger

Country Status (2)

Country Link
JP (1) JP2014143813A (en)
WO (1) WO2014115215A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292535A (en) * 2000-04-07 2001-10-19 Sekisui House Ltd Shelf
JP2011501938A (en) * 2007-10-17 2011-01-13 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Wireless power supply system for laptops and portable electronic devices
JP2011517926A (en) * 2008-03-13 2011-06-16 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Inductive charging system having a plurality of primary coils
JP2013500692A (en) * 2009-07-24 2013-01-07 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Power supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292535A (en) * 2000-04-07 2001-10-19 Sekisui House Ltd Shelf
JP2011501938A (en) * 2007-10-17 2011-01-13 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Wireless power supply system for laptops and portable electronic devices
JP2011517926A (en) * 2008-03-13 2011-06-16 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Inductive charging system having a plurality of primary coils
JP2013500692A (en) * 2009-07-24 2013-01-07 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Power supply

Also Published As

Publication number Publication date
JP2014143813A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
JP4852970B2 (en) Power supply system
EP3093957B1 (en) Foreign object detecting device, wireless power transmitting apparatus, and wireless power transfer system
JP6115626B2 (en) Wireless power supply device
KR102154744B1 (en) Wireless charging system for electronic device
JP4258505B2 (en) Power supply system
WO2013111344A1 (en) Power receiving apparatus, power transmitting system, and power transmitting method
JP2012143091A (en) Remotely and wirelessly driven charger
CN107222031B (en) Power supply device and wireless power transmission device
WO2014024380A1 (en) Contactless power transmission device
WO2014115223A1 (en) Contactless power transmission system
JP6167413B2 (en) Non-contact power transmission system
TW201334348A (en) Contactless electric power transmission device
CA3046620A1 (en) Segmented and longitudinal receiver coil arrangements for wireless power transfer
KR20180027013A (en) Wireless power transmission module and electronic device having the same
JP2014039437A (en) Charge and discharge device
WO2014115215A1 (en) Noncontact charger
JP2019122149A (en) Non-contact power supply device
JP5984106B2 (en) Non-contact power transmission device
JP6498376B1 (en) Power receiving device
JP6455808B2 (en) Power supply device
JPH07322534A (en) Noncontact power transmission
CN104578444B (en) Contactless power supply mechanism and contactless power supply mechanism secondary coil
JPWO2019053945A1 (en) Power transmission device and power reception device
JP2015002310A (en) Non-contact power transmission system, power receiver and retainer
JP2014093797A (en) Power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872361

Country of ref document: EP

Kind code of ref document: A1