JPH07322534A - Noncontact power transmission - Google Patents

Noncontact power transmission

Info

Publication number
JPH07322534A
JPH07322534A JP6111256A JP11125694A JPH07322534A JP H07322534 A JPH07322534 A JP H07322534A JP 6111256 A JP6111256 A JP 6111256A JP 11125694 A JP11125694 A JP 11125694A JP H07322534 A JPH07322534 A JP H07322534A
Authority
JP
Japan
Prior art keywords
core
coil
primary
primary coil
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6111256A
Other languages
Japanese (ja)
Other versions
JP3330222B2 (en
Inventor
Hiroshi Sakamoto
浩 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP11125694A priority Critical patent/JP3330222B2/en
Publication of JPH07322534A publication Critical patent/JPH07322534A/en
Application granted granted Critical
Publication of JP3330222B2 publication Critical patent/JP3330222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To realize highly efficient transmission of power from the power supply side having the primary coil to the load side having the secondary coil by suppressing the leakage flux as low as possible in a noncontact power transmission. CONSTITUTION:The noncontact power transmission comprises primary coil section 1 and secondary coil section 2 separable from each other. The primary coil section 1 comprises a cylindrical core 11 having a cylindrical wall 12 and a rear wall 13, a core 14 planted on the rear wall 13, and a primary coil 10 wound around the inner peripheral surface of the cylindrical wall 12. The secondary coil section 2 comprises a disc core 21 having diameter equal to the outer diameter of the cylindrical core 11, and a secondary air-core coil 20 disposed in the center. When the primary coil section 1 and the secondary coil section 2 are combined, the cylindrical wall 12 and the core 14 substantially abut, at the forward end against the surface of the disc 21. The disc core 21, the cylindrical wall 12 and the rear wall 13 of the cylindrical core 11, and the core 14 establish an annular closed magnetic path.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充電器や、例えば浴室
内等の水回り等で用いて好適な電気機器における非接触
式の電力伝達装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact type power transmission device for a charger or electric equipment suitable for use around a water supply in a bathroom or the like.

【0002】[0002]

【従来の技術】従来、例えば電池応用電気機器には充電
のための充電用電極が設けられており、充電時には、こ
の電気機器を充電器に装着して、充電用電極と充電器の
出力電極とを接触可能にする構成となっているものが一
般的であった。しかし、充電用電極や出力電極を装置表
面に露出したものでは、この露出状態の電極に変形を生
じさせ易く接触不良を発生する原因となり、また、特に
機器が水回りで利用されるものである場合、腐食によっ
て接触不良を引き起こす虞れがあり、更には複雑な防水
構造を採用しなければならないといった問題があった。
2. Description of the Related Art Conventionally, for example, a battery-applied electric device is provided with a charging electrode for charging, and at the time of charging, the electric device is mounted on a charger so that the charging electrode and the output electrode of the charger. It was generally configured to allow contact with. However, if the charging electrode and the output electrode are exposed on the surface of the device, the exposed electrode is likely to be deformed, causing a contact failure, and the device is particularly used around water. In this case, there is a risk that contact failure may occur due to corrosion, and further, a complicated waterproof structure must be adopted.

【0003】そこで近年では、電磁誘導を利用して非接
触で充電を含めて電力伝達を可能にする電気機器が種々
提案されている。図7は、従来の非接触式の給電装置に
おける電力伝達部分の構造を示す図である。図(a)〜
(d)において、100は電源側となる一次側筐体、2
00は負荷を有する二次側筐体で、いずれの場合も、一
次側筐体100の上面に二次側筐体200が載置状態で
装着可能になっているものである。101は一次コイル
であり、201は二次コイルを示している。
Therefore, in recent years, various electric devices have been proposed which make it possible to transmit electric power including charging without contact using electromagnetic induction. FIG. 7: is a figure which shows the structure of the electric power transmission part in the conventional non-contact type electric power feeder. Figure (a)-
In (d), 100 is a primary side housing on the power source side, 2
Reference numeral 00 denotes a secondary housing having a load, and in any case, the secondary housing 200 can be mounted on the upper surface of the primary housing 100 in a mounted state. Reference numeral 101 is a primary coil, and 201 is a secondary coil.

【0004】図(a)では、一次コイル101は一次側
筐体100の内部上端に配設され、二次コイル202は
一次コイル101と同径で、二次側筐体200の内部下
面に配設され、装着状態で近接対向するようにされてい
る。図(b)では、一次側筐体100の上面であって、
一次コイル101の径の内側が窪んでおり、この窪み部
分に二次側筐体200が嵌入状態で装着されるようにさ
れ、一次コイル101の内周側で同心軸上に二次コイル
201が配置されるようになっている。図(c)では、
一次側筐体100の上面には上下方向の内外側に伸びた
柱状のコア102が立設され、一方、二次側筐体200
の下面にはコア102が嵌入可能な凹穴202が形成さ
れ、一次コイル101と二次コイル201とがコア10
2を介して磁気結合されるようになっている。図(d)
では、一次側筐体100の上面の一部に突出部103を
形成し、この部分に柱状のコア104と一次コイル10
1とを配設し、一方、二次側筐体200の下面には上記
突出部103が嵌まり込む凹穴203を形成し、この凹
穴203の周囲に二次コイル201を巻装した構成とさ
れている。
In FIG. 1A, the primary coil 101 is arranged at the upper inner end of the primary housing 100, and the secondary coil 202 has the same diameter as the primary coil 101 and is arranged on the lower inner surface of the secondary housing 200. They are installed so as to face each other in the mounted state. In FIG. (B), the upper surface of the primary-side housing 100,
The inner side of the diameter of the primary coil 101 is recessed, and the secondary side housing 200 is fitted in the recessed portion so that the secondary coil 201 is concentrically provided on the inner peripheral side of the primary coil 101. It is supposed to be arranged. In Figure (c),
A columnar core 102 extending vertically inward and outward is provided on the upper surface of the primary-side housing 100, while the secondary-side housing 200 is provided.
A recessed hole 202 into which the core 102 can be fitted is formed on the lower surface of the core 10, and the primary coil 101 and the secondary coil 201 are connected to the core 10.
It is designed to be magnetically coupled via 2. Figure (d)
Then, the protrusion 103 is formed on a part of the upper surface of the primary-side housing 100, and the columnar core 104 and the primary coil 10 are formed on this part.
On the other hand, a concave hole 203 into which the above-mentioned protruding portion 103 is fitted is formed on the lower surface of the secondary side housing 200, and the secondary coil 201 is wound around this concave hole 203. It is said that.

【0005】そして、一次コイル101は商用電源によ
り駆動される発振回路に接続され、この発振回路により
一次コイル101に交流電流が供給されて交番磁束が発
生し、この磁束が二次コイル201を鎖交することで交
流電力が誘起され、更に整流等されて充放電可能な電池
やモータ等の負荷に供給されるようになっている。
The primary coil 101 is connected to an oscillating circuit driven by a commercial power source, an alternating current is supplied to the primary coil 101 by this oscillating circuit, and an alternating magnetic flux is generated, and this magnetic flux chains the secondary coil 201. The alternating current induces alternating current power, which is further rectified and supplied to a load such as a battery or a motor that can be charged and discharged.

【0006】[0006]

【発明が解決しようとする課題】ところで、伝達電力の
最大値は、一次側と二次側での漏れ磁束により決定さ
れ、この漏れ磁束は、コアの形状が閉磁路の場合に、一
次、二次の間のギャップにより発生するものである。
By the way, the maximum value of the transmission power is determined by the leakage fluxes on the primary side and the secondary side. The leakage fluxes are primary and secondary when the shape of the core is a closed magnetic circuit. It is caused by the gap between:

【0007】図8は、トランスの等価回路を示す。図に
おいて、L1,L2は一次側、二次側の漏れインダクタ
ンス、LMはトランスの励磁インダクタンスを示す。こ
こで、説明の便宜上、一次側、二次側のコイルの巻線比
を1とし、LMの値がL1,L2に比して十分大きいと
した場合において、負荷抵抗Rとの直列インダクタンス
Lは、L=L1+L2となる。このことから、一次入力
電圧をViとすると、二次側出力電圧Vo及び出力電力
Poは、数1のように表される。
FIG. 8 shows an equivalent circuit of the transformer. In the figure, L1 and L2 are leakage inductances on the primary side and the secondary side, and LM is the exciting inductance of the transformer. Here, for convenience of explanation, when the winding ratio of the primary side and secondary side coils is 1 and the value of LM is sufficiently larger than L1 and L2, the series inductance L with the load resistance R is , L = L1 + L2. From this, assuming that the primary input voltage is Vi, the secondary side output voltage Vo and the output power Po are expressed as in Equation 1.

【0008】[0008]

【数1】 [Equation 1]

【0009】数1の各式より、最大負荷電流、最大負荷
電力が求まり、その値は上記Lの値が小さいほど大きく
なることが分かる。
From the respective equations of the equation 1, it can be seen that the maximum load current and the maximum load power are obtained, and the values become larger as the value of L becomes smaller.

【0010】上記従来の電力伝達部分の構造では、コア
が磁路の一部にしか設けられておらず、閉磁路が構成さ
れていないため、漏れ磁束の発生を抑制するにも限界が
あった。従って直列インダクタンスLが大きな値となら
ざるを得ず、数1に示す出力電力Poとして効果的な高
レベルを得ることができず、このため伝達効率は非常に
低いものとなっていた。このようなことから、特に伝達
電力が大きい場合には、トランスの一次側に対して大電
力を供給可能な構成を採用すればよいが、そうすると、
一次側の構成が勢い大型化してしまい、却って実用性や
携帯性を損なうこととなる。
In the above-mentioned conventional structure of the power transmission portion, the core is provided only in a part of the magnetic path and the closed magnetic path is not formed, so that there is a limit in suppressing the generation of leakage magnetic flux. . Therefore, the series inductance L is inevitably a large value, and an effective high level cannot be obtained as the output power Po shown in Formula 1, which results in a very low transmission efficiency. From this, especially when the transmitted power is large, a configuration capable of supplying a large amount of power to the primary side of the transformer may be adopted.
The configuration on the primary side will increase in size, which will impair practicality and portability.

【0011】本発明は、上記に鑑みてなされたもので、
一次コイルを有する電源側から二次コイルを有する負荷
側に高効率での電力伝達を可能にする非接触電力伝達装
置を提供することを目的とするものである。
The present invention has been made in view of the above,
An object of the present invention is to provide a non-contact power transmission device that enables highly efficient power transmission from a power source side having a primary coil to a load side having a secondary coil.

【0012】[0012]

【課題を解決するための手段】本発明は、脈流電流生成
回路に接続された一次コイルを有する一次側部と、負荷
に接続された二次コイルを有する二次側部とがそれぞれ
分離可能であって、非接触で一次側部から二次側部へ電
力供給を行う電力伝達装置において、上記一次コイルと
二次コイルのうち、一方のコイルを一端が開口した筒状
コアの内周壁に巻装して形成し、他方のコイルを上記筒
状コアの筒径より小径にして板状コアに立設するととも
に、上記筒状コアと板状コアの少なくとも一方に上記他
方のコイルの径より小径となる柱状の中芯を立設し、上
記一次側部と二次側部とを上記筒状コアの開口と上記板
状コアの立設コイルとが対向するように組み合わせた状
態で、閉磁路が形成され且つ両コイルが同心軸上に配置
されてなるものである(請求項1)。
According to the present invention, a primary side portion having a primary coil connected to a pulsating current generation circuit and a secondary side portion having a secondary coil connected to a load can be separated from each other. In the power transmission device that supplies power from the primary side portion to the secondary side portion in a non-contact manner, one of the primary coil and the secondary coil is attached to the inner peripheral wall of the tubular core having one end opened. It is formed by winding, and the other coil is made smaller in diameter than the tubular diameter of the tubular core so as to stand upright on the plate-shaped core, and at least one of the tubular core and the plate-shaped core has a diameter smaller than that of the other coil. A columnar core having a small diameter is erected, and the primary side and the secondary side are combined so that the opening of the tubular core and the standing coil of the plate-shaped core face each other, and the magnetic field is closed. A path is formed and both coils are arranged on concentric axes. That (claim 1).

【0013】また、上記中芯にコイルを巻装し、この巻
装コイルを、該中芯が設けられた側のコイルと直列また
は並列に接続するようにしてもよい(請求項2)。
A coil may be wound around the core, and the wound coil may be connected in series or in parallel with the coil on the side where the core is provided (claim 2).

【0014】[0014]

【作用】請求項1記載の発明によれば、一次側部と二次
側部とが組み合わされると、中芯、板状コア、筒状コア
の周部、筒状コアの閉塞面部とを環状に経由してなる略
完全な閉磁路が形成される。そして、脈流電流生成回路
からオンオフ電流あるいは交流電流が一次コイルに供給
されると、この一次コイルを鎖交する交番磁束が発生す
る。この鎖交磁束は中芯に発生し、更に板状コアと筒状
コアとからなる磁気抵抗の小さい閉磁路内に集中し、磁
束分散が効果的に抑止される。従って、発生磁束のほと
んどは二次側部で二次コイルを鎖交することとなるた
め、漏れ磁束の発生が極力抑制されることとなり、一次
側電力は高い伝達効率で二次側に伝達される。
According to the invention described in claim 1, when the primary side portion and the secondary side portion are combined, the center core, the plate core, the peripheral portion of the tubular core, and the closing surface portion of the tubular core are annularly formed. A nearly complete closed magnetic circuit is formed. When an on / off current or an alternating current is supplied from the pulsating current generation circuit to the primary coil, an alternating magnetic flux that links the primary coil is generated. This interlinkage magnetic flux is generated in the central core and is further concentrated in the closed magnetic circuit having a small magnetic resistance composed of the plate-shaped core and the cylindrical core, and the magnetic flux dispersion is effectively suppressed. Therefore, most of the generated magnetic flux will link the secondary coil at the secondary side, so the generation of leakage magnetic flux will be suppressed as much as possible, and the primary side power will be transmitted to the secondary side with high transmission efficiency. It

【0015】請求項2記載の発明によれば、中芯が一次
側部に設けられるときは、発生磁束数が増大し、一方、
中芯が二次側部に設けられるときは、発生磁束に対する
鎖交数がより増大するので、いずれの場合にも、伝達効
率が高くなる。更に、中芯が一次、二次側部の双方で分
担して設けられているときでも、発生磁束の増大及び鎖
交数の増大となるので、伝達効率が全体として向上す
る。
According to the second aspect of the invention, when the core is provided on the primary side, the number of generated magnetic flux increases, while
When the core is provided on the secondary side, the number of interlinkages with the generated magnetic flux is further increased, so that the transmission efficiency is increased in any case. Further, even when the core is provided in both the primary and secondary side parts, the generated magnetic flux and the number of interlinkages are increased, so that the transmission efficiency is improved as a whole.

【0016】[0016]

【実施例】図6は、本発明に係る非接触電力伝達装置が
適用される電気機器の回路ブロック図である。図におい
て、BAは電源部、RLは負荷部で、両者はそれぞれ筐
体内に収納されており、分離可能な構成を有している。
電源部BAと負荷部RLとはトランスTを構成する一次
コイル部1と二次コイル部2とが対向するように装着可
能な構成が採用されている。一次コイル部1には一次コ
イル10を有し、二次コイル部2には二次コイル20を
有する。
FIG. 6 is a circuit block diagram of an electric device to which the non-contact power transmission device according to the present invention is applied. In the figure, BA is a power supply unit and RL is a load unit, both of which are housed in a housing and have a separable structure.
The power supply unit BA and the load unit RL are so configured that they can be mounted so that the primary coil unit 1 and the secondary coil unit 2 that form the transformer T face each other. The primary coil unit 1 has a primary coil 10 and the secondary coil unit 2 has a secondary coil 20.

【0017】装着形態は載置による場合の他、半固定状
態での嵌着や操作容易なロック機構、弾性材を利用した
ロック部材によるもの等が考えられる。あるいは脱着可
能にされた螺子等による固定的な形態でもよい。負荷部
RLに充放電可能な蓄電池とこの蓄電池で駆動可能なモ
ータ等を有する場合、充電時は不使用状態にあるので、
装着形態として載置タイプを採用することが可能であ
る。負荷部RLが電力供給を受けながら所要の動作、操
作を行うものである場合には、装着タイプが好ましい。
The mounting form may be, in addition to the mounting, a fitting in a semi-fixed state, a locking mechanism that is easy to operate, a locking member using an elastic material, and the like. Alternatively, it may be a fixed form such as a detachable screw. When the load section RL has a storage battery that can be charged and discharged and a motor that can be driven by this storage battery, since it is not in use when charging,
A mounting type can be adopted as the mounting form. When the load part RL is to carry out a required operation and operation while receiving power supply, the mounting type is preferable.

【0018】電源部BAには、商用電源3の入力ライン
に介設されたダイオードブリッジ等で構成される整流回
路4、整流電力を平滑するコンデンサ5及び直流電力か
ら所定レベルの脈流電流を生成する発振回路6を有し、
発振回路6の出力側は一次コイル10の両端に接続され
ている。発振回路6としては、公知のスイッチングイン
バータを採用したものが適用可能である。例えば、トラ
ンスTの一次コイル10に直列にスイッチング素子を接
続し、この直列回路の両端にコンデンサ5を接続すると
ともに、このスイッチング素子を自励発振等させてスイ
ッチングパルスを生成し、このパルスをスイッチング素
子に供給することで一次コイル10に流れる電流を繰返
しオンオフして脈流電流を生成させるものである。ま
た、発振回路6としては、直接交流波形の脈流電流を生
成させるものでもよい。
In the power supply unit BA, a rectifying current of a predetermined level is generated from a rectifying circuit 4 composed of a diode bridge or the like provided in the input line of the commercial power supply 3, a capacitor 5 for smoothing the rectified power, and DC power. Has an oscillation circuit 6 for
The output side of the oscillator circuit 6 is connected to both ends of the primary coil 10. As the oscillation circuit 6, a circuit adopting a known switching inverter can be applied. For example, a switching element is connected in series to the primary coil 10 of the transformer T, a capacitor 5 is connected to both ends of this series circuit, and a self-excited oscillation of this switching element is used to generate a switching pulse, and this pulse is switched. By supplying to the element, the current flowing through the primary coil 10 is repeatedly turned on and off to generate a pulsating current. Further, the oscillation circuit 6 may be one that directly generates a pulsating current having an AC waveform.

【0019】負荷部RLは二次コイル20に接続された
整流用のダイオード7及び整流電力が供給可能にされた
負荷8とを有する。負荷8は、負荷電力により駆動可能
にされたものであればよく、例えばモータ等である。な
お、この負荷8は、充放電可能な蓄電池とこれからの放
電を受けて駆動可能なモータ等の駆動部とから構成され
たものでもよい。この場合、電源部BAは充電器として
作用することとなる。
The load portion RL has a rectifying diode 7 connected to the secondary coil 20 and a load 8 capable of supplying rectified power. The load 8 may be any load that can be driven by load power, and is, for example, a motor or the like. The load 8 may be composed of a chargeable / dischargeable storage battery and a drive unit such as a motor that can be driven by receiving a discharge from the storage battery. In this case, the power supply unit BA acts as a charger.

【0020】次に、この回路構成の動作を説明する。商
用電源3が投入され、整流ブリッジ4、コンデンサ5に
より整流平滑された直流電力が発振回路6に供給される
と、発振回路6が発振動作を開始し、一次コイル10に
繰返しオンオフされる一次電流を供給する。このオンオ
フ電流により一次コイル10に交番磁束が発生する。こ
の状態で、負荷部RLが電源部BAに装着されている
と、一次側の交番磁束が二次コイル20を鎖交すること
によって二次コイル20に交流電力が誘起される。交流
電力はダイオード7で整流された後、負荷8に供給さ
れ、負荷の駆動が開始される。
Next, the operation of this circuit configuration will be described. When the commercial power supply 3 is turned on and the DC power rectified and smoothed by the rectifying bridge 4 and the capacitor 5 is supplied to the oscillating circuit 6, the oscillating circuit 6 starts the oscillating operation, and the primary current is repeatedly turned on and off in the primary coil 10. To supply. An alternating magnetic flux is generated in the primary coil 10 by this on / off current. In this state, when the load part RL is attached to the power source part BA, the alternating magnetic flux on the primary side links the secondary coil 20 to induce alternating-current power in the secondary coil 20. The AC power is rectified by the diode 7 and then supplied to the load 8 to start driving the load.

【0021】図1は、本発明に係る非接触電力伝達装置
の第1実施例を示す斜視図で、図(a)は周方向に1/
4だけ切欠いた状態の一次コイル部1、図(b)は二次
コイル部2を示している。図2は、図1の縦断面図で、
図(a)は一次コイル部1と二次コイル部2とを組み合
わせた状態、すなわち負荷部RLを電源部BAに装着し
た状態を示し、図(b)は一次コイル部1、図(c)は
二次コイル部2を示している。
FIG. 1 is a perspective view showing a first embodiment of a non-contact power transmission device according to the present invention. FIG.
The primary coil portion 1 is cut out by 4 and the secondary coil portion 2 is shown in FIG. 2 is a vertical sectional view of FIG.
FIG. 6A shows a state in which the primary coil unit 1 and the secondary coil unit 2 are combined, that is, a state in which the load unit RL is attached to the power supply unit BA, and FIG. 6B shows the primary coil unit 1 and FIG. Indicates the secondary coil unit 2.

【0022】図1(a)、図2(b)において、一次コ
イル部1は、強磁性体材料からなり、所定径かつ所定長
を有する円筒コア11を備え、円筒壁12や後壁13は
それぞれ磁束密度や磁気抵抗等の関係から得られる所要
の厚みを有して形成されている。一次コイル10は円筒
壁12の内周面に所要ターン数だけ巻装されている。円
筒コア11の軸上にはこの円筒コア11と一致する高さ
位置までの、同じく強磁性体材料からなる小径を有する
円柱状の中芯が立設形成されている。
1 (a) and 2 (b), the primary coil portion 1 comprises a cylindrical core 11 made of a ferromagnetic material and having a predetermined diameter and a predetermined length, and the cylindrical wall 12 and the rear wall 13 are Each is formed to have a required thickness obtained from the relationship of magnetic flux density, magnetic resistance, and the like. The primary coil 10 is wound around the inner peripheral surface of the cylindrical wall 12 for a required number of turns. On the axis of the cylindrical core 11, a cylindrical core having a small diameter and also made of a ferromagnetic material is formed up to a height position corresponding to the cylindrical core 11.

【0023】また、一次コイル10の両端は、図示して
いないが、円筒コア11の適宜位置に穿設された微孔あ
るいは表面を這わして発振回路6へ導かれている。
Although not shown, both ends of the primary coil 10 are guided to the oscillation circuit 6 by crawling through fine holes or surfaces formed at appropriate positions of the cylindrical core 11.

【0024】図1(b)、図2(c)において、二次コ
イル部2は、強磁性体材料からなり、上記円筒コア11
の外径と等しい径及び所定厚を有する円板コア21を備
え、その中心部に所定径であって空心状所要ターン数だ
け巻成された二次コイル20が立設されている。二次コ
イル20は、そのコイル径が上記中芯14の径と円筒壁
12の内径、詳しくは円筒壁12の内周面に巻成された
一次コイル10の内径との間の寸法に設定され、立設方
向の寸法が上記中芯14と同一寸法にされている。二次
コイル20の形状を上記のように設計することで、一次
コイル部1と二次コイル部2とが組み合わされたとき、
図2(a)に示すように、二次コイル20が円筒コア1
1の内部に嵌まり込み、かつ後壁13まで行き届いて、
一次コイル10と二次コイル20とを同心軸上で重畳さ
せることができるとともに、円筒壁12、中芯14の各
円板コア21の表面と略一致する位置まで近接し、更に
円板コア21の径を円筒コア11の径と一致させたの
で、円板コア21、円筒コア11の円筒壁12、後壁1
3及び中芯14とから環状の閉磁路が形成されるように
している。
In FIGS. 1 (b) and 2 (c), the secondary coil portion 2 is made of a ferromagnetic material, and the cylindrical core 11 is formed.
A disk core 21 having a diameter equal to the outer diameter and a predetermined thickness is provided, and a secondary coil 20 having a predetermined diameter and wound by the required number of air-core-like turns is erected at the center thereof. The secondary coil 20 has a coil diameter set between the diameter of the core 14 and the inner diameter of the cylindrical wall 12, specifically, the inner diameter of the primary coil 10 wound around the inner peripheral surface of the cylindrical wall 12. The dimension in the standing direction is the same as that of the core 14. By designing the shape of the secondary coil 20 as described above, when the primary coil portion 1 and the secondary coil portion 2 are combined,
As shown in FIG. 2A, the secondary coil 20 has a cylindrical core 1.
It fits inside 1 and reaches the rear wall 13,
The primary coil 10 and the secondary coil 20 can be superposed on the concentric axis, and the primary coil 10 and the secondary coil 20 are close to the surfaces of the respective disk cores 21 of the cylindrical wall 12 and the center core 14, and further the disk core 21. Since the diameter of the disk core 21 matches the diameter of the cylindrical core 11, the disk core 21, the cylindrical wall 12 of the cylindrical core 11, the rear wall 1
An annular closed magnetic circuit is formed from 3 and the core 14.

【0025】図2(b)(c)において、円筒コア1
1、円板コア21を覆う破線はそれぞれ電源部BA、負
荷部RLの筐体の形状を示している。これらの筐体は非
磁性の樹脂材等からなり、少なくとも、電力伝達部分で
は薄厚に形成され、円筒壁12、中芯14の各先端と円
板コア21の表面とのギャップ長を可及的に小さくして
いる。このようにギャップ長をより小さくすることで、
より完全な閉磁路に近付けることができる。
In FIGS. 2B and 2C, the cylindrical core 1
1, the broken lines covering the disk core 21 indicate the shapes of the casings of the power supply unit BA and the load unit RL, respectively. These casings are made of a non-magnetic resin material or the like, and are formed to be thin at least in the power transmission portion, and the gap length between each tip of the cylindrical wall 12 and the core 14 and the surface of the disc core 21 is minimized. It is small. By making the gap length smaller like this,
It is possible to approach a more complete closed magnetic circuit.

【0026】図3は、本発明に係る非接触電力伝達装置
の第2実施例を示す斜視図で、図(a)は周方向に1/
4だけ切欠いた状態の一次コイル部1a、図(b)は二
次コイル部2aを示している。この第2実施例では、第
1実施例における中芯14を二次コイル部2a側に設け
たものである。すなわち、二次コイル部2aの円板21
の表面中央には所要径を有する円柱状の中芯22が突設
され、この中芯22に所要ターン数だけ二次コイル20
が巻成されている。このような構成を採用しても、第1
実施例と同様、より完全な閉磁路を形成することが可能
である。また、二次コイル20を中芯22に巻装する構
成なので、二次コイル20に対する保持強度が増大する
という利点を有する。
FIG. 3 is a perspective view showing a second embodiment of the non-contact power transmission device according to the present invention. FIG.
The primary coil portion 1a is cut out by 4 and the secondary coil portion 2a is shown in FIG. In the second embodiment, the core 14 of the first embodiment is provided on the secondary coil portion 2a side. That is, the disc 21 of the secondary coil portion 2a
A cylindrical core 22 having a required diameter is projectingly provided in the center of the surface of the secondary coil 20 for a required number of turns.
Is formed. Even if such a configuration is adopted, the first
As with the embodiment, it is possible to form a more complete closed magnetic circuit. Further, since the secondary coil 20 is wound around the core 22, the holding strength for the secondary coil 20 is increased.

【0027】図4は、本発明に係る非接触電力伝達装置
の第3実施例を示す斜視図で、図(a)は周方向に1/
4だけ切欠いた状態の一次コイル部1b、図(b)は二
次コイル部2bを示している。図5は、図4の縦断面図
で、図(a)は一次コイル部1b、図(b)は二次コイ
ル部2bを示している。なお、二次コイル部2bの構成
は第1実施例と基本的に同一である。
FIG. 4 is a perspective view showing a third embodiment of the non-contact power transmission device according to the present invention. FIG.
The primary coil portion 1b is cut away by 4 and the secondary coil portion 2b is shown in FIG. 5A and 5B are vertical sectional views of FIG. 4, in which FIG. 5A shows the primary coil portion 1b and FIG. 5B shows the secondary coil portion 2b. The structure of the secondary coil portion 2b is basically the same as that of the first embodiment.

【0028】図4(a)、図5(a)に示すように、一
次コイル部1bは、基本的に第1実施例と同様な構成を
有し、更にかかる構成に加えて、中芯14の周囲に一次
側となる第3のコイル15を巻成したものである。この
第3のコイル15は一次コイル10と直列、あるいは並
列に接続されてなるものである。第3のコイル15を二
次コイル20の内周部分に、いわばサンドイッチ巻き状
に設けることで漏れ磁束を更に抑制し、磁気結合を良好
にすることが可能となる。また、第3のコイル15を一
次コイル10に対して並列に接続することで、大型化を
招くことなく電源部BAからの供給電力を大きく設定す
ることができるという利点もある。なお、二次コイル2
0は、その径が一次コイル10の内径と第3のコイル1
5の外径との間に設定されており、一次コイル部1bと
二次コイル部2bとが組み合わせ可能にされている。
As shown in FIGS. 4 (a) and 5 (a), the primary coil portion 1b basically has the same structure as that of the first embodiment, and in addition to this structure, the core 14 A third coil 15 on the primary side is wound around the. The third coil 15 is connected to the primary coil 10 in series or in parallel. By providing the third coil 15 on the inner peripheral portion of the secondary coil 20 in a so-called sandwich winding shape, it is possible to further suppress the leakage magnetic flux and improve the magnetic coupling. Further, by connecting the third coil 15 in parallel to the primary coil 10, there is also an advantage that the power supplied from the power supply unit BA can be set large without causing an increase in size. The secondary coil 2
0 is the inner diameter of the primary coil 10 and the third coil 1
5 is set between the outer diameter and the outer diameter of 5, and the primary coil portion 1b and the secondary coil portion 2b can be combined.

【0029】本発明においては、更に以下の態様を採用
することも可能である。 (1)第1〜3実施例において、一次コイル部と二次コ
イル部との構成を逆にするようにしてもよく、このよう
にしても閉磁路が形成可能である。 (2)第1実施例において、中芯14は一次コイル部、
二次コイル部にそれぞれ、例えば1/2寸法乃至は所要
寸法分ずつ分担して形成するようにしてもよい。 (3)円筒コア11及び円板コア21は円形状に限定さ
れるものではなく、両者の形状が一致していれば、多角
形等の種々の形状が採用可能である。この場合には、一
次コイル部と二次コイル部との装着を所定角度に位置決
めして行わすことが可能となる。 (4)中芯14、22は柱状であればよく、円柱に限定
されるものではなく、また筒形の柱状のものでもよい。
In the present invention, the following modes can also be adopted. (1) In the first to third embodiments, the configurations of the primary coil portion and the secondary coil portion may be reversed, and even in this case, the closed magnetic circuit can be formed. (2) In the first embodiment, the core 14 is the primary coil portion,
For example, the secondary coil portions may be formed so as to be shared by, for example, ½ size or required size. (3) The cylindrical core 11 and the disc core 21 are not limited to the circular shape, and various shapes such as a polygonal shape can be adopted as long as the shapes of the both are the same. In this case, the mounting of the primary coil portion and the secondary coil portion can be performed by positioning at a predetermined angle. (4) The cores 14 and 22 are not limited to cylinders as long as they are columnar, and may be cylindrical columnar ones.

【0030】[0030]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、一次コイルと二次コイルのうち、一方のコ
イルを一端が開口した筒状コアの内周壁に巻装して形成
し、他方のコイルを上記筒状コアの筒径より小径にして
板状コアに立設するとともに、上記筒状コアと板状コア
の少なくとも一方に上記他方のコイルの径より小径とな
る柱状の中芯を立設し、上記一次側部と二次側部とを上
記筒状コアの開口と上記板状コアの立設コイルとが対向
するように組み合わせた状態で、閉磁路が形成され且つ
両コイルが同心軸上に配置されてなる構成としたので、
非接触式でありながら漏れ磁束を極力押えて一次コイル
から二次コイルへ高効率での電力伝達が可能となる。
As described above, according to the first aspect of the invention, one of the primary coil and the secondary coil is wound around the inner peripheral wall of the cylindrical core having one end open. Then, the other coil is made smaller in diameter than the tubular diameter of the tubular core and is erected on the plate core, and at least one of the tubular core and the plate core has a columnar shape having a diameter smaller than that of the other coil. A core is erected, and a closed magnetic circuit is formed in a state where the primary side portion and the secondary side portion are combined so that the opening of the cylindrical core and the standing coil of the plate-shaped core face each other. Since both coils are arranged on the concentric axis,
Even though it is a non-contact type, it is possible to suppress leakage flux as much as possible and transmit power from the primary coil to the secondary coil with high efficiency.

【0031】また、請求項2記載の発明によれば、上記
中芯にコイルを巻装し、この巻装コイルを該中芯が設け
られた側のコイルと直列または並列に接続するように構
成したので、コイルの強度保持、漏れ磁束の抑制乃至一
次側部からの供給電力の増大が可能となる。
According to the second aspect of the present invention, a coil is wound around the core, and the wound coil is connected in series or in parallel with the coil on the side where the core is provided. Therefore, the strength of the coil can be maintained, the leakage magnetic flux can be suppressed, and the power supplied from the primary side can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非接触電力伝達装置の第1実施例
を示す斜視図で、図(a)は周方向に1/4だけ切欠い
た状態の一次コイル部、図(b)は二次コイル部を示
す。
FIG. 1 is a perspective view showing a first embodiment of a non-contact power transmission device according to the present invention, FIG. 1 (a) is a primary coil portion cut out by 1/4 in the circumferential direction, and FIG. The next coil part is shown.

【図2】図1の縦断面図で、図(a)は一次コイル部と
二次コイル部とを組み合わせた状態、すなわち負荷部を
電源部に装着した状態を示し、図(b)は一次コイル
部、図(c)は二次コイル部を示す。
FIG. 2 is a vertical cross-sectional view of FIG. 1, in which FIG. 2A shows a state in which a primary coil portion and a secondary coil portion are combined, that is, a state in which a load portion is attached to a power supply portion, and FIG. Coil portion, FIG. (C) shows a secondary coil portion.

【図3】本発明に係る非接触電力伝達装置の第2実施例
を示す斜視図で、図(a)は周方向に1/4だけ切欠い
た状態の一次コイル部、図(b)は二次コイル部を示
す。
FIG. 3 is a perspective view showing a second embodiment of the non-contact power transmission device according to the present invention, FIG. 3 (a) is a primary coil portion cut out by 1/4 in the circumferential direction, and FIG. The next coil part is shown.

【図4】本発明に係る非接触電力伝達装置の第3実施例
を示す斜視図で、図(a)は周方向に1/4だけ切欠い
た状態の一次コイル部、図(b)は二次コイル部を示
す。
FIG. 4 is a perspective view showing a third embodiment of the non-contact power transmission device according to the present invention, FIG. 4 (a) is a primary coil portion cut out by 1/4 in the circumferential direction, and FIG. The next coil part is shown.

【図5】図4の縦断面図で、図(a)は一次コイル部、
図(b)は二次コイル部を示す。
FIG. 5 is a vertical cross-sectional view of FIG. 4, in which FIG.
FIG. 6B shows the secondary coil section.

【図6】本発明に係る非接触電力伝達装置が適用される
電気機器の回路ブロック図である。
FIG. 6 is a circuit block diagram of an electric device to which the non-contact power transmission device according to the present invention is applied.

【図7】従来の非接触式の給電装置における電力伝達部
分の構造を示す縦断面図で、図(a)〜(d)はそれぞ
れのタイプの構成を示す。
FIG. 7 is a vertical cross-sectional view showing the structure of a power transmission portion in a conventional non-contact power supply device, and FIGS. 7 (a) to 7 (d) show respective types of configurations.

【図8】トランスの等価回路を示す回路図である。FIG. 8 is a circuit diagram showing an equivalent circuit of a transformer.

【符号の説明】[Explanation of symbols]

1,1a,1b 一次コイル部 10 一次コイル 11 円筒コア 12 円筒壁 13 後壁 14 中芯 15 第3のコイル(巻装コイル) 2,2a,2b 二次コイル部 20 二次コイル 21 円板コア 22 中芯 6 発振回路(脈流電流生成回路) 8 負荷 BA 電源部(一次側部) RL 負荷部(二次側部) 1, 1a, 1b Primary coil part 10 Primary coil 11 Cylindrical core 12 Cylindrical wall 13 Rear wall 14 Middle core 15 Third coil (winding coil) 2, 2a, 2b Secondary coil part 20 Secondary coil 21 Disc core 22 Core 6 Oscillation circuit (pulsating current generation circuit) 8 Load BA Power supply part (primary side part) RL Load part (secondary side part)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 脈流電流生成回路に接続された一次コイ
ルを有する一次側部と、負荷に接続された二次コイルを
有する二次側部とがそれぞれ分離可能であって、非接触
で一次側部から二次側部へ電力供給を行う電力伝達装置
において、上記一次コイルと二次コイルのうち、一方の
コイルを一端が開口した筒状コアの内周壁に巻装して形
成し、他方のコイルを上記筒状コアの筒径より小径にし
て板状コアに立設するとともに、上記筒状コアと板状コ
アの少なくとも一方に上記他方のコイルの径より小径と
なる柱状の中芯を立設し、上記一次側部と二次側部とを
上記筒状コアの開口と上記板状コアの立設コイルとが対
向するように組み合わせた状態で、閉磁路が形成され且
つ両コイルが同心軸上に配置されてなることを特徴とす
る非接触電力伝達装置。
1. A primary side part having a primary coil connected to a pulsating current generation circuit and a secondary side part having a secondary coil connected to a load are separable from each other, and the primary side is non-contacting. In a power transmission device that supplies electric power from a side portion to a secondary side portion, one of the primary coil and the secondary coil is formed by winding one coil around an inner peripheral wall of a cylindrical core having one end open, and the other. The coil is smaller than the tubular diameter of the tubular core and is erected on the plate core, and at least one of the tubular core and the plate core has a columnar core having a diameter smaller than the diameter of the other coil. Standing up, and in a state where the primary side portion and the secondary side portion are combined so that the opening of the cylindrical core and the standing coil of the plate-shaped core face each other, a closed magnetic circuit is formed and both coils are formed. A contactless power transmission device characterized by being arranged on concentric axes Place
【請求項2】 上記中芯にコイルが巻装され、この巻装
コイルは、該中芯が設けられた側のコイルと直列または
並列に接続されていることを特徴とする請求項1記載の
非接触電力伝達装置。
2. The coil is wound around the core, and the wound coil is connected in series or in parallel with the coil on the side where the core is provided. Non-contact power transmission device.
JP11125694A 1994-05-25 1994-05-25 Non-contact power transmission device Expired - Lifetime JP3330222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11125694A JP3330222B2 (en) 1994-05-25 1994-05-25 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11125694A JP3330222B2 (en) 1994-05-25 1994-05-25 Non-contact power transmission device

Publications (2)

Publication Number Publication Date
JPH07322534A true JPH07322534A (en) 1995-12-08
JP3330222B2 JP3330222B2 (en) 2002-09-30

Family

ID=14556584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11125694A Expired - Lifetime JP3330222B2 (en) 1994-05-25 1994-05-25 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP3330222B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1962298A2 (en) 2007-02-20 2008-08-27 Seiko Epson Corporation Coil unit and electronic instrument
CN101795023A (en) * 2010-03-19 2010-08-04 清华大学 Induction charging device of electric automobile
US7917086B2 (en) 2007-02-16 2011-03-29 Seiko Epson Corporation Charger, electronic instrument, and charging system
WO2014073395A1 (en) * 2012-11-09 2014-05-15 株式会社村田製作所 Electrical component and antenna
CN109155536A (en) * 2016-05-16 2019-01-04 三菱重工业株式会社 Wireless power supply, remote sensing instrument measurement system, rotating machinery, the wireless power supply system and turbine system powered to rotary body
WO2019131361A1 (en) * 2017-12-28 2019-07-04 株式会社豊田中央研究所 Non-contact power transmission device, battery pack and power grid system in which said non-contact power transmission device is used, and power transmission method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7917086B2 (en) 2007-02-16 2011-03-29 Seiko Epson Corporation Charger, electronic instrument, and charging system
EP1962298A2 (en) 2007-02-20 2008-08-27 Seiko Epson Corporation Coil unit and electronic instrument
US8022801B2 (en) 2007-02-20 2011-09-20 Seiko Epson Corporation Coil unit and electronic instrument
CN101795023A (en) * 2010-03-19 2010-08-04 清华大学 Induction charging device of electric automobile
WO2014073395A1 (en) * 2012-11-09 2014-05-15 株式会社村田製作所 Electrical component and antenna
CN109155536A (en) * 2016-05-16 2019-01-04 三菱重工业株式会社 Wireless power supply, remote sensing instrument measurement system, rotating machinery, the wireless power supply system and turbine system powered to rotary body
WO2019131361A1 (en) * 2017-12-28 2019-07-04 株式会社豊田中央研究所 Non-contact power transmission device, battery pack and power grid system in which said non-contact power transmission device is used, and power transmission method
JP2019122091A (en) * 2017-12-28 2019-07-22 株式会社豊田中央研究所 Non-contact power transmission device, battery pack using the same, power grid system and power transmission method

Also Published As

Publication number Publication date
JP3330222B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
JP4852970B2 (en) Power supply system
US5923544A (en) Noncontact power transmitting apparatus
JP4135299B2 (en) Non-contact power transmission device
JP3247328B2 (en) Non-contact power transmission device
JP3643581B2 (en) Multi-output power supply transformer
JP2004519853A (en) Electromagnetic coupling system with capacitive parallel compensation of mutual self-inductance between primary and secondary windings
US6040680A (en) Rechargeable battery pack and charging stand for charging the rechargeable battery pack by electromagnetic induction
JPH05258962A (en) Separable inductive coupler
DE69827733D1 (en) Battery charger in a mobile electrical unit
JPH1195922A (en) Mouse pad, cordless mouse and combination thereof
JPH04317527A (en) Noncontact charger for rechargeable electric appliance
JPH0879976A (en) Non-contact type charger
WO2002037641A1 (en) Noncontact charger for a portable device
JP3182290B2 (en) Charging stand
JP2673876B2 (en) Driving circuit for electromagnetic induction coil and charging device using the driving circuit
JPH1198707A (en) Non-contact charging device
JPH11195545A (en) Electromagnetic-inducing charging mechanism without making, secondary coil used for this, and core of the secondary coil
JPH07322534A (en) Noncontact power transmission
JP2002110437A (en) Power unit
WO2013011907A1 (en) Secondary-side power receiving apparatus, and charging stand and secondary-side power receiving apparatus
JPH07106170A (en) Transformer for noncontact-type charger
WO2008080405A1 (en) A headset with a rechargeable battery, a base unit adapted to charge a rechargeable battery and a communications unit
JPH0646531A (en) Charger
JPH03284135A (en) Power supply device
JP2006059979A (en) Noncontact power transmission device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

EXPY Cancellation because of completion of term