WO2014114862A2 - Absorbent solution based on a tertiary or hindered amine and on a particular activator and process for removing acidic compounds from a gas effluent - Google Patents

Absorbent solution based on a tertiary or hindered amine and on a particular activator and process for removing acidic compounds from a gas effluent Download PDF

Info

Publication number
WO2014114862A2
WO2014114862A2 PCT/FR2014/050083 FR2014050083W WO2014114862A2 WO 2014114862 A2 WO2014114862 A2 WO 2014114862A2 FR 2014050083 W FR2014050083 W FR 2014050083W WO 2014114862 A2 WO2014114862 A2 WO 2014114862A2
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent solution
acidic compounds
weight
absorbent
activator
Prior art date
Application number
PCT/FR2014/050083
Other languages
French (fr)
Other versions
WO2014114862A3 (en
Inventor
Thierry Huard
Laurent Renaudot
Bruno Delfort
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2014114862A2 publication Critical patent/WO2014114862A2/en
Publication of WO2014114862A3 publication Critical patent/WO2014114862A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20426Secondary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20431Tertiary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20442Cyclic amines containing a piperidine-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/60Additives
    • B01D2252/602Activators, promoting agents, catalytic agents or enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/541Absorption of impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to the removal of acidic compounds in a gaseous effluent.
  • the present invention relates in particular to the treatment of acid gases (H 2 S, CO 2 , COS, CS 2 , mercaptans, etc.) by means of an aqueous solution of tertiary amine or sterically hindered, formulated with a secondary amine of the family of cyclohexylamines such as N-methylcyclohexylamine, N-isopropylcyclohexylamine, N-butylcyclohexylamine, dicyclohexylamine, or in admixture with a secondary amine derived from piperidine, such as 4-methylpiperidine or 2-methyl-5-ethylpiperidine or perhydroisoquinoline.
  • acid gases H 2 S, CO 2 , COS, CS 2 , mercaptans, etc.
  • the invention is advantageously applicable to the treatment of natural gas and gas of industrial origin.
  • gaseous effluents to be treated is diverse, and one can cite without limitation the synthesis gases, the combustion fumes, the refinery gases, the gases obtained in the tail of the Claus process, the fermentation gases of biomass , cement gases and blast furnace gases.
  • All of these gases contain acidic compounds such as carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S), carbon oxysulfide (COS), carbon disulfide (CS 2 ) and mercaptans (RSH). ), mainly methyl mercaptan (CH 3 SH), ethyl mercaptan (CH 3 CH 2 SH) and propylmercaptans (CH 3 CH 2 CH 2 SH).
  • CO 2 is the acid compound that is to be removed.
  • carbon dioxide is one of the greenhouse gases largely produced by different human activities and has a direct impact on air pollution.
  • the first step which is deacidification, aims to eliminate acid compounds such as carbon dioxide (CO 2 ), but also hydrogen sulfide (H 2 S), carbon oxysulfide (COS), carbon disulfide (CS 2 ) and mercaptans (SH), mainly methyl mercaptan (CH 3 SH), ethyl mercaptan (CH 3 CH 2 SH) and propyl mercaptans (CH 3 CH 2 CH 2 SH).
  • acid compounds such as carbon dioxide (CO 2 ), but also hydrogen sulfide (H 2 S), carbon oxysulfide (COS), carbon disulfide (CS 2 ) and mercaptans (SH), mainly methyl mercaptan (CH 3 SH), ethyl mercaptan (CH 3 CH 2 SH) and propyl mercaptans (CH 3 CH 2 CH 2 SH).
  • the generally accepted specifications for the deacidified gas are 2% of C0 2 or 50 ppm of C0 2 to subsequently liquefy the natural gas; 4 ppm H 2 S, and 10 to 50 ppm volume of total sulfur.
  • the dehydration step then controls the water content of the deacidified gas against transport specifications.
  • the degassing stage of natural gas ensures the dew point of hydrocarbons in natural gas, again depending on transport specifications.
  • Deacidification is therefore often carried out first, in particular in order to eliminate toxic acid gases such as H 2 S in the first stage of the process chain and to avoid the pollution of the different unit operations by these acidic compounds. including the dehydration section and the heavier hydrocarbon condensation and separation section.
  • Deacidification of gaseous effluents is usually carried out by washing with an absorbent solution.
  • the absorbent solution makes it possible to absorb the acidic compounds present in the gaseous effluent.
  • acidic effluents comprising acidic compounds such as, for example, H 2 S, mercaptans, CO 2 , COS, SO 2 , CS 2
  • separation agents comprising amine functions is interesting, because of their performance and their ease of implementation in aqueous solution.
  • An essential aspect of industrial gas treatment operations or industrial fumes is the absorption step.
  • the absorbed C0 2 reacts with the amine present in solution according to a reversible exothermic reaction, well known to those skilled in the art and leading to the formation of hydrogenocarbonates, carbonates and / or carbamates, allowing CO 2 removal in the gas to be treated.
  • the absorbed H 2 S reacts with the amine present in solution according to a reversible exothermic reaction, well known to those skilled in the art and leading to the formation of hydrogen sulfide.
  • Another essential aspect of industrial gas treatment operations or industrial fumes is the step of regeneration of the separating agent.
  • regeneration by expansion, and / or distillation and / or entrainment by a vaporized gas called "stripping gas" is generally envisaged.
  • Aqueous solutions of tertiary amines are generally preferred by those skilled in the art for the removal of acidic compounds present in a gas, as they generally have a large acidic gas capture capacity, and high stability.
  • tertiary amines or sterically hindered amines have a kinetics of C0 2 and COS capture slower than unconfined primary or secondary amines.
  • Sartori et al, Sep. and Purification Methods, 16 (2), 171-200 have shown the benefits of various hindered amines, both in terms of harvesting capacity C0 2 for moderately hindered amines or lowering vis-reactivity of C0 2 for severely congested amines.
  • Severely clogged amines, such as tertiary amines have an advantage when the CO 2 and COS concentrations are below the desired specifications because their low CO 2 reactivity is used to achieve selective removal of the H 2 S.
  • WO 89/11327 proposes mixing the tertiary amines with a primary amine to activate the absorption of C0 2 .
  • This primary or secondary amine makes it possible to boost the C0 2 capture kinetics in the top of the absorption column, where the partial pressure of C0 2 and or of COS is the lowest (references: Aroonwilas, A.; Veawab AT. ; Characterization and Comparison of the C0 2 Absorption Performance in Single and Blended Alkanolamines in a Packed Column; Ind. Eng. Chem. Res. 43, 2228-2237 & van Loo, S.; van Elk, EP; Versteeg, GF; The removal of carbon dioxide with activated solutions of methyl-diethanol-amine; Journal of Petroleum Science and Engineering 55 (2007) 135-145).
  • the addition of a few% by weight of activator considerably reduces the size of the absorption columns, while maintaining the thermodynamic and physicochemical properties of the tertiary amine or congested amine solution.
  • the absorbent solutions composed of a tertiary amine and a few% by weight of activator are commonly used.
  • US Pat. No. 6,852,144 describes a method for removing acidic compounds from hydrocarbons.
  • the method uses a water-methyldiethanolamine or water-triethanolamine absorbent solution containing a proportion of a compound belonging to the following group: piperazine and / or methylpiperazine and / or morpholine.
  • JP08257353 describes a method for removing CO 2 in the flue gases.
  • the method uses a water-bis (2-dimethylaminoethyl) ether absorbent solution containing, for example, 2-methylaminoethanol or piperazine.
  • the stability of the activators is the stability of the activators.
  • the absorbing solution, and in particular the activator is degraded either by thermal degradation or by secondary reaction with the acid gases to be captured, but also with other compounds contained in the gaseous effluent, such as oxygen, SOx and NOx, contained in industrial fumes.
  • amine bonds in a post-combustion CO 2 capture process represent 1.4 kg of amine per tonne of CO 2 captured, significantly increasing the operating costs of a capture unit (reference: Chapel, DG, Mariz, CL, Recovery of C0 2 from Flue Gases: Commercial Trends, presented at The Canadian Society of Chemical Engineers annual meeting, October 4-6, 1999, Saskatoon, Saskatchewan, Canada).
  • an activator compound which added to several% by weight greatly increases the kinetics of uptake of the C0 2 and COS, thereby removing acidic compounds below specifications at lower cost in any type of effluent.
  • an activator compound that has high stability.
  • the object of the invention relates to an absorbent solution for absorbing acidic compounds contained in a gaseous effluent, comprising an activator that combines good chemical stability with an excellent ability to accelerate the absorption of C0 2 and COS within a formulation containing tertiary amines and / or sterically hindered amines.
  • Another subject of the invention relates to a process for the absorption of the acidic compounds contained in a gaseous effluent, in which the absorbing solution according to the invention is used.
  • the invention relates to an absorbent solution for removing acidic compounds contained in a gaseous effluent, the solution comprising:
  • the activator may be chosen from the following substituted piperidines:
  • the solution may comprise an amount of less than 50% by weight of said activator, preferably less than 30% by weight of said activator, very preferably less than 15% by weight of said activator.
  • the absorbent solution may comprise between 10% and 90% by weight of said absorbent compound, preferably between 20% and 60% by weight, very preferably between 30% and 50% by weight.
  • the absorbent solution may comprise between 10% and 90% by weight of water.
  • the absorbent compound may be chosen from the following amines:
  • the invention also relates to a process for removing acidic compounds contained in a gaseous effluent, in which a step of absorption of the acidic compounds is carried out by contacting the effluent with an absorbent solution according to the invention.
  • the regeneration step comprising at least one of the following operations:
  • the absorption step of the acidic compounds is carried out at a pressure of between 1 bar and 120 bar, and at a temperature of between 30 ° C. and 90 ° C.
  • the regeneration step is carried out at a pressure of between 1 bar and 10 bar and a temperature of between 100 ° C. and 180 ° C.
  • the gaseous effluent comprises one of the following elements: natural gas, synthesis gases, combustion fumes, gases Refinery gas, tail gas Claus process, biomass fermentation gas, cement gas, incinerator fumes.
  • the acidic compounds may comprise at least one of the compounds: CO 2 and COS.
  • the present invention is of interest for reducing absorption column sizes when seeking to remove CO 2 and / or COS contained in a gas.
  • the present invention proposes to eliminate the acidic compounds of a gaseous effluent by using aqueous solutions of tertiary amines or sterically hindered amines activated by an amine chosen from the family of cyclohexylamines or substituted piperidines such as N methylcyclohexylamine, perhydroisoquinoline, N-isopropylcyclohexylamine, N-n-butylcyclohexylamine, dicyclohexylamine, 4-methylpiperidine or 2-methyl-5-ethylpiperidine.
  • the absorbent solutions according to the invention can be used to deacidify the following gaseous effluents: natural gas, synthesis gases, combustion fumes, refinery gases, gases obtained at the bottom of the Claus process, the gases of fermentation of biomass, cement gas, incinerator fumes.
  • gaseous effluents contain one or more of the following acidic compounds: C0 2 , H 2 S, mercaptans, COS, CS 2 .
  • the combustion fumes are produced in particular by the combustion of hydrocarbons, biogas, coal in a boiler or for a combustion gas turbine, for example for the purpose of producing electricity.
  • These fumes have a temperature of between 20 and 60 ° C., a pressure of between 1 and 5 bar and can comprise between 50 and 80% of nitrogen, between 5 and 40% of carbon dioxide, between 1 and 20% of oxygen, and some impurities as SOx and NOx, if they have not been removed downstream of the deacidification process.
  • Natural gas consists mainly of gaseous hydrocarbons, but may contain several of the following acidic compounds: C0 2 , H 2 S, mercaptans, COS, CS 2 .
  • the content of these acidic compounds is very variable and can be up to 40% for C0 2 and H 2 S, up to 1000 ppm for COS.
  • the temperature of the natural gas can be between 20 ° C and 100 ° C.
  • the pressure of the natural gas to be treated may be between 10 and 120 bar.
  • the absorbent solution advantageously comprises from 10 to 90% by weight of tertiary amine or a sterically hindered amine, preferably from 20 to 60% by weight, and very preferably from 30 to 50% by weight of tertiary amine or from sterically hindered amine.
  • the tertiary amine or sterically hindered amine is selected from the group consisting of:
  • the absorbent solution comprises a non-zero and less than 50% by weight, preferably less than 30% by weight, very preferably less than 15% by weight of an activator chosen from the family of cyclohexylamines or piperidines such as N methylcyclohexylamine, perhydroisoquinoline, N-isopropylcyclohexylamine, N-n-butylcyclohexylamine, dicyclohexylamine, 4-methylpiperidine or 2-methyl-5-ethylpiperidine.
  • an activator chosen from the family of cyclohexylamines or piperidines such as N methylcyclohexylamine, perhydroisoquinoline, N-isopropylcyclohexylamine, N-n-butylcyclohexylamine, dicyclohexylamine, 4-methylpiperidine or 2-methyl-5-ethylpiperidine.
  • the absorbent solution may contain between 10% and 90% by weight of water.
  • This type of formulation is particularly interesting in the case of capture of C0 2 in industrial fumes, or treatment of natural gas containing COS above the desired specification. Indeed, for this type of applications, it is sought to increase the sensing kinetics of the COS, in order to reduce the height of the absorption columns.
  • the absorbent solution may comprise other organic compounds.
  • the absorbent solution according to the invention may contain organic compounds which are not reactive with respect to acidic compounds (commonly called "physical solvents"), which make it possible to increase the solubility of at least one or more acidic compounds of the gaseous effluent.
  • the absorbent solution may comprise between 5% and 50% by weight of physical solvent such as alcohols, glycol ethers, lactams, N-alkylated pyrrolidones, N-alkylated piperidones, cyclotetramethylenesulphone, N-alkylformamides. , N-alkylacetamides, ethers-ketones or alkyl phosphates and their derivatives.
  • it may be methanol, tetraethylene glycol-dimethyl ether, sulfolane or N-formyl morpholine.
  • the implementation of an absorbent solution according to the invention for deacidifying a gaseous effluent is carried out schematically by performing an absorption step followed by a regeneration step.
  • the absorption step consists in bringing the gaseous effluent ( ⁇ 1) into contact with the absorbing solution ( ⁇ 4). During contact, the organic compounds provided with an amine function of the absorbent solution react with the acidic compounds contained in the effluent so as to obtain a gaseous effluent depleted in acidic compounds ( ⁇ 2) and an acid-enriched absorbent solution. ( ⁇ 3).
  • the regeneration step consists in particular in heating and, optionally, in expanding, the absorbent solution enriched in acidic compounds in order to release the acidic compounds in gaseous form ( ⁇ 7).
  • the regenerated absorbent solution that is to say depleted in acid compounds ( ⁇ 6) is recycled to the absorption step.
  • the absorption step of the acidic compounds can be carried out at a pressure of between 1 bar and 120 bar, preferably between 20 bar and 100 bar for the treatment of a natural gas, preferably between 1 and 3 bar for the treatment of industrial fumes, and at a temperature between 20 and 100 ° C, preferably between 30 ° C and 90 ° C.
  • the regeneration step of the process according to the invention can be carried out by thermal regeneration, optionally supplemented by one or more expansion steps.
  • the regeneration can be carried out at a pressure of between 1 bar and 5 bar, or even up to 10 bar and at a temperature of between 100 ° C. and 180 ° C., preferably between 130 ° C. and 170 ° C.
  • the rate of absorption of COS can be compared between solutions based on MethylDiEthanolAmine activated by N-methylcyclohexylamine, perhydroisoquinoline or 4-methylpiperidine.
  • the absorption flux of COS is measured by the aqueous solution in a closed reactor, Lewis cell type. 200 g of solution are introduced into the closed reactor, regulated at a temperature of 40 ° C. Four successive injections of carbon oxysulfide of 100 to 200 mbar are carried out in the vapor phase of the reactor having a volume of 200 cm 3 . The gas phase and the liquid phase are stirred at 100 revolutions / minute and fully characterized from the hydrodynamic point of view. For each injection, the absorption rate of the carbon oxysulfide is measured by variation of pressure in the gas phase. An overall transfer coefficient Kg is thus determined by an average of the results obtained on the four injections.
  • Table 1 shows the speed of absorption of the COS presented by the absorbent liquids according to the invention improved between 7% and 40% for the molecules derived from the family of benzylamines or piperidines compared to the MethylDiEthanolAmine solution.
  • -Piperazine known to those skilled in the art.

Abstract

- An absorbent solution for removing acidic compounds contained in a gas effluent, comprising: - water; - at least one absorbent compound chosen from tertiary amines and sterically hindered amines; - at least one activator chosen from the substituted piperidine or cyclohexylamine family. - A process for removing acidic compounds from a gas effluent using the absorbent solution.

Description

SOLUTION ABSORBANTE A BASE D'UNE AMINE TERTIAIRE OU ENCOMBREE ET D'UN ACTIVATEUR PARTICULIER ET PROCÉDÉ D'ELIMINATION DE COMPOSES ACIDES D'UN EFFLUENT GAZEUX  ABSORBENT SOLUTION BASED ON TERTIARY OR CONTAINER AMINE AND A PARTICULAR ACTIVATOR AND METHOD FOR REMOVING ACIDIC COMPOUNDS FROM A GASEOUS EFFLUENT
La présente invention concerne l'élimination de composés acides dans un effluent gazeux. The present invention relates to the removal of acidic compounds in a gaseous effluent.
La présente invention concerne notamment le traitement de gaz acides (H2S, C02, COS, CS2, mercaptans, ...) au moyen d'une solution aqueuse d'amine tertiaire ou stériquement encombrée, formulée avec une aminé secondaire de la famille des cyclohexylamines telles que la N methylcyclohexylamine, la N- isopropylcyclohexylamine, la N-butylcyclohexylamine , la dicyclohexylamine, ou en mélange avec une aminé secondaire dérivé de la pipéridine telles que la 4 Methylpipéridine ou la 2-méthyl-5-ethylpipéridine ou la perhydroisoquinoline. The present invention relates in particular to the treatment of acid gases (H 2 S, CO 2 , COS, CS 2 , mercaptans, etc.) by means of an aqueous solution of tertiary amine or sterically hindered, formulated with a secondary amine of the family of cyclohexylamines such as N-methylcyclohexylamine, N-isopropylcyclohexylamine, N-butylcyclohexylamine, dicyclohexylamine, or in admixture with a secondary amine derived from piperidine, such as 4-methylpiperidine or 2-methyl-5-ethylpiperidine or perhydroisoquinoline.
L'invention s'applique avantageusement au traitement du gaz naturel et de gaz d'origine industrielle.  The invention is advantageously applicable to the treatment of natural gas and gas of industrial origin.
Traitement des gaz d'origine industrielle Treatment of industrial gases
La nature des effluents gazeux à traiter est diverse, et l'on peut citer de façon non limitative les gaz de synthèse, les fumées de combustion, les gaz de raffinerie, les gaz obtenus en queue du procédé Claus, les gaz de fermentation de biomasse, les gaz de cimenterie et les gaz de hauts-fourneaux.  The nature of the gaseous effluents to be treated is diverse, and one can cite without limitation the synthesis gases, the combustion fumes, the refinery gases, the gases obtained in the tail of the Claus process, the fermentation gases of biomass , cement gases and blast furnace gases.
Tous ces gaz contiennent des composés acides tels que le dioxyde de carbone (C02), l'hydrogène sulfuré (H2S), l'oxysulfure de carbone (COS), le disulfure de carbone (CS2) et les mercaptans (RSH), principalement le méthylmercaptan (CH3SH), l'éthylmercaptan (CH3CH2SH) et les propylmercaptans (CH3CH2CH2SH). All of these gases contain acidic compounds such as carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S), carbon oxysulfide (COS), carbon disulfide (CS 2 ) and mercaptans (RSH). ), mainly methyl mercaptan (CH 3 SH), ethyl mercaptan (CH 3 CH 2 SH) and propylmercaptans (CH 3 CH 2 CH 2 SH).
Par exemple, dans le cas des fumées de combustion, le C02 est le composé acide que l'on cherche à éliminer. En effet, le dioxyde de carbone est un des gaz à effet de serre largement produits par différentes activités de l'homme et a un impact direct sur la pollution atmosphérique. Afin de diminuer les quantités de dioxyde de carbone émises dans l'atmosphère, il est possible de capter le C02 contenu dans un effluent gazeux. For example, in the case of combustion fumes, CO 2 is the acid compound that is to be removed. Indeed, carbon dioxide is one of the greenhouse gases largely produced by different human activities and has a direct impact on air pollution. In order to reduce the quantities of carbon dioxide emitted into the atmosphere, it is possible to capture the C0 2 contained in a gaseous effluent.
Traitement de gaz naturel Dans le cas du gaz naturel, trois principales opérations de traitement sont considérées : la désacidification, la déshydratation et le dégazolinage. La première étape, qui est la désacidification, a pour objectif l'élimination des composés acides tels que le dioxyde de carbone (C02), mais aussi l'hydrogène sulfuré (H2S), l'oxysulfure de carbone (COS), le disulfure de carbone (CS2) et les mercaptans ( SH), principalement le méthylmercaptan (CH3SH), l'éthylmercaptan (CH3CH2SH) et les propylmercaptans (CH3CH2CH2SH). Les spécifications généralement admises sur le gaz désacidifié sont 2% de C02, voire 50 ppm de C02 pour réaliser ensuite une liquéfaction du gaz naturel ; 4 ppm d'H2S, et 10 à 50 ppm volume de soufre total. L'étape de déshydratation permet ensuite de contrôler la teneur en eau du gaz désacidifié par rapport à des spécifications de transport. Enfin, l'étape de dégazolinage du gaz naturel permet de garantir le point de rosée des hydrocarbures dans le gaz naturel, là encore en fonction de spécifications de transport. Natural gas treatment In the case of natural gas, three main treatment operations are considered: deacidification, dehydration and degassing. The first step, which is deacidification, aims to eliminate acid compounds such as carbon dioxide (CO 2 ), but also hydrogen sulfide (H 2 S), carbon oxysulfide (COS), carbon disulfide (CS 2 ) and mercaptans (SH), mainly methyl mercaptan (CH 3 SH), ethyl mercaptan (CH 3 CH 2 SH) and propyl mercaptans (CH 3 CH 2 CH 2 SH). The generally accepted specifications for the deacidified gas are 2% of C0 2 or 50 ppm of C0 2 to subsequently liquefy the natural gas; 4 ppm H 2 S, and 10 to 50 ppm volume of total sulfur. The dehydration step then controls the water content of the deacidified gas against transport specifications. Finally, the degassing stage of natural gas ensures the dew point of hydrocarbons in natural gas, again depending on transport specifications.
La désacidification est donc souvent réalisée en premier lieu, notamment afin d'éliminer les gaz acides toxiques tel que l'H2S dans la première étape de la chaîne de procédés et afin d'éviter la pollution des différentes opérations unitaires par ces composés acides, notamment la section de déshydratation et la section de condensation et de séparation des hydrocarbures les plus lourds. Deacidification is therefore often carried out first, in particular in order to eliminate toxic acid gases such as H 2 S in the first stage of the process chain and to avoid the pollution of the different unit operations by these acidic compounds. including the dehydration section and the heavier hydrocarbon condensation and separation section.
Élimination des composés acides par absorption Elimination of acidic compounds by absorption
La désacidification des effluents gazeux, tels que par exemple le gaz naturel et les fumées de combustion, ainsi que les gaz de synthèse, les gaz de raffinerie, les gaz obtenus en queue du procédé Claus, les gaz de fermentation de biomasse, les gaz de cimenterie et les gaz de hauts-fourneaux, est généralement réalisée par lavage par une solution absorbante. La solution absorbante permet d'absorber les composés acides présents dans l'effluent gazeux. D'une manière générale, pour le traitement d'effluents acides comprenant des composés acides comme par exemple H2S, mercaptans, C02, COS, S02, CS2, l'utilisation d'agents de séparation comportant des fonctions aminés est intéressante, en raison de leurs performances et de leur facilité de mise en oeuvre en solution aqueuse. Deacidification of gaseous effluents, such as for example natural gas and combustion fumes, as well as synthesis gases, refinery gases, bottoms gases from the Claus process, biomass fermentation gases, process gases cement and blast furnace gases, is usually carried out by washing with an absorbent solution. The absorbent solution makes it possible to absorb the acidic compounds present in the gaseous effluent. In general, for the treatment of acidic effluents comprising acidic compounds such as, for example, H 2 S, mercaptans, CO 2 , COS, SO 2 , CS 2 , the use of separation agents comprising amine functions is interesting, because of their performance and their ease of implementation in aqueous solution.
Un aspect primordial des opérations de traitement de gaz ou fumées industrielles par solvant est l'étape d'absorption. Par exemple, dans le cas du captage du C02, le C02 absorbé réagit avec l'amine présente en solution selon une réaction exothermique réversible, bien connue de l'homme du métier et conduisant à la formation d'hydrogénocarbonates, de carbonates et/ou de carbamates, permettant une élimination du C02 dans le gaz à traiter. De même, pour l'élimination de l'H2S dans le gaz à traiter, l'H2S absorbé réagit avec l'amine présente en solution selon une réaction exothermique réversible, bien connue de l'homme du métier et conduisant à la formation d'hydrogénosulfure. An essential aspect of industrial gas treatment operations or industrial fumes is the absorption step. For example, in the case of C0 2 capture, the absorbed C0 2 reacts with the amine present in solution according to a reversible exothermic reaction, well known to those skilled in the art and leading to the formation of hydrogenocarbonates, carbonates and / or carbamates, allowing CO 2 removal in the gas to be treated. Similarly, for the removal of H 2 S in the gas to be treated, the absorbed H 2 S reacts with the amine present in solution according to a reversible exothermic reaction, well known to those skilled in the art and leading to the formation of hydrogen sulfide.
Un autre aspect primordial des opérations de traitement de gaz ou fumées industrielles par solvant est l'étape de régénération de l'agent de séparation. En fonction du type d'absorption (physique et/ou chimique), on envisage généralement une régénération par détente, et/ou par distillation et/ou par entraînement par un gaz vaporisé appelé "gaz de strippage".  Another essential aspect of industrial gas treatment operations or industrial fumes is the step of regeneration of the separating agent. Depending on the type of absorption (physical and / or chemical), regeneration by expansion, and / or distillation and / or entrainment by a vaporized gas called "stripping gas" is generally envisaged.
Les solutions aqueuses d'amines tertiaires sont généralement préférées par l'homme du métier pour l'élimination des composés acides présents dans un gaz, car elles présentent généralement une capacité de captage des gaz acides importante, et une stabilité importante. Aqueous solutions of tertiary amines are generally preferred by those skilled in the art for the removal of acidic compounds present in a gas, as they generally have a large acidic gas capture capacity, and high stability.
Il est bien connu de l'homme du métier que les aminés tertiaires ou stériquement encombrées ont une cinétique de captage du C02 et du COS plus lente que des aminés primaires ou secondaires non encombrées. Dans une revue de 1987, Sartori et al, Sep. and Purification Methods, 16 (2), 171-200 ont démontré les avantages de différentes aminés encombrées, soit en terme de capacité de capture du C02 pour des aminés modérément encombrées, soit en abaissant la réactivité vis-à-vis du C02 pour des aminés sévèrement encombrées. Les aminés sévèrement encombrées, comme les aminés tertiaires présentent un avantage lorsque les concentrations de C02 et de COS sont en dessous des spécifications désirées, car leur faible réactivité vis-à-vis du C02 est utilisée pour réaliser une élimination sélective de l'H2S . Néanmoins, lorsque le C02 et le COS sont au dessus des spécifications désirées, l'utilisation d'une solution aqueuse d'amine tertiaire ou encombrée peut se révéler non satisfaisante, car nécessiterait des tailles de colonne d'absorption gigantesques pour atteindre les spécifications. Pour remédier à ce problème, le document WO 89/11327 propose de mélanger les aminés tertiaires avec une aminé primaire pour activer l'absorption du C02. It is well known to those skilled in the art that tertiary amines or sterically hindered amines have a kinetics of C0 2 and COS capture slower than unconfined primary or secondary amines. In a 1987 review, Sartori et al, Sep. and Purification Methods, 16 (2), 171-200 have shown the benefits of various hindered amines, both in terms of harvesting capacity C0 2 for moderately hindered amines or lowering vis-reactivity of C0 2 for severely congested amines. Severely clogged amines, such as tertiary amines, have an advantage when the CO 2 and COS concentrations are below the desired specifications because their low CO 2 reactivity is used to achieve selective removal of the H 2 S. Nevertheless, when the C0 2 and COS are above the desired specifications, the use of a tertiary or confined aqueous amine solution may be unsatisfactory because it would require gigantic absorption column sizes to meet the specifications. . To remedy this problem, WO 89/11327 proposes mixing the tertiary amines with a primary amine to activate the absorption of C0 2 .
Cette aminé primaire ou secondaire permet de doper la cinétique de captage du C02 dans le haut de la colonne d'absorption, là où la pression partielle de C02 et ou de COS est la plus faible (références : Aroonwilas, A. ; Veawab A. ; Characterization and Comparison of the C02 Absorption Performance into Single and Blended Alkanolamines in a Packed Column ; Ind . Eng . Chem. Res. 43 2228- 2237 & van Loo, S. ; van Elk, E. P. ; Versteeg, G. F. ; The removal of carbon dioxide with activated solutions of methyl-diethanol-amine ; Journal of Petroleum Science and Engineering 55 (2007) 135-145). Ainsi, l'ajout de quelques % poids d'activateur permet de réduire considérablement la taille des colonnes d'absorption, tout en conservant les propriétés thermodynamique et physicochimique de la solution absorbante d'amine tertiaire ou encombrée. This primary or secondary amine makes it possible to boost the C0 2 capture kinetics in the top of the absorption column, where the partial pressure of C0 2 and or of COS is the lowest (references: Aroonwilas, A.; Veawab AT. ; Characterization and Comparison of the C0 2 Absorption Performance in Single and Blended Alkanolamines in a Packed Column; Ind. Eng. Chem. Res. 43, 2228-2237 & van Loo, S.; van Elk, EP; Versteeg, GF; The removal of carbon dioxide with activated solutions of methyl-diethanol-amine; Journal of Petroleum Science and Engineering 55 (2007) 135-145). Thus, the addition of a few% by weight of activator considerably reduces the size of the absorption columns, while maintaining the thermodynamic and physicochemical properties of the tertiary amine or congested amine solution.
Ainsi, les solutions absorbantes composées d'une aminé tertiaire et de quelques % poids d'activateur sont couramment utilisées. On peut citer par exemple le brevet US 6 852 144 qui décrit une méthode d'élimination des composés acides des hydrocarbures. La méthode utilise une solution absorbante eau-méthyldiéthanolamine ou eau-triéthanolamine contenant une proportion d'un composé appartenant au groupe suivant : piperazine et/ou méthylpiperazine et/ou morpholine. On peut citer également le brevet JP08257353 qui décrit une méthode d'élimination du C02 dans les fumées. La méthode utilise une solution absorbante eau-bis(2-diméthylaminoéthyl)éther contenant par exemple de la 2- méthylaminoéthanol ou la pipérazine. Thus, the absorbent solutions composed of a tertiary amine and a few% by weight of activator are commonly used. For example, US Pat. No. 6,852,144 describes a method for removing acidic compounds from hydrocarbons. The method uses a water-methyldiethanolamine or water-triethanolamine absorbent solution containing a proportion of a compound belonging to the following group: piperazine and / or methylpiperazine and / or morpholine. We can also cite JP08257353 which describes a method for removing CO 2 in the flue gases. The method uses a water-bis (2-dimethylaminoethyl) ether absorbent solution containing, for example, 2-methylaminoethanol or piperazine.
Un autre aspect important à prendre en compte est la stabilité des activateurs. Lors de la désacidification des effluents gazeux, la solution absorbante, et notamment l'activateur, est dégradée soit par dégradation thermique, soit par réaction secondaire avec les gaz acides à capter, mais aussi avec d'autres composés contenus dans l'effluent gazeux, comme par exemple l'oxygène, les SOx et les NOx, contenus dans les fumées industrielles.  Another important aspect to take into account is the stability of the activators. During deacidification of the gaseous effluents, the absorbing solution, and in particular the activator, is degraded either by thermal degradation or by secondary reaction with the acid gases to be captured, but also with other compounds contained in the gaseous effluent, such as oxygen, SOx and NOx, contained in industrial fumes.
Ces réactions de dégradation nuisent au bon fonctionnement du procédé : diminution de l'efficacité de la solution absorbante, corrosion, moussage, etc. Du fait de ces dégradations, il est nécessaire de réaliser une purification de la solution absorbante par distillation et/ou échange d'ions, et réaliser des appoints d'amines. A titre d'exemple, les appoints d'amine dans un procédé de captage du C02 en post-combustion, utilisant une solution absorbante de MonoEthanolAmine à 30% poids représentent 1,4 kg d'amine par tonne de C02 capté, ce qui augmente considérablement les coûts opératoires d'une unité de captage (référence : Chapel, D. G. ; Mariz, C. L. ; Recovery of C02 from Flue Gases: Commercial Trends ; présenté à The Canadian Society of Chemical Engineers annual meeting, October 4-6, 1999, Saskatoon, Saskatchewan, Canada). Il est difficile de trouver pour une solution aqueuse d'une aminé tertiaire ou encombrée, un composé activateur qui ajouté à quelques % poids augmente fortement la cinétique de captage du C02 et du COS, permettant ainsi d'éliminer les composés acides en dessous des spécifications à moindre coût dans tout type d'effluent. De plus, il est difficile de trouver un composé activateur qui présente une forte stabilité. These degradation reactions are detrimental to the proper functioning of the process: reduction of the effectiveness of the absorbing solution, corrosion, foaming, etc. Due to these degradations, it is necessary to carry out a purification of the absorbing solution by distillation and / or ion exchange, and to make amine additions. By way of example, amine bonds in a post-combustion CO 2 capture process, using a 30% by weight absorbent solution of MonoEthanolAmine, represent 1.4 kg of amine per tonne of CO 2 captured, significantly increasing the operating costs of a capture unit (reference: Chapel, DG, Mariz, CL, Recovery of C0 2 from Flue Gases: Commercial Trends, presented at The Canadian Society of Chemical Engineers annual meeting, October 4-6, 1999, Saskatoon, Saskatchewan, Canada). It is hard to find for an aqueous solution of a tertiary or hindered amine, an activator compound which added to several% by weight greatly increases the kinetics of uptake of the C0 2 and COS, thereby removing acidic compounds below specifications at lower cost in any type of effluent. In addition, it is difficult to find an activator compound that has high stability.
L'objet de l'invention concerne une solution absorbante pour absorber des composés acides contenus dans un effluent gazeux, comportant un activateur qui combine une bonne stabilité chimique avec une excellente capacité à accélérer l'absorption du C02 et du COS au sein d'une formulation contenant des aminés tertiaires et/ou des aminés stériquement encombrées. The object of the invention relates to an absorbent solution for absorbing acidic compounds contained in a gaseous effluent, comprising an activator that combines good chemical stability with an excellent ability to accelerate the absorption of C0 2 and COS within a formulation containing tertiary amines and / or sterically hindered amines.
Un autre objet de l'invention concerne un procédé d'absorption des composés acides contenus dans un effluent gazeux, dans lequel on utilise la solution absorbante selon l'invention.  Another subject of the invention relates to a process for the absorption of the acidic compounds contained in a gaseous effluent, in which the absorbing solution according to the invention is used.
De façon générale, l'invention concerne une solution absorbante pour éliminer des composés acides contenus dans un effluent gazeux, la solution comportant : In general, the invention relates to an absorbent solution for removing acidic compounds contained in a gaseous effluent, the solution comprising:
- de l'eau ;  - some water ;
- au moins un composé absorbant choisi parmi les aminés tertiaires et les aminés stériquement encombrées ;  at least one absorbent compound chosen from tertiary amines and sterically hindered amines;
- au moins un activateur choisi parmi la famille des cyclohexylamines ou des pipéridines substituées.  at least one activator chosen from the family of cyclohexylamines or substituted piperidines.
L'activateur peut être choisi parmi les pipéridines substituées suivantes :  The activator may be chosen from the following substituted piperidines:
la N methylcyclohexylamine ;  N methylcyclohexylamine;
la perhydroisoquinoline ;  perhydroisoquinoline;
la N-isopropylcyclohexylamine ;  N-isopropylcyclohexylamine;
la N-nbutylcyclohexylamine ;  N-n-butylcyclohexylamine;
la dicyclohexylamine ;  dicyclohexylamine;
la 4 Methylpipéridine ; ou  4 Methylpiperidine; or
la 2-méthyl-5-ethylpipéridine.  2-methyl-5-ethylpiperidine.
- pipéridines substituées.  substituted piperidines.
Selon l'invention, la solution peut comporter une quantité inférieure à 50% en poids dudit activateur, de préférence inférieure à 30% en poids dudit activateur, de manière très préférée inférieure à 15% en poids dudit activateur. La solution absorbante peut comporter entre 10 % et 90 % en poids dudit composé absorbant, de préférence entre 20% et 60% poids, de manière très préférée entre 30% et 50% poids. Enfin, la solution absorbante peut comporter entre 10 % et 90 % en poids d'eau. According to the invention, the solution may comprise an amount of less than 50% by weight of said activator, preferably less than 30% by weight of said activator, very preferably less than 15% by weight of said activator. The absorbent solution may comprise between 10% and 90% by weight of said absorbent compound, preferably between 20% and 60% by weight, very preferably between 30% and 50% by weight. Finally, the absorbent solution may comprise between 10% and 90% by weight of water.
Selon l'invention, le composé absorbant peut être choisi parmi les aminés suivantes :  According to the invention, the absorbent compound may be chosen from the following amines:
DiEthylEthanolAmine,  diethylethanolamine,
- DiMethylEthanolAmine,  - DiMethylEthanolAmine,
Diisopropanolamine,  diisopropanolamine,
- MethylDiEthanolAmine,  - MethylDiEthanolAmine,
- TriEthanolAmine,  - TriEthanolAmine,
2-Amino-2-MethylPropan-l-ol,  2-Amino-2-methylpropan-l-ol,
bis(2-diméthylaminoéthyl)éther  bis (2-dimethylaminoethyl) ether
- TetraMethyl-l,2-EthaneDiAmine,  TetraMethyl-1,2-EthaneDiAmine,
- TetraMethyl-l,3-PropaneDiAmine,  TetraMethyl-1,3-propane-diamine
PentaMethylDiPropylèneTriAmine.  Pentamethyldipropylenetriamine.
L'invention concerne également un procédé d'élimination des composés acides contenus dans un effluent gazeux, dans lequel on effectue une étape d'absorption des composés acides par mise en contact de l'effluent avec une solution absorbante selon l'invention.  The invention also relates to a process for removing acidic compounds contained in a gaseous effluent, in which a step of absorption of the acidic compounds is carried out by contacting the effluent with an absorbent solution according to the invention.
Selon l'invention, on peut effectuer une opération de régénération de la solution absorbante chargée en composés acides obtenu à l'issue de l'étape d'absorption, l'étape de régénération comportant au moins l'une des opérations suivantes :  According to the invention, it is possible to perform a regeneration operation of the absorbent solution loaded with acidic compounds obtained at the end of the absorption step, the regeneration step comprising at least one of the following operations:
- détente de la solution absorbante chargée en composés acides,  - Relaxing the absorbent solution loaded with acid compounds,
- chauffage de la solution absorbante.  - Heating the absorbent solution.
Selon un mode de réalisation, l'étape d'absorption des composés acides est réalisée à une pression comprise entre 1 bar et 120 bars, et à une température comprise entre 30°C et 90°C.  According to one embodiment, the absorption step of the acidic compounds is carried out at a pressure of between 1 bar and 120 bar, and at a temperature of between 30 ° C. and 90 ° C.
Selon un mode de réalisation, l'étape de régénération est réalisée à une pression comprise entre 1 bar et 10 bars et une température comprise entre 100°C et 180°C.  According to one embodiment, the regeneration step is carried out at a pressure of between 1 bar and 10 bar and a temperature of between 100 ° C. and 180 ° C.
Selon un mode de réalisation, l'effluent gazeux comporte un des éléments suivants : le gaz naturel, les gaz de synthèse, les fumées de combustion, les gaz de raffinerie, les gaz obtenus en queue du procédé Claus, les gaz de fermentation de biomasse, les gaz de cimenterie, les fumées d'incinérateur. According to one embodiment, the gaseous effluent comprises one of the following elements: natural gas, synthesis gases, combustion fumes, gases Refinery gas, tail gas Claus process, biomass fermentation gas, cement gas, incinerator fumes.
Enfin, selon l'invention, les composés acides peuvent comporter au moins l'un des composés : C02 et COS. Finally, according to the invention, the acidic compounds may comprise at least one of the compounds: CO 2 and COS.
La présente invention présente un intérêt pour la réduction des tailles de colonne d'absorption lorsque l'on cherche à éliminer le C02 et/ou le COS contenu dans un gaz. The present invention is of interest for reducing absorption column sizes when seeking to remove CO 2 and / or COS contained in a gas.
D'autres caractéristiques et avantages de l'invention seront mieux compris et apparaîtront clairement à la lecture de la description faite, ci-après, en se référant à la figure 1, annexée et donnée à titre d'exemple, et représentant un schéma de principe d'un procédé de traitement d'effluents de gaz acides.  Other characteristics and advantages of the invention will be better understood and will become clear from reading the description given hereinafter with reference to FIG. 1, appended and given by way of example, and showing a diagram of FIG. principle of a process for treating acid gas effluents.
La présente invention propose d'éliminer les composés acides d'un effluent gazeux en mettant en œuvre des solutions aqueuses d'amines tertiaires ou d'amines stériquement encombrées activées par une aminé choisie parmi la famille des cyclohexylamines ou des pipéridines substituées telles que la N methylcyclohexylamine, la perhydroisoquinoline, la N-isopropylcyclohexylamine, la N-nbutylcyclohexylamine , la dicyclohexylamine, la 4 Methylpipéridine ou la 2- méthyl-5-ethylpipéridine. The present invention proposes to eliminate the acidic compounds of a gaseous effluent by using aqueous solutions of tertiary amines or sterically hindered amines activated by an amine chosen from the family of cyclohexylamines or substituted piperidines such as N methylcyclohexylamine, perhydroisoquinoline, N-isopropylcyclohexylamine, N-n-butylcyclohexylamine, dicyclohexylamine, 4-methylpiperidine or 2-methyl-5-ethylpiperidine.
Nature des effluents gazeux Nature of gaseous effluents
Les solutions absorbantes selon l'invention peuvent être mises en oeuvre pour désacidifier les effluents gazeux suivants : le gaz naturel, les gaz de synthèse, les fumées de combustion, les gaz de raffinerie, les gaz obtenus en queue du procédé Claus, les gaz de fermentation de biomasse, les gaz de cimenterie, les fumées d'incinérateur. Ces effluents gazeux contiennent un ou plusieurs des composés acides suivants : le C02, l'H2S, des mercaptans, du COS, du CS2. The absorbent solutions according to the invention can be used to deacidify the following gaseous effluents: natural gas, synthesis gases, combustion fumes, refinery gases, gases obtained at the bottom of the Claus process, the gases of fermentation of biomass, cement gas, incinerator fumes. These gaseous effluents contain one or more of the following acidic compounds: C0 2 , H 2 S, mercaptans, COS, CS 2 .
Les fumées de combustion sont produites notamment par la combustion d'hydrocarbures, de biogaz, de charbon dans une chaudière ou pour une turbine à gaz de combustion, par exemple dans le but de produire de l'électricité. Ces fumées ont une température comprise entre 20 et 60°C, une pression comprise entre 1 et 5 bars et peuvent comporter entre 50 et 80 % d'azote, entre 5 et 40 % de dioxyde de carbone, entre 1 et 20 % d'oxygène, et quelques impuretés comme des SOx et des NOx, s'ils n'ont pas été éliminés en aval du procédé de désacidification. The combustion fumes are produced in particular by the combustion of hydrocarbons, biogas, coal in a boiler or for a combustion gas turbine, for example for the purpose of producing electricity. These fumes have a temperature of between 20 and 60 ° C., a pressure of between 1 and 5 bar and can comprise between 50 and 80% of nitrogen, between 5 and 40% of carbon dioxide, between 1 and 20% of oxygen, and some impurities as SOx and NOx, if they have not been removed downstream of the deacidification process.
Le gaz naturel est constitué majoritairement d'hydrocarbures gazeux, mais peut contenir plusieurs des composés acides suivants : le C02, l'H2S, des mercaptans, du COS, du CS2. La teneur de ces composés acides est très variable et peut aller jusqu'à 40% pour le C02 et l'H2S, jusqu'à 1000 ppm pour le COS. La température du gaz naturel peut être comprise entre 20°C et 100°C. La pression du gaz naturel à traiter peut être comprise entre 10 et 120 bars. Natural gas consists mainly of gaseous hydrocarbons, but may contain several of the following acidic compounds: C0 2 , H 2 S, mercaptans, COS, CS 2 . The content of these acidic compounds is very variable and can be up to 40% for C0 2 and H 2 S, up to 1000 ppm for COS. The temperature of the natural gas can be between 20 ° C and 100 ° C. The pressure of the natural gas to be treated may be between 10 and 120 bar.
Composition de la solution aqueuse absorbante Composition of the absorbent aqueous solution
La solution absorbante comprend avantageusement de 10 à 90 % poids d'amine tertiaire ou d'une aminé stériquement encombrée, préférentiellement de 20 à 60% poids, et de manière très préférée de 30 à 50% poids d'amine tertiaire ou d'une aminé stériquement encombrée.  The absorbent solution advantageously comprises from 10 to 90% by weight of tertiary amine or a sterically hindered amine, preferably from 20 to 60% by weight, and very preferably from 30 to 50% by weight of tertiary amine or from sterically hindered amine.
De manière préférée, l'amine tertiaire ou stériquement encombrée est choisie dans le groupe formé par :  Preferably, the tertiary amine or sterically hindered amine is selected from the group consisting of:
DiEthylEthanolAmine,  diethylethanolamine,
- DiMethylEthanolAmine,  - DiMethylEthanolAmine,
Diisopropanolamine,  diisopropanolamine,
- MethylDiEthanolAmine,  - MethylDiEthanolAmine,
- TriEthanolAmine,  - TriEthanolAmine,
2-Amino-2-MethylPropan-l-ol,  2-Amino-2-methylpropan-l-ol,
bis(2-diméthylaminoéthyl)éther  bis (2-dimethylaminoethyl) ether
- TetraMethyl-l,2-EthaneDiAmine,  TetraMethyl-1,2-EthaneDiAmine,
- TetraMethyl-l,3-PropaneDiAmine,  TetraMethyl-1,3-propane-diamine
PentaMethylDiPropylèneTriAmine.  Pentamethyldipropylenetriamine.
La solution absorbante comprend une quantité non nulle et inférieure à 50% poids, de préférence inférieure à 30% poids, de manière très préférée inférieure à 15% poids d'un activateur choisi parmi les la famille des cyclohexylamines ou des pipéridines telles que la N methylcyclohexylamine, la perhydroisoquinoline, la N-isopropylcyclohexylamine, la N-nbutylcyclohexylamine , la dicyclohexylamine, la 4 Methylpipéridine ou la 2-méthyl-5-ethylpipéridine.  The absorbent solution comprises a non-zero and less than 50% by weight, preferably less than 30% by weight, very preferably less than 15% by weight of an activator chosen from the family of cyclohexylamines or piperidines such as N methylcyclohexylamine, perhydroisoquinoline, N-isopropylcyclohexylamine, N-n-butylcyclohexylamine, dicyclohexylamine, 4-methylpiperidine or 2-methyl-5-ethylpiperidine.
La solution absorbante peut contenir entre 10% et 90% poids d'eau.  The absorbent solution may contain between 10% and 90% by weight of water.
Ce type de formulation est particulièrement intéressant dans le cas du captage du C02 dans les fumées industrielles, ou du traitement du gaz naturel contenant du COS au dessus de la spécification désirée. En effet, pour ce type d'applications, on cherche à augmenter la cinétique de captage du COS, afin de réduire la hauteur des colonnes d'absorption. This type of formulation is particularly interesting in the case of capture of C0 2 in industrial fumes, or treatment of natural gas containing COS above the desired specification. Indeed, for this type of applications, it is sought to increase the sensing kinetics of the COS, in order to reduce the height of the absorption columns.
Dans un mode de réalisation, la solution absorbante peut comprendre d'autres composés organiques. Ainsi, la solution absorbante selon l'invention peut contenir des composés organiques non réactifs vis à vis des composés acides (couramment nommé "solvants physiques"), qui permettent d'augmenter la solubilité d'au moins un ou plusieurs composés acides de l'effluent gazeux. Par exemple, la solution absorbante peut comporter entre 5% et 50% poids de solvant physique tel que des alcools, des ethers de glycol, des lactames, des pyrrolidones N-alkylées, des pipéridones N-alkylées, des cyclotétraméthylènesulfone, des N-alkylformamides, des N-alkylacétamides, des ethers-cétones ou des phosphates d'alkyles et leurs dérivés. A titre d'exemple et de façon non limitative, il peut s'agir du méthanol, du tetraethylèneglycol- dimethylether, du sulfolane ou de la N-formyl morpholine.  In one embodiment, the absorbent solution may comprise other organic compounds. Thus, the absorbent solution according to the invention may contain organic compounds which are not reactive with respect to acidic compounds (commonly called "physical solvents"), which make it possible to increase the solubility of at least one or more acidic compounds of the gaseous effluent. For example, the absorbent solution may comprise between 5% and 50% by weight of physical solvent such as alcohols, glycol ethers, lactams, N-alkylated pyrrolidones, N-alkylated piperidones, cyclotetramethylenesulphone, N-alkylformamides. , N-alkylacetamides, ethers-ketones or alkyl phosphates and their derivatives. By way of example and without limitation, it may be methanol, tetraethylene glycol-dimethyl ether, sulfolane or N-formyl morpholine.
Procédé d'élimination des composés acides dans un effluent gazeux (Fiq. 1) Process for removing acidic compounds in a gaseous effluent (Fiq.1)
La mise en oeuvre d'une solution absorbante selon l'invention pour désacidifier un effluent gazeux est réalisée de façon schématique en effectuant une étape d'absorption suivie d'une étape de régénération. L'étape d'absorption consiste à mettre en contact l'effluent gazeux (~1) avec la solution absorbante (~4). Lors du contact, les composés organiques munis d'une fonction aminé de la solution absorbante réagissent avec les composés acides contenus dans l'effluent de manière à obtenir un effluent gazeux appauvri en composés acides (~2) et une solution absorbante enrichie en composés acides (~3). L'étape de régénération consiste notamment à chauffer et, éventuellement à détendre, la solution absorbante enrichie en composés acides afin de libérer les composés acides sous forme gazeuse (~7). La solution absorbante régénérée, c'est-à-dire appauvrie en composés acides (~6) est recyclée à l'étape d'absorption.  The implementation of an absorbent solution according to the invention for deacidifying a gaseous effluent is carried out schematically by performing an absorption step followed by a regeneration step. The absorption step consists in bringing the gaseous effluent (~ 1) into contact with the absorbing solution (~ 4). During contact, the organic compounds provided with an amine function of the absorbent solution react with the acidic compounds contained in the effluent so as to obtain a gaseous effluent depleted in acidic compounds (~ 2) and an acid-enriched absorbent solution. (~ 3). The regeneration step consists in particular in heating and, optionally, in expanding, the absorbent solution enriched in acidic compounds in order to release the acidic compounds in gaseous form (~ 7). The regenerated absorbent solution, that is to say depleted in acid compounds (~ 6) is recycled to the absorption step.
L'étape d'absorption des composés acides peut être réalisée à une pression comprise entre lbar et 120 bars, de préférence entre 20 bars et 100 bars pour le traitement d'un gaz naturel, de préférence entre 1 et 3 bars pour le traitement des fumées industrielles, et à une température comprise entre 20 et 100°C, préférentiellement comprise entre 30°C et 90°C. L'étape de régénération du procédé selon l'invention peut être réalisée par régénération thermique, éventuellement complétée par une ou plusieurs étapes de détente. The absorption step of the acidic compounds can be carried out at a pressure of between 1 bar and 120 bar, preferably between 20 bar and 100 bar for the treatment of a natural gas, preferably between 1 and 3 bar for the treatment of industrial fumes, and at a temperature between 20 and 100 ° C, preferably between 30 ° C and 90 ° C. The regeneration step of the process according to the invention can be carried out by thermal regeneration, optionally supplemented by one or more expansion steps.
La régénération peut être effectuée à une pression comprise entre 1 bar et 5 bars, voire jusqu'à 10 bars et à une température comprise entre 100 °C et 180 °C, de préférence comprise entre 130 °C et 170 °C.  The regeneration can be carried out at a pressure of between 1 bar and 5 bar, or even up to 10 bar and at a temperature of between 100 ° C. and 180 ° C., preferably between 130 ° C. and 170 ° C.
Exemples : Activation pour absorption du COS Examples: Activation for COS Absorption
A titre d'exemple, on peut comparer la vitesse d'absorption du COS entre des solutions à base de MethylDiEthanolAmine activée par la N Methyl-Cyclohexyl aminé, la Perhydroisoquinoline ou la 4 Methyl-Pipéridine.  By way of example, the rate of absorption of COS can be compared between solutions based on MethylDiEthanolAmine activated by N-methylcyclohexylamine, perhydroisoquinoline or 4-methylpiperidine.
Ces essais sont comparés à des solutions absorbantes comprenant en solutions aqueuses la MethylDiEthanolAmine activée par la Pipérazine, activateur bien connu de l'homme du métier pour ses performances d'élimination du COS (voir document US 6,852,144 par exemple). Ces essais sont comparés également avec une solution de MDEA activée par la N,N'DiMethyl- l,6Hexanediamine, molécule étudiée par Singh et al (Chemical Engineering Science, 66 (2011) 4521-4532) en réacteur agité pour l'absorption de C02. These tests are compared with absorbent solutions comprising, in aqueous solutions, MethylDiEthanolAmine activated by Piperazine, an activator well known to those skilled in the art for its COS elimination performance (see US Pat. No. 6,852,144, for example). These tests are also compared with a solution of N, N'DiMethyl-6Hexanediamine-activated MDEA, a molecule studied by Singh et al (Chemical Engineering Science, 66 (2011) 4521-4532) in a stirred reactor for the absorption of C02.
Pour chaque essai, on mesure le flux d'absorption du COS par la solution aqueuse dans un réacteur fermé, type cellule de Lewis. 200 g de solution sont introduits dans le réacteur fermé, régulé à une température de 40°C. On réalise quatre injections successives d'oxysulfure de carbone de 100 à 200 mbar dans la phase vapeur du réacteur ayant un volume de 200 cm3. La phase gaz et la phase liquide sont agitées à 100 tours/minutes et entièrement caractérisées du point de vue hydrodynamique. Pour chaque injection, on mesure la vitesse d'absorption de l'oxysulfure de carbone par variation de pression dans la phase gaz. On détermine ainsi un coefficient de transfert global Kg par une moyenne des résultats obtenus sur les 4 injections. For each test, the absorption flux of COS is measured by the aqueous solution in a closed reactor, Lewis cell type. 200 g of solution are introduced into the closed reactor, regulated at a temperature of 40 ° C. Four successive injections of carbon oxysulfide of 100 to 200 mbar are carried out in the vapor phase of the reactor having a volume of 200 cm 3 . The gas phase and the liquid phase are stirred at 100 revolutions / minute and fully characterized from the hydrodynamic point of view. For each injection, the absorption rate of the carbon oxysulfide is measured by variation of pressure in the gas phase. An overall transfer coefficient Kg is thus determined by an average of the results obtained on the four injections.
Les résultats obtenus sont présentés dans le tableau 1 en vitesse d'absorption relative à la formulation de référence MethylDiEthanolAmine 40%pds activée par la pipérazine à 3,3%pds, cette vitesse d'absorption relative étant définie par le rapport du coefficient de transfert global de la formulation testée sur le coefficient de transfert global de la formulation de référence. Composition du liquide absorbant aqueux The results obtained are shown in Table 1 as the relative absorption rate of the reference formulation MethylDiEthanolAmine 40% by weight activated by piperazine at 3.3% by weight, this relative absorption rate being defined by the ratio of the transfer coefficient. of the formulation tested on the overall transfer coefficient of the reference formulation. Composition of the aqueous absorbent liquid
Aminé Activateur  Amine Activator
Vitesse Speed
Concentration Concentration Concentration Concentration
Nature Nature d'absorption  Nature Nature of absorption
(%pds) (%pds) relative du  (% wt) (% wt) relative to the
COS COS
MDEA 40 Pipérazine 3,3 1.00MDEA 40 Piperazine 3.3 1.00
MDEA 40 N Methyl - Cyclohexylamine 4,3 1.07MDEA 40 N Methyl - Cyclohexylamine 4.3 1.07
MDEA 40 Ν,Ν' DiMethyl -1,6 Hexanediamine 5,5 1.12MDEA 40 Ν, Ν 'DiMethyl -1.6 Hexanediamine 5.5 1.12
MDEA 40 Perhydroisoquinoline 5,3 1.38MDEA 40 Perhydroisoquinoline 5.3 1.38
MDEA 40 4Methyl-Pipéridine 3,8 1.41 MDEA 40 4Methyl-Piperidine 3.8 1.41
Tableau 1  Table 1
L'examen des résultats du tableau 1 fait ressortir la vitesse d'absorption du COS présentée par les liquides absorbants selon l'invention améliorée entre 7% et 40 % pour les molécules issues de la famille des benzylamines ou pipéridines par rapport à la solution MethylDiEthanolAmine-PipéraZine connue de l'homme de l'art. Examination of the results in Table 1 shows the speed of absorption of the COS presented by the absorbent liquids according to the invention improved between 7% and 40% for the molecules derived from the family of benzylamines or piperidines compared to the MethylDiEthanolAmine solution. -Piperazine known to those skilled in the art.

Claims

Revendications claims
1. Solution absorbante pour éliminer des composés acides contenus dans un effluent gazeux, la solution comportant : 1. Absorbent solution for removing acidic compounds contained in a gaseous effluent, the solution comprising:
- de l'eau ;  - some water ;
- au moins un composé absorbant choisi parmi les aminés tertiaires et les aminés stériquement encombrées ;  at least one absorbent compound chosen from tertiary amines and sterically hindered amines;
- au moins un activateur choisi parmi la famille des cyclohexylamines ou des pipéridines substituées.  at least one activator chosen from the family of cyclohexylamines or substituted piperidines.
2. Solution absorbante selon la revendication 1, dans laquelle l'activateur est choisi parmi les pipéridines substituées suivantes :  The absorbent solution of claim 1, wherein the activator is selected from the following substituted piperidines:
la N methylcyclohexylamine ;  N methylcyclohexylamine;
la perhydroisoquinoline ;  perhydroisoquinoline;
la N-isopropylcyclohexylamine ;  N-isopropylcyclohexylamine;
la N-nbutylcyclohexylamine ;  N-n-butylcyclohexylamine;
la dicyclohexylamine ;  dicyclohexylamine;
la 4 Methylpipéridine ; ou  4 Methylpiperidine; or
la 2-méthyl-5-ethylpipéridine.  2-methyl-5-ethylpiperidine.
- pipéridines substituées.  substituted piperidines.
3. Solution absorbante selon l'une des revendications précédentes, comportant une quantité inférieure à 50% en poids dudit activateur, de préférence inférieure à 30% en poids dudit activateur, de manière très préférée inférieure à 15% en poids dudit activateur.  3. Absorbent solution according to one of the preceding claims, comprising an amount less than 50% by weight of said activator, preferably less than 30% by weight of said activator, very preferably less than 15% by weight of said activator.
4. Solution absorbante selon l'une des revendications précédentes, comportant entre 10 % et 90 % en poids dudit composé absorbant, de préférence entre 20% et 60% poids, de manière très préférée entre 30% et 50% poids.  4. Absorbent solution according to one of the preceding claims, comprising between 10% and 90% by weight of said absorbent compound, preferably between 20% and 60% by weight, very preferably between 30% and 50% by weight.
5. Solution absorbante selon l'une des revendications précédentes, comportant entre 10 % et 90 % en poids d'eau.  5. Absorbent solution according to one of the preceding claims, comprising between 10% and 90% by weight of water.
6. Solution absorbante selon l'une des revendications précédentes, dans laquelle le composé absorbant est choisi parmi les aminés suivantes :  6. Absorbent solution according to one of the preceding claims, wherein the absorbent compound is selected from the following amines:
DiEthylEthanolAmine,  diethylethanolamine,
- DiMethylEthanolAmine,  - DiMethylEthanolAmine,
Diisopropanolamine,  diisopropanolamine,
- MethylDiEthanolAmine,  - MethylDiEthanolAmine,
- TriEthanolAmine, 2-Amino-2-MethylPropan-l-ol, - TriEthanolAmine, 2-Amino-2-methylpropan-l-ol,
bis(2-diméthylaminoéthyl)éther  bis (2-dimethylaminoethyl) ether
- TetraMethyl-l,2-EthaneDiAmine,  TetraMethyl-1,2-EthaneDiAmine,
- TetraMethyl-l,3-PropaneDiAmine,  TetraMethyl-1,3-propane-diamine
PentaMethylDiPropylèneTriAmine.  Pentamethyldipropylenetriamine.
7. Procédé d'élimination des composés acides contenus dans un effluent gazeux, dans lequel on effectue une étape d'absorption des composés acides par mise en contact de l'effluent avec une solution absorbante selon l'une quelconque des revendications 1 à 6. 7. A process for removing the acidic compounds contained in a gaseous effluent, in which an absorption step of the acidic compounds is carried out by contacting the effluent with an absorbent solution according to any one of claims 1 to 6.
8. Procédé d'absorption selon la revendication 7 dans lequel on effectue une opération de régénération de la solution absorbante chargée en composés acides obtenu à l'issue de l'étape d'absorption, l'étape de régénération comportant au moins l'une des opérations suivantes :  8. The absorption process according to claim 7, wherein a regeneration operation of the absorbent solution loaded with acidic compounds obtained at the end of the absorption step is carried out, the regeneration step comprising at least one following operations:
- détente de la solution absorbante chargée en composés acides,  - Relaxing the absorbent solution loaded with acid compounds,
- chauffage de la solution absorbante.  - Heating the absorbent solution.
9. Procédé selon l'une des revendications 7 et 8, dans lequel l'étape d'absorption des composés acides est réalisée à une pression comprise entre 1 bar et 120 bars, et à une température comprise entre 30°C et 90°C.  9. Method according to one of claims 7 and 8, wherein the step of absorption of the acidic compounds is carried out at a pressure between 1 bar and 120 bar, and at a temperature between 30 ° C and 90 ° C .
10. Procédé selon l'une des revendications 7 à 9, dans lequel l'étape de régénération est réalisée à une pression comprise entre 1 bar et 10 bars et une température comprise entre 100°C et 180°C.  10. Method according to one of claims 7 to 9, wherein the regeneration step is carried out at a pressure between 1 bar and 10 bar and a temperature between 100 ° C and 180 ° C.
11. Procédé selon l'une des revendications 7 à 10, dans lequel l'effluent gazeux comporte un des éléments suivants : le gaz naturel, les gaz de synthèse, les fumées de combustion, les gaz de raffinerie, les gaz obtenus en queue du procédé Claus, les gaz de fermentation de biomasse, les gaz de cimenterie, les fumées d'incinérateur.  11. Method according to one of claims 7 to 10, wherein the gaseous effluent comprises one of the following elements: natural gas, synthesis gas, combustion fumes, refinery gases, gases obtained in the tail of Claus process, biomass fermentation gases, cement gases, incinerator fumes.
12. Procédé selon l'une des revendications 7 à 11, dans lequel les composés acides comportent au moins l'un des composés : C02 et COS. 12. Method according to one of claims 7 to 11, wherein the acidic compounds comprise at least one of the compounds: CO 2 and COS.
PCT/FR2014/050083 2013-01-24 2014-01-16 Absorbent solution based on a tertiary or hindered amine and on a particular activator and process for removing acidic compounds from a gas effluent WO2014114862A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1300158 2013-01-24
FR1300158A FR3001157B1 (en) 2013-01-24 2013-01-24 ABSORBENT SOLUTION BASED ON A TERTIARY OR CONTAINED AMINE AND A PARTICULAR ACTIVATOR AND METHOD FOR REMOVING ACIDIC COMPOUNDS FROM A GASEOUS EFFLUENT

Publications (2)

Publication Number Publication Date
WO2014114862A2 true WO2014114862A2 (en) 2014-07-31
WO2014114862A3 WO2014114862A3 (en) 2014-11-20

Family

ID=47902282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050083 WO2014114862A2 (en) 2013-01-24 2014-01-16 Absorbent solution based on a tertiary or hindered amine and on a particular activator and process for removing acidic compounds from a gas effluent

Country Status (2)

Country Link
FR (1) FR3001157B1 (en)
WO (1) WO2014114862A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746838C1 (en) * 2015-09-29 2021-04-21 Басф Се Absorbent for selective removal of hydrogen sulfide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2673740B2 (en) * 2016-12-23 2018-10-31 Universidad De Sevilla Aqueous absorbent composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277885A (en) * 1988-05-24 1994-01-11 Elf Aquitaine Production Liquid absorbing acidic gases and use thereof in deacidification of gases
WO1999004885A1 (en) * 1997-07-22 1999-02-04 Huntsman Corporation Hungary Vegyipari Termelö-Fejlesztö Részvénytársaság Absorbent composition for purifying gases which contain acidic components
WO2011018479A1 (en) * 2009-08-11 2011-02-17 Shell Internationale Research Maatschappij B.V. Absorbent composition and process for removing co2 and/or h2s from a gas comprising co2 and/or h2s

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277885A (en) * 1988-05-24 1994-01-11 Elf Aquitaine Production Liquid absorbing acidic gases and use thereof in deacidification of gases
WO1999004885A1 (en) * 1997-07-22 1999-02-04 Huntsman Corporation Hungary Vegyipari Termelö-Fejlesztö Részvénytársaság Absorbent composition for purifying gases which contain acidic components
WO2011018479A1 (en) * 2009-08-11 2011-02-17 Shell Internationale Research Maatschappij B.V. Absorbent composition and process for removing co2 and/or h2s from a gas comprising co2 and/or h2s

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746838C1 (en) * 2015-09-29 2021-04-21 Басф Се Absorbent for selective removal of hydrogen sulfide

Also Published As

Publication number Publication date
FR3001157A1 (en) 2014-07-25
FR3001157B1 (en) 2018-07-27
WO2014114862A3 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
EP2310110B1 (en) Absorbent solution based on n,n,n',n'-tetramethylhexane-1,6-diamine and on one particular amine comprising primary or secondary amine functional groups and process for removing acid compounds from a gaseous effluent
EP1656983B1 (en) Process for deacidification of a gas with an absorbing solution and fractional regeneration
WO2011080405A1 (en) Method for removing acid compounds from a gaseous effluent using a diamine-based absorbent solution
WO2015065839A1 (en) Hybrid solvent formulations for selective h2s removal
EP2512631A1 (en) Method for removing acid compounds from a gaseous effluent using a triamine-based absorbent solution
EP2785435B1 (en) Method for eliminating acid compounds from a gaseous effluent with an absorbent solution made from bis(amino-3-propyl)ethers or (amino-2-ethyl)-(amino-3-propyl)ethers
EP2776141B1 (en) Method for eliminating acidic compounds from a gaseous effluent using an absorbent solution made from dihydroxyalkylamines having a severe steric encumbrance of the nitrogen atom
WO2014001669A1 (en) Absorbent solution containing amines from the aminoalkylpiperazine family, and method for removing acid compounds from a gaseous effluent using such a solution
WO2016055258A1 (en) Method for eliminating acid compounds from a gaseous effluent with an absorbent solution made from diamines belonging to the 1,3-diamino-2-propanol family
CA2985846C (en) Solvent and method for removing acid gases from a gaseous mixture
WO2014114862A2 (en) Absorbent solution based on a tertiary or hindered amine and on a particular activator and process for removing acidic compounds from a gas effluent
WO2013171386A1 (en) Method for processing a gas stream by absorption
AU2011320717B2 (en) Use of 2-(3-aminopropoxy)ethan-1-ol as an absorbent to remove acidic gases
WO2011138517A1 (en) Absorbent solution based on ν,ν,ν',ν'-tetraethyl diethylenetriamine and method for removing acid compounds from a gaseous effluent
EP3148674B1 (en) Absorbent solution containing a mixture of 1,2-bis-(2-dimethylaminoethoxy)-ethane and 2-[2-(2- dimethylaminoethoxy)-ethoxy]-ethanol, and method for eliminating acid compounds from a gas effluent
JP2023506056A (en) Method for removing acid compounds from gaseous effluents using tertiary amine-based absorbent solutions
WO2016193257A1 (en) Method for eliminating acid compounds from a gaseous effluent with an absorbent solution made from aminoethers such as bis-(3-dimethylaminopropoxy)-1,2-ethane
FR3014101A1 (en) ABSORBENT SOLUTION BASED ON N, N, N ', N'-TETRAMETHYL-1,6-HEXANEDIAMINE AND N, N, N', N'-TETRAMETHYLDIAMINOETHER AND METHOD FOR REMOVING ACIDIC COMPOUNDS FROM A GASEOUS EFFLUENT
EP2928582A1 (en) Absorbent solution made from amines belonging to the n-alkyl-hydroxypiperidine family and method for eliminating acid compounds from a gaseous effluent with such a solution
FR2918386A1 (en) Mercaptans e.g. methyl mercaptans, eliminating method, involves extracting mercaptans by setting in contact liquid to be treated with regenerative aqueous solution such as deacidifcation solvent, and regenerating solvent
FR3014328A1 (en) ABSORBENT SOLUTION BASED ON N, N, N ', N'-TETRAMETHYL-1,6-HEXANEDIAMINE AND A SECONDARY DIAMINE OF THE ALKYLPIPERAZINE FAMILY AND METHOD FOR REMOVING ACIDIC COMPOUNDS FROM A GASEOUS EFFLUENT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14705817

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 14705817

Country of ref document: EP

Kind code of ref document: A2