WO2011138517A1 - Absorbent solution based on ν,ν,ν',ν'-tetraethyl diethylenetriamine and method for removing acid compounds from a gaseous effluent - Google Patents

Absorbent solution based on ν,ν,ν',ν'-tetraethyl diethylenetriamine and method for removing acid compounds from a gaseous effluent Download PDF

Info

Publication number
WO2011138517A1
WO2011138517A1 PCT/FR2011/000218 FR2011000218W WO2011138517A1 WO 2011138517 A1 WO2011138517 A1 WO 2011138517A1 FR 2011000218 W FR2011000218 W FR 2011000218W WO 2011138517 A1 WO2011138517 A1 WO 2011138517A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent solution
acidic compounds
weight
absorbent
gaseous effluent
Prior art date
Application number
PCT/FR2011/000218
Other languages
French (fr)
Inventor
Marc Jacquin
Marco De Oliveira Aleixo
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2011138517A1 publication Critical patent/WO2011138517A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20415Tri- or polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20426Secondary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20431Tertiary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/308Carbonoxysulfide COS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to the capture of acidic compounds (H 2 S, C0 2 , COS, CS 2 , mercaptans, etc.) contained in a gas by means of a particular triamine, ⁇ , ⁇ , ⁇ ', ⁇ '. -Tetraethyldiethylenetriamine, in the form of an absorbent aqueous solution.
  • the invention is advantageously applicable to the treatment of natural gas and gas of industrial origin.
  • carbon dioxide is extracted from combustion fumes in order to be sequestered in an underground reservoir.
  • the content of carbon dioxide and hydrogen sulphide is reduced, for reasons of toxicity, to improve the calorific value of the gas and possibly to allow the liquefaction of natural gas for transport by ship.
  • Absorption processes employing an aqueous amine solution are commonly used to remove the acidic compounds (in particular H 2 S, mercaptans, CO 2 , COS, CS 2 ) present in a gas.
  • the gas is purified by contact with the absorbent solution, and the absorbent solution is thermally regenerated.
  • Absorbent solutions commonly used today are aqueous solutions of primary, secondary or tertiary alkanolamine, optionally in combination with a physical solvent.
  • document FR 2 820 430 can be cited which proposes processes for deacidification of gaseous effluents.
  • No. 6,852,144 which describes a method for eliminating the acidic compounds of hydrocarbons. The method uses a water-methyldiethanolamine or water-triethanolamine absorbent solution containing a high proportion of a compound belonging to the following group: piperazine and / or methylpiperazine and / or morpholine.
  • the absorbed C0 2 reacts with the alkanolamine present in solution according to a reversible exothermic reaction, well known to those skilled in the art and leading to the formation of hydrogenocarbonates, carbonates and or carbamates, allowing elimination of C0 2 in the gas to be treated.
  • the absorbed H 2 S reacts with the alkanolamine present in solution according to a reversible exothermic reaction, well known to those skilled in the art and leading to the formation of hydrogen sulfide.
  • the last item concerns the energy to be supplied to break the bond created between the amine used and the acid compound. To reduce the energy consumption associated with the regeneration of the absorbent solution, it is therefore preferable to minimize the ⁇ linkage enthalpy. Nevertheless, it is not obvious to find an amine having a high cyclic capacity and a low reaction enthalpy. The best amine from an energy point of view is therefore that which has the best compromise between a strong cyclic capacity ⁇ and a low enthalpy of connection ⁇ .
  • the present invention proposes a process for removing acidic compounds contained in a gaseous effluent in which an absorption step of the acidic compounds is carried out by contacting the gaseous effluent with an absorbent solution comprising:
  • the absorbent solution may comprise between 10% and 90% by weight of ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine and between 10% and 90% by weight of water.
  • the absorbent solution may comprise between 0.5% and 20% by weight of an activator chosen from amines comprising at least one primary or secondary amine function.
  • the activator may be selected from the group consisting of:
  • the absorbent solution may further comprise a physical solvent.
  • a gaseous effluent depleted in acidic compounds and an absorbent solution loaded with acid compounds is obtained, and at least one regeneration step of the absorbent solution loaded with acid compounds can be carried out.
  • the depleted fraction can be recycled to acidic compounds and the regenerated fraction to form at least a portion of said absorbent solution implemented at the absorption step.
  • the absorbent solution loaded with acidic compounds can be heated at a temperature between 70 ° C and 110 ° C.
  • the process according to the invention can be implemented to treat one of the following gaseous effluents: natural gas, synthesis gases, combustion fumes, refinery gases, gases obtained at the bottom of the Claus process, Biomass fermentation gas, cement gas, incinerator fumes.
  • the gaseous effluent is a combustion smoke having a CO 2 partial pressure of less than 200 mbar.
  • the present invention also relates to an absorbent solution for absorbing acidic compounds contained in a gaseous effluent, comprising an aqueous solution of ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine.
  • the absorbent solution may comprise between 10% and 90% by weight of ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine and between 10% and 90% by weight of water.
  • the absorbent solution may further comprise between 0.5% and 20% by weight of an activator chosen from amines comprising at least one primary or secondary amine function.
  • the activator can be chosen from the group formed by:
  • the absorbent solution may further comprise a physical solvent.
  • TEDETA to absorb acidic compounds, such as C0 2 , H 2 S, COS, CS 2 and mercaptans, contained in a gas makes it possible to limit the flow of absorbent solution used, from its high capacity, especially at low partial pressure of acidic compounds. Moreover, this amine has a relatively low reaction enthalpy. Finally, in a particular embodiment, the flow rates of absorbent solution can be further reduced, further reducing the costs associated with the regeneration of the solvent.
  • FIG. 1 represents the structural formula of ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine
  • FIG. 2 represents a schematic diagram of a process for the treatment of effluents containing acidic compounds
  • FIG. 3 represents a schematic diagram of an effluent treatment process containing acidic compounds with fractional regeneration by heating.
  • the ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine, or TEDETA is of interest in all acid gas treatment processes (natural gas, combustion fumes, etc.), in an aqueous absorbent solution composition.
  • the present invention proposes to eliminate the acidic compounds of a gaseous effluent by using an absorbent compound in aqueous solution.
  • the absorbent compound according to the invention, ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine has an absorption capacity of acid gases (CO 2 , H 2 S, COS, SO 2 , CS 2 and mercaptans) which is larger. than the alkanolamines conventionally used.
  • the use of an aqueous absorbent solution according to the invention makes it possible to save on the investment cost and the regeneration costs of a deacidification unit in natural gas treatment and C0 2 capture applications contained in a smoke of combusion.
  • TEDETA used according to the invention may be prepared according to various synthetic routes known to those skilled in the art, which are diagrammed below:
  • the absorbent solutions according to the invention can be used to deacidify the following gaseous effluents: natural gas, synthesis gases, combustion fumes, refinery gases, gases obtained at the bottom of the Claus process, the gases of fermentation of biomass, cement gas, incinerator fumes.
  • gaseous effluents contain one or more of the following acidic compounds: C0 2 , H 2 S, mercaptans, COS, CS 2 .
  • the present invention is particularly well adapted to the capture of CO 2 contained in the combustion fumes.
  • the combustion fumes are produced in particular by the combustion of hydrocarbons, biogas, coal in a boiler or for a combustion gas turbine, for example for the purpose of producing electricity.
  • a C0 2 capture unit according to the invention aims to reduce by 90% the C0 2 emissions of a thermal power station.
  • These fumes generally have a temperature of between 20 and 60 ° C., a pressure of between 1 and 5 bar and may comprise between 50 and 80% of nitrogen, between 5 and 40% of carbon dioxide, and between 1 and 20% of carbon dioxide. oxygen, and some impurities such as SOx and NOx, if they have not been removed downstream of the deacidification process.
  • TEDETA is well adapted to absorb C0 2 contained in combustion fumes comprising a low partial pressure of CO 2 / for example a CO 2 partial pressure of less than 200 mbar.
  • the invention is also well suited to deacidify a natural gas.
  • the natural gas consists mainly of gaseous hydrocarbons, but can contain several of the following acidic compounds: CO 2 , H 2 S, mercaptans mainly methyl mercaptan (CH 3 SH), ethyl mercaptan. (CH 3 CH 2 SH) and propyl mercaptans (CH 3 CH 2 CH 2 SH), COS, CS 2 .
  • the content of these compounds acid is very variable and can be up to 40% for C0 2 and H 2 S.
  • the temperature of the natural gas can be between 20 ° C and 100 ° C.
  • the pressure of the natural gas to be treated may be between 10 and 120 bar.
  • the invention can be implemented to achieve specifications generally imposed on the deacidified gas, which are 2% of C0 2 , or even 50 ppm of CO 2 to subsequently liquefaction of natural gas and 4 ppm H 2 S and 10 to 50 ppm total sulfur volume.
  • the ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine may be in a variable concentration, for example between 10% and 90% by weight, preferably between 20% and 60% by weight, very preferably between 30% and 50% by weight. in the aqueous solution. .
  • the absorbent solution may contain between 10% and 90% by weight of water, preferably between 40% and 80% by weight of water, very preferably between 50% and 70% by weight of water.
  • ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine may be formulated with an activator.
  • this activator is chosen from another amine, containing at least one primary or secondary amine function.
  • the absorbent solution according to the invention may contain at least 0.5% by weight of activator.
  • the concentration of activator in the aqueous solution of TEDETA can vary up to a maximum concentration of 20% by weight.
  • the activator content is limited to a value of less than 15% by weight, preferably less than 10% by weight. This type of formulation is particularly interesting in the case of capture of C0 2 in industrial fumes, or the treatment of natural gas containing C0 2 above the desired specification.
  • the primary or secondary amine function of the activator makes it possible to increase the capture kinetics of C0 2 by ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine, in order to reduce the size equipment.
  • the activator is selected from primary or secondary amines.
  • the absorbent solution of ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine contains other organic compounds.
  • the absorbent solution according to the invention may contain organic compounds which are not reactive with respect to acidic compounds (commonly called "physical solvents"), which make it possible to increase the solubility in the absorbent solution of at least one or several acidic compounds of the gaseous effluent.
  • the absorbent solution may comprise between 5% and 50% by weight of physical solvent such as alcohols, glycol ethers, lactams, N-alkylated pyrrolidones, N-alkylated piperidones, cyclotetramethylenesulfone, N-alkylformamides.
  • N-alkylacetamides N-alkylacetamides, ethers-ketones or alkyl phosphates and their derivatives.
  • it may be methanol, tetraethyleneglycoldimethylether, sulfolane or N-formyl morpholine.
  • an aqueous solution of TEDETA for deacidifying a gaseous effluent is carried out by performing an absorption step followed by a step. regeneration, for example by implementing the method of removal of acid compounds in a gaseous effluent shown schematically in Figure 2.
  • the absorption step consists in bringing the gaseous effluent 1 into contact with the absorbent solution 4.
  • the gaseous effluent 1 is introduced at the bottom of Cl, the absorbing solution is introduced at the top of Cl .
  • the column Cl is provided with means of contacting between gas and liquid, for example a ⁇ bulk packing, structured packing or distillation trays.
  • the amino functions of the TEDETA molecules of the absorbing solution react with the acidic compounds contained in the effluent so as to obtain a gaseous effluent depleted of acidic compounds 2 discharged at the top of Cl and an acid-enriched absorbent solution.
  • 3 evacuated at the bottom of Cl to be regenerated.
  • the regeneration step consists in particular in heating and, optionally, in expanding, the absorbent solution enriched in acidic compounds in order to release the acidic compounds in gaseous form.
  • the absorbent solution enriched in acidic compounds 3 is introduced into the heat exchanger E1, where it is heated by the stream 6 coming from the regeneration column C2.
  • the heated solution at the outlet of El is introduced into the regeneration column C2.
  • the regeneration column C2 is equipped with internal contacting between gas and liquid, for example trays, loose or structured packings.
  • the bottom of column C2 is equipped with a reboiler which provides the heat necessary for regeneration by vaporizing a fraction of the absorbing solution.
  • the acid compounds are released in gaseous form and discharged at the top of C2 through the pipe 7.
  • the solution regenerated absorbent 6, that is to say depleted of acidic compounds 6 is cooled in El, then recycled to the column Cl through line 4.
  • a demixing phenomenon for an absorbent solution of TEDETA that is to say a separation of liquid-liquid phases within the absorbing solution, can be induced by an increase of the temperature, for charge rates of variables of the absorbent solution.
  • Said demixing phenomenon can be controlled by the choice of the operating conditions of the process and / or the composition of the absorbent solution.
  • the demixing phenomenon can be exploited, in a variant of the process according to the invention (an example of which is described with reference to FIG. 3), by carrying out a fractional regeneration of the absorbing solution.
  • the absorbent compound according to the invention has the particularity of being able to be used in a deacidification process with fractional regeneration by heating, for example as described by document F 2,898,284
  • an absorbent solution for deacidifying a gaseous effluent is carried out schematically by performing an absorption step, followed by a step of heating the absorbent solution, followed by a liquid-liquid separation step of the absorbent solution, followed by a regeneration step, for example by implementing the process for removing the acidic compounds in a gaseous effluent schematized in FIG.
  • the absorption step consists in bringing the gaseous effluent 1 into contact with the absorbent solution 4.
  • the gaseous effluent 1 is introduced at the bottom of Cl
  • the absorbent solution is introduced at the top of the Cl.
  • the column C1 is provided with means for contacting gas and liquid, for example loose packing, structured packing or distillation trays.
  • the amino functions of the TEDETA molecules of the absorbing solution react with the acidic compounds contained in the effluent so as to obtain a gaseous effluent depleted of acidic compounds 2 discharged at the top of Cl and an acid-enriched absorbent solution.
  • 3 evacuated at the bottom of Cl to be regenerated.
  • the regeneration step consists in particular in heating and, optionally, in expanding, the absorbent solution enriched in acidic compounds in order to release the acidic compounds in gaseous form.
  • the absorbent solution enriched in acidic compounds 3 is introduced into the heat exchanger E1, where it is heated by the stream 6 coming from the regeneration column C2.
  • the heated solution at the outlet of El is introduced into the flask BS1.
  • the heating step consists in raising the temperature of the absorbent solution 3, passing through the heat exchanger E1, to obtain a two-phase solution 5.
  • the aqueous solution of TEDETA has the property of forming two separable phases when heated above a threshold temperature which depends on the loading rate of acid compounds.
  • the absorbent solution is heated to a temperature above 70 ° C, preferably above 8 ° C.
  • it is heated to a temperature between 70 ° C and 110 ° C, preferably between 80 ° C and 100 ° C.
  • a separation of the solution 2 into two liquid fractions is carried out in the flask BS1: a fraction enriched in acidic compounds and a fraction depleted in acidic compounds.
  • the liquid-liquid separation step consists of separating the two phases obtained following the heating step by sending the fraction rich in acid compounds 12 to the regeneration column C2, and returning the lean fraction 14 to the column
  • the fraction 14 can be cooled in the exchanger E3 before being introduced into the column C1 through the conduit 4.
  • a gaseous fraction 13 can be released during the separation step and discharged at the head of the balloon. MB1.
  • the regeneration column C2 is equipped with internal contacting between gas and liquid, for example trays, loose or structured packings.
  • the bottom of column C2 is equipped with a reboiler which provides the heat necessary for regeneration by vaporizing a fraction of the absorbing solution.
  • the acid compounds are released in gaseous form and discharged at the top of C2 through line 7.
  • the regenerated absorbent solution 6, that is to say depleted in acidic compounds 6 is cooled in El, optionally in E2, and then recycled to column C1 via line 4.
  • the deacidification processes according to the invention in particular the processes described with reference to FIGS. 2 and 3, can be operated according to the operating conditions described below.
  • the absorption step of the acidic compounds, in the Cl column can be carried out at a pressure of between 1 bar and 120 bar, preferably between 20 bar and 100 bar for the treatment of a natural gas, preferably between 1 and 3 bars for the treatment of industrial fumes, and at a temperature between 30 ° C and 90 ° C.
  • the regeneration in column C2 can be carried out at a pressure of between 1 bar and 5 bar, or even up to 10 bar and at a temperature of between 100 ° C. and 180 ° C., preferably between 130 ° C. and 170 ° C.
  • two aqueous solutions of ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine are used, respectively at 30% by weight and 50% by weight.
  • the performance of these absorbent solutions is compared to that of an aqueous solution of MonoEthanolAmine at 30% by weight, which constitutes the reference solvent for a post-combustion fume capture application, and that of an aqueous solution of 40% of methyl-ethanolamine. % weight which constitutes the reference absorbent solution for a natural gas treatment application.
  • An absorption test is carried out on aqueous amine solutions in a perfectly stirred closed reactor whose temperature is controlled by a control system. For each solution, the absorption is carried out in a liquid volume of 50 cm 3 by injections of pure CO 2 from a reserve. The aqueous amine solution is previously drawn under vacuum before any CO 2 injection. The pressure of the gas phase in the reactor is then monitored as a function of time following the CO 2 injections. An overall material balance in the gas phase makes it possible to measure the charging rate of the absorbent solution, a corresponding to the number of moles acid gas absorbed by the ⁇ 2 ⁇ solution divided by the number of moles of amine of the absorbent solution n a m in e-
  • This example shows the significant loading rates that can be obtained thanks to an absorbent solution according to the invention, comprising 30 and 50% by weight of ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine, especially for low partial pressures of acid gases. . It is also possible to compare the capacity of the absorbent solution, not in terms of feed rate, but in mole of CO 2 per kilogram of aqueous amine solution (mol / kg), which is a more meaningful quantity for the process, since sets the flow rates of absorbent solution in the unit.
  • the number of mol C o2 / kg is expressed from the charge rate a by the following relation:
  • [A] is the concentration of amine in weight%, and M is the molar mass of the amine.
  • liquid-liquid phase separation can occur (demixing phenomenon ).
  • the conditions (concentration, operating conditions of pressure and temperature) in which demixing occurs for a given absorbent solution are determined by laboratory tests (perfectly stirred gas-liquid reactors).
  • the formulation can then be used in a deacidification process with fractional regeneration by heating, as described with reference to FIG. 3.
  • An absorbent solution based on ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine is particularly suitable for this type of process because it allows rapid liquid-liquid phase separation.
  • a solvent composed of ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine at the level of 30 or 50% by weight is monophasic.
  • a solvent composed of ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine at a level of 30 or 50% by weight loaded under the conditions mentioned above can become diphasic for a temperature greater than 60 °. C, and can be used in a deacidification process with fractional regeneration.
  • These two absorbent solutions in a conventional implementation (FIG 2), already have increased performance compared to the reference absorbent solutions that are MEA and MDEA (see Example 1).
  • the two TEDETA-based absorbent solutions are contacted at a total pressure of 1 bar with a gas having a CO 2 partial pressure of 0.1 bar at 40 ° C. and then in a second stage are heated through a heat exchanger at a temperature of 90 ° C, at which temperature is achieved a relaxation, either at 1 bar total or 2.5 bar total.
  • the absorbent solution can be monophasic or diphasic. If the absorbing solution is two-phase, then a liquid-liquid phase separation can be carried out in order to relieve the regeneration step as proposed by the process described with reference to FIG. 3.
  • the table below presents the various cases of figure, indicating the reduction of flow of absorbent solution to the regenerator.
  • the molecule of ⁇ , ⁇ , ⁇ ', ⁇ '-tetraethyldiethylenetriamine has the particularity of being resistant to degradation that may occur in a deacidification unit.
  • the table below gives the degradation rate TD of the absorbing solution, under different conditions, for a duration of 15 days, defined by the equation below:
  • [Friend] ° where [Amine] is the concentration of amine in the sample of degraded absorbent solution, and [Amine] 0 is the concentration of amine initially present in the sample of non-degraded absorbent solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

The invention relates to the removal of acid compounds in a gaseous effluent in an absorption process using an aqueous solution of Ν,Ν,Ν',Ν'-tetraethyl diethylenetriamine. The invention can be advantageously used for processing natural gas and gases of industrial origin.

Description

SOLUTION ABSORBANTE A BASE DE Ν,Ν,Ν',Ν'- ABSORBENT SOLUTION BASED ON Ν, Ν, Ν ', Ν'-
TÉTRAÉTHYLDIÉTHYLÈNETRIAMINE ET PROCÉDÉ D'ELIMINATION DE COMPOSES ACIDES D'UN EFFLUENT GAZEUX TETRAETHYLDIETHYLENETRIAMINE AND METHOD FOR REMOVING ACIDIC COMPOUNDS FROM A GASEOUS EFFLUENT
La présente invention concerne la capture de composés acides (H2S, C02, COS, CS2, mercaptans, ...) contenus dans un gaz au moyen d'une triamine particulière, la Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine, sous forme d'une solution aqueuse absorbante. L'invention s'applique avantageusement au traitement du gaz naturel et de gaz d'origine industrielle. The present invention relates to the capture of acidic compounds (H 2 S, C0 2 , COS, CS 2 , mercaptans, etc.) contained in a gas by means of a particular triamine, Ν, Ν, Ν ', Ν'. -Tetraethyldiethylenetriamine, in the form of an absorbent aqueous solution. The invention is advantageously applicable to the treatment of natural gas and gas of industrial origin.
Afin de limiter le phénomène de réchauffement climatique, le dioxyde de carbone est extrait des fumées de combustion en vue d'être séquestré dans un réservoir souterrain . Dans le cas du gaz naturel, la teneur en dioxyde de carbone et en hydrogène sulfureux est réduite pour , des raisons de toxicités, pour améliorer le pouvoir calorifique du gaz et, éventuellement, pour permettre la liquéfaction du gaz naturel pour transport par bateau. In order to limit the phenomenon of global warming, carbon dioxide is extracted from combustion fumes in order to be sequestered in an underground reservoir. In the case of natural gas, the content of carbon dioxide and hydrogen sulphide is reduced, for reasons of toxicity, to improve the calorific value of the gas and possibly to allow the liquefaction of natural gas for transport by ship.
On utilise couramment des procédés d'absorption mettant en oeuvre une solution aqueuse d'amine, pour retirer les composés acides (notamment H2S, mercaptans, C02, COS, CS2) présents dans un gaz. Le gaz est purifié par mise en contact avec la solution absorbante, puis la solution absorbante est régénérée thermiquement. Absorption processes employing an aqueous amine solution are commonly used to remove the acidic compounds (in particular H 2 S, mercaptans, CO 2 , COS, CS 2 ) present in a gas. The gas is purified by contact with the absorbent solution, and the absorbent solution is thermally regenerated.
Les solutions absorbantes couramment utilisées aujourd'hui sont les solutions aqueuses d'alcanolamine primaire, secondaire ou tertiaire, éventuellement en association avec un solvant physique. On peut citer par exemple le document FR 2 820 430 qui propose des procédés de désacidification d'effluents gazeux. On peut aussi citer le document US 6 852 144 qui décrit une méthode d'élimination des composés acides des hydrocarbures. La méthode utilise une solution absorbante eau-méthyldiéthanolamine ou eau- triéthanolamine contenant une forte proportion d'un composé appartenant au groupe suivant : piperazine et/ou méthylpiperazine et/ou morpholine. Par exemple, dans le cas du captage du C02, le C02 absorbé réagit avec l'alcanolamine présente en solution selon une réaction exothermique réversible, bien connue de l'homme du métier et conduisant à la formation d'hydrogénocarbonates, de carbonates et/ou de carbamates, permettant une élimination du C02 dans le gaz à traiter. Absorbent solutions commonly used today are aqueous solutions of primary, secondary or tertiary alkanolamine, optionally in combination with a physical solvent. For example, document FR 2 820 430 can be cited which proposes processes for deacidification of gaseous effluents. No. 6,852,144, which describes a method for eliminating the acidic compounds of hydrocarbons. The method uses a water-methyldiethanolamine or water-triethanolamine absorbent solution containing a high proportion of a compound belonging to the following group: piperazine and / or methylpiperazine and / or morpholine. For example, in the case of C0 2 capture, the absorbed C0 2 reacts with the alkanolamine present in solution according to a reversible exothermic reaction, well known to those skilled in the art and leading to the formation of hydrogenocarbonates, carbonates and or carbamates, allowing elimination of C0 2 in the gas to be treated.
De même, pour l'élimination de l'H2S dans le gaz à traiter, l'H2S absorbé réagit avec l'alcanolamine présente en solution selon une réaction exothermique réversible, bien connue de l'homme du métier et conduisant à la formation d'hydrogénosulfure. Similarly, for the removal of H 2 S in the gas to be treated, the absorbed H 2 S reacts with the alkanolamine present in solution according to a reversible exothermic reaction, well known to those skilled in the art and leading to the formation of hydrogen sulfide.
Un aspect primordial des opérations de traitement de gaz ou fumées industrielles par solution absorbante réside dans la régénération de l'agent de séparation. En fonction du type d'absorption (physique et/ou chimique), on effectue généralement une régénération par détente, et/ou par distillation et par entraînement par un gaz vaporisé appelé "gaz de strippage". An essential aspect of the operations of treatment of gases or industrial fumes by absorbent solution resides in the regeneration of the separating agent. Depending on the type of absorption (physical and / or chemical), regeneration is generally carried out by expansion, and / or by distillation and by entrainment by a vaporized gas called "stripping gas".
Une des limitations des solutions absorbantes couramment utilisées aujourd'hui est une consommation énergétique nécessaire pour la régénération de la solution absorbante qui est trop importante. Ceci est particulièrement vrai dans le cas où la pression partielle de composés acides est faible. Par exemple, pour une solution aqueuse de MonoEthanolAmine à 30% poids utilisée pour le captage du C02 en post-combustion dans une fumée de centrale thermique, où la pression partielle de C02 est de l'ordre de 0,12 bar, l'énergie de régénération représente 3,7 GJ environ par tonne de C02 captée. Une telle consommation énergétique représente un coût opératoire considérable pour le procédé de captage du C02. One of the limitations of the absorbent solutions commonly used today is an energy consumption necessary for the regeneration of the absorbent solution which is too important. This is particularly true in the case where the partial pressure of acidic compounds is low. For example, for a 30% weight aqueous solution of MonoEthanolAmine used for the capture of C0 2 in post-combustion in a thermal power plant smoke, where the partial pressure of C0 2 is of the order of 0.12 bar, The regeneration energy represents about 3.7 GJ per tonne of CO 2 captured. Such energy consumption represents a considerable operating cost for the C0 2 capture process.
Il est bien connu de l'homme du métier que l'énergie nécessaire à la régénération par distillation d'une solution absorbante chimique peut se décomposer selon trois postes différents : l'énergie nécessaire pour réchauffer la solution absorbante entre la tête et le fond du régénérateur, l'énergie nécessaire pour abaisser la pression partielle de composés acides dans le régénérateur par vaporisation d'un gaz de strippage, et enfin l'énergie nécessaire pour casser la liaison chimique entre l'amine et le composé acide. It is well known to those skilled in the art that the energy required for the regeneration by distillation of a chemical absorbent solution can be broken down into three different positions: the energy required to heat the absorbing solution between the head and the bottom of the regenerator, the energy required to lower the partial pressure of acidic compounds in the regenerator by vaporizing a stripping gas, and finally the energy necessary to break the chemical bond between the amine and the acid compound.
Ces deux premiers, postes sont inversement proportionnels aux débits de solution absorbante qu'il est nécessaire de faire circuler dans l'unité pour réaliser une spécification donnée. Pour diminuer la consommation énergétique associée à la régénération de la solution absorbante, il est donc préférable de maximiser la capacité cyclique de la solution absorbante.  These first two stations are inversely proportional to the flow rates of absorbent solution that it is necessary to circulate in the unit to achieve a given specification. To reduce the energy consumption associated with the regeneration of the absorbent solution, it is therefore preferable to maximize the cyclic capacity of the absorbent solution.
Le dernier poste concerne l'énergie à fournir pour casser la liaison créée entre l'amine utilisée et le composé acide. Pour diminuer la consommation énergétique associée à la régénération de la solution absorbante, il est donc préférable de minimiser l'enthalpie de liaison ΔΗ. Néanmoins, il n'est pas évident de trouver une aminé présentant une forte capacité cyclique et une faible enthalpie de réaction. La meilleur aminé d'un point de vue énergétique est donc celle qui permet d'avoir le meilleur compromis entre une forte capacité cyclique Δα et une faible enthalpie de liaison ΔΗ.  The last item concerns the energy to be supplied to break the bond created between the amine used and the acid compound. To reduce the energy consumption associated with the regeneration of the absorbent solution, it is therefore preferable to minimize the ΔΗ linkage enthalpy. Nevertheless, it is not obvious to find an amine having a high cyclic capacity and a low reaction enthalpy. The best amine from an energy point of view is therefore that which has the best compromise between a strong cyclic capacity Δα and a low enthalpy of connection ΔΗ.
Il est difficile de trouver un composé absorbant permettant d'éliminer les composés acides dans tout type d'effluent, et permettant au procédé de désacidification de fonctionner à moindre coût. De manière surprenante, la demanderesse a découvert que la Ν,Ν,Ν',Ν'-TetraEthylDiEthylèneTriAmine, couramment nommée TEDETA, présente un intérêt important dans l'ensemble des procédés de traitement d'effluents gazeux pour l'élimination de composés acides. It is difficult to find an absorbent compound for removing acidic compounds in any type of effluent, and allowing the deacidification process to operate at a lower cost. Surprisingly, the Applicant has discovered that Ν, Ν, Ν ', Ν'-TetraEthylDiEthyleneTriAmine, commonly named TEDETA, is of great interest in all processes for treating gaseous effluents for the removal of acidic compounds.
De manière générale la présente invention propose un procédé d'élimination des composés acides contenus dans un effluent gazeux dans lequel on effectue une étape d'absorption des composés acides par mise en contact de P effluent gazeux avec une solution absorbante comportant : In general, the present invention proposes a process for removing acidic compounds contained in a gaseous effluent in which an absorption step of the acidic compounds is carried out by contacting the gaseous effluent with an absorbent solution comprising:
- de l'eau, et  - water, and
- de la Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine de formule :
Figure imgf000004_0001
Selon l'invention, la solution absorbante peut comporter entre 10% et 90% poids de Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine et entre 10% et 90% poids d'eau.
- Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine of formula:
Figure imgf000004_0001
According to the invention, the absorbent solution may comprise between 10% and 90% by weight of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine and between 10% and 90% by weight of water.
La solution absorbante peut comporter entre 0,5% et 20% poids d'un activateur choisi parmi les aminés comprenant au moins une fonction aminé primaire ou secondaire.  The absorbent solution may comprise between 0.5% and 20% by weight of an activator chosen from amines comprising at least one primary or secondary amine function.
L'activateur peut être choisi dans le groupe constitué par :  The activator may be selected from the group consisting of:
MonoEthanolAmine,  monoEthanolAmine,
AminoEthylEthanolAmine,  aminoethylethanolamine
DiGlycolAmine,  diglycolamine,
Pipérazine,  piperazine
N-(2-HydroxyEthyl)Pipérazine,  N- (2-hydroxyethyl) piperazine,
N-Methyl Pipérazine,  N-Methyl piperazine,
N-EthylPipérazine,  N-ethylpiperazine
N-PropylPipérazine,  N-propylpiperazine,
1,6-HexaneDiAmine,  1,6-hexanediamine,
1,1,9,9-TetraMéthylDiPropylèneTriamine,  1,1,9,9-TetraMéthylDiPropylèneTriamine,
Morpholine,  morpholine
Pipéridine,  piperidine
3-(MethylAmino)PropylAmine,  3- (methylamino) propylamine,
N-MethylBenzylAmine,  N-methylbenzylamine
TetraHydroIsoquinoline.  Tetrahydroisoquinoline.
La solution absorbante peut comporter en outre un solvant physique. The absorbent solution may further comprise a physical solvent.
Après l'étape d'absorption on obtient un effluent gazeux appauvri en composés acides et une solution absorbante chargée en composés acides, et on peut effectuer au moins une étape de régénération de la solution absorbante chargée en composés acides. After the absorption step, a gaseous effluent depleted in acidic compounds and an absorbent solution loaded with acid compounds is obtained, and at least one regeneration step of the absorbent solution loaded with acid compounds can be carried out.
A l'étape de régénération, on peut effectuer au moins les opérations suivantes :  In the regeneration step, at least the following operations can be performed:
a) on chauffe la solution absorbante chargée en composés acides pour provoquer la formation de deux phases liquides, puis" a) the absorbent solution loaded with acidic compounds is heated to cause the formation of two liquid phases, then "
b) on sépare la solution absorbante chargée en composés acides en deux fractions liquides par séparation de phase pour obtenir une fraction enrichie en composés acides et une fraction appauvrie en composés acides, puis b) separating the absorbent solution loaded with acidic compounds into two liquid fractions by phase separation to obtain a fraction enriched in acidic compounds and a depleted fraction in acidic compounds, then
c) on recycle ladite fraction appauvrie en composés acides pour former au moins une partie de la solution absorbante mise en œuvre à l'étape d'absorption.  c) recycling said depleted fraction of acidic compounds to form at least a portion of the absorbent solution implemented in the absorption step.
De plus, à l'étape de régénération, on peut effectuer l'opération d) suivante :  In addition, in the regeneration step, the following operation d) can be performed:
d) on régénère ladite fraction enrichie en composés acides pour obtenir une fraction régénérée, et  d) regenerating said fraction enriched in acidic compounds to obtain a regenerated fraction, and
dans ce cas à l'opération c), on peut recycler la fraction appauvrie en composés acides et la fraction régénérée pour former au moins une partie ladite solution absorbante mise en œuvre à l'étape d'absorption. in this case in step c), the depleted fraction can be recycled to acidic compounds and the regenerated fraction to form at least a portion of said absorbent solution implemented at the absorption step.
A l'opération a), on peut chauffer la solution absorbante chargée en composés acides à une température comprise entre 70°C et 110°C.  In step a), the absorbent solution loaded with acidic compounds can be heated at a temperature between 70 ° C and 110 ° C.
Le procédé selon l'invention peut être mis en œuvre pour traiter l'un des effluents gazeux suivants : le gaz naturel, les gaz de synthèse, les fumées de combustion, les gaz de raffinerie, les gaz obtenus en queue du procédé Claus, les gaz de fermentation de biomasse, les gaz de cimenterie, les fumées d'incinérateur. Par exemple, l'effluent gazeux est une fumée de combustion ayant une pression partielle en C02 inférieure à 200 mbar. The process according to the invention can be implemented to treat one of the following gaseous effluents: natural gas, synthesis gases, combustion fumes, refinery gases, gases obtained at the bottom of the Claus process, Biomass fermentation gas, cement gas, incinerator fumes. For example, the gaseous effluent is a combustion smoke having a CO 2 partial pressure of less than 200 mbar.
La présente invention concerne également une solution absorbante pour absorber des composés acides contenus dans un effluent gazeux, comportant une solution aqueuse de Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine. The present invention also relates to an absorbent solution for absorbing acidic compounds contained in a gaseous effluent, comprising an aqueous solution of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine.
La solution absorbante peut comporter entre 10% et 90% poids de Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine et entre 10% et 90% poids d'eau.  The absorbent solution may comprise between 10% and 90% by weight of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine and between 10% and 90% by weight of water.
La solution absorbante peut comporter en outre entre 0,5% et 20% poids d'un activateur choisi parmi les aminés comprenant au moins une fonction aminé primaire ou secondaire.  The absorbent solution may further comprise between 0.5% and 20% by weight of an activator chosen from amines comprising at least one primary or secondary amine function.
L'activateur peut être choisi dans le groupe formé par :  The activator can be chosen from the group formed by:
MonoEthanolAmine, .  MonoEthanolAmine,.
AminoEthylEthanolAmine,  aminoethylethanolamine
DiGlycolAmine,  diglycolamine,
Pipérazine, N-(2-HydroxyEthyl)Pipérazine, piperazine N- (2-hydroxyethyl) piperazine,
N-MethylPipérazine,  N-methyl piperazine,
N-EthylPipérazine,  N-ethylpiperazine
N-PropylPipérazine,  N-propylpiperazine,
1,6-HexaneDiAmine,  1,6-hexanediamine,
1,1,9,9-TetraMéthylDiPropylèneTriamine,  1,1,9,9-TetraMéthylDiPropylèneTriamine,
Morpholine,  morpholine
Pipéridine,  piperidine
3-(MethylAmino)PropylAmine,  3- (methylamino) propylamine,
N-MethylBenzylAmine,  N-methylbenzylamine
TetraHydroIsoquinoline.  Tetrahydroisoquinoline.
La solution absorbante peut comporter en outre un solvant physique. The absorbent solution may further comprise a physical solvent.
L'utilisation de la TEDETA pour absorber les composés acides, tels que le C02, l'H2S, le COS, le CS2 et les mercaptans, contenus dans un gaz permet de limiter le débit de solution absorbante utilisée, de part sa forte capacité, notamment à faible pression partielle de composés acides. Par ailleurs, cette aminé a une enthalpie de réaction relativement faible. Enfin, dans une mise en œuvre particulière, les débits de solution absorbante peuvent encore être réduits, diminuant encore les coûts associés à la régénération du solvant. The use of TEDETA to absorb acidic compounds, such as C0 2 , H 2 S, COS, CS 2 and mercaptans, contained in a gas makes it possible to limit the flow of absorbent solution used, from its high capacity, especially at low partial pressure of acidic compounds. Moreover, this amine has a relatively low reaction enthalpy. Finally, in a particular embodiment, the flow rates of absorbent solution can be further reduced, further reducing the costs associated with the regeneration of the solvent.
D'autres caractéristiques et avantages de l'invention seront mieux compris et apparaîtront clairement à la lecture de la description faite, ci-après, en se référant aux figures annexées et données à titre d'exemple parmi lesquelles :  Other features and advantages of the invention will be better understood and will become clear from reading the description given hereinafter with reference to the appended figures given by way of example, among which:
- la figure 1 représente la formule développée de la Ν,Ν,Ν',Ν'- Tétraéthyldiéthylènetriamine,  FIG. 1 represents the structural formula of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine,
- la figure 2 représente un schéma de principe d'un procédé de traitement d'effluents contenant des composés acides,  FIG. 2 represents a schematic diagram of a process for the treatment of effluents containing acidic compounds,
- la figure 3 représente un schéma de principe d'un procédé de traitement d'effluents _ contenant des composés acides avec régénération fractionnée par chauffage.  FIG. 3 represents a schematic diagram of an effluent treatment process containing acidic compounds with fractional regeneration by heating.
La Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine, ou TEDETA, présente un intérêt dans l'ensemble des procédés de traitement de gaz acides (gaz naturel, fumées de combustion, etc.), dans une composition aqueuse de solution absorbante. La présente invention propose d'éliminer les composés acides d'un effluent gazeux en mettant en oeuvre un composé absorbant en solution aqueuse. Le composé absorbant selon l'invention, la Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine, présente une capacité d'absorption des gaz acides (C02, H2S, COS, S02, CS2 et mercaptans) plus importante que les alcanolamines classiquement utilisées. En effet, la Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine présente la particularité d'avoir des taux de charge a = ngaz acide/namine (a désignant le ratio entre le nombre de mole de composés acides absorbés ngaz acide par une portion de solution absorbante par rapport au nombre de mole de d'amine namine contenu dans ladite portion de solution absorbante) très importants à de faibles pressions partielles de composés acides, par exemple à une pression partielle en C02 inférieure à 0,2 bar, comparativement aux alcanolamines classiquement utilisées. L'utilisation d'une solution absorbante aqueuse selon l'invention permet d'économiser sur le coût d'investissement et les coûts de régénération d'une unité de désacidification dans des applications de traitement de gaz naturel et de captage du C02 contenu dans une fumée de combusion. The Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine, or TEDETA, is of interest in all acid gas treatment processes (natural gas, combustion fumes, etc.), in an aqueous absorbent solution composition. The present invention proposes to eliminate the acidic compounds of a gaseous effluent by using an absorbent compound in aqueous solution. The absorbent compound according to the invention, Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine, has an absorption capacity of acid gases (CO 2 , H 2 S, COS, SO 2 , CS 2 and mercaptans) which is larger. than the alkanolamines conventionally used. Indeed, Ν, Ν, Ν 'Ν'-Tétraéthyldiéthylènetriamine has the particularity to have a loading rate = n acid gas / n mine (a denotes the ratio between the number of moles of acid compounds absorbed n gas acid by a portion of absorbent solution relative to the number of moles of amine amine contained in said portion of absorbing solution) very important at low partial pressures of acidic compounds, for example at a CO 2 partial pressure of less than 0 , 2 bar, compared to conventionally used alkanolamines. The use of an aqueous absorbent solution according to the invention makes it possible to save on the investment cost and the regeneration costs of a deacidification unit in natural gas treatment and C0 2 capture applications contained in a smoke of combusion.
Synthèse de la Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine Synthesis of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine
La TEDETA mise en oeuvre selon l'invention peut être préparé selon différentes voies de synthèse connues de l'homme du métier, qui sont schématisée ci-dessous : The TEDETA used according to the invention may be prepared according to various synthetic routes known to those skilled in the art, which are diagrammed below:
Figure imgf000008_0001
Pour plus de détails sur le mode de synthèse de la TEDETA, on peut se référer aux documents suivants :
Figure imgf000008_0001
For more details on how TEDETA is synthesized, refer to the following documents:
• Bulletin de la Société Chimique de France (1969), (4), 1161-70 ;  • Bulletin of the Chemical Society of France (1969), (4), 1161-70;
• Journal of the American Chemical Society (1954), 76, 303-5.  • Journal of the American Chemical Society (1954), 76, 303-5.
Nature des effluents gazeux Nature of gaseous effluents
Les solutions absorbantes selon l'invention peuvent être mises en oeuvre pour désacidifier les effluents gazeux suivants : le gaz naturel, les gaz de synthèse, les fumées de combustion, les gaz de raffinerie, les gaz obtenus en queue du procédé Claus, les gaz de fermentation de biomasse, les gaz de cimenterie, les fumées d'incinérateur. Ces effluents gazeux contiennent un ou plusieurs des composés acides suivants : le C02, l'H2S, des mercaptans, du COS, du CS2. The absorbent solutions according to the invention can be used to deacidify the following gaseous effluents: natural gas, synthesis gases, combustion fumes, refinery gases, gases obtained at the bottom of the Claus process, the gases of fermentation of biomass, cement gas, incinerator fumes. These gaseous effluents contain one or more of the following acidic compounds: C0 2 , H 2 S, mercaptans, COS, CS 2 .
La présente invention est particulièrement bien adaptée au captage de C02 contenu dans les fumées de combustion. Les fumées de combustion sont produites notamment par la combustion d'hydrocarbures, de biogaz, de charbon dans une chaudière ou pour une turbine à gaz de combustion, par exemple dans le but de produire de l'électricité. A titre d'illustration, une unité de captage du C02 selon l'invention a pour objectif de réduire de 90% les émissions de C02 d'une centrale thermique. Ces fumées ont généralement une température comprise entre 20 et 60°C, une pression comprise entre 1 et 5 bars et peuvent comporter entre 50 et 80 % d'azote, entre 5 et 40 % de dioxyde de carbone, entre 1 et 20 % d'oxygène, et quelques impuretés comme des SOx et des NOx, s'ils n'ont pas été éliminés en aval du procédé de désacidification. En particulier, la TEDETA est bien adaptée pour absorber le C02 contenu dans des fumées de combustion comportant une faible pression partielle de C02/ par exemple une pression partielle de C02 inférieure à 200 mbars. The present invention is particularly well adapted to the capture of CO 2 contained in the combustion fumes. The combustion fumes are produced in particular by the combustion of hydrocarbons, biogas, coal in a boiler or for a combustion gas turbine, for example for the purpose of producing electricity. By way of illustration, a C0 2 capture unit according to the invention aims to reduce by 90% the C0 2 emissions of a thermal power station. These fumes generally have a temperature of between 20 and 60 ° C., a pressure of between 1 and 5 bar and may comprise between 50 and 80% of nitrogen, between 5 and 40% of carbon dioxide, and between 1 and 20% of carbon dioxide. oxygen, and some impurities such as SOx and NOx, if they have not been removed downstream of the deacidification process. In particular, TEDETA is well adapted to absorb C0 2 contained in combustion fumes comprising a low partial pressure of CO 2 / for example a CO 2 partial pressure of less than 200 mbar.
L'invention est également bien adaptée pour désacidifier un gaz naturel. Le gaz naturel est constitué majoritairement d'hydrocarbures gazeux, mais peut contenir plusieurs des composés acides suivants : le C02, l'H2S, des mercaptans principalement le méthylmercaptan (CH3SH), l'éthylmercaptan. (CH3CH2SH) et les propylmercaptans (CH3CH2CH2SH), du COS, du CS2. La teneur de ces composés acides est très variable et peut aller jusqu'à 40% pour le C02 et l'H2S. La température du gaz naturel peut être comprise entre 20°C et 100°C. La pression du gaz naturel à traiter peut être comprise entre 10 et 120 bars. L'invention peut être mise en oeuvre pour atteindre des spécifications généralement imposées sur le gaz désacidifié, qui sont 2% de C02, voire 50 ppm de C02 pour réaliser ensuite une liquéfaction du gaz naturel et de 4 ppm d'H2S, et 10 à 50 ppm volume de •soufre total. The invention is also well suited to deacidify a natural gas. The natural gas consists mainly of gaseous hydrocarbons, but can contain several of the following acidic compounds: CO 2 , H 2 S, mercaptans mainly methyl mercaptan (CH 3 SH), ethyl mercaptan. (CH 3 CH 2 SH) and propyl mercaptans (CH 3 CH 2 CH 2 SH), COS, CS 2 . The content of these compounds acid is very variable and can be up to 40% for C0 2 and H 2 S. The temperature of the natural gas can be between 20 ° C and 100 ° C. The pressure of the natural gas to be treated may be between 10 and 120 bar. The invention can be implemented to achieve specifications generally imposed on the deacidified gas, which are 2% of C0 2 , or even 50 ppm of CO 2 to subsequently liquefaction of natural gas and 4 ppm H 2 S and 10 to 50 ppm total sulfur volume.
Composition de la solution aqueuse absorbante Composition of the absorbent aqueous solution
La Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine peut être en concentration variable, par exemple comprise entre 10% et 90% poids, de préférence entre 20% et 6Û% poids, de manière très préférée entre 30% et 50% poids, dans la solution aqueuse. . The Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine may be in a variable concentration, for example between 10% and 90% by weight, preferably between 20% and 60% by weight, very preferably between 30% and 50% by weight. in the aqueous solution. .
La solution absorbante peut contenir entre 10% et 90% poids d'eau, de préférence entre 40% et 80% poids d'eau, de manière très préférée entre 50% et 70% poids d'eau. The absorbent solution may contain between 10% and 90% by weight of water, preferably between 40% and 80% by weight of water, very preferably between 50% and 70% by weight of water.
Dans un mode de réalisation, la Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine peut être formulée avec un âctivateur. De préférence, cet activateur est choisi parmi une autre aminé, contenant au moins une fonction aminé primaire ou secondaire. La solution absorbante selon l'invention peut contenir au moins 0,5% poids d'activateur. La concentration en activateur dans la solution aqueuse de TEDETA peut varier jusqu'à une concentration maximale de 20% poids. De préférence, la teneur en activateur est limitée à une valeur inférieure à 15% poids, de préférence inférieure à 10% poids. Ce type de formulation est particulièrement intéressante dans le cas du captage du C02 dans les fumées industrielles, ou le traitement du gaz naturel contenant du C02 au dessus de la spécification désirée. En effet, pour ce type d'applications, la fonction aminé primaire ou secondaire de l'activateur permet d'augmenter la cinétique de captage du C02 par la Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine, afin de réduire la taille des équipements. De préférence, l'activateur est choisi parmi les aminés primaires ou secondaires. Une liste non exhaustive de composés pouvant être utilisés comme activateurs est donnée ci-dessous : In one embodiment, Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine may be formulated with an activator. Preferably, this activator is chosen from another amine, containing at least one primary or secondary amine function. The absorbent solution according to the invention may contain at least 0.5% by weight of activator. The concentration of activator in the aqueous solution of TEDETA can vary up to a maximum concentration of 20% by weight. Preferably, the activator content is limited to a value of less than 15% by weight, preferably less than 10% by weight. This type of formulation is particularly interesting in the case of capture of C0 2 in industrial fumes, or the treatment of natural gas containing C0 2 above the desired specification. Indeed, for this type of application, the primary or secondary amine function of the activator makes it possible to increase the capture kinetics of C0 2 by Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine, in order to reduce the size equipment. Preferably, the activator is selected from primary or secondary amines. A non-exhaustive list of compounds that can be used as activators is given below:
- MonoEthanolAmine,  - MonoEthanolAmine,
- AminoEthylEthanolAmine,  - AminoEthylEthanolAmine,
- DiGlycolAmine,  - DiGlycolAmine,
- Pipérazine,  - Piperazine,
- N-(2-HydroxyEthyl)Pipérazine,  N- (2-Hydroxyethyl) piperazine,
- N-(2-AminoEthyl)Pipérazine,  N- (2-Aminoethyl) piperazine,
- N-MethylPipérazine,  - N-MethylPiperazine,
N-EthylPipérazine,  N-ethylpiperazine
- N-PropylPipérazine,  - N-PropylPiperazine,
- 1,6-HexaneDiAmine,  1,6-HexaneDiAmine,
- 1,1,9,9-TetraMéthylDiPropylèheTriamine,  1,1,9,9-TetraMethylDiPropylenetriamine,
Morpholine,  morpholine
- Pipéridine,  - Piperidine,
- 3-(MetylAmino)PropylAmine,  3- (MetylAmino) PropylAmine,
- N-MethylBenzylAmine,  - N-MethylBenzylAmine,
- TétraHydroIsoquinoline.  - TetraHydroIsoquinoline.
Dans un mode de réalisation, la solution absorbante à base de Ν,Ν,Ν',Ν'- Tétraéthyldiéthylènetriamine contient d'autres composés organiques. Ainsi, la solution absorbante selon l'invention peut contenir des composés organiques non réactifs vis à vis des composés acides (couramment nommé "solvants physiques"), qui permettent d'augmenter la solubilité, dans la solution absorbante, d'au moins un ou plusieurs composés acides de l'effluent gazeux. Par exemple, la solution absorbante peut comporter entre 5% et 50% poids de solvant physique tel que des alcools, des éthers de glycol, des lactames, des pyrrolidones N-alkylées, des pipéridones N-alkylées, des cyclotétraméthylènesulfone, des N-alkylformamides, des N-alkylacétamides, des ethers-cétones ou des phosphates d'alkyles et leur dérivés. A titre d'exemple et de façon non limitative, il peut s'agir du méthanol, du tetraethylèneglycoldimethylether, du sulfolane ou de la N-formyl morpholine. Procédé d'élimination des composés acides dans un effluent gazeux (Fig. 2) In one embodiment, the absorbent solution of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine contains other organic compounds. Thus, the absorbent solution according to the invention may contain organic compounds which are not reactive with respect to acidic compounds (commonly called "physical solvents"), which make it possible to increase the solubility in the absorbent solution of at least one or several acidic compounds of the gaseous effluent. For example, the absorbent solution may comprise between 5% and 50% by weight of physical solvent such as alcohols, glycol ethers, lactams, N-alkylated pyrrolidones, N-alkylated piperidones, cyclotetramethylenesulfone, N-alkylformamides. , N-alkylacetamides, ethers-ketones or alkyl phosphates and their derivatives. By way of example and without limitation, it may be methanol, tetraethyleneglycoldimethylether, sulfolane or N-formyl morpholine. Process for removing acidic compounds in a gaseous effluent (Fig. 2)
La mise en oeuvre d'une solution aqueuse de TEDETA pour désacidifier un effluent gazeux est réalisée en effectuant une étape d'absorption suivie d'une étape . de régénération, par exemple en mettant en œuvre le procédé d'élimination des composés acides dans un effluent gazeux schématisé par la figure 2. The implementation of an aqueous solution of TEDETA for deacidifying a gaseous effluent is carried out by performing an absorption step followed by a step. regeneration, for example by implementing the method of removal of acid compounds in a gaseous effluent shown schematically in Figure 2.
En référence à la figure 2, l'étape d'absorption consiste à mettre en contact l'effluent gazeux 1 avec la solution absorbante 4. L'effluent gazeux 1 est introduit en fond de Cl, la solution absorbante est introduite en tête de Cl. La colonne Cl est munie de moyen de mise en contact entre gaz et liquide, par exemple un garnissage^ vrac, un garnissage structuré ou des plateaux de distillation. Lors du contact, les fonctions aminés des molécules de TEDETA de la solution absorbante réagissent avec les composés acides contenus dans l'effluent de manière à obtenir un effluent gazeux appauvri en composés acides 2 évacuée en tête de Cl et une solution absorbante enrichie en composés acides 3 évacuée en fond de Cl pour être régénérée. With reference to FIG. 2, the absorption step consists in bringing the gaseous effluent 1 into contact with the absorbent solution 4. The gaseous effluent 1 is introduced at the bottom of Cl, the absorbing solution is introduced at the top of Cl . The column Cl is provided with means of contacting between gas and liquid, for example a ^ bulk packing, structured packing or distillation trays. During contact, the amino functions of the TEDETA molecules of the absorbing solution react with the acidic compounds contained in the effluent so as to obtain a gaseous effluent depleted of acidic compounds 2 discharged at the top of Cl and an acid-enriched absorbent solution. 3 evacuated at the bottom of Cl to be regenerated.
L'étape de régénération consiste notamment à chauffer et, éventuellement à détendre, la solution absorbante enrichie en composés acides afin de libérer les composés acides sous forme gazeuse. La solution absorbante enrichie en composés acides 3 est introduite dans l'échangeur de chaleur El, où elle est réchauffée par le flux 6 provenant de la colonne de régénération C2. La solution 5 réchauffée en sortie de El est introduite dans la colonne de régénération C2.  The regeneration step consists in particular in heating and, optionally, in expanding, the absorbent solution enriched in acidic compounds in order to release the acidic compounds in gaseous form. The absorbent solution enriched in acidic compounds 3 is introduced into the heat exchanger E1, where it is heated by the stream 6 coming from the regeneration column C2. The heated solution at the outlet of El is introduced into the regeneration column C2.
La colonne de régénération C2 est équipée d'internes de mise en contact entre gaz et liquide, par exemple des plateaux, des garnissages en vrac ou structurés. Le fond de la colonne C2 est équipée d'un rebouilleur qui apporte la chaleur nécessaire à la régénération en vaporisant une fraction de la solution absorbante. Dans la colonne C2, sous l'effet de la mise en contact de la solution absorbante arrivant par 5 avec la vapeur produite par le rebouilleur, les composés acides sont libérés sous forme gazeuse et évacués en tête de C2 par le conduit 7. La solution absorbante régénérée 6, c'est-à-dire appauvrie en composés acides 6 est refroidi dans El, puis recyclée dans la colonne Cl par le conduit 4. Un phénomène de démixtion pour une solution absorbante de TEDETA, c'est-à-dire une séparation de phases liquide-liquide au sein de la solution absorbante, peut être induit par une augmentation de la température, pour des taux de charges de variables de la solution absorbante. Ledit phénomène de démixtion peut être contrôlé par le choix des conditions opératoires du procédé et/ou de la composition de la solution absorbante. The regeneration column C2 is equipped with internal contacting between gas and liquid, for example trays, loose or structured packings. The bottom of column C2 is equipped with a reboiler which provides the heat necessary for regeneration by vaporizing a fraction of the absorbing solution. In the column C2, under the effect of contacting the absorbent solution arriving by 5 with the vapor produced by the reboiler, the acid compounds are released in gaseous form and discharged at the top of C2 through the pipe 7. The solution regenerated absorbent 6, that is to say depleted of acidic compounds 6 is cooled in El, then recycled to the column Cl through line 4. A demixing phenomenon for an absorbent solution of TEDETA, that is to say a separation of liquid-liquid phases within the absorbing solution, can be induced by an increase of the temperature, for charge rates of variables of the absorbent solution. Said demixing phenomenon can be controlled by the choice of the operating conditions of the process and / or the composition of the absorbent solution.
Le phénomène de démixtion peut être exploité, dans une variante du procédé selon l'invention (dont un exemple est décrit en référence à la figure 3), en effectuant une régénération fractionnée de la solution absorbante. The demixing phenomenon can be exploited, in a variant of the process according to the invention (an example of which is described with reference to FIG. 3), by carrying out a fractional regeneration of the absorbing solution.
Procédé d'élimination des composés acides dans un effluent gazeux avec régénération fractionnée par chauffage (Fig . 3) Process for removing acidic compounds in a gaseous effluent with fractional regeneration by heating (Fig. 3)
Le composé absorbant selon l'invention, la Ν,Ν,Ν', Ν'- Tétraéthyldiéthylènetriamine, présente la particularité de pouvoir être mis en œuvre dans un procédé de désacidification avec régénération fractionnée par chauffage, par exemple tel que décrit par le document F 2 898 284 The absorbent compound according to the invention, Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine, has the particularity of being able to be used in a deacidification process with fractional regeneration by heating, for example as described by document F 2,898,284
La mise en oeuvre d'une solution absorbante pour désacidifier un effluent gazeux est réalisée de façon schématique en effectuant une étape d'absorption, suivie d'une étape de chauffage de la solution absorbante, suivie d'une étape de séparation liquide-liquide de la solution absorbante, suivie d'une étape de régénération, par exemple en mettant en œuvre le procédé d'élimination des composés acides dans un effluent gazeux schématisé par la figure 3.  The implementation of an absorbent solution for deacidifying a gaseous effluent is carried out schematically by performing an absorption step, followed by a step of heating the absorbent solution, followed by a liquid-liquid separation step of the absorbent solution, followed by a regeneration step, for example by implementing the process for removing the acidic compounds in a gaseous effluent schematized in FIG.
En référence à la figure 3, l'étape d'absorption consiste à mettre en contact l'effluent gazeux 1 avec la solution absorba nte 4. L'effluent gazeux 1 est introduit en fond de Cl, la solution absorbante est introduite en tête de Cl . La colonne Cl est munie de moyen de mise en contact entre gaz et liquide, par exemple un garnissage vrac, un garnissage structuré ou des plateaux de distillation . Lors du contact, les fonctions aminés des molécules de TEDETA de la solution absorbante réagissent avec les composés acides contenus dans l'effluent de manière à obtenir un effluent gazeux appauvri en composés acides 2 évacuée en tête de Cl et une solution absorbante enrichie en composés acides 3 évacuée en fond de Cl pour être régénérée. L'étape de régénération consiste notamment à chauffer et, éventuellement à détendre, la solution absorbante enrichie en composés acides afin de libérer les composés acides sous forme gazeuse. La solution absorbante enrichie en composés acides 3 est introduite dans l'échangeur de chaleur El, où elle est réchauffée par le flux 6 provenant de la colonne de régénération C2. La solution 5 réchauffée en sortie de El est introduite dans le ballon BS1. With reference to FIG. 3, the absorption step consists in bringing the gaseous effluent 1 into contact with the absorbent solution 4. The gaseous effluent 1 is introduced at the bottom of Cl, the absorbent solution is introduced at the top of the Cl. The column C1 is provided with means for contacting gas and liquid, for example loose packing, structured packing or distillation trays. During contact, the amino functions of the TEDETA molecules of the absorbing solution react with the acidic compounds contained in the effluent so as to obtain a gaseous effluent depleted of acidic compounds 2 discharged at the top of Cl and an acid-enriched absorbent solution. 3 evacuated at the bottom of Cl to be regenerated. The regeneration step consists in particular in heating and, optionally, in expanding, the absorbent solution enriched in acidic compounds in order to release the acidic compounds in gaseous form. The absorbent solution enriched in acidic compounds 3 is introduced into the heat exchanger E1, where it is heated by the stream 6 coming from the regeneration column C2. The heated solution at the outlet of El is introduced into the flask BS1.
L'étape de chauffage consiste à élever la température de la solution absorbante 3, en passant dans l'échangeur thermique El, pour obtenir une solution diphasique 5. Selon l'invention, la solution aqueuse de TEDETA présente la propriété de former deux phases séparables lorsqu'elle est chauffée au-delà d'une température seuil qui dépend du taux de charge en composés acides. De préférence, on chauffe la solution absorbante à une température supérieure à 70°C, de préférence supérieure à 8D°C. Par exemple, on chauffe à une température comprise entre 70°C et 110°C, de préférence entre 80°C et 100°C. Puis on effectue une séparation de la solution 2 en deux fractions liquides dans le ballon BS1 : une fraction enrichie en composés acides et une fraction appauvrie en composés acides. L'étape de séparation liquide-liquide consiste à séparer les deux phases obtenues suite à l'étape de chauffage en envoyant la fraction riche en composés acides 12 à la colonne de régénération C2, et renvoyant la fraction pauvre en composés acides 14 à la colonne d'absorption Cl. La fraction 14 peut être refroidie dans l'échangeur E3 avant d'être introduite dans la colonne Cl par le conduit 4. Une fraction gazeuse 13 peut être libérée lors de l'étape de séparation et évacuée en tête du ballon BS1.  The heating step consists in raising the temperature of the absorbent solution 3, passing through the heat exchanger E1, to obtain a two-phase solution 5. According to the invention, the aqueous solution of TEDETA has the property of forming two separable phases when heated above a threshold temperature which depends on the loading rate of acid compounds. Preferably, the absorbent solution is heated to a temperature above 70 ° C, preferably above 8 ° C. For example, it is heated to a temperature between 70 ° C and 110 ° C, preferably between 80 ° C and 100 ° C. Then a separation of the solution 2 into two liquid fractions is carried out in the flask BS1: a fraction enriched in acidic compounds and a fraction depleted in acidic compounds. The liquid-liquid separation step consists of separating the two phases obtained following the heating step by sending the fraction rich in acid compounds 12 to the regeneration column C2, and returning the lean fraction 14 to the column The fraction 14 can be cooled in the exchanger E3 before being introduced into the column C1 through the conduit 4. A gaseous fraction 13 can be released during the separation step and discharged at the head of the balloon. MB1.
La colonne de régénération C2 est équipée d'internes de mise en contact entre gaz et liquide, par exemple des plateaux, des garnissages en vrac ou structurés. Le fond de la colonne C2 est équipé d'un rebouilleur qui apporte la chaleur nécessaire à la régénération en vaporisant une fraction de la solution absorbante. Dans la colonne C2, sous l'effet de la mise en contact de , la solution absorbante arrivant par 12 avec la vapeur produite par le rebouilleur, les composés acides sont libérés sous forme gazeuse et évacués en tête de C2 par le conduit 7. La solution absorbante régénérée 6, c'est-à-dire appauvrie en composés acides 6 est refroidie dans El, éventuellement dans E2, puis recyclée dans la colonne Cl par le conduit 4. Les procédés de désacidifications selon l'invention, notamment les procédés décrits en références aux figures 2 et 3, peuvent fonctionner selon les conditions opératoires décrites ci-après. The regeneration column C2 is equipped with internal contacting between gas and liquid, for example trays, loose or structured packings. The bottom of column C2 is equipped with a reboiler which provides the heat necessary for regeneration by vaporizing a fraction of the absorbing solution. In column C2, under the effect of the contacting of the absorbent solution arriving at 12 with the vapor produced by the reboiler, the acid compounds are released in gaseous form and discharged at the top of C2 through line 7. The regenerated absorbent solution 6, that is to say depleted in acidic compounds 6 is cooled in El, optionally in E2, and then recycled to column C1 via line 4. The deacidification processes according to the invention, in particular the processes described with reference to FIGS. 2 and 3, can be operated according to the operating conditions described below.
L'étape d'absorption des composés acides, dans la colonne Cl, peut être réalisée à une pression comprise entre 1 bar et 120 bars, de préférence entre 20 bars et 100 bars pour le traitement d'un gaz naturel, de préférence entre 1 et 3 bars pour le traitement des fumées industrielles, et à une température comprise entre 30°C et 90°C.  The absorption step of the acidic compounds, in the Cl column, can be carried out at a pressure of between 1 bar and 120 bar, preferably between 20 bar and 100 bar for the treatment of a natural gas, preferably between 1 and 3 bars for the treatment of industrial fumes, and at a temperature between 30 ° C and 90 ° C.
La régénération, dans la colonne C2, peut être effectuée à une pression comprise entre 1 bar et 5 bars, voire jusqu'à 10 bars et à une température comprise entre 100°C et 180°C, de préférence comprise entre 130 °C et 170 °C. The regeneration in column C2 can be carried out at a pressure of between 1 bar and 5 bar, or even up to 10 bar and at a temperature of between 100 ° C. and 180 ° C., preferably between 130 ° C. and 170 ° C.
Exemples : Examples:
Dans les exemples présentés ci-après, on utilise deux solutions aqueuse de Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine, respectivement à 30% poids et 50% poids. Les performances de ces solutions absorbantes sont comparées à celle d'une solution aqueuse de MonoEthanolAmine à 30% poids, qui constitue le solvant de référence pour une application de captage des fumées en postcombustion, et à celle d'une solution aqueuse de MéthylDiEthanolAmine à 40% poids qui constitue la solution absorbante de référence pour une application de traitement du gaz naturel. In the examples presented below, two aqueous solutions of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine are used, respectively at 30% by weight and 50% by weight. The performance of these absorbent solutions is compared to that of an aqueous solution of MonoEthanolAmine at 30% by weight, which constitutes the reference solvent for a post-combustion fume capture application, and that of an aqueous solution of 40% of methyl-ethanolamine. % weight which constitutes the reference absorbent solution for a natural gas treatment application.
Exemple 1 : Capacité de captage Example 1: Capture Capacity
On réalise un test d'absorption sur des solutions aqueuses d'amine au sein d'un réacteur fermé parfaitement agité et dont la température est contrôlée par un système de régulation. Pour chaque solution, l'absorption est réalisée dans un volume liquide de 50 cm3 par des injections de C02 pur à partir d'une réserve. La solution aqueuse d'amine est préalablement tirée sous vide avant toute injection de C02. La pression de la phase gaz dans le réacteur est alors suivie en fonction du temps suite aux injections de C02. Un bilan matière global sur la phase gaz permet de mesurer le taux de charge a de la solution absorbante, a correspondant au nombre de moles gaz acide absorbées par la solution η∞2 divisé par le nombre de moles d'amine de la solution absorbante namine- An absorption test is carried out on aqueous amine solutions in a perfectly stirred closed reactor whose temperature is controlled by a control system. For each solution, the absorption is carried out in a liquid volume of 50 cm 3 by injections of pure CO 2 from a reserve. The aqueous amine solution is previously drawn under vacuum before any CO 2 injection. The pressure of the gas phase in the reactor is then monitored as a function of time following the CO 2 injections. An overall material balance in the gas phase makes it possible to measure the charging rate of the absorbent solution, a corresponding to the number of moles acid gas absorbed by the ∞2 η solution divided by the number of moles of amine of the absorbent solution n a m in e-
A titre d'exemple, on compare les taux de charge obtenus à 40°C pour différentes pressions partielles de C02 entre deux solutions absorbantes selon l'invention, une solution absorbante de MonoEthanolAmine à 30% en poids et une solution absorbante de MéthylDiEthanolAmine à 40% en poids : Taux de charge a = n n By way of example, the charge levels obtained at 40 ° C. for different partial pressures of CO 2 are compared between two absorbent solutions according to the invention, a 30% by weight absorbent solution of MonoEthanolAmine and an absorbent solution of MethylDiEthanolAmin. 40% by weight: Charge rate a = nn
Aminé Concentration T (°C) ΡΡ∞2 — ΡΡ∞2 - PPc02 - Amine Concentration T (° C) ΡΡ∞2 - ΡΡ∞2 - PPc02 -
0,1 bar 0,3 bar 1 bar 0.1 bar 0.3 bar 1 bar
TE D ETA 30 % poids 40 1,7 1,9 2  TE D ETA 30% weight 40 1.7 1.9 2
TE D ETA 50 % poids 40 1,4 1,7 X  TE D ETA 50% weight 40 1.4 1.4 1.7 X
MEA 30 % poids 40 0,52 0,55 0,6  MEA 30% weight 40 0.52 0.55 0.6
MDEA 40 %pds 40 0,3 0,5 0,7 nota : la valeur x pour TEDETA 30% poids à PPCo2= l bar n'a pas été mesurée. MDEA 40% wt 40 0.3 0.5 0.7 note: the value x for TEDETA 30% wt. At PP C o2 = 1 bar was not measured.
Cet exemple montre les taux de charge importants qui peuvent être obtenus grâce à une solution absorbante selon l'invention, comprenant 30 et 50 % poids de Ν,Ν,Ν',Ν'-Tétraéthyldiéthyiènetriamine, notamment pour des faibles pressions partielles de gaz acides. On peut par ailleurs comparer la capacité de la solution absorbante, non pas en taux de charge, mais en mole de C02 par kilo de solution aqueuse d'amine (molc kg), qui est une grandeur plus parlante pour le procédé, car elle fixe les débits de solution absorbante dans l'unité. Le nombre de molCo2/kg s'exprime à partir du taux de charge a par la relation suivante : This example shows the significant loading rates that can be obtained thanks to an absorbent solution according to the invention, comprising 30 and 50% by weight of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine, especially for low partial pressures of acid gases. . It is also possible to compare the capacity of the absorbent solution, not in terms of feed rate, but in mole of CO 2 per kilogram of aqueous amine solution (mol / kg), which is a more meaningful quantity for the process, since sets the flow rates of absorbent solution in the unit. The number of mol C o2 / kg is expressed from the charge rate a by the following relation:
α · 10 · ί]  α · 10 · ί]
molC02/kg = - molC02 / kg = -
M M
où [A] est la concentration d'amine en % poids, et M la masse molaire de l'aminé. where [A] is the concentration of amine in weight%, and M is the molar mass of the amine.
Figure imgf000017_0001
Figure imgf000017_0001
Là encore, en tenant compte de la concentration et de la masse molaire de l'aminé, on voit qu'une solution absorbante à base de TEDETA est plus performante qu'une solution absorbante à base de MEA ou de MDEA. Si l'on rentre plus dans le détail, on remarque qu'une solution de TEDETA à 30% poids et une solution de MEA à 30% poids on des capacités de captage du C02, en mol de C02 par kilogramme de solution absorbante, quasi-équivalente. Néanmoins, la TEDETA a une enthalpie de réaction vis à vis du C02 qui est de l'ordre de 70 kJ/mol, alors que la MEA a une enthalpie de réaction vis à vis du C02 de l'ordre de 90kJ/mol. L'utilisation de la TEDETA permet donc un meilleur compromis entre capacité de captage du C02, et enthalpie de réaction. Again, taking into account the concentration and the molar mass of the amine, it is seen that an absorbent solution based on TEDETA is more efficient than an absorbent solution based on MEA or MDEA. If we go into more detail, we note that a solution of 30% by weight TEDETA and a MEA solution at 30% weight or C0 2 capture capacities, in mol of C0 2 per kilogram of absorbing solution , almost equivalent. Nevertheless, TEDETA has an enthalpy of reaction with respect to C0 2 which is of the order of 70 kJ / mol, whereas MEA has an enthalpy of reaction with respect to C0 2 of the order of 90 kJ / mol. . The use of TEDETA thus allows a better compromise between C0 2 capture capacity and reaction enthalpy.
Exemple 2 : Séparation de phase liquide-liquide Example 2 Liquid-Liquid Phase Separation
Suivant la composition de la solution absorbante à base de Ν,Ν,Ν',Ν'- Tétraéthyldiéthylènetriamine, la composition du gaz à traiter et la température de la solution absorbante, une séparation de phase liquide-liquide peut se produire (phénomène de démixtion). On détermine par des tests au laboratoire (réacteurs parfaitement agités gaz-liquide) les conditions (concentration, conditions opératoires de pression et de température) dans lesquelles se produit la démixtion pour une solution absorbante donnée. La formulation peut alors être mise en œuvre dans un procédé de désacidification avec régénération fractionnée par chauffage, tel que décrit en référence à la figure 3. Une solution absorbante à base de Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine est particulièrement adaptée à ce type de procédé, car elle permet une séparation de phase liquide- liquide rapide. Depending on the composition of the absorbent solution based on Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine, the composition of the gas to be treated and the temperature of the absorbent solution, liquid-liquid phase separation can occur (demixing phenomenon ). The conditions (concentration, operating conditions of pressure and temperature) in which demixing occurs for a given absorbent solution are determined by laboratory tests (perfectly stirred gas-liquid reactors). The formulation can then be used in a deacidification process with fractional regeneration by heating, as described with reference to FIG. 3. An absorbent solution based on Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine is particularly suitable for this type of process because it allows rapid liquid-liquid phase separation.
Par exemple, à 40°C et pour une pression partielle de C02 de 0,1 bar, un solvant composé par de la Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine à hauteur de 30 ou 50% poids est monophasique. For example, at 40 ° C. and for a CO 2 partial pressure of 0.1 bar, a solvent composed of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine at the level of 30 or 50% by weight is monophasic.
Néanmoins, par élévation de température, un solvant composé par de la Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine à hauteur de 30 ou 50% poids chargé dans les conditions citées ci-dessus peut devenir diphasique pour une température supérieure à 60°C, et peut être mis en oeuvre dans un procédé de désacidification avec régénération fractionnée. Pour illustrer d'avantage ces propos, on peut prendre le cas de deux solutions absorbantes, l'une à 30%pds et l'autre à 50%pds de Ν,Ν,Ν',Ν'- Tétraéthyldiéthylènetriamine. Ces deux solutions absorbantes, dans une mise en œuvre classique (Fig. 2), ont déjà des performances accrues par rapport aux solutions absorbantes de référence que sont le MEA et la MDEA (cf. exemple 1). Les deux solutions absorbantes à base de TEDETA sont mise en contact à une pression totale de 1 bar avec un gaz ayant une pression partielle de C02 de 0,1 bar, à 40°C, puis dans une deuxième étape sont chauffée au travers d'un échangeur de chaleur à une température de 90°C, température à laquelle on réalise une détente, soit à 1 bar total, soit à 2,5 bar total. Dans ces conditions, la solution absorbante peut être monophasique ou diphasique. Si la solution absorbante est diphasique, on peut réaliser alors une séparation de phase liquide-liquide, afin de soulager l'étape de régénération comme proposé par le procédé décrit en référence à la figure 3. Le tableau ci-dessous présente les différents cas de figure, en indiquant la réduction de débit de solution absorbante au régénérateur. Nevertheless, by raising the temperature, a solvent composed of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine at a level of 30 or 50% by weight loaded under the conditions mentioned above can become diphasic for a temperature greater than 60 °. C, and can be used in a deacidification process with fractional regeneration. To further illustrate these remarks, one can take the case of two absorbent solutions, one at 30% by weight and the other at 50% by weight of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine. These two absorbent solutions, in a conventional implementation (FIG 2), already have increased performance compared to the reference absorbent solutions that are MEA and MDEA (see Example 1). The two TEDETA-based absorbent solutions are contacted at a total pressure of 1 bar with a gas having a CO 2 partial pressure of 0.1 bar at 40 ° C. and then in a second stage are heated through a heat exchanger at a temperature of 90 ° C, at which temperature is achieved a relaxation, either at 1 bar total or 2.5 bar total. Under these conditions, the absorbent solution can be monophasic or diphasic. If the absorbing solution is two-phase, then a liquid-liquid phase separation can be carried out in order to relieve the regeneration step as proposed by the process described with reference to FIG. 3. The table below presents the various cases of figure, indicating the reduction of flow of absorbent solution to the regenerator.
Figure imgf000019_0001
Figure imgf000019_0001
Exemple 3 : Stabilité Example 3: Stability
La molécule de Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine présente la particularité d'être résistante aux dégradations qui peuvent se produire dans une unité de désacidification. Le tableau ci-dessous donne le taux de dégradation TD de la solution absorbante, dans différentes conditions, pour une durée de 15 jours, défini par l'équation ci-dessous : The molecule of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine has the particularity of being resistant to degradation that may occur in a deacidification unit. The table below gives the degradation rate TD of the absorbing solution, under different conditions, for a duration of 15 days, defined by the equation below:
[A min e] - [A min e]° [A min e] - [A min e] °
TD(%)  TD (%)
[Ami e]° où [Aminé] est la concentration en aminé dans l'échantillon de solution absorbante dégradée, et [Aminé]0 est la concentration d'amine initialement présente dans l'échantillon de solution absorbante non dégradée. [Friend] ° where [Amine] is the concentration of amine in the sample of degraded absorbent solution, and [Amine] 0 is the concentration of amine initially present in the sample of non-degraded absorbent solution.
Figure imgf000020_0001
Figure imgf000020_0001
Cet exemple montre que l'utilisation de la Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine, - comme aminé dans une solution absorbante permet d'obtenir un taux de dégradation équivalent à celui des solutions absorbantes à base d'amines de l'art antérieur (MéthylDiEthanolAmine et MonoEthanolAmine). This example shows that the use of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine, as an amine in an absorbent solution makes it possible to obtain a degradation rate equivalent to that of the amine-based absorbent solutions of the prior art (MethylDiEthanolAmine and MonoEthanolAmine).

Claims

Revendications claims
1. Procédé d'élimination des composés acides contenus dans un effluent gazeux dans lequel on effectue une étape d'absorption des composés acides par mise en contact de l'effluent gazeux avec une solution absorbante comportant : 1. A process for eliminating the acidic compounds contained in a gaseous effluent in which an absorption step of the acidic compounds is carried out by contacting the gaseous effluent with an absorbent solution comprising:
- de l'eau, et  - water, and
- de ',Ν'-Tétraéthyldiéthylènetriàmine de formule :
Figure imgf000021_0001
- ', Ν'-tetraethyldiethylenetriamine of formula:
Figure imgf000021_0001
2. Procédé selon la revendication 1, dans lequel la solution absorbante comporte entre 10% et 90% poids de Ν,Ν,Ν',Ν'- Tétraéthyldiéthylènetriamine et entre 10% et 90% poids d'eau. 2. The method of claim 1, wherein the absorbent solution comprises between 10% and 90% by weight of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine and between 10% and 90% by weight of water.
3. Procédé selon l'une des revendications précédentes, dans lequel la solution absorbante comporte entre 0,5% et 20% poids d'un activateur choisi parmi les aminés comprenant au moins une fonction aminé primaire ou secondaire. 3. Method according to one of the preceding claims, wherein the absorbent solution comprises between 0.5% and 20% by weight of an activator selected from amines comprising at least one primary or secondary amine function.
4. Procédé selon la revendication 3, dans lequel l'activateur est choisi dans le groupe constitué par : The method of claim 3, wherein the activator is selected from the group consisting of:
- MonoEthano Amine,  - MonoEthano Amine,
- AminoEthylEthanolAmine,  - AminoEthylEthanolAmine,
- DiGlycolAmine,  - DiGlycolAmine,
- Pipérazine,  - Piperazine,
- N-(2-HydroxyEthyl)Pipérazine,  N- (2-Hydroxyethyl) piperazine,
- N-MethylPipérazine,  - N-MethylPiperazine,
- N-EthylPipérazine,  - N-EthylPiperazine,
- N-PropylPipérazine,  - N-PropylPiperazine,
1,6-HexaneDiAmine,  1,6-hexanediamine,
- 1,1,9,9-TetraMéthylDiPropylèneTriamine, s 1,1,9,9-TetraMethylDiPropylene triamine, s
21  21
- Morpholine, - Morpholine,
- Pipéridine,  - Piperidine,
- 3-(MethylAmino)PropylAmine,  3- (MethylAmino) PropylAmine,
- N-MethylBenzylAmine,  - N-MethylBenzylAmine,
- TetraHydroIsoquinoline.  - TetraHydroIsoquinoline.
5. Procédé selon l'une des revendications précédentes, dans lequel après l'étape d'absorption on obtient un effluent gazeux appauvri en composés acides et une solution absorbante chargée en composés acides, et on effectue au moins une étape de régénération de la solution absorbante chargée en composés acides. 5. Method according to one of the preceding claims, wherein after the absorption step is obtained a gaseous effluent depleted of acidic compounds and an absorbent solution loaded with acidic compounds, and performs at least one step of regeneration of the solution. absorbent charged with acidic compounds.
6. Procédé selon la revendication 6, dans lequel à l'étape de régénération on effectue au moins les opérations suivantes : The method according to claim 6, wherein at the regeneration step at least the following operations are performed:
a) on chauffe la solution absorbante chargée en composés acides pour provoquer la formation de deux phases liquides, puis  a) the absorbent solution loaded with acid compounds is heated to cause the formation of two liquid phases, then
¾>) on sépare la solution absorbante chargée en composés acides en deux fractions liquides par séparation de phase pour obtenir une fraction enrichie en composés acides et une fraction appauvrie en composés acides, puis  ¾>) the absorbent solution charged with acidic compounds is separated into two liquid fractions by phase separation to obtain a fraction enriched in acidic compounds and a fraction depleted in acidic compounds, then
c) on recycle ladite fraction appauvrie en composés acides pour former au moins une partie de la solution absorbante mise en œuvre à l'étape d'absorption.  c) recycling said depleted fraction of acidic compounds to form at least a portion of the absorbent solution implemented in the absorption step.
7. Procédé selon la revendication 6, dans lequel à l'étape de régénération on effectue au moins l'opération suivante : 7. The method of claim 6, wherein at the regeneration step is carried out at least the following operation:
d) on régénère ladite fraction enrichie en composés acides pour obtenir une fraction régénérée, et  d) regenerating said fraction enriched in acidic compounds to obtain a regenerated fraction, and
dans lequel à l'opération c), on recycle la fraction appauvrie en. composés acides et la fraction régénérée pour former au moins une partie ladite solution absorbante mise en œuvre à l'étape d'absorption.  in which in operation c), the fraction depleted in is recycled. acidic compounds and the regenerated fraction to form at least a portion of said absorbent solution implemented in the absorption step.
8. Procédé selon l'une des revendications 6 et 7, dans lequel à l'opération a), on chauffe la solution absorbante chargée en composés acides à une température comprise entre 70°C et ll0oC. 8. Method according to one of claims 6 and 7, wherein in step a), the absorbent solution loaded with acid compounds is heated at a temperature between 70 ° C and 110 o C.
9. Procédé selon l'une des revendications précédentes, dans lequel l'effluent gazeux est choisi parmi les effluents gazeux suivants : le gaz naturel, les gaz de synthèse, les fumées de combustion, les gaz de raffinerie, les gaz obtenus, en queue du procédé Claus, les gaz de fermentation de biomassè, les gaz de cimenterie, les fumées d'incinérateur. 9. Method according to one of the preceding claims, wherein the gaseous effluent is selected from the following gaseous effluents: natural gas, synthesis gas, combustion fumes, refinery gas, gas obtained, tail Claus process, biomass fermentation gases, cement gases, incinerator fumes.
10. Procédé selon l'une des revendications précédentes, dans lequel l'effluent gazeux est une fumée de combustion ayant une pression partielle en C02 inférieure à 200 mbar. 10. Method according to one of the preceding claims, wherein the gaseous effluent is a combustion smoke having a CO 2 partial pressure of less than 200 mbar.
11. Solution absorbante pour absorber des composés acides contenus dans un effluent gazeux, comportant une solution aqueuse de Ν,Ν,Ν',Ν'- Tétraéthyldiéthylènetriamine et comportant entre 0,5% et 20% poids d'un activateur choisi parmi les aminés comprenant au moins une fonction aminé primaire ou secondaire. 11. Absorbent solution for absorbing acidic compounds contained in a gaseous effluent, comprising an aqueous solution of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine and comprising between 0.5% and 20% by weight of an activator chosen from amines comprising at least one primary or secondary amine function.
12. Solution absorbante selon la revendication 11, comportant entre 10% et 90% poids de Ν,Ν,Ν',Ν'-Tétraéthyldiéthylènetriamine et entre 10% et 90%The absorbent solution according to claim 11, comprising between 10% and 90% by weight of Ν, Ν, Ν ', Ν'-tetraethyldiethylenetriamine and between 10% and 90%.
, poids d'eau. , weight of water.
13. Solution absorbante selon l'une des revendications 11 et 12, dans laquelle l'activateur est choisi dans le groupe formé par : Absorbent solution according to one of claims 11 and 12, wherein the activator is selected from the group consisting of:
- MonoEthanolAmine,  - MonoEthanolAmine,
- AminoEthylEthanolAmine,  - AminoEthylEthanolAmine,
- DiGlycolAmine,  - DiGlycolAmine,
- Pipérazine,  - Piperazine,
- N-(2-HydroxyEthyl)Pipérazine,  N- (2-Hydroxyethyl) piperazine,
- N-MethylPipérazine,  - N-MethylPiperazine,
- N-EthyiPipérazine,  - N-Ethylipiperazine,
- N-PropylPipérazine,  - N-PropylPiperazine,
- 1,6-HexaneDiAmine,  1,6-HexaneDiAmine,
1,1,9,9-TetraMéthylDiPropylèneTriamine,  1,1,9,9-TetraMéthylDiPropylèneTriamine,
- Morpholine,  - Morpholine,
Pipéridine, - 3-( ethylAmino)PropylAmine, piperidine 3- (ethylAmino) PropylAmine,
- . N-MethylBenzylAmine,  -. N-methylbenzylamine
- TetraHydroIsoquinoline.  - TetraHydroIsoquinoline.
14. Solution absorbante selon l'une des revendications 11 à 13, comportant un solvant physique. 14. Absorbent solution according to one of claims 11 to 13, comprising a physical solvent.
PCT/FR2011/000218 2010-05-06 2011-04-14 Absorbent solution based on ν,ν,ν',ν'-tetraethyl diethylenetriamine and method for removing acid compounds from a gaseous effluent WO2011138517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR10/01944 2010-05-06
FR1001944A FR2959675B1 (en) 2010-05-06 2010-05-06 ABSORBENT SOLUTION BASED ON N, N, N ', N'-TETRAETHYLDIETHYLENETRIAMINE AND PROCESS FOR REMOVING ACIDIC COMPOUNDS FROM A GASEOUS EFFLUENT

Publications (1)

Publication Number Publication Date
WO2011138517A1 true WO2011138517A1 (en) 2011-11-10

Family

ID=43063378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/000218 WO2011138517A1 (en) 2010-05-06 2011-04-14 Absorbent solution based on ν,ν,ν',ν'-tetraethyl diethylenetriamine and method for removing acid compounds from a gaseous effluent

Country Status (2)

Country Link
FR (1) FR2959675B1 (en)
WO (1) WO2011138517A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164705A1 (en) * 2017-03-06 2018-09-13 Dow Global Technologies Llc Energy efficient process for separating hydrogen sulfide from gaseous mixtures using a hybrid solvent mixture
RU2736714C1 (en) * 2017-03-03 2020-11-19 Дау Глоубл Текнолоджиз Ллк Method of separating hydrogen sulphide from gaseous mixtures using hybrid mixture of solvents
CN112957896A (en) * 2021-02-08 2021-06-15 大连理工大学 Novel aliphatic polyamine solution for capturing carbon dioxide in mixed gas and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544515A1 (en) * 1991-11-25 1993-06-02 Exxon Chemical Patents Inc. Process and apparatus for removing acid gas from a gas mixture
FR2820430A1 (en) 2001-02-02 2002-08-09 Inst Francais Du Petrole PROCESS FOR DEACIDIFYING A GAS WITH WASHING OF DESORBED HYDROCARBONS DURING THE REGENERATION OF THE SOLVENT
US6852144B1 (en) 1999-10-05 2005-02-08 Basf Aktiengesellschaft Method for removing COS from a stream of hydrocarbon fluid and wash liquid for use in a method of this type
FR2898284A1 (en) 2006-03-10 2007-09-14 Inst Francais Du Petrole PROCESS FOR DEACIDIFYING GAS BY ABSORBENT SOLUTION WITH HEATED FRACTIONAL REGENERATION.
FR2900842A1 (en) * 2006-05-10 2007-11-16 Inst Francais Du Petrole Deacidifying gaseous effluent, e.g. natural, synthesis or refinery gas, by treatment with liquid reactants and extractants in process allowing absorbent regeneration with low energy consumption
WO2008080221A1 (en) * 2006-12-28 2008-07-10 Cansolv Technologies Inc. Process for the recovery of carbon dioxide from a gas stream
EP2100906A1 (en) * 2008-03-12 2009-09-16 Recticel N.V. Flexible, hydrophilic polyurethane foam

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544515A1 (en) * 1991-11-25 1993-06-02 Exxon Chemical Patents Inc. Process and apparatus for removing acid gas from a gas mixture
US6852144B1 (en) 1999-10-05 2005-02-08 Basf Aktiengesellschaft Method for removing COS from a stream of hydrocarbon fluid and wash liquid for use in a method of this type
FR2820430A1 (en) 2001-02-02 2002-08-09 Inst Francais Du Petrole PROCESS FOR DEACIDIFYING A GAS WITH WASHING OF DESORBED HYDROCARBONS DURING THE REGENERATION OF THE SOLVENT
FR2898284A1 (en) 2006-03-10 2007-09-14 Inst Francais Du Petrole PROCESS FOR DEACIDIFYING GAS BY ABSORBENT SOLUTION WITH HEATED FRACTIONAL REGENERATION.
FR2900842A1 (en) * 2006-05-10 2007-11-16 Inst Francais Du Petrole Deacidifying gaseous effluent, e.g. natural, synthesis or refinery gas, by treatment with liquid reactants and extractants in process allowing absorbent regeneration with low energy consumption
WO2008080221A1 (en) * 2006-12-28 2008-07-10 Cansolv Technologies Inc. Process for the recovery of carbon dioxide from a gas stream
EP2100906A1 (en) * 2008-03-12 2009-09-16 Recticel N.V. Flexible, hydrophilic polyurethane foam

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BULLETIN DE LA SOCIÉTÉ CHIMIQUE DE FRANCE, no. 4, 1969, pages 1161 - 70
DALE W. MARGERUM, BARBARA L. POWELL, J. A. LUTHY: "Effect of steric hindrance in the 1,1,7,7-tetraethyldiethylenetriamine complexes of copper(II)", INORGANIC CHEMISTRY, vol. 7, no. 4, April 1968 (1968-04-01), pages 800 - 804, XP002609767, DOI: 10.1021/ic50062a036 *
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 76, 1954, pages 303 - 5

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2736714C1 (en) * 2017-03-03 2020-11-19 Дау Глоубл Текнолоджиз Ллк Method of separating hydrogen sulphide from gaseous mixtures using hybrid mixture of solvents
US10933367B2 (en) 2017-03-03 2021-03-02 Dow Global Technologies Llc Process for separating hydrogen sulfide from gaseous mixtures using a hybrid solvent mixture
WO2018164705A1 (en) * 2017-03-06 2018-09-13 Dow Global Technologies Llc Energy efficient process for separating hydrogen sulfide from gaseous mixtures using a hybrid solvent mixture
RU2745356C1 (en) * 2017-03-06 2021-03-24 Дау Глоубл Текнолоджиз Ллк Energy efficient method for separating hydrogen sulfur from gas mixtures using a mixture of hybrid solvents
US11167241B2 (en) 2017-03-06 2021-11-09 Dow Global Technologies Llc Energy efficient process for separating hydrogen sulfide from gaseous mixtures using a hybrid solvent mixture
CN112957896A (en) * 2021-02-08 2021-06-15 大连理工大学 Novel aliphatic polyamine solution for capturing carbon dioxide in mixed gas and application thereof

Also Published As

Publication number Publication date
FR2959675A1 (en) 2011-11-11
FR2959675B1 (en) 2015-07-17

Similar Documents

Publication Publication Date Title
CA2731061C (en) Absorbent solution based on n,n,n',n'-tetramethylhexane-1,6-diamine and an amine having primary or secondary amine functions, and process for removing acid compounds from a gaseous effluent
EP1656983B1 (en) Process for deacidification of a gas with an absorbing solution and fractional regeneration
EP2193833B1 (en) Method for deacidifying a gas by an absorbing solution with demixing during regeneration
FR2863910A1 (en) Removal of carbon dioxide from combustion gases, useful for controlling pollution, by scrubbing the gas with solvent, then solvent regeneration with gas injected into the regeneration column
WO2007077323A1 (en) Method for deacidifying a gas with a fractionally-regenerated absorbent solution with control of the water content of the solution
CA2783697A1 (en) Method for removing acid compounds from a gaseous effluent using a diamine-based absorbent solution
EP2512631A1 (en) Method for removing acid compounds from a gaseous effluent using a triamine-based absorbent solution
CA2856630A1 (en) Method for eliminating acid compounds from a gaseous effluent with an absorbent solution made from bis(amino-3-propyl)ethers or (amino-2-ethyl)-(amino-3-propyl)ethers
EP2776141B1 (en) Method for eliminating acidic compounds from a gaseous effluent using an absorbent solution made from dihydroxyalkylamines having a severe steric encumbrance of the nitrogen atom
WO2014001669A1 (en) Absorbent solution containing amines from the aminoalkylpiperazine family, and method for removing acid compounds from a gaseous effluent using such a solution
WO2011138517A1 (en) Absorbent solution based on ν,ν,ν',ν'-tetraethyl diethylenetriamine and method for removing acid compounds from a gaseous effluent
EP2533879A1 (en) Method for deacidifying a gas using an absorbent solution, with release of a gaseous effluent from the absorbent solution and washing of said effluent with the regenerated absorbent solution
EP2836287A1 (en) Method for processing a gas stream by absorption
EP2525895B1 (en) Integrated decarbonation and desulphurisation process of a flue gas
EP3148674A1 (en) Absorbent solution containing a mixture of 1,2-bis-(2-dimethylaminoethoxy)-ethane and 2-[2-(2- dimethylaminoethoxy)-ethoxy]-ethanol, and method for eliminating acid compounds from a gas effluent
WO2014114862A2 (en) Absorbent solution based on a tertiary or hindered amine and on a particular activator and process for removing acidic compounds from a gas effluent
WO2016193257A1 (en) Method for eliminating acid compounds from a gaseous effluent with an absorbent solution made from aminoethers such as bis-(3-dimethylaminopropoxy)-1,2-ethane
FR2916652A1 (en) Treating natural gas, comprises contacting natural gas with absorbing solution, introducing solution in column, collecting fraction and treating first and second effluent or contacting natural gas with fraction or dehydrating natural gas
FR3014101A1 (en) ABSORBENT SOLUTION BASED ON N, N, N ', N'-TETRAMETHYL-1,6-HEXANEDIAMINE AND N, N, N', N'-TETRAMETHYLDIAMINOETHER AND METHOD FOR REMOVING ACIDIC COMPOUNDS FROM A GASEOUS EFFLUENT
EP2928582A1 (en) Absorbent solution made from amines belonging to the n-alkyl-hydroxypiperidine family and method for eliminating acid compounds from a gaseous effluent with such a solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11731416

Country of ref document: EP

Kind code of ref document: A1