WO2014113860A1 - Processo de obtenção de nanopartículas biopoliméricas contendo óleo e extratos de azadirachta indica a. juss (neem), nanopartículas biopoliméricas e micropartículas em pó - Google Patents

Processo de obtenção de nanopartículas biopoliméricas contendo óleo e extratos de azadirachta indica a. juss (neem), nanopartículas biopoliméricas e micropartículas em pó Download PDF

Info

Publication number
WO2014113860A1
WO2014113860A1 PCT/BR2014/000044 BR2014000044W WO2014113860A1 WO 2014113860 A1 WO2014113860 A1 WO 2014113860A1 BR 2014000044 W BR2014000044 W BR 2014000044W WO 2014113860 A1 WO2014113860 A1 WO 2014113860A1
Authority
WO
WIPO (PCT)
Prior art keywords
neem
azadiractin
nanoparticles
oil
extracts
Prior art date
Application number
PCT/BR2014/000044
Other languages
English (en)
French (fr)
Inventor
Moacir Rossi FORIM
Maria Fátima das Graças FERNANDES DA SILVA
João Batista FERNANDES
Paulo Cesar VIEIRA
Original Assignee
Fundação Universidade Federal De São Carlos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundação Universidade Federal De São Carlos filed Critical Fundação Universidade Federal De São Carlos
Priority to US14/762,262 priority Critical patent/US9668473B2/en
Priority to MX2015009701A priority patent/MX2015009701A/es
Priority to EP14743230.6A priority patent/EP2949213A4/en
Publication of WO2014113860A1 publication Critical patent/WO2014113860A1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/12Powders or granules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/26Meliaceae [Chinaberry or Mahogany family], e.g. mahogany, langsat or neem
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/906Drug delivery

Definitions

  • the present invention belongs to the field of nanoparticle preparation processes for encapsulating Azadirachta indica (Neem) extracts and oils, more specifically, to such a process for encapsulating Neem in biopolymer matrices, colloidal suspension and powder.
  • Neem Products derived from Azadirachta indica (A. Juss) (Neem) have a prominent position in a select group of environmentally friendly natural products commercially available for insect and pest control. Neem is a plant tolerant of the harshest growing conditions, rapidly expanding around the globe. Reports in the literature identify 500 species of insects sensitive to some action of Neem extracts.
  • polymeric nanoparticles are a more sophisticated approach to agrochemical formulation and can be applied in the search for new properties for the correct use of Neem.
  • key advantages for the industry are its ability to control the rate and release conditions of active ingredients, increase solubility, reduce contact of active ingredients with rural workers, and environmental advantages such as reduced runoff rates.
  • This technology makes it possible to manipulate the properties of the outer shell of a capsule in order to control the timing of release of the active substance.
  • Several works describe the use of Neem to obtain metallic nanoparticles and to prepare powdered microparticles formulated with Neem. The works that use Neem to obtain metallic nanoparticles only use Neem in the process, however, the objective is to prepare metallic products, totally unconnected to the present process.
  • Agriculture is usually seen as consisting of three types of systems: economic, social and ecological (or environment). The three are interconnected, and the interactions between agriculture and the environment are complex. Environmental problems such as land degradation, desertification, destruction of tropical forests and the consequent decrease in wildlife and pollution of water sources are related to improper agricultural practices or intensive use of inputs.
  • Pest damage to world food production despite efforts, is estimated to still be at least one third of production.
  • extrinsic factors such as temperature, radiation, light, air (specifically oxygen, carbon dioxide and water vapors), humidity, location and time of collection and packaging also change the stability and content of active compounds.
  • the Meliaceae family has been identified as one of the most promising groups since most of its species have multiple actions in pest control.
  • the Meliaceae family one species in particular stands out, Azadirachta indica from A. Jussieu, popularly known as Nim or Neem.
  • Neem a native plant from Sri Lanka and the arid regions of the Indian subcontinent, present from India to Indonesia has been introduced throughout the tropical region of the globe. Currently, it can be found from Asian to African countries, in Australia, tropical North America, Central America and South America. Neem is a plant that has been widely used in various areas such as medicine, veterinary medicine, agriculture, pharmaceuticals, cosmetics industry, furniture, reforestation among others. It is a tree tolerant to the harshest growing conditions (high temperatures, poor and saline soils, etc.) and is one of the factors that justify its rapid worldwide expansion. Of these properties, the current major interest in research involving Neem, especially in the western world, is its insecticidal properties. Currently, about 500 insect species have been reported to be sensitive to some action on Neem extracts.
  • azadiractin (Figure 1) is the main constituent of the plant and commercial formulations.
  • Azadiractin is a limonoid that concentrates mainly on fruits, however, it can be found in lower contents throughout the plant.
  • This substance has several biosynthetic oxidations forming various oxygen-containing functional groups that tends to make this compound more reactive both chemically and biologically.
  • Figure 2 illustrates the decay curve of azadiractin.
  • Neem metabolites such as epoxide, ether, ester, conjugate systems, etc.
  • azadiractin molecule The presence of functional groups in Neem metabolites, such as epoxide, ether, ester, conjugate systems, etc., present in the azadiractin molecule are mainly responsible for its low environmental persistence and its sensitivity to photodegradation. The rapid loss of azadiractin activity limits its use in agriculture. An insecticide must be persistent enough to cause death or control of insects and pests.
  • the formulations aim to promote the convenient and safe use of a product which will not deteriorate over a period of time and to maximize the activity inherent in an active compound. More sophisticated formulations based on powerful surfactants and other additives and a better understanding of the principles of colloid and surface chemistry on how to increase formulation stability and biological activity meets operator needs, environmental safety requirements and improves activity. and persistence of the active compounds.
  • GCPF Global Crop Protection Federation
  • SL concentrated solutions
  • EC emulsifiable concentrates
  • WP wettable powders
  • SC concentrated suspensions
  • EW Oil / water emulsions
  • CS microcapsules
  • a more sophisticated approach to nanoscale pesticide formulation involves nano and micro encapsulation.
  • the ability to control and under what conditions the active ingredient is released increase solubility, reduce contact of active ingredients with rural workers, extend patent validity and environmental advantages such as reduced drainage rates.
  • This technology makes it possible to manipulate the properties of the outer shell of a capsule in order to control the timing of release of the active substance.
  • Nanoparticles can be defined as colloidal polymeric particles containing active compounds. Nanoparticles can be classified into two categories, nanocapsules and nanospheres. Nanocapsules are carrier compounds formed by an oily core coated with a polymeric wall, and the active compound may be in this core and / or adsorbed to the polymeric wall.
  • the nanospheres consist of a solid polymeric matrix without oil in its composition, the compounds being retained and / or adsorbed.
  • Both colloids are stabilized by surfactants at the particle / water interface.
  • Colloidal release systems demonstrate a large and efficient potential as a means of releasing one or a mixture of active compounds (plant extracts) at specific sites of action (vectoring systems) and controlling release rate, thus minimizing toxic effects. undesirable and improving their physicochemical stability, see Tse, G. et al., Thermodynamic prediction of active ingredient loading in polymeric microparticles. J. Control. Release 60, 77-100, 1999.
  • Biodegradation can occur in a biological system by relaxing the polymer chain, breaking the monomeric unit located at the end of the chain (erosion) or by randomly splitting a bond somewhere along the polymer chain (degradation).
  • Still another pertinent article is that of Kulkarni, ARet al., Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J. Control. Release 63, 97-105, 2000.
  • the authors describe the encapsulation of Neem oil into particles formed by glutaraldehyde meshed sodium alginate polymers. Particle diameter and encapsulation efficiency ranged from 1.01-1.68 mm to 72-90% respectively.
  • Shankar, SS et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth.
  • J. Colloid Interface Sci. 275, 496-502, 2004 describes an environmentally correct extracellular synthesis method for the production of silver and gold metal nanoparticles using Azadirachta indica leaves.
  • Tripathy, A. et al. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J. Nanopari. Res. 12, 237-246, 2010 used aqueous extracts of A. indica leaves for the production of crystalline silver nanoparticles in biomimetic processes.
  • Silver nanoparticles were also produced by Prathna, T.C. et al., Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Sur ⁇ .A: Physicochem.Eng.Aspects, 2011, doi: 10.1016 / j.colsurfa.2010.12.047, using Neem leaf extracts applied in kinetic studies.
  • Electroanalytical measurements of adenosine and adenosine-5'-triphosphate were determined by GoyaI, R.N. et al., Simultaneous Determination of Adenosine and Adenosine-5'-triphosphate at Nanogold Modified Indium Tin Oxide Electrode by Osteryoung Square-Wave Voltammetry. Electroanalysis 19, 575 - 581, 2007 using gold nanoparticles modified in biological systems as extracts of A. indica.
  • Neem powder, calcium alginate, kaolin and bentonite leaves were prepared to control the release kinetics, toxicity and properties of Thiram ® fungicide.
  • Singh, B. et al. Controlled release of thiram from neem-alginate-clay based delivery systems to manage environmental and health hazards.
  • Applied Clay Science, 47, 384-391, 2010 demonstrate an application of Neem in the preparation of particle-controlled release systems. approximately 1 mm and encapsulation efficiency for Thiram close to 100%.
  • IPI Industrial Property
  • Patent applications filed with the INPI involving the Azadirachta indica species include published Brazilian applications BR0804594-1 A2, BR0804546-1 A2, BR0702226-3 A2, BR0701347-7 A2, BR0502588-5 A2, BR0508296-0 A2, BR0000809- 5 A2, BR9307044-6 A2, BR9302976-4 A2, BR9202628-1 A2, BR0502772-1 A2, BR0109913-2 A2, BR0700034-0 A2, BR9305223-5 A2, Utility Model MU8602632-1 U2 and Brazilian Patents BR9302980- 2 B1 and BR9302981-0 B1.
  • Utility Model MU8602632-1 U2 presents an extraction technique using Neem seed micronization ball mills in the presence of organic solvents, obtaining Neem seed microparticles, in fact. , ground and micronized seeds.
  • the published Brazilian application BR0109913-2 A2 describes a solid form pesticide with Neem extract release system, free of organic solvents and completely soluble in water, formulated with saccharides (methylcellulose, sucrose) to obtain pellets.
  • U.S. Patent 6,340,484 describes saccharide pellets impregnated with Neem extracts free of organic solvents and completely soluble in water, providing stability and control over release kinetics.
  • U.S. Patent 5,856,526 discloses the preparation of azadiractin powder having a purity content of about 90% and an emulsifiable concentrate containing about 30 wt% azadiractin.
  • azadiractin powder was prepared by classical phytochemical extraction and fractionation techniques involving maceration, concentration and chromatographic separation steps and the emulsifiable concentrate prepared by dissolving the azadiractin rich fraction in organic solvents, whether or not containing emulsifiers. and sunscreens.
  • U.S. Patent 5,698,423 deals with a procedure for plant cell growth and production of azadiractin and reactors under controllable conditions.
  • U.S. Patent 6,733,802 describes a formulation for preparing a natural Neem-derived insecticide.
  • plant derived surfactants of the genera Saponaria, Quillaja, Chlorogalum, or Sapindus and antioxidants such as vitamin C, tocopherol and other derivatives of the genera Zingiber or Curcuma.
  • U.S. Patent 6,703,034 discloses a formulation for preparing Neem oil microemulsions using nonionic surfactants such as alkylphenol ethoxylates.
  • US 6,635,757 discloses insecticidal powder formulations formed of an azadiractin-containing Neem extract complex with dried cyclodextrins using a Lyophilizer or Spray-Drying, which can be dispersed in water.
  • azadiractin a composition of azadiractin, sunscreen agents (hydroquinone and anacardic acid) and salicylic acid, resulting in formulations that increase the life span of the defense mechanism of these insecticides in crops.
  • U.S. Patent 6,667,277 discloses chemically modified gums improving biological efficacy for use in various insecticidal, herbicidal or fungicidal formulations, with a number of active ingredients including solid Neem oil dispersed in aqueous medium with rapid release of biological agents.
  • U.S. Patent 5,643,351 uses molten polymers dispersed in water or organic solvents encapsulating agricultural ingredients with, for example, Neem products in the form of polymeric films.
  • polyethylene glycol and styrene oxide and propylene oxide copolymers nonionic surfactants, liquid emulsifiers, dispersing agents and ultraviolet protectors were used.
  • US 7,538,079 describes a process for producing spray-drying powder capsules formulated with inorganic salts and beneficial agents such as essential oils for perfumes, aromatherapy materials, vitamins, insect repellents, etc., which may contain detergents, polymers. sequestering agents and various oils such as citronella oil and Neem oil, applied in therapeutic or stimulatory processes.
  • U.S. Patent 5,009,886 discloses a process for producing dentifrice microparticles or microfibers formulated with Neem branch or root extracts.
  • US 7,872,067 discloses as an innovation an amphiphilic polymeric composition applied to prepare aqueous dispersed compositions of water-insoluble compounds applied in crop protection.
  • various insecticides that can be formulated is azadiractin related.
  • US 7,871,645 provides a method and composition with ion exchange resins loaded with one or more active compounds. There are several pesticides and drugs that can be adsorbed on resins among them, azadiractin.
  • U.S. Patent 7,754,655 describes the preparation of agrochemical formulations as microcapsules.
  • Microformulation consists of a particulate dispersing phase of polyurea and / or polyurethane microparticles with penetrating agents and, if appropriate, additives, said phase being poured onto a suspension of a solid agrochemical active compound, additives (colloidal protectors and emulsifiers) and Water.
  • additives colloidal protectors and emulsifiers
  • Water Water
  • U.S. Patent Nos. 7,655,599 and U.S. 7,655,597 describe agrochemical formulations based on emulsifiers and adjuvants, respectively.
  • US 7,655,599 describes a formulation suitable for various compounds such as azadiractin, based on alkoxylated ethylene diamine emulsifiers, which acts as emulsion stabilizer or crystallization inhibitor, or both. When necessary, they are incorporated in the formulation penetration enhancers, emulsifiers and ⁇ -butyrolactone.
  • U.S. Patent 7,655,597 discloses a pesticidal (insecticidal or herbicidal) composition formulated with adjuvant or additive copolymers wherein the copolymer consists of individual proportions of maleic or itaconic groups. This formulation promotes an efficiency gain when compared to the unformulated active compound and can be applied to azadiractin.
  • the formulation is composed of the active compound including azadiractin, dispersant, wetting agent, boron, water soluble carrier and smectite.
  • the present process for obtaining biopolymeric nanoparticles containing oil enriched with Azadiractha indica (A. Juss.) Extracts comprises the steps of:
  • Neem internal constituents, whether or not containing a nonionic surfactant in the aqueous dispersion medium;
  • Phase II Phase II, wherein an acetone or acetone / ethanol solution containing a previously dissolved biopolymer is slowly poured with the aid of a peristaltic pump onto the nanoemulsion of step a) under agitation to obtain a combination (Phase I + Phase II). ;
  • Phase III Phase III, wherein after a 10 minute stabilization period a third aqueous phase containing a high equilibrium surfactant is added to the combination (Phase I + Phase II) under stirring. hydrophilic-lipophilic to ensure the stability of the colloidal dispersion obtained;
  • the present provides a process for obtaining oil-containing biopolymer nanoparticles, alternatively oil enriched with Azadiractha indica (A. Juss) extracts (Neem) from a Neem extract and preparation of azadiractin-enriched oil, control of the amount of azadiractin in the raw material and formulated products and formulation of biopolymer nanoparticles with colloidal suspension extracts and Neem oil.
  • A. Juss Azadiractha indica
  • the invention also provides a process of preparing biopolymeric nanoparticles with oil and Neem extracts that successfully recovers azadiractin without demonstrating degradation steps while showing high encapsulation efficiency required to increase ultraviolet stability and dispersibility in aqueous medium.
  • the invention further provides a process of preparing biopolymeric nanoparticles with oil and Neem extracts which is easy to apply and inexpensive.
  • the invention further provides a process of preparing polymeric oil nanoparticles and Neem extracts that allows the formation of biopolymer nanocapsules, i.e. nanoscale capsules.
  • the invention further provides a process for preparing biopolymer nanocapsules with oil and Neem extracts which employs reduced amounts of surfactants.
  • the invention further provides a process for preparing biopolymeric nanoparticles with oil and Neem extracts which does not require the use of synthetic sunscreens.
  • the invention further provides a process for preparing biopolymer nanoparticles with oil and Neem extracts that provides analytical control over the content of active compounds.
  • the invention further provides a process for preparing biopolymer nanoparticles with oil and Neem extracts based on low cost commercial biodegradable polymers that do not require derivatization steps with commercial and environmental impacts.
  • the invention further provides a process for preparing biopolymeric nanoparticles with oil and Neem extracts where the small diameter of the produced nanoparticles allows greater cell penetrability, insect ingestion, plant systemic action, among others, with positive impact on biological efficiency.
  • the invention also provides colloidal oil suspensions and optionally surfactant Neem extracts with biopolymers.
  • the invention further provides biopolymer oil nanoparticles and Neem extracts for agricultural use.
  • the invention further provides powder microparticles.
  • FIGURE 1 shows the chemical structure of azadiractin limonoid.
  • FIGURE 2 is a graph showing the degradation curve of azadiractin in A. indica oils.
  • FIGURE 3 shows Colloidal Suspension Nanoparticle Chromatograms: Exempt ( Figure 3A) and with Neem Extracts ( Figure 3B).
  • FIGURE 4 shows a simplified flowchart of the process of the invention.
  • FIGURE 5 is a graph showing the pH range of the Neem nanocapsule formulation between 0 and 90 days storage at room temperature.
  • FIGURE 6 is a bar graph showing the investigation of particle diameter in formulations with different amounts and types of polymers.
  • FIGURE 7 shows photomicroscopy of PCL nanoparticles loaded with 2% (w / v) Neem oil. Magnifications: a) 10,000 X; b) 25,000 X and c) 50,000 X.
  • FIGURE 8 shows photomicroscopy of Neem nanocapsule powder microparticles. Magnifications: a) 1,000 X; b) 10,000 X and c) 50,000 X.
  • FIGURE 9 shows TG ( Figure 9A) and DTG ( Figure 9B) curves obtained for different Neem nanoparticle formulations being: A) NC-30 (PCL, isodecyl oleate); B) NC-32 (PCL, Neem oil); C) NC-34 (PCL, Neem oil and extract); D) NC-36 (Neem extract and oil) and E) NC-37 (Neem extract, isodecyl oleate).
  • FIGURE 10 shows the recovery curves of azadiractin following ultraviolet radiation from: A) Powdered Nanocapsules without Span ® 60; B) Nanocapsules powder with Span ® 60; C) Colloidal suspension nanoparticles without Span ® 60; D) Span ® 60 colloidal suspension nanoparticles; E) Neem oil and F) Neem oil protected from UV radiation for an initial Azadiractin content of 2,800.0 mg Kg "1 .
  • the process of the invention for preparing biopolymeric nanoparticles containing Azadiractha indica (A. Juss) (Neem) extracts and oil involves the preparation of such oils and extracts, biopolymers for encapsulating said oils and extracts, and optionally surfactants for the preparation of an emulsion. oily.
  • a first object of the invention is a process of preparing biopolymeric nanoparticles containing oil and extracts of Azadiractha indica (A. Juss) (Neem).
  • a second object of the invention is colloidal suspensions resulting from the present process.
  • a third object of the invention is the oil containing nanoparticles and Azadiractha indica (A. Juss) (Neem) extracts obtained by evaporation of the solvent and part of the water from said colloidal suspension.
  • a fourth object of the invention is powder microparticles resulting from spray-evaporation of colloidal suspension nanoparticles combined with a drying support ratio, including colloidal silica, without being limited thereto.
  • non-polluting and non-toxic polymers in the formation of colloidal suspensions such as biodegradable (biopolymers) and biocompatible polymers, selected from gelatin, chitosan, sodium alginate, cyclodextrins, and aliphatic polyesters.
  • biodegradable biopolymers
  • biocompatible polymers selected from gelatin, chitosan, sodium alginate, cyclodextrins, and aliphatic polyesters.
  • PLA lactate and glycolate
  • PCL poly-caprolactone
  • PHA polyhydroxyalkanoates
  • cellulose cellulose
  • cassava starch and the like.
  • Biodegradable polymers collaborate with environmental actions, as they are decomposed in the field without leaving residues.
  • PMMA polymethyl methacrylate
  • Surfactants useful for the practice of the invention include surfactants that promote a rapid hydrophilic-lipophilic balance, such as sorbitan monostearate (span®60) and polysorbate (tween®80).
  • Biological activity depends directly on the qualitative and quantitative characteristics of plant extracts, which can be controlled using techniques such as enrichment of extracts.
  • the initial task is to ensure the reproducibility of the formulation.
  • the first step to prepare the nanoparticles comprises preparing and analyzing the Neem extracts and oils used in the process, the main parameter considered being the final azadiractin content.
  • the raw material used for the production of biopolymer nanoparticles mainly comprises Neem almonds, although other parts of the plant are equally useful.
  • the extraction procedure used in the present process involves macerating Neem almonds with n-hexane followed by extraction with ethanol.
  • the oil is initially removed from almonds by diffusion of the solvent (n-hexane) through the cell walls and dissolved immediately after contact.
  • the speed of diffusion is directly proportional to a power of the diameter of the macerating particles with free circulation of the solvent, hence the importance of grinding almonds.
  • the average particle diameter of the almonds subjected to extraction is between 10 and 30 ⁇ .
  • the use of mechanical rod stirrer in the percolation process helps to micronize the almonds in smaller dimensions than those obtained in milling, favoring the diffusion process.
  • the n-hexane extraction process produces Neem oil and a solid cake as a byproduct.
  • the present analytical method can be considered selective and can distinguish the analyte response of interest from the other components of the mixture.
  • Method recovery was determined by comparing results of total azadiractin content added and quantified in colloidal suspensions prepared with different biopolymers (PCL, PHB, PMMA).
  • Azadiractin solutions stored at 4 ° C were considered stable.
  • Pretreatment is possibly the most important step in quantitative analysis. This is the critical step in chromatographic analysis, usually being the slow step and with the greatest possibility of loss. analytical in the process. This step involves the extraction of active compounds and the removal of interferent.
  • the ideal solvent should at the same time dissolve the polymer and solubilize azadiractin without equilibrium. After solubilization, the polymer is separated from the supernatant by centrifugation.
  • Sample preparation for encapsulation efficiency analysis is simpler since there is no need for polymer removal or sample opening.
  • the samples in aqueous medium were dried and resuspended in methanol to maintain the azadiractin molar absorption coefficient constant compared to the standard solutions used in constructing the calibration curve.
  • the polymer had to be dissolved in an appropriate solvent (acetone) by dispersing the azadiractin previously encapsulated. Once dissolved, the polymer and supernatant drying support were separated by centrifugation. Part of the supernatant was dried and resuspended in methanol for chromatographic analysis.
  • an appropriate solvent acetone
  • Neem nanoparticles in colloidal suspension and powder were successfully produced.
  • Agrochemicals are conventionally applied in the field by spraying, with water being used as a vehicle.
  • water being used as a vehicle.
  • agrochemicals actually reach their expected target, not infrequently, at a concentration lower than the minimum effective concentration required due to problems such as leaching, photodegradation, hydrolysis and microbial degradation. Consequently, repeated applications become necessary causing direct environmental impacts on soil and water.
  • Nanoparticles for agricultural use should be designed to meet physical and chemical properties that result in improved agricultural pest control and reduced environmental hazards.
  • benefits we can highlight the adjustment in the dispersion capacity in aqueous medium of organic compounds with reduced use of surfactants, increased stability against degradation caused by photolysis, thermolysis or hydrolysis and control in the release of active compounds improving the desired biological activity. Consequently, with the gain of stability and activity adjustment There is a reduction in dosage and the need for reapplication and there is a direct positive impact on the environment.
  • the present process for the preparation of Neem nanocapsules comprises the preparation of three different phases: a) aqueous phase emulsion, b) organic phase with an encapsulation polymer and c) aqueous phase with a surfactant.
  • Neem extracts are used to enrich the oil by controlling the azadiractin content present in the formulation and the final product.
  • the preferred mode of the invention contemplates the use of oil combined with Neem extracts, the concept of the invention alternatively provides for a formulation containing only azadiractin oil without the addition of extracts to enrich it.
  • the required amount is determined after chromatographic analysis of azadiractin content.
  • an oil with an azadiractin content of 419.1 mg Kg- 1 may be enriched with 28.0 g of an extract of 56,471.0 mg Kg- 1 to a final content of 2,000 mg Kg- 1 .
  • the oil enriched with Neem extracts is dispersed in (10) under vigorous stirring in aqueous phase (Phase I) for two to seven minutes, typically five minutes.
  • Phase I aqueous phase
  • This system enables the formation of micelles with Neem oil creating an emulsion. Due to the difference in solubility between the aqueous phase and the micelles, the constituents of the Neem extract remain in the micellar phase and are not dispersed to the aqueous phase.
  • Phase I the use of surfactants such as the Span ® 60 non-ionic sorbitan monostearate surfactant is optional, improving the environmental characteristics of the formulation. The possible exclusion of this surfactant already presents an improvement over the nanoprecipitation method. Not using the surfactant reduces the cost of production and possible impacts on the environment.
  • the oil content varies between 0.5 and 10% (w / v), the extract content between 0.1 and 5% (w / v) and the surfactant content between 0.1 and 2% ( m / v).
  • a second phase is prepared in (20) by dissolving a biopolymer in water miscible organic solvent selected from acetone or a mixture of acetone and ethanol in any proportion.
  • Dissolution of the biopolymer occurs under heating of 40-50 ° C, typically 45 ° C and stirring.
  • a typical formulation for Phase II is as follows: dissolve between 0.1 and 2 g of polymer, typically 1.0 g of polymer, for example PCL, in 200 mL of organic solvent composed of the mixture of acetone and ethanol in proportions. acetone, ranging from 100% (0% ethanol) to 30% (70% ethanol).
  • phase is slowly poured onto the Phase I emulsion via L1.
  • polymer deposition occurs at the oil-water interface resulting in (40), in the mixture of Phase I + Phase II, resulting in nanocapsule-shaped nanoparticles.
  • Phase III a third phase (Phase III) in (30) composed of water and a nonionic surfactant is prepared and poured via L2 onto the preformed nanocapsules in (40) and the surfactant can now adsorb onto the nanoparticles acting as dispersant.
  • the Phase III surfactant is a nonionic surfactant and emulsifier, for example polysorbate 80, known as Tween ® 80, derived from sorbitan polyethoxylate and oleic acid. Polysorbate 80 is viscous and soluble in liquid medium.
  • a typical formulation for Phase III is as follows: Disperse between 0.1 and 2 g of surfactant, typically 1.0 g of surfactant, in 100 mL of distilled water.
  • the nanoparticle (50) when subjected to drying processes with the aid of a support, selected from colloidal silica and similar supports via L5 allows to obtain a powder microparticle (60).
  • the ratio of nanoparticle (50) to the support is between 1: 0.2 to 1: 2 m / m nanoparticles to silica.
  • the type and content of the formulation components were varied during the Applicant's experiments leading to the present application.
  • the present process further contemplates an embodiment in which powder microparticles are produced directly, in which case Phase III of preparation of the aqueous emulsifier solution and the addition of the same pathway L2 to the mixture of Phases I and II are dispensable.
  • the colloidal suspension obtained by mixing Phase I and Phase II is in this embodiment directly transformed into nanoparticles (40), has the reduced volume to obtain nanoparticles (50) and is transformed into powder microparticles (60) by Spray-Drying.
  • the extracts may be used to further enrich the azadiractin content in colloidal suspensions.
  • Span ® 60 or other surfactant is optional.
  • Biopolymeric nanoparticles have been efficiently and reproducibly synthesized using the process of the invention.
  • Measurements of pH, particle diameter (hydrodynamic diameter), polydispersion and zeta potential are parameters indicative of the stability of the colloidal suspension.
  • the pH value of colloidal systems may affect the stability of colloidal systems, as changes in this parameter may be related to the degradation of the polymer, some other formulation component, or even the diffusion of the active substance from the particle to the medium. Changes in pH may also affect the rate of release of the active compound or catalyze degradation reactions.
  • Particle diameter and distribution size can affect system colloidal stability, release kinetics, loading capacity, in vivo distribution (systemic action) and toxicity.
  • Polydispersion, or polydispersity index - IP indicates the average size distribution of nanoparticles and normally values below 0.2 for the colloidal suspension are considered good stability indicators.
  • the zeta potential reflects the surface charge of the nanoparticles and this parameter is influenced by the particle composition, dispersant medium, pH and colloidal suspension ionic strength. Normally, nanoparticles with modulus zeta potential values> 30 mV have good colloidal suspension stability.
  • the zeta potential showed that all formulations exhibit negative charges ranging from -25.22 to -36.80 mV, typically observed in systems containing oils with free acid groups. These zeta potential values combined with low polydispersity indices lead to a stable colloidal dispersion due to the repulsion between the particles, which inhibits their aggregation.
  • Neem oil may have negatively charged free acids or phospholipids conferring negative charges on nanoparticles.
  • nanoparticles typically have particle diameter between 30 and 500 nm, pH between 4.0 and 7.0, polydispersity between 0.03 and 0.600, and zeta potential between -10 and -50.0.
  • Neem oil reduces the pH of the dispersion medium. However, the variation in the amount of oil in the formulations little affected the pH value.
  • the particle diameter depends more on the amount of oil and extract than on the amount or type of polymer employed for encapsulation.
  • the strategy adopted mainly aims to prepare Neem nanoparticles with high azadiractin content promoting a gain in the dispersion of this limonoid in aqueous medium. It was observed for the method of Fessi, H. et al. Nanocapsule formation by interfacial deposition following solvent displacement. Int. J. Pharm. 55, R1-R4, 1989 a 75% limit on encapsulation efficiency. Following the preparation of the Neem nanocapsules by the present process and chromatographic analysis following the procedures described above in this report, colloidal suspensions with approximately 100% recovery and encapsulation efficiency were obtained for the azadiractin used in the process.
  • Table 4 below shows the quantitative characterization of colloidal suspended Neem nanocapsules obtained by the process of the invention.
  • Example 1 prepared with 4.00 g of an oil enriched at 4,000.0 mg Kg "1 should contain at the end 8.00 mg azadiractin in a final volume adjusted to 200.0 mL. This amount is equivalent to nominal value 80.0 mL "1 .
  • the encapsulation efficiency is greater than the limit of quantitation of the analytical method, ie approximately 100%.
  • the recovery efficiency was calculated after quantification of the colloidal suspensions by HPLC using the nominal concentration as the reference value.
  • colloidal suspensions (40) are prepared in aqueous phase having an azadiractin content of 340,0 mg 100 ml -1 .
  • This represents a dispersibility of azadiractin 13 times higher than its solubility, ie it is possible to prepare a new formulation for application of Neem extracts and oil with high azadiractin contents, while the surfactant content is kept low (Tween ® 80 0.5% m (v) It should be clear to those skilled in the art that this value represents a non-limiting example, greater dispersion capacities being perfectly possible depending on the extract content employed.
  • the morphology is determined by scanning electron microscopy (SEM) analysis.
  • SEM scanning electron microscopy
  • Colloidal suspensions generally have limited physicochemical stability. Long storage times may favor microbial growth and polymer hydrolysis. Often, for convenience, transforming these liquid powder systems becomes a viable strategy. Powdered nanoparticles can exhibit greater stability and reduce storage volume and transport weight.
  • Nanoparticles are in fact trapped in a dry solid matrix (powder microparticles) after their interaction with silica particles prior to drying. During the drying process there is formation of silica agglomerates surrounding one or more Neem nanocapsules covering the surface of the microparticles, see Pohlmann, A.R. et al. Spray-dried indomethacin-loaded polyester nanocapsules and nanospheres: development, stability evaluation and nanostructure models. Eur. J. Pharm. Know. 16, 305-312, 2002.
  • colloidal silicon dioxide as a drying support proved to be a good candidate.
  • colloidal silicon can give rise to a large surface area and have good thermal conductivity favorable for water removal.
  • it is a biocompatible, non-toxic material and is considered safe even for drug preparation.
  • nanocapsules with a particle diameter of less than 300 nm are used, with negative charges relative to zeta potential ( ⁇ -30 mV).
  • yield was evaluated by the percentage of silica (Aerosil ® 200) used in the drying process. by Spray-Dryer.
  • nanocapsules / silica ratios range from 1: 0.2 to 1: 2 m / m
  • Spray-Dryer equipment including feed rate, atomizer air flow, vacuum capacity and inlet temperature were such that it was possible to obtain an outlet temperature of 50 ⁇ 5 ° C favorable to the thermal non-decomposition of sensitive compounds such as azadiractin.
  • Well separated spherical powder microparticles were obtained with various diameters ranging from 1 to 10 ⁇ .
  • the spherical shape demonstrates the absence of destabilizing effects during the drying process.
  • the particle surfaces were rough looking with a porous layer of nanoparticles and silica.
  • the preparations are homogeneous, the dispersion in particle diameter originates from the nozzle of the atomization system which produces droplets with a wide range of sizes. Thus, different droplet sizes lead to a wide dispersion of particle diameter.
  • Melting particles in the final drying step can also produce larger agglomerates.
  • the final amount of azadiractin in the powder microparticles ranged from 1,600.0 mg Kg "1 to 6,800.0 mg Kg " 1 .
  • this result only illustrates the values of some experiments, the amount of azadiractin may vary widely depending on the azadiractin content in the oil and Neem extracts and the amount of azadiractin employed in the formulation.
  • powder microparticles of 10,000 mg Kg -1 may be prepared, depending on the quantity and quality of the Neem extract used.
  • Neem polymer-product interaction was evaluated by thermogravimetry (TG) and the thermogravimetry derivative (DTG).
  • TG thermogravimetry
  • TDG thermogravimetry derivative
  • the mass loss was between 45 and 50%, proportional to the composition of the formulations and the amount of silica used.
  • Formulations A to E containing Neem extracts and oils showed a late degradation curve compared to Neem extract and / or oil free formulations ( Figure 9A - TG curve, Figure 9B, DTG curve). This is the first thermal event resulting from the decomposition of Neem extracts and / or oils used in the formulation. The second event occurs due to the degradation of Span ® 60 and Tween ® 80. Comparing the formulation of PCL with Neem oil (B - Table 7 above) and PCL with isodecyl oleate (B - Table 7 above) it is observed that Neem delays the degradation of Span ® 60 and Tween ® 80. The last event occurs by polymer degradation. After these events the decomposition of the material occurs slowly probably by the elimination of carbonated materials.
  • the degradation rate of the Neem oil sample exposed to ultraviolet radiation was much higher compared to nanoencapsulated samples.
  • the oil sample protected from ultraviolet radiation showed no signs of photodegradation during the investigated period.
  • the in vitro release profile can be seen in Figure 11.
  • the time required for 100% azadiractin release was 10 hours and 85% release in the first four hours.
  • n is an empirical parameter obtained in the Korsmeyer equation, R.W. And fa/. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 15, 25-35, 1983, used to characterize the release mechanism based on the following equation:
  • M t / M x is the release fraction at time t
  • n is the release exponent
  • K is the release factor
  • n assumes values between 0.45 ⁇ n ⁇ 0.89 indicates anomalous transport kinetics, ie a combination of the diffusion mechanisms of the drug (Fickian transport) and non-Fickian transport.
  • n is determined by the angular coefficient of the log plot (M t )
  • Neem powder nanocapsules can be easily prepared by spray-drying the colloidal suspensions.
  • the products have good homogeneity and stability in colloidal and powdery suspension.
  • the products obtained by the process of the invention show a gain in stability against ultraviolet radiation compared to commercially available Neem oil products.
  • Neem oil enriched with Neem extracts made it possible to obtain products with desired and reproducible amounts of azadiractin.

Abstract

É descrito um processo de obtenção de nanopartículas biopoliméricas contendo óleo e extratos de Azadirachta Indica A. Juss (Neem) que compreende na Fase I, em (10), o preparo de uma emulsão aquosa do óleo e extratos de Neem, na Fase II, em (20), o preparo de uma solução de biopolímero em solvente orgânico, seguido da mistura das duas Fases I e II, e na Fase III, em (30), o preparo de uma emulsão aquosa de um tensoativo e adição da mesma à mistura das Fases I e II, obtendo uma suspensão de nanopartículas que é estabilizada. São também descritas as nanopartículas biopoliméricas e as micropartículas em pó obtidas.

Description

PROCESSO DE OBTENÇÃO DE NANO PARTÍCULAS
BIOPOLIMÉRICAS CONTENDO ÓLEO E EXTRATOS DE AZADIRACHTA INDICA A. JUSS (NEEM), ANOPARTÍCULAS
BIOPOLIMÉRICAS E MICROPARTÍCULAS EM PÓ CAMPO DA INVENÇÃO
A presente invenção pertence ao campo dos processos de preparação de nanopartículas para encapsulamento de extratos e óleos de Azadirachta indica (Neem), mais especificamente, a um tal processo para encapsulamento de Neem em matrizes biopoliméricas, em suspensão coloidal e em pó.
FUNDAMENTOS DA INVENÇÃO
Produtos derivados da Azadirachta indica (A. Juss) (Neem) possuem uma posição de destaque num seleto grupo de produtos naturais, ambientalmente correios, disponíveis comercialmente para o controle de insetos e pragas. O Neem é uma planta tolerante às mais adversas condições de cultivo, se expandindo rapidamente ao redor do globo. Relatos na literatura identificam 500 espécies de insetos sensíveis a algum tipo de ação aos extratos de Neem.
Atualmente, as nanopartículas poliméricas constituem uma abordagem mais sofisticada de formulação agroquímica podendo ser aplicadas na busca de novas propriedades para o correto uso de Neem. Entre suas principais vantagens ao setor podem se destacar sua capacidade de controlar a taxa e as condições de liberação dos ingredientes ativos, aumentar a solubilidade, reduzir o contato dos ingredientes ativos com os trabalhadores rurais e vantagens ambientais como a redução das taxas de escorrimento.
Esta tecnologia permite manipular as propriedades do envoltório exterior de uma cápsula, a fim de controlar o momento da liberação da substância ativa. Vários trabalhos descrevem o uso do Neem na obtenção de nanopartículas metálicas e no preparo de micropartículas em pó formuladas com Neem. Os trabalhos que utilizam o Neem na obtenção de nanopartículas metálicas apenas usam o Neem no processo, contudo, o objetivo é preparar produtos metálicos, totalmente desconexos ao presente processo.
A agricultura normalmente é vista como consistindo de três tipos de sistemas: económico, social e ecológico (ou meio ambiente). Os três são interligados, e as interações entre a agricultura e o meio ambiente são complexas. Problemas ambientais como a degradação de solos, desertificação, destruição de florestas tropicais e a consequente diminuição da vida selvagem e poluição de mananciais hídricos relacionam-se com práticas agrícolas inadequadas ou com o uso intensivo de insumos.
Desde os tempos romanos (1 o século A.C.) até a metade do século
XX, o controle de insetos era realizado por produtos derivados de plantas como a piretrina, a rotenona e nicotina (bioinseticidas ou inseticidas naturais). A descoberta do DDT (diclorodifeniltriclorometano), inicialmente acreditado como sendo a solução contra os ataques de insetos, após um período prolongado de uso, demonstrou-se desastroso. Isto ocasionou uma busca por compostos sintéticos seguros à base de hidrocarbonetos clorados. Esses compostos, todavia, apenas provaram ser excessivamente tóxicos e ecologicamente desastrosos além de propiciar que os insetos adquirissem resistência a tais produtos.
O uso de pesticidas sintéticos vem sendo utilizado há mais de 50 anos, tornando-se a principal ferramenta inseticida. Embora sua utilização tenha sido eficiente no controle de algumas espécies de praga, possibilitando incrementos significativos na produção de alimentos, seu uso extensivo e algumas vezes indiscriminado tem provocado diversos problemas de repercussão social e ambiental, incluindo contaminações do solo, do ar, da água, dos peixes, animais e do próprio homem, redução da biodiversidade, da população de inimigos naturais, da população e do número de espécies de abelhas e polinizadores, além da resistência das pragas e o surgimento de pragas secundárias.
Estima-se que o prejuízo causado pelas pragas na produção mundial de alimentos, apesar dos esforços, ainda seja de pelo menos um terço da produção.
Outro problema a ser destacado são as barreiras fitossanitárias existentes. Elas são de grande importância para a soberania dos países, face à proteção das lavouras e a segurança alimentar da população. As restrições de caráter fitossanitário vêm impondo aos países exportadores de alimentos a necessidade do domínio da tecnologia da produção agrícola e do controle de todas as etapas da cadeia agro-produtiva. O Brasil como um dos grandes produtores de alimentos do mundo tem nos produtos fitossanitários um dos instrumentos imprescindíveis à promoção da defesa vegetal.
Hoje, os inseticidas naturais constituíram-se como uma opção e/ou complemento ao controle pragas, reduzindo ou eliminando o uso de agrotóxicos sintéticos. Estas propriedades fazem dos inseticidas naturais uma importante ferramenta para muitos programas de gerenciamento de pragas. Entretanto, produção significante, regulamentação e problemas de aplicação, armazenamento e reprodutibilidade da eficácia devem ser primeiramente solucionados permitindo que tais produtos possam ser adquiridos com confiabilidade pelo mercado.
Entre os principais problemas limitantes ao uso de inseticidas naturais podem se destacar necessidades de identificação e estudo de espécies vegetais que permitam a exploração sustentável, a influência de fatores sazonais e intempéries da natureza, a falta de controle de qualidade e reprodutibilidade da ação inseticida e a carência de mecanismos de estabilização para o correto uso e manipulação dos compostos ativos.
Diversos fatores podem alterar a estabilidade de um produto ou composto ativo de origem natural. Cada componente, quer ativo ou inativo, dependendo da quantidade pode afetar a estabilidade.
Outros fatores, chamados extrínsecos como temperatura, radiação, luz, ar (especificamente o oxigénio, dióxido de carbono e vapores de água), umidade, local e hora da coleta e de acondicionamento também alteram a estabilidade e o conteúdo de compostos ativos.
Há ainda os fatores intrínsecos como: incompatibilidades, pH, hidrólise, racemização e oxidação. Por exemplo, a rápida degradação dos compostos de A. indica a inviabiliza para alguns cultivos, como a fruticultura e para a horticultura (já que o efeito residual é normalmente de 4 a 8 dias apenas). Estudos demonstraram que a atividade da azadiractina pode ser reduzida a quase 60% após 4 horas de exposição ao sol podendo chegar próximo a 50% após 15 horas. Resultados obtidos no campo indicaram que extratos do A. indica aplicados sobre as culturas podem permanecer ativos por cerca de três dias apenas.
Na procura por inseticidas naturais, a família Meliaceae foi identificada como um dos grupos mais promissores uma vez que grande parte de suas espécies apresenta múltiplas ações no controle de pragas. Dentro da família Meliaceae, uma espécie em especial se destaca, a Azadirachta indica de A. Jussieu, popularmente conhecida por Nim ou Neem.
O Neem, planta nativa de Myanmar e das regiões áridas do subcontinente indiano, presente da índia à Indonésia tem sido introduzida por toda a região tropical do globo. Atualmente, pode ser encontrada desde os países asiáticos aos africanos, na Austrália, região tropical da América do Norte, América Central e América do Sul. O Neem é uma planta que tem sido extensamente usada em diversas áreas como na medicina, medicina veterinária, agricultura, farmacêutica, indústria de cosméticos, moveleira, reflorestamento vegetal entre outras. É uma árvore tolerante às mais adversas condições de cultivo (altas temperaturas, solos pobres e salinos, etc.) sendo um dos fatores que justifica sua rápida expansão mundial. Destas propriedades, o grande interesse atual nas pesquisas envolvendo o Neem, principalmente no mundo ocidental, são suas propriedades inseticidas. Atualmente, cerca de 500 espécies de insetos foram relatadas como sensíveis a algum tipo de ação aos extratos de Neem.
As propriedades do Neem se devem a um grande número de metabólitos secundários, principalmente triterpenos e limonóides, disponíveis em diversas partes da planta. Entre esses compostos merece destaque a azadiractina (Figura 1), principal constituinte da planta e de formulações comerciais.
A azadiractina é um limonóide que se concentra principalmente nos frutos, contudo, pode ser encontrado em menores teores em toda a planta.
Essa substância apresenta diversas oxidações biossintéticas formando vários grupos funcionais contendo oxigénio que tende a tornar esse composto mais reativo tanto química quanto biologicamente.
Estudos prévios vêm demonstrando diversos problemas de estabilidade e degradação em compostos ativos de origem natural. Por exemplo, mesmo quando armazenado sob condições ideais, ao abrigo da umidade, luz e temperatura, o conteúdo da azadiractina em óleos comerciais de Neem decai em função do tempo.
A Figura 2 ilustra a curva de decaimento da azadiractina.
Amostras de óleos de Neem submetidas ao processo de envelhecimento acelerado por radiação UV permitem observar a degradação constante da azadiractina. Num sistema fechado, realizado sob radiação ultravioleta, a velocidade de degradação em amostras de óleo/água foi aproximadamente 108 vezes maior do que aquele observado para amostras de óleo isento de água.
Estes resultados demonstraram a ação degradativa da umidade sobre o produto natural num mecanismo de hidrólise catalisado por radiação ultravioleta. O mecanismo está ilustrado na Equação 1 a seguir.
Azadiractina + H 20 — > Produtos (1)
A presença de grupos funcionais nos metabólitos do Neem como, por exemplo, os grupos epóxido, éter, éster, sistemas conjugados, etc, presentes na molécula da azadiractina são os principais responsáveis por sua baixa persistência ambiental tendo como principal problema sua sensibilidade à fotodegradação. A rápida perda da atividade da azadiractina limita seu uso na agricultura. Um inseticida deve ser persistente o bastante para causar a morte ou controle dos insetos e pragas.
A falta de métodos de monitoramento e controle de qualidade tornou-se outro fator limitante ao desenvolvimento e uso confiável dos produtos naturais. Na ausência de protocolos de produção e métodos de controle de qualidade toma se impossível garantir a reprodutibilidade da ação esperada para um determinado produto.
Simultaneamente ao desenvolvimento dos biocidas (naturais ou sintéticos) tem havido a necessidade de uma ampla variedade de tipos de formulações, aditivos e processos tecnológicos capacitando a formulação de pesticidas de ingredientes ativos com diferentes propriedades físicas e/ou químicas.
As formulações têm como objetivo promover o uso conveniente e seguro de um produto o qual não será deteriorado num período de tempo e obter a máxima a atividade inerente a um composto ativo. Formulações mais sofisticadas à base de poderosos surfactantes e outros aditivos e um melhor entendimento dos princípios da química de colóides e de superfície em como aumentar a estabilidade da formulação e sua atividade biológica atende às necessidades do operador, aos requisitos de segurança ambiental e melhora a atividade e persistência dos compostos ati os.
As formulações de ingredientes ativos de pesticidas mais comuns citadas pela GCPF - Global Crop Protection Federation (CropLife International) incluem granulados (GR), soluções concentradas (SL), concentrados emulsionáveis (EC), pós molháveis (WP), suspensões concentradas (SC), emulsões Oléo/água (EW), microcápsulas (CS), etc.
Uma abordagem mais sofisticada à formulação de agrotóxicos em escala nanométrica envolve a nano e micro encapsulação. Entre suas principais vantagens ao setor podem se destacar a capacidade de controlar e em que condições o ingrediente ativo é liberado, aumentar a solubilidade, reduzir o contato dos ingredientes ativos com os trabalhadores rurais, prorrogar a validade das patentes e vantagens ambientais como a redução das taxas de escorrimento. Esta tecnologia permite manipular as propriedades do envoltório exterior de uma cápsula, a fim de controlar o momento da liberação da substância ativa.
Um grande número de diferentes estratégias tem sido proposto para modificar as características físico-químicas das nano e micro partículas e, assim, sua interação com o meio biológico. Por exemplo, já é possível modificar a natureza química da matriz polimérica das partículas alterando certas características como bio-recognição, bio-distribuição, bio-adesão, bio-compatibilidade, mobilidade e bio-degradação.
As nanopartículas poliméricas podem ser definidas como partículas poliméricas coloidais contendo compostos ativos. As nanopartículas podem ser classificadas em duas categorias, nanocápsulas e nanoesféras. As nanocápsulas são compostos carregadores formados por um núcleo oleoso revestido por uma parede polimérica, podendo o composto ativo estar neste núcleo e/ou adsorvido à parede polimérica.
Por outro lado, as nanoesféras consistem de uma matriz polimérica sólida não apresentando óleo em sua composição, estando os compostos retidos e/ou adsorvidos.
Ambos os colóides são estabilizados por surfactantes na interface partículas/água.
Diferentes processos de produção de nano e micro partículas estão disponíveis e podem desenvolver e/ou melhorar características físico- químicas como tamanho, estrutura, morfologia, textura de superfície e composição. Vide a este respeito as publicações Soppimath, K.S., et al. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70, 1 - 20, 2001 ; Couvreur, P. et al., Nanocapsule technology. Crit. Rev. Ther. Drug Carrier Syst 19, 99-134, 2002; Tice, T.R.; Gilley, R.M. Preparation of injectable controlled-release miçrocapsules by solvent-evaporation process. J. Control. Release 2, 343 -352, 1985; Ibrahim, H.; et al., Aqueous nanodispersions prepared by a salting-out process. Int. J. Pharm. 87:239-246, 1992; Caliceti, P. et al., Effective protein release from PEG/PLA nanoparticles produced by compressed gas anti-solvent precipitation techniques. J. Control Release 94, 195-205, 2004; Galindo-Rodriguez, S. et al., Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res 21 , 1428-1439, 2004.
Os sistemas de liberação coloidal demonstram um grande e eficiente potencial como meio de liberação de um ou de uma mistura de compostos ativos (extratos vegetais) em sites específicos de ação (sistemas de vetorização) e controle sobre a velocidade de liberação, minimizando assim efeitos tóxicos indesejáveis e melhorando suas estabilidades físico-químicas, vide Tse, G. et ai., Thermodynamic prediction of active ingredient loading in polymeric microparticles. J. Control. Release 60, 77-100, 1999.
A biodegradação pode ocorrer num sistema biológico através do relaxamento da cadeia polimérica, da quebra da unidade monomérica localizada na extremidade da cadeia (erosão) ou ainda através da cisão aleatória de uma ligação em alguma posição ao longo da cadeia polimérica (degradação).
Os trabalhos descritos na literatura para a espécie Azadirachta indica (A. Juss) (Neem) relacionados com a nanotecnologia são tão diversificados como vasto é o tema nanotecnologia.
Dentre os trabalhos mais próximos à pesquisa que resultou no presente pedido está o artigo por Riyajan, As-Ad.; Sakdapipanich, J.T. Encapsulated neem extract containing Azadiractin-A within hydrolyzed poly(vinyl acetate) for controlling its release and photodegradation stability. Chemical Engineering Journal 152, 591-597, 2009. Os autores utilizaram acetato de polivinila em rede com glutaraldeido 5% (p/v) para o preparo de microcápsulas em pó pela técnica de Spray-Drying contendo extratos de Neem. Como resultado foram obtidas micropartículas em pó com diâmetro médio superior a 10 μητι, eficiência de encapsulamento de aproximadamente 80% com ganhos na estabilidade (eficiência) contra fotodegradação.
Ainda um outro artigo pertinente é o de Kulkarni, A.R.et al., Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J. Control. Release 63, 97-105, 2000. Neste artigo os autores descrevem o encapsulamento de óleo de Neem em partículas formadas por polímeros de alginato de sódio em rede com glutaraldeido. O diâmetro de partícula e eficiência de encapsulamento variaram entre 1 ,01-1 ,68 mm e 72-90% respectivamente. No artigo por Shankar, S.S. et al., Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sei. 275, 496-502, 2004 é descrito um método de síntese extracelular, ambientalmente correto, para a produção de nanopartículas metálicas de prata e ouro utilizando folhas de Azadirachta indica.
Tripathy, A.et al., Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J. Nanoparí. Res. 12, 237-246, 2010 utilizaram extratos aquosos de folhas de A. indica para produção de nanopartículas cristalinas de prata em processos biomiméticos.
Nanopartículas de prata também foram produzidas por Prathna, T.C. et al., Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Surí.A:Physicochem.Eng.Aspects, 2011 , doi: 10.1016/j.colsurfa.2010.12.047, utilizando extratos de folhas de Neem aplicados em estudos cinéticos.
Medidas eletroanalíticas de adenosina e adenosina-5'-trifostato foram determinadas por GoyaI, R.N. et al., Simultaneous Determination of Adenosine and Adenosine-5'-triphosphate at Nanogold Modified Indium Tin Oxide Electrode by Osteryoung Square-Wave Voltammetry. Electroanalysis 19, 575 - 581 , 2007 utilizando nanopartículas de ouro modificadas em sistemas biológicos como extratos de A. indica.
Partículas contendo folhas de Neem em pó, alginato de cálcio, caulim e bentonita foram preparadas para controlar a cinética de liberação, toxicidade e propriedades do fungicida Thiram®. Neste trabalho, Singh, B. et al., Controlled release of thiram from neem-alginate-clay based delivery systems to manage environmental and health hazards. Applied Clay Science, 47, 384-391 , 2010 demonstram uma aplicação do Neem no preparo de sistemas de liberação controlada com partículas de aproximadamente 1 mm e eficiência de encapsulamento para o Thiram próximo a 100%.
Diversos são os trabalhos com pedidos de patentes para produtos e processos envolvendo o Neem.
Os pedidos de patente em andamento no Instituto Nacional da
Propriedade Industrial (INPI) são dirigidos para fertilizantes, atividades biológicas (germicida, inseticida, bactericida, fungicida, etc), técnicas de produção de óleo e extratos de Neem, formulações granulares, repelentes, estudos de estabilidade, desodorização, técnicas analíticas, etc. Todavia, nenhum destes trabalhos tem como foco técnicas para a produção de nano e micro partículas poliméricas aplicadas ao aumento da estabilidade dos constituintes químicos derivados do Neem ou para controlar a cinética de liberação dos mesmos em meio biológico, sendo estes os objetivos do presente pedido.
Os pedidos de patente depositados junto ao INPI envolvendo a espécie Azadirachta indica incluem os pedidos brasileiros publicados BR0804594-1 A2, BR0804546-1 A2, BR0702226-3 A2, BR0701347-7 A2, BR0502588-5 A2, BR0508296-0 A2, BR0000809-5 A2, BR9307044-6 A2, BR9302976-4 A2, BR9202628-1 A2, BR0502772-1 A2, BR0109913-2 A2, BR0700034-0 A2, BR9305223-5 A2, modelo de utilidade MU8602632-1 U2 e patentes brasileiras BR9302980-2 B1 e BR9302981-0 B1.
O pedido brasileiro publicado BR0702226-3 A2 descreve o preparo de um óleo emulsionável de Neem utilizando taíl extraído de Pinnus como emulsionante.
O pedido brasileiro publicado BR0508296-0 A2 descreve uma formulação granular com ação sistémica quanto distribuída na rizosfera. A formulação contém extratos de Neem, cera de hidrocarboneto, argila e corante. O teor de azadiractina neste trabalho foi monitorado e controlado em função de sua concentração nos extratos. Estas formulações produziram um efeito estabilizador no armazenamento e um controle sobre a liberação em campo da azadiractina.
Na patente brasileira BR9302980-2 B1 é proposto um método de preparo de extratos de Neem com elevados teores de azadiractina sendo a azadiractina neste extrato, mais estável.
Dentre as muitas e diversificadas técnicas de preparo de extratos, o Modelo de Utilidade MU8602632-1 U2 apresenta uma técnica de extração utilizando moinhos de bola para micronização de sementes de Neem, na presença de solventes orgânicos, obtendo micropartículas de sementes de Neem, de fato, sementes moídas e micronizadas.
O pedido brasileiro publicado BR0109913-2 A2 descreve um pesticida na forma sólida, com sistema de liberação de extratos de Neem, livre de solventes orgânicos e completamente solúvel em água, formulado com sacarídeos (metilcelulose, sucrose) obtendo peletes.
As bases de patentes internacionais também relatam um grande número de trabalhos relacionados ao Neem, como os pedidos norte- americanos U.S. 4.515.785, 4.537.774, 4.556.562, 4.902.713, 4.943.434, 4.946.681 , 5.001.146, 5.001.149, 5.047.242, 5.110.591 , 5.124.349, 5.229.007, 5.281.618, 5.298.247, 5.298.251 , 5.352.672, 5.352.697, 5.356.628, 5.368.856, 5.370.873, 5.371.254, 5.372.817, 5.391.779, 5.395.951 , 5.397.571 , 5.405.612, 5.409.708, 5.411.736, 5.420.318, 5.472.700, 5.501.855, 5.503.837, 5.602.261 , 5.626.848, 5.635.193, 5.663.374, 5.679.662, 5.695.763, 5.698.423, 5.730.986, 5.736.145, 5.756.773, 5.827.521 , 5.856.526, 5.900.493, 6.193.974, 6.294.571 , 6.312.738, 6.340.484, 6.545.167, 6.602.823, 6.660.291 , 6.703.034, 6.703.347, 6.733.802, 6.734.198, 6.746.988, 6.773.727, 6.811.790, 6.824.787, 6.835.719, 6.849.614, 6.855.351 , 6.855.351 , 6.875.885, 6.930.076, 6.991.818, 7.083.779, 7.112.553, 7.132.455, 7.182.952, 7.186.891 , 7.194.964, 7.204.994, 7.250.175, 7.250.396, 7.320.966, 7.345.009, 7.345.080, 7.351.420, 7.361.366, 7.390.480, 7.476.397, 7.514.464, 7.530.196, 7.531.189, 7.534.447, 7.537.777, 7.618.645, 7.622.641 , 7.655.597, 7.655.599, 7.674.807, 7.687.533, 7.696.232, 7.722.695, 7.754.655, 7.803.832, 7.803.992, 7.807.679, 7.823.323, 7.867.507, 7.871.645, 7.872.067, 7.887.827 e H1.541.
Em linhas gerais, muitos destes processos estão relacionados ao preparo de extratos, extração de azadiractina, ganho de estabilidade, atividades biológicas, fertilizantes, formulação e modificações estruturais.
Dentre os pedidos recuperados nas buscas, nenhuma técnica, processo ou componentes de formulação é similar àqueles descritos na metodologia objeto do presente pedido.
Na patente U.S. 6.340.484 são descritos peletes de sacarídeos impregnados com extratos de Neem livre de solventes orgânicos e completamente solúveis em água, conferindo estabilidade e controle sobre a cinética de liberação.
A patente U.S. 5.856.526 relata a preparação de azadiractina em pó com um teor de pureza próximo a 90% e um concentrado emulsionável contendo cerca de 30% em peso de azadiractina. Segundo este documento de patente, a azadiractina em pó foi preparada por técnicas fitoquímicas clássicas de extração e fracionamento envolvendo etapas de maceração, concentração e separação cromatográfica e o concentrado emulsionável preparado dissolvendo-se a fração rica em azadiractina em solventes orgânicos, contendo ou não emulsificantes e protetores solares.
Um trabalho similar é descrito na patente U.S. 5.736.145 para processos de purificação e produção de azadiractina em pó e preparo de uma composição aquosa estável para armazenamento. Para a formulação da emulsão são utilizados uma mistura de álcool e água, ácido oléico, emulsificante, extrato e óleo de Neem e ácido p-aminobenzóico como protetor solar.
A patente U.S. 6.193.974 descreve o preparo de microemulsões utilizando surfactantes não-iônicos para o preparo da emulsão contendo também ácido p-aminobenzóico com protetor solar. Como resultado é obtida uma composição aquosa estável onde dependendo da quantidade de óleo de Neem e diluições, se encontram diferentes teores de azadiractina.
Processos de preparação de extratos e frações ricas em azadiractina e emulsões estáveis para armazenamento também estão descritos nas patentes U.S. 6.811.790, 5.827.521 , 5.695.763, H1541 , 5.420.318, 5.411.736 e outros.
Apesar do grande número de trabalhos publicados descrevendo técnicas para se produzir extratos e frações de Neem e azadiractina em pó, a reprodutibilidade da técnica geralmente depende de efeitos sazonais e da qualidade da semente colhida.
Diversos são também os trabalhos que buscam propor composições viáveis para estabilizar formulações com óleo e extratos de Neem e azadiractina.
Assim novas alternativas vêm surgindo. A patente U.S. 5.698.423 trata de um procedimento para crescimento de células vegetais e produção de azadiractina e reatores sob condições controláveis.
A patente U.S. 6.733.802 descreve uma formulação para preparo de um inseticida natural derivado de Neem. Neste trabalho é relatado o uso de surfactantes derivados de plantas dos géneros Saponaria, Quillaja, Chlorogalum, ou Sapindus e anti-oxidantes como vitamina C, tocoferol e outros derivados dos géneros Zingiber ou Curcuma.
A patente U.S. 6.703.034 traz uma formulação para preparar microemulsões com óleo de Neem utilizando surfactantes não-iônico como, por exemplo, etoxilatos de alquilfenol.
A patente U.S. 6.635.757 apresenta formulações inseticidas em pó formadas por um complexo de extrato de Neem contendo azadiractina com ciclodextrinas secas utilizando um Liofilizador ou Spray-Drying, que podem ser dispersas em água. Neste trabalho, foram realizadas diversas variações na composição de azadiractina, agentes de proteção solar (hidroquinona e ácido anacárdico) e ácido salicílico, tendo como resultado formulações que aumentam o tempo de vida do mecanismo de defesa destes inseticidas em cultivos.
A patente U.S. 6.667.277 descreve gomas modificadas quimicamente melhorando a eficácia biológica para uso em diversas formulações inseticidas, herbicidas ou fungicidas, com diversos ingredientes ativos entre eles óleo de Neem, na forma sólida, dispersos em meio aquoso com rápida liberação dos agentes biológicos.
Na patente U.S. 5.643.351 se utilizam polímeros fundidos, dispersos em água ou solventes orgânicos, encapsulando ingredientes agrícolas com, por exemplo, produtos de Neem, na forma de filmes poliméricos. Neste trabalho foram utilizados polietileno glicol e co-polímeros de oxido de estireno e óxido de propileno, surfactantes não-iônicos, emulsificates líquidos, agentes de dispersão e protetores ultravioleta.
A patente U.S. 7.538.079 descreve um processo para produzir cápsulas em pó por Spray-Drying formuladas com sais inorgânicos e agentes benéficos como óleos essenciais para perfumes, materiais aromaterapeuticos, vitaminas, repelentes para insetos, etc, podendo ter em sua composição detergentes, polímeros, agentes sequestrantes e óleos diversos como, por exemplo, óleo de citronela e óleo de Neem, aplicados em processos terapêuticos ou estimuladores.
A patente U.S. 5.009.886 traz um processo para produzir micropartículas ou microfibras dentifrícias formuladas com extratos de ramos ou raízes de Neem.
A patente U.S. 7.872.067 apresenta como inovação uma composição polimérica anfifílica aplicada para preparar composições dispersas em meio aquoso de compostos insolúveis em água, aplicados na proteção de cultivos. Entre os diversos inseticidas que podem ser formulados é relacionada a azadiractina. A patente U.S. 7.871.645 provê um método e composição com resinas de trocas iónicas carregadas com um ou mais compostos ativos. Diversos são os pesticidas e fármacos que podem ser adsorvidos nas resinas entre eles, a azadiractina.
Partículas carregadoras de pesticidas diversos com diâmetros entre
500 e 3000 micrometros são apresentadas na patente U.S. 7.867.507. O processo consiste em aplicar uma camada de um líquido contendo solvente, fixador específico para os grupos, bentonita, carboidratos, proteínas, lipídios, polímeros sintéticos sobre o grupo carregador carbaril em pó previamente adsorvido com inseticidas, ou fertilizantes, ou herbicidas ou estimulantes, contendo ou não adjuvantes. Entre os diversos pesticidas relacionados passíveis de serem aplicados com as partículas carregadoras se encontra a azadiractina. Dentre as vantagens os autores destacam a redução dos impactos ambientais.
Num trabalho similar a patente U.S. 7.754.655 descreve o preparo de formulações agroquímicas como microcápsulas. A microformulação é constituída por uma fase particulada de dispersão de micropartículas de poliuréia e/ou poliuretano com agentes penetrantes e, se apropriado, aditivos, dita fase sendo vertida sobre uma suspensão de um composto ativo agroquímico sólido, aditivos (protetores coloidais e emulsificates) e água. Dentre os compostos os autores também relacionam a azadiractina.
As patentes U.S. 7.655.599 e U.S. 7.655.597 descrevem formulações agroquímicas à base de emulsificantes e adjuvantes, respectivamente.
Na patente U.S. 7.655.599 é descrita uma formulação adequada para diversos compostos como a azadiractina, à base de emulsificantes etileno diamina alcoxilado, que age como estabilizante da emulsão ou inibidor de cristalização, ou ambos. Quando necessário, são incorporados na formulação promotores de penetração, emulsificantes e δ- butirolactona.
Já a patente U.S. 7.655.597 descreve uma composição pesticida (inseticida ou herbicida) formulada com co-polímeros adjuvantes ou aditivos onde o co-polímero consiste de proporções individuais de grupos maléicos ou itacônicos. Esta formulação promove um ganho de eficiência quando comparada ao composto ativo não formulado podendo ser aplicada para a azadiractina.
Excelente estabilidade em formulação sólida granulada dispersa em água foi conseguida conforme a patente U.S. 6.596.292. A formulação é composta pelo composto ativo, entre eles, azadiractina, dispersante, agente molhante, boro, carregador solúvel em água e esmectita.
SUMÁRIO DA INVENÇÃO
De um modo amplo, o presente processo para a obtenção de nanopartículas biopoliméricas contendo óleo enriquecido com extratos de Azadiractha indica (A. Juss.) (Neem) compreende as etapas de:
a) a partir de amêndoas de Neem, prover óleo de Neem enriquecido com extratos de Neem;
b) Fase I, de formação de uma nanoemulsão óleo/água obtida sob vigorosa agitação por entre dois e sete minutos do óleo e extratos de
Neem, constituintes internos, contendo ou não um tensoativo não iônico no meio de dispersão aquosa;
c) Fase II, em que uma solução de acetona ou acetona/etanol contendo um biopolímero previamente dissolvido é vertida lentamente com o auxílio de uma bomba peristáltica sobre a nanoemulsão da etapa a) sob agitação, obtendo uma combinação (Fase I + Fase II);
d) Fase III, em que após um período de 10 minutos de estabilização é adicionada sobre a combinação (Fase I + Fase II), sob agitação, uma terceira fase aquosa contendo um tensoativo de elevado equilíbrio hidrofílico-lipofílico para garantir a estabilidade da dispersão coloidal obtida;
e) agitar moderadamente por um período de 10 minutos e mais 30 minutos em repouso;
f) ajustar o volume final da dispersão coloidal retirando o solvente orgânico e parte da água sob vácuo; e
g) recuperar as nanopartículas biopoliméricas contendo extratos de óleo de Azadiractha indica (A. Juss.) em dispersão coloidal.
Assim, a presente provê um processo de obtenção de nanopartículas biopoliméricas contendo óleo, alternativamente óleo enriquecido com extratos de Azadiractha indica (A. Juss) (Neem) a partir de um extrato de Neem e preparação de um óleo enriquecido em quantidade de azadiractina, controle da quantidade de azadiractina na matéria prima e nos produtos formulados e formulação de nanopartículas biopoliméricas com extratos e óleo de Neem em suspensão coloidal.
A invenção provê também um processo de preparação de nanopartículas biopoliméricas com óleo e extratos de Neem que recupera com sucesso a azadiractina, sem demonstrar etapas de degradação enquanto mostra alta eficiência de encapsulamento, necessária para aumentar a estabilidade ultravioleta e capacidade de dispersão em meio aquoso.
A invenção provê ainda um processo de preparação de nanopartículas biopoliméricas com óleo e extratos de Neem que é de fácil aplicação e de baixo custo.
A invenção provê ainda um processo de preparação de nanopartículas poliméricas com óleo e extratos de Neem que permite a formação de nanocápsulas biopoliméricas, isto é, cápsulas em escala nanométrica. A invenção provê ainda um processo de preparação de nanocápsulas biopoliméricas com óleo e extratos de Neem que emprega quantidades reduzidas de tensoativos.
A invenção provê ainda um processo de preparação de nanopartículas biopoliméricas com óleo e extratos de Neem que dispensa o uso de protetores solares sintéticos.
A invenção provê ainda um processo de preparação de nanopartículas biopoliméricas com óleo e extratos de Neem que proporciona o controle analítico sobre o conteúdo de compostos ativos.
A invenção provê ainda um processo de preparação de nanopartículas biopoliméricas com óleo e extratos de Neem à base de polímeros biodegradáveis comerciais de baixo custo que dispensam a necessidade de etapas de derivatização, com impactos comerciais e ambientais.
A invenção provê ainda um processo de preparação de nanopartículas biopoliméricas com óleo e extratos de Neem onde o pequeno diâmetro das nanopartículas produzidas permite maior penetrabilidade celular, ingestão por insetos, ação sistémica vegetal, entre outros, com impacto positivo sobre a eficiência biológica.
A invenção provê também suspensões coloidais de óleo e extratos de Neem com biopolímeros e opcionalmente tensoativos.
A invenção provê ainda as nanopartículas biopoliméricas com óleo e extratos de Neem para uso agrícola.
A invenção provê adicionalmente micropartículas em pó.
BREVE DESCRIÇÃO DOS DESENHOS
A FIGURA 1 anexa mostra a estrutura química do limonóide azadiractina.
A FIGURA 2 anexa é um gráfico que mostra a curva de degradação de azadiractina em óleos de A. indica. A FIGURA 3 anexa mostra Cromatogramas de nanopartículas em suspensão coloidal: isento (Figura 3A) e com extratos de Neem (Figura 3B).
A FIGURA 4 anexa mostra um fluxograma simplificado do processo da invenção.
A FIGURA 5 anexa é um gráfico que mostra a variação de pH da formulação de nanocápsulas de Neem no período entre 0 e 90 dias de armazenamento a temperatura ambiente.
A FIGURA 6 anexa é um gráfico de barras que mostra a investigação do diâmetro de partícula em formulações com diferentes quantidades e tipos de polímeros.
A FIGURA 7 anexa mostra fotomicroscopias de nanopartículas de PCL carregadas com 2% (m/v) de óleo de Neem. Ampliações: a) 10.000 X; b) 25.000 X e c) 50.000 X.
A FIGURA 8 anexa mostra fotomicroscopias de micropartículas em pó de nanocápsulas de Neem. Ampliações: a) 1.000 X; b) 10.000 X e c) 50.000 X.
A FIGURA 9 anexa mostra curvas de TG (Figura 9A) e DTG (Figura 9B) obtidas para diferentes formulações de nanopartículas de Neem sendo: A) NC-30 (PCL, oleato de isodecila); B) NC-32 (PCL, óleo de Neem); C) NC-34 (PCL, óleo e extrato de Neem); D) NC-36 (extrato e óleo de Neem) e E) NC-37 (extrato de Neem, oleato de isodecila).
A FIGURA 10 anexa mostra as curvas de recuperação da azadiractina após radiação ultravioleta de: A) Nanocápsulas em pó sem Span®60; B) Nanocápsulas em pó com Span®60; C) Nanopartículas em suspensão coloidal sem Span®60; D) Nanopartículas em suspensão coloidal com Span®60; E) Óleo de Neem e F) Óleo de Neem protegido da radiação UV para um conteúdo inicial de Azadiractina de 2.800,0 mg Kg"1. A FIGURA 1 1 anexa mostra em gráfico o perfil da liberação acumulada de azadiractina de nanopartículas de PCL em suspensão coloidal (n = 3).
DESCRIÇÃO DETALHADA DA INVENÇÃO
O processo da invenção para preparação de nanopartículas biopoliméricas contendo extratos e óleo de Azadiractha indica (A. Juss) (Neem) envolve o preparo desses óleos e extratos, biopolímeros para encapsular os ditos óleos e extratos, e opcionalmente tensoativos para o preparo de uma emulsão oleosa.
Portanto um primeiro objeto da invenção é um processo de preparação de nanopartículas biopoliméricas contendo óleo e extratos de Azadiractha indica (A. Juss) (Neem).
Um segundo objeto da invenção são as suspensões coloidais resultantes do presente processo.
Um terceiro objeto da invenção são as nanopartículas contendo óleo e extratos de Azadiractha indica (A. Juss) (Neem) obtidas por evaporação do solvente e de parte da água da dita suspensão coloidal.
Um quarto objeto da invenção são as micropartículas em pó resultantes da evaporação em Spray-dryer das nanopartículas em suspensão coloidal combinadas com uma proporção de suporte de secagem, incluindo sílica coloidal, sem estar limitado a esta.
Úteis para a prática da presente invenção são polímeros não poluentes e não tóxicos na formação das suspensões coloidais, como os polímeros biodegradáveis (biopolímeros) e biocompatíveis, selecionados dentre gelatina, quitosana, alginato de sódio, ciclodextrinas, e os poliésteres alifáticos. Dentre estes compostos, os homo e copolímeros de lactato e glicolato (PLA, PGA, PLGA), poli-s-caprolactona (PCL) e os polihidroxialcanoatos, conhecidos como PHA, celulose, fécula de mandioca, e similares. Estes polímeros podem ser degradados por ação enzimática ou hidrolisados demonstrando aplicações agrícolas e farmacêuticas. Os polímeros biodegradáveis colaboram com ações ambientais, pois são decompostos em campo sem deixarem resíduos.
Adicionalmente, o polimetilmetacrilato, (PMMA), utilizado na industria farmacêutica por suas propriedades de biocompatibilidade, pode ser aplicado a seres vivos, embora não seja biodegradável e portanto é um polímero útil para as finalidades da invenção.
Os tensoativos úteis para a prática da invenção incluem tensoativos que promovam um rápido equilíbrio hidrofílico-lipofílico, como o monoestearato de sorbitano (span®60) e polisorbato (tween®80).
A atividade biológica depende diretamente das características quali e quantitativas dos extratos vegetais, sendo que estas podem ser controladas empregando técnicas como, por exemplo, de enriquecimento de extratos.
Neste caso, a tarefa inicial é assegurar a reprodutibilidade da formulação.
Portanto, a primeira etapa para preparo das nanopartículas compreende preparar e analisar os extratos e óleos de Neem utilizados no processo, o principal parâmetro considerado sendo o teor final de azadiractina.
A matéria prima utilizada para a produção das nanopartículas biopoliméricas compreende principalmente amêndoas de Neem, embora outras partes da planta sejam igualmente úteis.
O procedimento de extração utilizado no presente processo envolve a maceração de amêndoas de Neem com n-hexano seguido pela extração com etanol.
Conforme esta técnica, o óleo é inicialmente removido das amêndoas pela difusão do solvente (n-hexano) através das paredes celulares, sendo dissolvido imediatamente após o contato. A velocidade de difusão é diretamente proporcional a uma potência do diâmetro das partículas em maceração com circulação livre do solvente, daí a importância da moagem das amêndoas. O diâmetro médio de partículas das amêndoas submetidas à extração está na faixa entre 10 e 30 μιτι. O uso de agitador mecânico de haste no processo de percolação auxilia a micronizar as amêndoas em dimensões menores que aquelas obtidas na moagem em moinho, favorecendo o processo de difusão.
O processo de extração com n-hexano produz o óleo de Neem e uma torta, sólida, como subproduto.
Uma vez que todo o óleo tenha sido removido, se inicia uma segunda etapa de extração com etanol.
A extração exaustiva de azadiractina é conduzida macerando em etanol o produto sólido (torta) obtido após a percolação com π-hexano. O etanol é facilmente difundido entre as paredes celulares, apresenta uma grande afinidade com limonóides, tem baixo custo e facilidade de transposição à escala industrial. Além disso, é considerado um solvente moderno de mistura, de natureza volátil, bastante inerte aos solutos e não irritante à pele humana.
A remoção inicial com /7-hexano de compostos apoiares auxilia a interação soluto/solvente (azadiractina/etanol) na etapa de extração da torta com etanol. Além disso, proporciona a obtenção de extratos sólidos, facilmente manipulados e com maiores conteúdos na razão teor de princípio ativo/quantidade de extrato. Estas características são importantes para as etapas de formulação dos óleos enriquecidos e das nanopartículas.
O rendimento do processo (% m/m), a eficiência de extração (%) e a quantidade total de extrato obtido (g) para os extratos preparados se encontram detalhados na Tabela 1 a seguir.
O conteúdo de azadiractina nos extratos e óleo de Neem é quantificado por CLAE (Cromatografia Líquida de Alta Eficiência) após validação analítica, sendo as amostras preparadas conforme o pedido publicado brasileiro BR0700034-0A, do mesmo autor do presente pedido.
A análise inicial da amêndoa de Neem quantificou o teor de azadiractina em 2.912,2 mg. Kg"1 de amêndoa, possibilitando calcular o rendimento do processo.
TABELA 1
Figure imgf000026_0001
O coeficiente de variação entre as análises cromatográficas (triplicatas) foi
inferior a 6%; Teor de azadiractina nas amêndoas igual a 2.912,2 mg Kg'1.
Conteúdo de azadiractina obtida no método de extração considerado padrão.
A validação do método analítico foi realizada de acordo com critérios propostos pela ICH (International Conference on Harmonization). As figuras de mérito investigadas na validação do método foram linearidade, seletividade, exatidão, precisão, robustez, recuperação, limites de quantificação e de detecção e repetibilidade.
A seletividade do método analítico foi avaliada comparando cromatogramas de análises de nanopartículas preparadas com extratos e óleos de Neem conforme a Figura 3B e nanopartículas isentas desses extratos e óleos, Figura 3A. Nenhum pico interferente foi observado em 8,68 min no cromatograma do branco (tempo de retenção da azadiractina) no comprimento de onda de trabalho de 217 nm.
Assim, o presente método analítico pode ser considerado seletivo podendo distinguir a resposta do analito de interesse dos demais componentes da mistura. A linearidade do método analítico proposto para quantificação da azadiractina por CLAE é confirmada por uma curva de calibração construída com as soluções padrões de azadiractina (n = 7), obtendo o coeficiente de correlação (r2) pelo método dos mínimos múltiplos quadrados r* = 0.9999.
Adicionalmente, o fator de resposta versus a concentração de azadiractina nas amostras padrão (n = 7) revela inclinação de (0,045) próximo a zero e um Desvio Padrão Relativo de 2,98% demonstrando a linearidade da faixa de trabalho.
A exatidão [Exatidão = (medida da concentração/concentração nominal) x 100, n = 15] pode ser avaliada calculando a porcentagem de recuperação da azadiractina. Verificou-se forte concordância entre os dados experimentais e os valores nominais teóricos.
A análise da precisão [Exatidão = (medida da concentração/concentração nominal) x 100, n = 15] possibilitou identificar a extensão de erros aleatórios durante o preparo de amostras e validação do método. Os resultados obtidos indicam uma boa precisão para o método analítico. O Limite de Quantificação do método foi estabelecido em 1 ,0 μς mL"1, enquanto o Limite de Detecção foi 0,3 g mL" .
Os mesmos procedimentos de validação da azadiractina foram realizados para o 3-tigloilazadirachtol. Os resultados da validação do 3- tigloilazadirachtol foram semelhantes aos descritos para a azadiractina. Repetibilidade, robustez, recuperação e estabilidade de armazenamento
A repetibilidade foi investigada analisando dez vezes uma mesma amostra de azadiractina nanoencapsulada. Este resultado demonstrou a correlação entre sucessivas análises sobre os mesmos parâmetros cromatográficos e equipamento. O DPR% (Desvio Padrão Relativo) calculado foi de 0,71 % (n = 10). A robustez do método analítico foi determinada analisando uma mesma amostra de azadiractina (95.0 pg ml_"1) em suspensão coloidal de nanopartículas poliméricas de PCL sob pequenas modificações nas condições cromatográficas. Esta avaliação teve como propósito provar que pequenas variações no método são negligenciáveis nos processos de avaliação sendo estudados por mudanças deliberadas em parâmetros críticos monitorando possíveis alterações.
Os resultados indicam que não houve perda da seletividade na separação cromatográfica e na informação quantitativa. A pequena variação no tempo de retenção pode ser justificada por mudanças na interação soluto/solvente/adsorvente. Nenhuma outra variação foi observada demonstrando ser o método robusto a pequenas variações nos parâmetros cromatográficos.
A recuperação do método foi determinada pela comparação de resultados do conteúdo total de azadiractina adicionado e quantificado em suspensões coloidais preparadas com diferentes biopolímeros (PCL, PHB, PMMA).
Os resultados de recuperação foram obtidos pela razão entre o conteúdo de azadiractina quantificado e sua concentração nominal expresso em porcentagem. O valor médio calculado das três diferentes formulações (95,0 pg mL"1) foi 99,5 ± 7,1 % (n = 9) mostrando que não houve perda do analito durante as etapas de preparação das nanopartículas, pré-tratamento ou análises cromatográficas.
Soluções de azadiractina armazenadas a 4 °C foram consideradas estáveis.
Preparação das amostras
O pré-tratamento possivelmente é a etapa mais importante em análises quantitativas. Esta é a etapa crítica em análises cromatográficas, usualmente sendo a etapa lenta e com maiores possibilidades de perdas analíticas no processo. Esta etapa envolve a extração de compostos ativos e a remoção de interferente.
Deste modo foi necessário desenvolver métodos de abertura e pré- tratamento das amostras sem comprometer a recuperação. Assim, para a análise da quantidade total de azadiractina em nanopartículas biopoliméricas em suspensão coloidal foi proposta uma técnica para dissolução do polímero em acetona com posterior separação do polímero e o sobrenadante.
O solvente ideal deve ao mesmo tempo dissolver o polímero e solubilizar a azadiractina sem que haja equilíbrio. Após solubilização, separa-se o polímero do sobrenadante por centrifugação.
O processo de secar as amostras e solubilizar em metanol antes de serem analisadas por CLAE evita que resíduos de polímero comprometam a eficiência de separação e perda prematura da coluna analítica uma vez que estes resíduos não são solúveis em metanol.
O preparo da amostra para análise da eficiência de encapsulamento é mais simples, uma vez que não há necessidade da remoção do polímero ou abertura da amostra.
No entanto foi necessário desenvolver um protocolo para a separação das nanopartículas do meio de dispersão. Uma vez separado o meio e as nanopartículas, é possível quantificar toda a azadiractina dissolvida neste meio.
As amostras em meio aquoso foram secas e re-suspendidas em metanol para manter constante o coeficiente de absortividade molar da azadiractina em comparação com as soluções padrões usadas na construção da curva de calibração.
Por último, também foi necessário desenvolver um método para análises do conteúdo de azadiractina em micropartículas em pó.
Similarmente à recuperação, foi preciso dissolver o polímero num solvente apropriado (acetona) dispersando a azadiractina previamente encapsulada. Uma vez dissolvido, separou-se o polímero e o suporte de secagem do sobrenadante por centrifugação. Parte do sobrenadante foi seco e re-suspendido em metanol para análises cromatográficas.
A extração e pré-tratamento das amostras de sementes e óleos de Neem foram realizados conforme método proposto por Forim, M.R.; et al. Simultaneous quantification of azadirachtin and 3-tigloylazadirachtol in Brazilian seeds and oil of Azadirachta indica: application to quality control and marketing. Anal. Methods 2, 860-869, 2010. Esses métodos estão descritos detalhadamente a seguir no presente relatório.
Preparação de Nanopartículas poliméricas
Nanopartículas de Neem em suspensão coloidal e em pó foram produzidas com sucesso.
Produtos agroquímicos são convencionalmente aplicados em campo por pulverização, sendo a água utilizada como veículo. Todavia, apenas uma pequena parte dos produtos agroquímicos realmente atinge o alvo esperado, não raramente, numa concentração menor que a concentração mínima efetiva requerida devido a problemas como lixiviação, fotodegradação, hidrólises e degradação microbiana. Consequentemente, repetidas aplicações se tornam necessárias causando impactos ambientais diretos ao solo e à água.
Nanopartículas para uso agrícola devem ser projetadas de modo que satisfaçam propriedades físicas e químicas que tenham como resultado uma melhora no controle de pragas agrícolas e redução de riscos ambientais. Dentre os benefícios se pode destacar o ajuste na capacidade de dispersão em meio aquoso de compostos orgânicos com redução do uso de surfactantes, aumento na estabilidade contra degradações provocadas por fotólise, termólise ou hidrólise e controle na liberação de compostos ativos melhorando a atividade biológica desejada. Consequentemente, com o ganho de estabilidade e ajuste da atividade biológica há uma redução nas dosagens e na necessidade de reaplicações havendo um impacto direto positivo sobre o meio ambiente.
Moinard-Chécot, D.; et al. Mechanism of nanocapsules formation by emulsion-diffusion process. Journal of Colloid and Interface Science 317, 458-468, 2008 descrevem um mecanismo de nanoencapsulamento por um processo nomeado de emulsão-difusão o qual foi utilizado como referência. Conforme este processo, uma emulsão de óleo, polímero e acetato de etila é inicialmente preparada. Diluição com água pura permite que o acetato de etila seja difundido para fora das gotículas, deixando uma suspensão de nanocápsulas no final. Foi demonstrado que o tamanho das nanocápsulas tem relação com a composição química da fase orgânica e o tamanho da emulsão primária através de uma relação geométrica simples. Como resultado, a maior parte das propriedades das nanocápsulas é determinada na etapa de emulsificação. A difusão do solvente orgânico por etapas ocorre por equilíbrios de partição sucessivos do acetato de etila entre as gotículas e a fase aquosa.
Já o presente processo para o preparo de nanocápsulas de Neem compreende o preparo de três diferentes fases: a) emulsão em fase aquosa, b) fase orgânica com um polímero de encapsulamento e c) fase aquosa com um tensoativo.
Como resultado, há inicialmente a incorporação das moléculas que se deseja nanoencapsular numa nanoemulsão, seguido pelo recobrimento polimérico, formando nanopartículas e, por ultimo, a estabilização da suspensão coloidal com um tensoativo.
Nos métodos previamente descritos o processo de formação e incorporação vesicular das moléculas que se deseja nanoencapsular, revestimento polimérico e estabilização ocorrem em uma única etapa.
Inicialmente, os extratos de Neem são utilizados para enriquecer o óleo controlando o teor de azadiractina presente na formulação e no produto final. Embora o modo preferido da invenção contemple o uso de óleo combinado a extratos de Neem, o conceito da invenção prevê alternativamente uma formulação contendo unicamente o óleo de azadiractina, sem a adição de extratos para enriquecer o mesmo.
No caso do uso de extraio para enriquecer o óleo, a quantidade necessária é determinada após análises cromatográficas do conteúdo de azadiractina. Por exemplo, um óleo com um teor de azadiractina de 419,1 mg Kg"1 pode ser enriquecido com 28,0 g de um extrato de 56.471 ,0 mg Kg"1 a um conteúdo final de 2.000 mg Kg"1. (Quantidade necessária de azadiractina para 2.000 mg em 1 Kg de óleo = 2.000 - 419,1 = 1.581 mg; extrato g = 1.581 x 1000 g / 56.471 mg = 28,0 g a ser incorporado em 1 Kg de óleo).
Assim, o uso de diferentes quantidades de extratos ou extratos com diferentes conteúdos de óleo de azadiractina permite obter suspensões coloidais e produtos em pó, com diferentes teores de azadiractina, ou seja, produtos com 1.000, 2.000, 10.000 mg Kg"1 de azadiractina.
Conforme o esquema da Figura 4, na sequência, o óleo enriquecido com extratos de Neem é disperso em (10) sob vigorosa agitação em fase aquosa (Fase I) durante dois a sete minutos, tipicamente cinco minutos. Este sistema possibilita a formação de micelas com o óleo de Neem criando uma emulsão. Em função da diferença de solubilidade entre a fase aquosa e as micelas, os constituintes do extrato de Neem permanecem na fase micelar, não sendo, dispersos para a fase aquosa.
Na Fase I o uso de tensoativos como o tensoativo não iônico monoestearato de sorbitano Span®60 é opcional, melhorando as características ambientais da formulação. A exclusão possível deste tensoativo já apresenta uma melhoria sobre o método de nanoprecipitação. O não uso do tensoativo reduz o custo de produção e possíveis impactos ao meio ambiente. Na Fase I o teor de óleo varia entre 0,5 e 10% (m/v), o teor de extrato entre 0,1 e 5%(m/v) e o teor de tensoativo entre 0,1 e 2% (m/v).
Uma típica formulação é a seguinte:
Fase I: [Óleo] = 2% (m/v), [extrato] = 0,5% (m/v) e [Span®60] 0,5% (m/v) em meio aquoso (200 mL).
Uma segunda fase (Fase II) é preparada em (20) dissolvendo um biopolímero em solvente orgânico miscível em água selecionado dentre acetona ou uma mistura de acetona e etanol em qualquer proporção.
A dissolução do biopolímero ocorre sob aquecimento de 40-50°C, tipicamente 45°C e agitação.
Uma formulação típica para a Fase II é a seguinte: dissolver entre 0,1 e 2g de polímero, tipicamente 1 ,0 g de polímero, por exemplo, o PCL, em 200 mL de solvente orgânico composto pela mistura de acetona e etanol em proporções de acetona, variando entre 100% (0% de etanol) a 30% (70% de etanol).
Uma vez disperso o polímero na fase orgânica, esta fase é vertida lentamente sobre a emulsão da Fase I via L1. Com a difusão do solvente orgânico na fase aquosa via L3 ocorre a deposição do polímero na interface óleo-água resultando em (40), na mistura da Fase I + Fase II, dando origem às nanopartículas em forma de nanocápsulas.
Por último, uma terceira fase (Fase III) em (30) composta por água e um tensoativo não-iônico é preparada e vertida via L2 sobre as nanocápsulas pré-formadas em (40), podendo agora o tensoativo adsorver sobre as nanopartículas atuando como dispersante.
O tensoativo da Fase III é um tensoativo não iônico e emulsificante, por exemplo, o polisorbato 80, conhecido como Tween®80, derivado do polietoxilato de sorbitano e ácido oleico. O polisorbato 80 é viscoso e solúvel em meio líquido. Uma formulação típica para a Fase III é a seguinte: dispersar entre 0,1 e 2 g de tensoativo, tipicamente 1 ,0 g do tensoativo, em 100 mL de água destilada.
Finalmente o solvente e parte da água são removidos por evaporação sob pressão reduzida via L4 ajustando o volume final e o conteúdo de azadiractina no meio de dispersão, resultando no produto desejado em (50), uma nanopartícula contendo óleo e extratos de Neem em suspensão coloidal.
A nanopartícula (50) quando submetida a processos de secagem com auxílio de um suporte, selecionado dentre sílica coloidal e suportes similares via L5 permite a obtenção de uma micropartícula em pó (60).
A proporção de nano partícula (50) para o suporte é entre 1 :0,2 a 1 :2 m/m de nanopartículas para sílica. O tipo e o conteúdo dos componentes das formulações foram variados no decorrer dos experimentos da Requerente que levaram ao presente pedido.
O presente processo contempla ainda uma modalidade em que são produzidas micropartículas em pó diretamente, caso em que a Fase III de preparo da solução aquosa de emulsificante e a adição da mesma via L2 à mistura das Fases I e II são dispensáveis. A suspensão coloidal obtida por mistura da Fase I e Fase II é nesta modalidade diretamente transformada em nanopartículas em (40), tem o volume reduzido para obter as nanopartículas (50) e é transformada em micropartículas em pó (60) por Spray-Drying.
Os extratos podem ser usados para enriquecer ainda mais o conteúdo de azadiractina nas suspensões coloidais.
O uso de Span®60 ou outro tensoativo é opcional.
Fase II: [Polímero] = 0,5% (m/v) em fase orgânica (200 mL).
Fase III: [Tween®80] = 1 ,0% (m/v) em meio aquoso (100 mL).
Após o preparo das nanocápsulas e ajuste do volume final do meio aquoso de dispersão (200 mL) a formulação típica final é a seguinte: Meio de dispersão: [Óleo] = 2 % (m/v), [extraio] = 0,5 % (m/v), [Span®60] 0,5 % (m/v), [Polímero] = 0,5 % (m/v) e [Tween®80] = 0,5 % (m/v).
A invenção será descrita a seguir em relação a Exemplos específicos, mas não deve ser considerado que os mesmos sejam limitativos da invenção.
Nanopartículas biopoliméricas foram sintetizadas de modo eficiente e reprodutível utilizando o processo da invenção.
Exemplos ilustrativos estão listados abaixo na Tabela 2.
EXEMPLOS TABELA 2
Figure imgf000035_0001
As medidas de pH, diâmetro de partículas (diâmetro hidrodinâmico), polidispersão e potencial zeta são parâmetros indicativos da estabilidade da suspensão coloidal.
O valor do pH dos sistemas coloidais pode afetar a estabilidade de sistemas coloidais, pois alterações neste parâmetro podem estar relacionadas com a degradação do polímero, de algum outro componente da formulação, ou mesmo na difusão da substância ativa da partícula para o meio. Alterações no pH também podem afetar a velocidade de liberação do composto ativo ou catalisar reações de degradação.
O diâmetro de partícula e o tamanho de sua distribuição podem afetar a estabilidade coloidal do sistema, cinética de liberação, capacidade de carregamento, distribuição in vivo (ação sistémica) e toxicidade. A polidispersão, ou índice de polidispersividade - IP, indica a distribuição média do tamanho das nanopartículas e, normalmente, valores menores que 0,2 para a suspensão coloidal são considerados bons indicadores de estabilidade.
Por sua vez, o potencial zeta reflete a carga de superfície das nanopartículas sendo este parâmetro influenciado pela composição das partículas, meio dispersante, pH e força iônica da suspensão coloidal. Normalmente, nanopartículas com valores de potencial zeta em módulo > 30 mV possuem boa estabilidade coloidal em suspensão.
O aumento na quantidade do óleo leva à formação de nanocápsulas com diâmetro de partícula ligeiramente superior. Para esta matriz, observou-se que a presença e quantidade dos tensoativos não afetaram o diâmetro de partícula.
O potencial zeta mostrou que todas as formulações exibem cargas negativas com valores variando entre -25,22 e -36,80 mV, tipicamente observados em sistemas contendo óleos com grupos de ácidos livres. Estes valores de potencial zeta combinados com baixos índices de polidispersividade conduzem a uma dispersão coloidal estável devido à repulsão entre as partículas, a qual inibe sua agregação.
O principal componente da formulação, óleo de Neem, pode apresentar ácidos livres ou fosfolipídios carregados negativamente conferindo cargas negativas às nanopartículas.
Tipicamente as nanopartículas apresentam diâmetro de partículas entre 30 e 500 nm, pH entre 4,0 e 7,0, polidispersividade entre 0,03 e 0,600, e potencial zeta entre -10 e -50,0.
Os valores de pH, diâmetro de partícula, polidispersão e potencial zeta para uma série de Exemplos de nanocápsulas de Neem preparadas pelo método descrito podem ser observados na Tabela 3. TABELA 3
Figure imgf000037_0001
Valores expressam o resultado médio ± desvio padrão (n
O óleo de Neem reduz o pH do meio de dispersão. Porém, a variação na quantidade de óleo nas formulações pouco afetou o valor do pH.
Os tensoativos também pouco afetam o pH das suspensões coloidais.
A partir da Figura 5 pode se observar que o pH reduz em função do tempo. A redução do pH em função do armazenamento à temperatura ambiente pode ser explicada pela degradação polimérica.
Foi observado que o diâmetro de partícula depende mais da quantidade de óleo e extrato do que da quantidade ou tipo de polímero empregado para o encapsulamento.
Por exemplo, num experimento variando a razão óleo de Neem/quantidade de polímero com um conteúdo fixo de óleo não há variação significativa no diâmetro de partículas. O mesmo resultado é encontrado alterando o tipo do polímero (PCL: ροϋ-ε-caprolactona; PHB: Ροϋ-β-hidroxibutirato; PMMA: Poli-metacrilato de metila) (Figura 6).
A estratégia adotada busca principalmente preparar nanopartículas de Neem com elevado conteúdo de azadiractina promovendo um ganho na dispersão deste limonóide em meio aquoso. Observou-se para o método de Fessi, H. et al. Nanocapsule formation by interfacial deposition following solvent displacement. Int. J. Pharm. 55, R1- R4, 1989 um limite de 75% na eficiência de encapsulamento. Após o preparo das nanocápsulas de Neem pelo presente processo e análises cromatográficas seguindo os procedimentos descritos acima no presente relatório, foram obtidas suspensões coloidais com aproximadamente 100% de recuperação e de eficiência de encapsulamento para a azadiractina usada no processo.
A Tabela 4 a seguir mostra a caracterização quantitativa de nanocápsulas de Neem em suspensão coloidal obtidas pelo processo da invenção.
TABELA 4
Figure imgf000038_0002
* para a solução coloidal; Valores expressam o resultado médio ± desvio padrão
(n = 3).
A recuperação é determinada avaliando por CLAE primeiramente a quantidade de azadiractina presente no óleo e extratos usados no processo dividido pelo teor total quantificado na suspensão coloidal resultante. Por exemplo, a formulação do Exemplo 1 preparada com 4,00 g de um óleo enriquecido a 4.000,0 mg Kg"1, deve conter no final 8,00 mg de azadiractina num volume final ajustado para 200,0 mL Esta quantidade equivale ao valor nominal de 80,0
Figure imgf000038_0001
mL"1.
Para as formulações descritas na Tabela 2 a eficiência de encapsulamento é superior ao limite de quantificação do método analítico, ou seja, aproximadamente 100%.
Utilizando diferentes quantidades de extratos no preparo de formulações, foi testada a eficiência de encapsulamento da azadiractina em suspensões coloidais com até 3.300,0 mg Γ1 (Tabela 5). Nas formulações de todos os Exemplos a recuperação absoluta e eficiência de encapsulamento são iguais às descritas na Tabela 4.
A eficiência de recuperação foi calculada após quantificação das suspensões coloidais por CLAE tendo como valor de referência a concentração nominal.
O diâmetro de partícula, índice de polidispersão, pH e potencial zeta destas formulações são semelhantes aos descritos na Tabela 3.
TABELA 5
Figure imgf000039_0001
Valores expressam o resultado médio ± desvio padrão (n
A solubilidade da azadiractina tendo sido estimada em 26,0 mg 100 mL'1, são preparadas suspensões coloidais (40) em fase aquosa com um conteúdo de azadiractina igual a 340,0 mg 100 mL"1. Este valor representa uma capacidade de dispersão da azadiractina 13 vezes maior que sua solubilidade. Ou seja, é possível preparar uma nova formulação para aplicação de extratos e óleo de Neem com elevados teores de azadiractina, enquanto o teor de surfactantes é mantido baixo (Tween®80 = 0,5% m/v). Deve ficar bem claro para os especialistas que este valor representa um exemplo não limitativo, maiores capacidades de dispersão sendo perfeitamente possíveis conforme o teor de extrato empregado.
Para avaliar a formação das nanocápsulas esféricas a morfologia é determinada por análises de microscopia eletrônica de varredura (MEV). A remoção da água da dispersão coloidal sobre o porta-amostras metálico requerida para o preparo de amostras pára análises morfológicas por MEV promove a aglomeração das nanopartículas formando um filme polimérico. Contudo, é possível observar nanocápsulas sobre o filme polimérico (Figura 7).
Micropartículas de nanocápsulas
As suspensões coloidais geralmente possuem uma estabilidade físico-química limitada. Longos tempos de armazenamento podem favorecer o crescimento microbiano e a hidrólise polimérica. Muitas vezes, por conveniência, a transformação destes sistemas líquidos em pó se torna uma estratégia viável. As nanopartículas em pó podem apresentar uma maior estabilidade, além de reduzir o volume de armazenamento e peso para transporte.
As nanopartículas de fato, são aprisionadas numa matriz sólida seca (micropartículas em pó) após sua interação com partículas de sílica antes da secagem. Durante o processo de secagem há a formação de aglomerados de sílica circunvizinhada por uma ou várias nanocápsulas de Neem cobrindo a superfície das micropartículas, vide Pohlmann, A.R. et al. Spray-dried indomethacin-loaded polyester nanocapsules and nanospheres: development, stability evaluation and nanostructure models. Eur. J. Pharm. Sei. 16, 305-312, 2002.
Este processo pode prevenir a agregação irreversível de nanocápsulas, vide Tewa-Tagne, P. et al. Spray-dried microparticles containing polymeric nanocapsules: formulation aspeets, liquid phase interaction and particles characteristics. Int. J. Pharm. 325, 63-74, 2006.'
O dióxido de silício coloidal como suporte de secagem mostrou ser um bom candidato. Entre as vantagens, o silício coloidal pode originar uma grande área superficial e possuir uma boa condutividade térmica favorável à remoção de água. Além disso, é um material biocompatível, atóxico sendo considerado seguro inclusive para preparo de medicamentos. No desenvolvimento do processo de secagem são utilizadas nanocápsulas de diâmetro de partícula inferior a 300 nm, com cargas negativas relativas ao potencial zeta (~ -30 mV).
Conforme proposto por Pohlmann, A.R. no artigo citado logo acima no presente relatório e no artigo por Tewa-Tagne, P. igualmente citado logo acima no presente relatório, o rendimento foi avaliado pela porcentagem de sílica (Aerosil®200) utilizada no processo de secagem por Spray-Dryer.
No preparo das micropartículas em pó (60) por combinação de nanocápsulas (50) com suporte de secagem (p.ex., sílica) em Spray-Dryer as proporções nanocápsulas/sílica variam entre 1 :0,2 a 1 :2 m/m.
Os dados estão compilados na Tabela 6 abaixo.
TABELA 6
Figure imgf000041_0001
Formulação isenta de Span 60.
* Valores expressam o resultado médio ± desvio padrão (n = 3).
Nas diferentes formulações usadas na alimentação do Spray-Dryer com 1 ,0% de nanocápsulas os melhores rendimentos foram obtidos para uma quantidade de sílica superior a 1 ,0%. Abaixo desta composição foi observada a formação de um filme nas paredes do ciclone procedente da adsorção do material das nanocápsulas e sílica (Amostra 10). O mesmo perfil foi observado com o aumento da quantidade de nanocápsulas em relação à quantidade de sílica (Amostra 14). Os piores resultados de recuperação foram obtidos para nanopartículas preparadas sem o tensoativo Span®60 (Amostra 15) conduzindo a uma forte adsorção nas paredes do ciclone.
Os dados da Tabela 6 demonstram a importância do controle das quantidades dos componentes submetidas ao processo de secagem por Spray-Dryer.
A recuperação de partículas em pó de micropartículas de Neem/sílica demonstrou um rendimento aceitável para o processo de Spray-Drying.
Os parâmetros operacionais do equipamento Spray-Dryer incluindo taxa de alimentação, vazão do ar atomizador, capacidade do aspirador e temperatura de entrada foram tais que permitiram obter uma temperatura de saída de 50 ± 5 °C favorável à não decomposição térmica de compostos sensíveis como a azadiractina.
A forma e a morfologia das micropartículas em pó de nanocápsulas de Neem obtidas no processo de secagem por Spray-Drying podem ser observadas na Figura 8.
Micropartículas em pó esféricas bem separadas foram obtidas com diversos diâmetros variando entre 1 e 10 μιτι. O formato esférico demonstra ausência de efeitos de desestabilização durante o processo de secagem.
Através da análise por MEV com altas ampliações (Figura 8c), nanocápsulas foram observadas sobre as micropartículas em pó apresentando um diâmetro médio reduzido (< 100 nm).
O mesmo comportamento foi observado e descrito por Pohlmann,
A.R. no artigo já mencionado acima no presente relatório.
As superfícies das partículas apresentaram um aspecto rugoso com uma camada porosa de nanopartículas e sílica. Embora as preparações sejam homogéneas, a dispersão no diâmetro de partículas é originário do bico do sistema de atomização que produz gotas com uma ampla faixa de tamanhos. Assim, diferentes tamanhos de gotas conduzem a uma ampla dispersão de diâmetro de partículas.
A fusão de partículas na etapa final de secagem também pode produzir maiores aglomerados.
A análise quantitativa do conteúdo de azadiractina por CLAE foi realizada conforme descrito acima no presente relatório.
Formulações preparadas com diferentes quantidades de azadiractina em óleos enriquecidos e extratos de Neem conduziram à preparação de micropartículas em pó com variados conteúdos de azadiractina proporcional à massa total da formulação.
A quantidade final de azadiractina nas micropartículas em pó variou entre 1.600,0 mg Kg"1 a 6.800,0 mg Kg"1. Contudo, este resultado ilustra apenas os valores de alguns experimentos, a quantidade de azadiractina podendo variar amplamente dependendo do teor de azadiractina no óleo e nos extratos de Neem e da quantidade dos mesmos empregados na formulação. Em um exemplo não limitativo, é possível preparar micropartículas em pó com teores de 10.000 mg Kg"1, dependendo da quantidade e qualidade do extrato de Neem utilizado.
A avaliação da interação polímero-produtos de Neem foi realizada por termogravimetria (TG) e a derivada da termogravimetria (DTG). Neste estudo, a interação físico-química entre os constituintes da formulação foi analisada para prever o comportamento térmico e biodegradável das micropartículas. A perda de massa foi entre 45 e 50%, proporcional à composição das formulações e à quantidade de sílica utilizada.
As formulações avaliadas encontram-se listadas na Tabela 7. TABELA 7
Figure imgf000044_0001
Nesta composição foi utilizado oleato de isodecila
Claramente foi possível identificar diferentes eventos térmicos para perdas de massa em decorrência do material presente. Devido à substituição do óleo de Neem por oleato de isodecila as formulações não apresentaram necessariamente os mesmos eventos térmicos. Contudo importantes observações podem ser apresentadas.
Formulações A a E contendo extratos e óleos de Neem apresentaram uma curva de degradação tardia comparadas às formulações isentas de extratos e/ou óleo de Neem (Figura 9A - curva de TG, Figura 9B, curva de DTG). Justifica o fato, ser o primeiro evento térmico resultado da decomposição dos extratos de Neem e/ou óleos utilizados na formulação. O segundo evento ocorre pela degradação do Span®60 e Tween®80. Comparando a formulação de PCL com óleo de Neem (B - Tabela 7 acima) e PCL com oleato de isodecila (B - Tabela 7 acima) se observa que o óleo de Neem retarda a degradação do Span®60 e Tween®80. O último evento ocorre pela degradação do polímero. Após estes eventos a decomposição do material ocorre lentamente provavelmente pela eliminação de materiais carbonados.
Estabilidade das nanopartículas
A estabilidade das nanopartículas em suspensão coloidal e em micropartículas em pó submetidas à radiação de Ultravioleta é reportada em termos de porcentagem residual de azadiractina (Figura 10).
Como padrões de referência são utilizadas duas amostras de óleo de Neem não encapsulado sendo uma exposta à radiação ultravioleta (E - Figura 10) e outra revestida ao abrigo da radiação ultravioleta (F - Figura 10). Durante o período avaliado, as amostras foram continuamente homogeneizadas.
A velocidade de degradação da amostra de óleo de Neem exposta à radiação ultravioleta foi muito superior se comparada com as amostras nanoencapsuladas.
A amostra de óleo protegida da radiação ultravioleta não apresentou sinais de fotodegradação durante o período investigado.
Diferentes velocidades de degradação ultravioleta também foram observadas entre nanopartículas em pó (A e B - Figura 10) e em suspensão coloidal (C e D - Figura 10).
A velocidade de degradação das nanocápsulas em suspensão coloidal foi maior que das nanopartículas em pó. Esta diferença pode ser explicada pelo intumescimento do polímero e liberação da azadiractina em meio aquoso e pela habilidade das nanopartículas de sílica de absorver ou refletir radiação ultravioleta. Além disso, no pó há uma menor penetração ultravioleta. Amostras contendo Span®60 (B e D - Figura 10) apresentam uma menor fotodegradação do que amostras sem Span®60 (A e C - Figura 10).
Quando as amostras foram irradiadas por 7 dias a quantidade de azadiractina fotodegradada no óleo exposto foi aproximadamente 100% enquanto que nas amostras de nanopartículas em pó e em suspensão coloidal eram de 90% e 55% respectivamente. Depois de 14 dias a quantidade de azadiractina fotodegradada nas nanopartículas em pó e em suspensão coloidal eram de 25% e 72% respectivamente.
Os valores das constantes de fotodegradação (dias 1) da azadiractina são descritos na Tabela 8 a seguir no presente relatório.
A diferença entre os valores das constantes de fotodegradação confirma que a azadiractina foi encapsulada e parcialmente protegida, principalmente em matrizes sólidas. Um objetivo da presente investigação foi determinar a eficiência de fotodegradação necessária para reduzir a quantidade de azadiractina a 50% do valor inicial sob condições aceleradas, de amostras de azadiractina não-encapsuladas e encapsuladas (Tabela 8).
A partir dos dados da Tabela 8 fica evidente a diferença de estabilidade ultravioleta entre as amostras, sendo as nanopartícuias em pó mais estáveis que aquelas em suspensão coloidal.
Como esperado, o óleo não-encapsulado é o que oferece a menor fotoproteção para a azadiractina.
TABELA 8
Figure imgf000046_0001
a Constantes para cinética de primeira ordem: ln[Aza]/[Aza]0 = - kt b Tempo de radiação necessário (em dias) para reduzir a quantidade de azadiractina em 50% do seu valor inicial. Estudo de liberação de azadiractina de nanocápsulas de PCL
A cinética de liberação foi investigada para as nanocápsulas de maior estabilidade ultravioleta, isto é, nanocápsulas formuladas com Span®60. O sistema projetado sob fluxo constante evita a saturação do sistema e, consequentemente, o equilíbrio de solubilidade. Neste ensaio somente a azadiractina não-encapsulada possui a capacidade de passar através dos poros da bolsa de diálise.
O perfil da liberação in vitro pode ser observado na Figura 11. 0 tempo necessário para liberação de 100% da azadiractina foi de 10 horas sendo 85% liberada nas quatro primeiras horas.
O valor de n é um parâmetro empírico obtido na equação de Korsmeyer, R.W. ef a/. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 15, 25-35, 1983, usado para caracterizar o mecanismo de liberação com base na Equação a seguir:
Mt/M = K.f
onde Mt /Mx é a fração de liberação no tempo t, n é o expoente de liberação e K o fator de liberação.
De acordo com o valor numérico que n assume é possível caracterizar o mecanismo de liberação do fármaco. Esta equação semi- empírica é utilizada para descrever a liberação do soluto (azadiractina).
Neste caso para valores de n≤ 0,45 o principal mecanismo que controla a liberação da azadiractina é a difusão pura (Fickiana clássica).
Quando n assume valores entre 0,45 < n≤ 0,89 indica cinética de transporte anómalo, ou seja, uma combinação dos mecanismos de difusão do fármaco (transporte Fickiano) e do transporte não-Fickiano
(Caso-ll), controlado pelo relaxamento das cadeias poliméricas.
O valor de n determinado pelo coeficiente angular do gráfico log(Mt
/Mx) versus log(t) para a azadiractina foi de 2,49 (> 0,89) correspondendo a cinética de primeira ordem sendo a liberação controlada por mecanismos de transporte decorrentes do fenómeno de intumescimento e relaxamento do polímero ou liberação mediante erosão. Os resultados indicam que nanocápsulas de PCL contendo óleo e extratos de Neem em suspensão coloidal são satisfatoriamente preparadas pelo método proposto.
Nanocápsulas de Neem em pó podem ser facilmente preparadas pela secagem das suspensões coloidais por Spray-Dryer.
Os produtos apresentam boa homogeneidade e estabilidade em suspensão coloidal e em pó. A taxa de associação (eficiência de encapsulamento), monitorada pela azadiractina, foi de aproximadamente 100% sendo o perfil de liberação in vitro estipulado para cinética de ordem zero, ou seja, governado pelo intumescimento e relaxação polimérica.
A recuperação da azadiractina determinada nas suspensões coloidais foi de 100% demonstrando não haver perdas de compostos durante o preparo.
Os produtos obtidos pelo processo da invenção apresentam um ganho de estabilidade contra radiação ultravioleta se comparados aos produtos comerciais já disponíveis de óleo de Neem.
O uso de óleo de Neem enriquecido com extratos de Neem possibilitou obter produtos com quantidades desejadas e reprodutíveis de azadiractina.
A técnica analítica desenvolvida e validada de Cromatografia
Líquida de Alta Eficiência foi eficiente no controle quantitativo de azadiractina em extratos, óleos e nas nanopartículas, tal controle sendo necessário para a preparação e caracterização das nanopartículas.

Claims

REIVINDICAÇÕES
1. Processo de obtenção de nanopartículas biopoliméricas contendo óleo e extratos de Azadirachta indica A. Juss. (Neem), dito processo sendo caracterizado por compreender as etapas de:
a) A partir de amêndoas de Neem moídas com diâmetro médio de partícula entre 10 e 30pm prover óleo enriquecido com desde 1 até 10.000 mg kg"1 de azadiractina usando extratos de Neem;
b) Formar em (10) uma nanoemulsão aquosa (Fase I) por vigorosa agitação por entre dois e sete minutos de entre 0,5 e 10% (m/v) do dito óleo de Neem, entre 0,1 e 5% (m/v) de extratos de Neem da etapa a), e entre 0,1 a 2 % m/v de um tensoativo não iônico selecionado dentre monoestearato de sorbitano;
c) Dissolver em (20) sob agitação e aquecimento a 40°C-50°C entre 0,1 e 2,0 % (m/v) de um biopolímero em solvente orgânico polar selecionado dentre acetona e álcool etílico e suas misturas em qualquer proporção, obtendo uma solução de biopolímero no dito solvente (Fase II);
d) verter via L1 lentamente a solução de biopolímero da etapa c) com o auxílio de uma bomba peristáltica sobre a nanoemulsão da etapa a) sob agitação, com difusão do solvente orgânico na fase aquosa via L3 e deposição do polímero na interface óleo-água resultando, por mistura da Fase I e Fase II, em suspensões coloidais de nanopartículas biopoliméricas pré-formadas (40) com pH entre 4,0 e 7,0, as ditas suspensões se estabilizando por um período de tempo de 10 minutos; e) preparar em (30) uma terceira fase aquosa (Fase III), contendo entre 0,1 e 2% m/v de um tensoativo não iônico da classe dos oleatos de polietoxisorbitano, e adicionar a mesma sobre as nanocápsulas pré-formadas de d), sob agitação, para garantir a estabilidade da dispersão coloidal obtida por ação dispersante do tensoativo adsorvido sobre as nanopartículas;
f) agitar moderadamente a dispersão coloidal da etapa e) por um período de 10 minutos e mais 30 minutos em repouso de modo a obter a dita dispersão estabilizada;
g) ajustar o volume final das nanopartículas (40) em dispersão coloidal da etapa f) retirando via L4 parte da água da dispersão sob vácuo; e
h) recuperar as nanopartículas biopoliméricas (50) sob forma de nanocápsulas contendo óleo e extratos de Azadiractha indica (A. Juss.) em dispersão coloidal prontas para uso.
2. Processo de acordo com a reivindicação 1 , caracterizado por alternativamente a carga da etapa a) ser isenta de extrato de Neem.
3. Processo de acordo com a reivindicação 1 , caracterizado por alternativamente a nanoemulsão da etapa b) ser isenta de tensoativo não iônico.
4. Processo de acordo com a reivindicação 1 , caracterizado por alternativamente preparar as nanopartículas (40) em ausência de adição via L2 da solução aquosa de tensoativo da Fase III.
5. Processo de acordo com a reivindicação 1 , caracterizado por na etapa c) o biopolímero ser selecionado dentre gelatina, quitosana, alginato de sódio, ciclodextrinas, celulose, fécula de mandioca, ροΐΐ-ε-caprolactona (PCL), polihidroxialcanoatos (PHAs), polimetilmetacrilato (PMMA) e os poliésteres alifáticos.
6. Processo de acordo com a reivindicação 5, caracterizado por os poliésteres alifáticos serem selecionados dentre os homo e copolímeros de lactato e glicolato (PLA, PGA, PLGA).
7. Processo de acordo com a reivindicação 6, caracterizado por o biopolímero ser PLA.
8. Processo de acordo com a reivindicação 1 , caracterizado por as suspensões coloidais (40) da etapa d) apresentarem capacidade de dispersão de azadiractina superior à solubilidade da mesma, incluindo 13 vezes superior, para teores reduzidos de tensoativo, de 0,5% m/v.
9. Processo de acordo com a reivindicação 1 , caracterizado por a nanopartícula (50) da etapa h) ser seca via L5 por Spray-Drying após combinação com um suporte selecionado dentre sílica coloidal na proporção entre 1 :0,2 a 1 :2 m/m de nanopartícula (50) para sílica para obter micropartículas em pó (60).
10. Nanopartículas biopoliméricas preparadas pelo processo de acordo com a reivindicação 1 , caracterizadas por, na etapa g) compreenderem óleo de Neem, 2 % (m/v), extrato de Neem, 0,5 % (m/v), tensoativo Span®60, 0,5 % (m/v), polímero, 0,5 % (m/v) e tensoativo Tween®80 0,5 % (m/v).
11. Nanopartículas biopoliméricas de acordo com a reivindicação 10, caracterizadas por apresentarem diâmetro de partículas entre 30 e 500 nm, polidispersividade entre 0,03 e 0,600, e potencial zeta entre -10 e -50,0 mV.
12. Nanopartículas biopoliméricas de acordo com a reivindicação 10, caracterizadas por apresentarem valor de recuperação absoluta de azadiractina de 97,6 ± 8,36 e valor de eficiência de encapsulamento de 97,5% para concentração nominal de azadiractina de 40 pg ml'1 até valor de recuperação absoluta de 102,2 ± 1 ,89 e valor de 98,7 + 0,01 de eficiência de encapsulamento para concentração nominal de azadiractina de 2.200,00 pg ml"1.
13. Micropartículas em pó preparadas de acordo com o processo da reivindicação 1 , caracterizadas por serem esféricas, com diâmetro de partícula entre 1 e 10 pm.
14. Micropartículas de acordo com a reivindicação 13, caracterizadas por serem obtidas a partir de nanopartículas (40) preparadas em ausência de adição de solução aquosa de tensoativo da Fase III via L2.
15. Micropartículas de acordo com a reivindicação 13, caracterizadas por a quantidade final de azadiractina nas micropartículas em pó variar entre 1.600,0 mg Kg"1 e 10.000,0 mg Kg"1.
PCT/BR2014/000044 2013-01-25 2014-01-23 Processo de obtenção de nanopartículas biopoliméricas contendo óleo e extratos de azadirachta indica a. juss (neem), nanopartículas biopoliméricas e micropartículas em pó WO2014113860A1 (pt)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/762,262 US9668473B2 (en) 2013-01-25 2014-01-23 Process for obtaining biopolymeric nanoparticles containing Azadirachta indica A. Juss. (neem.) oil and extracts, biopolymeric nanoparticles, and powder microparticles
MX2015009701A MX2015009701A (es) 2013-01-25 2014-01-23 Proceso de obtencion de nonoparticulas biopolimericas conteniendo aceite y extractos de azadirachta indica a, juss (neem), nanoparticulas biopolimericas y microparticulas en polvo.
EP14743230.6A EP2949213A4 (en) 2013-01-25 2014-01-23 PROCESS FOR OBTAINING BIOPOLYMER NANOPARTICLES CONTAINING OIL AND AZADIRACHTA INDICA A. JUSS (NEEM) EXTRACTS, BIOPOLYMER NANOPARTICLES AND MICROPARTICLES POWDER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102013021210A BR102013021210B1 (pt) 2013-01-25 2013-01-25 processo de obtenção de nanopartículas biopoliméricas contendo óleo e extratos de azadirachta indica a. juss (neem), nanopartículas biopoliméricas e micropartículas em pó
BRBR102013021210-5 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014113860A1 true WO2014113860A1 (pt) 2014-07-31

Family

ID=51226770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2014/000044 WO2014113860A1 (pt) 2013-01-25 2014-01-23 Processo de obtenção de nanopartículas biopoliméricas contendo óleo e extratos de azadirachta indica a. juss (neem), nanopartículas biopoliméricas e micropartículas em pó

Country Status (5)

Country Link
US (1) US9668473B2 (pt)
EP (1) EP2949213A4 (pt)
BR (1) BR102013021210B1 (pt)
MX (1) MX2015009701A (pt)
WO (1) WO2014113860A1 (pt)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102322016B1 (ko) * 2016-06-01 2021-11-09 삼성디스플레이 주식회사 디스플레이 장치 및 그 제조방법
GB2586771A (en) * 2018-12-21 2021-03-10 Pangaea Agrochemicals Ltd Encapsulated pesticide
CN112189675A (zh) * 2020-08-04 2021-01-08 北京宇悦生物科技有限公司 农药纳米载药系统及其制备方法
CN111903694A (zh) * 2020-08-04 2020-11-10 北京宇悦生物科技有限公司 用于防治松树球果害虫的农药纳米载体系统及其制备方法
WO2022250524A1 (en) * 2021-05-28 2022-12-01 Universiti Putra Malaysia Plant-based bioinsecticide composition
CN115024339A (zh) * 2022-05-16 2022-09-09 江苏大学 一种植物源纳米农药微胶囊制备方法

Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US753777A (en) 1903-02-17 1904-03-01 Wladimir Witkowicz Multiple evaporating apparatus.
US4515785A (en) 1980-08-19 1985-05-07 Terumo Corporation Neem bark extracts
US4537774A (en) 1980-08-19 1985-08-27 Terumo Corporation Hot-water extracts of neem bark
US4556562A (en) 1984-03-19 1985-12-03 Vikwood, Ltd. Stable anti-pest neem seed extract
US4902713A (en) 1987-01-26 1990-02-20 Max-Planck-Gesellschaft Zur Foederung Der Wissenschaften E.V. Azadirachtin-like compounds and insect-destroying agents containing them
US4943434A (en) 1987-10-06 1990-07-24 Rohm And Haas Company Insecticidal hydrogenated neem extracts
US4946681A (en) 1989-06-26 1990-08-07 W. R. Grace & Co.-Conn. Method to prepare an improved storage stable neem seed extract
US5001149A (en) 1987-03-04 1991-03-19 Npi Azadirachtin derivative insecticides
US5001146A (en) 1989-06-26 1991-03-19 W. R. Grace & Co.-Conn. Storage stable azadirachtin formulation
US5009886A (en) 1989-10-02 1991-04-23 Floss Products Corporation Dentifrice
US5047242A (en) 1987-03-04 1991-09-10 Native Plant Institute ("Npi") Azadirachtin derivative insecticides
US5110591A (en) 1990-03-01 1992-05-05 Ppg Industries, Inc. Neem oil emulsifier
US5229007A (en) 1992-04-17 1993-07-20 Agridyne Technologies, Inc. Selective removal of aflatoxin from azadirachtin containing compositions
US5281618A (en) 1992-09-21 1994-01-25 W. R. Grace & Co.-Conn. Storage stable high azadirachtin solution
US5298251A (en) 1991-01-03 1994-03-29 W. R. Grace & Co.-Conn. Fungicide compositions derived from neem oil and neem wax fractions
US5298247A (en) 1991-08-08 1994-03-29 Godrej Soaps Limited Neem oil fatty acid distillation residue based pesticide
US5352672A (en) 1993-10-20 1994-10-04 Fmc Corporation Acaricidal combinations of neem seed extract and bifenthrin
US5352697A (en) 1992-07-28 1994-10-04 Agridyne Technologies, Inc. Storage stable pesticide compositions comprising azadirachtin and epoxide
US5356628A (en) 1989-12-26 1994-10-18 W. R. Grace & Co.-Conn. Hydrophobic extracted neem oil-a novel fungicide
US5368856A (en) 1989-12-26 1994-11-29 W. R. Grace & Co.-Conn. Hydrophobic extracted neem oil-a novel fungicide use
US5370873A (en) 1992-09-11 1994-12-06 Udeinya; Iroka J. Therapeutic compounds derived from the neem tree
US5371254A (en) 1992-07-27 1994-12-06 Rohm And Haas Company Preparation of edible neem oil
US5372817A (en) 1991-01-03 1994-12-13 W. R. Grace & Co.-Conn. Insecticidal compositions derived from neem oil and neem wax fractions
US5391779A (en) 1992-07-27 1995-02-21 Rohm And Haas Company Stable extracts from neem seeds
US5395951A (en) 1992-11-17 1995-03-07 Council Of Scientific & Industrial Research Triterpene derivatives of azadirachtin having insect antifeedant and growth inhibitory activity and a process for extracting such compounds from the neem plant
US5397571A (en) 1993-03-25 1995-03-14 W. R. Grace & Co.-Conn. Co-extraction of azadirachtin and neem oil
US5405612A (en) 1989-12-26 1995-04-11 W. R. Grace & Co.-Conn. Hydrophobic extracted neem oil--a novel insecticide
US5420318A (en) 1992-07-27 1995-05-30 Rohm And Haas Company Preparation of high purity neem seed extracts
US5501855A (en) 1993-09-02 1996-03-26 Talwar; Gursaran P. Neem oil as a male contraceptive
USH1541H (en) 1993-07-21 1996-06-04 Holla; Kadambar S. Method for producing azadirachtin concentrates from neem seed materials
US5626848A (en) 1995-06-06 1997-05-06 Thermo Trilogy Corporation Reduced-cloud-point clarified neem oil and methods of producing
US5635193A (en) 1995-06-07 1997-06-03 Thermo Trilogy Corporation Stability of azadirachtin-containing solid
US5643351A (en) 1994-05-27 1997-07-01 Micro Flo Corporation Encapsulation with water soluble polymer
US5679662A (en) 1995-06-06 1997-10-21 Thermo Trilogy Corporation Synergistic use of azadirachtin and pyrethrum
US5695763A (en) 1991-03-22 1997-12-09 Trifolio-M Gmbh, Herstellung Und Vertrieb Method for the production of storage stable azadirachtin from seed kernels of the neem tree
US5698423A (en) 1992-12-23 1997-12-16 Rohm And Haas Company Method for producing azadirachtin by cell culture of Azadirachta indica
US5730986A (en) 1995-06-14 1998-03-24 Council Of Scientific & Industrial Research Process for the isolation of an active principle from azadirachta indica useful for controlling gastric hyperacidity and gastric ulceration
US5736145A (en) 1995-07-17 1998-04-07 Dalmia Centre For Biotechnology Process for preparing purified Azadirachtin in powder form from neem seeds and storage stable aqueous composition containing Azadirachtin
US5827521A (en) 1995-03-09 1998-10-27 Fortune Biotech Limited Shelf stable insect repellent, insect growth regulator and insecticidal formulations prepared from technical azadirachtin isolated from the kernel extract of Azadirachta indica
US5856526A (en) 1995-10-19 1999-01-05 Sankaram; Akella Venkata Bhavani Pesticidal dry powder formulation enriched in azadirachtin up to 88% an emulsifiable concentrate enriched up to 30% of azadirachtin and a process for preparing such formulation and concentrate from neem seed/kernel
US6193974B1 (en) 1995-07-17 2001-02-27 Dalmia Center For Research And Development Process of preparing purified azadirachtin in powder form from neem seeds and storage stable aqueous composition containing azadirachtin
US6294571B1 (en) 1998-09-11 2001-09-25 Independent Ink, Inc. Method for using neem extracts and derivatives for protecting wood and other cellulosic composites
US6312738B1 (en) 1997-07-11 2001-11-06 Neem Extracts Pty. Ltd. Azadirachtin extraction process
US6340484B1 (en) 2000-04-07 2002-01-22 E.I.D. Parry (India) Limited Compositions containing neem seed extracts and saccharide
US6545167B1 (en) 2002-04-04 2003-04-08 Fortune Bio-Tech Limited Simple and effective manufacturing process for large scale recovery of Nimbin, a Neem seed constituent
US6596292B2 (en) 2000-06-22 2003-07-22 Sumitomo Chemical Company, Limited Solid pesticidal formulation
US6602823B1 (en) 1998-12-16 2003-08-05 Bayer Aktiengesellschaft Agrochemical formulations
US6635757B1 (en) 2001-09-14 2003-10-21 Vittal Mallya Scientific Research Foundation Process for preparing cyclodextrin inclusion complex
US6660291B2 (en) 2001-11-20 2003-12-09 The United States Of America As Represented By The Secretary Of Agriculture Use of paecilomyces spp. as pathogenic agents against subterranean termites
US6667277B2 (en) 2001-08-24 2003-12-23 National Starch And Chemical Investment Holding Corporation Water dispersible starch based physical form modification of agricultural agents
US6703347B2 (en) 2000-01-28 2004-03-09 Syngenta Limited Isothiazole derivatives and their use as pesticides
US6703034B2 (en) 2000-12-11 2004-03-09 University Of Florida Neem oil microemulsion without cosurfactants or alcohols and a process to form the same
US6734198B1 (en) 1999-07-06 2004-05-11 Nihon Bayer Agrochem K.K. Nematicidal trifluorobutenes
US6733802B1 (en) 1997-12-17 2004-05-11 Fortune Bio-Tech Limited Natural azadirachtin composition
US6746988B2 (en) 2001-09-07 2004-06-08 Syngenta Crop Protection, Inc. Surfactant systems for agriculturally active compounds
US6773727B1 (en) 2001-08-13 2004-08-10 The United States Of America As Represented By The Secretary Of Agriculture Use of gossypol and related terpenes for control of urban and agricultural pests
US6811790B1 (en) 2000-03-27 2004-11-02 E.I.D. Parry (India) Ltd. Storage stable pesticide formulations containing azadirachtin
US6824787B2 (en) 2000-12-22 2004-11-30 The United States Of America As Represented By The Secretary Of Agriculture Urea and nitrogen based compounds as feeding stimulants/aggregants and masking agents of unpalatable chemicals for subterranean termites
US6835719B2 (en) 2001-12-19 2004-12-28 W. Neudorff Gmbh Kg Pesticidal composition
US6849614B1 (en) 1998-07-28 2005-02-01 Ecosmart Technologies, Inc. Synergistic and residual pesticidal compositions containing plant essential oils
US6855351B2 (en) 2002-03-05 2005-02-15 T. Stanes And Company Limited Pesticide formulation containing azadirachtin (not less than 300 ppm) and salanin in a formulated product with neem oil
US6875885B2 (en) 2000-07-18 2005-04-05 Syngenta Limited Process for the preparation of enantiomerically pure pyrethroid insecticides
US6930076B2 (en) 2001-12-13 2005-08-16 Bayer Cropscience Ag Nematicidal trifluorobutenyl imidazole thioether derivatives
WO2005095031A1 (en) * 2004-03-31 2005-10-13 Council Of Scientific And Industrial Research A process for the synthesis of mono and bimetallic nanoparticles using palnt extract
US6991818B2 (en) 2001-03-30 2006-01-31 Council Of Scientific & Industrial Research Compound iso-squamocin obtained from seeds of annona squamosa and composition containing the same
US7083779B2 (en) 2003-03-26 2006-08-01 Council Of Scientific And Industrial Research Nontoxic dental care herbal formulation for preventing dental plaque and gingivitis
US7112553B1 (en) 1999-04-20 2006-09-26 Syngenta Limited Pesticidal indazole or benzotriazole derivatives
US7132455B2 (en) 2002-06-20 2006-11-07 Bayer Cropscience Ag Phthalamide derivatives
BRPI0502772A (pt) 2005-06-13 2007-02-21 Belmiro Pereira Das Neves exploração dos derivados do nim como uma alternativa viável e econÈmica dentro do setor produtivo, industrial e comercial
US7186891B1 (en) 1996-04-12 2007-03-06 University Of Kentucky, Research Foundation Plant cells and plants expressing chimeric isoprenoid synthases
BRPI0502588A (pt) 2005-06-27 2007-03-20 Alan Kozlowski processo de preparo de solução repelente de insetos com base na planta "neem" e produto resultante na forma de vela
US7194964B2 (en) 2002-04-23 2007-03-27 Basf Aktiengesellschaft Method for chemically decontaminating soil by applying a mixture of sulphur and complexing agents
US7204994B2 (en) 2003-02-03 2007-04-17 Ashland Licensing And Intellectual Property Llc Juvenile hormone compositions and methods for making same
BRPI0508296A (pt) 2004-03-31 2007-07-31 Parry E I D India Ltd formulação granular de extrato de semente de neem e processo para o preparo da mesma
US7345009B2 (en) 2002-02-07 2008-03-18 Bayer Cropscience Ag Substituted 4-hetaryl-pyrazolines as pest control agents
US7345080B2 (en) 2002-02-19 2008-03-18 Bayer Cropscience Ag Substituted 4-pyrazolyl pyrazonlines used for pest control
WO2008032328A2 (en) * 2006-09-14 2008-03-20 Yissum Research Development Company Of The Hebrew University Of Jerusalem Pesticide nanoparticles obtained from microemulsions and nanoemulsions
BRMU8602632U (pt) 2006-11-13 2008-07-01 Helcio De Junior Abreu processo de elaboração de extrato micronizado de nim (azadirachta indica)
BRPI0700034A (pt) 2007-01-11 2008-08-26 Fundacao Universidade Fed De S método para quantificação das azadirachtinas a e b em sementes e óleos comerciais de azadirachta indica
BRPI0701347A2 (pt) 2006-03-27 2008-11-11 Godrej Agrovet Ltd composiÇço com base em neem para revestimento de fertilizante nitrogenado
BRPI0702226A2 (pt) 2007-08-03 2009-03-24 Dalquim Ind E Com Ltda processo de produçao de óleo de neem emulsionável
US7514464B2 (en) 2003-12-18 2009-04-07 Pfizer Limited Substituted arylpyrazoles
US7530196B2 (en) 2001-12-20 2009-05-12 Basf Aktiengesellschaft Method for improving plant growth by application of a mixture of sulfur and complexing agent
US7538079B2 (en) 2005-09-23 2009-05-26 Takasago International Corporation Spray dried powdered detergents with perfume-containing capsules
US7622641B2 (en) 2005-08-24 2009-11-24 Pioneer Hi-Bred Int'l., Inc. Methods and compositions for providing tolerance to multiple herbicides
US7655597B1 (en) 2009-08-03 2010-02-02 Specialty Fertilizer Products, Llc Pesticide compositions including polymeric adjuvants
US7655599B2 (en) 2003-07-02 2010-02-02 Bayer Cropscience Ag Agrochemical formulations
US7674807B2 (en) 2004-03-12 2010-03-09 Bayer Cropscience Ag Heterocycle-substituted n-phenyl-phthalamide derivatives, related compounds and their use as insecticides
US7687533B2 (en) 2004-03-18 2010-03-30 Pfizer Inc. N-(1-arylpyrazol-4l) sulfonamides and their use as parasiticides
US7696232B2 (en) 2001-09-21 2010-04-13 E. I. Du Pont De Nemours And Company Anthranilamide arthropodicide treatment
US7754655B2 (en) 2002-05-29 2010-07-13 Bayer Cropscience Ag Microcapsule formulations
BRPI0804546A2 (pt) 2008-10-28 2010-07-20 Leonardo Antonio Espolador biofertilizante repelente foliar orgánico com extrato pirolenhoso mais silìcio mais oléo de neem mais extrato biotecnológico
BRPI0804594A2 (pt) 2008-10-28 2010-07-20 Leonardo Antonio Espolador biofertilizante repelente foliar orgánico com extrato pirolenhoso mais silìcio mais óleo de neem
US7807679B2 (en) 2004-05-28 2010-10-05 Syngenta Crop Protection, Inc. Piperazine derivatives and their use in controlling pests
US7823323B2 (en) 1992-06-01 2010-11-02 University Of Florida Research Foundation Inc. Remote monitoring system for detecting termites
US7867507B2 (en) 2005-11-04 2011-01-11 The Andersons, Inc. Pesticide delivery granule
US7871645B2 (en) 2005-09-13 2011-01-18 Coating Place, Inc. Ion exchange resin treated to control swelling
US7872067B2 (en) 2004-06-08 2011-01-18 Basf Aktiengesellschaft Amphiphilic polymer compositions and their use
US7887827B2 (en) 2005-01-21 2011-02-15 Dow Agrosciences Llc Use of malonomicin and analogs in fungicidal applications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2240816C1 (ru) * 2003-07-28 2004-11-27 Тихоокеанский институт биоорганической химии Дальневосточного отделения РАН Способ комплексной переработки бурых водорослей с получением препаратов для медицины и косметологии
CN101297645B (zh) * 2005-12-08 2011-05-18 华南农业大学 印楝油微胶囊及其制备方法
EP2101735A2 (en) * 2006-11-28 2009-09-23 Marinus Pharmaceuticals, Inc. Nanoparticulate formulations and methods for the making and use thereof
EP1947125A1 (en) 2007-01-16 2008-07-23 Cognis IP Management GmbH Grafted Polymers
EP2601935A1 (en) * 2007-09-25 2013-06-12 Solubest Ltd. Compositions comprising lipophilic active compounds and method for their preparation

Patent Citations (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US753777A (en) 1903-02-17 1904-03-01 Wladimir Witkowicz Multiple evaporating apparatus.
US4515785A (en) 1980-08-19 1985-05-07 Terumo Corporation Neem bark extracts
US4537774A (en) 1980-08-19 1985-08-27 Terumo Corporation Hot-water extracts of neem bark
US4556562A (en) 1984-03-19 1985-12-03 Vikwood, Ltd. Stable anti-pest neem seed extract
US4902713A (en) 1987-01-26 1990-02-20 Max-Planck-Gesellschaft Zur Foederung Der Wissenschaften E.V. Azadirachtin-like compounds and insect-destroying agents containing them
US5047242A (en) 1987-03-04 1991-09-10 Native Plant Institute ("Npi") Azadirachtin derivative insecticides
US5001149A (en) 1987-03-04 1991-03-19 Npi Azadirachtin derivative insecticides
US4943434A (en) 1987-10-06 1990-07-24 Rohm And Haas Company Insecticidal hydrogenated neem extracts
US5124349A (en) 1989-06-26 1992-06-23 W. R. Grace & Co.-Conn. Storage stable azadirachtin formulation
US4946681A (en) 1989-06-26 1990-08-07 W. R. Grace & Co.-Conn. Method to prepare an improved storage stable neem seed extract
US5001146A (en) 1989-06-26 1991-03-19 W. R. Grace & Co.-Conn. Storage stable azadirachtin formulation
US5124349B1 (en) 1989-06-26 1998-10-20 Grace W R & Co Storage stable azadirachtin formulation
US5009886A (en) 1989-10-02 1991-04-23 Floss Products Corporation Dentifrice
US5405612A (en) 1989-12-26 1995-04-11 W. R. Grace & Co.-Conn. Hydrophobic extracted neem oil--a novel insecticide
US5411736A (en) 1989-12-26 1995-05-02 W. R. Grace & Co.-Conn. Hydrophic extracted neem oil-a novel insecticide
US5356628A (en) 1989-12-26 1994-10-18 W. R. Grace & Co.-Conn. Hydrophobic extracted neem oil-a novel fungicide
US5368856A (en) 1989-12-26 1994-11-29 W. R. Grace & Co.-Conn. Hydrophobic extracted neem oil-a novel fungicide use
US5110591A (en) 1990-03-01 1992-05-05 Ppg Industries, Inc. Neem oil emulsifier
US5409708A (en) 1991-01-03 1995-04-25 W. R. Grace & Co.-Conn. Fungicidal compositions derived from neem oil and neem wax fractions
US5298251A (en) 1991-01-03 1994-03-29 W. R. Grace & Co.-Conn. Fungicide compositions derived from neem oil and neem wax fractions
US5372817A (en) 1991-01-03 1994-12-13 W. R. Grace & Co.-Conn. Insecticidal compositions derived from neem oil and neem wax fractions
US5695763A (en) 1991-03-22 1997-12-09 Trifolio-M Gmbh, Herstellung Und Vertrieb Method for the production of storage stable azadirachtin from seed kernels of the neem tree
US5298247A (en) 1991-08-08 1994-03-29 Godrej Soaps Limited Neem oil fatty acid distillation residue based pesticide
US5229007A (en) 1992-04-17 1993-07-20 Agridyne Technologies, Inc. Selective removal of aflatoxin from azadirachtin containing compositions
US7823323B2 (en) 1992-06-01 2010-11-02 University Of Florida Research Foundation Inc. Remote monitoring system for detecting termites
US5371254A (en) 1992-07-27 1994-12-06 Rohm And Haas Company Preparation of edible neem oil
US5391779A (en) 1992-07-27 1995-02-21 Rohm And Haas Company Stable extracts from neem seeds
US5420318A (en) 1992-07-27 1995-05-30 Rohm And Haas Company Preparation of high purity neem seed extracts
US5352697A (en) 1992-07-28 1994-10-04 Agridyne Technologies, Inc. Storage stable pesticide compositions comprising azadirachtin and epoxide
US5370873A (en) 1992-09-11 1994-12-06 Udeinya; Iroka J. Therapeutic compounds derived from the neem tree
US5281618A (en) 1992-09-21 1994-01-25 W. R. Grace & Co.-Conn. Storage stable high azadirachtin solution
US5602261A (en) 1992-11-17 1997-02-11 Council Of Scientific & Industrial Research Triterpene derivatives of azadirachtin having insect antifeedant and growth inhibitory activity and a process for extracting such compounds from the neem plant
US5663374A (en) 1992-11-17 1997-09-02 Council Of Scientific & Industrial Research Triterpene derivatives of azadirachtin having insect antifeedant and growth inhibitory activity and a process for extracting such compounds from the neem plant
US5756773A (en) 1992-11-17 1998-05-26 Council Of Scientific & Industrial Research Triterpene derivatives of azadirachtin having insect antifeedant and growth inhibitory activity
US5395951A (en) 1992-11-17 1995-03-07 Council Of Scientific & Industrial Research Triterpene derivatives of azadirachtin having insect antifeedant and growth inhibitory activity and a process for extracting such compounds from the neem plant
US5900493A (en) 1992-11-17 1999-05-04 Council Of Scientific And Industrial Research Triterpene derivatives of azadirachtin having insect antifeedant and growth inhibitory activity
US5698423A (en) 1992-12-23 1997-12-16 Rohm And Haas Company Method for producing azadirachtin by cell culture of Azadirachta indica
US5503837A (en) 1993-03-25 1996-04-02 W. R. Grace & Co.-Conn. Co-extraction of azadirachtin and neem oil
US5397571A (en) 1993-03-25 1995-03-14 W. R. Grace & Co.-Conn. Co-extraction of azadirachtin and neem oil
USH1541H (en) 1993-07-21 1996-06-04 Holla; Kadambar S. Method for producing azadirachtin concentrates from neem seed materials
US5501855A (en) 1993-09-02 1996-03-26 Talwar; Gursaran P. Neem oil as a male contraceptive
US5352672A (en) 1993-10-20 1994-10-04 Fmc Corporation Acaricidal combinations of neem seed extract and bifenthrin
US5472700A (en) 1993-10-20 1995-12-05 Fmc Corporation Combinations of neem seed extract and bifenthrin for control of ectoparasites on animals
US5643351A (en) 1994-05-27 1997-07-01 Micro Flo Corporation Encapsulation with water soluble polymer
US5827521A (en) 1995-03-09 1998-10-27 Fortune Biotech Limited Shelf stable insect repellent, insect growth regulator and insecticidal formulations prepared from technical azadirachtin isolated from the kernel extract of Azadirachta indica
US5626848A (en) 1995-06-06 1997-05-06 Thermo Trilogy Corporation Reduced-cloud-point clarified neem oil and methods of producing
US5679662A (en) 1995-06-06 1997-10-21 Thermo Trilogy Corporation Synergistic use of azadirachtin and pyrethrum
US5635193A (en) 1995-06-07 1997-06-03 Thermo Trilogy Corporation Stability of azadirachtin-containing solid
US5730986A (en) 1995-06-14 1998-03-24 Council Of Scientific & Industrial Research Process for the isolation of an active principle from azadirachta indica useful for controlling gastric hyperacidity and gastric ulceration
US5736145A (en) 1995-07-17 1998-04-07 Dalmia Centre For Biotechnology Process for preparing purified Azadirachtin in powder form from neem seeds and storage stable aqueous composition containing Azadirachtin
US6193974B1 (en) 1995-07-17 2001-02-27 Dalmia Center For Research And Development Process of preparing purified azadirachtin in powder form from neem seeds and storage stable aqueous composition containing azadirachtin
US5856526A (en) 1995-10-19 1999-01-05 Sankaram; Akella Venkata Bhavani Pesticidal dry powder formulation enriched in azadirachtin up to 88% an emulsifiable concentrate enriched up to 30% of azadirachtin and a process for preparing such formulation and concentrate from neem seed/kernel
US7186891B1 (en) 1996-04-12 2007-03-06 University Of Kentucky, Research Foundation Plant cells and plants expressing chimeric isoprenoid synthases
US6312738B1 (en) 1997-07-11 2001-11-06 Neem Extracts Pty. Ltd. Azadirachtin extraction process
US6733802B1 (en) 1997-12-17 2004-05-11 Fortune Bio-Tech Limited Natural azadirachtin composition
US7534447B2 (en) 1998-07-28 2009-05-19 Ecosmart Technologies, Inc. Synergistic and residual pesticidal compositions containing plant essential oils
US7320966B2 (en) 1998-07-28 2008-01-22 Ecosmart Technologies, Inc. Synergistic and residual pesticidal compositions containing plant essential oils
US7618645B2 (en) 1998-07-28 2009-11-17 Ecosmart Technologies, Inc. Synergistic and residual pesticidal compositions containing plant essential oils
US7250175B2 (en) 1998-07-28 2007-07-31 Ecosmart Technologies, Inc. Synergistic and residual pesticidal compositions containing plant essential oils
US7531189B2 (en) 1998-07-28 2009-05-12 Ecosmart Technologies, Inc. Synergistic and residual pesticidal compositions containing plant essential oils
US6849614B1 (en) 1998-07-28 2005-02-01 Ecosmart Technologies, Inc. Synergistic and residual pesticidal compositions containing plant essential oils
US7351420B2 (en) 1998-07-28 2008-04-01 Ecosmart Technologies, Inc. Synergistic and residual pesticidal compositions containing plant essential oils
US7361366B2 (en) 1998-07-28 2008-04-22 Ecosmart Technologies, Inc. Synergistic and residual pesticidal compositions containing plant essential oils
US7476397B2 (en) 1998-07-28 2009-01-13 Ecosmart Technologies, Inc. Synergistic and residual pesticidal compositions containing plant essential oils
US6294571B1 (en) 1998-09-11 2001-09-25 Independent Ink, Inc. Method for using neem extracts and derivatives for protecting wood and other cellulosic composites
US6602823B1 (en) 1998-12-16 2003-08-05 Bayer Aktiengesellschaft Agrochemical formulations
US7112553B1 (en) 1999-04-20 2006-09-26 Syngenta Limited Pesticidal indazole or benzotriazole derivatives
US6734198B1 (en) 1999-07-06 2004-05-11 Nihon Bayer Agrochem K.K. Nematicidal trifluorobutenes
US6703347B2 (en) 2000-01-28 2004-03-09 Syngenta Limited Isothiazole derivatives and their use as pesticides
US6811790B1 (en) 2000-03-27 2004-11-02 E.I.D. Parry (India) Ltd. Storage stable pesticide formulations containing azadirachtin
US6340484B1 (en) 2000-04-07 2002-01-22 E.I.D. Parry (India) Limited Compositions containing neem seed extracts and saccharide
US6596292B2 (en) 2000-06-22 2003-07-22 Sumitomo Chemical Company, Limited Solid pesticidal formulation
US6875885B2 (en) 2000-07-18 2005-04-05 Syngenta Limited Process for the preparation of enantiomerically pure pyrethroid insecticides
US6703034B2 (en) 2000-12-11 2004-03-09 University Of Florida Neem oil microemulsion without cosurfactants or alcohols and a process to form the same
US6824787B2 (en) 2000-12-22 2004-11-30 The United States Of America As Represented By The Secretary Of Agriculture Urea and nitrogen based compounds as feeding stimulants/aggregants and masking agents of unpalatable chemicals for subterranean termites
US7182952B2 (en) 2000-12-22 2007-02-27 The United States Of America As Represented By The Secretary Of Agriculture Urea and nitrogen based compounds as feeding stimulants/aggregants and masking agents of unpalatable chemicals for subterranean termites
US6991818B2 (en) 2001-03-30 2006-01-31 Council Of Scientific & Industrial Research Compound iso-squamocin obtained from seeds of annona squamosa and composition containing the same
US6773727B1 (en) 2001-08-13 2004-08-10 The United States Of America As Represented By The Secretary Of Agriculture Use of gossypol and related terpenes for control of urban and agricultural pests
US6667277B2 (en) 2001-08-24 2003-12-23 National Starch And Chemical Investment Holding Corporation Water dispersible starch based physical form modification of agricultural agents
US6746988B2 (en) 2001-09-07 2004-06-08 Syngenta Crop Protection, Inc. Surfactant systems for agriculturally active compounds
US6635757B1 (en) 2001-09-14 2003-10-21 Vittal Mallya Scientific Research Foundation Process for preparing cyclodextrin inclusion complex
US7696232B2 (en) 2001-09-21 2010-04-13 E. I. Du Pont De Nemours And Company Anthranilamide arthropodicide treatment
US7390480B2 (en) 2001-11-20 2008-06-24 The United States Of America As Represented By The Secretary Of Agriculture Use of Paecilomyces spp. as pathogenic agents against subterranean termites
US6660291B2 (en) 2001-11-20 2003-12-09 The United States Of America As Represented By The Secretary Of Agriculture Use of paecilomyces spp. as pathogenic agents against subterranean termites
US6930076B2 (en) 2001-12-13 2005-08-16 Bayer Cropscience Ag Nematicidal trifluorobutenyl imidazole thioether derivatives
US6835719B2 (en) 2001-12-19 2004-12-28 W. Neudorff Gmbh Kg Pesticidal composition
US7530196B2 (en) 2001-12-20 2009-05-12 Basf Aktiengesellschaft Method for improving plant growth by application of a mixture of sulfur and complexing agent
US7345009B2 (en) 2002-02-07 2008-03-18 Bayer Cropscience Ag Substituted 4-hetaryl-pyrazolines as pest control agents
US7345080B2 (en) 2002-02-19 2008-03-18 Bayer Cropscience Ag Substituted 4-pyrazolyl pyrazonlines used for pest control
US6855351B2 (en) 2002-03-05 2005-02-15 T. Stanes And Company Limited Pesticide formulation containing azadirachtin (not less than 300 ppm) and salanin in a formulated product with neem oil
US6545167B1 (en) 2002-04-04 2003-04-08 Fortune Bio-Tech Limited Simple and effective manufacturing process for large scale recovery of Nimbin, a Neem seed constituent
US7194964B2 (en) 2002-04-23 2007-03-27 Basf Aktiengesellschaft Method for chemically decontaminating soil by applying a mixture of sulphur and complexing agents
US7754655B2 (en) 2002-05-29 2010-07-13 Bayer Cropscience Ag Microcapsule formulations
US7132455B2 (en) 2002-06-20 2006-11-07 Bayer Cropscience Ag Phthalamide derivatives
US7250396B2 (en) 2003-02-03 2007-07-31 Ashland Licensing And Intellectual Property Llc Juvenile hormone compositions and methods for making same
US7204994B2 (en) 2003-02-03 2007-04-17 Ashland Licensing And Intellectual Property Llc Juvenile hormone compositions and methods for making same
US7083779B2 (en) 2003-03-26 2006-08-01 Council Of Scientific And Industrial Research Nontoxic dental care herbal formulation for preventing dental plaque and gingivitis
US7655599B2 (en) 2003-07-02 2010-02-02 Bayer Cropscience Ag Agrochemical formulations
US7514464B2 (en) 2003-12-18 2009-04-07 Pfizer Limited Substituted arylpyrazoles
US7674807B2 (en) 2004-03-12 2010-03-09 Bayer Cropscience Ag Heterocycle-substituted n-phenyl-phthalamide derivatives, related compounds and their use as insecticides
US7803832B2 (en) 2004-03-18 2010-09-28 Pfizer Inc. N-(1-arylpyrazol-4L)sulfonamides and their use as parasiticides
US7687533B2 (en) 2004-03-18 2010-03-30 Pfizer Inc. N-(1-arylpyrazol-4l) sulfonamides and their use as parasiticides
BRPI0508296A (pt) 2004-03-31 2007-07-31 Parry E I D India Ltd formulação granular de extrato de semente de neem e processo para o preparo da mesma
WO2005095031A1 (en) * 2004-03-31 2005-10-13 Council Of Scientific And Industrial Research A process for the synthesis of mono and bimetallic nanoparticles using palnt extract
US7807679B2 (en) 2004-05-28 2010-10-05 Syngenta Crop Protection, Inc. Piperazine derivatives and their use in controlling pests
US7872067B2 (en) 2004-06-08 2011-01-18 Basf Aktiengesellschaft Amphiphilic polymer compositions and their use
US7887827B2 (en) 2005-01-21 2011-02-15 Dow Agrosciences Llc Use of malonomicin and analogs in fungicidal applications
BRPI0502772A (pt) 2005-06-13 2007-02-21 Belmiro Pereira Das Neves exploração dos derivados do nim como uma alternativa viável e econÈmica dentro do setor produtivo, industrial e comercial
BRPI0502588A (pt) 2005-06-27 2007-03-20 Alan Kozlowski processo de preparo de solução repelente de insetos com base na planta "neem" e produto resultante na forma de vela
US7622641B2 (en) 2005-08-24 2009-11-24 Pioneer Hi-Bred Int'l., Inc. Methods and compositions for providing tolerance to multiple herbicides
US7803992B2 (en) 2005-08-24 2010-09-28 Pioneer Hi-Bred International, Inc. Methods and compositions for expressing an herbicide-tolerant polynucleotide
US7871645B2 (en) 2005-09-13 2011-01-18 Coating Place, Inc. Ion exchange resin treated to control swelling
US7538079B2 (en) 2005-09-23 2009-05-26 Takasago International Corporation Spray dried powdered detergents with perfume-containing capsules
US7867507B2 (en) 2005-11-04 2011-01-11 The Andersons, Inc. Pesticide delivery granule
US7722695B2 (en) 2006-03-27 2010-05-25 Godrej Agrovet Limited Neem based composition for coating nitrogenous fertilizer
BRPI0701347A2 (pt) 2006-03-27 2008-11-11 Godrej Agrovet Ltd composiÇço com base em neem para revestimento de fertilizante nitrogenado
WO2008032328A2 (en) * 2006-09-14 2008-03-20 Yissum Research Development Company Of The Hebrew University Of Jerusalem Pesticide nanoparticles obtained from microemulsions and nanoemulsions
BRMU8602632U (pt) 2006-11-13 2008-07-01 Helcio De Junior Abreu processo de elaboração de extrato micronizado de nim (azadirachta indica)
BRPI0700034A (pt) 2007-01-11 2008-08-26 Fundacao Universidade Fed De S método para quantificação das azadirachtinas a e b em sementes e óleos comerciais de azadirachta indica
BRPI0702226A2 (pt) 2007-08-03 2009-03-24 Dalquim Ind E Com Ltda processo de produçao de óleo de neem emulsionável
BRPI0804594A2 (pt) 2008-10-28 2010-07-20 Leonardo Antonio Espolador biofertilizante repelente foliar orgánico com extrato pirolenhoso mais silìcio mais óleo de neem
BRPI0804546A2 (pt) 2008-10-28 2010-07-20 Leonardo Antonio Espolador biofertilizante repelente foliar orgánico com extrato pirolenhoso mais silìcio mais oléo de neem mais extrato biotecnológico
US7655597B1 (en) 2009-08-03 2010-02-02 Specialty Fertilizer Products, Llc Pesticide compositions including polymeric adjuvants

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
"Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process", COLLOIDS SURFA:PHYSICOCHEM.ENG.ASPECTS, 2011
CALICETI, P. ET AL.: "Effective protein release from PEG/PLA nanoparticles produced by compressed gas anti-solvent precipitation techniques", J CONTROL RELEASE, vol. 94, 2004, pages 195 - 205, XP004480749, DOI: doi:10.1016/j.jconrel.2003.10.015
COUVREUR, P. ET AL.: "Nanocapsule technology", CRIT. REV. THER. DRUG CARRIER SYST., vol. 19, 2002, pages 99 - 134, XP009114641, DOI: doi:10.1615/CritRevTherDrugCarrierSyst.v19.i2.10
FESSI, H. ET AL.: "Nanocapsule formation by interfacial deposition following solvent displacement", INT. J PHARM., vol. 55, 1989, pages R1 - R4, XP025568482, DOI: doi:10.1016/0378-5173(89)90281-0
FORIM, M.R. ET AL.: "Simultaneous quantification of azadirachtin and 3-tigloylazadirachtol in Brazilian seeds and oil of Azadirachta indica: application to quality control and marketing", ANAL. METHODS, vol. 2, 2010, pages 860 - 869
GALINDO-RODRIGUEZ, S ET AL.: "Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods", PHARM RES, vol. 21, 2004, pages 1428 - 1439, XP055053162, DOI: doi:10.1023/B:PHAM.0000036917.75634.be
GOYAL, R.N. ET AL.: "Simultaneous Determination of Adenosine and Adenosine-5'-triphosphate at Nanogold Modified Indium Tin Oxide Electrode by Osteryoung Square-Wave Voltammetry", ELECTROANALYSIS, vol. 19, 2007, pages 575 - 581
IBRAHIM, H. ET AL.: "Aqueous nanodispersions prepared by a salting-out process", INT. J PHARM., vol. 87, 1992, pages 239 - 246, XP025793929, DOI: doi:10.1016/0378-5173(92)90248-Z
KORSMEYER ET AL.: "Mechanisms of solute release from porous hydrophilic polymers", INT. J PHARM., vol. 15, 1983, pages 25 - 35, XP023845102, DOI: doi:10.1016/0378-5173(83)90064-9
KULKARNI, A.R: "Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application", J CONTROL. RELEASE, vol. 63, 2000, pages 97 - 105, XP004185074, DOI: doi:10.1016/S0168-3659(99)00176-5
MOINARD-CH6COT, D. ET AL.: "Mechanism of nanocapsules formation by emulsion-diffusion process", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 317, 2008, pages 458 - 468, XP022351631, DOI: doi:10.1016/j.jcis.2007.09.081
POHLMANN, A.R. ET AL.: "Spray-dried indomethacin-loaded polyester nanocapsules and nanospheres: development, stability evaluation and nanostructure models", EUR. J PHARM. SCI., vol. 16, 2002, pages 305 - 312, XP002987801, DOI: doi:10.1016/S0928-0987(02)00127-6
RIYAJAN, AS-AD.; SAKDAPIPANICH, J.T: "Encapsulated neem extract containing Azadiractin-A within hydrolyzed poly(vinyl acetate) for controlling its release and photodegradation stability", CHEMICAL ENGINEERING JOURNAL, vol. 152, 2009, pages 591 - 597, XP026268729, DOI: doi:10.1016/j.cej.2009.05.017
SCHAFFAZICK, S. R. ET AL.: "Development of Nanocapsule Suspensions and Nanocapsule Spray-Dried Powders Containing Melatonin", J. BRAZ. CHEM. SOC., vol. 17, no. 3, 2006, pages 562 - 569, XP009089797 *
See also references of EP2949213A4
SHANKAR, S.S. ET AL.: "Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth", J COLLOID INTERFACE SCI., vol. 275, 2004, pages 496 - 502, XP003002489, DOI: doi:10.1016/j.jcis.2004.03.003
SINGH, B. ET AL.: "Controlled release of thiram from neem-alginate-clay based delivery systems to manage environmental and health hazards", APPLIED CLAY SCIENCE, vol. 47, 2010, pages 384 - 391, XP026885478, DOI: doi:10.1016/j.clay.2009.12.001
SOPPIMATH, K.S. ET AL.: "Biodegradable polymeric nanoparticles as drug delivery devices", J CONTROL. RELEASE, vol. 70, 2001, pages 1 - 20, XP002580484, DOI: doi:10.1016/S0168-3659(00)00339-4
TEWA-TAGNE, P ET AL.: "Spray-dried microparticles containing polymeric nanocapsules: formulation aspects, liquid phase interaction and particles characteristics", INT. J PHARM., vol. 325, 2006, pages 63 - 74, XP025113161, DOI: doi:10.1016/j.ijpharm.2006.06.025
TICE, T.R.; GILLEY, R.M: "Preparation of injectable controlled-release microcapsules by solvent-evaporation process", J CONTROL. RELEASE, vol. 2, 1985, pages 343 - 352, XP025943015, DOI: doi:10.1016/0168-3659(85)90056-2
TRIPATHY, A. ET AL.: "Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves", J NANOPART. RES., vol. 12, 2010, pages 237 - 246, XP019773273
TSE, G. ET AL.: "Thermodynamic prediction of active ingredient loading in polymeric microparticles", J CONTROL. RELEASE, vol. 60, 1999, pages 77 - 100, XP004170493, DOI: doi:10.1016/S0168-3659(99)00056-5

Also Published As

Publication number Publication date
BR102013021210A2 (pt) 2014-10-29
US20150320036A1 (en) 2015-11-12
BR102013021210B1 (pt) 2015-12-01
EP2949213A1 (en) 2015-12-02
EP2949213A4 (en) 2016-07-27
US9668473B2 (en) 2017-06-06
MX2015009701A (es) 2016-06-24

Similar Documents

Publication Publication Date Title
WO2014113860A1 (pt) Processo de obtenção de nanopartículas biopoliméricas contendo óleo e extratos de azadirachta indica a. juss (neem), nanopartículas biopoliméricas e micropartículas em pó
Lai et al. Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization
Forim et al. Development of a new method to prepare nano-/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella
Nuruzzaman et al. Nanoencapsulation, nano-guard for pesticides: a new window for safe application
Zhang et al. Self-emulsifying drug delivery system and the applications in herbal drugs
Feng et al. Fabrication and characterization of β-cypermethrin-loaded PLA microcapsules prepared by emulsion-solvent evaporation: loading and release properties
WO1997004749A1 (fr) Procede de preparation de formes pharmaceutiques seches et les compositions pharmaceutiques ainsi realisees
Sopeña et al. Controlled release of the herbicide norflurazon into water from ethylcellulose formulations
Martin et al. Rotenone coprecipitation with biodegradable polymers by supercritical assisted atomization
Fan et al. Preparation and characterization of porous microspheres and applications in controlled-release of abamectin in water and soil
Ibrahim et al. Chitosan-cellulose nanoencapsulation systems for enhancing the insecticidal activity of citronella essential oil against the cotton leafworm Spodoptera littoralis
Cui et al. Fabrication, characterization, and insecticidal activity evaluation of emamectin benzoate–sodium lignosulfonate nanoformulation with pH-responsivity
Bezerra et al. Azadirachta indica A. Juss (Meliaceae) microencapsulated bioinsecticide: Spray drying technique optimization, characterization, in vitro release, and degradation kinetics
Kumar et al. Eucalyptus oil-based nanoemulsion: a potent green nanowagon for controlled delivery of emamectin benzoate
Hammoud et al. Insecticidal effects of natural products in free and encapsulated forms: An overview
Avanço et al. Preparation and characterisation of ethylcellulose microparticles containing propolis
JPS59175402A (ja) セルロ−スエ−テル徐放性組成物
Potphode et al. Self-micro emulsifying drug delivery system: an approach for enhancement of bioavailability of poorly water soluble drugs
EP0121712B1 (en) Sustained release compositions from cellulose ethers
Harikarnpakdee et al. Oviposition deterrent efficacy and characteristics of a botanical natural product, Ocimum gratissimum (L.) oil-alginate beads, against Aedes aegypti (L.)
CN108184908A (zh) 一种植物源自乳化纳米杀虫剂及其制备方法和应用
CN107333759A (zh) 光控缓释农药制剂及其制备方法
Dubey et al. CDI cross-linked nanosponges of citronella oil for controlled mosquito-repellent activity
CN109463382B (zh) 以茶皂苷为表面活性剂的杀虫性纳米乳剂及制备方法
EP2217362A2 (de) Verkapselte mikropartikel mit einem virenhaltigen kern und verfahren zur herstellung der mikropartikel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14762262

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 15171474

Country of ref document: CO

Ref document number: 2014743230

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/009701

Country of ref document: MX