WO2014112712A1 - Method for producing ring-shaped hydrocarbon from lignin-transforming substance using noble metal supported catalyst - Google Patents

Method for producing ring-shaped hydrocarbon from lignin-transforming substance using noble metal supported catalyst Download PDF

Info

Publication number
WO2014112712A1
WO2014112712A1 PCT/KR2013/010802 KR2013010802W WO2014112712A1 WO 2014112712 A1 WO2014112712 A1 WO 2014112712A1 KR 2013010802 W KR2013010802 W KR 2013010802W WO 2014112712 A1 WO2014112712 A1 WO 2014112712A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
lignin
formula
producing
cyclic hydrocarbon
Prior art date
Application number
PCT/KR2013/010802
Other languages
French (fr)
Korean (ko)
Inventor
이관영
홍윤기
엄희준
이대원
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority claimed from KR1020130144209A external-priority patent/KR101436429B1/en
Publication of WO2014112712A1 publication Critical patent/WO2014112712A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum

Definitions

  • the present invention relates to a process for producing cyclic hydrocarbons from lignin converting materials using catalysts loaded with precious metals.
  • lignin is a by-product produced in the pulp process and is burned and used as a lower fuel.
  • lignin is converted into gaseous or liquid phase through pyrolysis and used as fuel or feedstock.
  • bio-oil In the case of liquid, it is called “bio-oil” and it is an oxygen-rich (about 40%) aromatic compound. consist of.
  • biooil as a feedstock for chemicals, it is important to properly remove oxygen contained in biooil.
  • hydrodeoxygenation using a catalyst can be converted into a high yield of aromatic chemicals by appropriately removing oxygen from a lignin converting material, and thus many studies have been conducted.
  • US Pat. No. 4,647,704 describes a process for converting lignin into an aromatic phenol via hydrodeoxygenation.
  • the catalyst is a zero-valent or sulfide tungsten-based catalyst, nickel was used as an additive, and the reaction was carried out using silica-alumina or silica-alumina-phosphate as a carrier.
  • Korean Patent No. 10-0587248 discloses that tungsten or molybdenum-based catalysts include phosphorus, nickel, cobalt, iron, ruthenium, and the like, or cobalt, palladium, nickel, platinum catalysts are zinc, rhenium, selenium, tin, germanium, lead, and the like.
  • a method for obtaining phenol from benzene diol using a catalyst comprising was described.
  • the sulfide catalyst becomes active. Therefore, the prior art has dealt with a method of converting guaiacol into aromatic compounds such as phenol and benzene using a lignin model material, guaiacol, as a reactant, and a sulfide catalyst.
  • the aromatic substances of the sulfide molybdenum can be prepared by aromatic chemicals such as phenol and benzene through a hydrogenated deoxygenation reaction, nine under the catalyst of CoMo or NiMo / Al 2 O 3 there was added sulfur child ahkol The conversion reaction of was studied.
  • Guaicol is converted into an aromatic chemical through a continuous reaction in the presence of hydrogen and sulfide catalysts, as shown in Scheme 1 below, and converted to cyclohexane as the benzene ring is hydrogenated.
  • the present invention is a Group 8 precious metal (Pd, Pt, Ru or Rh) supported by gamma alumina in order to obtain a high yield of cyclic hydrocarbons produced after hydrodeoxygenation and hydrogenation from lignin conversion materials containing aromatic hydrocarbons. It is an object to use this contained tungsten oxide or molybdenum oxide catalyst.
  • the present invention provides a catalyst for producing a cyclic hydrocarbon represented by the following formula (1) or (2).
  • M is Pd, Pt, Ru or Rh.
  • the present invention also provides a method for preparing a cyclic hydrocarbon from the lignin conversion material using the catalyst.
  • the catalyst of the present invention enables the production of cyclic hydrocarbons from lignin convertors in high yields and can be used without sulfur treatment to produce cyclic hydrocarbons under relatively simple conditions without contaminating the product.
  • 1 is a graph showing the conversion rate of the guai alcohol according to the type of catalyst.
  • FIG. 2 is a graph showing the production rate of cyclic hydrocarbons converted from guaiacol according to the amount of tungsten added.
  • 3 is a graph showing the results of repeated measurements 10 times to determine the durability of the catalyst of the present invention.
  • Figure 4 is a graph showing the production rate of the cyclic hydrocarbon when the catalyst of the present invention using the lignin converting material, guaiacol, anisol, catechol and phenol as the reactant.
  • the present invention relates to a catalyst for producing a cyclic hydrocarbon represented by the following formula (1) or (2).
  • M is Pd, Pt, Ru or Rh.
  • the catalyst for producing a cyclic hydrocarbon of the present invention is a molybdenum oxide or tungsten oxide catalyst containing a Group 8 noble metal (Pd, Pt, Ru or Rh) supported by gamma alumina.
  • the catalyst uses lignin convertors as reactants to produce cyclic hydrocarbons.
  • the catalyst for producing a cyclic hydrocarbon of the present invention uses alumina having a gamma phase structure as a carrier, and molybdenum oxide (MoO x ) or tungsten oxide (WO x ) is preferably 10 to 45 to the weight of the alumina carrier. It is included in weight percent. Molybdenum oxide or tungsten oxide contained in the alumina carrier is called molybdenum oxide alumina or tungsten oxide alumina, and is represented by the following formula (3) or (4).
  • Group 8 precious metals (Pd, Pt, Ru or Rh) is included in 1 to 5% by weight relative to the weight of the formula (3) or formula (4).
  • the present invention relates to a method for producing a cyclic hydrocarbon from the lignin conversion material using the catalyst for producing a cyclic hydrocarbon of formula (1) or (2).
  • the lignin converting material is converted into a cyclic hydrocarbon through hydrodeoxygenation and hydrogenation.
  • lignin converting material examples include guaiacol, anisol, catechol and phenol, and preferably guaiacol is most used.
  • the guiacol may be dissolved in an organic solvent, and hexane (n-hexane), decane (n-decane), paraxylene (p-xylene), and the like are preferable.
  • guai acol is mainly converted to cyclohexane, and also to cyclohexanol and methoxycyclohexanol.
  • Ammonium metatungstate (Sigma Aldrich) of 10% by weight relative to the weight of the alumina carrier was added to the alumina carrier by the initial wetness method (Incipient Wetness method) and then dried at 80 ° C. for 12 hours.
  • the dried material was calcined at 500 ° C. to obtain tungsten alumina (WO ⁇ / ⁇ -Al 2 O 3 , 10WA) in powder form. Thereafter, the pore volume of tungsten alumina was measured, and palladium of 2 wt% based on the weight of the tungsten alumina was added by an initial wet method. At this time, palladium is added in an aqueous palladium nitrate solution. Thereafter, the mixture was calcined at 500 ° C. to prepare a Pd / WO x / ⁇ -Al 2 O 3 (Pd10WA) catalyst.
  • a Pd / WO x / ⁇ -Al 2 O 3 (Pd20WA) catalyst was prepared in the same manner as in Example 1 except that 20% by weight of ammonium metatungstate was added to the alumina carrier.
  • a Pd / WO x / ⁇ -Al 2 O 3 (Pd35WA) catalyst was prepared in the same manner as in Example 1, except that 35% by weight of ammonium metatungstate was added to the alumina carrier.
  • Ammonium metatungstate (Sigma Aldrich) of 35% by weight relative to the weight of the alumina carrier was added to the alumina carrier by the initial wetness method (Incipient Wetness method) and then dried at 80 ° C. for 12 hours. The dried material was calcined at 500 ° C. to obtain tungsten alumina (WO ⁇ / ⁇ -Al 2 O 3 , 35WA) in powder form.
  • a Pd / ⁇ -Al 2 O 3 (PdAl) catalyst was prepared by adding an aqueous solution of palladium nitrate of 2% by weight based on the weight of the alumina carrier and firing at 500 ° C.
  • CoMo (Criterion Co., Ltd.) catalyst was injected with H 2 S / H 2 gas and reacted at 400 ° C. for 3 hours to prepare a CoMo-S catalyst.
  • Tetraethyl orthosilicate (Si (OC 2 H 5 ) 4 , SigmaAldrich), which is a silicon precursor, was mixed with tertiary distilled water, and a solution having a pH of 2.0 was prepared using nitric acid solution.
  • an aluminum precursor Al (NO 3 ) 3 9H 2 O, SigmaAldrich
  • tertiary distilled water was mixed to prepare a solution. The two solutions were mixed and stirred at 40 ° C. for 1 hour.
  • Ammonium hydroxide (NH 4 OH) was added dropwise to the solution to adjust the pH to 8.5 and then aged at 40 ° C. for 1 hour.
  • Example 1 to 3 Comparative Examples 1 to 4, alumina catalyst ( ⁇ -Al 2 O 3 , Al) and CoMo catalyst were added to the solution in which 3 wt% of guai alcohol was added to a decane solvent. Each solution was prepared by adding g each to make a total volume of 50 mL. Each solution was filled with hydrogen gas at 300 ° C., and the reaction was carried out for 3 hours while maintaining a total pressure of 7 MPa to prepare cyclohexane from guoacol through hydrodeoxygenation and hydrogenation.
  • alumina catalyst ⁇ -Al 2 O 3 , Al
  • CoMo catalyst CoMo catalyst
  • Example 3 Pd35WA
  • Comparative Examples 2 PdAl
  • CoMo-S which are the catalysts of the present invention
  • the catalyst (35WA), alumina catalyst (Al), and CoMo catalyst of Comparative Example 1 showed a conversion rate of 50% or more, and a conversion rate of less than 5% in the reaction without adding a catalyst.
  • the catalysts of Comparative Examples 1 to 3 (Pd10WA, Pd20WA and Pd35WA) including tungsten
  • Experiment was conducted using 2 (PdAl) and the catalyst of Comparative Example 4 (Si-Al).
  • the catalyst of Example 3 (Pd35WA) containing 35% by weight of tungsten produced the most cyclic hydrocarbon cyclohexane, and the catalysts of Examples 1 (Pd10WA) and 2 (Pd20WA) containing 10 and 20% by weight of tungsten.
  • the yield was 60% or more.
  • the catalyst of Comparative Example 4 (Si-Al) showed a lower yield of cyclohexane, and the catalyst of Comparative Example 2 (PdAl) not containing tungsten had a lower yield than the catalysts of Examples 1 to 3 of the present invention. (FIG. 2).
  • Example 3 Using the catalyst (Pd35WA) prepared in Example 3 to prepare a reaction solution in the same manner as in Experiment 1. In order to measure the durability of the catalyst of the present invention, the catalyst was reused 10 times to determine the yield of cyclohexane converted from guai alcohol.
  • the catalyst for producing a cyclic hydrocarbon of the present invention generates a cyclic hydrocarbon from a variety of lignin conversion materials in addition to gua alcohol in high yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a catalyst for producing a ring-shaped hydrocarbon represented by Formula 1 or Formula 2, and a method for producing a ring-shaped hydrocarbon from a lignin-transforming substance by a hydrodeoxygenation or hydrogenation reaction using the catalyst. [Formula 1] M/MoOx/γ-Al2O3; [Formula 2] M/WOx/γ-Al2O3, wherein M is Pd, Pt, Ru, or Rh.

Description

귀금속이 담지된 촉매를 사용하여 리그닌 전환 물질로부터 고리모양 탄화수소를 생성하는 방법Process for producing cyclic hydrocarbons from lignin converting materials using catalysts loaded with precious metals
본 발명은 귀금속이 담지된 촉매를 사용하여 리그닌 전환 물질로부터 고리모양 탄화수소를 생성하는 방법에 관한 것이다.The present invention relates to a process for producing cyclic hydrocarbons from lignin converting materials using catalysts loaded with precious metals.
최근 화석연료의 제한적인 매장량으로 인하여 연료뿐만 아니라 유기 화학물질의 공급 원료(feedstock)로 바이오매스(biomass)가 각광받고 있다. 그 중에서도 리그닌(lignin)은 현재 펄프 공정에서 생성되는 부산물로서, 다시 태워서 저급 연료로 사용하고 있다. 대개 리그닌은 열분해(pyrolysis)를 통해 기상이나 액상으로 전환시켜 연료나 공급 원료로 이용되는데, 액상의 경우 “바이오 오일(bio-oil)”이라고 하며 산소가 많이 포함된(약 40%) 방향족 화합물로 이루어져 있다.Recently, due to the limited reserves of fossil fuels, biomass has been in the spotlight as a feedstock of organic chemicals as well as fuels. Among them, lignin is a by-product produced in the pulp process and is burned and used as a lower fuel. Usually, lignin is converted into gaseous or liquid phase through pyrolysis and used as fuel or feedstock. In the case of liquid, it is called “bio-oil” and it is an oxygen-rich (about 40%) aromatic compound. consist of.
따라서, 바이오오일을 화학물질의 공급 원료 물질로 이용하기 위해서는 바이오 오일에 함유된 산소를 적절히 제거하는 것이 중요하다. 최근, 촉매를 이용한 수첨탈산소화 반응(hydrodeoxygenation)은 리그닌 전환물질의 산소를 적절히 제거하여 높은 수율의 방향족 화학물질로 변환시킬 수 있기 때문에 그 이용 가치가 높아 많은 연구가 진행되고 있다.Therefore, in order to use biooil as a feedstock for chemicals, it is important to properly remove oxygen contained in biooil. Recently, hydrodeoxygenation using a catalyst can be converted into a high yield of aromatic chemicals by appropriately removing oxygen from a lignin converting material, and thus many studies have been conducted.
미국특허 US 4,647,704는 수첨탈산소화반응을 통하여 리그닌을 방향족 물질인 페놀로 전환시키는 방법을 기술하고 있다. 여기서 촉매는 0가 또는 설피드텅스텐계 촉매이며, 첨가제로 니켈을 사용하였으며, 실리카-알루미나 또는 실리카-알루미나-포스페이트를 담체로 하여 반응을 수행하였다. 또한, 대한민국 등록 특허 10-0587248호는 텅스텐 또는 몰리브덴계 촉매가 인, 니켈, 코발트, 철, 루테늄 등을 포함하거나 코발트, 팔라듐, 니켈, 백금 촉매가 아연, 레늄, 셀렌, 주석, 게르마늄, 납 등을 포함하는 촉매를 사용하여 벤젠 디올로부터 페놀을 수득하는 방법을 기술하였다.US Pat. No. 4,647,704 describes a process for converting lignin into an aromatic phenol via hydrodeoxygenation. The catalyst is a zero-valent or sulfide tungsten-based catalyst, nickel was used as an additive, and the reaction was carried out using silica-alumina or silica-alumina-phosphate as a carrier. In addition, Korean Patent No. 10-0587248 discloses that tungsten or molybdenum-based catalysts include phosphorus, nickel, cobalt, iron, ruthenium, and the like, or cobalt, palladium, nickel, platinum catalysts are zinc, rhenium, selenium, tin, germanium, lead, and the like. A method for obtaining phenol from benzene diol using a catalyst comprising was described.
탈산소화 반응에서 수소를 첨가하면 설피드 촉매는 활성을 띄게 된다. 따라서, 종래 기술에서는 리그닌 모델 물질인 구아이아콜(Guaiacol)을 반응물로 사용하고, 설피드 촉매를 사용하여 구아이아콜을 페놀 및 벤젠 등의 방향족 화합물로 전환시키는 방법을 다루었다. 특히 설피드몰리브덴계 촉매를 사용하면 수첨탈산소화 반응을 통하여 페놀 및 벤젠 등 방향족 화학 물질을 제조 할 수 있으므로, 황이 첨가된 촉매인 CoMo 또는 NiMo/Al2O3존재 하에서 구아이아콜의 방향족 물질로의 전환반응을 연구하였다. When hydrogen is added in the deoxygenation reaction, the sulfide catalyst becomes active. Therefore, the prior art has dealt with a method of converting guaiacol into aromatic compounds such as phenol and benzene using a lignin model material, guaiacol, as a reactant, and a sulfide catalyst. In particular, the aromatic substances of the sulfide molybdenum The catalysts can be prepared by aromatic chemicals such as phenol and benzene through a hydrogenated deoxygenation reaction, nine under the catalyst of CoMo or NiMo / Al 2 O 3 there was added sulfur child ahkol The conversion reaction of was studied.
구아이아콜은 수소 및 설피드 촉매 존재 하에서 하기 반응식 1과 같이 연속적인 반응을 통하여 방향족 화학물질로 전환되고, 벤젠 고리가 수소화 되면서 시클로헥산으로 전환된다.Guaicol is converted into an aromatic chemical through a continuous reaction in the presence of hydrogen and sulfide catalysts, as shown in Scheme 1 below, and converted to cyclohexane as the benzene ring is hydrogenated.
[반응식 1] Scheme 1
Figure PCTKR2013010802-appb-I000001
Figure PCTKR2013010802-appb-I000001
그러나 최근 연구 결과에 의하면 설피드 촉매로부터 나온 황은 촉매의 비활성화뿐만 아니라 생성물을 오염시키며, 높은 온도와 압력 조건을 필요로 하기 때문에, 이와 같은 문제를 해결하고자 비교적 단순한 조건에서 황처리가 필요 없는 촉매로 귀금속 촉매가 연구되고 있다. 설피드 촉매와는 달리 귀금속 촉매는 하기 반응식 2와 같이 구아이아콜의 벤젠 고리를 먼저 수소화시키고 수첨탈산소화 반응을 통하여 시클로헥산으로 전환시킨다.However, recent studies have found that sulfur from sulfide catalysts not only deactivates the catalyst, but also contaminates the product and requires high temperature and pressure conditions. Precious metal catalysts are being studied. Unlike the sulfide catalyst, the noble metal catalyst is first converted into cyclohexane through hydrogenation and hydrodeoxygenation, as shown in Scheme 2 below.
[반응식 2]Scheme 2
Figure PCTKR2013010802-appb-I000002
Figure PCTKR2013010802-appb-I000002
본 발명은 방향족 탄화수소를 포함하고 있는 리그닌 전환물질로부터 수첨탈산소화 및 수소화 반응 후 생성되는 고리모양 탄화수소를 높은 수율로 얻기 위하여 감마상 알루미나를 담체로 하는 8족 귀금속(Pd, Pt, Ru 또는 Rh)이 포함된 산화 텅스텐 또는 산화 몰리브덴계 촉매를 사용하는 것을 목적으로 한다.The present invention is a Group 8 precious metal (Pd, Pt, Ru or Rh) supported by gamma alumina in order to obtain a high yield of cyclic hydrocarbons produced after hydrodeoxygenation and hydrogenation from lignin conversion materials containing aromatic hydrocarbons. It is an object to use this contained tungsten oxide or molybdenum oxide catalyst.
또한, 본 발명은 상기 촉매를 사용하여 리그닌 전환물질로부터 고리모양 탄화수소를 제조하는 방법을 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide a method for producing a cyclic hydrocarbon from a lignin converting material using the catalyst.
상기 목적을 달성하기 위하여,In order to achieve the above object,
본 발명은 하기 화학식 1 또는 화학식 2로 표시되는 고리모양 탄화수소 생성용 촉매를 제공한다.The present invention provides a catalyst for producing a cyclic hydrocarbon represented by the following formula (1) or (2).
[화학식 1][Formula 1]
M/MoOx/γ-Al2O3 M / MoO x / γ-Al 2 O 3
[화학식 2][Formula 2]
M/WOx/γ-Al2O3 M / WO x / γ-Al 2 O 3
상기 M은 Pd, Pt, Ru 또는 Rh이다.M is Pd, Pt, Ru or Rh.
또한, 본 발명은 상기 촉매를 이용하여 리그닌 전환물질로부터 고리모양 탄화수소를 제조하는 방법을 제공한다.The present invention also provides a method for preparing a cyclic hydrocarbon from the lignin conversion material using the catalyst.
본 발명의 촉매는 리그닌 전환물질로부터 고리모양 탄화수소를 높은 수율로 제조될 수 있게 하며, 황 처리 없이 사용할 수 있어 생성물을 오염시키지 않고, 비교적 단순한 조건에서 고리모양 탄화수소를 제조할 수 있다.The catalyst of the present invention enables the production of cyclic hydrocarbons from lignin convertors in high yields and can be used without sulfur treatment to produce cyclic hydrocarbons under relatively simple conditions without contaminating the product.
도 1은 촉매 종류에 따른 구아이아콜의 전환율을 나타낸 그래프이다.1 is a graph showing the conversion rate of the guai alcohol according to the type of catalyst.
도 2는 첨가된 텅스텐의 양에 따라 구아이아콜로부터 전환되는 고리모양 탄화수소의 생성율을 나타낸 그래프이다.FIG. 2 is a graph showing the production rate of cyclic hydrocarbons converted from guaiacol according to the amount of tungsten added.
도 3은 본 발명의 촉매의 내구성을 알아보기 위하여 10회 반복하여 측정한 결과를 나타낸 그래프이다.3 is a graph showing the results of repeated measurements 10 times to determine the durability of the catalyst of the present invention.
도 4는 리그닌 전환물질인 구아이아콜, 애니졸, 카테콜 및 페놀을 반응물질로 하여 본 발명의 촉매를 사용했을 때의 고리모양 탄화수소의 생성율을 나타낸 그래프이다.Figure 4 is a graph showing the production rate of the cyclic hydrocarbon when the catalyst of the present invention using the lignin converting material, guaiacol, anisol, catechol and phenol as the reactant.
이하, 본 발명을 보다 자세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 하기 화학식 1 또는 화학식 2로 표시되는 고리모양 탄화수소 생성용 촉매에 관한 것이다.The present invention relates to a catalyst for producing a cyclic hydrocarbon represented by the following formula (1) or (2).
[화학식 1][Formula 1]
M/MoOx/γ-Al2O3 M / MoO x / γ-Al 2 O 3
[화학식 2][Formula 2]
M/WOx/γ-Al2O3 M / WO x / γ-Al 2 O 3
상기 M은 Pd, Pt, Ru 또는 Rh이다.M is Pd, Pt, Ru or Rh.
본 발명의 고리모양 탄화수소 생성용 촉매는 감마상 알루미나를 담체로하는 8족 귀금속(Pd, Pt, Ru 또는 Rh)이 포함된 산화 몰리브덴 또는 산화 텅스텐 촉매이다. 상기 촉매는 리그닌 전환물질을 반응물로 사용하여 고리모양 탄화수소를 생성한다.The catalyst for producing a cyclic hydrocarbon of the present invention is a molybdenum oxide or tungsten oxide catalyst containing a Group 8 noble metal (Pd, Pt, Ru or Rh) supported by gamma alumina. The catalyst uses lignin convertors as reactants to produce cyclic hydrocarbons.
본 발명의 고리모양 탄화수소 생성용 촉매는 담체로 감마상 구조의 알루미나를 사용하며, 상기 알루미나 담체에 산화 몰리브덴(MoOx)또는 산화 텅스텐(WOx)이 바람직하게는 상기 알루미나 담체 중량 대비 10 내지 45 중량%로 포함되어 있다. 산화 몰리브덴 또는 산화 텅스텐이 알루미나 담체에 포함되어 있는 것을 산화 몰리브덴 알루미나 또는 산화 텅스텐 알루미나라고 하며, 하기 화학식 3 또는 화학식 4로 나타낸다.The catalyst for producing a cyclic hydrocarbon of the present invention uses alumina having a gamma phase structure as a carrier, and molybdenum oxide (MoO x ) or tungsten oxide (WO x ) is preferably 10 to 45 to the weight of the alumina carrier. It is included in weight percent. Molybdenum oxide or tungsten oxide contained in the alumina carrier is called molybdenum oxide alumina or tungsten oxide alumina, and is represented by the following formula (3) or (4).
[화학식 3][Formula 3]
MoOx/γ-Al2O3 MoO x / γ-Al 2 O 3
[화학식 4][Formula 4]
WOx/γ-Al2O3 WO x / γ-Al 2 O 3
또한, 8족 귀금속(Pd, Pt, Ru 또는 Rh)은 상기 화학식 3 또는 화학식 4 중량 대비 1 내지 5 중량%로 포함된다. In addition, Group 8 precious metals (Pd, Pt, Ru or Rh) is included in 1 to 5% by weight relative to the weight of the formula (3) or formula (4).
본 발명은 상기 화학식 1 또는 화학식 2의 고리모양 탄화수소 생성용 촉매를 이용하여 리그닌 전환물질로부터 고리모양 탄화수소를 제조하는 제조방법에 관한 것이다. 상기 리그닌 전환물질은 수첨탈산소 및 수소화 반응을 통하여 고리모양 탄화수소로 전환된다.The present invention relates to a method for producing a cyclic hydrocarbon from the lignin conversion material using the catalyst for producing a cyclic hydrocarbon of formula (1) or (2). The lignin converting material is converted into a cyclic hydrocarbon through hydrodeoxygenation and hydrogenation.
상기 리그닌 전환물질로는 구아이아콜, 애니졸, 카테콜 및 페놀 등이 있으며, 바람직하게는 구아이아콜이 가장 많이 사용된다. 상기 구아이아콜은 유기용매에 용해시킬 수 있으며, 헥산(n-hexane), 데칸(n-decane) 및 파라자일렌(p-xylene) 등이 바람직하다.Examples of the lignin converting material include guaiacol, anisol, catechol and phenol, and preferably guaiacol is most used. The guiacol may be dissolved in an organic solvent, and hexane (n-hexane), decane (n-decane), paraxylene (p-xylene), and the like are preferable.
구아이아콜을 반응물로 하여 상기 화학식 1 또는 화학식 2의 고리모양 탄화수소 생성용 촉매를 회분식 반응기에 충전시키고, 200 내지 400℃의 온도 및 5 내지 10 MPa의 압력으로 1 내지 3시간 동안 반응을 진행한다. 상기 반응을 통하여 구아이아콜은 주로 시클로헥산으로 전환되며, 시클로헥산올 및 메톡시시클로헥산올 등으로도 전환된다.Filling the catalyst for producing a cyclic hydrocarbon of formula (1) or formula (2) with guai acol as a reactant, the reaction is carried out for 1 to 3 hours at a temperature of 200 to 400 ℃ and a pressure of 5 to 10 MPa . Through the above reaction, guaiacol is mainly converted to cyclohexane, and also to cyclohexanol and methoxycyclohexanol.
< Pd/WO<Pd / WO xx /γ-Al/ γ-Al 22 OO 33 (PdWA)촉매 제조 >(PdWA) Catalyst Manufacturing>
실시예 1. Pd10WA 촉매 제Example 1 Pd10WA Catalyst article
알루미나 담체 중량 대비 10 중량%의 암모늄 메타텅스테이트(ammonium metatungstate, Sigma Aldrich)를 초기 젖음법(Incipient Wetness method)으로 알루미나 담체에 첨가한 후 80℃에서 12시간 동안 건조하였다. 건조된 물질을 500℃에서 소성하여 가루 형태의 텅스텐 알루미나(WOx/γ-Al2O3,10WA)를 얻었다. 그 후 텅스텐 알루미나의 기공 부피를 측정하여 초기 젖음법으로 상기 텅스텐 알루미나 중량 대비 2 중량%의 팔라듐을 첨가하였다. 이때 팔라듐은 팔라듐나이트레이트 수용액상태로 첨가한다. 그 후, 500℃에서 소성하여 Pd/WOx/γ-Al2O3(Pd10WA)촉매를 제조하였다.Ammonium metatungstate (Sigma Aldrich) of 10% by weight relative to the weight of the alumina carrier was added to the alumina carrier by the initial wetness method (Incipient Wetness method) and then dried at 80 ° C. for 12 hours. The dried material was calcined at 500 ° C. to obtain tungsten alumina (WO × / γ-Al 2 O 3 , 10WA) in powder form. Thereafter, the pore volume of tungsten alumina was measured, and palladium of 2 wt% based on the weight of the tungsten alumina was added by an initial wet method. At this time, palladium is added in an aqueous palladium nitrate solution. Thereafter, the mixture was calcined at 500 ° C. to prepare a Pd / WO x / γ-Al 2 O 3 (Pd10WA) catalyst.
실시예 2. Pd20WA 촉매 제조Example 2. Preparation of Pd20WA Catalyst
알루미나 담체 중량 대비 20 중량%의 암모늄 메타텅스테이트를 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 Pd/WOx/γ-Al2O3(Pd20WA)촉매를 제조하였다.A Pd / WO x / γ-Al 2 O 3 (Pd20WA) catalyst was prepared in the same manner as in Example 1 except that 20% by weight of ammonium metatungstate was added to the alumina carrier.
실시예 3. Pd35WA 촉매 제조Example 3. Preparation of Pd35WA Catalyst
알루미나 담체 중량 대비 35 중량%의 암모늄 메타텅스테이트를 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 Pd/WOx/γ-Al2O3(Pd35WA)촉매를 제조하였다.A Pd / WO x / γ-Al 2 O 3 (Pd35WA) catalyst was prepared in the same manner as in Example 1, except that 35% by weight of ammonium metatungstate was added to the alumina carrier.
비교예 1. WOComparative Example 1. WO xx /γ-Al/ γ-Al 22 OO 33 (35WA)촉매 제조(35WA) catalyst manufacturing
알루미나 담체 중량 대비 35 중량%의 암모늄 메타텅스테이트(ammonium metatungstate, Sigma Aldrich)를 초기 젖음법(Incipient Wetness method)으로 알루미나 담체에 첨가한 후 80℃에서 12시간 동안 건조하였다. 건조된 물질을 500℃에서 소성하여 가루 형태의 텅스텐 알루미나(WOx/γ-Al2O3,35WA)를 얻었다.Ammonium metatungstate (Sigma Aldrich) of 35% by weight relative to the weight of the alumina carrier was added to the alumina carrier by the initial wetness method (Incipient Wetness method) and then dried at 80 ° C. for 12 hours. The dried material was calcined at 500 ° C. to obtain tungsten alumina (WO × / γ-Al 2 O 3 , 35WA) in powder form.
비교예 2. Pd/γ-AlComparative Example 2. Pd / γ-Al 22 OO 33 (PdAl)촉매 제조 (PdAl) Catalyst Preparation
알루미나 담체 중량 대비 2 중량%의 팔라듐나이트레이트 수용액을 초기젖음법으로 첨가하고, 500℃에서 소성하여 Pd/γ-Al2O3(PdAl)촉매를 제조하였다.A Pd / γ-Al 2 O 3 (PdAl) catalyst was prepared by adding an aqueous solution of palladium nitrate of 2% by weight based on the weight of the alumina carrier and firing at 500 ° C.
비교예 3. CoMo-S 촉매 제조Comparative Example 3. CoMo-S Catalyst Preparation
CoMo(Criterion 社) 촉매의 5 부피%를 H2S/H2가스를 주입하여 400℃에서 3시간 반응시켜 CoMo-S 촉매를 제조하였다.5 vol% of CoMo (Criterion Co., Ltd.) catalyst was injected with H 2 S / H 2 gas and reacted at 400 ° C. for 3 hours to prepare a CoMo-S catalyst.
비교예 4. SiOComparative Example 4. SiO 22 -Al-Al 22 OO 33 (Si-Al)촉매 제(Si-Al) Catalyst article
실리콘 전구체인 테트라에틸오쏘실리케이트(Si(OC2H5)4,SigmaAldrich)와 3차 증류수를 혼합한 뒤 질산 용액을 이용하여 pH를 2.0으로 맞춘 용액을 제조하였다. 또한, 알루미늄 전구체(Al(NO3)39H2O,SigmaAldrich)와 3차 증류수를 혼합하여 용액을 제조하였다. 상기 두 용액을 혼합하여 40℃에서 1시간 교반 하였다. 상기 용액에 암모늄 하이드록사이드(NH4OH)를 한 방울씩 첨가하여 pH를 8.5로 맞춘 후 40℃에서 1 시간 동안 aging 시켰다. 고체 생성물을 여과 시킨 후 남아있는 질산 암모늄을 3차 증류수로 씻어내었다. 포어(pore) 구조를 가지는 고체를 형성하기 위하여 에탄올로 한번 더 씻어내었다. 여과시킨 고체를 80℃에서 10 시간 동안 건조시키고, 550℃에서 3시간 동안 소성하여 SiO2-Al2O3(Si-Al)촉매를 제조하였다.Tetraethyl orthosilicate (Si (OC 2 H 5 ) 4 , SigmaAldrich), which is a silicon precursor, was mixed with tertiary distilled water, and a solution having a pH of 2.0 was prepared using nitric acid solution. In addition, an aluminum precursor (Al (NO 3 ) 3 9H 2 O, SigmaAldrich) and tertiary distilled water were mixed to prepare a solution. The two solutions were mixed and stirred at 40 ° C. for 1 hour. Ammonium hydroxide (NH 4 OH) was added dropwise to the solution to adjust the pH to 8.5 and then aged at 40 ° C. for 1 hour. After filtering the solid product, the remaining ammonium nitrate was washed with tertiary distilled water. Washed once more with ethanol to form a solid with a pore structure. The filtered solid was dried at 80 ° C. for 10 hours and calcined at 550 ° C. for 3 hours to prepare a SiO 2 -Al 2 O 3 (Si-Al) catalyst.
실험예 1. 구아이아콜의 전환율 및 고리모양 탄화수소의 수율Experimental Example 1. Conversion rate of guaiacol and yield of cyclic hydrocarbon
데칸(n-decane)용매에 구아이아콜 3 중량%를 첨가한 용액에 상기 실시예 1 내지 3, 비교예 1 내지 4, 알루미나 촉매(γ-Al2O3,Al)및 CoMo 촉매를 각각 0.5g씩 첨가하여 전체 부피를 50mL로 하여 각각의 용액을 제조하였다. 상기 각각의 용액을 300℃, 수소기체를 충전하여 전체기압을 7MPa을 유지하면서 3시간 동안 반응을 진행하여 수첨탈산소 및 수소화 반응을 통하여 구아이아콜로부터 시클로헥산을 제조하였다.Example 1 to 3, Comparative Examples 1 to 4, alumina catalyst (γ-Al 2 O 3 , Al) and CoMo catalyst were added to the solution in which 3 wt% of guai alcohol was added to a decane solvent. Each solution was prepared by adding g each to make a total volume of 50 mL. Each solution was filled with hydrogen gas at 300 ° C., and the reaction was carried out for 3 hours while maintaining a total pressure of 7 MPa to prepare cyclohexane from guoacol through hydrodeoxygenation and hydrogenation.
구아이아콜의 전환율은 하기 수학식 1로부터 구하였으며, 구아이아콜의 시클로헥산 수율은 하기 수학식 2로부터 구하였다.The conversion rate of guai acol was calculated | required from following formula (1), and the cyclohexane yield of guai acol was calculated | required from following formula (2).
[수학식 1][Equation 1]
Figure PCTKR2013010802-appb-I000003
Figure PCTKR2013010802-appb-I000003
[수학식 2][Equation 2]
Figure PCTKR2013010802-appb-I000004
Figure PCTKR2013010802-appb-I000004
본 발명의 촉매인 실시예 3(Pd35WA)과 비교예 2(PdAl) 내지 3(CoMo-S)의 촉매는 구아이아콜이 다른 물질로 90% 이상 전환되었다. 또한, 비교예 1의 촉매(35WA), 알루미나 촉매(Al) 및 CoMo 촉매는 50% 이상의 전환율을 보였으며, 촉매를 첨가하지 않은 반응에서는 5% 미만의 전환율을 보였다.The catalysts of Example 3 (Pd35WA) and Comparative Examples 2 (PdAl) to 3 (CoMo-S), which are the catalysts of the present invention, were converted to more than 90% of guaiacol to other materials. In addition, the catalyst (35WA), alumina catalyst (Al), and CoMo catalyst of Comparative Example 1 showed a conversion rate of 50% or more, and a conversion rate of less than 5% in the reaction without adding a catalyst.
그러나, 고리모양 탄화수소인 시클로헥산으로의 전환은 본 발명의 촉매인 실시예 3(Pd35WA)에서 약 90%로 가장 높게 나타났으며, 비교예 2의 촉매(PdAl)에서는 약 60%의 낮은 전환율을 보였다. 또한, 다른 촉매(비교예 1, 비교예 3, 알루미나 촉매 및 CoMo 촉매)에서는 시클로헥산으로의 전환이 나타나지 않았으며, 구아이아콜이 카테콜, 애니졸, 페놀 및 크레졸 등의 방향족 탄화수소로 전환된 것을 확인할 수 있었다(도 1).However, conversion to cyclohexane, a cyclic hydrocarbon, was the highest at about 90% in Example 3 (Pd35WA), the catalyst of the present invention, and a low conversion of about 60% at the catalyst of Comparative Example 2 (PdAl). Seemed. In addition, other catalysts (Comparative Example 1, Comparative Example 3, Alumina catalyst and CoMo catalyst) did not show conversion to cyclohexane, and guiacol was converted to aromatic hydrocarbons such as catechol, anisol, phenol and cresol. It was confirmed that (Fig. 1).
또한, 본 발명의 촉매에 포함된 텅스텐의 양에 따라 구아이아콜로부터 전환되는 고리모양 탄화수소의 생성율을 알아보기 위하여 텅스텐을 포함한 실시예 1 내지 3(Pd10WA, Pd20WA 및 Pd35WA)의 촉매와 비교예 2(PdAl) 및 비교예 4의 촉매(Si-Al)를 사용하여 실험을 진행하였다. In addition, in order to determine the production rate of the cyclic hydrocarbon converted from guaiacol according to the amount of tungsten included in the catalyst of the present invention, the catalysts of Comparative Examples 1 to 3 (Pd10WA, Pd20WA and Pd35WA) including tungsten Experiment was conducted using 2 (PdAl) and the catalyst of Comparative Example 4 (Si-Al).
본 실험에서 구아이아콜은 100% 전환되는 것을 확인할 수 있었다. 그 중에서도 텅스텐을 35 중량% 포함한 실시예 3의 촉매(Pd35WA)는 고리모양 탄화수소인 시클로헥산을 가장 많이 생성하였으며, 텅스텐을 10 및 20 중량% 포함한 실시예 1(Pd10WA) 및 2(Pd20WA)의 촉매도 60% 이상의 수율을 보였다. 그러나 비교예 4의 촉매(Si-Al)는 시클로헥산의 수율이 낮게 나타났으며, 텅스텐을 포함하지 않은 비교예 2의 촉매(PdAl)는 본 발명의 실시예 1 내지 3의 촉매보다 낮은 수율을 보였다(도 2).In this experiment, it was confirmed that the guiacol is converted to 100%. Among them, the catalyst of Example 3 (Pd35WA) containing 35% by weight of tungsten produced the most cyclic hydrocarbon cyclohexane, and the catalysts of Examples 1 (Pd10WA) and 2 (Pd20WA) containing 10 and 20% by weight of tungsten. The yield was 60% or more. However, the catalyst of Comparative Example 4 (Si-Al) showed a lower yield of cyclohexane, and the catalyst of Comparative Example 2 (PdAl) not containing tungsten had a lower yield than the catalysts of Examples 1 to 3 of the present invention. (FIG. 2).
실험예 2. 고리모양 탄화수소 생성용 촉매의 내구성 측정Experimental Example 2 Measurement of Durability of Catalysts for Forming Cyclic Hydrocarbons
상기 실시예 3에서 제조한 촉매(Pd35WA)를 사용하여 상기 실험예 1과 동일한 방법으로 반응 용액을 제조하였다. 본 발명의 촉매의 내구성을 측정하기 위하여 상기 촉매를 10회 재사용하여 구아이아콜로부터 전환되는 시클로헥산의 수율을 측정하였다. Using the catalyst (Pd35WA) prepared in Example 3 to prepare a reaction solution in the same manner as in Experiment 1. In order to measure the durability of the catalyst of the present invention, the catalyst was reused 10 times to determine the yield of cyclohexane converted from guai alcohol.
10회에 걸친 반복실험 결과 시클로헥산의 수율은 약 5% 미만의 감소를 보였다(도 3). 따라서, 본 발명의 고리모양 탄화수소 생성용 촉매의 내구성을 실험을 통하여 확인할 수 있었다.Ten replicates showed a decrease in cyclohexane yield of less than about 5% (FIG. 3). Therefore, the durability of the catalyst for producing a cyclic hydrocarbon of the present invention was confirmed through experiments.
실험예 3. 다양한 리그닌 전환물질로부터 고리모양 탄화수소의 수율Experimental Example 3. Yield of cyclic hydrocarbons from various lignin conversions
리그닌 전환물질인 구아이아콜 이외에, 구아이아콜의 분해 과정의 중간 생성물인 애니졸(anisole), 카테콜(catechol) 및 페놀(phenol)을 이용하여 고리모양 탄화수소인 시클로헥산의 수율을 관찰하였다.The yield of cyclohexane, a cyclic hydrocarbon, was observed using anisole, catechol, and phenol, which are intermediate products of the decomposition of guiacol, in addition to guanin, which is a lignin converting material.
상기 실험예 1과 동일한 방법으로 용액을 제조하되, 반응 물질을 애니졸, 카테콜 및 페놀로하였으며, 촉매는 본 발명의 실시예 3의 촉매(Pd35WA)를 사용하여 각각의 반응용액을 제조하고, 시클로헥산의 수율을 관찰하였다.To prepare a solution in the same manner as in Experimental Example 1, the reaction material was anisol, catechol and phenol, the catalyst was prepared in each reaction solution using the catalyst (Pd35WA) of Example 3 of the present invention, The yield of cyclohexane was observed.
애니졸을 사용한 실험에서는 애니졸이 100% 전환되지 않았고, 나머지 물질들은 모두 100% 전환이 되었다. 또한, 상기 네 가지 물질 모두 70% 이상의 시클로헥산의 높은 수율을 보인 것을 확인할 수 있었다(도 4). In the experiments with the anisol, the anisol was not 100% converted and the remaining substances were all 100% converted. In addition, it was confirmed that all four materials showed a high yield of 70% or more of cyclohexane (FIG. 4).
따라서, 본 발명의 고리모양 탄화수소 생성용 촉매는 구아이아콜 이외에 다양한 리그닌 전환물질로부터 고리모양 탄화수소를 높은 수율로 생성한다는 것을 알 수 있었다.Therefore, it was found that the catalyst for producing a cyclic hydrocarbon of the present invention generates a cyclic hydrocarbon from a variety of lignin conversion materials in addition to gua alcohol in high yield.

Claims (6)

  1. 하기 화학식 1 또는 화학식 2로 표시되는 고리모양 탄화수소 생성용 촉매.A catalyst for producing a cyclic hydrocarbon represented by the following formula (1) or (2).
    [화학식 1][Formula 1]
    M/MoOx/γ-Al2O3 M / MoO x / γ-Al 2 O 3
    [화학식 2][Formula 2]
    M/WOx/γ-Al2O3 M / WO x / γ-Al 2 O 3
    상기 M은 Pd, Pt, Ru 또는 Rh이다.M is Pd, Pt, Ru or Rh.
  2. 청구항 1에 있어서, 상기 산화 몰리브덴(MoOx)또는 산화 텅스텐(WOx)은 알루미나 담체 중량 대비 10 내지 45 중량%로 포함되는 것을 특징으로 하는 고리모양 탄화수소 생성용 촉매.The catalyst of claim 1, wherein the molybdenum oxide (MoO x ) or tungsten oxide (WO x ) is included in an amount of 10 to 45 wt% based on the weight of the alumina carrier.
  3. 청구항 1에 있어서, 상기 M은 하기 화학식 3 또는 화학식 4의 중량 대비 1 내지 5 중량%로 포함되는 것을 특징으로 하는 고리모양 탄화수소 생성용 촉매.The catalyst for producing a cyclic hydrocarbon according to claim 1, wherein M is included in an amount of 1 to 5 wt% based on the weight of Formula 3 or Formula 4.
    [화학식 3][Formula 3]
    MoOx/γ-Al2O3 MoO x / γ-Al 2 O 3
    [화학식 4][Formula 4]
    WOx/γ-Al2O3 WO x / γ-Al 2 O 3
  4. 청구항 1에 있어서, 상기 고리모양 탄화수소 생성용 촉매는 반응물로 리그닌 전환물질을 사용하는 것을 특징으로 하는 고리모양 탄화수소 생성용 촉매.The catalyst for producing a cyclic hydrocarbon according to claim 1, wherein the catalyst for producing a cyclic hydrocarbon is used as a reactant.
  5. 청구항 1의 촉매를 이용하여 리그닌 전환물질로부터 고리모양 탄화수소를 제조하는 방법.A method for producing a cyclic hydrocarbon from the lignin conversion material using the catalyst of claim 1.
  6. 청구항 5에 있어서, 상기 고리모양 탄화수소는 200 내지 400℃의 반응 온도, 5 내지 10 MPa의 전체 압력으로 1 내지 3 시간 동안 반응하여 제조되는 것을 특징으로 하는 리그닌 전환물질로부터 고리모양 탄화수소를 제조하는 방법.The method of claim 5, wherein the cyclic hydrocarbon is produced by reacting for 1 to 3 hours at a reaction temperature of 200 to 400 ℃, a total pressure of 5 to 10 MPa for a method for producing a cyclic hydrocarbon from the lignin conversion material .
PCT/KR2013/010802 2013-01-18 2013-11-26 Method for producing ring-shaped hydrocarbon from lignin-transforming substance using noble metal supported catalyst WO2014112712A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0006104 2013-01-18
KR20130006104 2013-01-18
KR10-2013-0144209 2013-11-26
KR1020130144209A KR101436429B1 (en) 2013-01-18 2013-11-26 The method of cyclic-hydrocarbon production using supported noble metal catalysts from lignin-derivatives

Publications (1)

Publication Number Publication Date
WO2014112712A1 true WO2014112712A1 (en) 2014-07-24

Family

ID=51209782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010802 WO2014112712A1 (en) 2013-01-18 2013-11-26 Method for producing ring-shaped hydrocarbon from lignin-transforming substance using noble metal supported catalyst

Country Status (1)

Country Link
WO (1) WO2014112712A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950017873A (en) * 1993-12-30 1995-07-20 조말수 Selective Ring Hydrogenation of Aromatic Compounds Using Heteropoly Acids
US20100043278A1 (en) * 2006-06-09 2010-02-25 Albemarle Netherlands B.V. Catalytic hydrodeoxygenation of an oxygenate feedstock
KR20120035764A (en) * 2010-10-06 2012-04-16 서울대학교산학협력단 Cation-exchanged heteropolyacid catalyst for decomposition of lignin compounds containing alpha carbon-o-4 carbon bond, noble metal catalyst supported on said catalyst and decomposition method of lignin compounds containing alpha carbon-o-4 carbon bond using said catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950017873A (en) * 1993-12-30 1995-07-20 조말수 Selective Ring Hydrogenation of Aromatic Compounds Using Heteropoly Acids
US20100043278A1 (en) * 2006-06-09 2010-02-25 Albemarle Netherlands B.V. Catalytic hydrodeoxygenation of an oxygenate feedstock
KR20120035764A (en) * 2010-10-06 2012-04-16 서울대학교산학협력단 Cation-exchanged heteropolyacid catalyst for decomposition of lignin compounds containing alpha carbon-o-4 carbon bond, noble metal catalyst supported on said catalyst and decomposition method of lignin compounds containing alpha carbon-o-4 carbon bond using said catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. L. CONTRERAS ET AL.: "Thermal Stability of Pt Nanoparticles Supported on WOx/A12O3 for n-Heptane Hydroconversion", MRS-PROCEEDINGS, vol. 1279, 1 February 2011 (2011-02-01) *

Similar Documents

Publication Publication Date Title
WO2017014354A1 (en) Non-noble metal-supported zirconium phosphate catalyst for generating cyclic hydrocarbon, and method for preparing cyclic hydrocarbon by using same
WO2015183061A1 (en) Method for preparing highly active fischer-tropsch catalyst
KR20120078006A (en) Process for preparing aromatics using transition metal sulphide catalyst
CN113354602B (en) Method for preparing 2-methyltetrahydrofuran from furfural through one-step hydrogenation
Rengshausen et al. Catalytic hydrogenolysis of substituted diaryl ethers by using ruthenium nanoparticles on an acidic supported ionic liquid phase (Ru@ SILP-SO3H)
CN101941958B (en) Method for preparing 5-hydroxymethyl furfural and 2,5-furandimethanol simultaneously
KR101436429B1 (en) The method of cyclic-hydrocarbon production using supported noble metal catalysts from lignin-derivatives
JPWO2016052476A1 (en) Polyether diol and method for producing the same
WO2014112712A1 (en) Method for producing ring-shaped hydrocarbon from lignin-transforming substance using noble metal supported catalyst
DE60303502T2 (en) PREPARATION OF N-SUBSTITUTED AMINO-ORGANOSILANES
CN107353237B (en) Preparation method of pyrrolidone derivative
WO2011142550A2 (en) Method for producing hydrogen from cellulose
CN108503608B (en) Preparation method of 1, 4-dimethylpiperazine
CN109704918B (en) Method for continuously catalytically preparing 2, 6-di-tert-butyl-4-methylcyclohexanol
EP0895983A1 (en) Process for the preparation of aminodiphenylamine
JP7031276B2 (en) Method for Producing Polyalkylene Ether Glycol Composition
CN106631991B (en) Simple synthesis method of N-butyl-2, 2,6, 6-tetramethyl-4-piperidylamine
WO2009132959A2 (en) Use of a catalyst based on noble metal for reducing the tar content in gases resulting from gasification processes
CN104803835A (en) Method for preparing benzaldehyde and its derivatives
JP2021134141A (en) Method for producing aromatic compound using heterogeneous noble metal catalyst
CN112742394A (en) Method for preparing gamma-butyrolactone by maleic anhydride liquid-phase hydrogenation
CN110835296A (en) Preparation process of 2,2, 4-trimethyl-3-hydroxypentanoic acid
CN106256807B (en) The method of tetrahydrofurans aromatisation production aromatic hydrocarbons
CN110452195B (en) Method for preparing 2, 5-furan dicarboxaldehyde by dehydrogenation of 5-hydroxymethylfurfural
CN109160871B (en) Method for preparing n-amyl alcohol by hydrogenation of gamma-valerolactone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871739

Country of ref document: EP

Kind code of ref document: A1