WO2014112607A1 - Cell preparation and method for enhancing cell activity - Google Patents

Cell preparation and method for enhancing cell activity Download PDF

Info

Publication number
WO2014112607A1
WO2014112607A1 PCT/JP2014/050862 JP2014050862W WO2014112607A1 WO 2014112607 A1 WO2014112607 A1 WO 2014112607A1 JP 2014050862 W JP2014050862 W JP 2014050862W WO 2014112607 A1 WO2014112607 A1 WO 2014112607A1
Authority
WO
WIPO (PCT)
Prior art keywords
mannose
cells
cell preparation
ascs
cell
Prior art date
Application number
PCT/JP2014/050862
Other languages
French (fr)
Japanese (ja)
Inventor
山本 徳則
真悟 渕
竹田 美和
鈴木 哲
玲 柴田
康人 舟橋
百万 後藤
大山 力
悠葵 飛澤
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Publication of WO2014112607A1 publication Critical patent/WO2014112607A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7004Monosaccharides having only carbon, hydrogen and oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a cell preparation and use thereof, and a method for enhancing cell activity.
  • This application claims priority based on Japanese Patent Application No. 2013-008355 filed on Jan. 21, 2013, the entire contents of which are incorporated by reference.
  • Adipose tissue is rich in mesenchymal stem cells. Because of this fact and the fact that it can be collected in large quantities with simple operation and the burden on patients during collection is small, adipose tissue is considered promising as a source of stem cells for regenerative medicine. Yes. In fact, adipose tissue-derived mesenchymal stem cells (Adipose-derived stem cells: ASCs, ADSCs, Adipose-derived regeneration cells: ADRCs, Adipose-derived mesenchymal stem cells: AT-MSCs, AD-MSCs, etc. Aiming at the clinical application of derived mesenchymal stem cells (sometimes abbreviated as “ASCs”), research on various diseases as therapeutic targets is underway (see, for example, Patent Documents 1 to 3).
  • ASCs derived mesenchymal stem cells
  • an object of the present invention is to provide means for increasing the activity of ASCs, and cell preparations and treatment methods using or applying the means.
  • WNIR broadband near-infrared rays
  • mannose was applied to the skin and irradiated with WNIR (in vivo experiment) in cases with reduced skin microcirculation due to hyperlipidemia, and it was clear that blood flow in the skin capillaries improved It became.
  • Patent Document 5 Japanese Patent Publication No. 2010-528107 discloses a cell composition for treating ischemic disease using ASCs and mannose in combination, and the concentration of mannose therein is high (2%). And is distinct from the present invention. In addition, mannose is used as an excipient, and there is no mention or suggestion regarding the action characteristic of the present invention.
  • the cell preparation according to [1] comprising adipose tissue-derived mesenchymal stem cells and a low concentration of mannose.
  • [3] The cell preparation according to [1], comprising adipose tissue-derived mesenchymal stem cells treated with a low concentration of mannose.
  • [4] The cell preparation according to any one of [1] to [3], wherein the low concentration is a concentration of 0.8% (w / v) or less.
  • [5] The cell preparation according to any one of [1] to [3], wherein the low concentration is 0.2% (w / v) to 0.8 (w / v).
  • [6] The cell preparation according to [1], which contains adipose tissue-derived mesenchymal stem cells and is administered with mannose at the same time when administered to a treatment target.
  • a method for enhancing the activity of a cell comprising the following steps (1) and / or (2): (1) contacting the cells with a low concentration of mannose; (2) A step of irradiating a cell with broadband near infrared rays.
  • the left is the result when cultured under normal oxygen concentration conditions, and the right is the result when cultured under low oxygen concentration conditions.
  • ASCs were irradiated with WNIR before sowing (culture day 0 and day 3).
  • WNIR near infrared
  • Various cytokine levels in the culture supernatants on the 3rd and 6th day of culture were examined and compared with the control (non-irradiated with WNIR).
  • each cytokine level was compared between a culture under normal oxygen concentration conditions (left) and a culture under low oxygen concentration conditions (right).
  • the therapeutic effect of ASCs combined with mannose and / or WNIR.
  • ASCs were administered to a rat ischemic rat model under predetermined conditions (mannose admixture, WNIR irradiation, mannose admixture and WNIR irradiation), and the therapeutic effects (upper: renal function, lower: renal damage score) were compared.
  • Cont no treatment
  • Sham unilateral nephrectomy
  • Isch unilateral ischemia
  • A administration of ASCs
  • M mannose admixed
  • W is WNIR irradiation.
  • the therapeutic effect of ASCs combined with mannose and / or WNIR.
  • ASCs were administered to a renal ischemic rat model under predetermined conditions (mixed mannose, irradiated with WNIR, mixed with mannose and irradiated with WNIR), and the blood flow volume of capillaries around the tubules was compared.
  • Sham is unilateral nephrectomy
  • Isch is unilateral renal ischemia
  • A is administration of ASCs
  • M is mannose admixture
  • W is WNIR irradiation.
  • Mannose was applied to the hyperlipidemic patient's skin and irradiated with WINS. Subcutaneous capillary imaging was performed before and after WINR irradiation to quantify blood flow. Effects of mannose skin application and WNIR irradiation on hyperlipidemia cases. The imaging results before and after treatment (mannose application and WINS irradiation) were shown. An example of a WNIR light source. Blood flow improvement effect by mannose. The imaging results before mannose application (left) and after mannose application (right) are shown. Blood flow improvement effect by mannose. The blood flow velocity before mannose application (left) and after mannose application (right) was compared. Effect of low concentration mannose addition on HUVEC.
  • CMG intravesical pressure
  • rat ASCs mixed with physiological saline, rat ASCs, or low-concentration mannose (0.2% (w / v)) were injected into the urinary bladder. It used for HE (hematoxylin eosin) dyeing
  • HE hematoxylin eosin
  • the present invention relates to cell preparations applied to specific diseases and uses thereof.
  • the cell preparation of the present invention contains adipose tissue-derived mesenchymal stem cells (ASCs).
  • ASCs adipose tissue-derived mesenchymal stem cells
  • ASCs somatic stem cells contained in adipose tissue.
  • the somatic stem cells are cultured ( Cells obtained by subculture) also correspond to “adipose tissue-derived mesenchymal stem cells (ASCs)”.
  • ASCs are prepared in an “isolated state” as cells constituting a cell population (including cells other than ASCs derived from adipose tissue) using adipose tissue separated from a living body as a starting material.
  • the “isolated state” as used herein means a state extracted from its original environment (that is, a state constituting a part of a living body), that is, a state different from the original existence state by an artificial operation.
  • Means that Adipose tissue-derived mesenchymal stem cells are also called ADSCs, ADRCs, AT-MSCs, AD-MSCs, and the like.
  • ADSCs Adipose tissue-derived mesenchymal stem cells
  • ADRCs AT-MSCs
  • AD-MSCs Adipose tissue-derived mesenchymal stem cells
  • ASCs are prepared through steps such as separation, washing, concentration, and culture of stem cells from adipose matrix.
  • a method for preparing ASCs is not particularly limited. For example, a known method (Fraser JK et al. (2006), Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in Biotechnology; Apr; 24 (4): 150-4. Epub 2006 Feb 20. Review .; Zuk PA et al. (2002), Human adipose tissue is a source of multipotent stem cells.Molecular Biology of the Cell; Dec; 13 (12): 4279-95 .; Zuk PA et al.
  • Adipose tissue is collected from animals by means such as excision and suction.
  • the term “animal” herein includes humans and non-human mammals (pet animals, domestic animals, laboratory animals. Specifically, for example, mice, rats, guinea pigs, hamsters, monkeys, cows, pigs, goats, sheep, Dogs, cats, etc.).
  • adipose tissue self-adipose tissue
  • this does not preclude the use of adipose tissue of the same species (other family) or adipose tissue of different species.
  • adipose tissue examples include subcutaneous fat, visceral fat, intramuscular fat, and intermuscular fat.
  • subcutaneous fat can be collected very easily under local anesthesia, so that the burden on the patient at the time of collection is small and it can be said that it is a preferable cell source.
  • one type of adipose tissue is used, but two or more types of adipose tissue can be used in combination.
  • adipose tissue collected in multiple times may be mixed and used for subsequent operations.
  • the amount of adipose tissue collected can be determined in consideration of the type of donor, the type of tissue, or the amount of ASCs required, for example, about 0.5 to 500 g.
  • the amount collected at a time is preferably about 10 to 20 g or less in consideration of the burden on the donor.
  • the collected adipose tissue is subjected to the following enzyme treatment after removal of blood components adhering to it and fragmentation as necessary.
  • the blood component can be removed by washing the adipose tissue in an appropriate buffer or culture solution.
  • Enzyme treatment is performed by digesting adipose tissue with enzymes such as collagenase, trypsin, dispase and the like. Such enzyme treatment may be carried out by methods and conditions known to those skilled in the art (for example, see RI Freshney, Culture of Animal Cells: A Manual of Basic Technique, 4th Edition, A John Wiley & Sones Inc., Publication). . Preferably, the enzyme treatment here is performed according to the methods and conditions described in the Examples described later.
  • the cell population obtained by the above enzyme treatment includes multipotent stem cells, endothelial cells, stromal cells, blood cells, and / or precursor cells thereof. The type and ratio of the cells constituting the cell population depend on the origin and type of the adipose tissue used.
  • the cell population is subsequently subjected to centrifugation.
  • the sediment by centrifugation is collected as a sedimented cell population (also referred to herein as “SVF fraction”).
  • the conditions for centrifugation vary depending on the type and amount of cells, but are, for example, 1 to 10 minutes and 800 to 1500 rpm.
  • the cell population after the enzyme treatment is preferably subjected to filtration or the like, and the enzyme undigested tissue contained therein is preferably removed.
  • the cell preparation of the present invention can be prepared using the SVF fraction. That is, in one embodiment of the cell preparation of the present invention, the SVF fraction is contained.
  • the type and ratio of cells constituting the SVF fraction depend on the origin and type of the adipose tissue used, the conditions for enzyme treatment, and the like. Further, the SVF fraction is characterized by including a CD34-positive and CD45-negative cell population and a CD34-positive and CD45-negative cell population (WO 2006 / 006692A1 pamphlet).
  • the SVF fraction contains other cell components (endothelial cells, stromal cells, blood cells, progenitor cells thereof, etc.) in addition to ASCs. . Therefore, in one embodiment of the present invention, the following selective culture is performed to remove unnecessary cell components from the SVF fraction. The resulting cells are used as ASCs in the cell preparation of the present invention.
  • the SVF fraction After suspending the SVF fraction in an appropriate medium, it is seeded on a culture dish and cultured overnight. Suspension cells (non-adherent cells) are removed by medium exchange. Thereafter, the culture is continued while appropriately changing the medium (for example, once every 3 days). Subculture as necessary.
  • the passage number is not particularly limited.
  • the culture medium a normal animal cell culture medium can be used.
  • DMEM Dulbecco's modified Eagle's Medium
  • ⁇ -MEM Dainippon Pharmaceutical Co., Ltd.
  • DMEM Ham's F12 mixed medium (1: 1) (Dainippon Pharmaceutical Co., Ltd.), Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd.), MCDB201 medium (Functional Peptide Laboratory), etc.
  • a medium supplemented with serum fetal bovine serum, human serum, sheep serum, etc.
  • KSR Knockout serum replacement
  • the addition amount of serum or serum replacement can be set, for example, within a range of 5% (v / v) to 30% (v / v).
  • adherent cells selectively survive and proliferate. Subsequently, the proliferated cells are collected.
  • the collection operation may be carried out in accordance with a conventional method.
  • the cells after enzyme treatment trypsin or dispase treatment
  • a cell scraper or pipette when sheet culture is performed using a commercially available temperature-sensitive culture dish or the like, it is also possible to recover the cells as they are without performing enzyme treatment.
  • ASCs a cell preparation containing ASCs with high purity can be prepared.
  • Low-serum culture selective culture in low-serum medium
  • cell recovery the following low-serum culture is performed instead of or after the operation of (3) above. I do.
  • the resulting cells can be used as ASCs in the cell preparation of the present invention.
  • the SVF fraction (if this step is carried out after (3), the cells collected in (3) are used) are cultured under low serum conditions and the desired multipotent stem cells (ie ASCs) ) Selectively. Since a small amount of serum is used in the low serum culture method, it is possible to use the serum of the subject (patient) to whom the cell preparation of the present invention is administered. That is, culture using autoserum becomes possible.
  • autologous serum a cell preparation is provided that is capable of excluding foreign animal material from the manufacturing process, and is expected to have high safety and high therapeutic effect.
  • “under low serum conditions” is a condition containing 5% or less of serum in the medium.
  • the cells are preferably cultured in a culture solution containing 2% (V / V) or less of serum. More preferably, the cells are cultured in a culture solution containing 2% (V / V) or less of serum and 1 to 100 ng / ml of fibroblast growth factor-2 (bFGF).
  • bFGF fibroblast growth factor-2
  • Serum is not limited to fetal bovine serum, and human serum or sheep serum can be used.
  • human serum more preferably, serum of a subject to which the cell preparation of the present invention is applied (that is, autoserum) is used.
  • a normal medium for animal cell culture can be used on condition that the amount of serum contained in use is low.
  • Dulbecco's modified Eagle's Medium DMEM
  • ⁇ -MEM Disainippon Pharmaceutical Co., Ltd.
  • DMEM Ham's F12 mixed medium (1: 1) (Dainippon Pharmaceutical Co., Ltd.), Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd.), MCDB201 medium (Functional Peptide Laboratory), etc.
  • DMEM Dulbecco's modified Eagle's Medium
  • ⁇ -MEM Dainippon Pharmaceutical Co., Ltd.
  • DMEM Ham's F12 mixed medium (1: 1) (Dainippon Pharmaceutical Co., Ltd.), Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd.), MCDB201 medium (Functional Peptide Laboratory), etc.
  • ASCs can be selectively proliferated by culturing by the above method.
  • ASCs proliferating under the above culture conditions have high proliferative activity, the number of cells required for the cell preparation of the present invention can be easily prepared by subculture.
  • Cells selectively proliferating by low serum culture of the SVF fraction are CD13, CD90 and CD105 positive and CD31, CD34, CD45, CD106 and CD117 negative (International Publication No. 2006 / 006692A1 pamphlet). .
  • the cells selectively proliferated by the above low serum culture are collected.
  • the collection operation may be performed in the same manner as in the above (3).
  • ASCs collected cells
  • the cells obtained by the above method that is, not the cells grown by culturing the SVF fraction in low serum but directly the cell population obtained from the adipose tissue (without going through the centrifugation to obtain the SVF fraction)
  • Cells grown by serum culture may be used as ASCs. That is, in one embodiment of the present invention, cells that proliferate when a cell population obtained from adipose tissue is cultured in low serum are used as ASCs.
  • an SVF fraction (containing adipose tissue-derived mesenchymal stem cells) may be used as it is.
  • the cell preparation of this embodiment comprises (a) a precipitated cell population (SVF fraction) recovered as a sediment by subjecting adipose tissue to protease treatment, followed by filtration, and then centrifuging the filtrate, or (b) fat After the tissue is treated with protease, it contains a sedimented cell population (SVF fraction) that is collected as a sediment by centrifuging without filtration.
  • SVF fraction precipitated cell population
  • the cell preparation of this embodiment comprises (a) a precipitated cell population (SVF fraction) recovered as a sediment by subjecting adipose tissue to protease treatment, followed by filtration, and then centrifuging the filtrate, or (b) fat After the tissue is treated with protease, it contains a sedimented cell population (SVF fraction) that is collected as a sediment by centrifuging without filtration.
  • “use as it is” means to use it as an active ingredient of a cell preparation without undergoing selective culture.
  • ASCs or a cell population containing ASCs (SVF fraction cells, cells obtained as a result of the selective culture (3), cells obtained as a result of the low serum culture (4), or commercially available devices.
  • cells obtained by a Celution (registered trademark) apparatus are suspended in physiological saline, Ringer's solution (acetated Ringer's solution, lactated Ringer's solution, etc.), buffer (eg, phosphate buffer), or the like.
  • 1 ⁇ 10 5 to 1 ⁇ 10 10 cells may be contained as a single dose so that a therapeutically effective amount of cells is administered.
  • the content of the cells can be appropriately adjusted in consideration of the purpose of use, the target disease, the sex of the application target (recipient), age, weight, the state of the affected area, the state of the cells, and the like.
  • DMSO Dimethyl sulfoxide
  • serum albumin for the purpose of cell protection
  • antibiotics for the purpose of preventing bacterial contamination
  • various components for the purpose of cell activation, proliferation or differentiation induction, etc.
  • cytokines are interleukin (IL), interferon (IFN), colony stimulating factor (CSF), granulocyte colony stimulating factor (G-CSF) and erythropoietin (EPO), activin, oncostatin M (OSM).
  • IL interleukin
  • IFN interferon
  • CSF colony stimulating factor
  • G-CSF granulocyte colony stimulating factor
  • EPO erythropoietin
  • OSM oncostatin M
  • CSF, G-CSF, EPO, etc. are also growth factors.
  • growth factors examples include hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF, FGF2), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), insulin-like growth factor (IGF) Transforming growth factor (TGF), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF).
  • HGF hepatocyte growth factor
  • bFGF basic fibroblast growth factor
  • FGF2 epidermal growth factor
  • EGF epidermal growth factor
  • PDGF platelet-derived growth factor
  • IGF insulin-like growth factor
  • TGF nerve growth factor
  • BDNF brain-derived neurotrophic factor
  • other pharmaceutically acceptable ingredients for example, carriers, excipients, disintegrants, buffers, emulsifiers, suspensions, soothing agents, stabilizers, preservatives, preservatives, physiological saline, etc.
  • the cell preparation of the present invention can be provided in a state of being stored or filled in an appropriate container, for example, a syringe, ampoule, vial, plastic container, infusion bag or the like.
  • the cell preparation of the present invention is applicable to various diseases (target diseases) in which therapeutic or prophylactic effects are brought about by administration of ASCs.
  • the therapeutic effect includes alleviation of symptoms or associated symptoms characteristic of the target disease (mildness), prevention or delay of deterioration of symptoms, and the like.
  • the latter can be regarded as one of the preventive effects in terms of preventing the seriousness.
  • the therapeutic effect and the preventive effect are partially overlapping concepts, and it is difficult to clearly distinguish them from each other, and there is little benefit in doing so.
  • a typical preventive effect is to prevent or delay the recurrence of symptoms characteristic of the target disease.
  • target diseases include ischemic diseases, renal dysfunction, wounds, urinary incontinence, osteoporosis (for example, refer to WO 2008/018450 A1 for the above application examples), hyperlipidemia, tumors It is.
  • Ischemia is caused by cessation of blood flow to organs and tissues and reduction of blood flow. If the ischemic time is short, the organ function is restored by resuming blood flow (reperfusion). If the ischemic time is long, the organs and the like are irreversibly damaged (ischemic reperfusion injury) due to reperfusion, resulting in malfunction.
  • ischemic disease Such a disease caused by ischemia or ischemia reperfusion is referred to as “ischemic disease”.
  • ischemic kidney injury eg ischemic renal failure
  • obstructive arteriosclerosis eg lower limb arteriosclerosis
  • ischemic heart disease myocardial infarction, angina etc.
  • cerebrovascular disorder Cerebral infarction, etc.
  • Ischemic injury of the liver, etc. correspond to ischemic diseases.
  • One of the preferable target diseases of the cell preparation of the present invention is such an ischemic disease.
  • the cell preparation of the present invention is particularly effective for treating diseases or disorders in which improvement of blood flow has a therapeutic effect.
  • an ischemic disease corresponds to the disease or disorder.
  • Interstitial cystitis is an organic disease of the bladder that causes symptoms such as frequent urination, increased urinary urgency, urgency, inflammation, and bladder pain. In severe cases, the quality of life is significantly reduced. Although the underlying cause of interstitial cystitis has not yet been clarified, three pathophysiological mechanisms (epithelial dysfunction, mast cell activation, neuropathitis) have been suggested. Although there are effective treatments for some patients, there is a great need for treatments for interstitial cystitis.
  • the cell preparation of the present invention is usually used for the prevention or treatment of target diseases. Therefore, typically, the cell preparation of the present invention will be administered to a patient suffering from or developing a target disease or a potential patient (a person who is likely to suffer or develop).
  • the cell preparation of the present invention can also be used for experimental purposes such as confirmation and verification.
  • Subjects to which the cell preparation of the present invention is administered include humans or non-human mammals (pet animals, domestic animals, laboratory animals. Specific examples include mice, rats, guinea pigs, hamsters, monkeys, cows, pigs, goats. Sheep, dogs, cats, etc.). Preferably, the cell preparation of the present invention is used for humans.
  • the administration route of the cell preparation of the present invention is not particularly limited.
  • the cell preparation of the present invention is administered by intravenous injection, intraarterial injection, intraportal injection, intradermal injection, subcutaneous injection, intramuscular injection, or intraperitoneal injection.
  • the cell preparation of the present invention is administered by local injection into the affected area. That is, the cell preparation of the present invention is particularly suitable for local treatment (focal therapy).
  • the dosage of the cell preparation are 0.1 ml to 100 ml, preferably 5 ml to 60 ml, for example.
  • the administration schedule may be created taking into account the gender, age, weight, disease state, etc. of the subject of application (patient).
  • multiple administration may be performed continuously or periodically.
  • the administration interval for multiple administrations is not particularly limited, and is, for example, 1 day to 1 month.
  • count of administration is not specifically limited. An example of the administration frequency is 2 to 10 times.
  • mannose and / or WNIR are used in combination in order to increase the activity of ASCs. Details of the combined use will be described below.
  • the cell preparation of the first embodiment contains a low concentration of mannose in addition to ASCs. That is, the cell preparation of this embodiment is characterized by containing ASCs and a low concentration of mannose.
  • “low concentration” means a concentration of 0.8 (w / v) or less. Therefore, the cell preparation of the first embodiment contains mannose at a concentration of 0.8% (w / v) or less.
  • the lower limit of the concentration is not particularly limited as long as the effect characteristic of the present invention, that is, the effect of enhancing the activity of ASCs can be exhibited.
  • the mannose concentration is 0.2% (w / v) to 0.8 (w / v).
  • Mannose can be produced by hydrolyzing (acid degradation, enzymatic degradation, etc.) galactomannan contained in glucomannan, guar gum and the like contained in wood, konjac and the like. It can also be produced from coconut oil extraction residue (Japanese Patent Laid-Open Nos. 11-137288 and 2010-22267). On the other hand, a method for producing from glucose using molybdate as a catalyst and a production method using an enzyme derived from a microorganism have also been reported (Japanese Patent Laid-Open No. 2001-231592).
  • ASCs previously treated with a low concentration of mannose are used.
  • the cell preparation is a cell preparation containing ASCs whose activity is increased by treatment with a low concentration of mannose.
  • Pre-treatment with a low concentration of mannose means contacting ASCs with a low concentration of mannose prior to formulation.
  • ASCs satisfying the above conditions are obtained by culturing ASCs (or a cell population containing ASCs) under conditions where low concentrations of mannose are present in the culture medium at or after the preparation stage. Can do.
  • low concentration mannose refers to a mannose concentration of 0.8% (w / v) or less.
  • a mannose concentration of 0.2% (w / v) to 0.8 (w / v) is employed.
  • the treatment time or culture time is not particularly limited, but is, for example, 1 hour to 3 weeks.
  • the subculture may be performed while maintaining the condition in which a low concentration of mannose is present.
  • the combined use of hypoxic conditions can be expected to further improve the activity of ASCs.
  • the cell preparation of the second aspect is characterized in that it does not contain mannose per se, but mannose is administered simultaneously with the administration.
  • “Simultaneous” here does not require strict simultaneity.
  • mannose is administered immediately after administration of the cell preparation, as well as when the administration of the cell preparation and mannose is performed under conditions that do not cause a time difference, such as administration to a subject after mixing mannose with the cell preparation.
  • the concept of “simultaneous” is also included in the case where the cell preparation and mannose are administered under conditions with no substantial time difference, such as administration of cell preparation and mannose in the reverse order. .
  • the time difference between the administration of the two (cell preparation and mannose) is set as short as possible so that the effect of mannose to enhance the activity of ASCs is exhibited well.
  • the other is administered within 10 minutes, preferably within 5 minutes, more preferably within 1 minute after one administration.
  • the mannose concentration in the mixture will be 0.8% (w / v) or less, for example 0.2% (w / v) to 0.8 (w / v). It is preferable to adjust the amount of mannose used.
  • the mannose concentration should be set high, taking into account diffusion and circulation in the living body (for example, 0.2% (w / v) to 2% (w / v)) Mannose solution).
  • broadband near-infrared is light having a wavelength with a maximum emission intensity in the range of 750 to 1200 nm and a half-value width of the emission spectrum of 70 to 200 nm.
  • WNIR broadband near-infrared
  • a light source for generating WNIR will be described in detail with reference to FIG.
  • the light source 20 is an incoherent light source.
  • the emission spectrum of light emitted from the light source 20 has a wavelength at which the emission intensity is maximum within a range of 750 to 1200 nm (more preferably 900 to 1100 nm), and a half width of 70 to 200 nm (more preferably). 70 to 100 nm).
  • Such near-infrared light is less scattered and has high biological permeability (not easily absorbed by the living body), so that it has little influence when irradiated on the living body, and is considered useful for, for example, living body imaging.
  • the emission spectrum of light emitted from the light source 20 preferably has a continuous wavelength range.
  • the continuous wavelength range means that there is no missing wavelength in the wavelength range of the light emitted from the light source 20. Since the emission spectrum of light emitted from the light source 20 has a continuous wavelength region, it is possible to prevent light having a wavelength useful for enhancing the activity of ASCs from being lost.
  • the light source 20 includes a semiconductor light emitting element 28 disposed on a substrate 26.
  • the substrate 26 is formed of a material that does not have transparency.
  • a material having high reflectivity and good thermal conductivity can be used.
  • a known semiconductor light emitting element can be used as the semiconductor light emitting element 28.
  • a light emitting diode, a super luminescent diode, a laser diode, or the like can be used.
  • the periphery of the semiconductor light emitting element 28 is surrounded by a metal body 24 fixed on the substrate 26. That is, a through hole 24a is formed in the metal body 24, and the semiconductor light emitting element 28 is disposed in the through hole 24a. For this reason, the light from the semiconductor light emitting element 28 is irradiated to the opposite side of the substrate 26 through the through hole 24 a of the metal body 24.
  • a metal body 24 for example, an aluminum block can be used.
  • an infrared glass phosphor 30 is disposed in the through hole 24 a of the metal body 24.
  • the infrared glass phosphor 30 is located on the light emitting surface side of the semiconductor light emitting element 28 (that is, the side opposite to the substrate 26), and the outer periphery thereof is in contact with the metal body 24.
  • the infrared glass phosphor 30 has a function of converting light emitted from the semiconductor light emitting element 28 into light in the near infrared region (wavelength 700 to 2500 nm) and expanding the wavelength region of the emission spectrum. Yes.
  • the infrared glass phosphor 30 when light from the semiconductor light emitting element 28 (for example, light in the visible light region) enters the infrared glass phosphor 30, the infrared glass phosphor 30 emits light in the near infrared region.
  • the half width of the spectrum of the irradiated light is wider than the half width of the spectrum of the light irradiated from the semiconductor light emitting element 28.
  • the emission spectrum of the light emitted from the light source 20 has the characteristics described above.
  • the infrared glass phosphor 30 can be formed, for example, by containing fluorescent ions in glass (amorphous) that is a base material.
  • it can be formed by adding Yb ions in glass, or can be formed by adding Yb ions and Nd ions in glass.
  • Yb ions When Yb ions are added to the glass, Yb 2 O 3 may be added to the glass.
  • Yb ions and Nd ions in the glass it may be added Yb 2 O 3 and Nd 2 O 3 in the glass.
  • glass made of Bi 2 O 3 and B 2 O 3 can be used as the base glass.
  • a specific method for manufacturing the infrared glass phosphor 30 is disclosed in detail in Japanese Patent Application Laid-Open No. 2008-185378.
  • a filter 22 can be disposed on the upper surface side (the side on which light is irradiated) of the infrared glass phosphor 30.
  • the filter 22 can be fixed to the upper surface of the metal body 24.
  • the filter 22 has a function of blocking light having a wavelength in the visible light region of the light irradiated from the infrared glass phosphor 30.
  • the cell preparation of this embodiment is irradiated with broadband near-infrared rays before being administered to a treatment target.
  • the prepared cell preparation is irradiated with light at an intensity of 0.1 to 1 mW for 1 minute to 1 hour, for example. You may irradiate light in several steps.
  • WNIR irradiation after administration The cell preparation of the fifth aspect is characterized in that WNIR is irradiated after administration to a treatment subject. That is, in the present invention, two irradiation modes, irradiation before administration (fourth embodiment) and irradiation after administration (fifth embodiment), can be employed.
  • irradiation after administration after the cell preparation is administered by a predetermined administration method (for example, intravenous injection, local injection), at the administration site or in the vicinity thereof, or at the target site (injured site), for example, 0.1 to Irradiate light with an intensity of 1 mW for 1 minute to 1 hour.
  • a predetermined administration method for example, intravenous injection, local injection
  • 0.1 to Irradiate light with an intensity of 1 mW for 1 minute to 1 hour.
  • the description in a 4th aspect is used.
  • the second aspect of the present invention provides a method for enhancing cell activity based on the finding that the use of low concentrations of mannose and WNIR becomes a general-purpose means for enhancing cell activity.
  • the method of the present invention is characterized by including the following step (1) and / or step (2). (1) A step of bringing a cell into contact with a low concentration of mannose (2) A step of irradiating the cell with broadband near infrared rays
  • the cell in this aspect is not particularly limited.
  • examples of cells include cardiomyocytes, smooth muscle cells, adipocytes, fibroblasts, bone cells, chondrocytes, osteoclasts, parenchymal cells, epidermal keratinocytes, epithelial cells (skin epidermal cells, corneal epithelium) Cells, conjunctival epithelial cells, oral mucosal epithelium, follicular epithelial cells, oral mucosal epithelial cells, airway mucosal epithelial cells, intestinal mucosal epithelial cells, etc.), endothelial cells (corneal endothelial cells, vascular endothelial cells, etc.), nerve cells, Schwann cells , Glial cells, spleen cells, pancreatic ⁇ cells, mesangial cells, Langerhans cells, hepatocytes, their precursor cells or stem cells, adipose tissue-derived mesenchy
  • Passage cells cells induced to differentiate into specific cell lineages, cell lines (eg, HeLa cells, CHO cells, Vero cells, HEK293 cells, HepG2 cells, COS-7 cells, NIH3T3 cells, Sf9 cells) Can also be used.
  • cell lines eg, HeLa cells, CHO cells, Vero cells, HEK293 cells, HepG2 cells, COS-7 cells, NIH3T3 cells, Sf9 cells
  • adult stem cells tissue stem cells, somatic stem cells
  • endothelial cells more preferably ASCs, BM-MSCs or Huvec are employed as the cells of the present invention.
  • Step (1) and step (2) are performed ex vivo (in vitro or ex vivo), for example.
  • step (1) can be carried out under the same method and conditions as in the second embodiment of the first aspect (treatment of ASCs with low concentration of mannose). That is, the cells in the preparation stage or after preparation may be cultured for a predetermined time (for example, 1 hour to 3 weeks) under the condition that a low concentration of mannose is present in the culture solution.
  • Step (2) is typically performed under the same method and conditions as the treatment method in the fourth embodiment (irradiation of WNIR before administration) of the first aspect.
  • a part of primary culture or subculture may be performed in a state where WNIR is irradiated, and WNIR may be irradiated to cells in the preparation stage.
  • Step (1) and step (2) can also be performed in vivo.
  • step (1) for example, cells and mannose may be simultaneously administered to a living body, similarly to the third embodiment of the first aspect (simultaneous administration of mannose).
  • step (1) is performed in the living body.
  • step (2) for example, WNIR may be irradiated after cells are administered to a living body in the same manner as in the fifth embodiment of the first aspect (irradiation of WNIR after administration).
  • the cells obtained by carrying out the method of the present invention in vitro that is, cells with enhanced activity are useful as active ingredients of cell preparations. Improvement in the therapeutic effect can be expected by enhancing the activity.
  • the third aspect of the present invention provides a blood flow improving agent containing mannose.
  • the content of mannose is not particularly limited as long as the expected action / effect, that is, improving blood flow at or near the application site when applied to a living body (specifically, for example, skin) is exhibited. .
  • the content of mannose can be set within a range of 0.1% (w / v) to 95% (w / v).
  • the blood flow improving agent of the present invention can be used for skin care, face care, body care or hair care, for example.
  • the blood flow improving agent of the present invention is in the form of a cosmetic composition (eg, emulsion, lotion, lotion, lip balm, pack, facial cleansing foam, body soap, hand soap, shampoo, rinse, conditioner). , Hair spray, hair restorer).
  • a cosmetic composition eg, emulsion, lotion, lotion, lip balm, pack, facial cleansing foam, body soap, hand soap, shampoo, rinse, conditioner.
  • Hair spray, hair restorer e.g, hair spray, hair restorer.
  • the cosmetic composition comprises mannose, which is an active ingredient, and ingredients / bases usually used in cosmetics (for example, various oils and fats, mineral oil, petrolatum, squalane, lanolin, beeswax, denatured alcohol, dextrin palmitate, glycerin, (Glycerin fatty acid ester, ethylene glycol, paraben, camphor, menthol, various vitamins, zinc oxide, titanium oxide, benzoic acid, edetic acid, chamomile oil, carrageenan, chitin powder, chitosan, fragrance, coloring agent, etc.) be able to.
  • ingredients / bases usually used in cosmetics (for example, various oils and fats, mineral oil, petrolatum, squalane, lanolin, beeswax, denatured alcohol, dextrin palmitate, glycerin, (Glycerin fatty acid ester, ethylene glycol, paraben, camphor, menthol, various vitamins, zinc oxide, titanium oxide
  • FIG. 6 shows the measurement results for each cytokine. Secretion of each cytokine was promoted by irradiation with WNIR (culture day 3). In addition, the amount of cytokine secretion is higher at the low oxygen concentration (5%, right of FIG. 6) than at the normal oxygen concentration (20%, left of FIG. 6).
  • WNIR irradiation is effective as a method for increasing the activity of ASCs. Since the amount of cytokine secretion increased under the low oxygen concentration condition, it can be said that irradiating ASCs with WNIR in vivo in a low oxygen concentration environment is also effective as a means for enhancing the activity of ASCs.
  • the dose of ASCs was about 1 ⁇ 10 6 cells.
  • WNIR irradiation was performed for 15 minutes under the condition of 0.27 mW.
  • As an indicator of renal function blood creatinine level (Cre) and kidney injury score (Noiri E, Peresleni T, Miller F, and Goligorsky MS. Antisense oligonucleotides to the inducible NOS prevent tubular cell death in ischemic acute renal failure. J Clin Invest 97: 2377-2383, 1996).
  • the peritubular blood flow was evaluated by the following method.
  • the red blood cell velocity was calculated from data obtained by subjecting the moving image to spatiotemporal image processing (see Japanese Patent Application Laid-Open No. 2010-187925).
  • the flow rate was calculated from the red blood cell velocity and the blood vessel diameter.
  • kidney damage decreased in the mannose admixture group (Isch + A + M) and WNIR irradiation group (Isch + A + WNIR), and further decreased in the mannose WNIR combination group (Isch + A + M + WNIR) (FIG. 7). under).
  • Subcutaneous capillary blood flow was visualized using a pari-hocal video microscope (VFVMS) and recorded as a digital image.
  • the red blood cell velocity was calculated from data obtained by subjecting the moving image to spatiotemporal image processing (see Japanese Patent Application Laid-Open No. 2010-187925).
  • the flow rate was calculated from the red blood cell velocity and the blood vessel diameter.
  • Method 2% (w / v) mannose derived from coconut, purity 99.7% was applied to the lips of a human (healthy person), and capillary blood flow was measured 4 days later. The blood flow measurement is 4. The same experiment was performed.
  • the medium contains HUVEC medium (Kurashiki Spinning) with or without mannose (derived from coconut, purity 99.7%) (0.2% (w / v), 0.4% (w / v), 0.8% (w / v)) Used). It was subcultured on the third day of culture. During the passage, the culture supernatant was sampled and various cytokines were measured.
  • BM-MSCs (Lonza) was seeded on a 6-well plate (BD Falcon) (1.0 x 10 5 cells / well), and cultured under predetermined conditions (20% or 5% O 2 , 37 ° C). .
  • Stem Pro MSC SFM Invitrogen
  • 2% FBS fetal bovine serum
  • mannose derived from coconut, purity 99.7%
  • BM-MSCs (Lonza) was seeded on a 6-well plate (BD Falcon) (1.0 x 10 5 cells / well), and cultured under predetermined conditions (20% or 5% O 2 , 37 ° C). .
  • Stem Pro MSC SFM Invitrogen
  • WNIR n-RNTI-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N
  • FIG. 21 shows the cytokine measurement results for HUVEC.
  • WNIR irradiation significantly promoted Adrenomedullin secretion.
  • the secretion amount of Adrenomedullin is much higher at the low oxygen concentration (5%, FIG. 21 right) than the normal oxygen concentration (20%, FIG. 21 left).
  • FIGS. Secretion of each cytokine was promoted by irradiation with WNIR.
  • fluorescence was detected 2 days after the process and image analysis was carried out.
  • FIG. 26 shows the results of measuring the intravesical pressure.
  • the urination interval was remarkably shortened in the CYP-meal urinary bladder injection group (5.6 ⁇ 5.1 minutes) compared to the normal group (34.4 ⁇ 4.1 minutes).
  • the urination interval was prolonged in the CYP-ASCs urinary injection group (15.4 ⁇ 3.1 min) compared with the CYP-raw diet urinary injection group.
  • the CYP-MN-mixed ASCs urinary injection group (21.4 ⁇ 2.8 minutes)
  • the urination interval was further extended.
  • Fig. 27 shows the results of HE staining (examination of pathological tissue).
  • the CYP-live urinary bladder group had marked mucosal edema and inflammatory cell infiltration reflecting inflammatory lesions.
  • the degree of mucosal edema and inflammatory cell infiltration was reduced.
  • mucosal edema and inflammatory cell infiltration were further reduced.
  • BM-MSCs bone marrow-derived mesenchymal stem cells
  • ASCs whose activity is enhanced by the action of low concentration of mannose and / or broadband near infrared (WNIR) are active ingredients. Therefore, the cell preparation of the present invention can be applied to the treatment of various diseases for which administration of ASCs is effective. In particular, application to diseases or disorders in which improvement of blood flow has a therapeutic effect is assumed.
  • WNIR broadband near infrared
  • Light source 28 Semiconductor light emitting element 30: Infrared glass phosphor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dermatology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Diabetes (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Obesity (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention addresses the problem of providing a means for enhancing the activity of mesenchymal stem cells derived from a fat tissue, and a cell preparation and a therapeutic method utilizing or applying the aforesaid means. Provided is a cell preparation which contains mesenchymal stem cells derived from a fat tissue and a low concentration of mannose. In another embodiment, broadband near-infrared radiation is used as a substitute for a low concentration of mannose or in addition thereto.

Description

細胞製剤及び細胞の活性を高める方法Cell preparation and method for enhancing cell activity
 本発明は細胞製剤及びその利用、並びに細胞の活性を高める方法に関する。本出願は、2013年1月21日に出願された日本国特許出願第2013-008355号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。 The present invention relates to a cell preparation and use thereof, and a method for enhancing cell activity. This application claims priority based on Japanese Patent Application No. 2013-008355 filed on Jan. 21, 2013, the entire contents of which are incorporated by reference.
 脂肪組織には間葉系幹細胞が豊富に存在している。この事実と、簡便な操作で大量に採取が可能であることや採取の際の患者への負荷が少ないことなどの理由から、再生医療を目的とした幹細胞のソースとして脂肪組織が有望視されている。実際、脂肪組織由来間葉系幹細胞(Adipose-derived stem cells: ASCs, ADSCs、Adipose-derived regeneration cells: ADRCs、Adipose-derived mesenchymal stem cells: AT-MSCs, AD-MSCsなどと呼ばれる。以下、脂肪組織由来間葉系幹細胞を「ASCs」と略称することがある)の臨床応用を目指し、各種疾患を治療標的とした研究が進められている(例えば特許文献1~3を参照)。 Adipose tissue is rich in mesenchymal stem cells. Because of this fact and the fact that it can be collected in large quantities with simple operation and the burden on patients during collection is small, adipose tissue is considered promising as a source of stem cells for regenerative medicine. Yes. In fact, adipose tissue-derived mesenchymal stem cells (Adipose-derived stem cells: ASCs, ADSCs, Adipose-derived regeneration cells: ADRCs, Adipose-derived mesenchymal stem cells: AT-MSCs, AD-MSCs, etc. Aiming at the clinical application of derived mesenchymal stem cells (sometimes abbreviated as “ASCs”), research on various diseases as therapeutic targets is underway (see, for example, Patent Documents 1 to 3).
国際公開第2008/018450A1号パンフレットInternational Publication No. 2008/018450 A1 Pamphlet 特開2009-001509号公報JP 2009-001509 A 特表2010-528107号公報Special table 2010-528107 gazette 特開2008-185378号公報JP 2008-185378 A 特表2010-528107号公報Special table 2010-528107 gazette
 治療効果はASCsの活性(多能性や成長因子の分泌能など)に依存する。ASCsの活性は分離条件や由来(個体差、個人差)に左右されるが、ASCsの潜在能力を最大限活かし、高い治療効果を実現するためには、ASCsの活性を高めることが有効且つ重要である。そこで本発明は、ASCsの活性を高める手段、及び当該手段を利用ないし応用した細胞製剤や治療方法等を提供することを課題とする。 The therapeutic effect depends on the activity of ASCs (pluripotency, growth factor secretion ability, etc.). Although the activity of ASCs depends on the isolation conditions and origin (individual and individual differences), it is effective and important to increase the activity of ASCs in order to maximize the potential of ASCs and achieve high therapeutic effects. It is. Therefore, an object of the present invention is to provide means for increasing the activity of ASCs, and cell preparations and treatment methods using or applying the means.
 後述の実施例に示すように、本発明者らの鋭意検討の結果、培養細胞を用いた実験(in vitroの実験)によって、低濃度のマンノースが共存するとASCsのサイトカイン産生能が向上すること、即ちASCsの活性が高まることが明らかとなった。また、ASCsと低濃度でマンノースを混合して腎虚血ラットモデルに投与したところ(in vivoの実験)、顕著な微小循環(毛細血管の血流)の改善と腎機能回復効果が認められ、低濃度のマンノースの併用がASCsの治療効果を高める上で有効であることが示された。 As shown in the examples described later, as a result of intensive studies by the present inventors, the ability to produce cytokines of ASCs is improved when a low concentration of mannose coexists by an experiment using cultured cells (in vitro experiment), That is, it became clear that the activity of ASCs increased. In addition, when ASCs and mannose were mixed at a low concentration and administered to a rat model of renal ischemia (in vivo study), a marked improvement in microcirculation (capillary blood flow) and a recovery of renal function were observed. Concomitant concentrations of mannose have been shown to be effective in enhancing the therapeutic effects of ASCs.
 一方、広帯域近赤外線(例えば特許文献4を参照。以下、「WNIR」と略称することがある)にも注目し、その有効性を検討した。その結果、培養細胞を用いた実験(in vitroの実験)によって、ASCsの活性を高める手段としてWNIRが有効であることが判明した。また、高脂血症で皮膚微小循環が低下している症例に対し、皮膚にマンノースを塗布してWNIRを照射したところ(in vivoの実験)、皮膚毛細血管の血流が改善することが明らかとなった。この結果は、皮下脂肪内に存在するASCsの活性がWNIRによって高められ、血管新生及びサイトカインの分泌が促進されたこと、換言すれば、ASCsの活性を高めその治療効果を向上させるための手段としてWNIRの照射が有効であること、及びマンノースの併用が治療効果の向上に有効であることを示唆する。更には、in vitroの実験の結果を合わせて考察すれば、ASCsによる治療効果を向上させるためには、投与前のASCsにWNIRを照射しておく方法と、投与後のASCsにWNIRを照射する方法のいずれも採用し得るといえる。 On the other hand, attention was paid to broadband near-infrared rays (for example, refer to Patent Document 4, hereinafter sometimes abbreviated as “WNIR”), and the effectiveness was examined. As a result, it was found that WNIR is effective as a means of increasing the activity of ASCs by experiments using cultured cells (in vitro experiments). In addition, mannose was applied to the skin and irradiated with WNIR (in vivo experiment) in cases with reduced skin microcirculation due to hyperlipidemia, and it was clear that blood flow in the skin capillaries improved It became. This result indicates that the activity of ASCs present in subcutaneous fat was increased by WNIR, and angiogenesis and cytokine secretion were promoted, in other words, as a means for increasing the activity of ASCs and improving its therapeutic effect. This suggests that WNIR irradiation is effective and that the combined use of mannose is effective in improving the therapeutic effect. Furthermore, in consideration of the results of in vitro experiments, in order to improve the therapeutic effect of ASCs, a method of irradiating ASCs before administration with WNIR and irradiating ASCs after administration with WNIR It can be said that any of the methods can be adopted.
 更なる検討として、ヒト臍帯静脈内皮細胞(HUVEC)と骨髄由来間葉系幹細胞(BM-MSCs)を用いた実験を行った。その結果、低濃度のマンノース及びWNIRの照射の各々について、細胞のサイトカイン産生能が向上する傾向を認め、低濃度のマンノース及びWNIRの使用が、細胞の活性を高めるための汎用的な手段になることが明らかとなった。 As a further study, experiments using human umbilical vein endothelial cells (HUVEC) and bone marrow-derived mesenchymal stem cells (BM-MSCs) were performed. As a result, for each of the low concentrations of mannose and WNIR irradiation, a tendency to improve the cytokine production ability of the cells is recognized, and the use of low concentrations of mannose and WNIR becomes a general-purpose means for enhancing the activity of the cells. It became clear.
 一方、マンノースの有効性に関して更なる検討を加えた結果、マンノース単独であっても血流の改善効果を発揮することが判明した。 On the other hand, as a result of further studies on the effectiveness of mannose, it was found that even mannose alone exerts an improvement effect on blood flow.
 更には、間葉系幹細胞(ASCs又はBM-MSCs)と低濃度のマンノースとの併用が、間質性膀胱炎に対しても優れた治療効果をもたらすことが、モデル動物を用いた実験によって明らかとなった。 Furthermore, experiments using model animals revealed that the combination of mesenchymal stem cells (ASCs or BM-MSCs) and low concentrations of mannose has an excellent therapeutic effect on interstitial cystitis. It became.
 以下に示す本願発明は、主として以上の成果及び考察に基づく。尚、特許文献5(特表2010-528107号公報)には、ASCsとマンノースを併用した虚血性疾患治療用細胞組成物が開示されているが、そこでのマンノースの濃度は高濃度(2%)であり、本願発明とは峻別される。しかも、マンノースは賦形剤として用いられており、本願発明に特徴的な作用に関する言及ないし示唆は一切ない。
 [1]脂肪組織由来間葉系幹細胞を含有するとともに、低濃度のマンノースが併用される、細胞製剤。
 [2]脂肪組織由来間葉系幹細胞と低濃度のマンノースを含有する、[1]に記載の細胞製剤。
 [3]低濃度のマンノースで処理された脂肪組織由来間葉系幹細胞を含有する、[1]に記載の細胞製剤。
 [4]低濃度が、0.8%(w/v)以下の濃度である、[1]~[3]のいずれか一項に記載の細胞製剤。
 [5]低濃度が、0.2%(w/v)~0.8(w/v)である、[1]~[3]のいずれか一項に記載の細胞製剤。
 [6]脂肪組織由来間葉系幹細胞を含有し、治療対象への投与の際にマンノースが同時に投与される、[1]に記載の細胞製剤。
 [7]脂肪組織由来間葉系幹細胞を含有し、治療対象への投与前又は投与後に広帯域近赤外線が照射される、細胞製剤。
 [8]広帯域近赤外線は、発光強度が最大となる波長が750~1200nmの範囲にあり、且つ発光スペクトルの半値幅が70~200nmである、[7]に記載の細胞製剤。
 [9]低濃度のマンノースを更に含有する、[7]又は[8]に記載の細胞製剤。
 [10]治療対象への投与の際に、マンノースが同時に投与される、[7]又は[8]に記載の細胞製剤。
 [11]血流の改善が治療効果をもたらす、疾患ないし障害の治療用である、[1]~[10]のいずれか一項に記載の細胞製剤。
 [12]虚血性疾患又は高脂血症の治療用である、[11]に記載の細胞製剤。
 [13]虚血性疾患が虚血性腎不全である、[12]に記載の細胞製剤。
 [14]間質性膀胱炎の治療用である、[1]~[10]のいずれか一項に記載の細胞製剤。
[15]細胞の活性を高める方法であって、以下のステップ(1)及び/又はステップ(2)を含む方法:
(1)細胞を低濃度のマンノースに接触させるステップ;
(2)細胞に広帯域近赤外線を照射するステップ。
[16]細胞が間葉系幹細胞又は内皮細胞である、[15]に記載の方法。
[17]間葉系幹細胞が脂肪組織由来間葉系幹細胞又は骨髄由来間葉系幹細胞であり、内皮細胞が臍帯静脈内皮細胞である、[16]に記載の方法。
[18]ステップ(1)及び(2)は、生体外で実施される、[15]~[17]のいずれか一項に記載の方法。
[19][18]に記載の方法によって活性が高められた細胞を含有する細胞製剤。
[20]マンノースを含有する、血流改善剤。
[21]スキンケア、フェイスケア、ボディケア又はヘアケア用である、[20]に記載の血流改善剤。
The present invention shown below is mainly based on the above results and considerations. Incidentally, Patent Document 5 (Japanese Patent Publication No. 2010-528107) discloses a cell composition for treating ischemic disease using ASCs and mannose in combination, and the concentration of mannose therein is high (2%). And is distinct from the present invention. In addition, mannose is used as an excipient, and there is no mention or suggestion regarding the action characteristic of the present invention.
[1] A cell preparation that contains adipose tissue-derived mesenchymal stem cells and is used in combination with a low concentration of mannose.
[2] The cell preparation according to [1], comprising adipose tissue-derived mesenchymal stem cells and a low concentration of mannose.
[3] The cell preparation according to [1], comprising adipose tissue-derived mesenchymal stem cells treated with a low concentration of mannose.
[4] The cell preparation according to any one of [1] to [3], wherein the low concentration is a concentration of 0.8% (w / v) or less.
[5] The cell preparation according to any one of [1] to [3], wherein the low concentration is 0.2% (w / v) to 0.8 (w / v).
[6] The cell preparation according to [1], which contains adipose tissue-derived mesenchymal stem cells and is administered with mannose at the same time when administered to a treatment target.
[7] A cell preparation containing adipose tissue-derived mesenchymal stem cells and irradiated with broadband near-infrared rays before or after administration to a treatment target.
[8] The cell preparation according to [7], wherein the near-infrared wavelength of the broadband has a maximum emission intensity in a range of 750 to 1200 nm and a half-value width of an emission spectrum is 70 to 200 nm.
[9] The cell preparation according to [7] or [8], further containing a low concentration of mannose.
[10] The cell preparation according to [7] or [8], wherein mannose is administered simultaneously with administration to a treatment subject.
[11] The cell preparation according to any one of [1] to [10], which is for treatment of a disease or disorder in which improvement in blood flow has a therapeutic effect.
[12] The cell preparation according to [11], which is used for treatment of ischemic disease or hyperlipidemia.
[13] The cell preparation according to [12], wherein the ischemic disease is ischemic renal failure.
[14] The cell preparation according to any one of [1] to [10], which is used for treatment of interstitial cystitis.
[15] A method for enhancing the activity of a cell, comprising the following steps (1) and / or (2):
(1) contacting the cells with a low concentration of mannose;
(2) A step of irradiating a cell with broadband near infrared rays.
[16] The method according to [15], wherein the cells are mesenchymal stem cells or endothelial cells.
[17] The method according to [16], wherein the mesenchymal stem cells are adipose tissue-derived mesenchymal stem cells or bone marrow-derived mesenchymal stem cells, and the endothelial cells are umbilical vein endothelial cells.
[18] The method according to any one of [15] to [17], wherein steps (1) and (2) are performed ex vivo.
[19] A cell preparation containing cells whose activity has been enhanced by the method according to [18].
[20] A blood flow improving agent containing mannose.
[21] The blood flow improving agent according to [20], which is for skin care, face care, body care or hair care.
低濃度のマンノース添加による各種サイトカインの分泌の促進。低濃度でマンノースを培地に添加し、ASCsを培養した。培養3日目の培養上清中の各サイトカインレベルを調べ、コントロール(マンノース非添加)と比較した。また、通常酸素濃度条件の培養(左)と低酸素濃度条件の培養(右)の間で各サイトカインレベルを比較した。Promotion of secretion of various cytokines by adding low concentrations of mannose. Mannose was added to the medium at a low concentration, and ASCs were cultured. Each cytokine level in the culture supernatant on the third day of culture was examined and compared with a control (no mannose added). In addition, each cytokine level was compared between a culture under normal oxygen concentration conditions (left) and a culture under low oxygen concentration conditions (right). 低濃度のマンノース添加による各種サイトカインの分泌の促進。マンノース濃度とVEGF-Aの分泌量の関係を調べた。左は通常酸素濃度条件で培養した場合の結果、右は低酸素濃度条件で培養した場合の結果である。Promotion of secretion of various cytokines by adding low concentrations of mannose. The relationship between mannose concentration and VEGF-A secretion was examined. The left is the result when cultured under normal oxygen concentration conditions, and the right is the result when cultured under low oxygen concentration conditions. 低濃度のマンノース添加による各種サイトカインの分泌の促進。マンノース濃度とHGFの分泌量の関係を調べた。左は通常酸素濃度条件で培養した場合の結果、右は低酸素濃度条件で培養した場合の結果である。Promotion of secretion of various cytokines by adding low concentrations of mannose. The relationship between mannose concentration and HGF secretion was examined. The left is the result when cultured under normal oxygen concentration conditions, and the right is the result when cultured under low oxygen concentration conditions. 低濃度のマンノース添加による各種サイトカインの分泌の促進。マンノース濃度とNGF-βの分泌量の関係を調べた。左は通常酸素濃度条件で培養した場合の結果、右は低酸素濃度条件で培養した場合の結果である。Promotion of secretion of various cytokines by adding low concentrations of mannose. The relationship between mannose concentration and NGF-β secretion was examined. The left is the result when cultured under normal oxygen concentration conditions, and the right is the result when cultured under low oxygen concentration conditions. 低濃度のマンノース添加による各種サイトカインの分泌の促進。マンノース濃度とSDF-1の分泌量の関係を調べた。左は通常酸素濃度条件で培養した場合の結果、右は低酸素濃度条件で培養した場合の結果である。Promotion of secretion of various cytokines by adding low concentrations of mannose. The relationship between mannose concentration and SDF-1 secretion was examined. The left is the result when cultured under normal oxygen concentration conditions, and the right is the result when cultured under low oxygen concentration conditions. 広帯域近赤外線(WNIR)による細胞の活性化。播種前(培養0日目と3日目)にASCsにWNIRを照射した。培養3日目と6日目の培養上清中の各種サイトカインレベルを調べ、コントロール(WNIRの非照射)と比較した。また、通常酸素濃度条件の培養(左)と低酸素濃度条件の培養(右)の間で各サイトカインレベルを比較した。Cell activation by broadband near infrared (WNIR). ASCs were irradiated with WNIR before sowing (culture day 0 and day 3). Various cytokine levels in the culture supernatants on the 3rd and 6th day of culture were examined and compared with the control (non-irradiated with WNIR). In addition, each cytokine level was compared between a culture under normal oxygen concentration conditions (left) and a culture under low oxygen concentration conditions (right). ASCsとマンノース及び/又はWNIRの併用による治療効果。腎虚血ラットモデルに所定の条件(マンノース混和、WNIRの照射、マンノース混和且つWNIRの照射)でASCsを投与し、治療効果(上:腎機能、下:腎損傷スコア)を比較した。Contは処置なし、Shamは片腎摘出、Ischは片腎虚血、AはASCsの投与、Mはマンノース混和、WはWNIRの照射を表す。The therapeutic effect of ASCs combined with mannose and / or WNIR. ASCs were administered to a rat ischemic rat model under predetermined conditions (mannose admixture, WNIR irradiation, mannose admixture and WNIR irradiation), and the therapeutic effects (upper: renal function, lower: renal damage score) were compared. Cont is no treatment, Sham is unilateral nephrectomy, Isch is unilateral ischemia, A is administration of ASCs, M is mannose admixed, and W is WNIR irradiation. ASCsとマンノース及び/又はWNIRの併用による治療効果。腎虚血ラットモデルに所定の条件(マンノース混和、WNIRの照射、マンノース混和且つWNIRの照射)でASCsを投与し、尿細管周囲毛細血管の血流量を比較した。Shamは片腎摘出、Ischは片腎虚血、AはASCsの投与、Mはマンノース混和、WはWNIRの照射を表す。The therapeutic effect of ASCs combined with mannose and / or WNIR. ASCs were administered to a renal ischemic rat model under predetermined conditions (mixed mannose, irradiated with WNIR, mixed with mannose and irradiated with WNIR), and the blood flow volume of capillaries around the tubules was compared. Sham is unilateral nephrectomy, Isch is unilateral renal ischemia, A is administration of ASCs, M is mannose admixture, and W is WNIR irradiation. 腎虚血ラットモデルにおけるASCsの集積イメージング。Ischは片腎虚血、AはASCsの投与、WはWNIRの照射を表す。Integrated imaging of ASCs in a rat model of renal ischemia. Isch represents single kidney ischemia, A represents administration of ASCs, and W represents WNIR irradiation. 高脂血症症例に対するマンノース皮膚塗布及びWNIR照射の効果。高脂血症患者の皮膚にマンノースを塗布し、WINRを照射した。WINRの照射前後に皮下毛細血管イメージングを行い、血流量を定量化した。Effects of mannose skin application and WNIR irradiation on hyperlipidemia cases. Mannose was applied to the hyperlipidemic patient's skin and irradiated with WINS. Subcutaneous capillary imaging was performed before and after WINR irradiation to quantify blood flow. 高脂血症症例に対するマンノース皮膚塗布及びWNIR照射の効果。治療(マンノースの塗布及びWINRの照射)前後のイメージングの結果を示した。Effects of mannose skin application and WNIR irradiation on hyperlipidemia cases. The imaging results before and after treatment (mannose application and WINS irradiation) were shown. WNIR光源の一例。An example of a WNIR light source. マンノースによる血流改善効果。マンノース塗布前(左)とマンノース塗布後(右)のイメージングの結果を示す。Blood flow improvement effect by mannose. The imaging results before mannose application (left) and after mannose application (right) are shown. マンノースによる血流改善効果。マンノース塗布前(左)とマンノース塗布後(右)の血流速度を比較した。Blood flow improvement effect by mannose. The blood flow velocity before mannose application (left) and after mannose application (right) was compared. HUVECに対する低濃度のマンノース添加の効果。マンノース濃度とVEGF-Aの分泌量の関係を調べた。左は通常酸素濃度条件で培養した場合の結果、右は低酸素濃度条件で培養した場合の結果である。Effect of low concentration mannose addition on HUVEC. The relationship between mannose concentration and VEGF-A secretion was examined. The left is the result when cultured under normal oxygen concentration conditions, and the right is the result when cultured under low oxygen concentration conditions. HUVECに対する低濃度のマンノース添加の効果。マンノース濃度とHGFの分泌量の関係を調べた。低酸素濃度条件で培養した場合の結果を示す。Effect of low concentration mannose addition on HUVEC. The relationship between mannose concentration and HGF secretion was examined. The result at the time of culture | cultivating on low oxygen concentration conditions is shown. HUVECに対する低濃度のマンノース添加の効果。マンノース濃度とNGF-βの分泌量の関係を調べた。低酸素濃度条件で培養した場合の結果を示す。Effect of low concentration mannose addition on HUVEC. The relationship between mannose concentration and NGF-β secretion was examined. The result at the time of culture | cultivating on low oxygen concentration conditions is shown. HUVECに対する低濃度のマンノース添加の効果。マンノース濃度とSDF-1の分泌量の関係を調べた。左は通常酸素濃度条件で培養した場合の結果、右は低酸素濃度条件で培養した場合の結果である。Effect of low concentration mannose addition on HUVEC. The relationship between mannose concentration and SDF-1 secretion was examined. The left is the result when cultured under normal oxygen concentration conditions, and the right is the result when cultured under low oxygen concentration conditions. BM-MSCsに対する低濃度のマンノース添加の効果。マンノース濃度とVEGF-Aの分泌量の関係を調べた。通常酸素濃度条件で培養した場合の結果を示す。Effect of low concentration mannose addition on BM-MSCs. The relationship between mannose concentration and VEGF-A secretion was examined. The results when cultured under normal oxygen concentration conditions are shown. BM-MSCsに対する低濃度のマンノース添加の効果。マンノース濃度とNGF-βの分泌量の関係を調べた。左は通常酸素濃度条件で培養した場合の結果、右は低酸素濃度条件で培養した場合の結果である。Effect of low concentration mannose addition on BM-MSCs. The relationship between mannose concentration and NGF-β secretion was examined. The left is the result when cultured under normal oxygen concentration conditions, and the right is the result when cultured under low oxygen concentration conditions. HUVECに対するWNIR照射の効果。WNIRの照射によってAdrenomedullinの分泌量が変化するか調べた。左は通常酸素濃度条件で培養した場合の結果、右は低酸素濃度条件で培養した場合の結果である。Effect of WNIR irradiation on HUVEC. It was investigated whether the secretion amount of Adrenomedullin was changed by irradiation with WNIR. The left is the result when cultured under normal oxygen concentration conditions, and the right is the result when cultured under low oxygen concentration conditions. BM-MSCsに対するWNIR照射の効果。WNIRの照射によってVEGF-Aの分泌量が変化するか調べた。通常酸素濃度条件で培養した場合の結果を示す。Effect of WNIR irradiation on BM-MSCs. It was investigated whether the secretion amount of VEGF-A was changed by irradiation with WNIR. The results when cultured under normal oxygen concentration conditions are shown. BM-MSCsに対するWNIR照射の効果。WNIRの照射によってHGFの分泌量が変化するか調べた。左は通常酸素濃度条件で培養した場合の結果、右は低酸素濃度条件で培養した場合の結果である。Effect of WNIR irradiation on BM-MSCs. It was investigated whether the amount of HGF secretion changed by irradiation with WNIR. The left is the result when cultured under normal oxygen concentration conditions, and the right is the result when cultured under low oxygen concentration conditions. BM-MSCsに対するWNIR照射の効果。WNIRの照射によってNGF-βの分泌量が変化するか調べた。左は通常酸素濃度条件で培養した場合の結果、右は低酸素濃度条件で培養した場合の結果である。Effect of WNIR irradiation on BM-MSCs. It was examined whether the amount of NGF-β secretion changed by irradiation with WNIR. The left is the result when cultured under normal oxygen concentration conditions, and the right is the result when cultured under low oxygen concentration conditions. BM-MSCsに対するWNIR照射の効果。WNIRの照射によってAdrenomedullinの分泌量が変化するか調べた。通常酸素濃度条件で培養した場合の結果を示す。Effect of WNIR irradiation on BM-MSCs. It was investigated whether the secretion amount of Adrenomedullin was changed by irradiation with WNIR. The results when cultured under normal oxygen concentration conditions are shown. ASCs又はASCsとマンノースの併用による、間質性膀胱炎に対する治療効果。シクロフォスファミド(CYP)の腹腔内注入によって膀胱炎を誘導した後、生理食塩水、ラットASCs、又は低濃度マンノース(0.2%(w/v))を混和したラットASCsを膀胱内注入し、2日後に膀胱内圧(CMG)を計測した。左上:正常群(n=6)の排尿間隔、右上:CYP腹腔内注入後に生理食塩水を膀注したラット(CYP-生食膀注群:n=6)の排尿間隔、左下:CYP腹腔内注入後にASCsを膀注したラット(CYP-ASCs膀注群:n=6)の排尿間隔、右下:CYP腹腔内注入後に低濃度マンノース混和ASCsを膀注したラット(CYP-MN混和ASCs膀注群:n=6)の排尿間隔。A therapeutic effect on interstitial cystitis by ASCs or a combination of ASCs and mannose. After inducing cystitis by intraperitoneal injection of cyclophosphamide (CYP), intravesical injection of rat ASCs mixed with saline, rat ASCs, or low concentration mannose (0.2% (w / v)), Two days later, intravesical pressure (CMG) was measured. Upper left: urination interval of normal group (n = 6), upper right: urination interval of rats infused with physiological saline after CYP intraperitoneal injection (CYP-saline urinary injection group: n = 6), lower left: ASCs after intraperitoneal injection of CYP Urination interval of rats (CYP-ASCs urinary injection group: n = 6), lower right: rats injected with CSC-MN-mixed ASCs urinary injection group (n = 6) Urination interval. ASCs又はASCsとマンノースの併用による、間質性膀胱炎に対する治療効果。CYPの腹腔内注入によって膀胱炎を誘導した後、生理食塩水、ラットASCs、又は低濃度マンノース(0.2%(w/v))を混和したラットASCsを膀胱内注入し、2日後に病理組織をHE(ヘマトキシリン・エオジン)染色に供した。左上:正常群、右上:CYP-生食膀注群、左下:CYP-ASCs膀注群、右下:CYP-MN混和ASCs膀注群。A therapeutic effect on interstitial cystitis by ASCs or a combination of ASCs and mannose. After cystitis was induced by intraperitoneal injection of CYP, rat ASCs mixed with physiological saline, rat ASCs, or low-concentration mannose (0.2% (w / v)) were injected into the urinary bladder. It used for HE (hematoxylin eosin) dyeing | staining. Upper left: normal group, upper right: CYP-raw bladder injection group, lower left: CYP-ASCs bladder injection group, lower right: CYP-MN mixed ASCs bladder injection group. 間質性膀胱炎ラットモデルにおけるASCsの集積イメージング。左:ASCs膀注前、中央:ASCs膀注後2日目、右:MN混和ASCs膀注後2日目。Integrated imaging of ASCs in a rat model of interstitial cystitis. Left: Before ASCs bladder injection, middle: 2 days after ASCs bladder injection, right: 2 days after MN-mixed ASCs bladder injection. BM-MSCs又はBM-MSCsとマンノースの併用による、間質性膀胱炎に対する治療効果。膀胱内圧計測の結果を示す。上段:CYP腹腔内注入後にBM-MSCsを膀注したラット(n=3)の排尿間隔、下段:CYP腹腔内注入後に低濃度マンノース混和BM-MSCsを膀注したラット(n=3)の排尿間隔。Therapeutic effect on interstitial cystitis by the combination of BM-MSCs or BM-MSCs and mannose. The result of intravesical pressure measurement is shown. Upper row: urination interval of rats (n = 3) injected with BM-MSCs after intraperitoneal injection of CYP, lower row: urination interval of rats (n = 3) injected with low concentration mannose-mixed BM-MSCs after intraperitoneal injection of CYP.
<第1の局面:細胞製剤及びその用途>
 本発明は特定の疾患に適用される細胞製剤及びその用途に関する。本発明の細胞製剤は脂肪組織由来間葉系幹細胞(ASCs)を含有する。本発明において「脂肪組織由来間葉系幹細胞(ASCs)」とは、脂肪組織に含まれる体性幹細胞のことをいうが、多分化能を維持している限りにおいて、当該体性幹細胞の培養(継代培養を含む)により得られる細胞も「脂肪組織由来間葉系幹細胞(ASCs)」に該当するものとする。通常、ASCsは、生体から分離された脂肪組織を出発材料とし、細胞集団(脂肪組織に由来する、ASCs以外の細胞を含む)を構成する細胞として「単離された状態」に調製される。ここでの「単離された状態」とは、その本来の環境(即ち生体の一部を構成した状態)から取り出された状態、即ち人為的操作によって本来の存在状態と異なる状態で存在していることを意味する。尚、脂肪組織由来間葉系幹細胞はADSCs、ADRCs、AT-MSCs、AD-MSCs等とも呼ばれる。本明細書では以下の用語、即ち、脂肪組織由来間葉系幹細胞、ASCs、ADSCs、ADRCs、AT-MSCs、AD-MSCsを相互に置換可能に使用する。
<First aspect: Cell preparation and use thereof>
The present invention relates to cell preparations applied to specific diseases and uses thereof. The cell preparation of the present invention contains adipose tissue-derived mesenchymal stem cells (ASCs). In the present invention, “adipose tissue-derived mesenchymal stem cells (ASCs)” refers to somatic stem cells contained in adipose tissue. As long as pluripotency is maintained, the somatic stem cells are cultured ( Cells obtained by subculture) also correspond to “adipose tissue-derived mesenchymal stem cells (ASCs)”. Normally, ASCs are prepared in an “isolated state” as cells constituting a cell population (including cells other than ASCs derived from adipose tissue) using adipose tissue separated from a living body as a starting material. The “isolated state” as used herein means a state extracted from its original environment (that is, a state constituting a part of a living body), that is, a state different from the original existence state by an artificial operation. Means that Adipose tissue-derived mesenchymal stem cells are also called ADSCs, ADRCs, AT-MSCs, AD-MSCs, and the like. In the present specification, the following terms, that is, adipose tissue-derived mesenchymal stem cells, ASCs, ADSCs, ADRCs, AT-MSCs, and AD-MSCs are used interchangeably.
(ASCsの調製法)
 ASCsは、脂肪基質からの幹細胞の分離、洗浄、濃縮、培養等の工程を経て調製される。ASCsの調製法は特に限定されない。例えば公知の方法(Fraser JK et al. (2006), Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in Biotechnology; Apr;24(4):150-4. Epub 2006 Feb 20. Review.; Zuk PA et al. (2002), Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell; Dec;13(12):4279-95.; Zuk PA et al. (2001), Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering; Apr;7(2):211-28.等が参考になる)に従ってASCsを調製することができる。また、脂肪組織からASCsを調製するための装置(例えば、Celution(登録商標)装置(サイトリ・セラピューティクス社、米国、サンディエゴ))も市販されており、当該装置を利用してASCsを調製することにしてもよい。当該装置を利用すると、脂肪組織より、細胞表面マーカーCD29及びCD44陽性の細胞を分離できる。以下、ASCsの調製法の具体例を示す。
(Method for preparing ASCs)
ASCs are prepared through steps such as separation, washing, concentration, and culture of stem cells from adipose matrix. A method for preparing ASCs is not particularly limited. For example, a known method (Fraser JK et al. (2006), Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in Biotechnology; Apr; 24 (4): 150-4. Epub 2006 Feb 20. Review .; Zuk PA et al. (2002), Human adipose tissue is a source of multipotent stem cells.Molecular Biology of the Cell; Dec; 13 (12): 4279-95 .; Zuk PA et al. (2001), Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering; Apr; 7 (2): 211-28. An apparatus for preparing ASCs from adipose tissue (for example, Celution (registered trademark) apparatus (Cytory Therapeutics, Inc., San Diego, USA)) is also commercially available, and ASCs are prepared using the apparatus. You may decide. By using this apparatus, cells positive for cell surface markers CD29 and CD44 can be separated from adipose tissue. Hereinafter, specific examples of methods for preparing ASCs will be shown.
(1)脂肪組織からの細胞集団の調製
 脂肪組織は動物から切除、吸引などの手段で採取される。ここでの用語「動物」はヒト、及びヒト以外の哺乳動物(ペット動物、家畜、実験動物を含む。具体的には例えばマウス、ラット、モルモット、ハムスター、サル、ウシ、ブタ、ヤギ、ヒツジ、イヌ、ネコ等)を含む。免疫拒絶の問題を回避するため、本発明の細胞製剤を適用する対象(患者)と同一の個体から脂肪組織(自己脂肪組織)を採取することが好ましい。但し、同種の動物の脂肪組織(他家)又は異種動物の脂肪組織の使用を妨げるものではない。
(1) Preparation of cell population from adipose tissue Adipose tissue is collected from animals by means such as excision and suction. The term “animal” herein includes humans and non-human mammals (pet animals, domestic animals, laboratory animals. Specifically, for example, mice, rats, guinea pigs, hamsters, monkeys, cows, pigs, goats, sheep, Dogs, cats, etc.). In order to avoid the problem of immune rejection, it is preferable to collect adipose tissue (self-adipose tissue) from the same individual as the subject (patient) to which the cell preparation of the present invention is applied. However, this does not preclude the use of adipose tissue of the same species (other family) or adipose tissue of different species.
 脂肪組織として皮下脂肪、内臓脂肪、筋肉内脂肪、筋肉間脂肪を例示できる。この中でも皮下脂肪は局所麻酔下で非常に簡単に採取できるため、採取の際の患者への負担が少なく、好ましい細胞源といえる。通常は一種類の脂肪組織を用いるが、二種類以上の脂肪組織を併用することも可能である。また、複数回に分けて採取した脂肪組織(同種の脂肪組織でなくてもよい)を混合し、以降の操作に使用してもよい。脂肪組織の採取量は、ドナーの種類や組織の種類、或いは必要とされるASCsの量を考慮して定めることができ、例えば0.5~500g程度である。ヒトをドナーとする場合にはドナーへの負担を考慮して一度に採取する量を約10~20g以下にすることが好ましい。採取した脂肪組織は、必要に応じてそれに付着した血液成分の除去及び細片化を経た後、以下の酵素処理に供される。尚、脂肪組織を適当な緩衝液や培養液中で洗浄することによって血液成分を除去することができる。 Examples of adipose tissue include subcutaneous fat, visceral fat, intramuscular fat, and intermuscular fat. Among these, subcutaneous fat can be collected very easily under local anesthesia, so that the burden on the patient at the time of collection is small and it can be said that it is a preferable cell source. Usually, one type of adipose tissue is used, but two or more types of adipose tissue can be used in combination. In addition, adipose tissue collected in multiple times (not necessarily the same type of adipose tissue) may be mixed and used for subsequent operations. The amount of adipose tissue collected can be determined in consideration of the type of donor, the type of tissue, or the amount of ASCs required, for example, about 0.5 to 500 g. When a human is used as a donor, the amount collected at a time is preferably about 10 to 20 g or less in consideration of the burden on the donor. The collected adipose tissue is subjected to the following enzyme treatment after removal of blood components adhering to it and fragmentation as necessary. The blood component can be removed by washing the adipose tissue in an appropriate buffer or culture solution.
 酵素処理は、脂肪組織をコラゲナーゼ、トリプシン、ディスパーゼ等の酵素によって消化することにより行う。このような酵素処理は当業者に既知の手法及び条件により実施すればよい(例えば、R.I. Freshney, Culture of Animal Cells: A Manual of Basic Technique, 4th Edition, A John Wiley & Sones Inc., Publication参照)。好ましくは、後述の実施例に記載の手法及び条件によってここでの酵素処理を行う。以上の酵素処理によって得られた細胞集団は、多分化能幹細胞、内皮細胞、間質細胞、血球系細胞、及び/又はこれらの前駆細胞等を含む。細胞集団を構成する細胞の種類や比率などは、使用した脂肪組織の由来や種類に依存する。 Enzyme treatment is performed by digesting adipose tissue with enzymes such as collagenase, trypsin, dispase and the like. Such enzyme treatment may be carried out by methods and conditions known to those skilled in the art (for example, see RI Freshney, Culture of Animal Cells: A Manual of Basic Technique, 4th Edition, A John Wiley & Sones Inc., Publication). . Preferably, the enzyme treatment here is performed according to the methods and conditions described in the Examples described later. The cell population obtained by the above enzyme treatment includes multipotent stem cells, endothelial cells, stromal cells, blood cells, and / or precursor cells thereof. The type and ratio of the cells constituting the cell population depend on the origin and type of the adipose tissue used.
(2)沈降細胞集団(SVF画分:stromal vascular fractions)の取得
 細胞集団は続いて遠心処理に供される。遠心処理による沈渣を沈降細胞集団(本明細書では「SVF画分」ともいう)として回収する。遠心処理の条件は、細胞の種類や量によって異なるが、例えば1~10分間、800~1500rpmである。尚、遠心処理に先立ち、酵素処理後の細胞集団をろ過等に供し、その中に含まれる酵素未消化組織等を除去しておくことが好ましい。
(2) Acquisition of sedimented cell population (SVF fraction: stroma vascular fractions) The cell population is subsequently subjected to centrifugation. The sediment by centrifugation is collected as a sedimented cell population (also referred to herein as “SVF fraction”). The conditions for centrifugation vary depending on the type and amount of cells, but are, for example, 1 to 10 minutes and 800 to 1500 rpm. Prior to centrifugation, the cell population after the enzyme treatment is preferably subjected to filtration or the like, and the enzyme undigested tissue contained therein is preferably removed.
 ここで得られた「SVF画分」はASCsを含む。従って、SVF画分を用いて本発明の細胞製剤を調製することができる。つまり、本発明の細胞製剤の一態様では、SVF画分が含有されることになる。尚、SVF画分を構成する細胞の種類や比率などは、使用した脂肪組織の由来や種類、酵素処理の条件などに依存する。また、SVF画分は、CD34陽性且つCD45陰性の細胞集団と、CD34陽性且つCD45陰性の細胞集団を含む点によって特徴付けられる(国際公開第2006/006692A1号パンフレット)。 “SVF fraction” obtained here includes ASCs. Therefore, the cell preparation of the present invention can be prepared using the SVF fraction. That is, in one embodiment of the cell preparation of the present invention, the SVF fraction is contained. The type and ratio of cells constituting the SVF fraction depend on the origin and type of the adipose tissue used, the conditions for enzyme treatment, and the like. Further, the SVF fraction is characterized by including a CD34-positive and CD45-negative cell population and a CD34-positive and CD45-negative cell population (WO 2006 / 006692A1 pamphlet).
(3)接着性細胞(ASCs)の選択培養及び細胞の回収
 SVF画分にはASCsの他、他の細胞成分(内皮細胞、間質細胞、血球系細胞、これらの前駆細胞等)が含まれる。そこで本発明の一態様では以下の選択培養を行い、SVF画分から不要な細胞成分を除去する。そして、その結果得られた細胞をASCsとして本発明の細胞製剤に用いる。
(3) Selective culture of adherent cells (ASCs) and cell recovery The SVF fraction contains other cell components (endothelial cells, stromal cells, blood cells, progenitor cells thereof, etc.) in addition to ASCs. . Therefore, in one embodiment of the present invention, the following selective culture is performed to remove unnecessary cell components from the SVF fraction. The resulting cells are used as ASCs in the cell preparation of the present invention.
 まず、SVF画分を適当な培地に懸濁した後、培養皿に播種し、一晩培養する。培地交換によって浮遊細胞(非接着性細胞)を除去する。その後、適宜培地交換(例えば3日に一度)をしながら培養を継続する。必要に応じて継代培養を行う。継代数は特に限定されない。尚、培養用の培地には、通常の動物細胞培養用の培地を使用することができる。例えば、Dulbecco's modified Eagle's Medium(DMEM)(日水製薬株式会社等)、α-MEM(大日本製薬株式会社等)、DMEM:Ham's F12混合培地(1:1)(大日本製薬株式会社等)、Ham's F12 medium(大日本製薬株式会社等)、MCDB201培地(機能性ペプチド研究所)等を使用することができる。血清(ウシ胎仔血清、ヒト血清、羊血清など)又は血清代替物(Knockout serum replacement(KSR)など)を添加した培地を使用することにしてもよい。血清又は血清代替物の添加量は例えば5%(v/v)~30%(v/v)の範囲内で設定可能である。 First, after suspending the SVF fraction in an appropriate medium, it is seeded on a culture dish and cultured overnight. Suspension cells (non-adherent cells) are removed by medium exchange. Thereafter, the culture is continued while appropriately changing the medium (for example, once every 3 days). Subculture as necessary. The passage number is not particularly limited. As the culture medium, a normal animal cell culture medium can be used. For example, Dulbecco's modified Eagle's Medium (DMEM) (Nissui Pharmaceutical Co., Ltd.), α-MEM (Dainippon Pharmaceutical Co., Ltd.), DMEM: Ham's F12 mixed medium (1: 1) (Dainippon Pharmaceutical Co., Ltd.), Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd.), MCDB201 medium (Functional Peptide Laboratory), etc. can be used. A medium supplemented with serum (fetal bovine serum, human serum, sheep serum, etc.) or a serum substitute (Knockout serum replacement (KSR), etc.) may be used. The addition amount of serum or serum replacement can be set, for example, within a range of 5% (v / v) to 30% (v / v).
 以上の操作によって接着性細胞が選択的に生存・増殖する。続いて、増殖した細胞を回収する。回収操作は常法に従えばよく、例えば酵素処理(トリプシンやディスパーゼ処理)後の細胞をセルスクレイパーやピペットなどで剥離することによって容易に回収することができる。また、市販の温度感受性培養皿などを用いてシート培養した場合は、酵素処理をせずにそのままシート状に細胞を回収することも可能である。このようにして回収した細胞(ASCs)を用いることにより、ASCsを高純度で含有する細胞製剤を調製することができる。 By the above operation, adherent cells selectively survive and proliferate. Subsequently, the proliferated cells are collected. The collection operation may be carried out in accordance with a conventional method. For example, the cells after enzyme treatment (trypsin or dispase treatment) can be easily collected by detaching them with a cell scraper or pipette. In addition, when sheet culture is performed using a commercially available temperature-sensitive culture dish or the like, it is also possible to recover the cells as they are without performing enzyme treatment. By using the cells (ASCs) collected in this way, a cell preparation containing ASCs with high purity can be prepared.
(4)低血清培養(低血清培地での選択的培養)及び細胞の回収
 本発明の一態様では、上記(3)の操作の代わりに又は上記(3)の操作の後に以下の低血清培養を行う。その結果得られた細胞をASCsとして本発明の細胞製剤に用いることもできる。
(4) Low-serum culture (selective culture in low-serum medium) and cell recovery In one embodiment of the present invention, the following low-serum culture is performed instead of or after the operation of (3) above. I do. The resulting cells can be used as ASCs in the cell preparation of the present invention.
 低血清培養では、SVF画分((3)の後にこの工程を実施する場合には(3)で回収した細胞を用いる)を低血清条件下で培養し、目的の多分化能幹細胞(即ちASCs)を選択的に増殖させる。低血清培養法では用いる血清が少量で済むことから、本発明の細胞製剤を投与する対象(患者)自身の血清を使用することが可能となる。即ち、自己血清を用いた培養が可能となる。自己血清を使用することによって、製造工程中から異種動物材料を排斥し、安全性が高く且つ高い治療効果を期待できる細胞製剤が提供される。ここでの「低血清条件下」とは5%以下の血清を培地中に含む条件である。好ましくは2%(V/V)以下の血清を含む培養液中で細胞培養する。更に好ましくは、2%(V/V)以下の血清と1~100ng/mlの線維芽細胞増殖因子-2(bFGF)を含有する培養液中で細胞培養する。 In low serum culture, the SVF fraction (if this step is carried out after (3), the cells collected in (3) are used) are cultured under low serum conditions and the desired multipotent stem cells (ie ASCs) ) Selectively. Since a small amount of serum is used in the low serum culture method, it is possible to use the serum of the subject (patient) to whom the cell preparation of the present invention is administered. That is, culture using autoserum becomes possible. By using autologous serum, a cell preparation is provided that is capable of excluding foreign animal material from the manufacturing process, and is expected to have high safety and high therapeutic effect. Here, “under low serum conditions” is a condition containing 5% or less of serum in the medium. The cells are preferably cultured in a culture solution containing 2% (V / V) or less of serum. More preferably, the cells are cultured in a culture solution containing 2% (V / V) or less of serum and 1 to 100 ng / ml of fibroblast growth factor-2 (bFGF).
 血清はウシ胎仔血清に限られるものではなく、ヒト血清や羊血清等を用いることができる。好ましくはヒト血清、更に好ましくは本発明の細胞製剤を適用する対象の血清(即ち自己血清)を用いる。 Serum is not limited to fetal bovine serum, and human serum or sheep serum can be used. Preferably, human serum, more preferably, serum of a subject to which the cell preparation of the present invention is applied (that is, autoserum) is used.
 培地は、使用の際に含有する血清量が低いことを条件として、通常の動物細胞培養用の培地を使用することができる。例えば、Dulbecco's modified Eagle's Medium(DMEM)(日水製薬株式会社等)、α-MEM(大日本製薬株式会社等)、DMEM:Ham's F12混合培地(1:1)(大日本製薬株式会社等)、Ham's F12 medium(大日本製薬株式会社等)、MCDB201培地(機能性ペプチド研究所)等を使用することができる。 As a medium, a normal medium for animal cell culture can be used on condition that the amount of serum contained in use is low. For example, Dulbecco's modified Eagle's Medium (DMEM) (Nissui Pharmaceutical Co., Ltd.), α-MEM (Dainippon Pharmaceutical Co., Ltd.), DMEM: Ham's F12 mixed medium (1: 1) (Dainippon Pharmaceutical Co., Ltd.), Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd.), MCDB201 medium (Functional Peptide Laboratory), etc. can be used.
 以上の方法で培養することによって、ASCsを選択的に増殖させることができる。また、上記の培養条件で増殖するASCsは高い増殖活性を持つので、継代培養によって、本発明の細胞製剤に必要とされる数の細胞を容易に調製することができる。尚、SVF画分を低血清培養することによって選択的に増殖する細胞はCD13、CD90及びCD105陽性であり、CD31、CD34、CD45、CD106及びCD117陰性である(国際公開第2006/006692A1号パンフレット)。 ASCs can be selectively proliferated by culturing by the above method. In addition, since ASCs proliferating under the above culture conditions have high proliferative activity, the number of cells required for the cell preparation of the present invention can be easily prepared by subculture. Cells selectively proliferating by low serum culture of the SVF fraction are CD13, CD90 and CD105 positive and CD31, CD34, CD45, CD106 and CD117 negative (International Publication No. 2006 / 006692A1 pamphlet). .
 続いて、上記の低血清培養によって選択的に増殖した細胞を回収する。回収操作は上記(3)の場合と同様に行えばよい。回収した細胞(ASCs)を用いることにより、ASCsを高純度で含有する細胞製剤を調製することができる。 Subsequently, the cells selectively proliferated by the above low serum culture are collected. The collection operation may be performed in the same manner as in the above (3). By using the collected cells (ASCs), a cell preparation containing ASCs with high purity can be prepared.
 以上の方法で得られる細胞、即ち、SVF画分を低血清培養して増殖した細胞ではなく、脂肪組織から得た細胞集団を直接(SVF画分を得るための遠心処理を介することなく)低血清培養することによって増殖した細胞をASCsとして用いることにしてもよい。即ち本発明の一態様では、脂肪組織から得た細胞集団を低血清培養したときに増殖した細胞をASCsとして用いる。また、選択的培養(上記(3)及び(4))によって得られるASCsではなく、SVF画分(脂肪組織由来間葉系幹細胞を含有する)をそのまま用いることにしてもよい。この態様の細胞製剤は、(a)脂肪組織をプロテアーゼ処理した後、濾過処理に供し、次いで濾液を遠心処理することによって沈渣として回収される沈降細胞集団(SVF画分)、又は(b)脂肪組織をプロテアーゼ処理した後、濾過処理を経ることなく遠心処理することによって沈渣として回収される沈降細胞集団(SVF画分)を含有することになる。尚、ここでの「そのまま用いて」とは、選択的培養を経ることなく細胞製剤の有効成分として用いることを意味する。 The cells obtained by the above method, that is, not the cells grown by culturing the SVF fraction in low serum but directly the cell population obtained from the adipose tissue (without going through the centrifugation to obtain the SVF fraction) Cells grown by serum culture may be used as ASCs. That is, in one embodiment of the present invention, cells that proliferate when a cell population obtained from adipose tissue is cultured in low serum are used as ASCs. Further, instead of ASCs obtained by selective culture (above (3) and (4)), an SVF fraction (containing adipose tissue-derived mesenchymal stem cells) may be used as it is. The cell preparation of this embodiment comprises (a) a precipitated cell population (SVF fraction) recovered as a sediment by subjecting adipose tissue to protease treatment, followed by filtration, and then centrifuging the filtrate, or (b) fat After the tissue is treated with protease, it contains a sedimented cell population (SVF fraction) that is collected as a sediment by centrifuging without filtration. Here, “use as it is” means to use it as an active ingredient of a cell preparation without undergoing selective culture.
(製剤化)
 製剤のために、ASCs又はASCsを含む細胞集団(SVF画分の細胞、上記選択培養(3)の結果得られた細胞、上記低血清培養(4)の結果得られた細胞、或いは市販の装置(例えば、Celution(登録商標)装置)等によって得られた細胞)を生理食塩水、リンゲル液(酢酸リンゲル液、乳酸リンゲル液等)、緩衝液(例えばリン酸系緩衝液)等に懸濁する。治療上有効量の細胞が投与されるように、一回投与分の量として例えば1×105個~1×1010個の細胞を含有させるとよい。細胞の含有量は、使用目的、対象疾患、適用対象(レシピエント)の性別、年齢、体重、患部の状態、細胞の状態などを考慮して適宜調整することができる。
(Formulation)
For the preparation, ASCs or a cell population containing ASCs (SVF fraction cells, cells obtained as a result of the selective culture (3), cells obtained as a result of the low serum culture (4), or commercially available devices. (For example, cells obtained by a Celution (registered trademark) apparatus) are suspended in physiological saline, Ringer's solution (acetated Ringer's solution, lactated Ringer's solution, etc.), buffer (eg, phosphate buffer), or the like. For example, 1 × 10 5 to 1 × 10 10 cells may be contained as a single dose so that a therapeutically effective amount of cells is administered. The content of the cells can be appropriately adjusted in consideration of the purpose of use, the target disease, the sex of the application target (recipient), age, weight, the state of the affected area, the state of the cells, and the like.
 細胞の保護を目的としてジメチルスルフォキシド(DMSO)や血清アルブミン等を、細菌の混入を阻止することを目的として抗生物質等を、細胞の活性化、増殖又は分化誘導などを目的として各種の成分(ビタミン類、サイトカイン、成長因子、ステロイド等)を本発明の細胞製剤に含有させてもよい。サイトカインの例はインターロイキン(IL)、インターフェロン(IFN)、コロニー刺激因子(CSF)、顆粒球コロニー刺激因子(G-CSF)及びエリスロポエチン(EPO)、アクチビン、オンコスタチンM(OSM)である。尚、CSF、G-CSF、EPO等は成長因子でもある。一方、成長因子の例は肝細胞増殖因子(HGF)、塩基性線維芽細胞増殖因子(bFGF、FGF2)、上皮成長因子(EGF)、血小板由来成長因子(PDGF)、インスリン様成長因子(IGF)、トランスフォーミング成長因子(TGF)、神経成長因子(NGF)及び脳由来神経栄養因子(BDNF)である。さらに、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)を本発明の細胞製剤に含有させてもよい。 Dimethyl sulfoxide (DMSO), serum albumin, etc. for the purpose of cell protection, antibiotics, etc. for the purpose of preventing bacterial contamination, and various components for the purpose of cell activation, proliferation or differentiation induction, etc. (Vitamins, cytokines, growth factors, steroids, etc.) may be contained in the cell preparation of the present invention. Examples of cytokines are interleukin (IL), interferon (IFN), colony stimulating factor (CSF), granulocyte colony stimulating factor (G-CSF) and erythropoietin (EPO), activin, oncostatin M (OSM). CSF, G-CSF, EPO, etc. are also growth factors. Examples of growth factors are hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF, FGF2), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), insulin-like growth factor (IGF) Transforming growth factor (TGF), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). In addition, other pharmaceutically acceptable ingredients (for example, carriers, excipients, disintegrants, buffers, emulsifiers, suspensions, soothing agents, stabilizers, preservatives, preservatives, physiological saline, etc.) You may make it contain in the cell formulation of this invention.
 適当な容器、例えば、注射器、アンプル、バイアル、プラスチック容器、輸液用バッグ等に格納ないし充填した状態で本発明の細胞製剤を提供することができる。 The cell preparation of the present invention can be provided in a state of being stored or filled in an appropriate container, for example, a syringe, ampoule, vial, plastic container, infusion bag or the like.
(適用疾患)
 本発明の細胞製剤は、ASCsの投与によって治療的又は予防的効果がもたらされる各種疾患(標的疾患)に適用可能である。治療的効果には、標的疾患に特徴的な症状又は随伴症状を緩和すること(軽症化)、症状の悪化を阻止ないし遅延すること等が含まれる。後者については、重症化を予防するという点において予防的効果の一つと捉えることができる。このように、治療的効果と予防的効果は一部において重複する概念であり、明確に区別して捉えることは困難であり、またそうすることの実益は少ない。尚、予防的効果の典型的なものは、標的疾患に特徴的な症状の再発を阻止ないし遅延することである。
(Applicable disease)
The cell preparation of the present invention is applicable to various diseases (target diseases) in which therapeutic or prophylactic effects are brought about by administration of ASCs. The therapeutic effect includes alleviation of symptoms or associated symptoms characteristic of the target disease (mildness), prevention or delay of deterioration of symptoms, and the like. The latter can be regarded as one of the preventive effects in terms of preventing the seriousness. In this way, the therapeutic effect and the preventive effect are partially overlapping concepts, and it is difficult to clearly distinguish them from each other, and there is little benefit in doing so. A typical preventive effect is to prevent or delay the recurrence of symptoms characteristic of the target disease.
 標的疾患の例を挙げると、虚血性疾患、腎機能障害、創傷、尿失禁、骨粗しょう症(以上の適用例について例えば国際公開第2008/018450A1号パンフレットを参照できる)、高脂血症、腫瘍である。虚血は臓器や組織への血流の停止や血流量の低下により引き起こされる。虚血時間が短ければ血流の再開(再灌流)によって臓器の機能は回復する。虚血時間が長いと再灌流により臓器等が不可逆的な損傷(虚血再灌流障害)を受け、機能不全に陥る。このような虚血又は虚血再灌流が原因となる疾患のことを「虚血性疾患」と呼ぶ。例えば、虚血性腎障害(例えば虚血性腎不全)、閉塞性動脈硬化症(下肢閉塞性動脈硬化症など)、虚血性心疾患(心筋梗塞、狭心症など)、脳血管障害(脳梗塞など)、肝臓の虚血障害等が虚血性疾患に該当する。本発明の細胞製剤の好ましい標的疾患の一つはこのような虚血性疾患である。 Examples of target diseases include ischemic diseases, renal dysfunction, wounds, urinary incontinence, osteoporosis (for example, refer to WO 2008/018450 A1 for the above application examples), hyperlipidemia, tumors It is. Ischemia is caused by cessation of blood flow to organs and tissues and reduction of blood flow. If the ischemic time is short, the organ function is restored by resuming blood flow (reperfusion). If the ischemic time is long, the organs and the like are irreversibly damaged (ischemic reperfusion injury) due to reperfusion, resulting in malfunction. Such a disease caused by ischemia or ischemia reperfusion is referred to as “ischemic disease”. For example, ischemic kidney injury (eg ischemic renal failure), obstructive arteriosclerosis (eg lower limb arteriosclerosis), ischemic heart disease (myocardial infarction, angina etc.), cerebrovascular disorder (cerebral infarction, etc.) ), Ischemic injury of the liver, etc. correspond to ischemic diseases. One of the preferable target diseases of the cell preparation of the present invention is such an ischemic disease.
 本発明の細胞製剤は、特に、血流の改善が治療効果をもたらす疾患ないし障害の治療に有効である。例えば、虚血性疾患が当該疾患ないし障害に該当する。 The cell preparation of the present invention is particularly effective for treating diseases or disorders in which improvement of blood flow has a therapeutic effect. For example, an ischemic disease corresponds to the disease or disorder.
 標的疾患の他の例は間質性膀胱炎である。間質性膀胱炎は、頻尿・尿意亢進・尿意切迫感・炎症・膀胱痛などの症状を呈し、重症例では著しく生活の質が低下する、膀胱の器質的疾患である。間質性膀胱炎の根本的な原因については未だ明らかにされていないが、三つの病態生理学的な機構(上皮機能不全、肥満細胞活性化、神経因性炎)が示唆されている。一部の患者に有効な治療法はあるもの、間質性膀胱炎の治療法に対するニーズは高い。 Another example of target disease is interstitial cystitis. Interstitial cystitis is an organic disease of the bladder that causes symptoms such as frequent urination, increased urinary urgency, urgency, inflammation, and bladder pain. In severe cases, the quality of life is significantly reduced. Although the underlying cause of interstitial cystitis has not yet been clarified, three pathophysiological mechanisms (epithelial dysfunction, mast cell activation, neuropathitis) have been suggested. Although there are effective treatments for some patients, there is a great need for treatments for interstitial cystitis.
 本発明の細胞製剤は、通常、標的疾患の予防又は治療に使用される。従って、典型的には、標的疾患を罹患ないし発症した患者又は潜在的患者(罹患ないし発症の可能性がある者)に対して本発明の細胞製剤が投与されることになるが、その効果を確認・検証することなどの実験目的で本発明の細胞製剤を使用することもできる。 The cell preparation of the present invention is usually used for the prevention or treatment of target diseases. Therefore, typically, the cell preparation of the present invention will be administered to a patient suffering from or developing a target disease or a potential patient (a person who is likely to suffer or develop). The cell preparation of the present invention can also be used for experimental purposes such as confirmation and verification.
(適用対象)
 本発明の細胞製剤が投与される対象はヒト、又はヒト以外の哺乳動物(ペット動物、家畜、実験動物を含む。具体的には例えばマウス、ラット、モルモット、ハムスター、サル、ウシ、ブタ、ヤギ、ヒツジ、イヌ、ネコ等)である。好ましくは、本発明の細胞製剤はヒトに対して使用される。
(Applicable)
Subjects to which the cell preparation of the present invention is administered include humans or non-human mammals (pet animals, domestic animals, laboratory animals. Specific examples include mice, rats, guinea pigs, hamsters, monkeys, cows, pigs, goats. Sheep, dogs, cats, etc.). Preferably, the cell preparation of the present invention is used for humans.
(投与方法)
 本発明の細胞製剤の投与経路は特に限定されない。例えば、静脈内注射、動脈内注射、門脈内注射、皮内注射、皮下注射、筋肉内注射、又は腹腔内注射によって本発明の細胞製剤を投与する。好ましくは、患部への局所注入により本発明の細胞製剤を投与する。即ち、本発明の細胞製剤は局所治療(フォーカル・セラピー)に特に適する。細胞製剤の投与量の例を示すと、例えば0.1ml~100ml、好ましくは5ml~60mlである。
(Method of administration)
The administration route of the cell preparation of the present invention is not particularly limited. For example, the cell preparation of the present invention is administered by intravenous injection, intraarterial injection, intraportal injection, intradermal injection, subcutaneous injection, intramuscular injection, or intraperitoneal injection. Preferably, the cell preparation of the present invention is administered by local injection into the affected area. That is, the cell preparation of the present invention is particularly suitable for local treatment (focal therapy). Examples of the dosage of the cell preparation are 0.1 ml to 100 ml, preferably 5 ml to 60 ml, for example.
 投与スケジュールは、適用対象(患者)の性別、年齢、体重、病態などを考慮して作成すればよい。単回投与の他、連続的又は定期的に複数回投与することにしてもよい。複数回投与する際の投与間隔は特に限定されず、例えば1日~1月である。また、投与回数も特に限定されない。投与回数の例は2回~10回である。 The administration schedule may be created taking into account the gender, age, weight, disease state, etc. of the subject of application (patient). In addition to single administration, multiple administration may be performed continuously or periodically. The administration interval for multiple administrations is not particularly limited, and is, for example, 1 day to 1 month. Moreover, the frequency | count of administration is not specifically limited. An example of the administration frequency is 2 to 10 times.
 本発明の細胞製剤では、ASCsの活性を高めるためにマンノース及び/又はWNIRを併用する。以下、併用の詳細を説明する。 In the cell preparation of the present invention, mannose and / or WNIR are used in combination in order to increase the activity of ASCs. Details of the combined use will be described below.
(第1態様:低濃度のマンノースの含有)
 第1態様の細胞製剤はASCsに加えて低濃度のマンノースを含有する。即ち、この態様の細胞製剤は、ASCsと低濃度のマンノースを含有することによって特徴付けられる。本発明において「低濃度」とは0.8(w/v)以下の濃度である。従って、第1態様の細胞製剤は0.8%(w/v)以下の濃度でマンノースを含有する。濃度の下限値は、本発明に特徴的な効果、即ち、ASCsの活性を高めるという効果を発揮できる限り特に限定されない。例えば、マンノースの濃度を0.2%(w/v)~0.8(w/v)とする。マンノースは、木材、こんにゃく等に含まれるグルコマンナンやグアーガム等に含まれるガラクトマンナンを加水分解(酸分解、酵素分解など)することにより製造することができる。また、ヤシ油抽出残渣からも製造することができる(特開平11-137288、特開2010-22267)。一方、モリブデン酸塩を触媒としてグルコースから製造する方法や、微生物由来の酵素を利用した製造方法も報告されている(特開2001-231592)。
(First embodiment: containing a low concentration of mannose)
The cell preparation of the first embodiment contains a low concentration of mannose in addition to ASCs. That is, the cell preparation of this embodiment is characterized by containing ASCs and a low concentration of mannose. In the present invention, “low concentration” means a concentration of 0.8 (w / v) or less. Therefore, the cell preparation of the first embodiment contains mannose at a concentration of 0.8% (w / v) or less. The lower limit of the concentration is not particularly limited as long as the effect characteristic of the present invention, that is, the effect of enhancing the activity of ASCs can be exhibited. For example, the mannose concentration is 0.2% (w / v) to 0.8 (w / v). Mannose can be produced by hydrolyzing (acid degradation, enzymatic degradation, etc.) galactomannan contained in glucomannan, guar gum and the like contained in wood, konjac and the like. It can also be produced from coconut oil extraction residue (Japanese Patent Laid-Open Nos. 11-137288 and 2010-22267). On the other hand, a method for producing from glucose using molybdate as a catalyst and a production method using an enzyme derived from a microorganism have also been reported (Japanese Patent Laid-Open No. 2001-231592).
(第2態様:低濃度のマンノースによるASCsの処理)
 第2態様の細胞製剤では、予め低濃度のマンノースで処理されたASCsが用いられる。当該細胞製剤は、低濃度のマンノースの処理によって活性が高められたASCsを含有する細胞製剤となる。「予め低濃度のマンノースで処理」とは、製剤化に先だって、ASCsを低濃度のマンノースに接触させることを意味する。典型的には、調製段階において或いは調製後に、培養液中に低濃度のマンノースが存在する条件下でASCs(又はASCsを含有する細胞集団)を培養することによって、上記条件を満たすASCsを得ることができる。ここでの「低濃度のマンノース」とは、0.8%(w/v)以下のマンノース濃度をいう。例えば0.2%(w/v)~0.8(w/v)のマンノース濃度が採用される。処理時間ないし培養時間は特に限定されないが、例えば1時間~3週間である。低濃度のマンノースが存在する条件を維持しつつ、継代培養を行っても良い。後述の実施例に示した実験結果を踏まえると、低酸素濃度条件下で培養することが好ましい。低酸素条件を併用することにより、ASCsの活性の更なる向上が期待できる。
(Second aspect: treatment of ASCs with low concentration of mannose)
In the cell preparation of the second embodiment, ASCs previously treated with a low concentration of mannose are used. The cell preparation is a cell preparation containing ASCs whose activity is increased by treatment with a low concentration of mannose. “Pre-treatment with a low concentration of mannose” means contacting ASCs with a low concentration of mannose prior to formulation. Typically, ASCs satisfying the above conditions are obtained by culturing ASCs (or a cell population containing ASCs) under conditions where low concentrations of mannose are present in the culture medium at or after the preparation stage. Can do. Here, “low concentration mannose” refers to a mannose concentration of 0.8% (w / v) or less. For example, a mannose concentration of 0.2% (w / v) to 0.8 (w / v) is employed. The treatment time or culture time is not particularly limited, but is, for example, 1 hour to 3 weeks. The subculture may be performed while maintaining the condition in which a low concentration of mannose is present. In view of the experimental results shown in the examples described later, it is preferable to culture under low oxygen concentration conditions. The combined use of hypoxic conditions can be expected to further improve the activity of ASCs.
(第3態様:マンノースの同時投与)
 第2態様の細胞製剤は、それ自体にマンノースを含むのではなく、その投与の際に同時にマンノースが投与されるという特徴を有する。ここでの「同時」は厳密な同時性を要求するものではない。例えば、細胞製剤にマンノースを混合した後に対象へ投与する等、細胞製剤とマンノースの投与が時間差のない条件下で実施される場合は勿論のこと、細胞製剤を投与後、速やかにマンノースを投与する、或いはこの逆の順序で細胞製剤とマンノースを投与する等、細胞製剤の投与とマンノースの投与が実質的な時間差のない条件下で実施される場合もここでの「同時」の概念に含まれる。後者の場合には、ASCsの活性を高めるというマンノースの効果が良好に発揮されるように、両者(細胞製剤とマンノース)の投与の時間差を可及的に短く設定することが好ましい。例えば、片方の投与後10分以内、好ましくは5分以内、更に好ましくは1分以内に他方を投与する。
(Third embodiment: simultaneous administration of mannose)
The cell preparation of the second aspect is characterized in that it does not contain mannose per se, but mannose is administered simultaneously with the administration. “Simultaneous” here does not require strict simultaneity. For example, mannose is administered immediately after administration of the cell preparation, as well as when the administration of the cell preparation and mannose is performed under conditions that do not cause a time difference, such as administration to a subject after mixing mannose with the cell preparation. The concept of “simultaneous” is also included in the case where the cell preparation and mannose are administered under conditions with no substantial time difference, such as administration of cell preparation and mannose in the reverse order. . In the latter case, it is preferable to set the time difference between the administration of the two (cell preparation and mannose) as short as possible so that the effect of mannose to enhance the activity of ASCs is exhibited well. For example, the other is administered within 10 minutes, preferably within 5 minutes, more preferably within 1 minute after one administration.
 本発明では、ASCsの活性を高めるために、低濃度のマンノースがASCsに接触する状態が形成されることが重要である。従って、投与に先立って細胞製剤とマンノースを混合するのであれば、混合物中のマンノース濃度が0.8%(w/v)以下、例えば0.2%(w/v)~0.8(w/v)となるようにマンノースの使用量を調整することが好ましい。細胞製剤とマンノースを別々に投与する場合においては、生体内での拡散や循環などを考慮し、マンノース濃度を高めに設定するとよい(例えば0.2%(w/v)~2%(w/v)のマンノース溶液を投与する)。 In the present invention, in order to increase the activity of ASCs, it is important that a state in which a low concentration of mannose contacts ASCs is formed. Therefore, if the cell preparation and mannose are mixed prior to administration, the mannose concentration in the mixture will be 0.8% (w / v) or less, for example 0.2% (w / v) to 0.8 (w / v). It is preferable to adjust the amount of mannose used. When the cell preparation and mannose are administered separately, the mannose concentration should be set high, taking into account diffusion and circulation in the living body (for example, 0.2% (w / v) to 2% (w / v)) Mannose solution).
(第4態様:投与前の広帯域近赤外線の照射)
 第4態様の細胞製剤は、治療対象への投与前に広帯域近赤外線が照射されるという特徴を有する。本発明において広帯域近赤外線(WNIR)とは、発光強度が最大となる波長が750~1200nmの範囲にあり、且つ発光スペクトルの半値幅が70~200nmの光である。好ましくは、発光強度が最大となる波長が900~1100nmの範囲にあり、より好ましくは且つ発光スペクトルの半値幅が70~100nmの光をWNIRとして用いる。WNIRを生成する光源について図12を参照しながら詳細に説明する。光源20は、インコヒーレントな光源である。光源20から照射される光の発光スペクトルは、その発光強度が最大となる波長が750~1200nm(より好ましくは900~1100nm)の範囲内となり、また、その半値幅が70~200nm(より好ましくは70~100nm)となるように調整されている。このような近赤外線は散乱が少なく、生体透過性が高い(生体に吸収されにくい)ことから、生体に照射した場合の影響は少なく、例えば生体イメージングに有用であると考えられている。しかしながら、後述の実施例に示すように、皮膚に照射すると、脂肪組織中のASCsの活性が高められるという、当初の予想を覆す現象を認めた。本発明の特徴及び意義を理解する上でこの事実は重要である。
(Fourth aspect: Broadband near-infrared irradiation before administration)
The cell preparation of the fourth aspect is characterized in that broadband near-infrared radiation is irradiated before administration to a treatment subject. In the present invention, broadband near-infrared (WNIR) is light having a wavelength with a maximum emission intensity in the range of 750 to 1200 nm and a half-value width of the emission spectrum of 70 to 200 nm. Preferably, light having a maximum emission intensity in the range of 900 to 1100 nm, more preferably light having a half-value width of the emission spectrum of 70 to 100 nm is used as WNIR. A light source for generating WNIR will be described in detail with reference to FIG. The light source 20 is an incoherent light source. The emission spectrum of light emitted from the light source 20 has a wavelength at which the emission intensity is maximum within a range of 750 to 1200 nm (more preferably 900 to 1100 nm), and a half width of 70 to 200 nm (more preferably). 70 to 100 nm). Such near-infrared light is less scattered and has high biological permeability (not easily absorbed by the living body), so that it has little influence when irradiated on the living body, and is considered useful for, for example, living body imaging. However, as shown in the examples described later, a phenomenon was observed that overturned the original expectation that when the skin was irradiated, the activity of ASCs in adipose tissue was increased. This fact is important in understanding the features and significance of the present invention.
 光源20から照射される光の発光スペクトルは、連続した波長域を有することが好ましい。ここで、連続した波長域とは、光源20から照射される光の波長域内に抜けている波長がないことを意味する。光源20から照射される光の発光スペクトルが連続した波長域を有することで、ASCsの活性を高めることに有用な波長の光が抜けてしまうことを防止することができる。 The emission spectrum of light emitted from the light source 20 preferably has a continuous wavelength range. Here, the continuous wavelength range means that there is no missing wavelength in the wavelength range of the light emitted from the light source 20. Since the emission spectrum of light emitted from the light source 20 has a continuous wavelength region, it is possible to prevent light having a wavelength useful for enhancing the activity of ASCs from being lost.
 図12に示すように、光源20は、基板26上に配置された半導体発光素子28を備えている。基板26は、透過性を有しない材料によって形成されており、例えば、反射率が高く、熱伝導性の良い材料を用いることができる。半導体発光素子28には、公知の半導体発光素子を用いることができる。例えば、発光ダイオード、スーパールミネッセントダイオード、レーザダイオード等を用いることができる。半導体発光素子28を用いることで、ハロゲンランプのような光源と比較して、光源20の発熱量を小さくすることができる。 As shown in FIG. 12, the light source 20 includes a semiconductor light emitting element 28 disposed on a substrate 26. The substrate 26 is formed of a material that does not have transparency. For example, a material having high reflectivity and good thermal conductivity can be used. A known semiconductor light emitting element can be used as the semiconductor light emitting element 28. For example, a light emitting diode, a super luminescent diode, a laser diode, or the like can be used. By using the semiconductor light emitting element 28, the amount of heat generated by the light source 20 can be reduced as compared with a light source such as a halogen lamp.
 半導体発光素子28の周囲は、基板26上に固定された金属体24によって取囲まれている。すなわち、金属体24には貫通孔24aが形成されており、その貫通孔24a内に半導体発光素子28が配置されている。このため、半導体発光素子28からの光は、金属体24の貫通孔24aを通って基板26の反対側に照射される。金属体24には、例えば、アルミニウムブロックを用いることができる。 The periphery of the semiconductor light emitting element 28 is surrounded by a metal body 24 fixed on the substrate 26. That is, a through hole 24a is formed in the metal body 24, and the semiconductor light emitting element 28 is disposed in the through hole 24a. For this reason, the light from the semiconductor light emitting element 28 is irradiated to the opposite side of the substrate 26 through the through hole 24 a of the metal body 24. For the metal body 24, for example, an aluminum block can be used.
 また、金属体24の貫通孔24a内には、赤外ガラス蛍光体30が配置されている。赤外ガラス蛍光体30は、半導体発光素子28の発光面側(すなわち、基板26と反対側)に位置し、その外周が金属体24に当接している。赤外ガラス蛍光体30は、半導体発光素子28から照射される光を、近赤外領域の光(波長700~2500nm)に変換すると共に、その発光スペクトルの波長領域を拡大する機能を有している。すなわち、半導体発光素子28からの光(例えば、可視光領域の光)が赤外ガラス蛍光体30に入射すると、赤外ガラス蛍光体30からは近赤外領域の光が照射され、また、その照射される光のスペクトルの半値幅は、半導体発光素子28から照射される光のスペクトルの半値幅よりも広くなる。これによって、光源20から照射される光の発光スペクトルが、上述した特性を有することとなる。 In addition, an infrared glass phosphor 30 is disposed in the through hole 24 a of the metal body 24. The infrared glass phosphor 30 is located on the light emitting surface side of the semiconductor light emitting element 28 (that is, the side opposite to the substrate 26), and the outer periphery thereof is in contact with the metal body 24. The infrared glass phosphor 30 has a function of converting light emitted from the semiconductor light emitting element 28 into light in the near infrared region (wavelength 700 to 2500 nm) and expanding the wavelength region of the emission spectrum. Yes. That is, when light from the semiconductor light emitting element 28 (for example, light in the visible light region) enters the infrared glass phosphor 30, the infrared glass phosphor 30 emits light in the near infrared region. The half width of the spectrum of the irradiated light is wider than the half width of the spectrum of the light irradiated from the semiconductor light emitting element 28. As a result, the emission spectrum of the light emitted from the light source 20 has the characteristics described above.
 赤外ガラス蛍光体30は、例えば、母体材料であるガラス(非晶質)中に蛍光性を有するイオンを含有させることで形成することができる。例えば、ガラス中にYbイオンを添加することで形成することができ、あるいは、ガラス中にYbイオンとNdイオンを添加することで形成することができる。ガラス中にYbイオンを添加する場合は、ガラス中にYbを添加すればよい。また、ガラス中にYbイオンとNdイオンを添加する場合は、ガラス中にYb及びNdを添加すればよい。母体となるガラスには、例えば、Bi及びBからなるガラスを用いることができる。なお、赤外ガラス蛍光体30の具体的な製造方法は、特開2008-185378号公報に詳しく開示されている。 The infrared glass phosphor 30 can be formed, for example, by containing fluorescent ions in glass (amorphous) that is a base material. For example, it can be formed by adding Yb ions in glass, or can be formed by adding Yb ions and Nd ions in glass. When Yb ions are added to the glass, Yb 2 O 3 may be added to the glass. Also, when adding Yb ions and Nd ions in the glass, it may be added Yb 2 O 3 and Nd 2 O 3 in the glass. For example, glass made of Bi 2 O 3 and B 2 O 3 can be used as the base glass. A specific method for manufacturing the infrared glass phosphor 30 is disclosed in detail in Japanese Patent Application Laid-Open No. 2008-185378.
 図12に示すように、赤外ガラス蛍光体30の上面側(光を照射する側)にはフィルタ22を配置することができる。フィルタ22は、金属体24の上面に固定することができる。フィルタ22は、赤外ガラス蛍光体30から照射される光のうち可視光領域の波長の光を遮断する機能を有している。 As shown in FIG. 12, a filter 22 can be disposed on the upper surface side (the side on which light is irradiated) of the infrared glass phosphor 30. The filter 22 can be fixed to the upper surface of the metal body 24. The filter 22 has a function of blocking light having a wavelength in the visible light region of the light irradiated from the infrared glass phosphor 30.
 上記の通り、当該態様の細胞製剤は、治療対象への投与前に広帯域近赤外線が照射される。投与前の照射の場合、調製した細胞製剤に対して例えば0.1~1mWの強度で1分~1時間、光を照射する。複数回に分けて光を照射してもよい。 As described above, the cell preparation of this embodiment is irradiated with broadband near-infrared rays before being administered to a treatment target. In the case of irradiation before administration, the prepared cell preparation is irradiated with light at an intensity of 0.1 to 1 mW for 1 minute to 1 hour, for example. You may irradiate light in several steps.
(第5態様:投与後のWNIRの照射)
 第5態様の細胞製剤は、治療対象への投与後にWNIRが照射されるという特徴を有する。即ち、本発明では、投与前の照射(第4の態様)と投与後の照射(第5の態様)という、二つの照射態様を採用可能である。投与後の照射の場合には、細胞製剤を所定の投与方法(例えば経静脈注射、局所への注射)で投与した後、投与部位又はその近傍、或いは標的部位(障害部位)に、例えば0.1~1mWの強度で1分~1時間、光を照射する。尚、WNIRの詳細については、第4の態様における説明を援用する。
(Fifth embodiment: WNIR irradiation after administration)
The cell preparation of the fifth aspect is characterized in that WNIR is irradiated after administration to a treatment subject. That is, in the present invention, two irradiation modes, irradiation before administration (fourth embodiment) and irradiation after administration (fifth embodiment), can be employed. In the case of irradiation after administration, after the cell preparation is administered by a predetermined administration method (for example, intravenous injection, local injection), at the administration site or in the vicinity thereof, or at the target site (injured site), for example, 0.1 to Irradiate light with an intensity of 1 mW for 1 minute to 1 hour. In addition, about the detail of WNIR, the description in a 4th aspect is used.
(第6態様:マンノースとWNIRの併用)
 第4態様又は第5態様において、第1態様~第3態様の特徴(低濃度のマンノースの含有、マンノースの同時投与、低濃度のマンノースによるASCsの処理)の一つ以上を併用することにしてもよい。
(Sixth embodiment: combined use of mannose and WNIR)
In the fourth aspect or the fifth aspect, one or more of the characteristics of the first aspect to the third aspect (containing low mannose, simultaneous administration of mannose, treatment of ASCs with low mannose) are used in combination. Also good.
<第2の局面:細胞の活性を高める方法>
 本発明の第2の局面は、低濃度のマンノース及びWNIRの使用が、細胞の活性を高めるための汎用的な手段になるとの知見に基づき、細胞の活性を高める方法を提供する。本発明の方法は、以下のステップ(1)及び/又はステップ(2)を含むという特徴を備える。
 (1)細胞を低濃度のマンノースに接触させるステップ
 (2)細胞に広帯域近赤外線を照射するステップ
<Second aspect: Method for enhancing cell activity>
The second aspect of the present invention provides a method for enhancing cell activity based on the finding that the use of low concentrations of mannose and WNIR becomes a general-purpose means for enhancing cell activity. The method of the present invention is characterized by including the following step (1) and / or step (2).
(1) A step of bringing a cell into contact with a low concentration of mannose (2) A step of irradiating the cell with broadband near infrared rays
 この局面における細胞は特に限定されない。細胞の例を挙げれば心筋細胞、平滑筋細胞、脂肪細胞、線維芽細胞、骨細胞、軟骨細胞、破骨細胞、実質細胞、表皮角化細胞(ケラチノサイト)、上皮細胞(皮膚表皮細胞、角膜上皮細胞、結膜上皮細胞、口腔粘膜上皮、毛包上皮細胞、口腔粘膜上皮細胞、気道粘膜上皮細胞、腸管粘膜上皮細胞など)、内皮細胞(角膜内皮細胞、血管内皮細胞など)、神経細胞、シュワン細胞、グリア細胞、脾細胞、膵臓β細胞、メサンギウム細胞、ランゲルハンス細胞、肝細胞、これらの前駆細胞又は幹細胞、脂肪組織由来間葉系幹細胞(ASCs)、骨髄由来間葉系幹細胞(BM-MSCs)、人工多能性幹細胞(iPS細胞)、胚性幹細胞(ES細胞)、胚性生殖細胞(EG細胞)、胚性腫瘍細胞(EC細胞)である。また、継代細胞、特定の細胞系譜へと分化誘導された細胞、株化細胞(例えば、HeLa細胞、CHO細胞、Vero細胞、HEK293細胞、HepG2細胞、COS-7細胞、NIH3T3細胞、Sf9細胞)を用いることもできる。好ましくは、成体幹細胞(組織幹細胞、体性幹細胞)又は内皮細胞、更に好ましくはASCs、BM-MSCs又はHuvecを本発明の細胞として採用する。 The cell in this aspect is not particularly limited. Examples of cells include cardiomyocytes, smooth muscle cells, adipocytes, fibroblasts, bone cells, chondrocytes, osteoclasts, parenchymal cells, epidermal keratinocytes, epithelial cells (skin epidermal cells, corneal epithelium) Cells, conjunctival epithelial cells, oral mucosal epithelium, follicular epithelial cells, oral mucosal epithelial cells, airway mucosal epithelial cells, intestinal mucosal epithelial cells, etc.), endothelial cells (corneal endothelial cells, vascular endothelial cells, etc.), nerve cells, Schwann cells , Glial cells, spleen cells, pancreatic β cells, mesangial cells, Langerhans cells, hepatocytes, their precursor cells or stem cells, adipose tissue-derived mesenchymal stem cells (ASCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), Artificial pluripotent stem cells (iPS cells), embryonic stem cells (ES cells), embryonic germ cells (EG cells), and embryonic tumor cells (EC cells). Passage cells, cells induced to differentiate into specific cell lineages, cell lines (eg, HeLa cells, CHO cells, Vero cells, HEK293 cells, HepG2 cells, COS-7 cells, NIH3T3 cells, Sf9 cells) Can also be used. Preferably, adult stem cells (tissue stem cells, somatic stem cells) or endothelial cells, more preferably ASCs, BM-MSCs or Huvec are employed as the cells of the present invention.
 ステップ(1)及びステップ(2)は、例えば、生体外(in vitro又はex vivo)で実施される。この場合、典型的には、上記第1の局面の第2態様(低濃度のマンノースによるASCsの処理)における処理方法と同様の方法及び条件でステップ(1)を実施することができる。即ち、培養液中に低濃度のマンノースが存在する条件下、調製段階又は調製後の細胞を所定時間(例えば1時間~3週間)培養すればよい。ステップ(2)については、典型的には、上記第1の局面の第4態様(投与前のWNIRの照射)における処理方法と同様の方法及び条件で実施される。或いは、WNIRを照射した状態で初代培養又は継代培養の一部を行い、調製段階の細胞に対してWNIRが照射されるようにしてもよい。 Step (1) and step (2) are performed ex vivo (in vitro or ex vivo), for example. In this case, typically, step (1) can be carried out under the same method and conditions as in the second embodiment of the first aspect (treatment of ASCs with low concentration of mannose). That is, the cells in the preparation stage or after preparation may be cultured for a predetermined time (for example, 1 hour to 3 weeks) under the condition that a low concentration of mannose is present in the culture solution. Step (2) is typically performed under the same method and conditions as the treatment method in the fourth embodiment (irradiation of WNIR before administration) of the first aspect. Alternatively, a part of primary culture or subculture may be performed in a state where WNIR is irradiated, and WNIR may be irradiated to cells in the preparation stage.
 ステップ(1)及びステップ(2)を生体内(in vivo)で実施することもできる。この場合、ステップ(1)として、例えば、上記第1の局面の第3態様(マンノースの同時投与)と同様に、細胞とマンノースを同時に生体に投与すればよい。一方、上記第1の局面の第1態様(低濃度のマンノースの含有)の細胞製剤を生体に投与した場合にも、ステップ(1)が生体内で実施されることになる。ステップ(2)としては、例えば、上記第1の局面の第5態様(投与後のWNIRの照射)と同様に、細胞を生体に投与した後、WNIRを照射すればよい。 Step (1) and step (2) can also be performed in vivo. In this case, as step (1), for example, cells and mannose may be simultaneously administered to a living body, similarly to the third embodiment of the first aspect (simultaneous administration of mannose). On the other hand, even when the cell preparation of the first embodiment (containing a low concentration of mannose) of the first aspect is administered to a living body, step (1) is performed in the living body. As step (2), for example, WNIR may be irradiated after cells are administered to a living body in the same manner as in the fifth embodiment of the first aspect (irradiation of WNIR after administration).
 本発明の方法を生体外で実施することによって得られた細胞、即ち、活性が高められた細胞は細胞製剤の有効成分として有用である。活性が高められることにより、治療効果の向上を期待できる。 The cells obtained by carrying out the method of the present invention in vitro, that is, cells with enhanced activity are useful as active ingredients of cell preparations. Improvement in the therapeutic effect can be expected by enhancing the activity.
<第3の局面:血流改善剤>
 後述の実施例に示す通り、マンノースの有効性に関して検討を加えた結果、マンノース単独であっても血流の改善効果を発揮することが判明した。この知見に基づき、本発明の第3の局面は、マンノースを含有する血流改善剤を提供する。期待される作用・効果、即ち、生体(具体的には例えば皮膚)に適用した場合に適用部位又はその近傍の血流を改善すること、を発揮する限りにおいて、マンノースの含有量は特に限定されない。例えば、マンノースの含有料を0.1%(w/v)~95%(w/v)の範囲内で設定することができる。本発明の血流改善剤は例えば、スキンケア、フェイスケア、ボディケア又はヘアケアに用いることができる。従って、典型的には、本発明の血流改善剤は化粧料組成物の形態(例えば、乳液、化粧水、ローション、リップクリーム、パック、洗顔フォーム、ボディーソープ、ハンドソープ、シャンプー、リンス、コンディショナー、ヘアスプレー、育毛剤)で提供される。化粧料組成物は、有効成分であるマンノースと、化粧料に通常使用される成分・基材(例えば、各種油脂、ミネラルオイル、ワセリン、スクワラン、ラノリン、ミツロウ、変性アルコール、パルミチン酸デキストリン、グリセリン、グリセリン脂肪酸エステル、エチレングリコール、パラベン、カンフル、メントール、各種ビタミン、酸化亜鉛、酸化チタン、安息香酸、エデト酸、カミツレ油、カラギーナン、キチン末、キトサン、香料、着色料など)を配合することによって得ることができる。一方、医薬組成物又は医薬部外品組成物の形態で本発明の血流改善剤を提供することも可能である。
<Third aspect: blood flow improving agent>
As shown in Examples described later, as a result of examining the effectiveness of mannose, it was found that even mannose alone exerts an improvement effect on blood flow. Based on this finding, the third aspect of the present invention provides a blood flow improving agent containing mannose. The content of mannose is not particularly limited as long as the expected action / effect, that is, improving blood flow at or near the application site when applied to a living body (specifically, for example, skin) is exhibited. . For example, the content of mannose can be set within a range of 0.1% (w / v) to 95% (w / v). The blood flow improving agent of the present invention can be used for skin care, face care, body care or hair care, for example. Therefore, typically, the blood flow improving agent of the present invention is in the form of a cosmetic composition (eg, emulsion, lotion, lotion, lip balm, pack, facial cleansing foam, body soap, hand soap, shampoo, rinse, conditioner). , Hair spray, hair restorer). The cosmetic composition comprises mannose, which is an active ingredient, and ingredients / bases usually used in cosmetics (for example, various oils and fats, mineral oil, petrolatum, squalane, lanolin, beeswax, denatured alcohol, dextrin palmitate, glycerin, (Glycerin fatty acid ester, ethylene glycol, paraben, camphor, menthol, various vitamins, zinc oxide, titanium oxide, benzoic acid, edetic acid, chamomile oil, carrageenan, chitin powder, chitosan, fragrance, coloring agent, etc.) be able to. On the other hand, it is also possible to provide the blood flow improving agent of the present invention in the form of a pharmaceutical composition or a quasi-drug composition.
 ASCsによる再生療法の臨床応用を目指し研究を進める中でマンノースと近赤外線に着目し、その再生支援作用について検討した。 In the course of conducting research aimed at clinical application of regenerative therapy using ASCs, we focused on mannose and near-infrared rays and examined their regenerative support effects.
1.マンノースによる細胞の活性の変化(in vitro実験)
 ASCsの活性に対するマンノースの効果を検討した。
(1)方法
 6ウェルプレート(BD Falcon社)にヒトASCs(ロンザ社)を播種し(1.5 x 105細胞/ウェル)、所定の条件下(20%又は5% O2、37℃)で培養した。培地には、マンノース(椰子の実由来、純度99.7%)添加(0.2%(w/v)、0.4%(w/v)、0.8%(w/v))又は非添加の2% FBS含有Stem Pro MSC SFM (Invitrogen社)(登録商標)を使用した。培養3日目と6日目に継代した。継代の際に培養上清をサンプリングし、各種サイトカインを測定した。
1. Changes in cell activity by mannose (in vitro experiments)
The effect of mannose on the activity of ASCs was investigated.
(1) Method 6-well plate (BD Falcon) is seeded with human ASCs (Lonza) (1.5 x 10 5 cells / well) and cultured under specified conditions (20% or 5% O 2 , 37 ° C) did. Stem containing 2% FBS with or without mannose added (0.2% (w / v), 0.4% (w / v), 0.8% (w / v)) Pro MSC SFM (Invitrogen) (registered trademark) was used. The cells were passaged on the 3rd and 6th days of culture. During the passage, the culture supernatant was sampled and various cytokines were measured.
(2)結果
 各サイトカインの測定結果を図1~図5に示す。図1(マンノースの添加濃度0.4(w/v))に示す通り、低濃度のマンノースの添加によって各サイトカインの分泌が促進された。また、通常酸素濃度(20%、図1左)よりも低酸素濃度(5%、図1右)の方がサイトカインの分泌量が多い。一方、マンノース濃度0.2(w/v)~0.8(w/v)の範囲において概ね各種サイトカインの分泌が促進された(図2~図5)。
(2) Results The measurement results for each cytokine are shown in FIGS. As shown in FIG. 1 (mannose addition concentration 0.4 (w / v)), the secretion of each cytokine was promoted by the addition of a low concentration of mannose. In addition, the amount of cytokine secretion is higher at the low oxygen concentration (5%, FIG. 1 right) than the normal oxygen concentration (20%, FIG. 1 left). On the other hand, secretion of various cytokines was generally promoted in the mannose concentration range of 0.2 (w / v) to 0.8 (w / v) (FIGS. 2 to 5).
(3)まとめ
 ASCsの活性を高める方法として、低濃度(0.2(w/v)~0.8(w/v))のマンノース存在下でASCsを培養することが有効であることが明らかとなった。低酸素濃度条件の方がサイトカインの分泌量が多くなったことは、活性の高いASCsを調製するためには低酸素濃度条件下での培養が好ましいことを意味する。加えて、ASCsの活性を高める手段として、低酸素濃度環境である生体内においてASCsにマンノースが接触する状態を形成させることが有効であることを示唆する。
(3) Summary As a method for enhancing the activity of ASCs, it has become clear that culturing ASCs in the presence of mannose at a low concentration (0.2 (w / v) to 0.8 (w / v)) is effective. The increased amount of cytokine secretion under the low oxygen concentration condition means that culture under the low oxygen concentration condition is preferable for preparing highly active ASCs. In addition, as a means for enhancing the activity of ASCs, it is suggested that it is effective to form a state in which mannose contacts ASCs in a living body having a low oxygen concentration environment.
2.広帯域近赤外線(WNIR)による細胞の活性の変化(in vitro実験)
 ASCsの活性に対するWNIRの効果を検討した。
(1)方法
 6ウェルプレート(BD Falcon社)にヒトASCs(ロンザ社)を播種し(1.5 x 105細胞/ウェル)、所定の条件下(20%又は5% O2、37℃)で培養した。培地には2% FBS含有Stem Pro MSC SFM (Invitrogen社)(登録商標)を使用した。培養3日目と6日目に継代した。播種前(0日目と3日目)の細胞に対して0.27mWの条件で15分間、WNIRを照射した。継代の際に培養上清をサンプリングし、各種サイトカインを測定した。
2. Changes in cellular activity by broadband near infrared (WNIR) (in vitro experiments)
The effect of WNIR on the activity of ASCs was investigated.
(1) Method 6-well plate (BD Falcon) is seeded with human ASCs (Lonza) (1.5 x 10 5 cells / well) and cultured under specified conditions (20% or 5% O 2 , 37 ° C) did. Stem Pro MSC SFM (Invitrogen) (registered trademark) containing 2% FBS was used as the medium. The cells were passaged on the 3rd and 6th days of culture. The cells before seeding (Day 0 and Day 3) were irradiated with WNIR under the condition of 0.27 mW for 15 minutes. During the passage, the culture supernatant was sampled and various cytokines were measured.
(2)結果
 各サイトカインの測定結果を図6に示す。WNIRの照射によって、各サイトカインの分泌が促進された(培養3日目)。また、通常酸素濃度(20%、図6左)よりも低酸素濃度(5%、図6右)の方がサイトカインの分泌量が多い。
(2) Results FIG. 6 shows the measurement results for each cytokine. Secretion of each cytokine was promoted by irradiation with WNIR (culture day 3). In addition, the amount of cytokine secretion is higher at the low oxygen concentration (5%, right of FIG. 6) than at the normal oxygen concentration (20%, left of FIG. 6).
(3)まとめ
 ASCsの活性を高める方法としてWNIRの照射が有効であることが明らかとなった。低酸素濃度条件の方がサイトカインの分泌量が多くなったことから、低酸素濃度環境である生体内においてASCsにWNIRを照射することも、ASCsの活性を高める手段として有効であるといえる。
(3) Summary It has become clear that WNIR irradiation is effective as a method for increasing the activity of ASCs. Since the amount of cytokine secretion increased under the low oxygen concentration condition, it can be said that irradiating ASCs with WNIR in vivo in a low oxygen concentration environment is also effective as a means for enhancing the activity of ASCs.
3.腎虚血ラットモデルに対する作用(in vivo実験)
 腎虚血ラットモデルを用い、ASCsの治療効果(虚血性腎不全における腎保護作用)に対する、低濃度のマンノース及びWNIRの影響を検討した。
(1)方法
 片腎45分虚血腎不全ラットモデルの尾静脈から、コラゲナーゼ処理(1~3%コラゲナーゼ、37℃、60~90分)および遠心処理(1200rpm、5分)(WO/2008/018450(PCT/JP2007/065431)に記載の方法)で調製したラットASCs(ASCs投与群)、ラットASCに0.4%(w/v)のマンノース(椰子の実由来、純度99.7%)を混和し、1時間培養(MesenPRO培地、37℃)したもの(マンノース混和群)、ラットASCsにWNIRを15分間照射したもの(WNIR照射群)、ラットASCに0.4%(w/v)のマンノースを混和し、1時間培養(MesenPRO培地、37℃)した後にWNIRを15分間照射したもの(マンノースWNIR併用群)、又は生理食塩水(コントール群)を投与し、24時間後に腎機能、尿細管周囲血流、及び病理組織を比較検討した。ASCsの投与量は約1x106細胞とした。また、WNIRの照射は0.27mWの条件で15分間とした。腎機能の指標には血中クレアチニン値(Cre)と腎損傷スコア(Noiri E, Peresleni T, Miller F, and Goligorsky MS. Antisense oligonucleotides to the inducible NOS prevent tubular cell death in ischemic acute renal failure. J Clin Invest 97: 2377-2383, 1996を参照)を用いた。尿細管周囲血流については、以下の方法で評価した。即ち、麻酔下ラット(n=6)の剥離露出した皮質表在尿細管周囲毛細血管(PTC:n=6)を対象にペンシルプローブ型CCD顕微鏡システム(PPVM)を用いて微小循環を可視化し、デジタル画像として記録した。その動画像を時空間画像処理して得られたデータより赤血球速度を算出した(特開2010-187925号公報を参照)。また、赤血球速度と血管径から流量を算出した。
3. Action on rat model of renal ischemia (in vivo experiment)
Using a rat model of renal ischemia, the effects of low concentrations of mannose and WNIR on the therapeutic effects of ASCs (renal protective action in ischemic renal failure) were examined.
(1) Method Collagenase treatment (1 to 3% collagenase, 37 ° C., 60 to 90 minutes) and centrifugation treatment (1200 rpm, 5 minutes) from the tail vein of a rat model of single kidney 45 minutes ischemic renal failure (WO / 2008 / Rat ASCs prepared by 018450 (method described in PCT / JP2007 / 065431) (ASCs administration group), rat ASC 0.4% (w / v) mannose (derived from palm fruit, purity 99.7%) 1 hour culture (MesenPRO medium, 37 ° C) (mannose admixture group), rat ASCs irradiated with WNIR for 15 min (WNIR irradiation group), rat ASC 0.4% (w / v) mannose, 1 hour culture (MesenPRO medium, 37 ° C) followed by irradiation with WNIR for 15 minutes (Mannose WNIR combination group) or physiological saline (control group) 24 hours later, renal function, peritubular blood flow, And the pathological tissues were compared. The dose of ASCs was about 1 × 10 6 cells. WNIR irradiation was performed for 15 minutes under the condition of 0.27 mW. As an indicator of renal function, blood creatinine level (Cre) and kidney injury score (Noiri E, Peresleni T, Miller F, and Goligorsky MS. Antisense oligonucleotides to the inducible NOS prevent tubular cell death in ischemic acute renal failure. J Clin Invest 97: 2377-2383, 1996). The peritubular blood flow was evaluated by the following method. That is, the microcirculation was visualized using a pencil probe type CCD microscope system (PPVM) for the cortical superficial tubule capillaries (PTC: n = 6) exfoliated and exposed in anesthetized rats (n = 6), Recorded as a digital image. The red blood cell velocity was calculated from data obtained by subjecting the moving image to spatiotemporal image processing (see Japanese Patent Application Laid-Open No. 2010-187925). The flow rate was calculated from the red blood cell velocity and the blood vessel diameter.
(2)結果
 結果を図7~9に示す。24時間後の血中Crは、未治療群(Isch)に比してマンノース混和群(lsch+A+M)(n=6)で有意に低く、WNIR照射群(lsch+A+WNIR)(n=6)及びマンノースWNIR併用群(lsch+A+M+WNIR)(n=6)では更に低い(未治療群との差が大きい)(図7上)。
(2) Results The results are shown in FIGS. Blood Cr after 24 hours was significantly lower in the mannose admixture group (lsch + A + M) (n = 6) than in the untreated group (Isch), and in the WNIR irradiation group (lsch + A + WNIR) ( n = 6) and the mannose WNIR combination group (lsch + A + M + WNIR) (n = 6) are even lower (the difference from the untreated group is large) (upper FIG. 7).
 腎損傷のスコアはマンノース混和群(Isch+A+M)、WNIR照射群(Isch+A+WNIR)で低下し、マンノースWNIR併用群(Isch+A+M+WNIR)でさらに低下した(図7下)。 The score of kidney damage decreased in the mannose admixture group (Isch + A + M) and WNIR irradiation group (Isch + A + WNIR), and further decreased in the mannose WNIR combination group (Isch + A + M + WNIR) (FIG. 7). under).
 尿細管周囲毛細血管血流(PTC)量を比較すると、コントロール群(Cont)に比して、マンノース混和群(Isch+A+M)、WNIR照射群(Isch+A+WNIR)、マンノースWNIR併用群では血流量の有意な改善を認めた(図8)。改善の程度は、マンノース混和群(Isch+A+M)、WNIR照射群(Isch+A+WNIR)、マンノースWNIR併用群(Isch+A+M+WNIR)の順に高くなっている。(図8)。 Comparing the amount of peritubular capillary blood flow (PTC), compared with the control group (Cont), mannose admixture group (Isch + A + M), WNIR irradiation group (Isch + A + WNIR), mannose WNIR combination There was a significant improvement in blood flow in the group (Figure 8). The degree of improvement increases in the order of the mannose admixture group (Isch + A + M), the WNIR irradiation group (Isch + A + WNIR), and the mannose WNIR combination group (Isch + A + M + WNIR). (Figure 8).
 さらに、ASCs投与群(Isch+A)で腎虚血部位でのASCsの集積を認め、WNIR照射群(Isch+A+WNIR)でASCsの集積が増強された(図9)。 Furthermore, accumulation of ASCs at the site of renal ischemia was observed in the ASCs administration group (Isch + A), and accumulation of ASCs was enhanced in the WNIR irradiation group (Isch + A + WNIR) (FIG. 9).
(3)まとめ
 マンノースの混和(Isch+A+M)、WNIRの照射(Isch+A+WNIR)によって、ASCsの腎保護作用が増強した。また、マンノースの混和とWNIRの照射を併用すると(Isch+A+M+WNIR)、増強効果が一層高まることが判明した。マンノースは、ASCsから分泌される組織修復サイトカインの分泌を亢進させたものと推測される。一方、WNIRの照射は腎虚血部へのASCsの集積を促進し、腎保護支援作用を増強させたと推測される。
(3) Summary The nephroprotective effect of ASCs was enhanced by mixing mannose (Isch + A + M) and WNIR irradiation (Isch + A + WNIR). It was also found that the enhancement effect was further enhanced when mannose mixing and WNIR irradiation were combined (Isch + A + M + WNIR). Mannose is presumed to enhance secretion of tissue repair cytokines secreted from ASCs. On the other hand, it is speculated that irradiation with WNIR promoted the accumulation of ASCs in the renal ischemic site and enhanced the renal protection support action.
4.高脂血症症例に対する皮膚微小循環改善作用(in vivo実験)
 高脂血症症例(n=6)に対するマンノース及びWNIRの効果を検討した。
(1)方法
 高脂血症症例(n=6:高血圧、糖尿病合併3症例、喫煙4症例、肥満3症例)を治療対象とした。2%(w/v)のマンノース(椰子の実由来、純度99.7%)を爪、唇、頭皮に塗布した後、WNIRを0.27mVの条件下、20分照射した。この処理(マンノースの塗布及びWNIRの照射)を3日関連続で行い、その前後で皮下毛細血管血流を以下の方法で比較評価した。パリホーカルビデオマイクロスコープ(VFVMS)を用いて皮下毛細血管血流を可視化し、デジタル画像として記録した。その動画像を時空間画像処理して得られたデータより赤血球速度を算出した(特開2010-187925号公報を参照)。また、赤血球速度と血管径から流量を算出した。
4). Skin microcirculation improvement for hyperlipidemia (in vivo experiment)
The effects of mannose and WNIR on hyperlipidemia cases (n = 6) were investigated.
(1) Method Hyperlipidemia cases (n = 6: hypertension, 3 cases with diabetes, 4 cases of smoking, 3 cases of obesity) were treated. After applying 2% (w / v) mannose (derived from coconut, purity 99.7%) to nails, lips and scalp, WNIR was irradiated for 20 minutes under the condition of 0.27 mV. This treatment (application of mannose and irradiation with WNIR) was performed for 3 days, and before and after that, subcutaneous capillary blood flow was compared and evaluated by the following method. Subcutaneous capillary blood flow was visualized using a pari-hocal video microscope (VFVMS) and recorded as a digital image. The red blood cell velocity was calculated from data obtained by subjecting the moving image to spatiotemporal image processing (see Japanese Patent Application Laid-Open No. 2010-187925). The flow rate was calculated from the red blood cell velocity and the blood vessel diameter.
(2)結果
 全身の皮下毛細血管血流を可視化し、血流量を定量化した(図10)。正常群と比較して高脂血症群では明らかに皮下毛細血管血流が低下していた。マンノースの塗布及びWNIRの照射によって、処置前に比して毛細血管血流は有意に増加した(図10及び11)。
(2) Results The whole-body subcutaneous capillary blood flow was visualized and the blood flow was quantified (FIG. 10). Subcutaneous capillary blood flow was clearly reduced in the hyperlipidemia group compared to the normal group. Application of mannose and irradiation with WNIR significantly increased capillary blood flow compared to before treatment (FIGS. 10 and 11).
(3)まとめ
 マンノースの塗布とWNIRの併用によって、高脂血症群における皮下毛細血管血流の有意な改善を認めた。皮下脂肪の間質内には脂肪組織由来間葉系幹細胞(ASCs)が豊富に存在する。皮膚に浸透し、低濃度の状態となったマンノースとWINRによって当該ASCsの活性が高められ、血管新生及びサイトカインの分泌が促進された結果、毛細血管血流が改善したと推測される。
(3) Summary Significant improvement in subcutaneous capillary blood flow in the hyperlipidemic group was observed by the combined use of mannose and WNIR. Adipose tissue-derived mesenchymal stem cells (ASCs) are abundant in the stroma of subcutaneous fat. It is presumed that capillary blood flow was improved as a result of the activity of the ASCs being enhanced by mannose and WWIN that had penetrated into the skin and reached a low concentration, and promoted angiogenesis and cytokine secretion.
5.マンノースの皮膚微小循環改善作用(in vivo実験)
(1)方法
 2%(w/v)のマンノース(椰子の実由来、純度99.7%)をヒト(健常者)の唇に塗布し、4日後に毛細血管血流を測定した。血流測定は、4.の実験と同様に行った。
5. Mannose improves skin microcirculation (in vivo experiments)
(1) Method 2% (w / v) mannose (derived from coconut, purity 99.7%) was applied to the lips of a human (healthy person), and capillary blood flow was measured 4 days later. The blood flow measurement is 4. The same experiment was performed.
(2)結果
 唇の皮下毛細血管血流を可視化し、血流量を定量化した(図13)。マンノースの塗布によって毛細血管血流は有意に増加した(図13及び14)。
(2) Results The blood flow of the lips was visualized and the blood flow was quantified (FIG. 13). Application of mannose significantly increased capillary blood flow (FIGS. 13 and 14).
(3)まとめ
 マンノースの塗布によって皮下毛細血管血流の有意な改善を認めた。マンノースの塗布は、単独でも皮下毛細血管血流の改善に有効であることが判明した。
(3) Summary Significant improvement in subcutaneous capillary blood flow was observed by application of mannose. Application of mannose alone proved effective in improving subcutaneous capillary blood flow.
6.各種細胞に対する低濃度マンノースの効果
 低濃度のマンノース存在下での培養が、細胞の活性を高める手段として汎用的であるとの期待の下、ヒト臍帯静脈内皮細胞(HUVEC)及び骨髄由来間葉系幹細胞(BM-MSCs)を用いた実験を行った。
(1)方法
 6ウェルプレート(BD Falcon社)にHUVEC(倉敷紡績株式会社)を播種し(2.0 x 105細胞/ウェル)、所定の条件下(20%又は5% O2、37℃)で培養した。培地には、マンノース(椰子の実由来、純度99.7%)添加(0.2%(w/v)、0.4%(w/v)、0.8%(w/v))又は非添加のHUVEC medium(倉敷紡績株式会社)を使用した。培養3日目に継代した。継代の際に培養上清をサンプリングし、各種サイトカインを測定した。
6). Effects of low-concentration mannose on various cells Human umbilical vein endothelial cells (HUVEC) and bone marrow-derived mesenchymal systems with the expectation that culture in the presence of low-concentration mannose is a versatile means of enhancing cell activity Experiments using stem cells (BM-MSCs) were performed.
(1) Method 6-well plate (BD Falcon) is seeded with HUVEC (Kurashiki Spinning Co., Ltd.) (2.0 x 10 5 cells / well) under the specified conditions (20% or 5% O 2 , 37 ° C) Cultured. The medium contains HUVEC medium (Kurashiki Spinning) with or without mannose (derived from coconut, purity 99.7%) (0.2% (w / v), 0.4% (w / v), 0.8% (w / v)) Used). It was subcultured on the third day of culture. During the passage, the culture supernatant was sampled and various cytokines were measured.
 一方、6ウェルプレート(BD Falcon社)にBM-MSCs(Lonza社)を播種し(1.0 x 105細胞/ウェル)、所定の条件下(20%又は5% O2、37℃)で培養した。培地には、マンノース(椰子の実由来、純度99.7%)添加(0.4%(w/v))又は非添加の2% FBS含有Stem Pro MSC SFM (Invitrogen社)(登録商標)を使用した。培養3日目に継代した。継代の際に培養上清をサンプリングし、各種サイトカインを測定した。 On the other hand, BM-MSCs (Lonza) was seeded on a 6-well plate (BD Falcon) (1.0 x 10 5 cells / well), and cultured under predetermined conditions (20% or 5% O 2 , 37 ° C). . Stem Pro MSC SFM (Invitrogen) (registered trademark) containing 2% FBS with or without addition of mannose (derived from coconut, purity 99.7%) (0.4% (w / v)) or not added was used as the medium. It was subcultured on the third day of culture. During the passage, the culture supernatant was sampled and various cytokines were measured.
(2)結果
 HUVECについての各サイトカインの測定結果を図15~図18に示す。低濃度のマンノースの添加によって各サイトカインの分泌が促進される傾向にある。また、全般的に、通常酸素濃度(20%)よりも低酸素濃度(5%)の方がサイトカインの分泌量が多い。BM-MSCsについても、低濃度のマンノースの添加によってVEGF-A及びNGF-βの分泌が促進された(図19、20)。
(2) Results The measurement results of each cytokine for HUVEC are shown in FIGS. The addition of a low concentration of mannose tends to promote the secretion of each cytokine. In general, the amount of cytokine secretion is higher at the low oxygen concentration (5%) than at the normal oxygen concentration (20%). As for BM-MSCs, secretion of VEGF-A and NGF-β was promoted by addition of a low concentration of mannose (FIGS. 19 and 20).
(3)まとめ
 低濃度のマンノース存在下で培養すると、HUVEC及びBM-MSCsの活性も高められることが明らかとなった。この結果と、ASCsを用いた実験の結果(上記1.)を踏まえれば、低濃度のマンノース存在下での培養は、細胞の活性を高めるための手段として汎用性が高いといえる。
(3) Summary It was revealed that the activity of HUVEC and BM-MSCs can be enhanced when cultured in the presence of a low concentration of mannose. Based on this result and the results of the experiment using ASCs (1. above), it can be said that culturing in the presence of a low concentration of mannose is highly versatile as a means for enhancing cell activity.
7.各種細胞に対する広帯域近赤外線(WNIR)の効果
 WNIRが細胞の活性を高める手段として汎用的であるとの期待の下、HUVEC及びBM-MSCsを用いた実験を行った。
(1)方法
 6ウェルプレート(BD Falcon社)にHUVEC(倉敷紡績株式会社)を播種し(2.0 x 105細胞/ウェル)、所定の条件下(20%又は5% O2、37℃)で培養した。培地にはHUVEC medium(倉敷紡績株式会社)を使用した。培養3日目に継代した。播種前(0日目と3日目)の細胞に対して0.27mVの条件で15分間、WNIRを照射した。継代の際に培養上清をサンプリングし、各種サイトカインを測定した。
7). The effect of broadband near-infrared (WNIR) on various cells. Experiments using HUVEC and BM-MSCs were conducted with the expectation that WNIR is a versatile means for enhancing cell activity.
(1) Method 6-well plate (BD Falcon) is seeded with HUVEC (Kurashiki Spinning Co., Ltd.) (2.0 x 10 5 cells / well) under the specified conditions (20% or 5% O 2 , 37 ° C) Cultured. HUVEC medium (Kurashiki Boseki Co., Ltd.) was used as the medium. It was subcultured on the third day of culture. The cells before seeding (Day 0 and Day 3) were irradiated with WNIR under the condition of 0.27 mV for 15 minutes. During the passage, the culture supernatant was sampled and various cytokines were measured.
 一方、6ウェルプレート(BD Falcon社)にBM-MSCs(Lonza社)を播種し(1.0 x 105細胞/ウェル)、所定の条件下(20%又は5% O2、37℃)で培養した。培地には2% FBS含有Stem Pro MSC SFM (Invitrogen社)(登録商標)を使用した。培養3日目に継代した。播種前(0日目と3日目)の細胞に対して0.27mVの条件で15分間、WNIRを照射した。継代の際に培養上清をサンプリングし、各種サイトカインを測定した。 On the other hand, BM-MSCs (Lonza) was seeded on a 6-well plate (BD Falcon) (1.0 x 10 5 cells / well), and cultured under predetermined conditions (20% or 5% O 2 , 37 ° C). . Stem Pro MSC SFM (Invitrogen) (registered trademark) containing 2% FBS was used as the medium. It was subcultured on the third day of culture. The cells before seeding (Day 0 and Day 3) were irradiated with WNIR under the condition of 0.27 mV for 15 minutes. During the passage, the culture supernatant was sampled and various cytokines were measured.
(2)結果
 HUVECについてのサイトカインの測定結果を図21に示す。WNIRの照射によって、Adrenomedullinの分泌が顕著に促進された。また、通常酸素濃度(20%、図21左)よりも低酸素濃度(5%、図21右)の方がAdrenomedullinの分泌量が格段に多い。一方、BM-MSCsについての各サイトカインの測定結果を図22~図25に示す。WNIRの照射によって、各サイトカインの分泌が促進された。
(2) Results FIG. 21 shows the cytokine measurement results for HUVEC. WNIR irradiation significantly promoted Adrenomedullin secretion. In addition, the secretion amount of Adrenomedullin is much higher at the low oxygen concentration (5%, FIG. 21 right) than the normal oxygen concentration (20%, FIG. 21 left). On the other hand, the measurement results of each cytokine for BM-MSCs are shown in FIGS. Secretion of each cytokine was promoted by irradiation with WNIR.
(3)まとめ
 WNIRの照射によってHUVEC及びBM-MSCの活性も高められることが明らかとなった。この結果と、ASCsを用いた実験の結果(上記2.)を踏まえれば、WNIRの照射は、細胞の活性を高めるための手段として汎用性が高いといえる。一方、血管拡張作用を示すAdrenomedullinの分泌が促進されたことは(図21、図25)、WNIRの照射が血流の改善に有効であることを裏づける。
(3) Summary It became clear that the activity of HUVEC and BM-MSC can be enhanced by irradiation with WNIR. Based on this result and the result of the experiment using ASCs (2. above), it can be said that WNIR irradiation is highly versatile as a means for enhancing cell activity. On the other hand, the promotion of the secretion of Adrenomedullin, which exhibits a vasodilatory action (FIGS. 21 and 25), confirms that irradiation with WNIR is effective in improving blood flow.
8.間質性膀胱炎ラットモデルに対する作用(in vivo実験)
 間質性膀胱炎の動物モデルとして、免疫抑制剤であるシクロフォスファミド(CYP)を用いた膀胱炎モデルが広く用いられている。このモデルは、主症状である膀胱の炎症、排尿回数の増加、及び膀胱痛が投与後数時間でピークを迎え、その後わずか数日で回復するモデルである(Arms L, Girard BM, Malley SE, Vizzard MA. Expression and function of CCL2/CCR2 in rat micturition reflexes and somatic sensitivity with urinary bladder inflammation. Am J Physiol Renal Physiol. 2013 Jul 1;305(1):F111-22. doi: 10.1152/ajprenal.00139.2013. Epub 2013 Apr 17)。
8). Action on rat model of interstitial cystitis (in vivo experiment)
As an animal model of interstitial cystitis, a cystitis model using cyclophosphamide (CYP) which is an immunosuppressant is widely used. This model is the main symptom of bladder inflammation, increased frequency of micturition, and bladder pain peaking in hours after administration and recovering in just a few days thereafter (Arms L, Girard BM, Malley SE, Vizzard MA. Expression and function of CCL2 / CCR2 in rat micturition reflexes and somatic sensitivity with urinary bladder inflammation. Am J Physiol Renal Physiol. 2013 Jul 1; 305 (1): F111-22. 2013 Apr 17).
(1)方法
 膀胱炎の症状が出現するCYP投与5時間後に、コラゲナーゼ処理(1~3%コラゲナーゼ、37℃、60~90分)および遠心処理(1200rpm、5分間)(WO/2008/018450(PCT/JP2007/065431)に記載の方法)で調製したラットASCs、又は低濃度マンノース(0.2%(w/v))を混和し1時間培養(MesenPRO培地、37℃)したラットASCsを膀胱内注入し、2日後に膀胱内圧(CMG)の計測、病理組織の検討を行った。ASCsの投与量は約2x106細胞とした。CYPを投与しないラット(正常群:n=6)、CYP腹腔内注入後に生理食塩水を膀注したラット(CYP-生食膀注群:n=6)、CYP腹腔内注入後にASCsを膀注したラット(CYP-ASCs膀注群:n=6)、CYP腹腔内注入後に低濃度マンノース混和ASCsを膀注したラット(CYP-MN混和ASCs膀注群:n=6)の間で比較検討した。また、DirラベルASCsを用いて同様の処置を施したラットモデルについて、処置2日後に蛍光を検出し、画像解析した。
(1) Method Collagenase treatment (1 to 3% collagenase, 37 ° C., 60 to 90 minutes) and centrifugation treatment (1200 rpm, 5 minutes) 5 hours after CYP administration in which symptoms of cystitis appear (WO / 2008/018450 ( Intravesical injection of rat ASCs prepared by the method described in PCT / JP2007 / 065431)) or rat ASCs mixed with low-concentration mannose (0.2% (w / v)) and cultured for 1 hour (MesenPRO medium, 37 ° C) Two days later, intravesical pressure (CMG) was measured and the pathological tissue was examined. The dose of ASCs was about 2 × 10 6 cells. Rats not administered CYP (normal group: n = 6), rats injected with physiological saline after intraperitoneal injection of CYP (CYP-live food bladder injection group: n = 6), rats injected with ASCs after intraperitoneal injection of CYP (CYP -ASCs urinary injection group: n = 6), rats with CYP-MN admixture ASCs urinary injection group (n = 6) were compared after intraperitoneal injection of CYP. Moreover, about the rat model which performed the same process using Dir label ASCs, fluorescence was detected 2 days after the process and image analysis was carried out.
(2)結果
 膀胱内圧計測の結果を図26に示す。図示のごとく、正常群(34.4±4.1分)と比較してCYP-生食膀注群(5.6±5.1分)は排尿間隔の著しい短縮を認めた。一方、CYP-生食膀注群と比較してCYP-ASCs膀注群(15.4±3.1分)では排尿間隔が延長した。CYP-MN混和ASCs膀注群(21.4±2.8分)では排尿間隔の更なる延長が認められた。このように、間質性膀胱炎モデルにおいて、ASCsの投与が治療効果をもたらすこと、及び低濃度のマンノースの併用によってその治療効果が増強されることが明らかとなった。
(2) Results FIG. 26 shows the results of measuring the intravesical pressure. As shown in the figure, the urination interval was remarkably shortened in the CYP-meal urinary bladder injection group (5.6 ± 5.1 minutes) compared to the normal group (34.4 ± 4.1 minutes). On the other hand, the urination interval was prolonged in the CYP-ASCs urinary injection group (15.4 ± 3.1 min) compared with the CYP-raw diet urinary injection group. In the CYP-MN-mixed ASCs urinary injection group (21.4 ± 2.8 minutes), the urination interval was further extended. Thus, in the interstitial cystitis model, it has been clarified that administration of ASCs brings about a therapeutic effect and that the therapeutic effect is enhanced by the combined use of a low concentration of mannose.
 HE染色の結果(病理組織の検討)を図27に示す。正常群と比較して、CYP-生食膀注群では炎症病変を反映する著しい粘膜浮腫と炎症細胞浸潤が生じていた。CYP-ASCs膀注群では粘膜浮腫と炎症細胞浸潤の程度が軽減している。また、CYP-MN混和ASCs膀注群では粘膜浮腫と炎症細胞浸潤の更なる軽減を認める。 Fig. 27 shows the results of HE staining (examination of pathological tissue). Compared with the normal group, the CYP-live urinary bladder group had marked mucosal edema and inflammatory cell infiltration reflecting inflammatory lesions. In the CYP-ASCs urinary injection group, the degree of mucosal edema and inflammatory cell infiltration was reduced. In the CYP-MN mixed ASCs urinary injection group, mucosal edema and inflammatory cell infiltration were further reduced.
 DirラベルしたASCsを用いた実験(ASCsバイオイメージング)では、CYP-ASCs膀注群(ASCs膀注後2日目)において、膀胱部に一致してDirラベルしたASCsの蛍光を検知した。CYP-MN混和ASCs膀注群ではさらに強いASCsの信号を検知した(図28)。
(3)まとめ
 以上の通り、間質性膀胱炎に対してASCsの膀胱内注入が有効な治療法であることが示された。また、マンノースの併用によって治療効果が高められること、即ち、ASCsとマンノースの併用が優れた治療効果をもたらすことが明らかとなった。
In an experiment using Dir-labeled ASCs (ASCs bioimaging), in the CYP-ASCs bladder injection group (2 days after ASCs urinary injection), the fluorescence of Dir-labeled ASCs was detected in accordance with the bladder. A stronger signal of ASCs was detected in the CYP-MN-mixed ASCs bladder injection group (FIG. 28).
(3) Summary As described above, it was shown that intravesical injection of ASCs is an effective treatment for interstitial cystitis. Further, it has been clarified that the combined use of mannose enhances the therapeutic effect, that is, the combined use of ASCs and mannose provides an excellent therapeutic effect.
(4)骨髄由来間葉系幹細胞(BM-MSCs)の使用
 ラットASCsに代えてラットBM-MSCsを用いた場合の間質性膀胱炎に対する治療効果を同一の実験系で評価した。BM-MSCsを膀胱内注入する(n=3)と(図29上段)、コントロール(CYP-生食膀注群)と比較して排尿間隔が延長(18.4±2.1分)し、マンノースの併用(図29下段)でその効果が増強された(25.2±3.4分)。このように、ASCsと同様、BM-MSCsも間質性膀胱炎の治療に有効であることが示された。
(4) Use of bone marrow-derived mesenchymal stem cells (BM-MSCs) The therapeutic effect on interstitial cystitis when rat BM-MSCs were used instead of rat ASCs was evaluated in the same experimental system. Intravesical injection of BM-MSCs (n = 3) (FIG. 29, upper row), urination interval was extended (18.4 ± 2.1 minutes) compared to control (CYP-live urinary bladder injection group), and mannose was combined (FIG. 29). The effect was enhanced (25.2 ± 3.4 minutes). Thus, like ASCs, BM-MSCs have been shown to be effective in the treatment of interstitial cystitis.
 本発明の細胞製剤では、低濃度のマンノース及び/又は広帯域近赤外線(WNIR)の作用によって活性が高められたASCsが有効成分となる。従って、ASCsの投与が有効な各種疾患の治療に本発明の細胞製剤を適用可能である。特に血流の改善が治療効果をもたらす疾患ないし障害への適用が想定される。 In the cell preparation of the present invention, ASCs whose activity is enhanced by the action of low concentration of mannose and / or broadband near infrared (WNIR) are active ingredients. Therefore, the cell preparation of the present invention can be applied to the treatment of various diseases for which administration of ASCs is effective. In particular, application to diseases or disorders in which improvement of blood flow has a therapeutic effect is assumed.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。 The present invention is not limited to the description of the embodiments and examples of the above invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims. The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.
20:光源
28:半導体発光素子
30:赤外ガラス蛍光体
20: Light source 28: Semiconductor light emitting element 30: Infrared glass phosphor

Claims (21)

  1.  脂肪組織由来間葉系幹細胞を含有するとともに、低濃度のマンノースが併用される、細胞製剤。 A cell preparation containing adipose tissue-derived mesenchymal stem cells and a low concentration of mannose.
  2.  脂肪組織由来間葉系幹細胞と低濃度のマンノースを含有する、請求項1に記載の細胞製剤。 The cell preparation according to claim 1, comprising adipose tissue-derived mesenchymal stem cells and a low concentration of mannose.
  3.  低濃度のマンノースで処理された脂肪組織由来間葉系幹細胞を含有する、請求項1に記載の細胞製剤。 The cell preparation according to claim 1, comprising adipose tissue-derived mesenchymal stem cells treated with a low concentration of mannose.
  4.  低濃度が、0.8%(w/v)以下の濃度である、請求項1~3のいずれか一項に記載の細胞製剤。 The cell preparation according to any one of claims 1 to 3, wherein the low concentration is a concentration of 0.8% (w / v) or less.
  5.  低濃度が、0.2%(w/v)~0.8(w/v)である、請求項1~3のいずれか一項に記載の細胞製剤。 The cell preparation according to any one of claims 1 to 3, wherein the low concentration is 0.2% (w / v) to 0.8 (w / v).
  6.  脂肪組織由来間葉系幹細胞を含有し、治療対象への投与の際にマンノースが同時に投与される、請求項1に記載の細胞製剤。 The cell preparation according to claim 1, which contains adipose tissue-derived mesenchymal stem cells, and mannose is administered simultaneously when administered to a treatment target.
  7.  脂肪組織由来間葉系幹細胞を含有し、治療対象への投与前又は投与後に広帯域近赤外線が照射される、細胞製剤。 A cell preparation that contains adipose tissue-derived mesenchymal stem cells and is irradiated with broadband near-infrared rays before or after administration to a treatment target.
  8.  広帯域近赤外線は、発光強度が最大となる波長が750~1200nmの範囲にあり、且つ発光スペクトルの半値幅が70~200nmである、請求項7に記載の細胞製剤。 The cell preparation according to claim 7, wherein the wavelength of the emission intensity of broadband near-infrared light is in the range of 750 to 1200 nm and the half width of the emission spectrum is 70 to 200 nm.
  9.  低濃度のマンノースを更に含有する、請求項7又は8に記載の細胞製剤。 The cell preparation according to claim 7 or 8, further comprising a low concentration of mannose.
  10.  治療対象への投与の際に、マンノースが同時に投与される、請求項7又は8に記載の細胞製剤。 The cell preparation according to claim 7 or 8, wherein mannose is administered at the same time as administration to a treatment subject.
  11.  血流の改善が治療効果をもたらす、疾患ないし障害の治療用である、請求項1~10のいずれか一項に記載の細胞製剤。 The cell preparation according to any one of claims 1 to 10, which is used for treatment of a disease or disorder in which improvement of blood flow brings a therapeutic effect.
  12.  虚血性疾患又は高脂血症の治療用である、請求項11に記載の細胞製剤。 The cell preparation according to claim 11, which is used for treatment of ischemic disease or hyperlipidemia.
  13.  虚血性疾患が虚血性腎不全である、請求項12に記載の細胞製剤。 The cell preparation according to claim 12, wherein the ischemic disease is ischemic renal failure.
  14.  間質性膀胱炎の治療用である、請求項1~10のいずれか一項に記載の細胞製剤。 The cell preparation according to any one of claims 1 to 10, which is used for treatment of interstitial cystitis.
  15.  細胞の活性を高める方法であって、以下のステップ(1)及び/又はステップ(2)を含む方法:
    (1)細胞を低濃度のマンノースに接触させるステップ;
    (2)細胞に広帯域近赤外線を照射するステップ。
    A method for increasing the activity of a cell, comprising the following steps (1) and / or step (2):
    (1) contacting the cells with a low concentration of mannose;
    (2) A step of irradiating a cell with broadband near infrared rays.
  16.  細胞が間葉系幹細胞又は内皮細胞である、請求項15に記載の方法。 The method according to claim 15, wherein the cells are mesenchymal stem cells or endothelial cells.
  17.  間葉系幹細胞が脂肪組織由来間葉系幹細胞又は骨髄由来間葉系幹細胞であり、内皮細胞が臍帯静脈内皮細胞である、請求項16に記載の方法。 The method according to claim 16, wherein the mesenchymal stem cells are adipose tissue-derived mesenchymal stem cells or bone marrow-derived mesenchymal stem cells, and the endothelial cells are umbilical vein endothelial cells.
  18.  ステップ(1)及び(2)は、生体外で実施される、請求項15~17のいずれか一項に記載の方法。 The method according to any one of claims 15 to 17, wherein steps (1) and (2) are performed ex vivo.
  19.  請求項18に記載の方法によって活性が高められた細胞を含有する細胞製剤。 A cell preparation containing cells whose activity has been enhanced by the method according to claim 18.
  20.  マンノースを含有する、血流改善剤。 A blood flow improving agent containing mannose.
  21. スキンケア、フェイスケア、ボディケア又はヘアケア用である、請求項20に記載の血流改善剤。 21. The blood flow improving agent according to claim 20, which is used for skin care, face care, body care or hair care.
PCT/JP2014/050862 2013-01-21 2014-01-18 Cell preparation and method for enhancing cell activity WO2014112607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-008355 2013-01-21
JP2013008355 2013-01-21

Publications (1)

Publication Number Publication Date
WO2014112607A1 true WO2014112607A1 (en) 2014-07-24

Family

ID=51209696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050862 WO2014112607A1 (en) 2013-01-21 2014-01-18 Cell preparation and method for enhancing cell activity

Country Status (1)

Country Link
WO (1) WO2014112607A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008198A (en) * 2014-06-24 2016-01-18 国立大学法人名古屋大学 Treatment of interstitial cystitis
JP2016146823A (en) * 2015-02-10 2016-08-18 公立大学法人秋田県立大学 Method of processing mammalian embryo and embryo
CN111437289A (en) * 2019-08-02 2020-07-24 陕西佰傲干细胞再生医学有限公司 Application of mannose in enhancing immunoregulation capability of mesenchymal stem cells
CN112546070A (en) * 2020-07-01 2021-03-26 陕西佰傲干细胞再生医学有限公司 Mesenchymal stem cell preparation and preparation method and application thereof
WO2022138090A1 (en) * 2020-12-21 2022-06-30 国立研究開発法人理化学研究所 Blood abnormality prediction device, blood abnormality prediction method, and program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507202A (en) * 2003-10-07 2007-03-29 株式会社バイオマスター Cell differentiation of adipose-derived progenitor cells
WO2008018450A1 (en) * 2006-08-08 2008-02-14 National University Corporation Nagoya University Cell preparation containing multipotential stem cells originating in fat tissue
JP2008185378A (en) * 2007-01-29 2008-08-14 Univ Nagoya Light source for optical interference tomographic device constituted of infrared glass phosphor and semiconductor light-emitting element
JP2010030967A (en) * 2008-07-30 2010-02-12 Ezaki Glico Co Ltd Dispersed hesperetin
JP2010528107A (en) * 2007-05-25 2010-08-19 アールエヌエル バイオ カンパニー リミテッド Composition for treating ischemic limb disease comprising adipose tissue-derived stem cells
JP2011201811A (en) * 2010-03-25 2011-10-13 Shiseido Co Ltd Tie2 activation agent, agent for maturing, normalizing or stabilizing blood vessel, agent for stabilizing lymphatic vessel, wrinkle-preventing and improving agent and dropsy-improving and preventing agent
WO2012018039A1 (en) * 2010-08-04 2012-02-09 パナソニック株式会社 Cell activation method and cell activation apparatus
WO2012020840A1 (en) * 2010-08-13 2012-02-16 キリンホールディングス株式会社 Composition for improving skin quality
JP2012100599A (en) * 2010-11-11 2012-05-31 Yohei Tanaka Stem cell activation apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507202A (en) * 2003-10-07 2007-03-29 株式会社バイオマスター Cell differentiation of adipose-derived progenitor cells
WO2008018450A1 (en) * 2006-08-08 2008-02-14 National University Corporation Nagoya University Cell preparation containing multipotential stem cells originating in fat tissue
JP2008185378A (en) * 2007-01-29 2008-08-14 Univ Nagoya Light source for optical interference tomographic device constituted of infrared glass phosphor and semiconductor light-emitting element
JP2010528107A (en) * 2007-05-25 2010-08-19 アールエヌエル バイオ カンパニー リミテッド Composition for treating ischemic limb disease comprising adipose tissue-derived stem cells
JP2010030967A (en) * 2008-07-30 2010-02-12 Ezaki Glico Co Ltd Dispersed hesperetin
JP2011201811A (en) * 2010-03-25 2011-10-13 Shiseido Co Ltd Tie2 activation agent, agent for maturing, normalizing or stabilizing blood vessel, agent for stabilizing lymphatic vessel, wrinkle-preventing and improving agent and dropsy-improving and preventing agent
WO2012018039A1 (en) * 2010-08-04 2012-02-09 パナソニック株式会社 Cell activation method and cell activation apparatus
WO2012020840A1 (en) * 2010-08-13 2012-02-16 キリンホールディングス株式会社 Composition for improving skin quality
JP2012100599A (en) * 2010-11-11 2012-05-31 Yohei Tanaka Stem cell activation apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008198A (en) * 2014-06-24 2016-01-18 国立大学法人名古屋大学 Treatment of interstitial cystitis
JP2016146823A (en) * 2015-02-10 2016-08-18 公立大学法人秋田県立大学 Method of processing mammalian embryo and embryo
CN111437289A (en) * 2019-08-02 2020-07-24 陕西佰傲干细胞再生医学有限公司 Application of mannose in enhancing immunoregulation capability of mesenchymal stem cells
CN112546070A (en) * 2020-07-01 2021-03-26 陕西佰傲干细胞再生医学有限公司 Mesenchymal stem cell preparation and preparation method and application thereof
WO2022138090A1 (en) * 2020-12-21 2022-06-30 国立研究開発法人理化学研究所 Blood abnormality prediction device, blood abnormality prediction method, and program

Similar Documents

Publication Publication Date Title
Galderisi et al. Clinical trials based on mesenchymal stromal cells are exponentially increasing: where are we in recent years?
Parolini et al. Preclinical studies on placenta-derived cells and amniotic membrane: An update
JP5981947B2 (en) Skin cream
Jiang et al. Intravenous delivery of adipose-derived mesenchymal stromal cells attenuates acute radiation-induced lung injury in rats
JP6296622B2 (en) Method for producing composition for treatment of damaged area
Lin et al. Defining stem and progenitor cells within adipose tissue
Togel et al. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury
Asanuma et al. Therapeutic applications of mesenchymal stem cells to repair kidney injury
Javazon et al. Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells
Park et al. Enhancement of ischemic wound healing by spheroid grafting of human adipose-derived stem cells treated with low-level light irradiation
WO2014112607A1 (en) Cell preparation and method for enhancing cell activity
US11000552B2 (en) Pluripotent stem cell for treating diabetic skin ulcer
Kuo et al. Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications
Yeum et al. Quantification of MSCs involved in wound healing: use of SIS to transfer MSCs to wound site and quantification of MSCs involved in skin wound healing
Zakirova et al. Potential therapeutic application of mesenchymal stem cells in ophthalmology
Adamowicz et al. Conditioned medium derived from mesenchymal stem cells culture as a intravesical therapy for cystitis interstitials
Motohashi et al. Potential therapies using myogenic stem cells combined with bio-engineering approaches for treatment of muscular dystrophies
WO2019017355A1 (en) Mesenchymal-stem-cell induction agent
JP2016008198A (en) Treatment of interstitial cystitis
WO2014127232A2 (en) Methods for maintaining population of therapeutic cells in treatment site of subject in need of cell therapy
Zander et al. Mesenchymal stromal cells: main factor or helper in regenerative medicine?
Trivisonno et al. Adipose tissue: from energy reservoir to a source of cells for epithelial tissue engineering
KR101776787B1 (en) Production method of enhanced hepatocyte regenerating mesenchymal stem cell and Composition for treating liver cirrhosis using the same
WO2016158670A1 (en) Composition for vascular regeneration therapy, containing dedifferentiated fat cells as active ingredient
WO2022018897A1 (en) Skin protective agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740884

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP