WO2022018897A1 - Skin protective agent - Google Patents
Skin protective agent Download PDFInfo
- Publication number
- WO2022018897A1 WO2022018897A1 PCT/JP2021/006764 JP2021006764W WO2022018897A1 WO 2022018897 A1 WO2022018897 A1 WO 2022018897A1 JP 2021006764 W JP2021006764 W JP 2021006764W WO 2022018897 A1 WO2022018897 A1 WO 2022018897A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- skin
- adrc
- adipose tissue
- cells
- filtrate
- Prior art date
Links
- 239000003009 skin protective agent Substances 0.000 title claims description 34
- 210000000130 stem cell Anatomy 0.000 claims abstract description 92
- 210000000577 adipose tissue Anatomy 0.000 claims abstract description 84
- 239000000706 filtrate Substances 0.000 claims abstract description 77
- 208000027418 Wounds and injury Diseases 0.000 claims abstract description 57
- 206010052428 Wound Diseases 0.000 claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 230000001737 promoting effect Effects 0.000 claims abstract description 8
- 238000011282 treatment Methods 0.000 claims description 52
- 108090000623 proteins and genes Proteins 0.000 claims description 24
- 102000004169 proteins and genes Human genes 0.000 claims description 23
- 230000003076 paracrine Effects 0.000 claims description 20
- 239000006228 supernatant Substances 0.000 claims description 18
- 239000003814 drug Substances 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 14
- 102000002812 Heat-Shock Proteins Human genes 0.000 claims description 13
- 108010004889 Heat-Shock Proteins Proteins 0.000 claims description 13
- 239000002537 cosmetic Substances 0.000 claims description 12
- 102000004154 Annexin A6 Human genes 0.000 claims description 10
- 108090000656 Annexin A6 Proteins 0.000 claims description 10
- 102100037907 High mobility group protein B1 Human genes 0.000 claims description 9
- 101100339431 Arabidopsis thaliana HMGB2 gene Proteins 0.000 claims description 8
- 108700010013 HMGB1 Proteins 0.000 claims description 8
- 101150021904 HMGB1 gene Proteins 0.000 claims description 8
- 102000018697 Membrane Proteins Human genes 0.000 claims description 8
- 108010052285 Membrane Proteins Proteins 0.000 claims description 8
- 239000004480 active ingredient Substances 0.000 claims description 8
- 230000035876 healing Effects 0.000 claims description 8
- 108090000695 Cytokines Proteins 0.000 claims description 7
- 102000004127 Cytokines Human genes 0.000 claims description 7
- 208000014674 injury Diseases 0.000 claims description 7
- 239000003357 wound healing promoting agent Substances 0.000 claims description 7
- 229940124597 therapeutic agent Drugs 0.000 claims description 6
- 230000008733 trauma Effects 0.000 claims description 6
- 238000009210 therapy by ultrasound Methods 0.000 claims description 5
- 206010012601 diabetes mellitus Diseases 0.000 claims description 3
- 101000836383 Homo sapiens Serpin H1 Proteins 0.000 claims description 2
- 208000035901 Ischaemic ulcer Diseases 0.000 claims description 2
- 102100027287 Serpin H1 Human genes 0.000 claims description 2
- 101710163595 Chaperone protein DnaK Proteins 0.000 claims 1
- 101710178376 Heat shock 70 kDa protein Proteins 0.000 claims 1
- 101710152018 Heat shock cognate 70 kDa protein Proteins 0.000 claims 1
- 108010035532 Collagen Proteins 0.000 abstract description 32
- 102000008186 Collagen Human genes 0.000 abstract description 32
- 229920001436 collagen Polymers 0.000 abstract description 32
- 230000006378 damage Effects 0.000 abstract description 13
- 210000004027 cell Anatomy 0.000 description 124
- 210000003491 skin Anatomy 0.000 description 62
- 238000000034 method Methods 0.000 description 34
- 230000029663 wound healing Effects 0.000 description 34
- 230000000694 effects Effects 0.000 description 31
- 239000002609 medium Substances 0.000 description 31
- 238000012360 testing method Methods 0.000 description 30
- 210000002966 serum Anatomy 0.000 description 26
- 239000000243 solution Substances 0.000 description 26
- 102000018932 HSP70 Heat-Shock Proteins Human genes 0.000 description 19
- 108010027992 HSP70 Heat-Shock Proteins Proteins 0.000 description 19
- 108010055039 HSP47 Heat-Shock Proteins Proteins 0.000 description 18
- 102000001214 HSP47 Heat-Shock Proteins Human genes 0.000 description 18
- 241000699670 Mus sp. Species 0.000 description 18
- 210000002950 fibroblast Anatomy 0.000 description 17
- 239000012228 culture supernatant Substances 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 13
- 238000002835 absorbance Methods 0.000 description 12
- 238000011088 calibration curve Methods 0.000 description 12
- 239000000306 component Substances 0.000 description 12
- 241000699666 Mus <mouse, genus> Species 0.000 description 10
- 238000001914 filtration Methods 0.000 description 10
- 230000037319 collagen production Effects 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 8
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 8
- 210000004207 dermis Anatomy 0.000 description 8
- 210000002744 extracellular matrix Anatomy 0.000 description 8
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 7
- 238000012258 culturing Methods 0.000 description 7
- 210000002615 epidermis Anatomy 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000001172 regenerating effect Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 206010051246 Photodermatosis Diseases 0.000 description 6
- 210000001185 bone marrow Anatomy 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 239000003349 gelling agent Substances 0.000 description 6
- 230000008845 photoaging Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- 238000008157 ELISA kit Methods 0.000 description 5
- 230000002411 adverse Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000008014 freezing Effects 0.000 description 5
- 238000007710 freezing Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 210000001778 pluripotent stem cell Anatomy 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 210000001626 skin fibroblast Anatomy 0.000 description 5
- 230000004215 skin function Effects 0.000 description 5
- 230000036560 skin regeneration Effects 0.000 description 5
- 239000011534 wash buffer Substances 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 206010072170 Skin wound Diseases 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000003636 conditioned culture medium Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 210000002510 keratinocyte Anatomy 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 230000037380 skin damage Effects 0.000 description 4
- 210000004003 subcutaneous fat Anatomy 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 230000017423 tissue regeneration Effects 0.000 description 4
- 238000002054 transplantation Methods 0.000 description 4
- 230000037303 wrinkles Effects 0.000 description 4
- 102000016942 Elastin Human genes 0.000 description 3
- 108010014258 Elastin Proteins 0.000 description 3
- 208000004210 Pressure Ulcer Diseases 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000002313 adhesive film Substances 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 210000004102 animal cell Anatomy 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 210000002469 basement membrane Anatomy 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 229920002301 cellulose acetate Polymers 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000002500 effect on skin Effects 0.000 description 3
- 229920002549 elastin Polymers 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000002062 proliferating effect Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 210000001988 somatic stem cell Anatomy 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 239000012089 stop solution Substances 0.000 description 3
- 239000000516 sunscreening agent Substances 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 2
- 101710163391 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase Proteins 0.000 description 2
- 230000005778 DNA damage Effects 0.000 description 2
- 231100000277 DNA damage Toxicity 0.000 description 2
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 239000012131 assay buffer Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 239000012503 blood component Substances 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 238000002659 cell therapy Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 108010007093 dispase Proteins 0.000 description 2
- 210000005175 epidermal keratinocyte Anatomy 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 210000003780 hair follicle Anatomy 0.000 description 2
- 229940127121 immunoconjugate Drugs 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 239000003223 protective agent Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 238000007665 sagging Methods 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 210000000434 stratum corneum Anatomy 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 210000002536 stromal cell Anatomy 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000000475 sunscreen effect Effects 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000012224 working solution Substances 0.000 description 2
- QWVRTSZDKPRPDF-UHFFFAOYSA-N 5-(piperidin-1-ylmethyl)-3-pyridin-3-yl-5,6-dihydro-2h-1,2,4-oxadiazine Chemical compound C1CCCCN1CC(N=1)CONC=1C1=CC=CN=C1 QWVRTSZDKPRPDF-UHFFFAOYSA-N 0.000 description 1
- 238000009020 BCA Protein Assay Kit Methods 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 206010011985 Decubitus ulcer Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 101710107035 Gamma-glutamyltranspeptidase Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 101710173228 Glutathione hydrolase proenzyme Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000780137 Homo sapiens Annexin A6 Proteins 0.000 description 1
- 101001025337 Homo sapiens High mobility group protein B1 Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 210000004504 adult stem cell Anatomy 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 108010045569 atelocollagen Proteins 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000000270 basal cell Anatomy 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 210000003969 blast cell Anatomy 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229940096422 collagen type i Drugs 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000009519 contusion Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000005138 cryopreservation Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000001339 epidermal cell Anatomy 0.000 description 1
- 210000002514 epidermal stem cell Anatomy 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 230000003176 fibrotic effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 102000006640 gamma-Glutamyltransferase Human genes 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 150000002443 hydroxylamines Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 210000001596 intra-abdominal fat Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 229950004636 iroxanadine Drugs 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000002690 local anesthesia Methods 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004879 molecular function Effects 0.000 description 1
- 210000002894 multi-fate stem cell Anatomy 0.000 description 1
- ISGGVCWFTPTHIX-UHFFFAOYSA-N n'-(2-hydroxy-3-piperidin-1-ylpropoxy)pyridine-3-carboximidamide;dihydrochloride Chemical compound Cl.Cl.C1CCCCN1CC(O)CONC(=N)C1=CC=CN=C1 ISGGVCWFTPTHIX-UHFFFAOYSA-N 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- -1 paracrine factor Proteins 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 238000000554 physical therapy Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035752 proliferative phase Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000007651 self-proliferation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000001044 sensory neuron Anatomy 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000007390 skin biopsy Methods 0.000 description 1
- 230000005995 skin dysfunction Effects 0.000 description 1
- 230000037394 skin elasticity Effects 0.000 description 1
- 230000036558 skin tension Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000011476 stem cell transplantation Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 210000000437 stratum spinosum Anatomy 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/28—Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/96—Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
- A61K8/98—Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution of animal origin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
Definitions
- the present invention relates to a skin protectant.
- the skin is a layer that covers the surface of the body, forms a boundary between the inside and outside of the body, and acts as a barrier to the external environment.
- the skin consists of two main layers, the epidermis (upper layer) and the dermis (lower layer), and covers a fat layer called subcutaneous fat (subcutaneous tissue).
- the epidermis forms the outermost layer of the skin, prevents the evaporation of water from the skin, and plays a role of protecting the living body from the outside world.
- epidermal basal cells on the basement membrane of the epidermis as precursor cells of epidermal keratinocytes, and the keratinocytes control the turnover of the epidermis while repeating cell proliferation in the basement membrane that constitutes the boundary with the dermis. ..
- stem cells that work in an emergency such as trauma, epidermal stem cells are present in each epidermal protrusion in contact with the basement membrane.
- Fibroblasts are present in the dermis and control the metabolism of extracellular matrix. Fibroblasts present in the dermis produce fibrous and hydrophilic proteins such as collagen, which can maintain the condition of the skin by imparting elasticity and strength to the skin. In addition, dermal stem cells are present near hair follicles and blood vessels.
- the turnover of cells constituting the epidermis is delayed due to the irradiation of ultraviolet rays, the influence of dry outside air, and the deterioration of skin function due to aging, and as a result, the metabolism of the skin and the barrier function of the skin are reduced. Symptoms such as wrinkles and rough skin appear.
- Wound healing agents that use regenerated cells obtained from skin reconstruction and various tissues are used to treat wounds with defective skin, and collagen production-promoting cosmetics are used to prevent wrinkles and rough skin.
- collagen production-promoting cosmetics are used to prevent wrinkles and rough skin.
- Non-Patent Document 1 tissue removal / transplantation
- antibiotic therapy physical therapy
- growth factors growth factors
- Patent Document 1 discloses a therapeutic composition for promoting tissue regeneration in a mammal, which comprises isolated adipose tissue-derived stem cells.
- adipose tissue-derived stem cells When adipose tissue-derived stem cells are injected intradermally in close proximity to the treatment site, the adipose tissue-derived stem cells increase cell migration to the angiogenesis and wound site, reduce the amount of scarring, and increase tissue regeneration. This shortens the healing time of the wound and reduces the possibility of infection.
- Patent Document 2 discloses a compound that inhibits ⁇ -glutamyl transpeptidase (GGT) as a protein production promoter.
- GTT ⁇ -glutamyl transpeptidase
- Patent Document 1 and Non-Patent Document 1 use adipose tissue-derived stem cells themselves for treatment for tissue regeneration, and regenerative medicine using stem cells includes up to the number of target cells required for treatment.
- regenerative medicine using stem cells includes up to the number of target cells required for treatment.
- tumorigenesis by undifferentiated cells.
- Patent Document 2 is due to a decrease in skin function due to an external environment such as ultraviolet rays or aging by administering a compound that decomposes glutathione that reduces collagen production to fibroblasts. It suppresses the decrease in collagen production in fibroblasts, but the amount of collagen produced is limited.
- ASC adult stem cells
- ADRC Adipose-derived regeneration cells
- AT-MSC Adipose-derived mesenchymal stem cells
- AD-MSC Adipose-derived mesenchymal stem cells
- FADRCL Filtrated Adipose Derived Regenerative Cell Lysate
- One or more proteins selected from the group consisting of heat shock proteins, cytokines and / or paracrine factors and cell surface proteins contained in the filtrate of the adipose tissue-derived stem cell disruption solution are HSP47, HSP70, HMGB1 and Annexin A6.
- the skin protective agent according to [1] which comprises one or more proteins selected from the group consisting of.
- a wound healing agent for promoting healing of a wound site of the skin which comprises the skin protective agent according to any one of [1] to [4].
- a method for producing a skin protective agent which comprises the following steps (1) to (3): (1) A step of crushing the frozen stem cells derived from adipose tissue by freeze-thaw treatment. (2) The crushed solution obtained in step (1) or the supernatant obtained by centrifuging the crushed solution is filtered to obtain a filtrate, and (3) obtained in step (2). The step of formulating the filtrate. [9] The method for producing a skin protective agent according to [8], which comprises a step of disrupting unfrozen adipose tissue-derived stem cells by ultrasonic treatment instead of the step (1).
- ADRC a skin protective agent containing the filtrate (FADRCL) obtained by filtering the disrupted solution of adipose tissue-derived stem cells (ADRC) of the present invention as an active ingredient
- ADRC itself or the supernatant of ADRC culture (supernatant) It is also called ADRC-CM. It can promote the healing of wounds on the skin as compared with the use of "culture supernatant"), maintain the elasticity of the skin, and protect the skin from the damage of ultraviolet rays.
- ADRC Alzheimer's disease
- the skin protective agent of the present invention contains the filtrate (FADRCL) of the disrupted solution of adipose tissue-derived stem cells (ADRC) as an active ingredient, and is the conventional ADRC itself (that is, live cells) or the culture supernatant (ADRC). -It is completely different from the technology that uses CM).
- BMSC-CM bone marrow-derived stem cells
- the present invention relates to a skin protectant that is more efficient than the conventional one, enables skin wound healing with a reduced risk of adverse events, and protects the skin from damage by ultraviolet rays and the like.
- the skin consists of two main layers, the stratum corneum and the dermis. It is composed of the "stratum spinosum” and the “basal layer", and the keratinocytes born in the basal layer move outward in sequence to become the stratum corneum, which eventually peels off.
- the dermis is a connective tissue having a structure in which fibroblasts, collagen, elastin and the like are spread in a complex three-dimensional manner, and brings strength, extensibility and elasticity to the skin.
- dermal stem cells are present near hair follicles and blood vessels.
- skin protectant is an agent for promoting the regeneration of skin tissue, and includes a wound healing agent that promotes healing of a wound site of the skin or a cosmetic that protects the skin from damage caused by ultraviolet rays.
- adipose tissue-derived stem cells ADRC
- FADRCL lysate filtrate
- filter refers to a crushed solution obtained by disrupting adipose tissue-derived stem cells, or a supernatant obtained by centrifuging the crushed solution to remove unnecessary substances and filtering the supernatant. The obtained filtrate. Removal of unwanted material does not have to be complete removal.
- An example of the conditions for centrifugation is 200 to 300 ⁇ g for 5 to 10 minutes.
- active ingredient means containing an effective amount of adipose tissue-derived stem cell filtrate for treatment.
- the components contained in the filtrate exert a peculiar action and effect, that is, the effect of promoting wound healing of the skin or maintaining the elasticity of the skin and protecting the skin from the damage of ultraviolet rays.
- heat shock proteins, cytokines and / or paracrine factors hereinafter also referred to as "paracline factors”
- cell surface proteins present in the filtrate act on keratinocytes, fibroblasts, vascular endothelial cells and the like. It is thought that this is to promote skin regeneration.
- ADRC adipose tissue-derived stem cells
- adipose tissue-derived stem cells are used, for example, in a cell suspension having a concentration range of 1 ⁇ 10 4 cells / ml to 1 ⁇ 10 7 cells / ml.
- ADRC may be subjected to a crushing treatment, for example, a freeze-thaw treatment or an ultrasonic treatment.
- the cells may be crushed by physical treatment with a French press or a homogenizer, or by non-physical treatment.
- freezezing means placing stem cells derived from adipose tissue in an appropriate container (for example, a tube suitable for cryopreservation, a centrifuge tube, a bag, etc.) and freezing the cells.
- an appropriate container for example, a tube suitable for cryopreservation, a centrifuge tube, a bag, etc.
- the temperature can be exemplified from -20 ° C to -196 ° C.
- the freeze-thaw treatment the ice crystals formed by the expansion of the cells during the freezing process destroy the cells and are thawed at the time of thawing. 5 times) May be repeated.
- the freezing conditions in the freeze-thaw treatment are not particularly limited, but for example, freezing may be performed at -20 ° C to -196 ° C.
- the melting conditions are also not particularly limited. For example, melting in a water bath (for example, 35 ° C to 40 ° C), melting at room temperature, or the like can be adopted.
- the cells to be subjected to the crushing treatment not only living cells but also dead cells and damaged cells may be used.
- the freeze-thaw treatment is particularly preferable because it is simple, can avoid contamination due to contact between the device and cells, and is hygienic.
- unfrozen adipose tissue-derived stem cells may be subjected to ultrasonic treatment to destroy the cells.
- a probe that emits ultrasonic waves is immersed in a cell suspension, and the mechanical energy from the probe generates and bursts tiny bubbles, which repeatedly give a violent impact to the cells and crush them.
- the preferred conditions for sonication are to repeat crushing for 10 seconds and resting for 20 seconds multiple times at an output of 200 W to 300 W.
- the material and hole diameter of the filter used for the filter processing are not particularly limited. However, a protein non-adsorption filter is preferable. Cellulose acetate can be exemplified as a preferable material. A metal filter may be used.
- the filter hole diameter is preferably 0.1 ⁇ m to 0.45 ⁇ m. It is more preferably 0.15 ⁇ m to 0.3 ⁇ m. When sterilization filtration is also performed at the same time, a pore size of 0.2 ⁇ m is preferable.
- the filtrate obtained by crushing ADRC contains a large amount of one or more proteins selected from the group consisting of heat shock proteins, paracrine factors, etc. and cell surface proteins in a large amount as compared with the culture supernatant. included.
- the filtrate containing these proteins promotes collagen production (Fig. 9), promotes skin wound healing, and exerts an effect of preventing deterioration of skin function due to skin damage from the external environment such as ultraviolet rays.
- the one or more proteins contained in the filtrate include one or more proteins selected from the group consisting of HSP70, HSP47, HMGB1 and Annexin A6 (Fig. 2). Since these proteins are not cytokines secreted from cells but proteins existing in cells, they are efficiently extracted into a filtrate by disrupting ADRC and filtering.
- Heat shock protein (Heat Shock Protein, HSP) is a group of proteins whose expression increases and protects cells when they are exposed to stress such as heat. It also manifests in other stresses such as exposure, UV radiation, and wound healing. HSP is named for each molecule according to its molecular weight. For example, HSP47 and 70 are proteins with molecular weights of 47 and 70 kDa, respectively.
- HSP47 plays a role in helping collagen fibers produced by skin fibroblasts to form triple helices and become mature collagen (Kazuhiro Nagata, "Collagen-specific molecular chaperone HSP47 and treatment for fibrotic diseases”. Strategy ”, Journal of Japanese Pharmacology (Foli ⁇ Ph ⁇ rm ⁇ col. Jpn.) 121, 4-14 (2003)). Therefore, it is considered that if HSP47 is expressed in skin fibroblasts, the production amount of mature collagen is enhanced.
- HSP70 is known as a substance that resists UV damage that causes cell death.
- HMGB1 high mobility group box-1 protein
- Annexin A6 is a protein involved in signal transduction. Deficiency of AnnexinA6 increases sensitivity to mechanical stimuli, and conversely, overexpression of AnnexinA6 suppresses fast-adapting currents in sensory neurons. From this, Annexin A6 is considered to suppress pain. The pain-suppressing effect of Annexin A6 contributes to the improvement of the patient's QOL.
- the filtrate contains at least one selected from the group consisting of the following (a) to (c) to constitute the skin protective agent of the present invention.
- You may. (a) Adipose tissue-derived stem cells (b) Crushed solution obtained by crushing adipose tissue-derived stem cells (c) Supernatant obtained by centrifuging the crushed solution of (b)
- the above (a) to (c) may be contained in the skin protective agent after isolating each of the above (a) to (c) and then mixed with the filtrate of the present invention, or administered at the same time as the filtrate of the present invention. You may.
- the origin of ADRC used in the skin protective agent of the present invention is not limited, but considering the problem of immune rejection and the like, it is preferable to use human cells.
- the skin protective agent of the present invention contains other components that are pharmaceutically acceptable, such as protective agents such as dimethylsulfoxide (DMSO) and serum albumin, antibiotics, vitamins, carriers, excipients, disintegrants, and buffers.
- protective agents such as dimethylsulfoxide (DMSO) and serum albumin
- antibiotics such as dimethylsulfoxide (DMSO) and serum albumin
- vitamins, carriers, excipients, disintegrants, and buffers such as antibiotics, vitamins, carriers, excipients, disintegrants, and buffers.
- Agents, emulsifiers, suspensions, soothing agents, stabilizers, preservatives, preservatives, saline and the like may be contained.
- the skin protective agent of the present invention can be manufactured by the following steps (1) to (3).
- steps (1) to (3) Steps to disrupt frozen adipose tissue-derived stem cells (ADRC), (2)
- the crushed solution obtained in step (1) or the supernatant obtained by centrifuging the crushed solution is filtered to obtain a filtrate (FADRCL), and (3) in step (2).
- unfrozen adipose tissue-derived stem cells may be disrupted by sonication.
- the conditions of the freeze-thaw treatment can be used in the steps (1) to (3).
- the adipose tissue-derived stem cells used in step (1) may be prepared according to a conventional method.
- Adipose tissue-derived stem cells are widely used for various purposes, and can be easily prepared by those skilled in the art with reference to literature and books. You may use cells sold from a public cell bank, commercially available cells, or the like.
- a method for preparing adipose tissue-derived stem cells (one example) will be described as an example of the method for preparing cells.
- ADRC adipose tissue-derived stem cell
- ADRC somatic stem cells contained in adipose tissue, and as long as pluripotency is maintained, the somatic stem cells are cultured (passage culture).
- the cells obtained by (including) also fall under the category of "adipose tissue-derived stem cells (ADRC)”.
- ADRC is prepared in an "isolated state” as cells constituting a cell population (including cells derived from adipose tissue and other than ADRC) using adipose tissue isolated from a living body as a starting material.
- the "isolated state” here means a state taken out from its original environment (that is, a state that constitutes a part of a living body), that is, a state different from the original existence state by human operation. Means that you are.
- ADRC is prepared through steps such as separation, washing, concentration, and culture of stem cells from the adipose substrate.
- the method for preparing ADRC is not particularly limited. For example, a known method (Fraser JK et al. (2006), Fat tissue: an under applied source of stem cells for biotechnology. Trends in Biotechnology; Apr; 24 (4): 150-4. Epub 2006 Feb 20. Review .; Zuk PA et al. (2002), Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell; Dec; 13 (12): 4279-95 .; Zuk PA et al. (2001), Multilineage cells from ADRC can be prepared according to human adipose tissue: implications for cell-based therapies.
- a device for preparing ADRC from adipose tissue for example, a Celution (registered trademark) device (Cytoli Therapeutics, USA, San Diego)
- the device is used to prepare ADRC. May be.
- cell populations containing ADRC can be separated from adipose tissue (K. Lin. Et al. Cytotherapy (2008) Vol. 10, No. 4, 417-426).
- a specific example of the method for preparing ADRC will be shown.
- Adipose tissue is collected from animals by means such as excision and suction.
- the term "animal” as used herein includes humans and non-human mammals (including pet animals, livestock, laboratory animals; specifically, for example, monkeys, pigs, cows, horses, goats, sheep, dogs, cats, mice, etc. Rats, mammals, hamsters, etc.) are included.
- adipose tissue self-adipose tissue
- it does not prevent the use of adipose tissue (allogeneic) of animals of the same species or adipose tissue of different animals.
- adipose tissue examples include subcutaneous fat, visceral fat, intramuscular fat, and intermuscular fat. Of these, subcutaneous fat can be collected very easily under local anesthesia, so that the burden on the donor during collection is small and it can be said to be a preferable cell source. Normally, one type of adipose tissue is used, but it is also possible to use two or more types of adipose tissue in combination. In addition, adipose tissue collected in a plurality of times (not necessarily the same type of adipose tissue) may be mixed and used for subsequent operations.
- the amount of adipose tissue collected can be determined in consideration of the type of donor, the type of tissue, or the amount of ADRC required, and is, for example, about 0.5 to 500 g. However, considering the burden on the donor, it is preferable that the amount collected at one time is about 10 to 20 g or less.
- the collected adipose tissue is subjected to the following enzymatic treatment after undergoing removal and fragmentation of blood components adhering to the collected adipose tissue as necessary.
- the blood component can be removed by washing the adipose tissue in an appropriate buffer solution or culture solution.
- Enzyme treatment is performed by digesting adipose tissue with enzymes such as collagenase, trypsin, and dispase. Such enzyme treatment may be carried out by a method and conditions known to those skilled in the art (for example, R.I. Freshney, Culture of Animal Cells: A Manual of Basic Technique, 4th Edition, A John Wiley & Sones Inc., See Publication).
- the cell population obtained by the above enzymatic treatment includes pluripotent stem cells, endothelial cells, stromal cells, blood cell lineage cells, and / or progenitor cells thereof. The types and proportions of cells that make up the cell population depend on the origin and type of adipose tissue used.
- the cell population is subsequently subjected to centrifugation.
- the sediment from centrifugation is collected as a sedimented cell population (also referred to as "SVF fraction" in the present specification).
- the conditions for centrifugation vary depending on the type and amount of cells, but are, for example, 1 to 10 minutes and 800 to 1500 rpm. Prior to the centrifugation, it is preferable that the cell population after the enzyme treatment is subjected to filtration or the like to remove the enzyme-undigested tissue or the like contained therein.
- the "SVF fraction" obtained here includes ADRC.
- the type and ratio of cells constituting the SVF fraction depend on the origin and type of adipose tissue used, the conditions of enzyme treatment, and the like.
- the pamphlet of International Publication No. 2006/006692A1 shows the characteristics of the SVF fraction.
- the SVF fraction contains ADRC and other cell components (endothelial cells, stromal cells, blood cell lineage cells, precursor cells thereof, etc.). .. Therefore, in one aspect of the present invention, the following selective culture is performed to remove unnecessary cellular components from the SVF fraction. Then, the cells obtained as a result are used as ADRC in the present invention.
- the SVF fraction is suspended in an appropriate medium, then sown in a culture dish and cultured overnight. Floating cells (non-adhesive cells) are removed by media exchange. After that, the culture is continued while appropriately exchanging the medium (for example, once every 2 to 4 days). Perform subculture if necessary.
- the number of passages is not particularly limited, but it is not preferable to repeat the passages excessively from the viewpoint of maintaining pluripotency and proliferative ability (preferably limited to about 5 passages).
- the culture medium a normal animal cell culture medium can be used.
- DMEM Dulbecco's modified Eagle's Medium
- ⁇ -MEM Dainippon Pharmaceutical Co., Ltd., etc.
- DMEM Ham's F12 mixed medium (1: 1) (Dainippon Pharmaceutical Co., Ltd., etc.)
- Ham's F12 medium Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd., etc.)
- MCDB201 medium Feunctional Peptide Laboratory
- a medium supplemented with serum fetal bovine serum, human serum, sheep serum, etc.
- serum substitute Knockout serum replacement (KSR), etc.
- the amount of serum or serum substitute added can be set, for example, in the range of 5% (v / v) to 30% (v / v).
- Adhesive cells selectively survive and proliferate by the above operations. Subsequently, the proliferated cells are collected.
- the recovery operation may be performed according to a conventional method, and cells after enzymatic treatment (trypsin or dispase treatment) can be easily recovered by exfoliating them with a cell scraper or a pipette.
- enzymatic treatment trypsin or dispase treatment
- the sheet is cultured using a commercially available temperature-sensitive culture dish or the like, it is possible to collect the cells as they are in the form of a sheet without enzyme treatment.
- ADRC the cells recovered in this way, a cell population containing ADRC with high purity can be prepared.
- Low-serum culture selective culture in low-serum medium
- cell recovery the following low-serum culture is performed in place of the above-mentioned operation (3) or after the above-mentioned (3) operation. conduct. Then, the cells obtained as a result are used as ADRC in the present invention.
- the SVF fraction (using the cells recovered in (3) when performing this step after (3)) is cultured under low serum conditions and the desired pluripotent stem cells (ie, ADRC). ) Is selectively propagated. Since the low serum culture method requires only a small amount of serum, when the ADRC obtained by the method of the present invention is used for therapeutic purposes, the serum of the subject (patient) itself can be used. That is, it is possible to culture using self-serum.
- the "low serum condition” here is a condition in which 5% or less of serum is contained in the medium.
- Cell culture is preferably carried out in a culture medium containing 2% (V / V) or less of serum. More preferably, cells are cultured in a culture medium containing 2% (V / V) or less serum and 1 to 100 ng / ml fibroblast growth factor-2 (bFGF).
- the serum is preferably human serum, more preferably serum to be treated (that is, autologous serum).
- a normal medium for culturing animal cells can be used, provided that the amount of serum contained at the time of use is low.
- Dulbecco's modified Eagle's Medium DMEM
- ⁇ -MEM Disainippon Pharmaceutical Co., Ltd., etc.
- DMEM Ham's F12 mixed medium (1: 1) (Dainippon Pharmaceutical Co., Ltd., etc.), Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd., etc.), MCDB201 medium (Functional Peptide Laboratory), etc.
- DMEM Dulbecco's modified Eagle's Medium
- ⁇ -MEM Dainippon Pharmaceutical Co., Ltd., etc.
- DMEM Ham's F12 mixed medium (1: 1) (Dainippon Pharmaceutical Co., Ltd., etc.), Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd., etc.), MCDB201 medium (Functional Peptide Laboratory), etc.
- Pluripotent stem cells can be selectively proliferated by culturing by the above method.
- pluripotent stem cells that proliferate under the above culture conditions have high proliferative activity, the number of cells required for the present invention can be easily prepared by subculture.
- the pamphlet of International Publication No. 2006/006692A1 shows the characteristics of cells that selectively proliferate by culturing the SVF fraction with low serum.
- the cells selectively proliferated by the above low serum culture are collected.
- the collection operation may be performed in the same manner as in the case of (3) above.
- ADRC recovered cells
- the cell population obtained from adipose tissue is directly (via centrifugation to obtain the SVF fraction).
- Cells proliferated by low serum culture may be used as ADRC. That is, in one aspect of the present invention, cells proliferated when a cell population obtained from adipose tissue is cultured at low serum are used as ADRC.
- the SVF fraction (containing adipose tissue-derived stem cells) may be used as it is.
- the term "used as it is” here means that it is used in the present invention without undergoing selective culture.
- a "wound” is a disease, disorder, syndrome, abnormality, pathology of the skin and / or lower connective tissue, such as post-surgical skin trauma, skin contusion due to mechanical trauma. Includes all disorders characterized by erosive or burns, mucosal wounds after infection or drug treatment, diabetic wounds, skin trauma after transplant surgery and vascular regrowth after angiogenesis.
- the term "therapeutic agent” refers to a drug that has a therapeutic effect on wounds and skin dysfunction.
- the therapeutic effects include alleviating the symptoms (pathological conditions) or associated symptoms characteristic of physical damage to the skin such as wounds and pressure ulcers (mitigation), and preventing or delaying the worsening of the symptoms.
- the latter can be regarded as one of the preventive effects in terms of preventing the deterioration of skin function.
- Typical of the prophylactic effect is to prevent or delay the recurrence of symptoms characteristic of the target disease.
- preventive effect or both of them, it corresponds to a therapeutic agent for a target disease.
- the wound healing process is broadly divided into three stages: inflammatory reaction stage, proliferation stage, and reconstitution stage.
- heat shock proteins, paracrine factors, and the like act on keratinocytes, fibroblasts, endothelial cells, and the like to promote skin regeneration.
- heat shock proteins, paracrine factors, and the like act on keratinocytes, fibroblasts, endothelial cells, and the like to promote skin regeneration.
- the substance released from macrophages stimulates fibroblasts to be attracted to produce collagen, which is the main material for repair.
- the capillaries develop supported by collagen produced from fibroblasts, and the fresh blood flowing into the capillaries supplies nutrients and oxygen to the fibroblasts, further promoting the production of collagen, which is a cycle of self-proliferation. It is composed.
- collagen plays an important role in the wound healing process.
- ADRC adipose tissue-derived stem cell
- the present inventors compared adipose tissue-derived stem cells with other stem cells such as bone marrow-derived stem cells using a mouse wound healing model, and discovered the superiority of adipose tissue-derived stem cells (ADRC). Further, the filtrate of the adipose tissue-derived stem cell disruption solution (FADRCL) was compared with the culture supernatant (ADRC-CM) containing the adipose tissue-derived stem cells (ADRC) itself and the secretions of the adipose tissue-derived stem cells, and the filtrate of the present invention was compared. Discovered the superiority of (FADRCL). It will be described in detail in Examples.
- the skin protectant used for wound healing is usually administered to patients with wounds and pressure ulcers, but the skin protectant may be used for experimental or research purposes to confirm and verify its effect.
- the skin protectant used for wound healing is preferably administered by local injection or application to the affected area.
- the injection or application site is typically a wound or pressure ulcer site, but may be injected or applied to the periphery thereof. In addition, it may be administered to two or more injection sites or application sites at the same time or at intervals of time.
- an example of the dose (injection or application amount) of the skin protective agent is as follows.
- a skin protective agent containing a filtrate prepared from 1 ⁇ 10 5 cells / ml to 1 ⁇ 10 6 cells / ml adipose tissue-derived stem cells examples thereof are 0.5 cc to 2.0 cc, preferably 0.8 cc to 1.5 cc.
- the injection or application site may be staggered and administered in multiple doses.
- the administration schedule may be created in consideration of the gender, age, body weight, pathological condition, etc. of the subject (patient).
- multiple doses may be administered continuously or periodically.
- the administration interval when multiple doses are administered is not particularly limited, and 1 to 14 days can be exemplified. Further, the number of administrations is not particularly limited. The number of administrations can be exemplified once to four times a day. Examples of the administration method include a method of locally injecting or applying as an ointment to the wound site, and a method of spraying as a liquid or powder.
- the skin consists of an epidermis composed of epidermal keratinocytes, extracellular matrix such as collagen and elastin (hereinafter also referred to as “ECM”)), and fibers producing them.
- ECM extracellular matrix
- It consists of the dermal skin, which is composed of blast cells, and plays various roles such as protecting the inside of the living body and regulating body temperature.
- the skin is supported by ECM, and when the skin function decreases with aging and the ECM expression level decreases, it causes wrinkles and sagging.
- a cosmetic containing collagen has been directly applied to the skin, but the effect has been transient.
- Fibroblasts present in the dermis of the skin produce extracellular matrix (ECM) such as collagen and elastin. Therefore, it is important to enhance the collagen-producing ability of fibroblasts to maintain skin tension and prevent wrinkles and sagging.
- ECM extracellular matrix
- HSP47 heat shock protein 47
- UV Ultraviolet rays
- UVA 320-400nm
- UVB 290-320nm
- UVC 100-290nm
- UVB is on the upper part of the dermis. It is known to reach, be highly cytotoxic, and cause photoaging on the skin.
- Sunscreen agents are generally used to suppress photoaging. Since sunscreens block UV rays that cause photoaging, they can be expected to be highly effective as a countermeasure against photoaging, but if the sunscreens run off due to sweat, etc., the skin becomes unprotected. was there.
- HSP70 heat shock protein 70
- a skin protection (cell protection) effect an inflammatory reaction suppression effect
- a DNA damage suppression effect an inflammatory reaction suppression effect
- HSP70 is expressed in epidermal cells, UVB-induced skin damage and cell death may be suppressed (Matsuda Minoru, "Protective effect of HSP70 against photoaging", Kumamoto University graduate School of Pharmaceutical Education, Molecular Function Pharmacy Major: Medicinal Chemistry Course, Pharmacy and Microbiology, 2011 Doctoral Thesis, etc.).
- HSP70 can be used with an activator that increases its intracellular concentration and / or activity.
- activator include small molecule inducers of heat shock proteins, hydroxylamine derivatives (eg, bimochromol, arimochromol, iroxanadine and BGP-15) and the like.
- the dosage form as a cosmetic, a bathing agent, or a subcutaneous injection agent can be arbitrarily selected according to the purpose.
- it is preferably widely used as a cosmetic, and can be in the form of a cream, ointment, milky lotion, solution, gel, powder, granule or the like, or in the form of a pack, lotion, powder, stick or the like.
- pharmaceuticals and the like it can be widely used in the form of subcutaneous injections, ointments and the like.
- ⁇ Test 1> The filtrate prepared by the method described herein using normal human skin fibroblasts (NHDF; Lonza) was used at a concentration of 1 ⁇ 10 6 cells / ml of adipose tissue-derived stem cells. A cellulose acetate filter having a pore size of 0.2 ⁇ m was used for the filtering treatment. In the freeze-thaw treatment, freeze-thaw was performed three times by the same method, and each component was measured each time. In order to compare with the component amount of the filtrate, the supernatant of the medium being cultured was used as the culture supernatant, and the component amount was measured. All measurement procedures were performed at room temperature.
- ⁇ Quantitative HSP70> The content in the filtrate was measured using the Human HSP70 ELISA Kit BMS2087 (invitrogen) (hereinafter referred to as “Kit” in this section).
- Kit Human HSP70 ELISA Kit BMS2087 (invitrogen)
- 50 ⁇ l of Sample Diluent and 50 ⁇ l of filtrate were placed in a well on a microplate in the Kit. Standard dilution was adjusted according to the instructions attached to the Kit.
- the liquid in the well was discarded, 400 ⁇ l of Wash Buffer was put into the well, and washed 6 times.
- 100 ⁇ l of Biotin-Conjugate was added, covered with an adhesive film, and left at room temperature for 1 hour.
- HMGB1 ELISA Kit ARG81351 (Arigo Biolaboratories Corporation) (hereinafter referred to as "Kit" in this section).
- Kit HMGB1 ELISA Kit ARG81351
- 50 ⁇ l of Assay Buffer per well was added to (1), sealed, and left at 4 ° C. overnight.
- the liquid in the well was discarded, and 350 ⁇ l of chilled 1 ⁇ Wash Buffer was placed in the well and washed 3 times.
- a 100 ⁇ l 1 ⁇ HRP-antibody conjugate was placed in a well, sealed, and left at 37 ° C for 1 hour. (5) (3) was repeated.
- the contents of the above components in the filtrate (FADRCL) are shown in Table 1.
- FIG. 2 when the filtrate (FADRCL) and the culture supernatant (ADRC-CM) are compared, it can be seen that the filtrate contains a large amount of heat shock protein, paracrine factor and the like. The difference is that the filtrate (FADRCL) disrupts adipose tissue-derived stem cells (ADRC) to extract components of the cell contents, whereas the culture supernatant (ADRC-CM) is from adipose tissue-derived stem cells (ADRC).
- ADRC adipose tissue-derived stem cells
- ADRC adipose tissue-derived stem cell transplantation during the wound healing process and culture supernatant after culturing adipose tissue-derived stem cells (conditioned-medium (ADRC-CM)) ) was examined for its effect and mechanism. Then, it was compared with bone marrow-derived stem cells (hereinafter also referred to as "BMSC”) and evaluated for the superiority of ADRC.
- BMSC bone marrow-derived stem cells
- FADRCL ADRC was collected and cultured by a conventional method from balck6 wild type mice. After adjusting the concentration (1 ⁇ 10 6 pieces / ml PBS), the cells were stored overnight at -30 ° C, and the cell fluid was thawed at room temperature. After crushing the cells in this way, the crushed solution was centrifuged (290 ⁇ g for 10 minutes), and the supernatant was collected. Next, the supernatant of the crushed solution was filtered through a cellulose acetate membrane filter (pore size 0.2 ⁇ m) to obtain a filtrate (FADRCL). Moreover, in order to compare with the component amount of the filtrate (FADRCL), the component amount of the culture supernatant (ADRC-CM) which is the supernatant of the medium was measured.
- ADRC-CM component amount of the culture supernatant
- ADRC was collected from balck6 wild type mice, cultured, and administered to the target mice after matching the cell count and other conditions.
- the target mice used were 8-week male wild type mice, 5 in each group, for a total of 15 mice.
- the detailed conditions for each group are as follows: In the ADRC group, 1 ⁇ 10 5 cultured ADRCs were used, dissolved in 200 ⁇ l of medium, and then the gelling agent (KOKEN collagen acidic solution I-PC 5 mg / ml pH 3.0) was used. Sterile Atelocollagen Acidic Solution) 200 ⁇ l was mixed and administered as a gel-like preparation. In the ADRC-CM group, the medium was changed 2 days before administration.
- the ratio was adjusted to 200 ⁇ l of medium with respect to 5 ADRCs 1 ⁇ 10, and the cells were cultured for 48 hours. After 48 hours, 200 ⁇ l of the gelling agent was mixed with 200 ⁇ l of DMEM and applied to mice. In the control group, only 200 ⁇ l of medium was mixed with 200 ⁇ l of gelling agent (Table 2).
- the method of administration to mice was unified as a gel-like preparation. After applying the gel-like preparation with a spatula to the skin defect of the mice of each group, the wound and its surroundings were extensively covered with a covering film. Considering that the effect may not be sufficient with only one dose, frequent doses were given on Days 0, 1, 3, 5, and 7 and observed until the 14th. The wound healing process was followed and evaluated for 2 weeks.
- the treatment evaluation method used macroscopic changes in wound area. After treatment, the wound was photographed regularly and the area of the wound was measured. In FIG. 5, the area on each evaluation day is shown as a percentage with the wound area on the treatment day as a reference value, and the horizontal axis is the passage of time and the vertical axis is the wound area ratio. Compared with the control group, the wounds were significantly reduced in both the ADRC group and the ADRC-CM group. Although there was no difference when the ADRC group and ADRC-CM group were directly compared, it was suggested that the treatment with ADRC-CM had the same therapeutic effect as the treatment with ADRC. From this result, it was suggested that not only the effect of ADRC cells themselves but also the paracrine factor secreted from them may be important in wound healing.
- ADRC and bone marrow-derived stem cells were collected, isolated, and cultured from mice in the same manner as in Test 2.
- BMSC was collected from the femur of a mouse and isolated.
- the medium was changed 2 days before administration, as in Test 2.
- the ratio of medium 200 ⁇ l to 5 ADRC 1 ⁇ 10 was adjusted, and the cells were cultured for 48 hours.
- 200 ⁇ l of gelling agent was mixed with medium and applied to mice.
- BMSC-conditioned medium (BMSC-CM) group the cells were cultured under the same conditions and cell number, and applied to mice as a gel-like preparation.
- the control group only 200 ⁇ l of medium was mixed with 200 ⁇ l of the gelling agent as in Test 1 (Table 3). After that, the test was continued with the same protocol as in Test 2, and the healing process of the wound was followed and evaluated.
- ADRC is a cell that attaches to adipose tissue, has high proliferative capacity, and is excellent in differentiation into bone and cartilage and secretion of humoral factors
- BMSC is a cell that circulates in the blood. It has the property of differentiating into nerve cells, and it is thought that the two are completely different. Therefore, the present inventors decided to pay attention to the paracrine factor of ADRC and the like.
- ADRC advanced regional pain syndrome
- ADRC-CM since the paracrine factor secreted from ADRC is used, adverse events due to cell administration can be avoided, and the treatment using the cells themselves is possible. Compared to the method, it is possible to prepare a large amount of therapeutic agent in advance. Similar to ADRC-CM, FADRCL also uses paracrine factors secreted from ADRC cells, but FADRCL is produced by crushing ADRC, so in addition to paracrine factors, etc. , Cell internal and surface proteins are also believed to be contained, which may lead to anti-inflammatory effects and promote wound healing. As described above, FADRCL is considered to contain a large amount of paracrine factor and various proteins as compared with ADRC-CM.
- ADRC was collected and cultured from mice using the same protocol as in Test 2, and a preparation to be administered to each group was prepared.
- ADRC 1.0 ⁇ 10 5 pieces were treated to prepare a filtrate, mixed with 200 ⁇ l of medium and 200 ⁇ l of gelling agent, and applied to mice.
- the preparations were prepared under the same conditions as in Test 2 and Test 3, and the conditions for each group were unified (Table 4). According to the same protocol as in Test 2 and Test 3, each preparation was applied to mice, and the healing process of the wound was followed and evaluated.
- the amount of collagen produced was measured using Human Collagen type I, ELISA kit. Absorbance was measured at a wavelength of 450 nm. A calibration curve was drawn from the measurement results of Standard, and the absorbance value of the filtrate was substituted into the formula of the calibration curve to calculate the amount of collagen of interest. In addition, in order to compare the amount of collagen produced with the amount of protein produced as a whole, the amount of protein produced was also calculated by the above method.
- HSP47 and HSP70 in the filtrate are as shown in Table 1 and FIG. It was found that the filtrate (FADRCL) obtained by freeze-thawing and crushing ADRC and filtering it contained a large amount of HSP47 as compared with ADRC-CM (Table 1, FIG. 2). This suggests that HSP47 plays a role in helping collagen fibers produced by fibroblasts to become mature collagen, and thus contributes significantly to the induction of collagen production together with paraclinic factors and the like. Collagen.
- HSP70 is said to have a skin protection (cell protection) effect, an inflammatory reaction suppression effect, and a DNA damage suppression effect.
- the content of HSP70 in the filtrate is particularly high, and UVB-dependent skin damage and cell death may be suppressed by application to the epidermis (Matsuda Minoru, "Protection of HSP70 against photoaging”. Effect ”, Department of Medicinal Function Chemistry, Faculty of Pharmaceutical Education, Kumamoto University, Department of Medicinal Microbiology, 2011 Doctoral Dissertation).
- FADRCL contained a large amount of HSP70, HSP47, various paraclinic factors, etc. in Test 1, and in Test 5, FADRCL was excellent in these effects. It was discovered that it has a collagen-producing effect, and further, it was confirmed that HSP70 in FADRCL has a function of suppressing skin damage caused by ultraviolet rays (UVB), and the invention of use of the cosmetic of the present invention was completed.
- UVB ultraviolet rays
- adipose tissue-derived stem cell disruption solution As described above, it has been demonstrated that the filtrate of the adipose tissue-derived stem cell disruption solution is extremely useful as a therapeutic agent for wounds on the skin and as a cosmetic.
- a filtrate of adipose tissue-derived stem cell disruption solution which is a non-cell preparation, instead of adipose tissue-derived stem cells themselves, enables much higher efficacy and safer treatment than the previously reported treatment with stem cells or stem cell culture supernatants.
- a skin protective agent containing the filtrate of the adipose tissue-derived stem cell disruption solution of the present invention as an active ingredient it is possible to heal wounds on the skin more efficiently than before and reduce the risk of adverse events, and damage caused by ultraviolet rays. It can protect the skin from such things, and has great industrial applicability.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Developmental Biology & Embryology (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Cell Biology (AREA)
- Zoology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Biotechnology (AREA)
- Hematology (AREA)
- Birds (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dermatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
A filtrate of stem cells derived from adipose tissue heals wounds and protects skin from UV ray damage by promoting the production of collagen.
Description
本発明は、皮膚保護剤に関する。
The present invention relates to a skin protectant.
皮膚は、体の表面を覆う層で、体の内外の境をなし、外部環境に対するバリアとして働く。皮膚は、表皮(上層)と真皮(下層)の主要な2つの層からなり、皮下脂肪(皮下組織)と呼ばれる脂肪層を覆っている。
The skin is a layer that covers the surface of the body, forms a boundary between the inside and outside of the body, and acts as a barrier to the external environment. The skin consists of two main layers, the epidermis (upper layer) and the dermis (lower layer), and covers a fat layer called subcutaneous fat (subcutaneous tissue).
表皮は、皮膚の最外層を形成し、皮膚からの水分の蒸散を防ぎ、外界から生体を保護する役割を果たす。表皮の基底膜上には表皮角化細胞の前駆細胞として表皮基底細胞が数多く存在し、角化細胞は、真皮との境界を構成する基底膜において細胞増殖を繰り返しながら、表皮のターンオーバーを司る。また、外傷などの緊急時に働く幹細胞として、基底膜に接して表皮幹細胞が表皮突起ごとに存在する。
The epidermis forms the outermost layer of the skin, prevents the evaporation of water from the skin, and plays a role of protecting the living body from the outside world. There are many epidermal basal cells on the basement membrane of the epidermis as precursor cells of epidermal keratinocytes, and the keratinocytes control the turnover of the epidermis while repeating cell proliferation in the basement membrane that constitutes the boundary with the dermis. .. In addition, as stem cells that work in an emergency such as trauma, epidermal stem cells are present in each epidermal protrusion in contact with the basement membrane.
真皮には線維芽細胞が存在して、細胞外基質の新陳代謝を司る。真皮に存在する線維芽細胞は、コラーゲンなどの線維状で親水的なタンパク質を産生し、これらのタンパク質が、皮膚に弾力性や強さを与えることによって、肌の状態を保つことができる。また、毛包や血管近辺に真皮幹細胞が存在する。
Fibroblasts are present in the dermis and control the metabolism of extracellular matrix. Fibroblasts present in the dermis produce fibrous and hydrophilic proteins such as collagen, which can maintain the condition of the skin by imparting elasticity and strength to the skin. In addition, dermal stem cells are present near hair follicles and blood vessels.
体の表面を覆う皮膚が、けがや手術で、皮膚や皮下脂肪の組織が欠損した場合などには、その再建が必要となる。また、紫外線の照射、乾燥した外気の影響、加齢による皮膚機能の低下などから、表皮を構成する細胞のターンオーバーが滞り、その結果として、皮膚の新陳代謝、皮膚のバリア機能などが低下すると、しわや、肌荒れ等の症状が現れる。
If the skin covering the surface of the body is injured or the tissue of subcutaneous fat is lost due to injury or surgery, it is necessary to reconstruct it. In addition, the turnover of cells constituting the epidermis is delayed due to the irradiation of ultraviolet rays, the influence of dry outside air, and the deterioration of skin function due to aging, and as a result, the metabolism of the skin and the barrier function of the skin are reduced. Symptoms such as wrinkles and rough skin appear.
皮膚が欠損する創傷の治療には、皮膚の再建や各種組織から得られた再生細胞を使用する創傷治療剤が、また、しわや、肌荒れ等の対策には、コラーゲンの産生を促進する化粧料が、従来から検討されてきた。
Wound healing agents that use regenerated cells obtained from skin reconstruction and various tissues are used to treat wounds with defective skin, and collagen production-promoting cosmetics are used to prevent wrinkles and rough skin. However, it has been studied conventionally.
創傷治癒のための療法としては、組織の除去・移植を含む手術(非特許文献1)、抗生物質療法、物理療法、増殖因子の投与などが挙げられる。近年、組織や臓器の欠損や機能不全に対し、幹細胞を使って機能を回復する再生医療が注目され、幹細胞が自身を再生し、特殊な成熟細胞に分化する能力を、臨床的な目標に合わせたやり方で制御する細胞治療が実施されている。
Examples of therapies for wound healing include surgery including tissue removal / transplantation (Non-Patent Document 1), antibiotic therapy, physical therapy, and administration of growth factors. In recent years, regenerative medicine that restores function using stem cells for tissue and organ defects and dysfunction has attracted attention, and the ability of stem cells to regenerate themselves and differentiate into special mature cells is aligned with clinical goals. Cell therapy that is controlled in this way is being carried out.
特許文献1に記載の発明は、単離された脂肪組織由来幹細胞を包含する、哺乳動物における組織再生を促進するための治療組成物を開示する。脂肪組織由来幹細胞を治療部位に近接して皮内注射すると、脂肪組織由来幹細胞は、血管形成及び傷害部位への細胞の遊走を増大させ、瘢痕化の量を低下させ、そして組織再生を増大させることにより、創傷の治癒時間を短縮させ、感染の可能性を低下させるとする。
The invention described in Patent Document 1 discloses a therapeutic composition for promoting tissue regeneration in a mammal, which comprises isolated adipose tissue-derived stem cells. When adipose tissue-derived stem cells are injected intradermally in close proximity to the treatment site, the adipose tissue-derived stem cells increase cell migration to the angiogenesis and wound site, reduce the amount of scarring, and increase tissue regeneration. This shortens the healing time of the wound and reduces the possibility of infection.
また、特許文献2に記載の発明は、γ-グルタミルトランスペプチダーゼ(GGT)を阻害する化合物をタンパク質産生促進剤として開示する。
Further, the invention described in Patent Document 2 discloses a compound that inhibits γ-glutamyl transpeptidase (GGT) as a protein production promoter.
しかしながら、特許文献1及び非特許文献1に記載の開示は、組織再生のために、脂肪組織由来幹細胞そのものを治療に用いるもので、幹細胞を用いた再生医療は、治療に必要な数まで目的細胞に分化する幹細胞を増やす必要があるうえ、未分化の細胞による腫瘍化のリスクがあった。また、移植のための幹細胞の調整には数日を要するとともに、培養した細胞を分化可能な状態に保つ必要があるため、取扱いにも注意を要した。
However, the disclosures described in Patent Document 1 and Non-Patent Document 1 use adipose tissue-derived stem cells themselves for treatment for tissue regeneration, and regenerative medicine using stem cells includes up to the number of target cells required for treatment. In addition to the need to increase the number of stem cells that differentiate into, there was a risk of tumorigenesis by undifferentiated cells. In addition, it took several days to prepare the stem cells for transplantation, and it was necessary to keep the cultured cells in a state where they could differentiate, so care was taken in handling.
最近では、生きた細胞を使わない再生医療も注目されている。細胞増殖分化因子で内因性幹細胞を活性化させ、又は分化させることにより組織の再生を目指すもので、細胞増殖因子としては、幹細胞から分泌されるサイトカイン因子の利用が唱えられている。しかし、生きた細胞を用いない再生医療に使用される細胞増殖因子、例えば幹細胞の培養上清を使用したものの再生効果は、幹細胞自体を利用した場合と同程度の効果は期待できるものの、幹細胞移植を超える効果は得難いものであった。
Recently, regenerative medicine that does not use living cells is also attracting attention. Aiming at tissue regeneration by activating or differentiating endogenous stem cells with cell proliferation and differentiation factors, the use of cytokine factors secreted from stem cells has been advocated as cell proliferation factors. However, although the regenerative effect of a cell growth factor used in regenerative medicine that does not use living cells, for example, a culture supernatant of stem cells, can be expected to be similar to that of using stem cells themselves, stem cell transplantation can be expected. It was difficult to obtain the effect exceeding the above.
また、特許文献2に記載の開示は、コラーゲンの産生量を減少させるグルタチオンを分解する化合物を線維芽細胞に投与することによって、紫外線などの外部環境や加齢を原因とする皮膚機能の低下による線維芽細胞のコラーゲン産生量の減少を抑制するものであるが、促進されるコラーゲンの産生量は限定的であった。
Further, the disclosure described in Patent Document 2 is due to a decrease in skin function due to an external environment such as ultraviolet rays or aging by administering a compound that decomposes glutathione that reduces collagen production to fibroblasts. It suppresses the decrease in collagen production in fibroblasts, but the amount of collagen produced is limited.
そこで、本発明は、従来よりも効率的で有害事象のリスクを抑えた皮膚の創傷治癒を可能にするとともに、紫外線のダメージなどから皮膚を保護する皮膚保護剤の提供を課題とする。
Therefore, it is an object of the present invention to provide a skin protective agent that is more efficient than the conventional one, enables skin wound healing with a reduced risk of adverse events, and protects the skin from damage by ultraviolet rays and the like.
上記課題を解決すべく本発明者らは、成体幹細胞(組織幹細胞、体性幹細胞とも呼ばれる)に着眼し、その有効性を詳細に検討した結果、脂肪組織由来幹細胞(Adipose-derived stem cells: ASC、Adipose-derived regeneration cells: ADRC、Adipose-derived mesenchymal stem cells: AT-MSC, AD-MSCなどとも呼ばれる。以下、単に「ADRC」ということがある。)の破砕液をフィルター処理して得られた濾液(Filtrated Adipose Derived Regenerative Cell Lysate (FADRCLとも呼ばれる。)が、皮膚の創傷治癒において、これまでの脂肪組織の移植や濃縮よりも高い効果を奏し、また、皮膚の弾力性を維持し、皮膚を紫外線のダメージから保護する効果を奏するという、驚くべき知見、成果を得た。
以下の発明は、主として上記の成果及び考察に基づき完成した。 In order to solve the above problems, the present inventors focused on adult stem cells (also called tissue stem cells or somatic stem cells) and examined their effectiveness in detail. As a result, adipose-derived stem cells (ASC) , Adipose-derived regeneration cells: ADRC, Adipose-derived mesenchymal stem cells: AT-MSC, AD-MSC, etc. Filtrated Adipose Derived Regenerative Cell Lysate (also known as FADRCL) is more effective in healing skin wounds than traditional adipose tissue transplantation and concentration, and also maintains skin elasticity and makes the skin firmer. We have obtained amazing findings and results that it has the effect of protecting against the damage of ultraviolet rays.
The following inventions have been completed mainly based on the above achievements and considerations.
以下の発明は、主として上記の成果及び考察に基づき完成した。 In order to solve the above problems, the present inventors focused on adult stem cells (also called tissue stem cells or somatic stem cells) and examined their effectiveness in detail. As a result, adipose-derived stem cells (ASC) , Adipose-derived regeneration cells: ADRC, Adipose-derived mesenchymal stem cells: AT-MSC, AD-MSC, etc. Filtrated Adipose Derived Regenerative Cell Lysate (also known as FADRCL) is more effective in healing skin wounds than traditional adipose tissue transplantation and concentration, and also maintains skin elasticity and makes the skin firmer. We have obtained amazing findings and results that it has the effect of protecting against the damage of ultraviolet rays.
The following inventions have been completed mainly based on the above achievements and considerations.
すなわち、本発明は、
[1] 脂肪組織由来幹細胞破砕液の濾液を有効成分に含む皮膚保護剤、ここで、前記濾液は、ヒートショックプロテイン、サイトカイン及び/又はパラクライン因子並びに細胞表面タンパク質からなる群から選ばれる1種以上のタンパク質を含むことを特徴とする皮膚保護剤。
[2] 前記脂肪組織由来幹細胞破砕液の濾液に含まれるヒートショックプロテイン、サイトカイン及び/又はパラクライン因子並びに細胞表面タンパク質からなる群から選ばれる1種以上のタンパク質が、HSP47、HSP70、HMGB1及びAnnexinA6からなる群から選ばれる1種以上のタンパク質を含むことを特徴とする[1]に記載の皮膚保護剤。
[3] 前記脂肪組織由来幹細胞の生物種がヒ卜である、[1]又は[2]に記載の皮膚保護剤。
[4] 前記皮膚保護剤が、更に、以下の(a)から(c)のいずれか1種以上を含むことを特徴とする、[1]~[3]のいずれか一項に記載の皮膚保護剤:
(a)脂肪組織由来幹細胞、
(b)脂肪組織由来幹細胞(a)を破砕することによって得られた破砕液、
(c)破砕液(b)を遠心処理して得られた上清。
[5] [1]~[4]のいずれか一項に記載の皮膚保護剤を含む、皮膚の創傷部位の治癒を促進するための創傷治療剤。
[6] 前記創傷が、外傷、虚血性潰瘍創傷又は糖尿病創傷である、[5]に記載の創傷治療剤。
[7] [1]~[4]のいずれか一項に記載の皮膚保護剤を含む、化粧料。
[8] 以下のステップ(1)~(3)を含むことを特徴とする、皮膚保護剤の製造方法:
(1)凍結状態の前記脂肪組織由来幹細胞を凍結融解処理で破砕するステップ、
(2)ステップ(1)で得られた破砕液、又は前記破砕液を遠心処理して得られた上清をフィルター処理し、濾液を得るステップ、及び
(3)ステップ(2)で得られた濾液を製剤化するステップ。
[9] 前記ステップ(1)に代えて、未凍結状態の脂肪組織由来幹細胞を超音波処理で破砕するステップを含むことを特徴とする、[8]に記載の皮膚保護剤の製造方法。 That is, the present invention
[1] A skin protective agent containing a filtrate of adipose tissue-derived stem cell disruption solution as an active ingredient, wherein the filtrate is one selected from the group consisting of heat shock proteins, cytokines and / or paracrine factors and cell surface proteins. A skin protectant characterized by containing the above proteins.
[2] One or more proteins selected from the group consisting of heat shock proteins, cytokines and / or paracrine factors and cell surface proteins contained in the filtrate of the adipose tissue-derived stem cell disruption solution are HSP47, HSP70, HMGB1 and Annexin A6. The skin protective agent according to [1], which comprises one or more proteins selected from the group consisting of.
[3] The skin protective agent according to [1] or [2], wherein the organism species of the adipose tissue-derived stem cells are adipose tissue.
[4] The skin according to any one of [1] to [3], wherein the skin protective agent further contains at least one of the following (a) to (c). Protective agent:
(A) Adipose tissue-derived stem cells,
(B) Crushed solution obtained by crushing adipose tissue-derived stem cells (a),
(C) A supernatant obtained by centrifuging the crushed liquid (b).
[5] A wound healing agent for promoting healing of a wound site of the skin, which comprises the skin protective agent according to any one of [1] to [4].
[6] The wound healing agent according to [5], wherein the wound is a trauma, an ischemic ulcer wound or a diabetic wound.
[7] A cosmetic containing the skin protective agent according to any one of [1] to [4].
[8] A method for producing a skin protective agent, which comprises the following steps (1) to (3):
(1) A step of crushing the frozen stem cells derived from adipose tissue by freeze-thaw treatment.
(2) The crushed solution obtained in step (1) or the supernatant obtained by centrifuging the crushed solution is filtered to obtain a filtrate, and (3) obtained in step (2). The step of formulating the filtrate.
[9] The method for producing a skin protective agent according to [8], which comprises a step of disrupting unfrozen adipose tissue-derived stem cells by ultrasonic treatment instead of the step (1).
[1] 脂肪組織由来幹細胞破砕液の濾液を有効成分に含む皮膚保護剤、ここで、前記濾液は、ヒートショックプロテイン、サイトカイン及び/又はパラクライン因子並びに細胞表面タンパク質からなる群から選ばれる1種以上のタンパク質を含むことを特徴とする皮膚保護剤。
[2] 前記脂肪組織由来幹細胞破砕液の濾液に含まれるヒートショックプロテイン、サイトカイン及び/又はパラクライン因子並びに細胞表面タンパク質からなる群から選ばれる1種以上のタンパク質が、HSP47、HSP70、HMGB1及びAnnexinA6からなる群から選ばれる1種以上のタンパク質を含むことを特徴とする[1]に記載の皮膚保護剤。
[3] 前記脂肪組織由来幹細胞の生物種がヒ卜である、[1]又は[2]に記載の皮膚保護剤。
[4] 前記皮膚保護剤が、更に、以下の(a)から(c)のいずれか1種以上を含むことを特徴とする、[1]~[3]のいずれか一項に記載の皮膚保護剤:
(a)脂肪組織由来幹細胞、
(b)脂肪組織由来幹細胞(a)を破砕することによって得られた破砕液、
(c)破砕液(b)を遠心処理して得られた上清。
[5] [1]~[4]のいずれか一項に記載の皮膚保護剤を含む、皮膚の創傷部位の治癒を促進するための創傷治療剤。
[6] 前記創傷が、外傷、虚血性潰瘍創傷又は糖尿病創傷である、[5]に記載の創傷治療剤。
[7] [1]~[4]のいずれか一項に記載の皮膚保護剤を含む、化粧料。
[8] 以下のステップ(1)~(3)を含むことを特徴とする、皮膚保護剤の製造方法:
(1)凍結状態の前記脂肪組織由来幹細胞を凍結融解処理で破砕するステップ、
(2)ステップ(1)で得られた破砕液、又は前記破砕液を遠心処理して得られた上清をフィルター処理し、濾液を得るステップ、及び
(3)ステップ(2)で得られた濾液を製剤化するステップ。
[9] 前記ステップ(1)に代えて、未凍結状態の脂肪組織由来幹細胞を超音波処理で破砕するステップを含むことを特徴とする、[8]に記載の皮膚保護剤の製造方法。 That is, the present invention
[1] A skin protective agent containing a filtrate of adipose tissue-derived stem cell disruption solution as an active ingredient, wherein the filtrate is one selected from the group consisting of heat shock proteins, cytokines and / or paracrine factors and cell surface proteins. A skin protectant characterized by containing the above proteins.
[2] One or more proteins selected from the group consisting of heat shock proteins, cytokines and / or paracrine factors and cell surface proteins contained in the filtrate of the adipose tissue-derived stem cell disruption solution are HSP47, HSP70, HMGB1 and Annexin A6. The skin protective agent according to [1], which comprises one or more proteins selected from the group consisting of.
[3] The skin protective agent according to [1] or [2], wherein the organism species of the adipose tissue-derived stem cells are adipose tissue.
[4] The skin according to any one of [1] to [3], wherein the skin protective agent further contains at least one of the following (a) to (c). Protective agent:
(A) Adipose tissue-derived stem cells,
(B) Crushed solution obtained by crushing adipose tissue-derived stem cells (a),
(C) A supernatant obtained by centrifuging the crushed liquid (b).
[5] A wound healing agent for promoting healing of a wound site of the skin, which comprises the skin protective agent according to any one of [1] to [4].
[6] The wound healing agent according to [5], wherein the wound is a trauma, an ischemic ulcer wound or a diabetic wound.
[7] A cosmetic containing the skin protective agent according to any one of [1] to [4].
[8] A method for producing a skin protective agent, which comprises the following steps (1) to (3):
(1) A step of crushing the frozen stem cells derived from adipose tissue by freeze-thaw treatment.
(2) The crushed solution obtained in step (1) or the supernatant obtained by centrifuging the crushed solution is filtered to obtain a filtrate, and (3) obtained in step (2). The step of formulating the filtrate.
[9] The method for producing a skin protective agent according to [8], which comprises a step of disrupting unfrozen adipose tissue-derived stem cells by ultrasonic treatment instead of the step (1).
本発明の脂肪組織由来幹細胞(ADRC)の破砕液をフィルター処理して得られた濾液(FADRCL)を有効成分に含む皮膚保護剤を用いれば、ADRC自体や、ADRC培養の上澄みである上清(ADRC-CMとも呼ばれる。以下「培養上清」ともいう。)を用いるよりも皮膚の創傷治癒を促進できるとともに、皮膚の弾力性を維持し、皮膚を紫外線のダメージから保護することができる。ADRC自体ではなく、ADRCの破砕液をフィルター処理して得られたFADRCLにこのような新たな性質が見出されたことは、使用する細胞数が少なくて済むことから、ドナーや、患者の負担も小さく、細胞投与による有害事象を回避することができ、使用するタイミングを見計らって細胞培養を開始する必要がないなど、その意義は極めて大きい。なお、ADRC自体を使用する場合は、細胞の調製に数日(通常は少なくとも3日程度の培養)を要するが、FADRCLであれば、細胞を含まないため細胞の調製に必要な時間を短縮でき、使用直前に準備すれば足りる。また、本発明の皮膚保護剤を用いれば、線維芽細胞のコラーゲンの産生量を増進でき、紫外線のダメージなどから皮膚を保護することができる。
If a skin protective agent containing the filtrate (FADRCL) obtained by filtering the disrupted solution of adipose tissue-derived stem cells (ADRC) of the present invention as an active ingredient is used, ADRC itself or the supernatant of ADRC culture (supernatant) It is also called ADRC-CM. It can promote the healing of wounds on the skin as compared with the use of "culture supernatant"), maintain the elasticity of the skin, and protect the skin from the damage of ultraviolet rays. The discovery of these new properties in FADRCL obtained by filtering the disrupted solution of ADRC, not ADRC itself, is a burden on donors and patients because the number of cells used is small. It is extremely significant because it is small, it can avoid adverse events due to cell administration, and it is not necessary to start cell culture at the timing of use. When ADRC itself is used, it takes several days (usually at least 3 days of culture) to prepare the cells, but with FADRCL, the time required for cell preparation can be shortened because it does not contain cells. , It is enough to prepare just before use. Further, by using the skin protective agent of the present invention, the amount of collagen produced by fibroblasts can be increased, and the skin can be protected from damage by ultraviolet rays and the like.
上記のとおり、本発明の皮膚保護剤は、脂肪組織由来幹細胞(ADRC)の破砕液の濾液(FADRCL)を有効成分とするもので、従来のADRC自体(即ち生細胞)又は培養上清(ADRC-CM)を利用する技術とは全く異なる。
As described above, the skin protective agent of the present invention contains the filtrate (FADRCL) of the disrupted solution of adipose tissue-derived stem cells (ADRC) as an active ingredient, and is the conventional ADRC itself (that is, live cells) or the culture supernatant (ADRC). -It is completely different from the technology that uses CM).
以下、本発明の好ましい実施形態について詳細に説明する。
(実施形態) Hereinafter, preferred embodiments of the present invention will be described in detail.
(Embodiment)
(実施形態) Hereinafter, preferred embodiments of the present invention will be described in detail.
(Embodiment)
1.皮膚保護剤
本発明は、従来よりも効率的で有害事象のリスクを抑えた皮膚の創傷治癒を可能にするとともに、紫外線のダメージなどから皮膚を保護する皮膚保護剤の提供に関する。 1. 1. Skin Protective Agent The present invention relates to a skin protectant that is more efficient than the conventional one, enables skin wound healing with a reduced risk of adverse events, and protects the skin from damage by ultraviolet rays and the like.
本発明は、従来よりも効率的で有害事象のリスクを抑えた皮膚の創傷治癒を可能にするとともに、紫外線のダメージなどから皮膚を保護する皮膚保護剤の提供に関する。 1. 1. Skin Protective Agent The present invention relates to a skin protectant that is more efficient than the conventional one, enables skin wound healing with a reduced risk of adverse events, and protects the skin from damage by ultraviolet rays and the like.
図1に示すとおり、皮膚は、表皮と真皮の主要な2つの層からなり、表皮は、皮膚の最外層を形成し、外側から「角質層(角層)」、「顆粒層」、「有棘層」、「基底層」により構成され、基底層で生まれたケラチノサイトが順次外側へ移動して角質層となり、最終的に剥がれ落ちる。また、真皮は、線維芽細胞、コラーゲン、エラスチンなどが複合的に三次元状に広がった構造を持つ結合組織であって、皮膚に強度、伸展性及び弾力性をもたらす。また、毛包や血管近辺に真皮幹細胞が存在している。
As shown in FIG. 1, the skin consists of two main layers, the stratum corneum and the dermis. It is composed of the "stratum spinosum" and the "basal layer", and the keratinocytes born in the basal layer move outward in sequence to become the stratum corneum, which eventually peels off. In addition, the dermis is a connective tissue having a structure in which fibroblasts, collagen, elastin and the like are spread in a complex three-dimensional manner, and brings strength, extensibility and elasticity to the skin. In addition, dermal stem cells are present near hair follicles and blood vessels.
本明細書で「皮膚保護剤」とは、皮膚組織の再生の促進に関する剤で、皮膚の創傷部位の治癒を促進する創傷治療剤又は紫外線のダメージなどから皮膚を保護する化粧料を包含する。
As used herein, the term "skin protectant" is an agent for promoting the regeneration of skin tissue, and includes a wound healing agent that promotes healing of a wound site of the skin or a cosmetic that protects the skin from damage caused by ultraviolet rays.
2.濾液
本発明の皮膚保護剤は、脂肪組織由来幹細胞(ADRC)破砕液の濾液(FADRCL)を有効成分とする。本明細書でいう「濾液」とは、脂肪組織由来幹細胞を破砕することによって得られた破砕液、又は前記破砕液を遠心分離し不要物を除去して得られた上清をフィルター処理して得られた濾液をいう。不要物の除去は完全な除去でなくてもよい。遠心処理の条件を例示すると、200~300×gで5分~10分である。 2. 2. Skin protectants filtrate invention adipose tissue-derived stem cells (ADRC) lysate filtrate (FADRCL) as an active ingredient. The term "filter" as used herein refers to a crushed solution obtained by disrupting adipose tissue-derived stem cells, or a supernatant obtained by centrifuging the crushed solution to remove unnecessary substances and filtering the supernatant. The obtained filtrate. Removal of unwanted material does not have to be complete removal. An example of the conditions for centrifugation is 200 to 300 × g for 5 to 10 minutes.
本発明の皮膚保護剤は、脂肪組織由来幹細胞(ADRC)破砕液の濾液(FADRCL)を有効成分とする。本明細書でいう「濾液」とは、脂肪組織由来幹細胞を破砕することによって得られた破砕液、又は前記破砕液を遠心分離し不要物を除去して得られた上清をフィルター処理して得られた濾液をいう。不要物の除去は完全な除去でなくてもよい。遠心処理の条件を例示すると、200~300×gで5分~10分である。 2. 2. Skin protectants filtrate invention adipose tissue-derived stem cells (ADRC) lysate filtrate (FADRCL) as an active ingredient. The term "filter" as used herein refers to a crushed solution obtained by disrupting adipose tissue-derived stem cells, or a supernatant obtained by centrifuging the crushed solution to remove unnecessary substances and filtering the supernatant. The obtained filtrate. Removal of unwanted material does not have to be complete removal. An example of the conditions for centrifugation is 200 to 300 × g for 5 to 10 minutes.
本明細書において「有効成分に含む」とは、治療をする上で有効量の脂肪組織由来幹細胞の濾液を含有することを意味する。
As used herein, "included in the active ingredient" means containing an effective amount of adipose tissue-derived stem cell filtrate for treatment.
濾液に含まれる成分が、特有の作用効果、即ち、皮膚の創傷治癒の促進又は皮膚の弾力性を維持し、紫外線のダメージから皮膚を保護する効果を発揮する。これは、濾液中に存在するヒートショックプロテイン、サイトカイン及び/又はパラクライン因子(以下「パラクライン因子等」ともいう。)並びに細胞表面タンパク質が、ケラチノサイト、線維芽細胞、血管内皮細胞などに作用して皮膚の再生を促進するためと考えられる。
The components contained in the filtrate exert a peculiar action and effect, that is, the effect of promoting wound healing of the skin or maintaining the elasticity of the skin and protecting the skin from the damage of ultraviolet rays. This is because heat shock proteins, cytokines and / or paracrine factors (hereinafter also referred to as "paracline factors") and cell surface proteins present in the filtrate act on keratinocytes, fibroblasts, vascular endothelial cells and the like. It is thought that this is to promote skin regeneration.
脂肪組織由来幹細胞の破砕には、脂肪組織由来幹細胞(ADRC)を、例えば、1×104個/ml~1×107個/mlの濃度範囲の細胞懸濁液を使用する。ADRCの破砕液を得るためには、ADRCを破砕処理、例えば凍結融解処理又は超音波処理に供すればよい。フレンチプレスやホモジナイザーによる物理的処理でもよいし、非物理的な処理によって細胞を破砕してもよい。
For disruption of adipose tissue-derived stem cells, adipose tissue-derived stem cells (ADRC) are used, for example, in a cell suspension having a concentration range of 1 × 10 4 cells / ml to 1 × 10 7 cells / ml. In order to obtain a crushed solution of ADRC, ADRC may be subjected to a crushing treatment, for example, a freeze-thaw treatment or an ultrasonic treatment. The cells may be crushed by physical treatment with a French press or a homogenizer, or by non-physical treatment.
本明細書で、「凍結」とは、脂肪組織由来幹細胞を適当な容器(例えば、凍結保存に適したチューブ、遠沈管、バッグなど)に入れ、凍結させることをいう。温度は、-20℃~-196℃を例示できる。
As used herein, "freezing" means placing stem cells derived from adipose tissue in an appropriate container (for example, a tube suitable for cryopreservation, a centrifuge tube, a bag, etc.) and freezing the cells. The temperature can be exemplified from -20 ° C to -196 ° C.
凍結融解処理は、凍結過程で細胞が膨張し形成された氷晶が、細胞を破壊し、解凍時に融解されるもので、十分に破壊させるために、凍結融解処理を複数回(例えば2回~5回)繰り返してもよい。凍結融解処理における凍結の条件は特に限定されないが、例えば、-20℃~-196℃で凍結すればよい。融解の条件も特に限定されない。例えば、湯煎(例えば35℃~40℃)による融解、室温での融解等を採用することができる。破砕処理に供する細胞として、生細胞に限らず、死細胞や障害を受けた細胞を用いてもよい。破砕処理の中でも凍結融解処理は簡便であり、また、器機と細胞との接触による汚染を回避でき、衛生的である点から特に好ましい。
In the freeze-thaw treatment, the ice crystals formed by the expansion of the cells during the freezing process destroy the cells and are thawed at the time of thawing. 5 times) May be repeated. The freezing conditions in the freeze-thaw treatment are not particularly limited, but for example, freezing may be performed at -20 ° C to -196 ° C. The melting conditions are also not particularly limited. For example, melting in a water bath (for example, 35 ° C to 40 ° C), melting at room temperature, or the like can be adopted. As the cells to be subjected to the crushing treatment, not only living cells but also dead cells and damaged cells may be used. Among the crushing treatments, the freeze-thaw treatment is particularly preferable because it is simple, can avoid contamination due to contact between the device and cells, and is hygienic.
超音波処理では、未凍結状態の脂肪組織由来幹細胞を超音波による処理に供して細胞を破壊すればよい。超音波を発するプローブを細胞懸濁液に浸し、プローブからの機械的エネルギーにより、極小の気泡を発生・破裂させ、細胞に繰り返し激しい衝撃を与えて破砕する。超音波処理の好ましい条件は、200W~300Wの出力で10秒間の破砕と20秒間の休止を複数回繰り返すことが好ましい。
In ultrasonic treatment, unfrozen adipose tissue-derived stem cells may be subjected to ultrasonic treatment to destroy the cells. A probe that emits ultrasonic waves is immersed in a cell suspension, and the mechanical energy from the probe generates and bursts tiny bubbles, which repeatedly give a violent impact to the cells and crush them. The preferred conditions for sonication are to repeat crushing for 10 seconds and resting for 20 seconds multiple times at an output of 200 W to 300 W.
前記破砕液又は前記破砕液を遠心処理して得られた上清をフィルター処理によって不要物を除去することが好ましい。適切な孔径のフィルターを使用すれば、不要物の除去と滅菌処理を同時に行うことができる。フィルター処理に使用するフィルターの材質、孔径などは特に限定されない。但し、タンパク質非吸着フィルターが好ましい。好ましい材質としてセルロースアセテートを例示することができる。金属製のフィルターを使用することにしてもよい。フィルター孔径は0.1μm~0.45μmが好ましい。0.15μm~0.3μmが更に好ましい。滅菌濾過も同時に行う場合は0.2μmの孔径が好ましい。
It is preferable to filter the crushed liquid or the supernatant obtained by centrifuging the crushed liquid to remove unnecessary substances. With the right pore size filter, unwanted material can be removed and sterilized at the same time. The material and hole diameter of the filter used for the filter processing are not particularly limited. However, a protein non-adsorption filter is preferable. Cellulose acetate can be exemplified as a preferable material. A metal filter may be used. The filter hole diameter is preferably 0.1 μm to 0.45 μm. It is more preferably 0.15 μm to 0.3 μm. When sterilization filtration is also performed at the same time, a pore size of 0.2 μm is preferable.
図2に示すとおり、ADRCを破砕して得られた濾液は、ヒートショックプロテイン、パラクライン因子等並びに細胞表面タンパク質からなる群から選ばれる1種以上のタンパク質が、培養上清と比べて大量に含まれる。これらのタンパク質を含む濾液は、コラーゲンの産生を促進し(図9)、皮膚の創傷治癒を促進するとともに、紫外線などの外部環境からの皮膚のダメージによる皮膚機能の低下を防ぐ効果を発揮する。
As shown in FIG. 2, the filtrate obtained by crushing ADRC contains a large amount of one or more proteins selected from the group consisting of heat shock proteins, paracrine factors, etc. and cell surface proteins in a large amount as compared with the culture supernatant. included. The filtrate containing these proteins promotes collagen production (Fig. 9), promotes skin wound healing, and exerts an effect of preventing deterioration of skin function due to skin damage from the external environment such as ultraviolet rays.
濾液に含まれる前記1種以上のタンパク質は、HSP70、HSP47、HMGB1及びAnnexinA6からなる群から選ばれる1種以上のタンパク質が含まれる(図2)。これらのタンパク質は、細胞から分泌されるサイトカイン等ではなく、細胞内に存在するタンパク質であるため、ADRCを破砕処理し、フィルター濾過することにより、濾液に効率よく抽出される。
The one or more proteins contained in the filtrate include one or more proteins selected from the group consisting of HSP70, HSP47, HMGB1 and Annexin A6 (Fig. 2). Since these proteins are not cytokines secreted from cells but proteins existing in cells, they are efficiently extracted into a filtrate by disrupting ADRC and filtering.
「ヒートショックプロテイン」(Heat Shock Protein、HSP)とは、細胞が熱などのストレスにさらされた際に発現が上昇して細胞を保護するタンパク質の一群であり、熱ショックのほか、寒さへの曝露、紫外線、創傷治癒などの他のストレスでも発現する。HSPはその分子量によって各分子の名前が付されており、例えばHSP47、70はそれぞれ分子量47、70kDaのタンパク質である。
"Heat shock protein" (Heat Shock Protein, HSP) is a group of proteins whose expression increases and protects cells when they are exposed to stress such as heat. It also manifests in other stresses such as exposure, UV radiation, and wound healing. HSP is named for each molecule according to its molecular weight. For example, HSP47 and 70 are proteins with molecular weights of 47 and 70 kDa, respectively.
「HSP47」は、皮膚線維芽細胞によって産生されたコラーゲン線維が三重螺旋を形成して成熟コラーゲンとなることを助ける働きを担っている(永田和宏、「コラーゲン特異的分子シャペロンHSP47と繊維化疾患治療戦略」、日薬理誌(FoliαPhαrmαcol. Jpn.) 121, 4~14 (2003))。そこで、HSP47を皮膚線維芽細胞に発現させれば、成熟コラーゲンの産生量が亢進されると考えられる。
"HSP47" plays a role in helping collagen fibers produced by skin fibroblasts to form triple helices and become mature collagen (Kazuhiro Nagata, "Collagen-specific molecular chaperone HSP47 and treatment for fibrotic diseases". Strategy ”, Journal of Japanese Pharmacology (FoliαPhαrmαcol. Jpn.) 121, 4-14 (2003)). Therefore, it is considered that if HSP47 is expressed in skin fibroblasts, the production amount of mature collagen is enhanced.
「HSP70」は、特に、細胞死を引き起こす紫外線傷害に括抗する物質として知られる。
"HSP70" is known as a substance that resists UV damage that causes cell death.
「HMGB1」(high mobility group box-1 protein)は、遺伝子発現や遺伝子修復を促進する自然免疫を強化し、また、前駆細胞、幹細胞の遊走と増殖を誘導して、修復反応を促進する機能を有する物質として知られる。
"HMGB1" (high mobility group box-1 protein) has the function of strengthening innate immunity that promotes gene expression and gene repair, and also induces migration and proliferation of progenitor cells and stem cells to promote the repair reaction. Known as a substance to possess.
濾液に含まれる前記ヒートショックプロテイン、パラクライン因子等、細胞表面タンパク質などの働きにより、濾液の優れたコラーゲン産生効が導かれると考えられる(図9)。
It is considered that the excellent collagen-producing effect of the filtrate is induced by the action of the heat shock protein, paracrine factor, cell surface protein, etc. contained in the filtrate (Fig. 9).
「AnnexinA6」は、シグナル伝達に関与するタンパク質である。AnnexinA6が欠損すると、機械刺激に対する感受性が高くなり、逆に、AnnexinA6の過剰発現は、感覚ニューロンにおける速順応性電流を抑制する。このことから、AnnexinA6は、疼痛を抑制すると考えられる。AnnexinA6の疼痛抑制効果は、患者のQOLの向上に寄与する。
"Annexin A6" is a protein involved in signal transduction. Deficiency of AnnexinA6 increases sensitivity to mechanical stimuli, and conversely, overexpression of AnnexinA6 suppresses fast-adapting currents in sensory neurons. From this, Annexin A6 is considered to suppress pain. The pain-suppressing effect of Annexin A6 contributes to the improvement of the patient's QOL.
3.皮膚保護剤の別の構成
本発明の別の一態様では、前記濾液が、下記(a)~(c)からなる群より選ばれる少なくとも1種を含有して本発明の皮膚保護剤を構成してもよい。
(a)脂肪組織由来幹細胞
(b)脂肪組織由来幹細胞を破砕処理して得られた破砕液
(c)(b)の破砕液を遠心処理して得られた上清 3. 3. Another Composition of the Skin Protective Agent In another aspect of the present invention, the filtrate contains at least one selected from the group consisting of the following (a) to (c) to constitute the skin protective agent of the present invention. You may.
(a) Adipose tissue-derived stem cells (b) Crushed solution obtained by crushing adipose tissue-derived stem cells (c) Supernatant obtained by centrifuging the crushed solution of (b)
本発明の別の一態様では、前記濾液が、下記(a)~(c)からなる群より選ばれる少なくとも1種を含有して本発明の皮膚保護剤を構成してもよい。
(a)脂肪組織由来幹細胞
(b)脂肪組織由来幹細胞を破砕処理して得られた破砕液
(c)(b)の破砕液を遠心処理して得られた上清 3. 3. Another Composition of the Skin Protective Agent In another aspect of the present invention, the filtrate contains at least one selected from the group consisting of the following (a) to (c) to constitute the skin protective agent of the present invention. You may.
(a) Adipose tissue-derived stem cells (b) Crushed solution obtained by crushing adipose tissue-derived stem cells (c) Supernatant obtained by centrifuging the crushed solution of (b)
皮膚保護剤中の上記(a)~(c)の含有は、上記(a)~(c)をそれぞれ単離後、本発明の濾液と混合してもよいし、本発明の濾液と同時に投与してもよい。
The above (a) to (c) may be contained in the skin protective agent after isolating each of the above (a) to (c) and then mixed with the filtrate of the present invention, or administered at the same time as the filtrate of the present invention. You may.
本発明の皮膚保護剤に用いられるADRCの由来、即ち生物種は限定されないが、免疫拒絶の問題等を考慮すれば、ヒトの細胞を用いることが好ましい。
The origin of ADRC used in the skin protective agent of the present invention, that is, the species is not limited, but considering the problem of immune rejection and the like, it is preferable to use human cells.
本発明の皮膚保護剤に、製剤上許容される他の成分、例えば、ジメチルスルフォキシド(DMSO)や血清アルブミン等の保護剤、抗生物質、ビタミン類、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水などが含有されてもよい。
The skin protective agent of the present invention contains other components that are pharmaceutically acceptable, such as protective agents such as dimethylsulfoxide (DMSO) and serum albumin, antibiotics, vitamins, carriers, excipients, disintegrants, and buffers. Agents, emulsifiers, suspensions, soothing agents, stabilizers, preservatives, preservatives, saline and the like may be contained.
4.皮膚保護剤の製造方法
本発明の皮膚保護剤は、以下のステップ(1)~(3)によって製造することができる。
(1)凍結状態の脂肪組織由来幹細胞(ADRC)を破砕するステップ、
(2)ステップ(1)で得られた破砕液、又は該破砕液を遠心処理して得られた上清をフィルター処理し、濾液(FADRCL)を得るステップ、及び
(3)ステップ(2)で得られた濾液(FADRCL)を製剤化するステップ 4. Method for Producing Skin Protective Agent The skin protective agent of the present invention can be manufactured by the following steps (1) to (3).
(1) Steps to disrupt frozen adipose tissue-derived stem cells (ADRC),
(2) The crushed solution obtained in step (1) or the supernatant obtained by centrifuging the crushed solution is filtered to obtain a filtrate (FADRCL), and (3) in step (2). Step to formulate the obtained filtrate (FADRCL)
本発明の皮膚保護剤は、以下のステップ(1)~(3)によって製造することができる。
(1)凍結状態の脂肪組織由来幹細胞(ADRC)を破砕するステップ、
(2)ステップ(1)で得られた破砕液、又は該破砕液を遠心処理して得られた上清をフィルター処理し、濾液(FADRCL)を得るステップ、及び
(3)ステップ(2)で得られた濾液(FADRCL)を製剤化するステップ 4. Method for Producing Skin Protective Agent The skin protective agent of the present invention can be manufactured by the following steps (1) to (3).
(1) Steps to disrupt frozen adipose tissue-derived stem cells (ADRC),
(2) The crushed solution obtained in step (1) or the supernatant obtained by centrifuging the crushed solution is filtered to obtain a filtrate (FADRCL), and (3) in step (2). Step to formulate the obtained filtrate (FADRCL)
前記ステップ(1)に代えて、未凍結状態の脂肪組織由来幹細胞を超音波処理で破砕してもよい。
前記ステップ(1)~(3)は、前記凍結融解処理の条件を用いることができる。 Instead of the step (1), unfrozen adipose tissue-derived stem cells may be disrupted by sonication.
The conditions of the freeze-thaw treatment can be used in the steps (1) to (3).
前記ステップ(1)~(3)は、前記凍結融解処理の条件を用いることができる。 Instead of the step (1), unfrozen adipose tissue-derived stem cells may be disrupted by sonication.
The conditions of the freeze-thaw treatment can be used in the steps (1) to (3).
前記ステップ(1)に使用する脂肪組織由来幹細胞の調製は常法に従えばよい。脂肪組織由来幹細胞は各種用途に広く用いられており、当業者であれば文献や成書を参考にして容易に調製することができる。公的な細胞バンクから分譲された細胞や市販の細胞などを用いることにしてもよい。以下、細胞の調製法の例として、脂肪組織由来幹細胞の調製法(一例)を説明する。
The adipose tissue-derived stem cells used in step (1) may be prepared according to a conventional method. Adipose tissue-derived stem cells are widely used for various purposes, and can be easily prepared by those skilled in the art with reference to literature and books. You may use cells sold from a public cell bank, commercially available cells, or the like. Hereinafter, a method for preparing adipose tissue-derived stem cells (one example) will be described as an example of the method for preparing cells.
<脂肪組織由来幹細胞(ADRC)の調製法>
本発明において「脂肪組織由来幹細胞(ADRC)」とは、脂肪組織に含まれる体性幹細胞のことをいうが、多能性を維持している限りにおいて、当該体性幹細胞の培養(継代培養を含む)により得られる細胞も「脂肪組織由来幹細胞(ADRC)」に該当するものとする。通常、ADRCは、生体から分離された脂肪組織を出発材料とし、細胞集団(脂肪組織に由来する、ADRC以外の細胞を含む)を構成する細胞として「単離された状態」に調製される。ここでの「単離された状態」とは、その本来の環境(即ち生体の一部を構成した状態)から取り出された状態、即ち人為的操作によって本来の存在状態と異なる状態で存在していることを意味する。 <Preparation method for adipose tissue-derived stem cells (ADRC)>
In the present invention, "adipose tissue-derived stem cell (ADRC)" refers to somatic stem cells contained in adipose tissue, and as long as pluripotency is maintained, the somatic stem cells are cultured (passage culture). The cells obtained by (including) also fall under the category of "adipose tissue-derived stem cells (ADRC)". Normally, ADRC is prepared in an "isolated state" as cells constituting a cell population (including cells derived from adipose tissue and other than ADRC) using adipose tissue isolated from a living body as a starting material. The "isolated state" here means a state taken out from its original environment (that is, a state that constitutes a part of a living body), that is, a state different from the original existence state by human operation. Means that you are.
本発明において「脂肪組織由来幹細胞(ADRC)」とは、脂肪組織に含まれる体性幹細胞のことをいうが、多能性を維持している限りにおいて、当該体性幹細胞の培養(継代培養を含む)により得られる細胞も「脂肪組織由来幹細胞(ADRC)」に該当するものとする。通常、ADRCは、生体から分離された脂肪組織を出発材料とし、細胞集団(脂肪組織に由来する、ADRC以外の細胞を含む)を構成する細胞として「単離された状態」に調製される。ここでの「単離された状態」とは、その本来の環境(即ち生体の一部を構成した状態)から取り出された状態、即ち人為的操作によって本来の存在状態と異なる状態で存在していることを意味する。 <Preparation method for adipose tissue-derived stem cells (ADRC)>
In the present invention, "adipose tissue-derived stem cell (ADRC)" refers to somatic stem cells contained in adipose tissue, and as long as pluripotency is maintained, the somatic stem cells are cultured (passage culture). The cells obtained by (including) also fall under the category of "adipose tissue-derived stem cells (ADRC)". Normally, ADRC is prepared in an "isolated state" as cells constituting a cell population (including cells derived from adipose tissue and other than ADRC) using adipose tissue isolated from a living body as a starting material. The "isolated state" here means a state taken out from its original environment (that is, a state that constitutes a part of a living body), that is, a state different from the original existence state by human operation. Means that you are.
ADRCは、脂肪基質からの幹細胞の分離、洗浄、濃縮、培養等の工程を経て調製される。ADRCの調製法は特に限定されない。例えば公知の方法(Fraser JK et al.(2006), Fat tissue: an under appreciated source of stem cells for biotechnology. Trends in Biotechnology; Apr; 24(4): 150-4. Epub 2006 Feb 20. Review.; Zuk PA et al.(2002), Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell; Dec;13(12):4279-95.; Zuk PA et al.(2001), Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering; Apr; 7(2): 211-28.等が参考になる)に従ってADRCを調製することができる。また、脂肪組織からADRCを調製するための装置(例えば、Celution(登録商標)装置(サイトリ・セラピューティクス社、米国、サンディエゴ))が市販されており、当該装置を利用してADRCを調製してもよい。当該装置を利用すると、脂肪組織より、ADRCを含む細胞集団を分離できる(K. Lin. Et al. Cytotherapy(2008)Vol. 10, No.4, 417-426)。以下、ADRCの調製法の具体例を示す。
ADRC is prepared through steps such as separation, washing, concentration, and culture of stem cells from the adipose substrate. The method for preparing ADRC is not particularly limited. For example, a known method (Fraser JK et al. (2006), Fat tissue: an under applied source of stem cells for biotechnology. Trends in Biotechnology; Apr; 24 (4): 150-4. Epub 2006 Feb 20. Review .; Zuk PA et al. (2002), Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell; Dec; 13 (12): 4279-95 .; Zuk PA et al. (2001), Multilineage cells from ADRC can be prepared according to human adipose tissue: implications for cell-based therapies. Tissue Engineering; Apr; 7 (2): 211-28. Etc.). In addition, a device for preparing ADRC from adipose tissue (for example, a Celution (registered trademark) device (Cytoli Therapeutics, USA, San Diego)) is commercially available, and the device is used to prepare ADRC. May be. Using this device, cell populations containing ADRC can be separated from adipose tissue (K. Lin. Et al. Cytotherapy (2008) Vol. 10, No. 4, 417-426). Hereinafter, a specific example of the method for preparing ADRC will be shown.
(1)脂肪組織からの細胞集団の調製
脂肪組織は動物から切除、吸引などの手段で採取される。ここでの用語「動物」はヒト、及びヒト以外の哺乳動物(ペット動物、家畜、実験動物を含む。具体的には例えばサル、ブタ、ウシ、ウマ、ヤギ、ヒツジ、イヌ、ネコ、マウス、ラット、モルモット、ハムスター等)を含む。免疫拒絶の問題を回避するため、皮膚保護剤を適用する患者(レシピエント)から脂肪組織(自己脂肪組織)を採取することが好ましい。但し、同種の動物の脂肪組織(他家)又は異種動物の脂肪組織の使用を妨げるものではない。 (1) Preparation of cell population from adipose tissue Adipose tissue is collected from animals by means such as excision and suction. The term "animal" as used herein includes humans and non-human mammals (including pet animals, livestock, laboratory animals; specifically, for example, monkeys, pigs, cows, horses, goats, sheep, dogs, cats, mice, etc. Rats, mammals, hamsters, etc.) are included. In order to avoid the problem of immune rejection, it is preferable to collect adipose tissue (self-adipose tissue) from the patient (recipient) to whom the skin protective agent is applied. However, it does not prevent the use of adipose tissue (allogeneic) of animals of the same species or adipose tissue of different animals.
脂肪組織は動物から切除、吸引などの手段で採取される。ここでの用語「動物」はヒト、及びヒト以外の哺乳動物(ペット動物、家畜、実験動物を含む。具体的には例えばサル、ブタ、ウシ、ウマ、ヤギ、ヒツジ、イヌ、ネコ、マウス、ラット、モルモット、ハムスター等)を含む。免疫拒絶の問題を回避するため、皮膚保護剤を適用する患者(レシピエント)から脂肪組織(自己脂肪組織)を採取することが好ましい。但し、同種の動物の脂肪組織(他家)又は異種動物の脂肪組織の使用を妨げるものではない。 (1) Preparation of cell population from adipose tissue Adipose tissue is collected from animals by means such as excision and suction. The term "animal" as used herein includes humans and non-human mammals (including pet animals, livestock, laboratory animals; specifically, for example, monkeys, pigs, cows, horses, goats, sheep, dogs, cats, mice, etc. Rats, mammals, hamsters, etc.) are included. In order to avoid the problem of immune rejection, it is preferable to collect adipose tissue (self-adipose tissue) from the patient (recipient) to whom the skin protective agent is applied. However, it does not prevent the use of adipose tissue (allogeneic) of animals of the same species or adipose tissue of different animals.
脂肪組織として皮下脂肪、内臓脂肪、筋肉内脂肪、筋肉間脂肪を例示できる。この中でも皮下脂肪は局所麻酔下で非常に簡単に採取できるため、採取の際のドナーへの負担が少なく、好ましい細胞源といえる。通常は一種類の脂肪組織を用いるが、二種類以上の脂肪組織を併用することも可能である。また、複数回に分けて採取した脂肪組織(同種の脂肪組織でなくてもよい)を混合し、以降の操作に使用してもよい。脂肪組織の採取量は、ドナーの種類や組織の種類、或いは必要とされるADRCの量を考慮して定めることができ、例えば0.5~500g程度である。但し、ドナーへの負担を考慮して一度に採取する量を約10~20g以下にすることが好ましい。採取した脂肪組織は、必要に応じてそれに付着した血液成分の除去及び細片化を経た後、以下の酵素処理に供される。なお、脂肪組織を適当な緩衝液や培養液中で洗浄することによって血液成分を除去することができる。
Examples of adipose tissue include subcutaneous fat, visceral fat, intramuscular fat, and intermuscular fat. Of these, subcutaneous fat can be collected very easily under local anesthesia, so that the burden on the donor during collection is small and it can be said to be a preferable cell source. Normally, one type of adipose tissue is used, but it is also possible to use two or more types of adipose tissue in combination. In addition, adipose tissue collected in a plurality of times (not necessarily the same type of adipose tissue) may be mixed and used for subsequent operations. The amount of adipose tissue collected can be determined in consideration of the type of donor, the type of tissue, or the amount of ADRC required, and is, for example, about 0.5 to 500 g. However, considering the burden on the donor, it is preferable that the amount collected at one time is about 10 to 20 g or less. The collected adipose tissue is subjected to the following enzymatic treatment after undergoing removal and fragmentation of blood components adhering to the collected adipose tissue as necessary. The blood component can be removed by washing the adipose tissue in an appropriate buffer solution or culture solution.
酵素処理は、脂肪組織をコラゲナーゼ、トリプシン、ディスパーゼ等の酵素によって消化することにより行う。このような酵素処理は当業者に既知の手法及び条件により実施すればよい(例えば、R. I. Freshney, Culture of Animal Cells: A Manual of Basic Technique, 4th Edition, A John Wiley & Sones Inc., Publication参照)。以上の酵素処理によって得られた細胞集団は、多能性幹細胞、内皮細胞、間質細胞、血球系細胞、及び/又はこれらの前駆細胞等を含む。細胞集団を構成する細胞の種類や比率などは、使用した脂肪組織の由来や種類に依存する。
Enzyme treatment is performed by digesting adipose tissue with enzymes such as collagenase, trypsin, and dispase. Such enzyme treatment may be carried out by a method and conditions known to those skilled in the art (for example, R.I. Freshney, Culture of Animal Cells: A Manual of Basic Technique, 4th Edition, A John Wiley & Sones Inc., See Publication). The cell population obtained by the above enzymatic treatment includes pluripotent stem cells, endothelial cells, stromal cells, blood cell lineage cells, and / or progenitor cells thereof. The types and proportions of cells that make up the cell population depend on the origin and type of adipose tissue used.
(2)沈降細胞集団(SVF画分:stromal vascular fractions)の取得
細胞集団は続いて遠心処理に供される。遠心処理による沈渣を沈降細胞集団(本明細書では「SVF画分」ともいう。)として回収する。遠心処理の条件は、細胞の種類や量によって異なるが、例えば1~10分間、800~1500rpmである。なお、遠心処理に先立ち、酵素処理後の細胞集団を濾過等に供し、その中に含まれる酵素未消化組織等を除去しておくことが好ましい。 (2) Acquisition of sedimented cell population (SVF fraction: stromal vascular fractions) The cell population is subsequently subjected to centrifugation. The sediment from centrifugation is collected as a sedimented cell population (also referred to as "SVF fraction" in the present specification). The conditions for centrifugation vary depending on the type and amount of cells, but are, for example, 1 to 10 minutes and 800 to 1500 rpm. Prior to the centrifugation, it is preferable that the cell population after the enzyme treatment is subjected to filtration or the like to remove the enzyme-undigested tissue or the like contained therein.
細胞集団は続いて遠心処理に供される。遠心処理による沈渣を沈降細胞集団(本明細書では「SVF画分」ともいう。)として回収する。遠心処理の条件は、細胞の種類や量によって異なるが、例えば1~10分間、800~1500rpmである。なお、遠心処理に先立ち、酵素処理後の細胞集団を濾過等に供し、その中に含まれる酵素未消化組織等を除去しておくことが好ましい。 (2) Acquisition of sedimented cell population (SVF fraction: stromal vascular fractions) The cell population is subsequently subjected to centrifugation. The sediment from centrifugation is collected as a sedimented cell population (also referred to as "SVF fraction" in the present specification). The conditions for centrifugation vary depending on the type and amount of cells, but are, for example, 1 to 10 minutes and 800 to 1500 rpm. Prior to the centrifugation, it is preferable that the cell population after the enzyme treatment is subjected to filtration or the like to remove the enzyme-undigested tissue or the like contained therein.
ここで得られた「SVF画分」はADRCを含む。なお、SVF画分を構成する細胞の種類や比率などは、使用した脂肪組織の由来や種類、酵素処理の条件などに依存する。また、国際公開第2006/006692A1号パンフレットにはSVF画分の特徴が示されている。
The "SVF fraction" obtained here includes ADRC. The type and ratio of cells constituting the SVF fraction depend on the origin and type of adipose tissue used, the conditions of enzyme treatment, and the like. In addition, the pamphlet of International Publication No. 2006/006692A1 shows the characteristics of the SVF fraction.
(3)接着性細胞(ADRC)の選択培養及び細胞の回収
SVF画分にはADRCの他、他の細胞成分(内皮細胞、間質細胞、血球系細胞、これらの前駆細胞等)が含まれる。そこで本発明の一態様では以下の選択培養を行い、SVF画分から不要な細胞成分を除去する。そして、その結果得られた細胞をADRCとして本発明に用いる。 (3) Selective culture of adhesive cells (ADRC) and cell recovery The SVF fraction contains ADRC and other cell components (endothelial cells, stromal cells, blood cell lineage cells, precursor cells thereof, etc.). .. Therefore, in one aspect of the present invention, the following selective culture is performed to remove unnecessary cellular components from the SVF fraction. Then, the cells obtained as a result are used as ADRC in the present invention.
SVF画分にはADRCの他、他の細胞成分(内皮細胞、間質細胞、血球系細胞、これらの前駆細胞等)が含まれる。そこで本発明の一態様では以下の選択培養を行い、SVF画分から不要な細胞成分を除去する。そして、その結果得られた細胞をADRCとして本発明に用いる。 (3) Selective culture of adhesive cells (ADRC) and cell recovery The SVF fraction contains ADRC and other cell components (endothelial cells, stromal cells, blood cell lineage cells, precursor cells thereof, etc.). .. Therefore, in one aspect of the present invention, the following selective culture is performed to remove unnecessary cellular components from the SVF fraction. Then, the cells obtained as a result are used as ADRC in the present invention.
まず、SVF画分を適当な培地に懸濁した後、培養皿に播種し、一晩培養する。培地交換によって浮遊細胞(非接着性細胞)を除去する。その後、適宜培地交換(例えば2~4日に一度)をしながら培養を継続する。必要に応じて継代培養を行う。継代数は特に限定されないが、多能性と増殖能力の維持の観点からは過度に継代を繰り返すことは好ましくない(5継代程度までに留めておくことが好ましい)。なお、培養用の培地には、通常の動物細胞培養用の培地を使用することができる。例えば、Dulbecco's modified Eagle's Medium(DMEM)(日水製薬株式会社等)、α-MEM(大日本製薬株式会社等)、DMEM:Ham'sF12混合培地(1:1)(大日本製薬株式会社等)、Ham'sF12medium(大日本製薬株式会社等)、MCDB201培地(機能性ペプチド研究所)等を使用することができる。血清(ウシ胎仔血清、ヒト血清、羊血清など)又は血清代替物(Knockout serum replacement(KSR)など)を添加した培地を使用することにしてもよい。血清又は血清代替物の添加量は例えば5%(v/v)~30%(v/v)の範囲内で設定可能である。
First, the SVF fraction is suspended in an appropriate medium, then sown in a culture dish and cultured overnight. Floating cells (non-adhesive cells) are removed by media exchange. After that, the culture is continued while appropriately exchanging the medium (for example, once every 2 to 4 days). Perform subculture if necessary. The number of passages is not particularly limited, but it is not preferable to repeat the passages excessively from the viewpoint of maintaining pluripotency and proliferative ability (preferably limited to about 5 passages). As the culture medium, a normal animal cell culture medium can be used. For example, Dulbecco's modified Eagle's Medium (DMEM) (Nissui Pharmaceutical Co., Ltd., etc.), α-MEM (Dainippon Pharmaceutical Co., Ltd., etc.), DMEM: Ham's F12 mixed medium (1: 1) (Dainippon Pharmaceutical Co., Ltd., etc.) , Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd., etc.), MCDB201 medium (Functional Peptide Laboratory), etc. can be used. A medium supplemented with serum (fetal bovine serum, human serum, sheep serum, etc.) or serum substitute (Knockout serum replacement (KSR), etc.) may be used. The amount of serum or serum substitute added can be set, for example, in the range of 5% (v / v) to 30% (v / v).
以上の操作によって接着性細胞が選択的に生存・増殖する。続いて、増殖した細胞を回収する。回収操作は常法に従えばよく、例えば酵素処理(トリプシンやディスパーゼ処理)後の細胞をセルスクレイパーやピペットなどで剥離することによって容易に回収することができる。また、市販の温度感受性培養皿などを用いてシート培養した場合は、酵素処理をせずにそのままシート状に細胞を回収することも可能である。このようにして回収した細胞(ADRC)を用いることにより、ADRCを高純度で含有する細胞集団を調製することができる。
Adhesive cells selectively survive and proliferate by the above operations. Subsequently, the proliferated cells are collected. The recovery operation may be performed according to a conventional method, and cells after enzymatic treatment (trypsin or dispase treatment) can be easily recovered by exfoliating them with a cell scraper or a pipette. Further, when the sheet is cultured using a commercially available temperature-sensitive culture dish or the like, it is possible to collect the cells as they are in the form of a sheet without enzyme treatment. By using the cells (ADRC) recovered in this way, a cell population containing ADRC with high purity can be prepared.
(4)低血清培養(低血清培地での選択培養)及び細胞の回収
本発明の一態様では、上記(3)の操作の代わりに又は上記(3)の操作の後に以下の低血清培養を行う。そして、その結果得られた細胞をADRCとして本発明に用いる。 (4) Low-serum culture (selective culture in low-serum medium) and cell recovery In one aspect of the present invention, the following low-serum culture is performed in place of the above-mentioned operation (3) or after the above-mentioned (3) operation. conduct. Then, the cells obtained as a result are used as ADRC in the present invention.
本発明の一態様では、上記(3)の操作の代わりに又は上記(3)の操作の後に以下の低血清培養を行う。そして、その結果得られた細胞をADRCとして本発明に用いる。 (4) Low-serum culture (selective culture in low-serum medium) and cell recovery In one aspect of the present invention, the following low-serum culture is performed in place of the above-mentioned operation (3) or after the above-mentioned (3) operation. conduct. Then, the cells obtained as a result are used as ADRC in the present invention.
低血清培養では、SVF画分((3)の後にこの工程を実施する場合には(3)で回収した細胞を用いる)を低血清条件下で培養し、目的の多能性幹細胞(即ちADRC)を選択的に増殖させる。低血清培養法では用いる血清が少量で済むことから、本発明の方法で得られたADRCを治療目的に使用する場合、対象(患者)自身の血清を使用することが可能となる。即ち、自己血清を用いた培養が可能となる。ここでの「低血清条件下」とは5%以下の血清を培地中に含む条件である。好ましくは2%(V/V)以下の血清を含む培養液中で細胞培養する。更に好ましくは、2%(V/V)以下の血清と1~100ng/mlの線維芽細胞増殖因子-2(bFGF)を含有する培養液中で細胞培養する。
In low serum culture, the SVF fraction (using the cells recovered in (3) when performing this step after (3)) is cultured under low serum conditions and the desired pluripotent stem cells (ie, ADRC). ) Is selectively propagated. Since the low serum culture method requires only a small amount of serum, when the ADRC obtained by the method of the present invention is used for therapeutic purposes, the serum of the subject (patient) itself can be used. That is, it is possible to culture using self-serum. The "low serum condition" here is a condition in which 5% or less of serum is contained in the medium. Cell culture is preferably carried out in a culture medium containing 2% (V / V) or less of serum. More preferably, cells are cultured in a culture medium containing 2% (V / V) or less serum and 1 to 100 ng / ml fibroblast growth factor-2 (bFGF).
血清は、ヒトの治療に使用する場合には、好ましくはヒト血清、更に好ましくは治療対象の血清(即ち自己血清)を用いる。
When used for human treatment, the serum is preferably human serum, more preferably serum to be treated (that is, autologous serum).
培地は、使用の際に含有する血清量が低いことを条件として、通常の動物細胞培養用の培地を使用することができる。例えば、Dulbecco's modified Eagle's Medium(DMEM)(日水製薬株式会社等)、α-MEM(大日本製薬株式会社等)、DMEM: Ham's F12混合培地(1:1)(大日本製薬株式会社等)、Ham's F12 medium(大日本製薬株式会社等)、MCDB201培地(機能性ペプチド研究所)等を使用することができる。
As the medium, a normal medium for culturing animal cells can be used, provided that the amount of serum contained at the time of use is low. For example, Dulbecco's modified Eagle's Medium (DMEM) (Nissui Pharmaceutical Co., Ltd., etc.), α-MEM (Dainippon Pharmaceutical Co., Ltd., etc.), DMEM: Ham's F12 mixed medium (1: 1) (Dainippon Pharmaceutical Co., Ltd., etc.), Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd., etc.), MCDB201 medium (Functional Peptide Laboratory), etc. can be used.
以上の方法で培養することによって、多能性幹細胞(ADRC)を選択的に増殖させることができる。また、上記の培養条件で増殖する多能性幹細胞(ADRC)は高い増殖活性を持つので、継代培養によって、本発明に必要とされる数の細胞を容易に調製することができる。なお、国際公開第2006/006692A1号パンフレットには、SVF画分を低血清培養することによって選択的に増殖する細胞の特徴が示されている。
Pluripotent stem cells (ADRC) can be selectively proliferated by culturing by the above method. In addition, since pluripotent stem cells (ADRC) that proliferate under the above culture conditions have high proliferative activity, the number of cells required for the present invention can be easily prepared by subculture. In addition, the pamphlet of International Publication No. 2006/006692A1 shows the characteristics of cells that selectively proliferate by culturing the SVF fraction with low serum.
続いて、上記の低血清培養によって選択的に増殖した細胞を回収する。回収操作は上記(3)の場合と同様に行えばよい。回収した細胞(ADRC)を用いることにより、ADRCを高純度で含有する細胞集団を得ることができる。
Subsequently, the cells selectively proliferated by the above low serum culture are collected. The collection operation may be performed in the same manner as in the case of (3) above. By using the recovered cells (ADRC), a cell population containing ADRC with high purity can be obtained.
以上の方法では、SVF画分を低血清培養して増殖した細胞が利用に供されることになるが、脂肪組織から得た細胞集団を直接(SVF画分を得るための遠心処理を介することなく)低血清培養することによって増殖した細胞をADRCとして用いることにしてもよい。即ち本発明の一態様では、脂肪組織から得た細胞集団を低血清培養したときに増殖した細胞をADRCとして用いる。また、選択培養(上記(3)及び(4))によって得られる多能性幹細胞ではなく、SVF画分(脂肪組織由来幹細胞を含有する)をそのまま用いることにしてもよい。なお、ここでの「そのまま用いて」とは、選択培養を経ることなく本発明に用いること、を意味する。
In the above method, cells grown by culturing the SVF fraction with low serum are used, but the cell population obtained from adipose tissue is directly (via centrifugation to obtain the SVF fraction). Cells proliferated by low serum culture may be used as ADRC. That is, in one aspect of the present invention, cells proliferated when a cell population obtained from adipose tissue is cultured at low serum are used as ADRC. Further, instead of the pluripotent stem cells obtained by selective culture ((3) and (4) above), the SVF fraction (containing adipose tissue-derived stem cells) may be used as it is. The term "used as it is" here means that it is used in the present invention without undergoing selective culture.
5.創傷部位の治療剤の用途
本明細書で「創傷」とは、皮膚及び/又は下部結合組織の、疾患、障害、症候群、異常、病理、例えば、手術後の皮膚外傷、機械的外傷による皮膚挫傷、腐蝕薬又は火傷、感染又は薬剤治療後における粘膜創傷、糖尿病創傷、移植手術後の皮膚外傷及び血管形成術後の血管の再成長によって特徴づけられる全ての障害を含む。 5. Uses of Wound Treatment Agents As used herein, a "wound" is a disease, disorder, syndrome, abnormality, pathology of the skin and / or lower connective tissue, such as post-surgical skin trauma, skin contusion due to mechanical trauma. Includes all disorders characterized by erosive or burns, mucosal wounds after infection or drug treatment, diabetic wounds, skin trauma after transplant surgery and vascular regrowth after angiogenesis.
本明細書で「創傷」とは、皮膚及び/又は下部結合組織の、疾患、障害、症候群、異常、病理、例えば、手術後の皮膚外傷、機械的外傷による皮膚挫傷、腐蝕薬又は火傷、感染又は薬剤治療後における粘膜創傷、糖尿病創傷、移植手術後の皮膚外傷及び血管形成術後の血管の再成長によって特徴づけられる全ての障害を含む。 5. Uses of Wound Treatment Agents As used herein, a "wound" is a disease, disorder, syndrome, abnormality, pathology of the skin and / or lower connective tissue, such as post-surgical skin trauma, skin contusion due to mechanical trauma. Includes all disorders characterized by erosive or burns, mucosal wounds after infection or drug treatment, diabetic wounds, skin trauma after transplant surgery and vascular regrowth after angiogenesis.
本明細書で「治療剤」とは、創傷や皮膚の機能低下に対する治療的効果を示す医薬のことをいう。治療的効果には、創傷や褥瘡など皮膚の物理的損傷に特徴的な症状(病態)又は随伴症状を緩和すること(軽症化)、症状の悪化を阻止ないし遅延すること等が含まれる。後者については、皮膚の機能低下を予防するという点において予防的効果の一つと捉えることができる。予防的効果の典型的なものは、標的疾患に特徴的な症状の再発を阻止ないし遅延することである。なお、標的疾患に対して何らかの治療的効果又は予防的効果、あるいはこの両者を示す限り、標的疾患に対する治療剤に該当する。
As used herein, the term "therapeutic agent" refers to a drug that has a therapeutic effect on wounds and skin dysfunction. The therapeutic effects include alleviating the symptoms (pathological conditions) or associated symptoms characteristic of physical damage to the skin such as wounds and pressure ulcers (mitigation), and preventing or delaying the worsening of the symptoms. The latter can be regarded as one of the preventive effects in terms of preventing the deterioration of skin function. Typical of the prophylactic effect is to prevent or delay the recurrence of symptoms characteristic of the target disease. In addition, as long as it shows some therapeutic effect, preventive effect, or both of them, it corresponds to a therapeutic agent for a target disease.
創傷治癒過程は大きく、炎症反応期、増殖期、再構成期の3段階に分けられる。この過程では、ヒートショックプロテインや、パラクライン因子等が、ケラチノサイト、線維芽細胞、内皮細胞などに作用することで皮膚の再生が促進される。以下、具体的に述べる。
The wound healing process is broadly divided into three stages: inflammatory reaction stage, proliferation stage, and reconstitution stage. In this process, heat shock proteins, paracrine factors, and the like act on keratinocytes, fibroblasts, endothelial cells, and the like to promote skin regeneration. Hereinafter, it will be described in detail.
皮膚が損傷を受けると、炎症反応期において、血液凝固時の血小板及び破壊された細胞の細胞膜から様々な化学物質が放出され、これらの化学物質が周囲の組織に浸透して、マクロファージから異変が起こったというシグナルが送られる。
When the skin is damaged, various chemicals are released from the platelets during blood coagulation and the cell membrane of the destroyed cells during the inflammatory reaction phase, and these chemicals permeate the surrounding tissues and cause abnormalities from macrophages. A signal that it has happened is sent.
次に、増殖期においては、マクロファージから放出された物質が刺激となり、線維芽細胞が呼び寄せられ、修復の主な材料であるコラーゲンが生み出される。また、繊維芽細胞から産生したコラーゲンに支えられて毛細血管が発達し、毛細血管に流れ込む新鮮な血液が線維芽細胞に栄養や酸素を供給し、更にコラーゲンの産出を促すという自己増殖のサイクルが構成される。このように、コラーゲンは創傷治癒過程において重要な役割を果たす。
Next, in the proliferative phase, the substance released from macrophages stimulates fibroblasts to be attracted to produce collagen, which is the main material for repair. In addition, the capillaries develop supported by collagen produced from fibroblasts, and the fresh blood flowing into the capillaries supplies nutrients and oxygen to the fibroblasts, further promoting the production of collagen, which is a cycle of self-proliferation. It is composed. Thus, collagen plays an important role in the wound healing process.
ところで、創傷治癒における脂肪組織由来幹細胞(ADRC)投与の効果に関しては、2系統あるとされる。一つは、ADRCそのものが各種細胞に分化することで創傷が治癒する系統である。もう一つは、ADRCから分泌される各種パラクライン因子等が、各種細胞に作用し皮膚の再生が促進され、あるいはパラクライン因子等が抗炎症効果を発揮することで創傷の治癒が促進される系統である。パラクライン因子等が各種細胞に作用する効果に関しては、骨髄由来幹細胞など脂肪組織由来幹細胞以外の幹細胞でも提唱されている。しかし、これまで、どの幹細胞が最も効果的な作用を示すのか、また、どの程度の濃度が最も効果的であるのか、どのようなものを併用してよいのかに関しては、十分に明らかにされていなかった。
By the way, regarding the effect of adipose tissue-derived stem cell (ADRC) administration on wound healing, it is said that there are two systems. One is a system in which wounds heal by differentiating ADRC itself into various cells. The other is that various paracrine factors secreted from ADRC act on various cells to promote skin regeneration, or paracrine factors and the like exert anti-inflammatory effects to promote wound healing. It is a system. Regarding the effect of paraclaline factor and the like on various cells, it has been proposed for stem cells other than adipose tissue-derived stem cells such as bone marrow-derived stem cells. However, so far, it has been fully clarified which stem cells show the most effective action, what concentration is the most effective, and what kind of combination can be used. There wasn't.
本発明者らは、マウス創傷治癒モデルを用いて、脂肪組織由来幹細胞と、骨髄由来幹細胞などの他の幹細胞とを比較し、脂肪組織由来幹細胞(ADRC)の優位性を発見した。また、脂肪組織由来幹細胞破砕液の濾液(FADRCL)と、脂肪組織由来幹細胞(ADRC)自体及び脂肪組織由来幹細胞の分泌物を含む培養上清(ADRC-CM)とを比較し、本発明の濾液(FADRCL)の優位性を発見した。実施例で詳細に述べる。
The present inventors compared adipose tissue-derived stem cells with other stem cells such as bone marrow-derived stem cells using a mouse wound healing model, and discovered the superiority of adipose tissue-derived stem cells (ADRC). Further, the filtrate of the adipose tissue-derived stem cell disruption solution (FADRCL) was compared with the culture supernatant (ADRC-CM) containing the adipose tissue-derived stem cells (ADRC) itself and the secretions of the adipose tissue-derived stem cells, and the filtrate of the present invention was compared. Discovered the superiority of (FADRCL). It will be described in detail in Examples.
<投与方法>
創傷治癒に用いられる皮膚保護剤は、通常、創傷、褥瘡の患者に対して投与されるが、その効果を確認・検証する実験ないし研究目的で皮膚保護剤を使用してもよい。 <Administration method>
The skin protectant used for wound healing is usually administered to patients with wounds and pressure ulcers, but the skin protectant may be used for experimental or research purposes to confirm and verify its effect.
創傷治癒に用いられる皮膚保護剤は、通常、創傷、褥瘡の患者に対して投与されるが、その効果を確認・検証する実験ないし研究目的で皮膚保護剤を使用してもよい。 <Administration method>
The skin protectant used for wound healing is usually administered to patients with wounds and pressure ulcers, but the skin protectant may be used for experimental or research purposes to confirm and verify its effect.
創傷治癒に用いられる皮膚保護剤は、好ましくは患部への局所注入又は塗布により投与される。注入又は塗布部位は、典型的には創傷又は褥瘡部位であるが、その周辺部に注入又は塗布することにしてもよい。また、二以上の注入部位又は塗布部位に同時又は時間間隔をおいて投与してもよい。
The skin protectant used for wound healing is preferably administered by local injection or application to the affected area. The injection or application site is typically a wound or pressure ulcer site, but may be injected or applied to the periphery thereof. In addition, it may be administered to two or more injection sites or application sites at the same time or at intervals of time.
皮膚保護剤の投与量(注入又は塗布量)の例を示すと、例えば、1×105個/ml~1×106個/mlの脂肪組織由来幹細胞から作成された濾液を含む皮膚保護剤0.5cc~2.0cc、好ましくは0.8cc~1.5ccを例示できる。1回で全量を投与するのではなく、注入又は塗布箇所をずらし、複数回に分けて投与してもよい。
An example of the dose (injection or application amount) of the skin protective agent is as follows. For example, a skin protective agent containing a filtrate prepared from 1 × 10 5 cells / ml to 1 × 10 6 cells / ml adipose tissue-derived stem cells. Examples thereof are 0.5 cc to 2.0 cc, preferably 0.8 cc to 1.5 cc. Instead of administering the entire dose at one time, the injection or application site may be staggered and administered in multiple doses.
投与スケジュールは、対象(患者)の性別、年齢、体重、病態などを考慮して作成すればよい。単回投与の他、連続的又は定期的に複数回投与することにしてもよい。複数回投与する際の投与間隔は特に限定されず、1日~14日を例示できる。また、投与回数も特に限定されない。投与回数は、1日1回~4回を例示できる。投与方法は、創傷部位に、局所注入又は軟膏として塗布する方法、更には液体若しくは粉体としてスプレーなどで散布する方法を例示できる。
The administration schedule may be created in consideration of the gender, age, body weight, pathological condition, etc. of the subject (patient). In addition to a single dose, multiple doses may be administered continuously or periodically. The administration interval when multiple doses are administered is not particularly limited, and 1 to 14 days can be exemplified. Further, the number of administrations is not particularly limited. The number of administrations can be exemplified once to four times a day. Examples of the administration method include a method of locally injecting or applying as an ointment to the wound site, and a method of spraying as a liquid or powder.
6.化粧料の用途6. Uses of cosmetics
図1に示すとおり、皮膚は表皮角化細胞(ケラチノサイト)により構成される表皮と、コラーゲン、エラスチンなどの細胞外マトリックス(extracellular matrix(以下「ECM」ともいう。))と、それらを産生する線維芽細胞などにより構成される真皮とからなり、生体内部の保護、体温調節など様々な役割を果たしている。皮膚は、ECMにより支えられており、加齢とともに皮膚機能が低下し、ECM発現量が減少すると、しわ・たるみの原因になる。この皮膚症状を改善する方法として、従来はコラーゲンを配合した化粧料を肌に直接塗布することが主な方法であったが、その効果は一過性であった。
As shown in FIG. 1, the skin consists of an epidermis composed of epidermal keratinocytes, extracellular matrix such as collagen and elastin (extracellular matrix (hereinafter also referred to as “ECM”)), and fibers producing them. It consists of the dermal skin, which is composed of blast cells, and plays various roles such as protecting the inside of the living body and regulating body temperature. The skin is supported by ECM, and when the skin function decreases with aging and the ECM expression level decreases, it causes wrinkles and sagging. Conventionally, as a method for improving this skin symptom, a cosmetic containing collagen has been directly applied to the skin, but the effect has been transient.
皮膚の真皮に存在する線維芽細胞は、コラーゲンやエラスチンなどの細胞外マトリックス(ECM)を産生する。このため、線維芽細胞のコラーゲン産生能を増進することが、皮膚の張りを維持し、しわ・たるみの予防に重要である。
Fibroblasts present in the dermis of the skin produce extracellular matrix (ECM) such as collagen and elastin. Therefore, it is important to enhance the collagen-producing ability of fibroblasts to maintain skin tension and prevent wrinkles and sagging.
HSP47(heat shock protein 47)は、線維芽細胞によって産生されたコラーゲン線維が三重螺旋を形成し、成熟コラーゲンとなることを助ける働きを担っていることは、上述のとおりである。そこで、HSP47を線維芽細胞に発現させれば、成熟コラーゲンの産生量が亢進すると考えられる(特許文献2。永田和宏著、「コラーゲン特異的分子シャペロンHSP47と繊維化疾患治療戦略」、日薬理誌121.4~14 2003)。
As mentioned above, HSP47 (heat shock protein 47) plays a role in helping collagen fibers produced by fibroblasts to form a triple helix and become mature collagen. Therefore, if HSP47 is expressed in fibroblasts, the production of mature collagen is considered to be enhanced (Patent Document 2. Kazuhiro Nagata, "Collagen-specific molecular chaperone HSP47 and fibroblast treatment strategy", Nikkei Journal. 121.4-14 2003).
また、皮膚にダメージを与える紫外線(UV)は、波長の違いによりUVA(320-400nm)、UVB(290-320nm)、UVC(100-290nm)に分類されるが、中でもUVBは、真皮上部に達し、細胞傷害性が高く、皮膚に光老化を及ぼすことが知られる。
Ultraviolet rays (UV) that damage the skin are classified into UVA (320-400nm), UVB (290-320nm), and UVC (100-290nm) according to the difference in wavelength. Among them, UVB is on the upper part of the dermis. It is known to reach, be highly cytotoxic, and cause photoaging on the skin.
光老化を抑制するために、一般にサンスクリーン剤が使用されている。サンスクリーン剤は、光老化の原因となるUVを遮断するため、光老化対策としては高い効果が期待できるが、汗などによってサンスクリーン剤が流れ落ちた場合は、皮膚が無防備になってしまうという課題があった。
Sunscreen agents are generally used to suppress photoaging. Since sunscreens block UV rays that cause photoaging, they can be expected to be highly effective as a countermeasure against photoaging, but if the sunscreens run off due to sweat, etc., the skin becomes unprotected. was there.
HSP70(heat shock protein 70)は、皮膚の保護(細胞保護)効果、炎症反応の抑制効果、DNA傷害抑制効果を有するとされる。HSP70を表皮細胞に発現させれば、UVBによる皮膚傷害や細胞死が抑制される可能j性がある(松田実著、「光老化に対するHSP70の保護効果」、熊本大学大学院薬学教育部 分子機能薬学専攻 創薬化学講座 薬学微生物学分野 平成23年度博士論文等)。
HSP70 (heat shock protein 70) is said to have a skin protection (cell protection) effect, an inflammatory reaction suppression effect, and a DNA damage suppression effect. If HSP70 is expressed in epidermal cells, UVB-induced skin damage and cell death may be suppressed (Matsuda Minoru, "Protective effect of HSP70 against photoaging", Kumamoto University Graduate School of Pharmaceutical Education, Molecular Function Pharmacy Major: Medicinal Chemistry Course, Pharmacy and Microbiology, 2011 Doctoral Thesis, etc.).
HSP70は、その細胞内濃度及び/又は活性を増加させる活性剤とともに用いることができる。活性剤としては、ヒートショックプロテインの小分子誘導因子、ヒドロキシルアミン誘導体(例えば、ビモクロモール、アリモクロモール、イロキサナジン及びBGP-15)などが挙げられる。
HSP70 can be used with an activator that increases its intracellular concentration and / or activity. Examples of the activator include small molecule inducers of heat shock proteins, hydroxylamine derivatives (eg, bimochromol, arimochromol, iroxanadine and BGP-15) and the like.
<投与方法>
皮膚保護剤として皮膚に塗布して使用できるほか、化粧料、浴用剤、皮下注射用剤としての剤形も目的に応じて任意に選択することができる。特に、化粧料として広く利用することが好ましく、クリーム、軟膏、乳液、溶液、ゲル、粉剤、顆粒剤等の剤形やパック、ローション、パウダー、スティック等の形態とすることができる。医薬品等としては、皮下注射用剤、軟膏剤等の形態に広く利用が可能である。 <Administration method>
In addition to being applied to the skin as a skin protective agent and used, the dosage form as a cosmetic, a bathing agent, or a subcutaneous injection agent can be arbitrarily selected according to the purpose. In particular, it is preferably widely used as a cosmetic, and can be in the form of a cream, ointment, milky lotion, solution, gel, powder, granule or the like, or in the form of a pack, lotion, powder, stick or the like. As pharmaceuticals and the like, it can be widely used in the form of subcutaneous injections, ointments and the like.
皮膚保護剤として皮膚に塗布して使用できるほか、化粧料、浴用剤、皮下注射用剤としての剤形も目的に応じて任意に選択することができる。特に、化粧料として広く利用することが好ましく、クリーム、軟膏、乳液、溶液、ゲル、粉剤、顆粒剤等の剤形やパック、ローション、パウダー、スティック等の形態とすることができる。医薬品等としては、皮下注射用剤、軟膏剤等の形態に広く利用が可能である。 <Administration method>
In addition to being applied to the skin as a skin protective agent and used, the dosage form as a cosmetic, a bathing agent, or a subcutaneous injection agent can be arbitrarily selected according to the purpose. In particular, it is preferably widely used as a cosmetic, and can be in the form of a cream, ointment, milky lotion, solution, gel, powder, granule or the like, or in the form of a pack, lotion, powder, stick or the like. As pharmaceuticals and the like, it can be widely used in the form of subcutaneous injections, ointments and the like.
以下、実施例を挙げて本発明の皮膚保護剤の創傷治療剤及び化粧料の用途を更に詳細に説明する。
Hereinafter, the use of the wound healing agent and cosmetics of the skin protective agent of the present invention will be described in more detail with reference to examples.
1.濾液中のHSP70、HSP47、HMGB1及びAnnexinA6の含有量1. 1. Content of HSP70, HSP47, HMGB1 and Annexin A6 in the filtrate
<試験1>
正常ヒト皮膚線維芽細胞(NHDF;Lonza)を用いて、本明細書で述べた方法により調整した濾液は、脂肪組織由来幹細胞 1×106個/mlの濃度のものを使用した。フィルター処理には、ポアサイズ0.2μmのセルロースアセテート製のフィルターを使用した。凍結融解処理は、同じ方法で凍結融解を3回行い、その都度各成分を計測した。濾液の成分量と比較するため、培養中の培地の上清を培養上清とし、その成分量を測定した。測定手技はすべて室温で行った。 <Test 1>
The filtrate prepared by the method described herein using normal human skin fibroblasts (NHDF; Lonza) was used at a concentration of 1 × 10 6 cells / ml of adipose tissue-derived stem cells. A cellulose acetate filter having a pore size of 0.2 μm was used for the filtering treatment. In the freeze-thaw treatment, freeze-thaw was performed three times by the same method, and each component was measured each time. In order to compare with the component amount of the filtrate, the supernatant of the medium being cultured was used as the culture supernatant, and the component amount was measured. All measurement procedures were performed at room temperature.
正常ヒト皮膚線維芽細胞(NHDF;Lonza)を用いて、本明細書で述べた方法により調整した濾液は、脂肪組織由来幹細胞 1×106個/mlの濃度のものを使用した。フィルター処理には、ポアサイズ0.2μmのセルロースアセテート製のフィルターを使用した。凍結融解処理は、同じ方法で凍結融解を3回行い、その都度各成分を計測した。濾液の成分量と比較するため、培養中の培地の上清を培養上清とし、その成分量を測定した。測定手技はすべて室温で行った。 <
The filtrate prepared by the method described herein using normal human skin fibroblasts (NHDF; Lonza) was used at a concentration of 1 × 10 6 cells / ml of adipose tissue-derived stem cells. A cellulose acetate filter having a pore size of 0.2 μm was used for the filtering treatment. In the freeze-thaw treatment, freeze-thaw was performed three times by the same method, and each component was measured each time. In order to compare with the component amount of the filtrate, the supernatant of the medium being cultured was used as the culture supernatant, and the component amount was measured. All measurement procedures were performed at room temperature.
<HSP70の定量>
Human HSP70 ELISA Kit BMS2087(invitrogen)(以下この項において「Kit」という。)を使用して濾液中の含有量を計測した。
(1)Kit内のマイクロプレートに50μlのSample Diluentと50μlの濾液をwellに入れた。Standard dilutionはKitに添付の説明書に従い調整した。
(2)粘着フィルムで覆い、室温で2時間置いた。
(3)well内の液を捨て、400μlのWash Bufferをwellに入れ、6回洗った。
(4)100μlのBiotin-Conjugateを加え、粘着フィルムで覆い室温で1時間置いた。
(5)well内の液を捨て400μlのWash Bufferをwellに入れ、6回洗った。
(6)100μlのStreptavidin-HRPをwellに入れ、粘着フィルムで覆い室温に30分置いた。
(7)well内の液を捨て400μlのWash Bufferをwellに入れ、6回洗った。
(8)100μlのTMB Substrate Solutionをwellに入れ、室温で30分置いた。
(9)100μlのStop Solution をwellに入れた。
(10)マイクロプレートリーダーで450nmの波長で吸光度を測定した。
(11)Standardの測定結果より、検量線を引き、検量線の数式に濾液の吸光度値を代入し、濃度を求めた。 <Quantitative HSP70>
The content in the filtrate was measured using the Human HSP70 ELISA Kit BMS2087 (invitrogen) (hereinafter referred to as “Kit” in this section).
(1) 50 μl of Sample Diluent and 50 μl of filtrate were placed in a well on a microplate in the Kit. Standard dilution was adjusted according to the instructions attached to the Kit.
(2) Covered with an adhesive film and left at room temperature for 2 hours.
(3) The liquid in the well was discarded, 400 μl of Wash Buffer was put into the well, and washed 6 times.
(4) 100 μl of Biotin-Conjugate was added, covered with an adhesive film, and left at room temperature for 1 hour.
(5) The liquid in the well was discarded, 400 μl of Wash Buffer was put into the well, and washed 6 times.
(6) 100 μl of Streptavidin-HRP was placed in a well, covered with an adhesive film, and left at room temperature for 30 minutes.
(7) The liquid in the well was discarded, 400 μl of Wash Buffer was put into the well, and washed 6 times.
(8) 100 μl of TMB Substrate Solution was placed in a well and left at room temperature for 30 minutes.
(9) 100 μl of Stop Solution was put into the well.
(10) Absorbance was measured at a wavelength of 450 nm with a microplate reader.
(11) From the measurement result of Standard, a calibration curve was drawn, and the absorbance value of the filtrate was substituted into the formula of the calibration curve to obtain the concentration.
Human HSP70 ELISA Kit BMS2087(invitrogen)(以下この項において「Kit」という。)を使用して濾液中の含有量を計測した。
(1)Kit内のマイクロプレートに50μlのSample Diluentと50μlの濾液をwellに入れた。Standard dilutionはKitに添付の説明書に従い調整した。
(2)粘着フィルムで覆い、室温で2時間置いた。
(3)well内の液を捨て、400μlのWash Bufferをwellに入れ、6回洗った。
(4)100μlのBiotin-Conjugateを加え、粘着フィルムで覆い室温で1時間置いた。
(5)well内の液を捨て400μlのWash Bufferをwellに入れ、6回洗った。
(6)100μlのStreptavidin-HRPをwellに入れ、粘着フィルムで覆い室温に30分置いた。
(7)well内の液を捨て400μlのWash Bufferをwellに入れ、6回洗った。
(8)100μlのTMB Substrate Solutionをwellに入れ、室温で30分置いた。
(9)100μlのStop Solution をwellに入れた。
(10)マイクロプレートリーダーで450nmの波長で吸光度を測定した。
(11)Standardの測定結果より、検量線を引き、検量線の数式に濾液の吸光度値を代入し、濃度を求めた。 <Quantitative HSP70>
The content in the filtrate was measured using the Human HSP70 ELISA Kit BMS2087 (invitrogen) (hereinafter referred to as “Kit” in this section).
(1) 50 μl of Sample Diluent and 50 μl of filtrate were placed in a well on a microplate in the Kit. Standard dilution was adjusted according to the instructions attached to the Kit.
(2) Covered with an adhesive film and left at room temperature for 2 hours.
(3) The liquid in the well was discarded, 400 μl of Wash Buffer was put into the well, and washed 6 times.
(4) 100 μl of Biotin-Conjugate was added, covered with an adhesive film, and left at room temperature for 1 hour.
(5) The liquid in the well was discarded, 400 μl of Wash Buffer was put into the well, and washed 6 times.
(6) 100 μl of Streptavidin-HRP was placed in a well, covered with an adhesive film, and left at room temperature for 30 minutes.
(7) The liquid in the well was discarded, 400 μl of Wash Buffer was put into the well, and washed 6 times.
(8) 100 μl of TMB Substrate Solution was placed in a well and left at room temperature for 30 minutes.
(9) 100 μl of Stop Solution was put into the well.
(10) Absorbance was measured at a wavelength of 450 nm with a microplate reader.
(11) From the measurement result of Standard, a calibration curve was drawn, and the absorbance value of the filtrate was substituted into the formula of the calibration curve to obtain the concentration.
<HSP47の定量>
Heat Shock Protein 47(SERPINH1) Human ELISA Kit ab108861(以下この項において「Kit」という。)を使用して濾液中の含有量を計測した。
(1)Kit内のマイクロプレートにStandard、zero controlと濾液を1well当たり50μl入れた。
(2)(1)にAssay Bufferを1well当たり50μlずつ入れ、シールをして2時間置いた。
(3)well内の液を捨て、200μlの1×Wash Bufferをwell入れ、5回洗いabsorbent paper towel で完全に拭き取った。
(4)50μlのHSP47-antibody conjugateをwell入れ、シールをして37℃で2時間置いた。
(5)50μlの1×SP Conjugate をwellに入れ、室温で30分置いた。
(6)マイクロプレートリーダーで450nmの波長で吸光度を測定した。
(7)Standardの測定結果より、検量線を引き、検量線の数式に濾液の吸光度値を代入し、濃度を求めた <Quantitative determination of HSP47>
The content in the filtrate was measured using Heat Shock Protein 47 (SERPINH1) Human ELISA Kit ab108861 (hereinafter referred to as “Kit” in this section).
(1) Standard, zero control and 50 μl of filtrate were placed in a microplate in the Kit.
(2) In (1), 50 μl of Assay Buffer was added per well, and the mixture was sealed and left for 2 hours.
(3) The liquid in the well was discarded, 200 μl of 1 × Wash Buffer was put in the well, washed 5 times, and completely wiped off with an absorbent paper towel.
(4) 50 μl of HSP47-antibody conjugate was put in a well, sealed, and left at 37 ° C for 2 hours.
(5) 50 μl of 1 × SP Conjugate was placed in a well and left at room temperature for 30 minutes.
(6) Absorbance was measured at a wavelength of 450 nm with a microplate reader.
(7) From the measurement result of Standard, a calibration curve was drawn, and the absorbance value of the filtrate was substituted into the formula of the calibration curve to obtain the concentration.
Heat Shock Protein 47(SERPINH1) Human ELISA Kit ab108861(以下この項において「Kit」という。)を使用して濾液中の含有量を計測した。
(1)Kit内のマイクロプレートにStandard、zero controlと濾液を1well当たり50μl入れた。
(2)(1)にAssay Bufferを1well当たり50μlずつ入れ、シールをして2時間置いた。
(3)well内の液を捨て、200μlの1×Wash Bufferをwell入れ、5回洗いabsorbent paper towel で完全に拭き取った。
(4)50μlのHSP47-antibody conjugateをwell入れ、シールをして37℃で2時間置いた。
(5)50μlの1×SP Conjugate をwellに入れ、室温で30分置いた。
(6)マイクロプレートリーダーで450nmの波長で吸光度を測定した。
(7)Standardの測定結果より、検量線を引き、検量線の数式に濾液の吸光度値を代入し、濃度を求めた <Quantitative determination of HSP47>
The content in the filtrate was measured using Heat Shock Protein 47 (SERPINH1) Human ELISA Kit ab108861 (hereinafter referred to as “Kit” in this section).
(1) Standard, zero control and 50 μl of filtrate were placed in a microplate in the Kit.
(2) In (1), 50 μl of Assay Buffer was added per well, and the mixture was sealed and left for 2 hours.
(3) The liquid in the well was discarded, 200 μl of 1 × Wash Buffer was put in the well, washed 5 times, and completely wiped off with an absorbent paper towel.
(4) 50 μl of HSP47-antibody conjugate was put in a well, sealed, and left at 37 ° C for 2 hours.
(5) 50 μl of 1 × SP Conjugate was placed in a well and left at room temperature for 30 minutes.
(6) Absorbance was measured at a wavelength of 450 nm with a microplate reader.
(7) From the measurement result of Standard, a calibration curve was drawn, and the absorbance value of the filtrate was substituted into the formula of the calibration curve to obtain the concentration.
<HMGB1の定量>
HMGB1 ELISA Kit ARG81351(Arigo Biolaboratories Corporation)(以下この項において「Kit」という。)を使用して濾液中の含有量を計測した。
(1)Kit内のマイクロプレートにStandard、zero controlと濾液を1well当たり50μl 入れた。
(2)(1)にAssay Bufferを1well当たり50μlずつ入れ、シールをして4℃で1晩置いた。
(3)well内の液を捨て、冷やした350μl の1×Wash Bufferをwellに入れ、3回洗浄した。
(4)100μlの1×HRP-antibody conjugateをwellに入れ、シールをして37℃で1時間置いた。
(5)(3)を繰り返した。
(6)100μlの1×TMB substrate をwellに入れ、室温で10分置いた。
(7)50μlの1×Stop solution をwellに入れた。
(8)マイクロプレートリーダーで450nmの波長で吸光度を測定した。
(9)Standardの測定結果より、検量線を引き、検量線の数式に濾液の吸光度値を代入し、濃度を求めた。 <Quantitative HMGB1>
The content in the filtrate was measured using the HMGB1 ELISA Kit ARG81351 (Arigo Biolaboratories Corporation) (hereinafter referred to as "Kit" in this section).
(1) Standard, zero control and 50 μl of filtrate were placed in a microplate in the Kit.
(2) 50 μl of Assay Buffer per well was added to (1), sealed, and left at 4 ° C. overnight.
(3) The liquid in the well was discarded, and 350 μl of chilled 1 × Wash Buffer was placed in the well and washed 3 times.
(4) A 100μl 1 × HRP-antibody conjugate was placed in a well, sealed, and left at 37 ° C for 1 hour.
(5) (3) was repeated.
(6) 100 μl of 1 × TMB substrate was placed in a well and left at room temperature for 10 minutes.
(7) 50 μl of 1 × Stop solution was put into the well.
(8) Absorbance was measured at a wavelength of 450 nm with a microplate reader.
(9) From the measurement result of Standard, a calibration curve was drawn, and the absorbance value of the filtrate was substituted into the formula of the calibration curve to obtain the concentration.
HMGB1 ELISA Kit ARG81351(Arigo Biolaboratories Corporation)(以下この項において「Kit」という。)を使用して濾液中の含有量を計測した。
(1)Kit内のマイクロプレートにStandard、zero controlと濾液を1well当たり50μl 入れた。
(2)(1)にAssay Bufferを1well当たり50μlずつ入れ、シールをして4℃で1晩置いた。
(3)well内の液を捨て、冷やした350μl の1×Wash Bufferをwellに入れ、3回洗浄した。
(4)100μlの1×HRP-antibody conjugateをwellに入れ、シールをして37℃で1時間置いた。
(5)(3)を繰り返した。
(6)100μlの1×TMB substrate をwellに入れ、室温で10分置いた。
(7)50μlの1×Stop solution をwellに入れた。
(8)マイクロプレートリーダーで450nmの波長で吸光度を測定した。
(9)Standardの測定結果より、検量線を引き、検量線の数式に濾液の吸光度値を代入し、濃度を求めた。 <Quantitative HMGB1>
The content in the filtrate was measured using the HMGB1 ELISA Kit ARG81351 (Arigo Biolaboratories Corporation) (hereinafter referred to as "Kit" in this section).
(1) Standard, zero control and 50 μl of filtrate were placed in a microplate in the Kit.
(2) 50 μl of Assay Buffer per well was added to (1), sealed, and left at 4 ° C. overnight.
(3) The liquid in the well was discarded, and 350 μl of chilled 1 × Wash Buffer was placed in the well and washed 3 times.
(4) A 100
(5) (3) was repeated.
(6) 100 μl of 1 × TMB substrate was placed in a well and left at room temperature for 10 minutes.
(7) 50 μl of 1 × Stop solution was put into the well.
(8) Absorbance was measured at a wavelength of 450 nm with a microplate reader.
(9) From the measurement result of Standard, a calibration curve was drawn, and the absorbance value of the filtrate was substituted into the formula of the calibration curve to obtain the concentration.
<AnnexinA6の定量>
Human Annexin A6 (ANXA6) ELISA Kit EK12650(Signalway Antibody)(以下この項において「Kit」という。)を使用して濾液中の含有量を計測した。
(1)Kit内のマイクロプレートにStandardと濾液を1well当たり100μl 入れる。
(2)シールをして37℃で2時間置いた。
(3)well内の液を捨てる。
(4)100μlのDetection Reagent A working solutionをwellに入れ、シールをして37℃で1時間置いた。
(5)well内の液を捨て、300μlの1×Wash Solutionをwellに入れ、3回洗った。
(6)100μlのDetection Reagent B working solutionをwellに入れ、シールをして37℃で1時間置いた。
(7)(5)の操作を5回繰り返した。
(8)90μlのSubstrate Solutionをwellに入れ、37℃で15~25分置いた。
(9)50μlのStop Solution をwellに入れた。
(10)マイクロプレートリーダーで450nmの波長で吸光度を測定した。
(11)Standardの測定結果より、検量線を引き、検量線の数式に濾液の吸光度値を代入し、濃度を求めた。 <Quantitative determination of Annexin A6>
The content in the filtrate was measured using a Human Annexin A6 (ANXA6) ELISA Kit EK12650 (Signalway Antibody) (hereinafter referred to as “Kit” in this section).
(1) Put 100 μl of Standard and the filtrate per 1 well in the microplate in the Kit.
(2) Sealed and left at 37 ° C for 2 hours.
(3) Discard the liquid in the well.
(4) 100 μl of Detection Reagent A working solution was put into a well, sealed, and left at 37 ° C. for 1 hour.
(5) The liquid in the well was discarded, 300 μl of 1 × Wash Solution was put into the well, and washed 3 times.
(6) 100 μl of Detection Reagent B working solution was put into a well, sealed, and left at 37 ° C. for 1 hour.
(7) The operation of (5) was repeated 5 times.
(8) 90 μl of Substrate Solution was placed in a well and left at 37 ° C for 15 to 25 minutes.
(9) 50 μl of Stop Solution was put into the well.
(10) Absorbance was measured at a wavelength of 450 nm with a microplate reader.
(11) From the measurement result of Standard, a calibration curve was drawn, and the absorbance value of the filtrate was substituted into the formula of the calibration curve to obtain the concentration.
Human Annexin A6 (ANXA6) ELISA Kit EK12650(Signalway Antibody)(以下この項において「Kit」という。)を使用して濾液中の含有量を計測した。
(1)Kit内のマイクロプレートにStandardと濾液を1well当たり100μl 入れる。
(2)シールをして37℃で2時間置いた。
(3)well内の液を捨てる。
(4)100μlのDetection Reagent A working solutionをwellに入れ、シールをして37℃で1時間置いた。
(5)well内の液を捨て、300μlの1×Wash Solutionをwellに入れ、3回洗った。
(6)100μlのDetection Reagent B working solutionをwellに入れ、シールをして37℃で1時間置いた。
(7)(5)の操作を5回繰り返した。
(8)90μlのSubstrate Solutionをwellに入れ、37℃で15~25分置いた。
(9)50μlのStop Solution をwellに入れた。
(10)マイクロプレートリーダーで450nmの波長で吸光度を測定した。
(11)Standardの測定結果より、検量線を引き、検量線の数式に濾液の吸光度値を代入し、濃度を求めた。 <Quantitative determination of Annexin A6>
The content in the filtrate was measured using a Human Annexin A6 (ANXA6) ELISA Kit EK12650 (Signalway Antibody) (hereinafter referred to as “Kit” in this section).
(1) Put 100 μl of Standard and the filtrate per 1 well in the microplate in the Kit.
(2) Sealed and left at 37 ° C for 2 hours.
(3) Discard the liquid in the well.
(4) 100 μl of Detection Reagent A working solution was put into a well, sealed, and left at 37 ° C. for 1 hour.
(5) The liquid in the well was discarded, 300 μl of 1 × Wash Solution was put into the well, and washed 3 times.
(6) 100 μl of Detection Reagent B working solution was put into a well, sealed, and left at 37 ° C. for 1 hour.
(7) The operation of (5) was repeated 5 times.
(8) 90 μl of Substrate Solution was placed in a well and left at 37 ° C for 15 to 25 minutes.
(9) 50 μl of Stop Solution was put into the well.
(10) Absorbance was measured at a wavelength of 450 nm with a microplate reader.
(11) From the measurement result of Standard, a calibration curve was drawn, and the absorbance value of the filtrate was substituted into the formula of the calibration curve to obtain the concentration.
〈タンパクの定量〉
PierceTM BCA Protein Assay Kit 23227(ThermoFisher)(以下この項において「Kit」という。)を使用して濾液中の含有量を計測した。
(1) 96-Well PlateにStandardと濾液を1well当たり25μl 入れる。濾液は1×106個/mL濃度のものを使用した。
(2) 200μlのWorking Reagent(50:1; Reagent A:B)をwell入れ、30秒シェイクした。
(3) 蓋をして37℃で1時間置いた。
(4) 室温に戻し、マイクロプレートリーダーで595nmの波長で吸光度を測定した。
(5) Standardの測定結果より、検量線を引き、検量線の数式に濾液の吸光度値を代入し、濃度を求めた。 <Protein quantification>
The content in the filtrate was measured using the PierceTM BCA Protein Assay Kit 23227 (ThermoFisher) (hereinafter referred to as "Kit" in this section).
(1) Add 25 μl of Standard and filtrate per well to 96-Well Plate. The filtrate used was 1 × 10 6 pieces / mL concentration.
(2) 200 μl of Working Reagent (50: 1; Reagent A: B) was put in a well and shaken for 30 seconds.
(3) Covered and left at 37 ° C for 1 hour.
(4) The temperature was returned to room temperature, and the absorbance was measured at a wavelength of 595 nm with a microplate reader.
(5) From the measurement results of Standard, a calibration curve was drawn, and the absorbance value of the filtrate was substituted into the formula of the calibration curve to obtain the concentration.
PierceTM BCA Protein Assay Kit 23227(ThermoFisher)(以下この項において「Kit」という。)を使用して濾液中の含有量を計測した。
(1) 96-Well PlateにStandardと濾液を1well当たり25μl 入れる。濾液は1×106個/mL濃度のものを使用した。
(2) 200μlのWorking Reagent(50:1; Reagent A:B)をwell入れ、30秒シェイクした。
(3) 蓋をして37℃で1時間置いた。
(4) 室温に戻し、マイクロプレートリーダーで595nmの波長で吸光度を測定した。
(5) Standardの測定結果より、検量線を引き、検量線の数式に濾液の吸光度値を代入し、濃度を求めた。 <Protein quantification>
The content in the filtrate was measured using the PierceTM BCA Protein Assay Kit 23227 (ThermoFisher) (hereinafter referred to as "Kit" in this section).
(1) Add 25 μl of Standard and filtrate per well to 96-Well Plate. The filtrate used was 1 × 10 6 pieces / mL concentration.
(2) 200 μl of Working Reagent (50: 1; Reagent A: B) was put in a well and shaken for 30 seconds.
(3) Covered and left at 37 ° C for 1 hour.
(4) The temperature was returned to room temperature, and the absorbance was measured at a wavelength of 595 nm with a microplate reader.
(5) From the measurement results of Standard, a calibration curve was drawn, and the absorbance value of the filtrate was substituted into the formula of the calibration curve to obtain the concentration.
濾液(FADRCL)中の上記成分の含有量は表1のとおりである。図2に示すとおり、濾液(FADRCL)と、培養上清(ADRC-CM)とを比較すると濾液中に大量のヒートショックプロテイン、パラクライン因子等が含有されていることが分かる。この差は、濾液(FADRCL)が脂肪組織由来幹細胞(ADRC)を破砕して細胞内容物の成分を抽出するのに対し、培養上清(ADRC-CM)は脂肪組織由来幹細胞(ADRC)からの分泌物であることによるものと考えられ、本発明の有効成分である濾液(FADRCL)と、培養上清(ADRC-CM)との各種成分量の差異が明確になった。なお、濾液又は培養上清1ml当たりのHSP70、HSP47、HMGB1及びAnnexinA6の含有量は、濾液又は培養上清1ml当たりのタンパク質の量で除して、厳密な比較を可能にした。
The contents of the above components in the filtrate (FADRCL) are shown in Table 1. As shown in FIG. 2, when the filtrate (FADRCL) and the culture supernatant (ADRC-CM) are compared, it can be seen that the filtrate contains a large amount of heat shock protein, paracrine factor and the like. The difference is that the filtrate (FADRCL) disrupts adipose tissue-derived stem cells (ADRC) to extract components of the cell contents, whereas the culture supernatant (ADRC-CM) is from adipose tissue-derived stem cells (ADRC). It is considered that this is due to the fact that it is a secretion, and the difference in the amount of various components between the filtrate (FADRCL), which is the active ingredient of the present invention, and the culture supernatant (ADRC-CM) has been clarified. The contents of HSP70, HSP47, HMGB1 and Annexin A6 per 1 ml of filtrate or culture supernatant were divided by the amount of protein per 1 ml of filtrate or culture supernatant to enable strict comparison.
2.創傷部位の治療剤の用途
マウス創傷治癒モデルを用いて、創傷治癒過程おける脂肪組織由来幹細胞(ADRC)移植と、脂肪組織由来幹細胞を培養した後の培養上清(conditioned-medium(ADRC-CM))の効果と機序に関して検討した。そして骨髄由来幹細胞(以下「BMSC」ともいう。)と比較し、ADRCの優位性に関して評価した。 2. 2. Uses of therapeutic agents for wound sites Using a mouse wound healing model, adipose tissue-derived stem cell (ADRC) transplantation during the wound healing process and culture supernatant after culturing adipose tissue-derived stem cells (conditioned-medium (ADRC-CM)) ) Was examined for its effect and mechanism. Then, it was compared with bone marrow-derived stem cells (hereinafter also referred to as "BMSC") and evaluated for the superiority of ADRC.
マウス創傷治癒モデルを用いて、創傷治癒過程おける脂肪組織由来幹細胞(ADRC)移植と、脂肪組織由来幹細胞を培養した後の培養上清(conditioned-medium(ADRC-CM))の効果と機序に関して検討した。そして骨髄由来幹細胞(以下「BMSC」ともいう。)と比較し、ADRCの優位性に関して評価した。 2. 2. Uses of therapeutic agents for wound sites Using a mouse wound healing model, adipose tissue-derived stem cell (ADRC) transplantation during the wound healing process and culture supernatant after culturing adipose tissue-derived stem cells (conditioned-medium (ADRC-CM)) ) Was examined for its effect and mechanism. Then, it was compared with bone marrow-derived stem cells (hereinafter also referred to as "BMSC") and evaluated for the superiority of ADRC.
(1) 非細胞製剤 FADRCLの調製
balck6 wild type miceから常法でADRCを採取培養した。濃度調整後(1×106個/ml PBS)、-30℃で1晩保存し、室温で細胞液を融解した。このようにして細胞を破砕後、破砕液を遠心分離(290×gで10分)し、その上清を回収した。次に、破砕液の上清をセルロースアセテート膜のフィルター(ポアサイズ0.2μm)で濾過し、濾液(FADRCL)とした。また、濾液(FADRCL)の成分量と比較するため、培地の上清である培養上清(ADRC-CM)の成分量を測定した。 (1) Preparation of non-cell preparation FADRCL ADRC was collected and cultured by a conventional method from balck6 wild type mice. After adjusting the concentration (1 × 10 6 pieces / ml PBS), the cells were stored overnight at -30 ° C, and the cell fluid was thawed at room temperature. After crushing the cells in this way, the crushed solution was centrifuged (290 × g for 10 minutes), and the supernatant was collected. Next, the supernatant of the crushed solution was filtered through a cellulose acetate membrane filter (pore size 0.2 μm) to obtain a filtrate (FADRCL). Moreover, in order to compare with the component amount of the filtrate (FADRCL), the component amount of the culture supernatant (ADRC-CM) which is the supernatant of the medium was measured.
balck6 wild type miceから常法でADRCを採取培養した。濃度調整後(1×106個/ml PBS)、-30℃で1晩保存し、室温で細胞液を融解した。このようにして細胞を破砕後、破砕液を遠心分離(290×gで10分)し、その上清を回収した。次に、破砕液の上清をセルロースアセテート膜のフィルター(ポアサイズ0.2μm)で濾過し、濾液(FADRCL)とした。また、濾液(FADRCL)の成分量と比較するため、培地の上清である培養上清(ADRC-CM)の成分量を測定した。 (1) Preparation of non-cell preparation FADRCL ADRC was collected and cultured by a conventional method from balck6 wild type mice. After adjusting the concentration (1 × 10 6 pieces / ml PBS), the cells were stored overnight at -30 ° C, and the cell fluid was thawed at room temperature. After crushing the cells in this way, the crushed solution was centrifuged (290 × g for 10 minutes), and the supernatant was collected. Next, the supernatant of the crushed solution was filtered through a cellulose acetate membrane filter (pore size 0.2 μm) to obtain a filtrate (FADRCL). Moreover, in order to compare with the component amount of the filtrate (FADRCL), the component amount of the culture supernatant (ADRC-CM) which is the supernatant of the medium was measured.
(2) マウスの創傷治癒モデルの作成
図3に示すとおり、マウスの背部を除毛した後、皮膚生検用のパンチを用いて、直径8mmの円形、皮膚全層欠損に相当する深さの創傷を1か所作成した。創傷作成後は、調整した製剤を創傷部に塗布し、被覆フィルムにて創傷部とその周囲を広範囲に渡って被覆した。 (2) Creation of a wound healing model for mice As shown in Fig. 3, after removing hair from the back of the mouse, a circular skin biopsy punch with a diameter of 8 mm and a depth corresponding to a full-thickness defect in the skin was used. One wound was created. After the wound was created, the prepared preparation was applied to the wound portion, and the wound portion and its surroundings were extensively covered with a covering film.
図3に示すとおり、マウスの背部を除毛した後、皮膚生検用のパンチを用いて、直径8mmの円形、皮膚全層欠損に相当する深さの創傷を1か所作成した。創傷作成後は、調整した製剤を創傷部に塗布し、被覆フィルムにて創傷部とその周囲を広範囲に渡って被覆した。 (2) Creation of a wound healing model for mice As shown in Fig. 3, after removing hair from the back of the mouse, a circular skin biopsy punch with a diameter of 8 mm and a depth corresponding to a full-thickness defect in the skin was used. One wound was created. After the wound was created, the prepared preparation was applied to the wound portion, and the wound portion and its surroundings were extensively covered with a covering film.
(3) 創傷治癒率の経時的変化
<試験2 ADRCの効果と投与方法について検証>
ア 図4に示すとおり、試験2では、創傷治癒におけるADRCの効果と投与方法について検証するため、ADRC group、ADRCを培養した後の培養上清であるconditioned-medium group(ADRC-CM group)及びControl groupの3つの群で比較検討を行った。ADRC-CM groupを加えたのは、細胞製剤ではなく非細胞製剤、特にパラクライン因子等の効果について検討するためである。 (3) Changes in wound healing rate over time <Test 2 Verification of ADRC effect and administration method>
A. As shown in Fig. 4, inTest 2, in order to verify the effect of ADRC on wound healing and the administration method, the ADRC group, the conditioned-medium group (ADRC-CM group), which is the culture supernatant after culturing ADRC, and A comparative study was conducted in three groups of the control group. The ADRC-CM group was added in order to examine the effects of non-cell pharmaceuticals, especially paraclinic factors, rather than cellular pharmaceuticals.
<試験2 ADRCの効果と投与方法について検証>
ア 図4に示すとおり、試験2では、創傷治癒におけるADRCの効果と投与方法について検証するため、ADRC group、ADRCを培養した後の培養上清であるconditioned-medium group(ADRC-CM group)及びControl groupの3つの群で比較検討を行った。ADRC-CM groupを加えたのは、細胞製剤ではなく非細胞製剤、特にパラクライン因子等の効果について検討するためである。 (3) Changes in wound healing rate over time <
A. As shown in Fig. 4, in
balck6 wild type miceからADRCを採取培養し、細胞数やその他の条件を整合させて対象マウスに投与した。対象マウスは8週オスのwild typeを各群で5匹ずつ、合計15匹使用した。各groupの詳細な条件は、ADRC groupでは、培養したADRC 1×105個を使用し、medium200μlに溶解し、更にそれをゲル化剤(KOKENのコラーゲン酸性溶液I-PC 5mg/ml pH3.0 無菌Atelocollagen Acidic Solution)200μlと混合してゲル状の製剤として投与した。ADRC-CM groupでは、投与する2日前にmediumを交換した。その際ADRC 1×105個に対してmedium200μlの割合になるように調整し、48時間培養した。48時間後にDMEM200μlに対してゲル化剤200μlを混合し、マウスに塗布した。Control groupでは、medium200μlのみをゲル化剤200μlと混合した(表2)。
ADRC was collected from balck6 wild type mice, cultured, and administered to the target mice after matching the cell count and other conditions. The target mice used were 8-week male wild type mice, 5 in each group, for a total of 15 mice. The detailed conditions for each group are as follows: In the ADRC group, 1 × 10 5 cultured ADRCs were used, dissolved in 200 μl of medium, and then the gelling agent (KOKEN collagen acidic solution I-PC 5 mg / ml pH 3.0) was used. Sterile Atelocollagen Acidic Solution) 200 μl was mixed and administered as a gel-like preparation. In the ADRC-CM group, the medium was changed 2 days before administration. At that time, the ratio was adjusted to 200 μl of medium with respect to 5 ADRCs 1 × 10, and the cells were cultured for 48 hours. After 48 hours, 200 μl of the gelling agent was mixed with 200 μl of DMEM and applied to mice. In the control group, only 200 μl of medium was mixed with 200 μl of gelling agent (Table 2).
マウスへの投与方法としてはゲル状製剤とする方法で統一した。各群のマウスの皮膚欠損部にヘラでゲル状製剤を塗布した後は、被覆フィルムにて創傷部とその周囲を広範囲に渡って被覆した。1回の投与のみでは効果が不十分な可能性を考え、Day0、1、3、5、7に頻回投与して14日まで観察した。創傷部の治癒過程を2週間追跡し、評価した。
The method of administration to mice was unified as a gel-like preparation. After applying the gel-like preparation with a spatula to the skin defect of the mice of each group, the wound and its surroundings were extensively covered with a covering film. Considering that the effect may not be sufficient with only one dose, frequent doses were given on Days 0, 1, 3, 5, and 7 and observed until the 14th. The wound healing process was followed and evaluated for 2 weeks.
イ 結果
治療の評価方法は、肉眼的な創傷部面積の変化を使用した。治療後、定期的に創傷部を写真撮影し、創傷部面積を測定した。
図5は、治療当日の創傷部面積を基準値として、各評価日における面積をパーセンテージで示したもので、横軸が時間経過、縦軸が創傷部面積率である。Control groupと比較すると、ADRC group、 ADRC-CM groupともに有意に創傷が縮小する結果となった。ADRC group、 ADRC-CM group を直接比較すると差はつかなかったが、ADRC-CMによる治療はADRCによる治療と比較して、同程度の治療効果があることが示唆された。この結果から、創傷治癒においてはADRCの細胞そのものによる効果はもちろん、そこから分泌されるパラクライン因子等が重要である可能性が示唆された。 B. Results The treatment evaluation method used macroscopic changes in wound area. After treatment, the wound was photographed regularly and the area of the wound was measured.
In FIG. 5, the area on each evaluation day is shown as a percentage with the wound area on the treatment day as a reference value, and the horizontal axis is the passage of time and the vertical axis is the wound area ratio. Compared with the control group, the wounds were significantly reduced in both the ADRC group and the ADRC-CM group. Although there was no difference when the ADRC group and ADRC-CM group were directly compared, it was suggested that the treatment with ADRC-CM had the same therapeutic effect as the treatment with ADRC. From this result, it was suggested that not only the effect of ADRC cells themselves but also the paracrine factor secreted from them may be important in wound healing.
治療の評価方法は、肉眼的な創傷部面積の変化を使用した。治療後、定期的に創傷部を写真撮影し、創傷部面積を測定した。
図5は、治療当日の創傷部面積を基準値として、各評価日における面積をパーセンテージで示したもので、横軸が時間経過、縦軸が創傷部面積率である。Control groupと比較すると、ADRC group、 ADRC-CM groupともに有意に創傷が縮小する結果となった。ADRC group、 ADRC-CM group を直接比較すると差はつかなかったが、ADRC-CMによる治療はADRCによる治療と比較して、同程度の治療効果があることが示唆された。この結果から、創傷治癒においてはADRCの細胞そのものによる効果はもちろん、そこから分泌されるパラクライン因子等が重要である可能性が示唆された。 B. Results The treatment evaluation method used macroscopic changes in wound area. After treatment, the wound was photographed regularly and the area of the wound was measured.
In FIG. 5, the area on each evaluation day is shown as a percentage with the wound area on the treatment day as a reference value, and the horizontal axis is the passage of time and the vertical axis is the wound area ratio. Compared with the control group, the wounds were significantly reduced in both the ADRC group and the ADRC-CM group. Although there was no difference when the ADRC group and ADRC-CM group were directly compared, it was suggested that the treatment with ADRC-CM had the same therapeutic effect as the treatment with ADRC. From this result, it was suggested that not only the effect of ADRC cells themselves but also the paracrine factor secreted from them may be important in wound healing.
<試験3 骨髄由来幹細胞(BMSC)との効果の比較>
ア 次に、ADRCと、ADRC以外の幹細胞であるBMSCとの治療効果を比較した。試験2では、ADRCから分泌される各種パラクライン因子等が、各種細胞に作用した結果、皮膚再生が促進され、また、抗炎症効果を発揮することで創傷の治癒が促進される可能性が示唆された。このため、試験3では、細胞自体を使用せず培養上清(conditioned medium)で比較することとした。 <Test 3 Comparison of effects with bone marrow-derived stem cells (BMSC)>
Next, the therapeutic effects of ADRC and BMSC, which is a stem cell other than ADRC, were compared. InTest 2, it is suggested that various paraclinic factors secreted from ADRC may act on various cells to promote skin regeneration and promote wound healing by exerting an anti-inflammatory effect. Was done. Therefore, in Test 3, it was decided to compare the culture supernatant (conditioned medium) without using the cells themselves.
ア 次に、ADRCと、ADRC以外の幹細胞であるBMSCとの治療効果を比較した。試験2では、ADRCから分泌される各種パラクライン因子等が、各種細胞に作用した結果、皮膚再生が促進され、また、抗炎症効果を発揮することで創傷の治癒が促進される可能性が示唆された。このため、試験3では、細胞自体を使用せず培養上清(conditioned medium)で比較することとした。 <
Next, the therapeutic effects of ADRC and BMSC, which is a stem cell other than ADRC, were compared. In
表3に示すとおり、試験2と同様に、マウスからADRC及び骨髄由来幹細胞(BMSC)を採取、分離し、培養した。なお、BMSCはマウスの大腿骨から採取し、分離した。ADRC-CM groupでは試験2と同様に、投与する2日前にmediumを交換した。その際 ADRC 1×105個に対してmedium200μlの割合になるように調整し、48時間培養した。48時間後にmediumにゲル化剤200μlを混合し、マウスに塗布した。BMSC-conditioned medium(BMSC-CM) groupでも、同様の条件、細胞数にて培養し、ゲル状製剤としてマウスに塗布した。Control groupは、試験1と同様にmedium200μlのみをゲル化剤200μlと混合した(表3)。その後は試験2と同様のプロトコールで試験を継続し、創傷部の治癒過程を追跡、評価した。
As shown in Table 3, ADRC and bone marrow-derived stem cells (BMSC) were collected, isolated, and cultured from mice in the same manner as in Test 2. BMSC was collected from the femur of a mouse and isolated. In the ADRC-CM group, the medium was changed 2 days before administration, as in Test 2. At that time, the ratio of medium 200 μl to 5 ADRC 1 × 10 was adjusted, and the cells were cultured for 48 hours. After 48 hours, 200 μl of gelling agent was mixed with medium and applied to mice. In the BMSC-conditioned medium (BMSC-CM) group, the cells were cultured under the same conditions and cell number, and applied to mice as a gel-like preparation. As for the control group, only 200 μl of medium was mixed with 200 μl of the gelling agent as in Test 1 (Table 3). After that, the test was continued with the same protocol as in Test 2, and the healing process of the wound was followed and evaluated.
イ 結果
治療の評価方法は、肉眼的な創傷部面積の変化を使用した。治療後、定期的に創傷部を写真撮影し、創傷部面積を測定した。試験2と同様に治療当日の創傷部面積を100%としたときの各評価日の創傷部面積をパーセンテージとした。
図6に示すとおり、ADRC-CM groupはControl groupと比較すると、有意に創傷部縮小効果が認められた。BMSC-CM groupにおいてもある程度創傷部の縮小効果が認められたが、ADRC-CMとBMSC-CMとを比較するとDay5、7、9ではADRC-CMの方が有意に創傷部の縮小が認められた。全体を通じてBMSC-CMと比較してADRC-CMでは創傷部の縮小傾向が認められた。つまりADRC-CMによる治療はBMSC-CMによる治療と比較して、有効であることが示唆された。 B. Results The treatment evaluation method used macroscopic changes in wound area. After treatment, the wound was photographed regularly and the area of the wound was measured. As inTest 2, when the wound area on the day of treatment was 100%, the wound area on each evaluation day was taken as a percentage.
As shown in FIG. 6, the ADRC-CM group showed a significant wound reduction effect as compared with the control group. The BMSC-CM group also showed some reduction in the wound area, but when comparing ADRC-CM and BMSC-CM, ADRC-CM showed a significant reduction in the wound area on Days 5, 7, and 9. rice field. Overall, there was a tendency for the wound to shrink in ADRC-CM compared to BMSC-CM. In other words, it was suggested that treatment with ADRC-CM was more effective than treatment with BMSC-CM.
治療の評価方法は、肉眼的な創傷部面積の変化を使用した。治療後、定期的に創傷部を写真撮影し、創傷部面積を測定した。試験2と同様に治療当日の創傷部面積を100%としたときの各評価日の創傷部面積をパーセンテージとした。
図6に示すとおり、ADRC-CM groupはControl groupと比較すると、有意に創傷部縮小効果が認められた。BMSC-CM groupにおいてもある程度創傷部の縮小効果が認められたが、ADRC-CMとBMSC-CMとを比較するとDay5、7、9ではADRC-CMの方が有意に創傷部の縮小が認められた。全体を通じてBMSC-CMと比較してADRC-CMでは創傷部の縮小傾向が認められた。つまりADRC-CMによる治療はBMSC-CMによる治療と比較して、有効であることが示唆された。 B. Results The treatment evaluation method used macroscopic changes in wound area. After treatment, the wound was photographed regularly and the area of the wound was measured. As in
As shown in FIG. 6, the ADRC-CM group showed a significant wound reduction effect as compared with the control group. The BMSC-CM group also showed some reduction in the wound area, but when comparing ADRC-CM and BMSC-CM, ADRC-CM showed a significant reduction in the wound area on
試験3の結果から、ADRCとBMSCでは分泌されるパラクライン因子等に違いがあり、それが創傷治癒に対する効果の違いが生じていることが示唆された。即ち、ADRCは脂肪組織に付着する細胞であり、増殖能力も高く、骨や軟骨への分化、液性因子の分泌に優れているのに対し、BMSCは血中内を循環する細胞であり、神経細胞へ分化するという性質をもっており、両者は全く異なるからと考えられる。そこで、本発明者らは、ADRCのパラクライン因子等に着目することとした。
From the results of Test 3, it was suggested that there was a difference in the secreted paraclinic factors, etc. between ADRC and BMSC, which caused a difference in the effect on wound healing. That is, ADRC is a cell that attaches to adipose tissue, has high proliferative capacity, and is excellent in differentiation into bone and cartilage and secretion of humoral factors, whereas BMSC is a cell that circulates in the blood. It has the property of differentiating into nerve cells, and it is thought that the two are completely different. Therefore, the present inventors decided to pay attention to the paracrine factor of ADRC and the like.
<試験4 脂肪組織由来幹細胞の濾液(FADRCL)の効果>
本発明者らは、試験2及び試験3の結果から、更に効果的なADRCを用いた治療法について検討し、非細胞製剤の一つであるFADRCLに注目した。
図7に示すとおり、この製剤は、試験1及び試験2と同様にマウスからADRCを採取培養し、細胞を回収した後に、前述した方法に従い凍結融解粉砕と、フィルターによる濾過を繰り返すことにより作成される。この濾液中には幹細胞由来のパラクライン因子等が多く含まれていると考えられる。 <Effect of Test 4 Adipose Tissue-Derived Stem Cell Filtration (FADRCL)>
From the results ofTest 2 and Test 3, the present inventors examined a more effective treatment method using ADRC, and focused on FADRCL, which is one of the non-cell preparations.
As shown in FIG. 7, this pharmaceutical product is prepared by collecting and culturing ADRC from mice in the same manner as inTest 1 and Test 2, collecting cells, and then repeating freeze-thaw pulverization and filtration with a filter according to the above-mentioned method. To. It is considered that this filtrate contains a large amount of stem cell-derived paracrine factor and the like.
本発明者らは、試験2及び試験3の結果から、更に効果的なADRCを用いた治療法について検討し、非細胞製剤の一つであるFADRCLに注目した。
図7に示すとおり、この製剤は、試験1及び試験2と同様にマウスからADRCを採取培養し、細胞を回収した後に、前述した方法に従い凍結融解粉砕と、フィルターによる濾過を繰り返すことにより作成される。この濾液中には幹細胞由来のパラクライン因子等が多く含まれていると考えられる。 <Effect of Test 4 Adipose Tissue-Derived Stem Cell Filtration (FADRCL)>
From the results of
As shown in FIG. 7, this pharmaceutical product is prepared by collecting and culturing ADRC from mice in the same manner as in
ここでADRCとFADRCLを用いた創傷部位の治療の差異について説明する。ADRC自体を投与する治療法は、ADRC細胞が創傷部位において生着/分化することにより、創傷を治癒するものであるため、ADRC細胞が十分に生着/分化することが必須となる。ADRC細胞が、十分に生着/分化した場合は、ADRC細胞から分泌されるパラクライン因子等との相乗効果が期待できるが、ADRC細胞が十分に分化できない場合は、期待した治療効果が得られない可能性がある。
Here, the difference in treatment of the wound site using ADRC and FADRCL will be explained. Since the treatment method in which ADRC itself is administered is to heal the wound by engrafting / differentiating the ADRC cells at the wound site, it is essential that the ADRC cells are sufficiently engrafted / differentiated. When ADRC cells are sufficiently engrafted / differentiated, a synergistic effect with paracrine factors secreted from ADRC cells can be expected, but when ADRC cells cannot be sufficiently differentiated, the expected therapeutic effect can be obtained. May not be.
これに対し、ADRC-CMを使用した治療法では、ADRCから分泌されるパラクライン因子等を利用するものであるため、細胞投与による有害事象を回避することができ、また細胞自体を使用する治療法と比較して、事前に治療剤を大量に作成することが可能である。FADRCLもADRC-CMと同様に、ADRC細胞から分泌されるパラクライン因子等を利用するものであるが、FADRCLは、ADRCを破砕して作成されるものであるため、パラクライン因子等に加えて、細胞の内部及び表面タンパクも含有していると考えられ、これが抗炎症効果につながり、創傷治癒を促進している可能性がある。このように、FADRCLは、ADRC-CMと比較して、パラクライン因子等及び各種タンパク質を大量に含有していると考えられる。
On the other hand, in the treatment method using ADRC-CM, since the paracrine factor secreted from ADRC is used, adverse events due to cell administration can be avoided, and the treatment using the cells themselves is possible. Compared to the method, it is possible to prepare a large amount of therapeutic agent in advance. Similar to ADRC-CM, FADRCL also uses paracrine factors secreted from ADRC cells, but FADRCL is produced by crushing ADRC, so in addition to paracrine factors, etc. , Cell internal and surface proteins are also believed to be contained, which may lead to anti-inflammatory effects and promote wound healing. As described above, FADRCL is considered to contain a large amount of paracrine factor and various proteins as compared with ADRC-CM.
ア そこで、創傷治癒におけるFADRCLの効果を検証することとした。
表4に示すとおり、試験2と同様のプロトコールでマウスからADRCを採取培養し、各groupに投与する製剤を作成した。FADRCL groupではADRC 1.0×105個を処理して、濾液を作成しmedium200μl、ゲル化剤200μlと混合してマウスに塗布した。ADRC-CM group及びADRC groupでは試験2及び試験3と同様の条件で製剤を作成し、各groupの条件を統一した(表4)。試験2及び試験3と同一のプロトコールに従って、それぞれの製剤をマウスに塗布し、創傷部の治癒過程を追跡、評価した。
Therefore, we decided to verify the effect of FADRCL on wound healing.
As shown in Table 4, ADRC was collected and cultured from mice using the same protocol as inTest 2, and a preparation to be administered to each group was prepared. In the FADRCL group, ADRC 1.0 × 10 5 pieces were treated to prepare a filtrate, mixed with 200 μl of medium and 200 μl of gelling agent, and applied to mice. In the ADRC-CM group and ADRC group, the preparations were prepared under the same conditions as in Test 2 and Test 3, and the conditions for each group were unified (Table 4). According to the same protocol as in Test 2 and Test 3, each preparation was applied to mice, and the healing process of the wound was followed and evaluated.
表4に示すとおり、試験2と同様のプロトコールでマウスからADRCを採取培養し、各groupに投与する製剤を作成した。FADRCL groupではADRC 1.0×105個を処理して、濾液を作成しmedium200μl、ゲル化剤200μlと混合してマウスに塗布した。ADRC-CM group及びADRC groupでは試験2及び試験3と同様の条件で製剤を作成し、各groupの条件を統一した(表4)。試験2及び試験3と同一のプロトコールに従って、それぞれの製剤をマウスに塗布し、創傷部の治癒過程を追跡、評価した。
As shown in Table 4, ADRC was collected and cultured from mice using the same protocol as in
イ 結果
図8に創傷治癒率の経時的経過を示す。試験2及び試験3と同様に治療当日の創傷部面積を100%としたときの各評価日の創傷部面積をパーセンテージとしている。
図8に示すとおり、ADRC groupとADRC-CM groupとに差は認められないが、同程度の治療効果を示した。一方でFADRCL groupとADRC group及びADRC-CM groupとを比較すると、治療から1、3日後は差を認められないものの、5日後以降は有意に創傷部が縮小した。つまり、FADRCLによる治療はADRC、ADRC-CMによる治療と比較して、更に有効であることが分かった。 B Results Figure 8 shows the time course of the wound healing rate. As inTest 2 and Test 3, the wound area on each evaluation day is used as a percentage when the wound area on the treatment day is 100%.
As shown in FIG. 8, no difference was observed between the ADRC group and the ADRC-CM group, but the therapeutic effect was similar. On the other hand, when the FADRCL group was compared with the ADRC group and the ADRC-CM group, no difference was observed 1 to 3 days after the treatment, but the wound site was significantly reduced after 5 days. In other words, it was found that the treatment with FADRCL was more effective than the treatment with ADRC and ADRC-CM.
図8に創傷治癒率の経時的経過を示す。試験2及び試験3と同様に治療当日の創傷部面積を100%としたときの各評価日の創傷部面積をパーセンテージとしている。
図8に示すとおり、ADRC groupとADRC-CM groupとに差は認められないが、同程度の治療効果を示した。一方でFADRCL groupとADRC group及びADRC-CM groupとを比較すると、治療から1、3日後は差を認められないものの、5日後以降は有意に創傷部が縮小した。つまり、FADRCLによる治療はADRC、ADRC-CMによる治療と比較して、更に有効であることが分かった。 B Results Figure 8 shows the time course of the wound healing rate. As in
As shown in FIG. 8, no difference was observed between the ADRC group and the ADRC-CM group, but the therapeutic effect was similar. On the other hand, when the FADRCL group was compared with the ADRC group and the ADRC-CM group, no difference was observed 1 to 3 days after the treatment, but the wound site was significantly reduced after 5 days. In other words, it was found that the treatment with FADRCL was more effective than the treatment with ADRC and ADRC-CM.
(4) 小括
以上のとおり、本発明者らは、試験2で、ADRC-CMから分泌される各種パラクライン因子等が各種細胞に作用して皮膚再生が促進されることを確認し、試験3で、幹細胞の中でもBMSC-CMとの比較により、ADRC-CMの優位性を発見するとともに、ADRC-CMから分泌される各種パラクライン因子等に着目し、試験4で、FADRCLに多く含まれる各種タンパク質とパラクライン因子等による創傷治癒を促進する効果を発見し、本発明の創傷治療剤の用途発明を完成した。 (4) Summary As described above, the present inventors confirmed inTest 2 that various paraclinic factors secreted from ADRC-CM act on various cells to promote skin regeneration, and tested. In 3, we discovered the superiority of ADRC-CM by comparison with BMSC-CM among stem cells, and focused on various paraclinic factors secreted from ADRC-CM, and in Test 4, they are contained in a large amount in FADRCL. We have discovered the effects of various proteins and paracrine factors on promoting wound healing, and completed the invention of use of the wound healing agent of the present invention.
以上のとおり、本発明者らは、試験2で、ADRC-CMから分泌される各種パラクライン因子等が各種細胞に作用して皮膚再生が促進されることを確認し、試験3で、幹細胞の中でもBMSC-CMとの比較により、ADRC-CMの優位性を発見するとともに、ADRC-CMから分泌される各種パラクライン因子等に着目し、試験4で、FADRCLに多く含まれる各種タンパク質とパラクライン因子等による創傷治癒を促進する効果を発見し、本発明の創傷治療剤の用途発明を完成した。 (4) Summary As described above, the present inventors confirmed in
3.化粧料としての用途
(1) コラーゲンの産生促進
<試験5 FADRCL(凍結融解破砕)のコラーゲン産生効果>
ア 12ウェルプレートに正常ヒト皮膚線維芽細胞(NHDF;Lonza)を1ウェル当たり1×105個播種した。培地は、Mesen PRO RSを用いた。37℃、CO2 5%の環境下で培養した。細胞がサブコンフルエントになったら培地を取り除き、培地を以下のものに変えて更に培養を続け、24時間後に上清を回収した。
(1) 培地(medium500μl)のみ(濾液なし)
(2) 培地(medium500μl)+濾液5%(ヒト脂肪幹細胞 2.5×105個相当)
(3) 培地(medium500μl)+濾液10%(ヒト脂肪幹細胞 5×105個相当) 3. 3. Use as cosmetics (1) Promotion of collagen production <Test 5 Collagen production effect of FADRCL (freeze-thaw crushing)>
A 12-well plate was inoculated with 1 × 10 5 normal human skin fibroblasts (NHDF; Lonza) per well. Mesen PRO RS was used as the medium. 37 ° C., and cultured underCO 2 5% of the environment. When the cells became subconfluent, the medium was removed, the medium was changed to the following, the culture was continued, and the supernatant was collected after 24 hours.
(1) Medium (medium 500 μl) only (no filtrate)
(2) Medium (Medium500myueru) +filtrate 5% (human adipose stem cells 2.5 × 10 5 cells equivalent)
(3) medium (Medium500myueru) +filtrate 10% (human adipose stem cells of 5 × 10 5 cells equivalent)
(1) コラーゲンの産生促進
<試験5 FADRCL(凍結融解破砕)のコラーゲン産生効果>
ア 12ウェルプレートに正常ヒト皮膚線維芽細胞(NHDF;Lonza)を1ウェル当たり1×105個播種した。培地は、Mesen PRO RSを用いた。37℃、CO2 5%の環境下で培養した。細胞がサブコンフルエントになったら培地を取り除き、培地を以下のものに変えて更に培養を続け、24時間後に上清を回収した。
(1) 培地(medium500μl)のみ(濾液なし)
(2) 培地(medium500μl)+濾液5%(ヒト脂肪幹細胞 2.5×105個相当)
(3) 培地(medium500μl)+濾液10%(ヒト脂肪幹細胞 5×105個相当) 3. 3. Use as cosmetics (1) Promotion of collagen production <
A 12-well plate was inoculated with 1 × 10 5 normal human skin fibroblasts (NHDF; Lonza) per well. Mesen PRO RS was used as the medium. 37 ° C., and cultured under
(1) Medium (medium 500 μl) only (no filtrate)
(2) Medium (Medium500myueru) +
(3) medium (Medium500myueru) +
コラーゲン産生量の測定は、Human Collagen type I, ELISA kit を用いて行った。波長450nmで吸光度を測定した。Standardの測定結果より、検量線を引き、検量線の数式に濾液の吸光度値を代入し、目的のコラーゲンの量を算出した。また、コラーゲンの産生量をタンパク質全体の産生量と比較するため、上述の方法により、タンパク質の産生量も算出した。
The amount of collagen produced was measured using Human Collagen type I, ELISA kit. Absorbance was measured at a wavelength of 450 nm. A calibration curve was drawn from the measurement results of Standard, and the absorbance value of the filtrate was substituted into the formula of the calibration curve to calculate the amount of collagen of interest. In addition, in order to compare the amount of collagen produced with the amount of protein produced as a whole, the amount of protein produced was also calculated by the above method.
イ 結果
24時間後のコラーゲン及びタンパク質の産生の結果を表5に示す。FADRCLは、濃度依存的に皮膚線維芽細胞のコラーゲン産生を誘導する効果があることが明らかになった(図9)。
B. Results Table 5 shows the results of collagen and protein production after 24 hours. It was revealed that FADRCL has a concentration-dependent effect of inducing collagen production in skin fibroblasts (Fig. 9).
24時間後のコラーゲン及びタンパク質の産生の結果を表5に示す。FADRCLは、濃度依存的に皮膚線維芽細胞のコラーゲン産生を誘導する効果があることが明らかになった(図9)。
(2) ヒートショックプロテインの含有量
濾液中のHSP47、HSP70の含有量は、表1、図2のとおりであった。ADRCを凍結融解破砕し、フィルター処理して得られた濾液(FADRCL)は、ADRC-CMと比べるとHSP47が大量に含まれていることが分かった(表1、図2)。このことは、HSP47が、線維芽細胞によって産生されたコラーゲン線維が成熟コラーゲンとなることを助ける働きを担っていることから、パラクライン因子等とともにコラーゲン産生誘導に大きく寄与していることが示唆される。 (2) Content of heat shock protein The contents of HSP47 and HSP70 in the filtrate are as shown in Table 1 and FIG. It was found that the filtrate (FADRCL) obtained by freeze-thawing and crushing ADRC and filtering it contained a large amount of HSP47 as compared with ADRC-CM (Table 1, FIG. 2). This suggests that HSP47 plays a role in helping collagen fibers produced by fibroblasts to become mature collagen, and thus contributes significantly to the induction of collagen production together with paraclinic factors and the like. Collagen.
濾液中のHSP47、HSP70の含有量は、表1、図2のとおりであった。ADRCを凍結融解破砕し、フィルター処理して得られた濾液(FADRCL)は、ADRC-CMと比べるとHSP47が大量に含まれていることが分かった(表1、図2)。このことは、HSP47が、線維芽細胞によって産生されたコラーゲン線維が成熟コラーゲンとなることを助ける働きを担っていることから、パラクライン因子等とともにコラーゲン産生誘導に大きく寄与していることが示唆される。 (2) Content of heat shock protein The contents of HSP47 and HSP70 in the filtrate are as shown in Table 1 and FIG. It was found that the filtrate (FADRCL) obtained by freeze-thawing and crushing ADRC and filtering it contained a large amount of HSP47 as compared with ADRC-CM (Table 1, FIG. 2). This suggests that HSP47 plays a role in helping collagen fibers produced by fibroblasts to become mature collagen, and thus contributes significantly to the induction of collagen production together with paraclinic factors and the like. Collagen.
HSP70は、皮膚の保護(細胞保護)効果、炎症反応の抑制効果、DNA傷害抑制効果を有するとされる。図2のとおり、濾液中のHSP70の含有量が特に多く、表皮への塗布などによりUVB依存の皮膚傷害や細胞死が抑制される可能性がある(松田実著、「光老化に対するHSP70の保護効果」、熊本大学大学院薬学教育部 分子機能薬学専攻 創薬化学講座 薬学微生物学分野 平成23年度博士論文)。
(3) 小括
以上のとおり、本発明者らは、試験1で、FADRCLにHSP70、HSP47、各種パラクライン因子等が多く含まれることを発見し、試験5で、これらの効果でFADRCLが優れたコラーゲン産生効果を有することを発見し、更に、FADRCL中のHSP70が、紫外線(UVB)による皮膚傷害の抑制する機能を有することを確認し、本発明の化粧料の用途発明を完成した。 HSP70 is said to have a skin protection (cell protection) effect, an inflammatory reaction suppression effect, and a DNA damage suppression effect. As shown in Fig. 2, the content of HSP70 in the filtrate is particularly high, and UVB-dependent skin damage and cell death may be suppressed by application to the epidermis (Matsuda Minoru, "Protection of HSP70 against photoaging". Effect ”, Department of Medicinal Function Chemistry, Faculty of Pharmaceutical Education, Kumamoto University, Department of Medicinal Microbiology, 2011 Doctoral Dissertation).
(3) Summary As described above, the present inventors discovered that FADRCL contained a large amount of HSP70, HSP47, various paraclinic factors, etc. inTest 1, and in Test 5, FADRCL was excellent in these effects. It was discovered that it has a collagen-producing effect, and further, it was confirmed that HSP70 in FADRCL has a function of suppressing skin damage caused by ultraviolet rays (UVB), and the invention of use of the cosmetic of the present invention was completed.
(3) 小括
以上のとおり、本発明者らは、試験1で、FADRCLにHSP70、HSP47、各種パラクライン因子等が多く含まれることを発見し、試験5で、これらの効果でFADRCLが優れたコラーゲン産生効果を有することを発見し、更に、FADRCL中のHSP70が、紫外線(UVB)による皮膚傷害の抑制する機能を有することを確認し、本発明の化粧料の用途発明を完成した。 HSP70 is said to have a skin protection (cell protection) effect, an inflammatory reaction suppression effect, and a DNA damage suppression effect. As shown in Fig. 2, the content of HSP70 in the filtrate is particularly high, and UVB-dependent skin damage and cell death may be suppressed by application to the epidermis (Matsuda Minoru, "Protection of HSP70 against photoaging". Effect ”, Department of Medicinal Function Chemistry, Faculty of Pharmaceutical Education, Kumamoto University, Department of Medicinal Microbiology, 2011 Doctoral Dissertation).
(3) Summary As described above, the present inventors discovered that FADRCL contained a large amount of HSP70, HSP47, various paraclinic factors, etc. in
<考察>
以上のとおり、脂肪組織由来幹細胞破砕液の濾液は皮膚の創傷部位の治療剤として、また、化粧料として極めて有用であることが実証された。脂肪組織由来幹細胞自体ではなく、非細胞製剤である脂肪組織由来幹細胞破砕液の濾液を用いることは、既報の幹細胞又は幹細胞の培養上清による治療と比べ、格段に高い効果と安全な治療を可能にする。 <Discussion>
As described above, it has been demonstrated that the filtrate of the adipose tissue-derived stem cell disruption solution is extremely useful as a therapeutic agent for wounds on the skin and as a cosmetic. Using a filtrate of adipose tissue-derived stem cell disruption solution, which is a non-cell preparation, instead of adipose tissue-derived stem cells themselves, enables much higher efficacy and safer treatment than the previously reported treatment with stem cells or stem cell culture supernatants. To.
以上のとおり、脂肪組織由来幹細胞破砕液の濾液は皮膚の創傷部位の治療剤として、また、化粧料として極めて有用であることが実証された。脂肪組織由来幹細胞自体ではなく、非細胞製剤である脂肪組織由来幹細胞破砕液の濾液を用いることは、既報の幹細胞又は幹細胞の培養上清による治療と比べ、格段に高い効果と安全な治療を可能にする。 <Discussion>
As described above, it has been demonstrated that the filtrate of the adipose tissue-derived stem cell disruption solution is extremely useful as a therapeutic agent for wounds on the skin and as a cosmetic. Using a filtrate of adipose tissue-derived stem cell disruption solution, which is a non-cell preparation, instead of adipose tissue-derived stem cells themselves, enables much higher efficacy and safer treatment than the previously reported treatment with stem cells or stem cell culture supernatants. To.
本発明の脂肪組織由来幹細胞破砕液の濾液を有効成分に含む皮膚保護剤を用いることにより、従来よりも効率的で有害事象のリスクを抑えた皮膚の創傷治癒を可能にするとともに、紫外線のダメージなどから皮膚を保護することができるもので、産業上の利用可能性は大である。
By using a skin protective agent containing the filtrate of the adipose tissue-derived stem cell disruption solution of the present invention as an active ingredient, it is possible to heal wounds on the skin more efficiently than before and reduce the risk of adverse events, and damage caused by ultraviolet rays. It can protect the skin from such things, and has great industrial applicability.
本発明は、上記発明の実施形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で、種々の変形態様もこの発明に含まれる。本明細書中に明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
The present invention is not limited to the description of the embodiments and examples of the above invention. Various modifications are also included in the present invention to the extent that those skilled in the art can easily conceive without departing from the description of the scope of claims. The contents of the articles, published patent gazettes, patent gazettes, etc. specified in this specification shall be cited by reference in their entirety.
Claims (9)
- 脂肪組織由来幹細胞破砕液の濾液を有効成分に含む皮膚保護剤、ここで、前記濾液は、ヒートショックプロテイン、サイトカイン及び/又はパラクライン因子並びに細胞表面タンパク質からなる群から選ばれる1種以上のタンパク質を含むことを特徴とする皮膚保護剤。 A skin protective agent containing a filtrate of adipose tissue-derived stem cell disruption solution as an active ingredient, wherein the filtrate is one or more proteins selected from the group consisting of heat shock proteins, cytokines and / or paracrine factors and cell surface proteins. A skin protectant characterized by containing.
- 前記脂肪組織由来幹細胞破砕液の濾液に含まれるヒートショックプロテイン、サイトカイン及び/又はパラクライン因子並びに細胞表面タンパク質からなる群から選ばれる1種以上のタンパク質が、HSP47、HSP70、HMGB1及びAnnexinA6からなる群から選ばれる1種以上のタンパク質を含むことを特徴とする請求項1に記載の皮膚保護剤。 One or more proteins selected from the group consisting of heat shock proteins, cytokines and / or paracrine factors and cell surface proteins contained in the filtrate of the adipose tissue-derived stem cell disruption solution is a group consisting of HSP47, HSP70, HMGB1 and Annexin A6. The skin protective agent according to claim 1, which comprises one or more proteins selected from the above.
- 前記脂肪組織由来幹細胞の生物種がヒ卜である、請求項1又は2に記載の皮膚保護剤。 The skin protective agent according to claim 1 or 2, wherein the organism species of the adipose tissue-derived stem cells are hygiene.
- 前記皮膚保護剤が、更に、以下の(a)から(c)のいずれか1種以上を含むことを特徴とする、請求項1~3のいずれか一項に記載の皮膚保護剤:
(a)脂肪組織由来幹細胞、
(b)脂肪組織由来幹細胞(a)を破砕することによって得られた破砕液、
(c)破砕液(b)を遠心処理して得られた上清。 The skin protectant according to any one of claims 1 to 3, wherein the skin protectant further contains any one or more of the following (a) to (c):
(A) Adipose tissue-derived stem cells,
(B) Crushed solution obtained by crushing adipose tissue-derived stem cells (a),
(C) A supernatant obtained by centrifuging the crushed liquid (b). - 請求項1~4のいずれか一項に記載の皮膚保護剤を含む、皮膚の創傷部位の治癒を促進するための創傷治療剤。 A wound healing agent for promoting healing of a wound site of the skin, which comprises the skin protective agent according to any one of claims 1 to 4.
- 前記創傷が、外傷、虚血性潰瘍創傷又は糖尿病創傷である、請求項5に記載の創傷治療剤。 The wound therapeutic agent according to claim 5, wherein the wound is a trauma, an ischemic ulcer wound or a diabetic wound.
- 請求項1~4のいずれか一項に記載の皮膚保護剤を含む、化粧料。 A cosmetic containing the skin protective agent according to any one of claims 1 to 4.
- 以下のステップ(1)~(3)を含むことを特徴とする、皮膚保護剤の製造方法:
(1)凍結状態の前記脂肪組織由来幹細胞を凍結融解処理で破砕するステップ、
(2)ステップ(1)で得られた破砕液、又は前記破砕液を遠心処理して得られた上清をフィルター処理し、濾液を得るステップ、及び
(3)ステップ(2)で得られた濾液を製剤化するステップ。 A method for producing a skin protective agent, which comprises the following steps (1) to (3):
(1) A step of crushing the frozen stem cells derived from adipose tissue by freeze-thaw treatment.
(2) The crushed solution obtained in step (1) or the supernatant obtained by centrifuging the crushed solution is filtered to obtain a filtrate, and (3) obtained in step (2). The step of formulating the filtrate. - 前記ステップ(1)に代えて、未凍結状態の脂肪組織由来幹細胞を超音波処理で破砕するステップを含むことを特徴とする、請求項8に記載の皮膚保護剤の製造方法。 The method for producing a skin protective agent according to claim 8, wherein instead of the step (1), a step of disrupting unfrozen adipose tissue-derived stem cells by ultrasonic treatment is included.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/006764 WO2022018897A1 (en) | 2021-02-24 | 2021-02-24 | Skin protective agent |
JP2022538579A JP7213479B2 (en) | 2021-02-24 | 2021-02-24 | skin protectant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/006764 WO2022018897A1 (en) | 2021-02-24 | 2021-02-24 | Skin protective agent |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022018897A1 true WO2022018897A1 (en) | 2022-01-27 |
Family
ID=79729324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/006764 WO2022018897A1 (en) | 2021-02-24 | 2021-02-24 | Skin protective agent |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7213479B2 (en) |
WO (1) | WO2022018897A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009524425A (en) * | 2006-01-27 | 2009-07-02 | プロスティミクス カンパニー リミテッド | Method for mass production of growth factors using adipose-derived stem cells |
KR20110119062A (en) * | 2010-04-26 | 2011-11-02 | (주)프로스테믹스 | Enriched media of human adipose tissue-derived stem cells having skin regeneration or antiwrinkle effect and uses thereof |
CN103898049A (en) * | 2014-03-14 | 2014-07-02 | 南京久腾医药科技有限公司 | Cell-activating essence product as well as preparation method and application thereof |
JP2019142831A (en) * | 2018-02-23 | 2019-08-29 | 国立大学法人旭川医科大学 | Erectile dysfunction therapeutic agent |
CN111265550A (en) * | 2020-04-10 | 2020-06-12 | 青岛信迪细胞生物科技开发有限公司 | Stem cell factor liposome for repairing damaged tissues and preparation method thereof |
-
2021
- 2021-02-24 JP JP2022538579A patent/JP7213479B2/en active Active
- 2021-02-24 WO PCT/JP2021/006764 patent/WO2022018897A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009524425A (en) * | 2006-01-27 | 2009-07-02 | プロスティミクス カンパニー リミテッド | Method for mass production of growth factors using adipose-derived stem cells |
KR20110119062A (en) * | 2010-04-26 | 2011-11-02 | (주)프로스테믹스 | Enriched media of human adipose tissue-derived stem cells having skin regeneration or antiwrinkle effect and uses thereof |
CN103898049A (en) * | 2014-03-14 | 2014-07-02 | 南京久腾医药科技有限公司 | Cell-activating essence product as well as preparation method and application thereof |
JP2019142831A (en) * | 2018-02-23 | 2019-08-29 | 国立大学法人旭川医科大学 | Erectile dysfunction therapeutic agent |
CN111265550A (en) * | 2020-04-10 | 2020-06-12 | 青岛信迪细胞生物科技开发有限公司 | Stem cell factor liposome for repairing damaged tissues and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022018897A1 (en) | 2022-01-27 |
JP7213479B2 (en) | 2023-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5981947B2 (en) | Skin cream | |
JP6286689B2 (en) | Cosmetic or skin regeneration promoter using non-human stem cell culture supernatant as raw material, and protein iontophoresis method | |
CN106456676A (en) | Hair growth-promoting function of culture medium of stimulated stem cells and use thereof | |
KR20120095022A (en) | Cell therapy composition for preventing or treating graft-versus-host disease comprising mesenchymal stem cell and regulatory t cell | |
JP6367372B2 (en) | The ability of small stem cells to stimulate hair growth and use of the stem cells | |
WO2014126931A1 (en) | Stable platelet- rich-plasma compositions and methods of use | |
WO2013142192A1 (en) | Methods and compositions for regenerating and repairing damaged tissue using nonviable irradiated or lyophilized pluripotent stem cells | |
US20190192574A1 (en) | Pluripotent stem cell for treating diabetic skin ulcer | |
JP7514349B2 (en) | Composition for promoting stem cell-derived exosome production and enhancing stem cell function, comprising lanifibranol | |
WO2019163798A1 (en) | Erectile dysfunction therapeutic agent | |
US20200230172A1 (en) | Stem cell conditioned media for clinical and cosmetic applications | |
Mehanni et al. | New approach of bone marrow-derived mesenchymal stem cells and human amniotic epithelial cells applications in accelerating wound healing of irradiated albino rats | |
KR20100097574A (en) | Cell composition for promoting hair growth | |
AU2023206197A1 (en) | Enhanced multipotent cells and microvascular tissue and methods of use thereof | |
WO2023143519A1 (en) | Cell repair protein extract, and preparation method therefor and use thereof | |
KR101816964B1 (en) | Pharmaceutical adjuvant composition for treating damages of skin or blood vessel tissue | |
WO2022018897A1 (en) | Skin protective agent | |
JP6994729B1 (en) | A therapeutic agent for osteoarthritis or ligaments or tendons, and a method for producing the same. | |
TWI656877B (en) | Pharmaceutical composition for treating skin wound comprising umbilical mesenchymal stem cell culture fluid or product made therefrom | |
US20220030851A1 (en) | Modulating ischemic injury | |
JP7525840B2 (en) | Treatment of lower urinary tract dysfunction | |
Şenel et al. | Toxicological Analysis of a New Fibrin-Derived Dermal Scaffold (Dermoturk); Acellular and Combined with Stem Cells Forms | |
CN116421627A (en) | Preparation method of nano fat lysate, nano fat lysate and application of nano fat lysate | |
Murphy et al. | Cutaneous Applications of Stem Cells for Skin Tissue Engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21846358 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022538579 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21846358 Country of ref document: EP Kind code of ref document: A1 |