WO2014112572A1 - Semiconductor device producing method and substrate treatment device - Google Patents

Semiconductor device producing method and substrate treatment device Download PDF

Info

Publication number
WO2014112572A1
WO2014112572A1 PCT/JP2014/050751 JP2014050751W WO2014112572A1 WO 2014112572 A1 WO2014112572 A1 WO 2014112572A1 JP 2014050751 W JP2014050751 W JP 2014050751W WO 2014112572 A1 WO2014112572 A1 WO 2014112572A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
layer
film
carbon
metal element
Prior art date
Application number
PCT/JP2014/050751
Other languages
French (fr)
Japanese (ja)
Inventor
小川 有人
和宏 原田
加我 友紀直
秀治 板谷
芦原 洋司
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013009577A external-priority patent/JP6061385B2/en
Priority claimed from JP2014005809A external-priority patent/JP2014158019A/en
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Publication of WO2014112572A1 publication Critical patent/WO2014112572A1/en
Priority to US14/801,984 priority Critical patent/US20150325447A1/en
Priority to US15/961,277 priority patent/US20180247819A1/en
Priority to US16/240,197 priority patent/US10388530B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Definitions

  • the present invention relates to a semiconductor device manufacturing method and a substrate processing apparatus.
  • TiN titanium nitride
  • a metal gate electrode having a work function different from TiN is required, if a metal electrode different from TiN is used, a process integration problem (for example, processing problem, thermal stability, diffusion stability, etc.), etc.
  • Vth threshold voltage, threshold voltage
  • MOSFETs Metal-Oxide-Semiconductor Field Effect Transistor
  • various types of metal films are used as electrodes and wirings.
  • metal carbide-based and metal nitride-based metal films are often used from the viewpoints of oxidation resistance, electrical resistivity, work function, etc., for gate electrodes and DRAM (Dynamic Random Access Memory) capacitor electrodes.
  • An object of the present invention is to provide a technique capable of adjusting a work function value to a desired value while ensuring process affinity in integration with a commonly used technique.
  • a method for manufacturing a semiconductor device includes a step of adjusting the work function of the film containing the metal element, carbon, and nitrogen to a desired value by controlling the number of times the step of forming the film is performed.
  • FIG. 2 is a view showing a processing furnace part of the vertical processing furnace shown in FIG.
  • FIG. 2 is a view showing a processing furnace part of the vertical processing furnace shown in FIG.
  • FIG. 1 is a block diagram which shows schematic structure of the controller which the substrate processing apparatus 10 shown in FIG. 1 has.
  • It is a figure which shows the film-forming flow in the sequence of 1st Embodiment of the substrate processing apparatus shown in FIG.
  • It is a figure which shows the gas supply timing in the sequence of 3rd Embodiment.
  • FIG. 9 is a process flowchart showing an example of a gate manufacturing process of the semiconductor device shown in FIG. 8.
  • FIG. 10 is a process flow diagram illustrating an example of a metal film formation process in the gate manufacturing process illustrated in FIG. 9. It is a figure which shows the timing of the gas supply in the film-forming process shown in FIG. It is a figure which shows C / Ti ratio based on the XPS analysis result with respect to the TiCN film
  • FIG. 13A is a diagram showing the C concentration in the TiCN film measured by XPS with respect to the TiCN film obtained in Examples 1 to 3
  • FIG. 13B is the TiCN obtained in Examples 1 to 3. It is a figure which shows N concentration in the TiCN film
  • FIG. 14A is a diagram illustrating a configuration of a capacitor created for an experiment
  • FIG. 14A is a diagram illustrating a capacitor 268a
  • FIG. 14B is a diagram illustrating a capacitor 268b
  • FIG. 18 (a) is a diagram showing the work function with respect to the ratio of C for each of the metal films formed in Examples 4 to 8 of the present invention
  • FIG. 18 (b) is a diagram showing Example 4 of the present invention
  • FIG. 9 is a diagram showing a work function with respect to a ratio of N for each of the metal films formed in ⁇ 8.
  • threshold voltage As an important parameter indicating the characteristics of the MOSFET, there is a threshold voltage (threshold voltage, Vth).
  • This threshold voltage is determined by the work function of the electrode.
  • the work function of the electrode can be tuned (adjusted or modulated) by the metal film constituting the electrode.
  • the required work function value is different between the P-type transistor and the N-type transistor, and the P-type transistor requires 5.0 eV or more, and the N-type transistor requires 4.3 eV or less.
  • other values may be required depending on the application. In such a case, it is desirable that the work function can be adjusted with one film having the same elemental composition.
  • the C (single phase) concentration is controlled, for example, the work function value is increased by increasing the C concentration.
  • the work function can be adjusted according to the application.
  • FIG. 1 and 2 show a substrate processing apparatus 10 preferably used in an embodiment of the present invention.
  • the substrate processing apparatus 10 is configured as an example of a semiconductor manufacturing apparatus used for manufacturing a semiconductor device (device).
  • the processing furnace 202 is provided with a heater 207 which is a heating means (heating mechanism, heating system) for heating the wafer 200 as a substrate.
  • the heater 207 includes a cylindrical heat insulating member whose upper portion is closed and a plurality of heater wires, and has a unit configuration in which the heater wires are provided on the heat insulating member.
  • a reaction tube 203 constituting a reaction vessel (processing vessel) concentrically with the heater 207 is disposed inside the heater 207.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and has a cylindrical shape with the upper end closed and the lower end opened.
  • the lower end of the reaction tube 203 is airtightly closed at the lower end of the reaction tube 203 through, for example, stainless steel via an O-ring 220 that is an airtight member and the lower end opening is sealed through an O-ring 220 by a seal cap 219 that is a lid.
  • a processing chamber 201 is formed by the pipe 203, the manifold 209, and the seal cap 219.
  • a boat 217 which is a substrate support member as a substrate support means (substrate support) is erected on the seal cap 219 via the boat support 218, and the boat support 218 includes a holding body that holds the boat in a state of supporting the boat. It has become.
  • a plurality of wafers 200 to be batch-processed are stacked in a multi-stage in the horizontal direction in the tube axis direction.
  • the boat 217 can be moved up and down (in and out) with respect to the reaction tube 203 by a boat elevator 115 as a transport means (transport mechanism).
  • a boat rotation mechanism 267 that rotates the boat 217 is provided at the lower end of the boat support 218 in order to improve processing uniformity. By driving the boat rotation mechanism 267, the boat 217 supported by the boat support 218 can be rotated.
  • the heater 207 heats the wafer 200 inserted into the processing chamber 201 to a predetermined temperature.
  • a nozzle 410 (first nozzle 410), a nozzle 420 (second nozzle 420), and a nozzle 430 (third nozzle 430) are provided so as to penetrate the lower part of the reaction tube 203.
  • the nozzle 410, the nozzle 420, and the nozzle 430 include a gas supply pipe 310 (first gas supply pipe 310), 320 (second gas supply pipe 320), and 330 (third gas supply pipe 330) as gas supply lines. ) Are connected to each other.
  • the reaction tube 203 is provided with the three nozzles 410, 420, and 430 and the three gas supply tubes 310, 320, and 330.
  • the gas (processing gas) can be supplied.
  • the gas supply pipe 310 is provided with a mass flow controller 312 which is a flow rate control device (flow rate control unit) and a valve 314 which is an on-off valve in order from the upstream side.
  • a nozzle 410 is connected to the tip of the gas supply pipe 310.
  • the nozzle 410 is configured as an L-shaped long nozzle, and its horizontal portion is provided so as to penetrate the side wall of the manifold 209.
  • the vertical portion rises in an arc-shaped space between the inner wall of the reaction tube 203 and the wafer 200 along the upper portion from the lower portion of the inner wall of the reaction tube 203 toward the upper side in the loading direction of the wafer 200 (that is,
  • the wafer arrangement region is provided so as to rise from one end side toward the other end side). That is, the nozzle 410 is provided on the side of the wafer arrangement area where the wafers 200 are arranged, in a region that horizontally surrounds the wafer arrangement area, along the wafer arrangement area.
  • a gas supply hole 410 a for supplying gas is provided on the side surface of the nozzle 410.
  • the gas supply hole 410 a is opened to face the center of the reaction tube 203.
  • a plurality of the gas supply holes 410a are provided from the lower part to the upper part of the reaction tube 203, have the same or inclined opening areas, and are provided at the same opening pitch.
  • a gas supply pipe 310, a mass flow controller 312, a valve 314, and a nozzle 410 constitute a first gas supply system.
  • a carrier gas supply pipe 510 for supplying a carrier gas is connected to the gas supply pipe 310.
  • the carrier gas supply pipe 510 is provided with a mass flow controller 512 and a valve 514.
  • a carrier gas supply pipe 510, a mass flow controller 512, and a valve 514 mainly constitute a first carrier gas supply system.
  • the gas supply pipe 320 is provided with a mass flow controller 322 as a flow rate control device (flow rate control unit) and a valve 324 as an on-off valve in order from the upstream side.
  • a nozzle 420 is connected to the tip of the gas supply pipe 320.
  • the nozzle 420 is configured as an L-shaped long nozzle, and a horizontal portion thereof is provided so as to penetrate the side wall of the manifold 209.
  • the vertical portion rises in an arc-shaped space between the inner wall of the reaction tube 203 and the wafer 200 along the upper portion from the lower portion of the inner wall of the reaction tube 203 toward the upper side in the loading direction of the wafer 200 (that is,
  • the wafer arrangement region is provided so as to rise from one end side toward the other end side). That is, the nozzle 420 is provided on the side of the wafer arrangement area where the wafers 200 are arranged, in a region that horizontally surrounds the wafer arrangement area, along the wafer arrangement area.
  • a gas supply hole 420 a for supplying gas is provided on the side surface of the nozzle 420.
  • the gas supply hole 420 a is opened to face the center of the reaction tube 203.
  • a plurality of the gas supply holes 420a are provided from the lower part to the upper part of the reaction tube 203, have the same or inclined opening areas, and are provided at the same opening pitch.
  • the gas supply pipe 320, the mass flow controller 322, the valve 324, and the nozzle 420 mainly constitute a second gas supply system.
  • a carrier gas supply pipe 520 for supplying a carrier gas is connected to the gas supply pipe 320.
  • the carrier gas supply pipe 520 is provided with a mass flow controller 522 and a valve 524.
  • the carrier gas supply pipe 520, the mass flow controller 522, and the valve 524 mainly constitute a second carrier gas supply system.
  • the gas supply pipe 330 is provided with a mass flow controller 332 that is a flow rate control device (flow rate control unit) and a valve 334 that is an on-off valve in order from the upstream side.
  • a nozzle 430 is connected to the tip of the gas supply pipe 330.
  • the nozzle 430 is configured as an L-shaped long nozzle, and a horizontal portion thereof is provided so as to penetrate the side wall of the manifold 209.
  • the vertical portion rises in an arc-shaped space between the inner wall of the reaction tube 203 and the wafer 200 along the upper portion from the lower portion of the inner wall of the reaction tube 203 toward the upper side in the loading direction of the wafer 200 (that is,
  • the wafer arrangement region is provided so as to rise from one end side toward the other end side). That is, the nozzle 430 is provided along the wafer arrangement region in a region that horizontally surrounds the wafer arrangement region on the side of the wafer arrangement region where the wafers 200 are arranged.
  • a gas supply hole 430a for supplying gas is provided on the side surface of the nozzle 430.
  • the gas supply hole 430 a is opened to face the center of the reaction tube 203.
  • a plurality of the gas supply holes 430a are provided from the lower part to the upper part of the reaction tube 203, have the same or inclined opening areas, and are provided at the same opening pitch.
  • the gas supply pipe 330, the mass flow controller 332, the valve 334, and the nozzle 430 mainly constitute a third gas supply system.
  • a carrier gas supply pipe 530 for supplying a carrier gas is connected to the gas supply pipe 330.
  • the carrier gas supply pipe 530 is provided with a mass flow controller 532 and a valve 534.
  • a third carrier gas supply system is mainly configured by the carrier gas supply pipe 530, the mass flow controller 532, and the valve 534.
  • the gas supply method includes a nozzle 410 arranged in an arc-like vertically long space defined by the inner wall of the reaction tube 203 and the ends of a plurality of stacked wafers 200,
  • the gas is conveyed through 420 and 430, and the gas is jetted into the reaction tube 203 for the first time in the vicinity of the wafer 200 from the gas supply holes 410a, 420b and 430c opened in the nozzles 410, 420 and 430, respectively.
  • the main flow of gas in the reaction tube 203 is set in a direction parallel to the surface of the wafer 200, that is, in a horizontal direction.
  • the residual gas after the reaction flows toward the exhaust port, that is, the direction of the exhaust pipe 231 described later.
  • the direction of the residual gas flow is appropriately specified by the position of the exhaust port and is limited to the vertical direction. It is not a thing.
  • a metal-containing gas (metal compound) that is a raw material gas and a titanium (Ti) element is used as the first processing gas containing the first predetermined element.
  • metal compound metal compound
  • Ti titanium
  • TiCl 4 Titanium tetrachloride
  • the liquid material is vaporized by a vaporization system such as a vaporizer or bubbler and supplied as TiCl 4 gas that is a Ti-containing gas. It becomes.
  • the second processing gas containing the second predetermined element for example, Hf [C 5], which is a C-containing gas (carbon raw material) containing at least a carbon (C) element as the first reaction gas.
  • H 4 (CH 3 )] 2 (CH 3 ) 2 is supplied into the processing chamber 201.
  • Hf [C 5 H 4 ( CH 3)] 2 (CH 3) as a 2
  • the material ECH (ethylcyclohexane ) Or THF (tetrahydrofuran) or the like to form a liquid state
  • the liquid state material is vaporized by a vaporization system such as a vaporizer or bubbler and supplied as a gas.
  • the third processing gas containing the third predetermined element for example, an N-containing gas containing at least nitrogen (N) as the second reaction gas, and a nitriding raw material, ie, a nitriding gas, ammonia. (NH 3 ) is supplied into the processing chamber 201.
  • N nitrogen
  • a nitriding raw material ie, a nitriding gas, ammonia.
  • nitrogen (N 2 ) gas is supplied from the mass flow controllers 512, 522 and 532, valves 514, 524 and 534, gas supply pipes 510, 520 and 530, and nozzles 410 and 420, respectively. And 430 to the inside of the processing chamber 201.
  • the source gas supply system is configured by the first gas supply system.
  • the source gas supply system is also referred to as a metal-containing gas supply system.
  • the second gas supply system constitutes a C-containing gas supply system (carbon raw material supply system).
  • the third gas supply system constitutes an N-containing gas supply system (nitriding material supply system).
  • the C-containing gas supply system constitutes a first reaction gas supply system
  • the N-containing gas supply system constitutes a second reaction gas supply system.
  • the source gas supply system, the C-containing gas supply system, and the N-containing gas supply system are also simply referred to as a metal source supply system, a carbon source supply system, and a nitriding source supply system, respectively.
  • the reaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • the exhaust pipe 231 has a side on which the gas supply hole 410 a of the nozzle 410 of the reaction pipe 203, the gas supply hole 420 a of the nozzle 420, and the gas supply hole 430 a of the nozzle 430 are provided. It is provided on the opposite side, that is, on the opposite side to the gas supply holes 410a, 420a, and 430a with the wafer 200 in between.
  • the exhaust pipe 231 is provided below the portion where the gas supply holes 410a, 420a, and 430a are provided in a longitudinal sectional view.
  • the gas supplied from the gas supply holes 410a, 420a, and 430a to the vicinity of the wafer 200 in the processing chamber 201 flows in the horizontal direction, that is, in the direction parallel to the surface of the wafer 200, and then downward. Then, the air flows through the exhaust pipe 231. As described above, the main flow of gas in the processing chamber 201 is a flow in the horizontal direction.
  • a pressure sensor 245 as a pressure detector (pressure detection unit) that detects the pressure in the processing chamber 201 in order from the upstream side, and an exhaust valve configured as a pressure regulator (pressure adjustment unit).
  • An APC (Auto Pressure Controller) valve 243 and a vacuum pump 246 as a vacuum exhaust device are connected.
  • the exhaust pipe 231 has a trap device that captures reaction by-products and unreacted source gas in the exhaust gas, and a detoxification device that removes corrosive components and toxic components contained in the exhaust gas. May be connected.
  • An exhaust system that is, an exhaust line, is mainly configured by the exhaust pipe 231, the APC valve 243, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a trap device or a detoxifying device may be included in the exhaust system.
  • the APC valve 243 can open and close the vacuum pump 246 while the vacuum pump 246 is operated, thereby performing vacuum evacuation and stop of the vacuum exhaust in the processing chamber 201. Further, the APC valve 243 is in a state where the vacuum pump 246 is operated. The valve is configured so that the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening degree.
  • a temperature sensor 263 as a temperature detector is installed in the reaction tube 203, and the temperature in the processing chamber 201 is adjusted by adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263. It is configured to have a desired temperature distribution.
  • the temperature sensor 263 is configured in an L shape similarly to the nozzles 410, 420, and 430, and is provided along the inner wall of the reaction tube 203.
  • FIG. 3 shows the controller 121.
  • the controller 121 includes a CPU (Central Processing Unit) 121a, a RAM (Random). (Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
  • an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121c includes, for example, a flash memory, an HDD (Hard Disk Drive), and the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
  • the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in a substrate processing step to be described later, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to as simply a program.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
  • the I / O port 121d includes the mass flow controllers 312, 322, 332, 512, 522, 532, the valves 314, 324, 334, 514, 524, 534, 614, the pressure sensor 245, the APC valve 243, the vacuum pump 246, The heater 207, temperature sensor 263, rotation mechanism 267, boat elevator 115, and the like are connected.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c, and to read a process recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like. Then, the CPU 121a adjusts the flow rates of various gases by the mass flow controllers 312, 322, 332, 512, 522, 532, valves 314, 324, 334, 514, 524, 534, in accordance with the contents of the read process recipe.
  • APC valve 243 opening and closing operation, pressure adjustment operation based on pressure sensor 245 by APC valve 243, temperature adjustment operation of heater 207 based on temperature sensor 263, starting and stopping of vacuum pump 246, boat by rotation mechanism 267 It is configured to control the rotation and rotation speed adjustment operation of 217, the raising / lowering operation of the boat 217 by the boat elevator 115, and the like.
  • the controller 121 is not limited to being configured as a dedicated computer, and may be configured as a general-purpose computer.
  • an external storage device storing the above-described program for example, magnetic tape, magnetic disk such as a flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card
  • the controller 121 according to the present embodiment can be configured by installing a program in a general-purpose computer using the external storage device 123.
  • the means for supplying the program to the computer is not limited to supplying the program via the external storage device 123.
  • the program may be supplied without using the external storage device 123 by using communication means such as the Internet or a dedicated line.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. Note that when the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both.
  • FIG. 4 is a diagram showing a film forming flow in a preferred sequence of the present embodiment.
  • FIG. 5 is a diagram showing gas supply timings in a preferred sequence of the present embodiment.
  • the preferred sequence of this embodiment is By supplying a titanium (Ti) -containing gas and a carbon (C) -containing gas to the wafer 200, a metal carbide layer (TiC layer) as a first layer containing titanium and carbon is formed on the wafer 200. And a process of By supplying a nitrogen (N) -containing gas to the wafer 200, the metal carbonization (TiC) layer is nitrided to form a metal carbonitride layer (TiCN layer) as a second layer containing titanium, carbon, and nitrogen.
  • a metal carbonized layer corresponding to the number of executions of the step of forming a metal carbonitride film (TiCN film) having a predetermined thickness on the wafer 200 and forming a metal carbonitride layer (TiCN layer) is performed.
  • the work function of the metal carbonitride film (TiCN film) is adjusted (tuned and modulated) to a desired value by controlling the number of times the step of forming the (TiC layer) is performed.
  • wafer when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface thereof”. "(That is, a wafer including a predetermined layer or film formed on the surface).
  • wafer surface when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
  • the phrase “supplying a predetermined gas to the wafer” means “supplying a predetermined gas directly to the surface (exposed surface) of the wafer itself”. , It may mean that “a predetermined gas is supplied to a layer, a film, or the like formed on the wafer, that is, to the outermost surface of the wafer as a laminated body”. Further, in this specification, when “describe a predetermined layer (or film) on the wafer” is described, “determine a predetermined layer (or film) directly on the surface (exposed surface) of the wafer itself”. This means that a predetermined layer (or film) is formed on a layer or film formed on the wafer, that is, on the outermost surface of the wafer as a laminate. There is a case.
  • substrate in this specification is the same as the term “wafer”, and in that case, the “wafer” may be replaced with “substrate” in the above description. .
  • supplying the metal-containing gas and the carbon (C) -containing gas means that when the supply of the metal-containing gas and the supply of the carbon-containing gas are set as one set, when this set is performed once, This includes both cases where this set is performed multiple times. In other words, this means that this set is performed once or more (a predetermined number of times).
  • this set is preferably performed a plurality of times. The C concentration of the TiCN film can be increased by increasing the number of times of performing the setting. Further, in order to obtain a TiCN film having a relatively low C concentration, it is preferable to reduce the number of executions of this set (for example, once).
  • the step of forming the TiC layer and the step of forming the TiCN layer are alternately performed a predetermined number of times” means that “a Ti-containing gas and a C-containing gas are supplied to the wafer 200 in the processing chamber 201.
  • the “step of forming the TiCN layer” is defined as one cycle, this includes both the case where this cycle is performed once and the case where this cycle is performed a plurality of times. In other words, this means that this cycle is performed once or more (a predetermined number of times). As will be described later, this cycle is preferably performed a plurality of times rather than once.
  • metal film means a film made of a conductive substance containing a metal atom, and includes a conductive single metal film made of a single metal.
  • Conductive metal nitride film, conductive metal oxide film, conductive metal oxynitride film, conductive metal composite film, conductive metal alloy film, conductive metal silicide film, conductive metal carbide film (Metal carbide film), conductive metal carbonitride film (metal carbonitride film) and the like are also included.
  • the TiCN film titanium carbonitride film is a conductive metal carbonitride film.
  • the processing chamber 201 is evacuated by a vacuum pump 246 so that a desired pressure (degree of vacuum) is obtained. At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). Note that the vacuum pump 246 keeps being operated at least until the processing on the wafer 200 is completed. Further, the processing chamber 201 is heated by the heater 207 so as to have a desired temperature. At this time, the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment).
  • the heating of the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
  • the rotation mechanism 267 starts the rotation of the boat 217 and the wafer 200. Note that the rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the processing on the wafer 200 is completed. Thereafter, the following six steps are sequentially executed.
  • Step 11> TiCl 4 gas supply
  • the valve 314 of the gas supply pipe 310 is opened, and TiCl 4 gas is allowed to flow into the gas supply pipe 310.
  • the flow rate of the TiCl 4 gas that has flowed through the gas supply pipe 310 is adjusted by the mass flow controller 312.
  • the flow-adjusted TiCl 4 gas is supplied from the gas supply hole 410 a of the nozzle 410 into the processing chamber 201 and is exhausted from the exhaust pipe 231. At this time, TiCl 4 gas is supplied to the wafer 200. That is, the surface of the wafer 200 is exposed to TiCl 4 gas.
  • the valve 514 is opened, and an inert gas such as N 2 gas is allowed to flow into the carrier gas supply pipe 510.
  • the flow rate of the N 2 gas flowing through the carrier gas supply pipe 510 is adjusted by the mass flow controller 512.
  • the N 2 gas whose flow rate has been adjusted is supplied into the processing chamber 201 together with the TiCl 4 gas, and is exhausted from the exhaust pipe 231.
  • the valves 524 and 534 are opened, and N 2 gas is allowed to flow into the carrier gas supply pipe 520 and the carrier gas supply pipe 530.
  • N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 320, the gas supply pipe 330, the nozzle 420, and the nozzle 430, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 10 to 2000 Pa.
  • the supply flow rate of TiCl 4 gas controlled by the mass flow controller 512 is, for example, a flow rate in the range of 10 to 2000 sccm.
  • the supply flow rate of the N 2 gas controlled by the mass flow controllers 512, 522, and 532 is set to a flow rate in the range of, for example, 100 to 10,000 sccm.
  • the time for supplying the TiCl 4 gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, a time within the range of 0.1 to 120 seconds.
  • the temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 becomes a temperature within the range of 200 to 400 ° C., for example.
  • the wafer temperature is less than 200 ° C.
  • the temperature of the wafer 200 is preferably set to a temperature within the range of 200 to 400 ° C.
  • Ti titanium
  • Ti a titanium (Ti) -containing layer containing chlorine (Cl), that is, a layer containing Ti and Cl is formed on the wafer 200.
  • the Ti-containing layer containing Cl may be a chemisorption layer by an intermediate of TiCl 4 formed by decomposition of TiCl 4 and TiCl 4 , or a titanium layer containing Cl formed by thermal decomposition of TiCl 4 (Ti layer), that is, a Ti deposited layer, or both of them may be included.
  • Step 12> (Residual gas removal) After the Ti-containing layer containing Cl is formed, the valve 314 of the gas supply pipe 310 is closed, and the supply of TiCl 4 gas is stopped. At this time, after the APC valve 243 of the exhaust pipe 231 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246 to contribute to the formation of a Ti-containing layer containing unreacted or Cl remaining in the processing chamber 201. The TiCl 4 gas is removed from the processing chamber 201. At this time, the valves 514, 524, and 534 are kept open, and the supply of N 2 gas into the processing chamber 201 is maintained. The N 2 gas acts as a purge gas, thereby enhancing the effect of removing the TiCl 4 gas remaining in the processing chamber 201 or contributing to the formation of the Ti-containing layer containing Cl from the processing chamber 201. it can.
  • the gas remaining in the processing chamber 201 may not be completely removed, and the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, there will be no adverse effect in the subsequent step 13. At this time, the flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be a large flow rate. Purging to such an extent that no occurrence occurs can be performed. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
  • Step 13 (Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas supply)
  • step 12 is completed and residual gas in the processing chamber 201 is removed, the valve 324 of the gas supply pipe 320 is opened, and Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 is placed in the gas supply pipe 320.
  • Flow gas The flow rate of Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas flowing through the gas supply pipe 320 is adjusted by the mass flow controller 322.
  • Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas is supplied from the gas supply hole 420 a of the nozzle 420 into the processing chamber 201 and exhausted from the exhaust pipe 231.
  • Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas is supplied to the wafer 200. That is, the surface of the wafer 200 is exposed to Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas.
  • the valve 524 is opened, and N 2 gas is caused to flow into the carrier gas supply pipe 520.
  • the N 2 gas that has flowed through the carrier gas supply pipe 520 is adjusted in flow rate by the mass flow controller 522.
  • the N 2 gas whose flow rate is adjusted is supplied into the processing chamber 201 together with the Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas, and is exhausted from the exhaust pipe 231.
  • the valves 510 and 530 are opened, and the carrier gas supply pipe is opened.
  • N 2 gas is allowed to flow into the carrier gas supply pipe 530.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 310, the gas supply pipe 330, the nozzle 410, and the nozzle 430 and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is appropriately adjusted, and the pressure in the processing chamber 201 is set to a pressure in the range of 10 to 2000 Pa, for example, as in Step 11.
  • the supply flow rate of Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas controlled by the mass flow controller 322 is, for example, a flow rate in the range of 10 to 2000 sccm.
  • the supply flow rate of N 2 gas controlled by the mass flow controller 522 is, for example, a flow rate in the range of 100 to 10,000 sccm.
  • the time for supplying Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas to the wafer 200 is, for example, within a range of 0.1 to 120 seconds.
  • the temperature of the heater 207 at this time is set to such a temperature that the temperature of the wafer 200 becomes a temperature in the range of 250 to 400 ° C., for example, as in step 11.
  • the Ti-containing layer containing Cl formed on the wafer 200 in Step 11 reacts with the Hf [C5H4 (CH3)] 2 (CH3) 2 gas. To do. At this time, mainly the Cl of the Ti-containing layer containing Cl formed on the wafer 200 in Step 11 reacts with Hf [C5H4 (CH3)] 2 of Hf [C5H4 (CH3)] 2 (CH3) 2. Thus, a gaseous substance is generated and discharged as a gas.
  • Cl in the Ti-containing layer containing Cl may react with the methyl group (CH3) or cyclopenta group (C5H4) of Hf [C5H4 (CH3)] 2 (CH3) 2.
  • Hf [C5H4 (CH3)] 2 (CH3) 2 decomposes so that hafnium (Hf), hydrogen (H), etc. constituting Hf [C5H4 (CH3)] 2 (CH3) 2
  • a gaseous substance is generated by reacting with Cl in the Ti-containing layer and is discharged as a gas.
  • Cl contained in TiCl4 and Hf contained in Hf [C5H4 (CH3)] 2 (CH3) 2 are converted into gaseous substances and discharged.
  • Step 14> (Residual gas removal) Thereafter, the valve 324 of the gas supply pipe 320 is closed, and the supply of Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas is stopped. At this time, the APC valve 243 of the exhaust pipe 231 is kept open, the process chamber 201 is evacuated by the vacuum pump 246, and Hf [C after contributing to unreacted or TiC layer formation remaining in the process chamber 201 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas and reaction by-products are excluded from the processing chamber 201. At this time, the valves 510, 520, and 530 remain open, and the supply of N 2 gas into the processing chamber 201 is maintained.
  • the N 2 gas acts as a purge gas, whereby Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas and reaction after remaining in the processing chamber 201 or contributing to TiC layer formation.
  • the effect of removing the by-product from the processing chamber 201 can be enhanced.
  • the gas remaining in the processing chamber 201 may not be completely removed, and the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, no adverse effects will occur in the subsequent step 11 or step 15. At this time, the flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be a large flow rate. For example, by supplying an amount similar to the volume of the reaction tube 203 (processing chamber 201), step 11 or step 15 can be purged to the extent that no adverse effects occur. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
  • the above steps 11 to 14 are set as one set, and this set is performed a predetermined number of times to form a TiC layer having a predetermined thickness.
  • FIG. 5 shows how this set is performed m times.
  • the number of executions (m) of the setting is, for example, 1 to 200 times, preferably 1 to 100 times, and more preferably 1 to 20 times.
  • the set may be performed several times (m), for example, about 2 to 6 times.
  • By controlling (adjusting) the number of executions (m) of setting it is possible to control the C concentration of the TiCN film finally formed. By changing the C concentration, the work function of the TiCN film can be adjusted (tuned) to a desired value according to the application.
  • this set is preferably performed a plurality of times rather than once.
  • the C concentration of the TiCN film can be increased by increasing the number of times of performing the setting.
  • Step 15> (NH 3 gas supply process) After a TiC layer having a predetermined thickness is formed and residual gas in the processing chamber 201 is removed, the valve 334 of the gas supply pipe 330 is opened, and NH 3 gas is allowed to flow into the gas supply pipe 330. The flow rate of the NH 3 gas flowing through the gas supply pipe 330 is adjusted by the mass flow controller 324. The NH 3 gas whose flow rate has been adjusted is supplied into the processing chamber 201 from the gas supply hole 430 a of the nozzle 430. The NH 3 gas supplied into the processing chamber 201 is activated by heat and exhausted from the exhaust pipe 231. At this time, NH 3 gas activated by heat is supplied to the wafer 200.
  • the surface of the wafer 200 is exposed to heat activated NH 3 gas.
  • the valve 534 is opened, and N 2 gas is caused to flow into the carrier gas supply pipe 530.
  • the flow rate of the N 2 gas flowing through the carrier gas supply pipe 530 is adjusted by the mass flow controller 532.
  • the N 2 gas is supplied into the processing chamber 201 together with the NH 3 gas, and is exhausted from the exhaust pipe 231.
  • the valves 514 and 524 are opened, and the N 2 gas is allowed to flow into the carrier gas supply pipes 510 and 520.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 310 and 320, the nozzle 410 and the nozzle 420, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 10 to 2000 Pa.
  • the NH 3 gas can be thermally activated by non-plasma.
  • a soft reaction can be caused by supplying the NH 3 gas activated by heat, and nitridation described later can be performed softly.
  • the supply flow rate of NH 3 gas controlled by the mass flow controller 332 is, for example, a flow rate in the range of 10 to 10,000 sccm.
  • the supply flow rate of the N 2 gas controlled by the mass flow controllers 512, 522, and 532 is set to a flow rate in the range of, for example, 100 to 10,000 sccm.
  • the time for supplying the NH 3 gas activated by heat to the wafer 200, that is, the gas supply time (irradiation time) is, for example, a time within the range of 0.1 to 120 seconds.
  • the temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 becomes a temperature in the range of 200 to 400 ° C., for example, as in Steps 11 and 13.
  • a NH 3 gas is thermally activated by increasing the pressure in the processing chamber 201, TiCl 4 gas into the processing chamber 201 Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas is not flowing. Therefore, the NH 3 gas does not cause a gas phase reaction, and the activated NH 3 gas reacts with at least a part of the TiC layer containing Ti and C formed on the wafer 200 in Step 13. Thereby, the TiC layer is nitrided and modified into a titanium carbonitride layer (TiCN layer).
  • TiCN layer may be referred to as a C-doped TiN layer (C-added TiN layer).
  • the TiC layer when the TiC layer is thermally nitrided with NH 3 gas activated by heat and modified (changed) into the TiCN layer, the TiC layer is modified into the TiCN layer while adding an N component to the TiC layer. Will be allowed to.
  • Ti—N bonds in the TiC layer increase due to the action of thermal nitridation by NH 3 gas. That is, the TiC layer can be modified into a TiCN layer while changing the composition ratio in the direction of increasing the nitrogen concentration.
  • the processing conditions such as the pressure in the processing chamber 201 and the gas supply time, the ratio of the N component in the TiCN layer, that is, the nitrogen concentration can be finely adjusted, and the composition ratio of the TiCN layer can be adjusted. It can be controlled more precisely.
  • Step 16> (Residual gas removal) Thereafter, the valve 334 of the gas supply pipe 330 is closed, and the supply of NH 3 gas is stopped. At this time, the APC valve 243 of the exhaust pipe 231 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the NH 3 gas remaining in the processing chamber 201 and contributing to the formation of the TiCN layer is left. And reaction by-products are removed from the processing chamber 201. At this time, the valves 514, 524, and 534 are kept open, and the supply of N 2 gas into the processing chamber 201 is maintained. The N 2 gas acts as a purge gas, thereby enhancing the effect of eliminating NH 3 gas and reaction by-products remaining in the processing chamber 201 and contributing to the formation of the TiCN layer from the processing chamber 201. Can do.
  • the gas remaining in the processing chamber 201 may not be completely removed, and the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, no adverse effect will occur in the subsequent step 1. At this time, the flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be a large flow rate. For example, by supplying an amount similar to the volume of the reaction tube 203 (processing chamber 201), there is an adverse effect in step 1. Purge to such an extent that no occurrence occurs. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
  • the step of sequentially performing steps 11 to 14 a predetermined number of times and the step of performing steps 15 and 16 are defined as one cycle.
  • a TiCN film having a predetermined composition and a predetermined film thickness is formed on wafer 200. Is deposited.
  • the TiCN film may be referred to as a C-doped TiN film (C-added TiN film).
  • FIG. 5 shows how this cycle is performed n times. By controlling (adjusting) the number of executions (n) of the cycle, the thickness of the TiCN film finally formed can be adjusted.
  • the number of cycles (n) is set within a range of 1 to 5 times. And This cycle is preferably performed a plurality of times rather than once. That is, it is preferable that the thickness of the TiCN layer formed per cycle is made smaller than the desired film thickness, and the above cycle is repeated a plurality of times until the desired film thickness is obtained.
  • the action of nitriding performed in step 15 can be delivered to the entire TiC layer. Then, the TiCN film is nitrided more uniformly, and the N concentration of the TiCN film can be made more uniform in the thickness direction.
  • Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas is used as the carbon raw material.
  • the embodiment is not limited thereto, and Zr [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas, ethylene (C 2 H 4 ), propylene (C 3 H 6 ), butene (C 4 H 8 ), pentene (C 5 H 10 ), hexene (C 6 H 12), heptene (C 7 H 14), octene (C 8 H 16), ethane (C 2 H 6), propane (C 3 H 8), butane (C 4 H 10), pentane (C 5 H 12 ), hexane (C 6 H 14 ), heptane (C 7 H 16 ), octane (C 8 H 18 ) and the like may be used.
  • FIG. 6 shows gas supply timings in a good sequence for forming a TiAlC film by supplying three types of gases to the wafer 200.
  • TiCl 4 titanium tetrachloride
  • C carbon
  • a TiAlC film having a predetermined thickness can be formed by the following sequence.
  • a titanium tetrachloride (TiCl 4 ) gas which is a titanium (Ti) -containing gas, and a carbon (C) -containing gas are alternately supplied a predetermined number of times to the wafer 200 in the processing chamber 201, so that the wafer 200 is placed on the wafer 200.
  • TMA, (CH 3 ) 3 Al trimethylaluminum
  • Al-containing gas that is a metal source gas containing aluminum (Al)
  • Ti titanium
  • carbon A second step of forming a titanium aluminum carbide layer (TiAlC layer) containing (C) and aluminum (Al);
  • the first step of forming the titanium carbide layer (TiC layer) and the second step of forming the titanium aluminum carbide layer (TiAlC layer) are alternately performed a predetermined number of times, whereby a predetermined film thickness is formed on the wafer 200.
  • the titanium aluminum carbide film (TiAlC film) is formed, and the work function of the obtained TiAlC film is adjusted (tuned) by controlling the number of times the first step is performed.
  • FIG. 7 shows gas supply timings in a good sequence in which a TiAlC film is formed by supplying two types of gases to the wafer 200.
  • a TiAlC film having a predetermined thickness can be formed by the following sequence.
  • the wafer 200 in the processing chamber 201 is alternately supplied a predetermined number of times by a process of supplying a TiCl 4 gas as a Ti-containing gas and a process of supplying a TMA gas as a raw material containing C and Al.
  • a TiAlC layer containing Ti, Al, and C is formed thereon.
  • the work function of the TiAlC film obtained is controlled to a desired value by controlling the ratio of the number of times of performing each step between the step of supplying the TiCl 4 gas and the step of supplying the TMA gas to a predetermined value. Adjust (tune) so that
  • the C concentration in the obtained TiAlC film can be increased.
  • the value of the work function becomes smaller.
  • the C concentration in the obtained TiAlC film can be lowered by setting the number of steps of supplying the TMA gas to a small number (for example, once). As the C concentration decreases, the work function value becomes larger.
  • a TMA gas as the metal source gas is a Al-containing gas is not limited thereto, it may be used AlCl 3 or the like.
  • a TiCN film or a TiAlC film is formed.
  • the present invention is not limited to this, and tantalum (Ta), cobalt (Co), tungsten (W), and molybdenum (Mo).
  • Ta tantalum
  • Co cobalt
  • W tungsten
  • Mo molybdenum
  • Forming a metal carbide film containing one or more metal elements such as ruthenium (Ru), yttrium (Y), lanthanum (La), zirconium (Zr), hafnium (Hf), or a silicide film obtained by adding silicon (Si) to these metal elements In this case, it can be suitably applied.
  • tantalum chloride (TaCl 4 ) or the like can be used as the Ta-containing raw material, and Co amd [(tBu) NC (CH 3 ) N (tBu) 2 Co] or the like can be used as the Co-containing raw material.
  • Tungsten fluoride (WF 6 ) or the like can be used as the W-containing raw material
  • molybdenum chloride (MoCl 3 or MoCl 5 ) or the like can be used as the Mo-containing raw material
  • a fourth embodiment will be described.
  • a TiCN film having a predetermined thickness is formed on the wafer 200.
  • a titanium aluminum carbonitride film (TiAlCN film) having a predetermined thickness is formed on the wafer 200.
  • TiAlCN film can be formed by supplying three kinds of gases.
  • TMA trimethyl containing at least a carbon (C) element and an aluminum (Al) element as a source gas containing carbon and a second metal element
  • Aluminum (CH 3 ) 3 Al) is supplied into the processing chamber 201 through the mass flow controller 322, the valve 324, and the nozzle 420.
  • a liquid raw material will be vaporized by vaporization systems, such as a vaporizer and a bubbler, and will be supplied as C and Al containing gas.
  • a carbon-containing raw material supply system (or carbon and metal-containing raw material supply system) is configured by the second gas supply system.
  • a MOSFET is taken as an example of the semiconductor device.
  • FIG. 8 is an explanatory diagram showing an example of the gate configuration of the MOSFET.
  • the gate of the MOSFET includes a silicon-based insulating film made of silicon oxide (SiO 2 ) formed on a silicon (Si) substrate, and hafnium oxide (HfO 2 ) formed on this SiO 2.
  • a high-dielectric film (High-k film) made of and a metal film as a gate electrode made of titanium aluminum carbonitride (TiAlCN) formed on this HfO 2 are stacked.
  • the feature of this embodiment is the formation of a metal film that constitutes the gate electrode.
  • FIG. 9 is a process flow showing an example of a MOSFET gate manufacturing process.
  • the silicon substrate is treated with, for example, a 1% HF aqueous solution to remove the sacrificial oxide film on the Si substrate (“HF treatment” step).
  • silicon oxide (SiO 2 ) is deposited on the surface of the Si substrate by thermal oxidation (“SiO 2 formation” step). SiO 2 is formed as an interface layer at the interface between the Si substrate and HfO 2 to be formed later.
  • hafnium oxide HfO 2
  • a gate insulating film is composed of SiO 2 and HfO 2 .
  • PDA Post Deposition Annealing
  • This PDA uses, for example, a heat treatment furnace (for example, an RTP (Rapid Thermal Process) apparatus), stores a Si substrate on which HfO 2 is formed in a processing chamber of the RTP apparatus, and supplies N 2 gas into the processing chamber. Annealing is performed. PDA is performed impurity removal during HfO 2, the densification or crystallization of HfO 2 purposes.
  • TiAlCN is formed as a metal film on HfO 2 (“TiAlCN deposition” step).
  • TiAlCN deposition a process of forming a titanium nitride (TiN) layer (first layer) (“TiN formation”) X times (first predetermined number of times), aluminum (
  • AlCTiN formation AlCTiN formation
  • PVD Physical
  • Titanium nitride (TiN) is deposited by vapor deposition (physical vapor deposition) (“Cap TiN deposition” step).
  • Cap TiN deposition physical vapor deposition
  • FGA Forming
  • FGA hydrogen gas annealing gas annealing
  • the metal film forming step is performed as one step of the semiconductor device (MOSFET) manufacturing process using the processing furnace 202 of the substrate processing apparatus 10 described above.
  • the preferred sequence of this embodiment is Performing a process for forming a first layer (eg, TiN) containing a metal element (eg, Ti) and nitrogen (N) on the wafer 200 for a first predetermined number of times; Performing a process for forming a second layer (eg, AlCTiN) containing the metal element (eg, Ti), nitrogen (N), and carbon (C) on the wafer 200 a second predetermined number of times; Are alternately performed for a third predetermined number of times to form a metal film (for example, TiAlCN) containing nitrogen (C) and carbon (C) at a predetermined ratio on the wafer 200.
  • a first layer eg, TiN
  • a metal element eg, Ti
  • N nitrogen
  • C carbon
  • the suitable sequence of this embodiment is A step of alternately supplying a first raw material (eg, TiCl 4 ) containing a metal element (eg, Ti) and a second raw material (eg, NH 3 ) containing nitrogen (N) to the wafer 200 a first predetermined number of times.
  • a first raw material eg, TiCl 4
  • a second raw material eg, NH 3
  • a third raw material for example, TMA
  • a fourth raw material for example, TiCl 4
  • the metal element eg, Ti
  • a fifth raw material containing nitrogen (N) For example, supplying NH 3 ) alternately for a second predetermined number of times; Are alternately performed for a third predetermined number of times to form a metal film (for example, TiAlCN) containing nitrogen (N) and carbon (C) at a predetermined ratio on the wafer 200.
  • a metal film for example, TiAlCN
  • the first predetermined number of times, the second predetermined number of times, and the third predetermined number of times are the ratio of nitrogen (N) or carbon (C) included in the metal film (for example, TiAlCN), in other words, For example, it is determined according to the work function of the target gate electrode.
  • TiAlCN titanium aluminum carbonitride
  • TiAlCN titanium aluminum carbonitride
  • FIG. 10 is a process flow diagram showing an example of a metal film (TiAlCN) film forming process in the process flow shown in FIG.
  • FIG. 11 is a diagram showing gas supply timings in the film forming process shown in FIG.
  • the operation of each unit constituting the substrate processing apparatus 10 is controlled by the controller 121.
  • the processing chamber 201 is evacuated by a vacuum pump 246 so that a desired pressure (degree of vacuum) is obtained. At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). Note that the vacuum pump 246 keeps being operated at least until the processing on the wafer 200 is completed. Further, the processing chamber 201 is heated by the heater 207 so as to have a desired temperature. At this time, the energization amount to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the processing chamber 201 has a desired temperature distribution (temperature adjustment).
  • the heating of the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
  • the rotation mechanism 267 starts the rotation of the boat 217 and the wafer 200. Note that the rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the processing on the wafer 200 is completed.
  • Step 21 to Step 24 a process of forming a TiN layer.
  • Step 21> TiCl 4 gas supply
  • the valve 314 of the gas supply pipe 310 is opened, and TiCl 4 gas as the first raw material is caused to flow into the gas supply pipe 310.
  • the flow rate of the TiCl 4 gas that has flowed through the gas supply pipe 310 is adjusted by the mass flow controller 312.
  • the flow-adjusted TiCl 4 gas is supplied from the gas supply hole 410 a of the nozzle 410 into the processing chamber 201 and is exhausted from the exhaust pipe 231. At this time, TiCl 4 gas is supplied to the wafer 200. That is, the surface of the wafer 200 is exposed to TiCl 4 gas.
  • the valve 514 is opened, and an inert gas such as N 2 gas is allowed to flow into the carrier gas supply pipe 510.
  • the flow rate of the N 2 gas flowing through the carrier gas supply pipe 510 is adjusted by the mass flow controller 512.
  • the N 2 gas whose flow rate has been adjusted is supplied into the processing chamber 201 together with the TiCl 4 gas, and is exhausted from the exhaust pipe 231.
  • the valves 524 and 534 are opened, and N 2 gas is allowed to flow into the carrier gas supply pipe 520 and the carrier gas supply pipe 530.
  • N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 320, the gas supply pipe 330, the nozzle 420, and the nozzle 430, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 1 to 10,000 Pa.
  • the supply flow rate of the TiCl 4 gas controlled by the mass flow controller 312 is, for example, a flow rate in the range of 10 to 10,000 sccm.
  • the supply flow rate of N 2 gas controlled by the mass flow controllers 512, 522, and 532 is set to a flow rate in the range of 10 to 10,000 sccm, for example.
  • the time for supplying the TiCl 4 gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, a time within the range of 0.1 to 120 seconds.
  • the temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 becomes a temperature within a range of 200 to 500 ° C., for example.
  • a Ti-containing layer having a thickness of, for example, less than one atomic layer to several atomic layers is formed on the wafer 200.
  • Step 22> (Residual gas removal) After the Ti-containing layer is formed, the valve 314 of the gas supply pipe 310 is closed and the supply of TiCl 4 gas is stopped. At this time, the APC valve 243 of the exhaust pipe 231 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and TiCl 4 after remaining in the processing chamber 201 or contributing to the formation of the Ti-containing layer. The gas is removed from the processing chamber 201. At this time, the valves 514, 524, and 534 are kept open, and the supply of N 2 gas into the processing chamber 201 is maintained. The N 2 gas acts as a purge gas, which can enhance the effect of removing the unreacted or residual TiCl 4 gas that has contributed to the formation of the Ti-containing layer from the processing chamber 201.
  • the gas remaining in the processing chamber 201 may not be completely removed, and the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, no adverse effect will occur in the subsequent steps. At this time, the flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be a large flow rate. Purge can be performed to the extent that no adverse effect occurs. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
  • Step 23> (NH 3 gas supply) After removing the residual gas in the processing chamber 201, the valve 334 of the gas supply pipe 330 is opened, and NH 3 gas is allowed to flow into the gas supply pipe 330. The flow rate of the NH 3 gas that has flowed through the gas supply pipe 330 is adjusted by the mass flow controller 332. The NH 3 gas whose flow rate has been adjusted is supplied into the processing chamber 201 from the gas supply hole 430 a of the nozzle 430. The NH 3 gas supplied into the processing chamber 201 is activated by heat and then exhausted from the exhaust pipe 231. At this time, NH 3 gas activated by heat is supplied to the wafer 200. That is, the surface of the wafer 200 is exposed to heat activated NH 3 gas.
  • the valve 534 is opened, and N 2 gas is caused to flow into the carrier gas supply pipe 530.
  • the flow rate of the N 2 gas flowing through the carrier gas supply pipe 530 is adjusted by the mass flow controller 532.
  • the N 2 gas is supplied into the processing chamber 201 together with the NH 3 gas, and is exhausted from the exhaust pipe 231.
  • the valves 514 and 524 are opened, and the N 2 gas is allowed to flow into the carrier gas supply pipes 510 and 520.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 310 and 320, the nozzle 410 and the nozzle 420, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 1 to 10,000 Pa.
  • the supply flow rate of NH 3 gas controlled by the mass flow controller 332 is set, for example, within a range of 10 to 50000 sccm.
  • the supply flow rate of N 2 gas controlled by the mass flow controllers 512, 522, and 532 is set to a flow rate in the range of 10 to 10,000 sccm, for example.
  • the time for supplying the NH 3 gas activated by heat to the wafer 200, that is, the gas supply time (irradiation time) is, for example, a time within the range of 0.1 to 120 seconds.
  • the temperature of the heater 207 at this time is set to such a temperature that the temperature of the wafer 200 becomes a temperature within the range of 200 to 500 ° C., for example, as in step 21.
  • the gas flowing in the processing chamber 201 is NH 3 gas that is thermally activated by increasing the pressure in the processing chamber 201, and this activated NH 3 gas is converted into the wafer in step 21. Reacts with at least a portion of the Ti-containing layer formed on 200. As a result, the Ti-containing layer is nitrided and modified into a titanium nitride layer (TiN layer).
  • Step 24> (Residual gas removal)
  • the valve 334 of the gas supply pipe 330 is closed to stop the supply of NH 3 gas.
  • the APC valve 243 of the exhaust pipe 231 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the NH 3 gas remaining in the processing chamber 201 and contributing to the formation of the TiN layer remains.
  • reaction by-products are removed from the processing chamber 201.
  • the valves 514, 524, and 534 are kept open, and the supply of N 2 gas into the processing chamber 201 is maintained.
  • the N 2 gas acts as a purge gas, thereby enhancing the effect of removing NH 3 gas and reaction by-products remaining in the processing chamber 201 and contributing to formation of the TiN layer from the processing chamber 201. Can do.
  • the gas remaining in the processing chamber 201 may not be completely removed, and the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, no adverse effect will occur in the subsequent steps. At this time, the flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be a large flow rate. Purge can be performed to the extent that no adverse effect occurs. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
  • step 21 to step 24 is executed X times (first predetermined number of times) set in advance. That is, the process from step 21 to step 24 is set as one set, and these processes are executed for X sets. In this way, TiN 4 gas supply and NH 3 gas supply are alternately performed X times to form a TiN layer (first layer) having a predetermined thickness (for example, 0.03 to 20 nm).
  • step 25 to step 30 After performing the above-described processing from step 21 to step 24 X times (X set), the following process of forming an AlCTiN layer (step 25 to step 30) is executed.
  • TMA gas supply The valve 324 of the gas supply pipe 320 is opened, and TMA (trimethylaluminum. (CH 3 ) 3 Al) gas is allowed to flow through the gas supply pipe 320.
  • the flow rate of the TMA gas flowing through the gas supply pipe 320 is adjusted by the mass flow controller 322.
  • the flow-adjusted TMA gas is supplied from the gas supply hole 420 a of the nozzle 420 into the processing chamber 201 and is exhausted from the exhaust pipe 231.
  • TMA gas is supplied to the wafer 200. That is, the surface of the wafer 200 is exposed to TMA gas.
  • the valve 524 is opened, and N 2 gas is caused to flow into the carrier gas supply pipe 520.
  • the N 2 gas that has flowed through the carrier gas supply pipe 520 is adjusted in flow rate by the mass flow controller 522.
  • the N 2 gas whose flow rate has been adjusted is supplied into the processing chamber 201 together with the TMA gas, and is exhausted from the exhaust pipe 231.
  • the valves 514 and 534 are opened, and N 2 gas is allowed to flow into the carrier gas supply pipe 510 and the carrier gas supply pipe 530.
  • the N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 310, the gas supply pipe 330, the nozzle 410, and the nozzle 430 and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 1 to 10000 Pa, as in step 21.
  • the supply flow rate of TMA gas controlled by the mass flow controller 322 is, for example, a flow rate in the range of 10 to 10000 sccm.
  • the supply flow rate of N 2 gas controlled by the mass flow controllers 512, 522, and 532 is set to a flow rate in the range of 10 to 10,000 sccm, for example.
  • the time for supplying the TMA gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, a time within the range of 0.1 to 120 seconds.
  • the temperature of the heater 207 at this time is set to such a temperature that the temperature of the wafer 200 becomes a temperature within the range of 200 to 500 ° C., for example, as in step 21.
  • a layer containing carbon (C) and aluminum (Al) is formed on the TiN layer.
  • the layer containing C and Al is formed to a thickness of, for example, less than one atomic layer to several atomic layers.
  • Step 26> (Residual gas removal) Thereafter, the valve 324 of the gas supply pipe 320 is closed to stop the supply of TMA gas. At this time, the APC valve 243 of the exhaust pipe 231 is kept open, and the inside of the processing chamber 201 is evacuated by the vacuum pump 246 to form an unreacted or residual layer containing C and Al remaining in the processing chamber 201. The TMA gas after the contribution is removed from the processing chamber 201. At this time, the valves 510, 520, and 530 remain open, and the supply of N 2 gas into the processing chamber 201 is maintained. The N 2 gas acts as a purge gas, thereby increasing the effect of removing the TMA gas remaining in the processing chamber 201 or contributing to the formation of the layer containing C and Al from the processing chamber 201. be able to.
  • the gas remaining in the processing chamber 201 may not be completely removed, and the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, no adverse effect will occur in the subsequent steps. At this time, the flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be a large flow rate. Purge can be performed to the extent that no adverse effect occurs. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
  • TiCl 4 gas is supplied into the processing chamber 201 by the same processing as in step 21.
  • the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 1 to 10,000 Pa.
  • the supply flow rate of the TiCl 4 gas controlled by the mass flow controller 312 is, for example, a flow rate in the range of 10 to 10,000 sccm.
  • the supply flow rate of N 2 gas controlled by the mass flow controllers 512, 522, and 532 is set to a flow rate in the range of 10 to 10,000 sccm, for example.
  • the time for supplying the TiCl 4 gas to the wafer 200 is, for example, a time within the range of 0.1 to 120 seconds.
  • the temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 becomes a temperature within a range of 200 to 500 ° C., for example.
  • TiCl 4 gas supplied into the processing chamber 201 reacts with at least a part of the layer containing C and Al. Thereby, the layer containing C and Al is modified into a layer containing carbon (C), aluminum (Al), and titanium (Ti).
  • Step 28> (Residual gas removal) Subsequently, TiCl 4 gas and by-products that have remained in the processing chamber 201 or contributed to the formation of the above-described layer containing C, Al, and Ti by the same processing as in step 22 and the like are processed in the processing chamber 201. Eliminate from within.
  • NH 3 gas is supplied into the processing chamber 201 by the same processing as in step 23.
  • the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 1 to 10,000 Pa.
  • the supply flow rate of NH 3 gas controlled by the mass flow controller 332 is set, for example, within a range of 10 to 50000 sccm.
  • the supply flow rate of N 2 gas controlled by the mass flow controllers 512, 522, and 532 is set to a flow rate in the range of 10 to 10,000 sccm, for example.
  • the time for supplying the NH 3 gas activated by heat to the wafer 200 is, for example, 0.1-12.
  • the time is in the range of 0 seconds.
  • the temperature of the heater 207 at this time is set to such a temperature that the temperature of the wafer 200 becomes a temperature within the range of 200 to 500 ° C., for example, as in step 21.
  • the NH 3 gas supplied into the processing chamber 201 reacts with at least a part of the layer containing C, Al, and Ti. Thereby, the layer containing C, Al, and Ti is modified into the AlCTiN-containing layer described above.
  • Step 30> (Residual gas removal) Subsequently, the TiCl 4 gas and the by-product remaining in the processing chamber 201 and contributing to the formation of the AlCTiN-containing layer are removed from the processing chamber 201 by the same processing as in step 24 and the like.
  • step 25 to step 30 described above is executed Y times (second predetermined number) set in advance. That is, the process from step 25 to step 30 is set as one set, and these processes are executed for Y sets. In this way, by alternately performing TMA gas supply, TiCl 4 gas supply, and NH 3 gas supply Y times, an AlCTiN layer (second layer) having a predetermined thickness (for example, 0.1 to 20 nm) Form.
  • the TiAlCN film as the gate electrode is composed of a laminate of the TiN layer and the AlCTiN layer described above. By repeating the step of forming the TiN layer and the step of forming the AlCTiN layer alternately Z times (a third predetermined number of times), a predetermined thickness (for example, 1.0 to 20 nm) is obtained. A TiAlCN film is formed.
  • the TiAlCN film can also be referred to as an AlC-doped TiN film (AlC-added TiN film) obtained by doping Al and C into a TiN film.
  • the number of times of performing the processing from step 21 to step 24 for forming the TiN layer (the above-mentioned X or the multiplication value of X and Z) and the number of times of performing the processing from step 25 to step 30 for forming the AlCTiN layer.
  • the ratio of each element contained in the TiAlCN film can be adjusted by (the above-mentioned Y or a multiplication value of Y and Z).
  • the work function of the gate electrode formed of the TiAlCN film can be tuned (adjusted or modulated) by adjusting the number of times of each process.
  • the values of X, Y, and Z are determined according to the ratio of nitrogen or carbon (or the ratio of nitrogen, carbon, titanium, and aluminum) included in the TiAlCN film.
  • X and Y are integers of 0 or more, and Z is an integer of 1 or more.
  • X and / or Y is preferably an integer of 1 or more.
  • the work functions of the two metal elements are both about 4.3 eV.
  • the inventors of the present application have obtained the knowledge that the work function can be increased or decreased based on about 4.3 eV which is the work function of Ti and Al by adjusting the ratio of C and N in the TiAlCN film. Yes. Specifically, when the proportion of C is increased, a work function lower than 4.3 eV can be obtained, and when the proportion of N is increased, a work function higher than 4.3 eV can be obtained. Therefore, a metal film having a desired work function can be formed by determining each value of X, Y, and Z according to the ratio of N or C included in the TiAlCN film.
  • a TiN layer that is, a metal nitride film is formed as the first layer constituting the TiAlCN film.
  • a metal nitride film is used instead of the metal nitride film.
  • a carbonized film is formed.
  • a TiAlCN film having a metal carbide film as the first layer can be formed by the following sequence. Performing a process for forming a first layer (eg, TiC) containing a metal element (eg, Ti) and carbon (C) on the wafer 200 for a first predetermined number of times; Performing a process for forming a second layer (eg, AlCTiN) containing the metal element (eg, Ti), nitrogen (N), and carbon (C) on the wafer 200 a second predetermined number of times; Are alternately performed for a third predetermined number of times to form a metal film (for example, TiAlCN) containing nitrogen (C) and carbon (C) at a predetermined ratio on the wafer 200.
  • a first layer eg, TiC
  • a metal element eg, Ti
  • C metal element
  • C carbon
  • the suitable sequence of this embodiment is A first raw material (for example, TiCl 4 ) containing a metal element (for example, Ti) and a second raw material (for example, Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) containing carbon (C) with respect to the wafer 200.
  • a first raw material for example, TiCl 4
  • a metal element for example, Ti
  • a second raw material for example, Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) containing carbon (C) with respect to the wafer 200.
  • a third raw material for example, TMA
  • a fourth raw material for example, TiCl 4
  • the metal element eg, Ti
  • a fifth raw material containing nitrogen (N) for example, supplying NH 3 ) alternately for a second predetermined number of times;
  • a metal film for example, TiAlCN
  • a gas supply system for supplying Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 to the processing chamber 201 is added to the substrate processing apparatus 10.
  • a TiAlCN film is formed as a metal film constituting a gate electrode.
  • the metal film is not limited to this, and tantalum (Ta), Metal carbide film containing one or more metal elements such as cobalt (Co), tungsten (W), molybdenum (Mo), ruthenium (Ru), yttrium (Y), lanthanum (La), zirconium (Zr), hafnium (Hf)
  • a metal nitride film, a metal carbonitride film, or a silicide film obtained by adding silicon (Si) to these may be formed.
  • tantalum chloride (TaCl 4 ) or the like can be used as the Ta-containing raw material, and Co amd [(tBu) NC (CH 3 ) N (tBu) 2 Co] or the like can be used as the Co-containing raw material.
  • Tungsten fluoride (WF 6 ) or the like can be used as the W-containing raw material
  • molybdenum chloride (MoCl 3 or MoCl 5 ) or the like can be used as the Mo-containing raw material
  • the first layer includes two or more metal elements (for example, Ti and Al). May be included.
  • the same metal element is included in the first layer and the second layer, but this is not always necessary.
  • Ti may be included in the first layer and Ti may not be included in the second layer.
  • a TiAlN film or a TiN film can be formed instead of the TiAlCN film.
  • a TiAlC film or a TiC film can be formed instead of the TiAlCN film.
  • the TiN layer and the AlCTiN layer are formed in this order, but the AlCTiN layer and the TiN layer are formed in this order. Also good.
  • the AlCTiN layer and the TiC layer may be formed in this order.
  • the present invention is not limited to this, and the present invention is not limited to this.
  • the present invention can also be suitably applied when a film is formed using a single-wafer type substrate processing apparatus that processes one or several substrates.
  • an example of forming a film using a substrate processing apparatus having a hot wall type processing furnace has been described.
  • the present invention is not limited to this, and the substrate processing having a cold wall type processing furnace is performed.
  • the present invention can also be suitably applied when forming a film using an apparatus.
  • TiCl 4 gas is used as the metal source gas that is a Ti-containing source.
  • the present invention is not limited to this, and tetrakisdimethylaminotitanium (TDMAT, Ti [N (CH 3 ) 2 ] 4 ), tetrakisdiethylaminotitanium (TDEAT, Ti [N (CH 2 CH 3 ) 2 ] 4 ) or other organic compounds other than halogen compounds or titanium (Ti) containing gas that is an amino compound may be used. Good.
  • NH 3 gas is used as a nitriding raw material.
  • the present invention is not limited to this, but diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas, nitrogen (N 2 ), nitrous oxide (N 2 O), monomethylhydrazine (CH 6 N 2 ), dimethylhydrazine (C 2 H 8 N 2 ), or the like may be used.
  • a rare gas such as Ar gas, He gas, Ne gas, Xe gas, etc. may be used in addition to N 2 gas.
  • the present invention can be realized by changing a process recipe of an existing substrate processing apparatus, for example.
  • the process recipe according to the present invention is installed in an existing substrate processing apparatus via a telecommunication line or a recording medium recording the process recipe, or input / output of the existing substrate processing apparatus It is also possible to operate the apparatus and change the process recipe itself to the process recipe according to the present invention.
  • TiCl 4 gas that is Ti-containing gas is used as the first processing gas
  • Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) that is C-containing gas is used as the second processing gas.
  • a TiCN film was formed by using NH 3 gas, which is N-containing gas, as the third processing gas, using the two gases and the film formation flow of FIG. 4 and the gas supply timing of FIG.
  • the wafer is loaded into the processing chamber (wafer loading), the wafer is heated under N 2 atmosphere (preheating), TiCl 4 gas and Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas TiC film formation (metal carbide layer formation) by alternately and repeatedly supplying NH 3 irradiation (nitriding treatment) to the formed TiC layer alternately, forming a TiCN film, and then processing Residual substances in the chamber were evacuated (gas exhaust), the film-formed wafer was unloaded from the processing chamber (wafer unload), and XPS (X-ray Photoelectron Spectroscopy) analysis was performed.
  • the processing conditions in each step at that time were set as follows.
  • Step 11 Processing room temperature: 400 ° C Processing chamber pressure: 50 Pa (0.38 Torr) TiCl 4 gas supply flow rate: 10-50 sccm TiCl 4 gas irradiation time: 2 seconds
  • Step 13 Processing room temperature: 400 ° C Processing chamber pressure: 50 Pa (0.38 Torr) Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas supply flow rate: 10 to 50 sccm Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas irradiation time: 50 seconds
  • step 15 Processing room temperature: 400 ° C Processing chamber pressure: 50 Pa (0.38 Torr) NH 3 supply flow rate: 1000 sccm NH 3 irradiation time: 20 seconds
  • the thickness of the TiCN film to be formed was 5 nm, and a 5 nm TiN film was formed in situ as a cap layer on the obtained TiCN film.
  • Other processing conditions were the same as in Example 1.
  • Other processing conditions were the same as in Example 1.
  • Table 1 summarizes the processing conditions in Examples 1 to 3 and the C concentration of the obtained TiCN film.
  • the C concentration of the obtained TiCN film was 17 to 18% in Example 1, 25 to 30% in Example 2, and 25 to 30% in Example 3, respectively.
  • FIG. 12 shows a graph summarizing Ti strength and C strength measured by XPS for the TiCN film obtained in each example as a C / Ti ratio.
  • the horizontal axis represents the number m of sets of steps 11 to 14, and the vertical axis represents the C / Ti ratio by XPS analysis.
  • FIG. 13A shows the C concentration in the TiCN film measured by XPS with respect to the TiCN film obtained in each example
  • FIG. 13B shows the C concentration in the TiCN film obtained in each example.
  • the N concentration in the TiCN film measured by XPS is shown.
  • the horizontal axis indicates the etching time
  • the vertical axis indicates the C atom concentration (C atomic%) and the N atom concentration (N atomic%), respectively.
  • 13A and 13B a layer to be etched in the corresponding etching time along the horizontal axis is shown.
  • FIG. 13A shows that the C atom concentration at the etching time indicating the analysis result for the TiCN film increased by about 11% in the case of Examples 2 and 3 with respect to Example 1.
  • FIG. 13B shows that the N atom concentration in the etching time indicating the analysis result for the TiCN film was reduced by about 3.6% in the case of Examples 2 and 3 with respect to Example 1.
  • the capacitors 268a to 268c form an SiO 2 film (silicon oxide film) 270 as an insulating film on the surface of the silicon (Si) wafer 200
  • HfO 2 films (hafnium oxide films) 272a to 272c, which are insulating films, are formed so as to be stacked on the SiO 2 film 270
  • a TiCN film 276 is formed so as to be stacked on the HfO 2 films 272a to 272c, respectively.
  • the TiN film (titanium nitride film) 278 is formed so as to be laminated on the H.276.
  • the TiCN film 276 is formed by the sequence described in the above embodiment. That is, the TiCN film 276 uses TiCl 4 gas as the Ti-containing gas, Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas as the C-containing gas, and NH 3 gas as the N-containing gas. The film is formed by the film formation flow 4 and the gas supply timing shown in FIG.
  • the insulating films 272a, 272b, and 272c are formed by changing the thicknesses, respectively.
  • FIG. 15 shows the work function calculated by plotting eWF (Effective Work Function) for each EOT (Equivalent Oxide Thickness) of these capacitors on a graph.
  • FIG. 15 is a graph plotting the EOT and eWF values of the TiCN film in the capacitors 268a, 268b, and 268c.
  • a High-k film such as an HfO 2 film
  • oxygen in the High-k film diffuses and escapes from the High-k film due to heat treatment in the process, so that an interface dipole is formed between the High-k film and the interface layer.
  • the effective work function becomes high.
  • the work function of the TiN film is about 5.0 eV including the dipole, whereas the work function of the TiCN film 276 calculated from the graph shown in FIG. 68 eV. It should be noted that the effect of the dipole e ⁇ dipole was taking into account the (0.31eV, Y.
  • a TiAlCN film was formed on the wafer 200 (specifically, on the HfO film which is a high dielectric film) by the sequence shown in FIGS. 10 and 11 described above.
  • Example 4 a process of forming TiN layers by alternately supplying TiCl 4 gas and NH 3 gas six times, and TMA gas, TiCl 4 gas, and NH 3 gas once each.
  • the TiAlCN film was formed by alternately repeating the step of supplying and forming the AlCTiN layer 36 times.
  • the processing conditions in each step at that time were set as follows.
  • Step 21 Processing room temperature: 350 ° C Processing chamber pressure: 45Pa TiCl 4 gas supply rate: 1.16 g / min TiCl 4 gas irradiation time: 5 seconds
  • step 23 Processing room temperature: 350 ° C Processing chamber pressure: 65 Pa NH 3 gas supply flow rate: 7500sccm NH 3 gas irradiation time: 15 seconds
  • Step 25 Processing room temperature: 350 ° C Processing chamber pressure: 65 Pa TMA gas supply amount: 0.6 g / min TMA gas irradiation time: 6 seconds
  • Step 27 Processing room temperature: 350 ° C Processing chamber pressure: 45Pa TiCl 4 gas supply rate: 1.16 g / min TiCl 4 gas irradiation time: 5 seconds
  • step 29 Processing room temperature: 350 ° C Processing chamber pressure: 65 Pa NH 3 gas supply flow rate: 7500sccm NH 3 gas irradiation time: 15 seconds
  • the thickness of the TiAlCN film formed by the above treatment was 10 nm, and a 30 nm TiN film was formed as a cap layer on the TiAlCN film.
  • Example 5 a process of forming TiN layers by alternately supplying TiCl 4 gas and NH 3 gas three times, and TMA gas, TiCl 4 gas, and NH 3 gas once each.
  • the step of supplying and forming the AlCTiN layer was repeated 52 times alternately to form a TiAlCN film.
  • the processing conditions in each step at that time are the same as in the fourth embodiment.
  • the thickness of the TiAlCN film formed in Example 5 is 10 nm.
  • Example 6 a process of forming a TiN layer by supplying TiCl 4 gas and NH 3 gas once, and supplying TMA gas, TiCl 4 gas, and NH 3 gas once each. Then, the step of forming the AlCTiN layer was alternately repeated 78 times to form a TiAlCN film.
  • the processing conditions in each step at that time are the same as in the fourth embodiment.
  • the thickness of the TiAlCN film formed in Example 6 is 10 nm.
  • Example 4 the TiAlCN film was formed by repeating the process of supplying the TMA gas, TiCl 4 gas, and NH 3 gas once to form the AlCTiN layer 100 times.
  • the processing conditions in each step at that time are the same as in the fourth embodiment.
  • the thickness of the TiAlCN film formed in Example 4 is 10 nm.
  • Example 5 the TiN film was formed by repeating the process of supplying the TiCl 4 gas and the NH 3 gas once to form the TiN layer 340 times.
  • the processing conditions in each step at that time are the same as in the fourth embodiment.
  • the thickness of the TiN film formed in Example 5 is 10 nm.
  • FIG. 16 shows the relationship between EOT (equivalent oxide thickness) and Vfb (flat band voltage) for each of the metal films (TiAlCN film or TiN film) formed in Examples 4 to 8. As shown in the figure, it can be seen that the Vfb shifts in the negative direction as the C ratio (concentration) is higher (N ratio (concentration) is lower). When Vfb shifts in the negative direction, the work function decreases.
  • FIG. 17 shows the relationship between the ratio of C and N and the effective work function eWF for each of the metal films (TiAlCN film or TiN film) formed in Examples 4 to 8.
  • 18A shows the work function with respect to the ratio of C for each of the metal films formed in Examples 4 to 8
  • FIG. 18B shows the metal film formed in Examples 4 to 8.
  • the work function for the percentage of N is shown.
  • the work function of the metal film itself is tuned by adjusting each value of X, Y, and Z.
  • the film was formed in each embodiment.
  • the effective work function eWF of the gate electrode containing a metal film is shown.
  • This effective work function eWF is a value calculated from the above-mentioned Vfb, and is a value including a dipole at the HfO 2 / SiO 2 interface.
  • the effective work function eWF decreases as the ratio of C contained in the TiAlCN film (or TiN film) increases, and the effective work function eWF increases as the ratio of N increases.
  • the dipole is determined according to the type of the high dielectric film, and is constant in each embodiment. Therefore, it can be said that the work function of the TiAlCN film decreases as the proportion of C contained in the TiAlCN film increases, and the work function of the TiAlCN film increases as the proportion of N increases.
  • the work function of the TiN film that is the metal film according to the fifth embodiment is about 5.0 eV including the dipole, whereas the work function of the TiAlCN film that is the metal film according to the fourth to fourth embodiments.
  • the work function is 4.52 to 4.68 eV. In consideration of the influence of dipole e ⁇ dipole (0.31 eV. Quoted from Y.
  • the work function of the TiAlCN film is 4.21-4. It was confirmed that the work function can be tuned based on the above-described work function of Ti and Al (about 4.3 eV) by controlling the ratio of C and / or N contained therein. .
  • the work function of TiAlN film containing Ti as a metal element and not containing C and TiN film is about 4.6 to 4.7 eV, and the work function of TiAlC film containing Ti as a metal element and not containing N is about 4
  • the inventors have confirmed that the voltage is 1 V. That is, the TiAlCN film containing Ti as a metal element and further containing C and N controls the work function of the TiAlC film and the work function of the TiAlN film (or TiN film) by controlling the ratio of C and N. It can be tuned to the desired value between functions.
  • a metal capable of adjusting Vth that is, a TiAlCN film as a metal film whose work function can be tuned is provided. It was confirmed by experiments. Therefore, according to the present invention, it is possible to adjust the work function with one metal film having the same elemental composition even when different work function values are required depending on the application.
  • the effective work function can be tuned by a ⁇ dipole or ⁇ FLP (Fermi-Level Pinning). However, it is desirable to tune the work function of the metal film itself constituting the gate electrode for the following reason.
  • the value of the ⁇ dipole is controlled by the film type of the high dielectric film or by diffusing Al, La, or the like from the gate electrode into the high dielectric film.
  • the dipole value is shifted in the same direction in both NMOS and PMOS (a dipole that shifts in the negative direction in NMOS and in the positive direction in PMOS is required). Therefore, it is necessary to make a high dielectric film separately for NMOS and PMOS, which complicates the process.
  • heat treatment at about 1000 ° C. is necessary.
  • a high dielectric film when used, it is generally a gate last process, and the heat treatment at about 1000 ° C. is performed before the formation of the gate stack (electrode / high dielectric film / SiO 2 / Si substrate).
  • This heat treatment is a process for activating the source / drain. Therefore, in the gate last process, it is desirable that a heat treatment at about 1000 ° C. is unnecessary after the gate stack.
  • [Appendix 1] Forming a first layer containing the first metal element and carbon on the substrate by supplying a metal-containing gas containing a metal element and a carbon-containing gas to the substrate; By supplying a nitrogen-containing gas to the substrate on which the first layer has been formed, the first layer is nitrided to form a second layer containing the first metal element, carbon and nitrogen And a process of Are alternately performed a predetermined number of times to form a film containing the first metal element, carbon and nitrogen with a predetermined film thickness on the substrate, and the second layer is formed with respect to the number of executions of the step of forming the second layer.
  • a method for manufacturing a semiconductor device comprising: adjusting a work function of a film containing the first metal element, carbon, and nitrogen to have a desired value by controlling the number of times of performing the step of forming one layer. Provided.
  • the first metal element is tantalum (Ta), cobalt (Co), tungsten (W), molybdenum (Mo), ruthenium (Ru), yttrium (Y), lanthanum (La), zirconium (Zr), It contains at least one element selected from the group consisting of hafnium (Hf).
  • the metal-containing gas includes TiCl 4 and TaCl 4 .
  • the carbon-containing gas contains Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 .
  • the carbon-containing gas includes a second metal element different from the first metal element.
  • the second metal element includes hafnium.
  • the film containing the first metal element, carbon, and nitrogen is increased by increasing the number of times of performing the step of forming the first layer as compared with the number of times of performing the step of forming the second layer. Adjust the work function to be higher.
  • carbon contained in the film containing the first metal element, carbon and nitrogen is controlled by controlling the number of times of the step of forming the first layer with respect to the number of times of the step of forming the second layer.
  • the work function of the film containing the first metal element, carbon, and nitrogen is adjusted to a desired value.
  • [Appendix 9] According to another aspect of the invention, Supplying a metal-containing gas containing a metal element to the substrate; Supplying a carbon-containing gas to the substrate; Supplying a nitrogen-containing gas to the substrate; A step of supplying the metal-containing gas and / or supplying the nitrogen-containing gas by forming a film containing the metal element, carbon and nitrogen having a predetermined thickness on the substrate.
  • a method of manufacturing a semiconductor device comprising: adjusting a work function of a film containing the metal element, carbon, and nitrogen to a desired value by controlling the number of times of supplying the carbon-containing gas with respect to the number of times Is provided.
  • Forming a first layer containing the first metal element on the substrate by supplying a first metal-containing gas containing the first metal element to the substrate; By supplying a second metal-containing gas containing a second metal element and carbon to the substrate on which the first layer is formed, the first metal element and the second metal element on the substrate are supplied.
  • Forming a second layer containing a metal element and carbon Performing the step of forming the first layer by forming a film containing the first metal element, the second metal element, and carbon having a predetermined thickness on the substrate
  • the work function of the film containing the first metal element, the second metal element, and carbon is adjusted to a desired value by controlling the number of times of performing the step of forming the second layer with respect to the number of times.
  • the first metal element includes titanium or tantalum
  • the second metal element includes aluminum
  • the first metal-containing gas includes TiCl 4 and TaCl 4
  • the second metal-containing gas includes TMA
  • Forming the first layer with respect to the number of executions of the step of forming the second layer by forming a film containing the metal element, carbon and nitrogen with a predetermined thickness on the substrate.
  • the metal-containing gas supply system, the carbon-containing gas supply system, and the nitrogen-containing gas are adjusted so that the work function of the film containing the metal element, carbon, and nitrogen is adjusted to a desired value.
  • I will control the gas supply system When configured control unit, A substrate processing apparatus is provided.
  • a processing chamber for accommodating the substrate;
  • a first metal-containing gas supply system for supplying a first metal-containing gas containing a first metal element to the substrate in the processing chamber;
  • a second metal-containing gas supply system for supplying a second metal-containing gas containing a second metal element and carbon to the substrate in the processing chamber;
  • a second layer containing the first metal element, the second metal element, and carbon is formed on the substrate by supplying the second metal-containing gas to the formed substrate.
  • a film containing the first metal element, the second metal element, and carbon having a predetermined film thickness is formed on the substrate, and the first layer is formed.
  • the work function of the film containing the first metal element, the second metal element and carbon becomes a desired value. Adjusting the first metal-containing gas supply system and the front When configured controller to control the second metal-containing gas supply system, A substrate processing apparatus is provided.
  • [Appendix 15] Forming a first layer containing the metal element on the substrate by supplying a metal-containing gas containing a metal element and a carbon-containing gas to a substrate in a processing chamber of the substrate processing apparatus; A step of nitriding the first layer by supplying a nitrogen-containing gas to the substrate on which the first layer is formed to form the second layer containing the metal element, carbon and nitrogen; , Is performed a predetermined number of times to form a film containing the metal element, carbon and nitrogen with a predetermined film thickness on the substrate, and the first layer with respect to the number of executions of the procedure of forming the second layer
  • a program for causing a computer to execute a procedure for adjusting the work function of the film containing the metal element, carbon and nitrogen to a desired value.
  • a computer-readable recording medium storing a program for causing a computer to execute a procedure for adjusting the work function of the film containing the metal element, carbon, and nitrogen to a desired value by controlling the number of times the procedure is performed Provided.
  • Appendix 21 Performing a process for forming a first layer containing a metal element and nitrogen or carbon for a first predetermined number of times; Performing a second predetermined number of times to form a second layer containing the metal element, nitrogen and carbon; By alternately performing the third predetermined number of times, a method of manufacturing a semiconductor device including a step of forming a metal film containing nitrogen and carbon at a predetermined ratio on a substrate is provided.
  • the first predetermined number of times, the second predetermined number of times, and the third predetermined number of times are determined according to a ratio of nitrogen or carbon included in the metal film.
  • the second layer includes a second metal element different from the metal element.
  • the third raw material includes a second metal element different from the metal element.
  • the metal film is formed on a high dielectric film formed on the substrate.
  • the metal element includes at least one element selected from the group consisting of titanium, tantalum, hafnium, zirconium, molybdenum, and tungsten.
  • the second metal element includes aluminum.
  • the first raw material and the fourth raw material include TiCl 4 .
  • the third raw material includes TMA (trimethylaluminum).
  • the metal element is titanium
  • the work function of the metal film is a value between the work function of TiN or TiAlN and the work function of TiAlC.
  • the metal element is titanium
  • the second metal element is aluminum
  • the work function of the metal film is a value between the work function of TiN or TiAlN and the work function of TiAlC.
  • Appendix 33 Performing a process for forming a first layer containing a metal element and nitrogen or carbon for a first predetermined number of times; Performing a second predetermined treatment for forming a second layer containing the metal element, nitrogen and carbon; By alternately performing the third predetermined number of times, a substrate processing method including a step of forming a metal film containing nitrogen and carbon at a predetermined ratio on the substrate is provided.
  • the first predetermined number of times, the second predetermined number of times, and the third predetermined number of times are determined according to a ratio of nitrogen or carbon included in the metal film.
  • a processing chamber for accommodating the substrate;
  • a metal-containing raw material supply system for supplying a metal-containing raw material containing a metal element to the substrate connected to the processing chamber and housed in the processing chamber;
  • a nitrogen-containing material supply system for supplying a nitrogen-containing material containing nitrogen to the substrate connected to the processing chamber and housed in the processing chamber;
  • a carbon-containing raw material supply system for supplying a carbon-containing raw material containing carbon to the substrate connected to the processing chamber and housed in the processing chamber;
  • the metal-containing raw material supply system, the nitrogen-containing raw material supply system and the carbon-containing raw material supply system are connected to the substrate housed in the processing chamber and the metal-containing raw material and the nitrogen-containing raw material or the A process of alternately supplying a carbon-containing raw material for a first predetermined number of times and a process of alternately supplying the metal-containing raw material, the nitrogen-containing raw material, and the carbon-containing raw material for a second predetermined number of times are thirdly performed.
  • a control unit configured to control and execute the system;
  • a substrate processing apparatus is provided.
  • the first predetermined number of times, the second predetermined number of times, and the third predetermined number of times are determined according to a ratio of the nitrogen or the carbon included in the metal film.
  • the first predetermined number of times, the second predetermined number of times, and the third predetermined number of times are determined according to a ratio of nitrogen or carbon included in the metal film.
  • the first predetermined number of times, the second predetermined number of times, and the third predetermined number of times are determined according to a ratio of nitrogen or carbon included in the metal film.
  • the present invention can be used for, for example, a method for manufacturing a semiconductor device, a substrate processing apparatus for processing a substrate such as a semiconductor wafer or a glass substrate, and the like.

Abstract

Problem: To provide a semiconductor device producing method and a substrate treatment device wherein a work function value can be adjusted. Solution: This method includes the steps of: forming a first layer on the substrate in a processing chamber by supplying a metal-containing gas that contains a metal element and carbon-containing gas thereto, the first layer containing the metal element and carbon; and forming a second layer by supplying a nitrogen-containing gas to the substrate with the first layer formed thereon, so as to nitride the first layer, the second layer containing the metal element, carbon, and nitrogen. The step of forming the first layer and the step of forming the second layer are performed alternately so that the steps are performed predetermined times each, whereby a film that has a predetermined film thickness and contains the metal element, carbon, and nitrogen is formed on the substrate. The number of times when the step of forming the first layer is performed is controlled with respect to the number of times when the step of forming the second layer is performed, whereby a work function of the film containing the metal element, carbon, and nitrogen is adjusted so as to have a desired value.

Description

半導体装置の製造方法および基板処理装置Semiconductor device manufacturing method and substrate processing apparatus
 本発明は、半導体装置の製造方法および基板処理装置に関する。 The present invention relates to a semiconductor device manufacturing method and a substrate processing apparatus.
 近年のゲートスタック構造では、様々な金属膜がゲート電極として使用されている。現在、一般的に使用されているメタルゲート電極としては、例えばTiN(窒化チタン)がある。ここで、TiNとは異なる仕事関数を有するメタルゲート電極が求められる場合に、TiNとは異なるメタル電極を使用すると、プロセスインテグレーションの問題(例えば加工の問題、熱安定性、拡散安定性等)等があり、比較的に難易度が高い。このような背景の中、一般に使用されている技術とのインテグレーションにおけるプロセスの親和性の高さから、TiNを成膜するプロセスをベースとして、Vth(スレッショルド電圧、閾値電圧)を調整することが可能なメタル、すなわち仕事関数値がチューニング(調整、変調)可能な金属膜への要求が高まっている。また、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)等の半導体装置の高集積化および高性能化に伴い、電極や配線等として、様々な種類の金属膜が用いられている。その中でも、ゲート電極やDRAM(Dynamic Random Access Memory)のキャパシタ電極では、耐酸化性、電気抵抗率、仕事関数等の観点から金属炭化物系や金属窒化物系の金属膜が用いられることが多い。 In recent gate stack structures, various metal films are used as gate electrodes. At present, TiN (titanium nitride), for example, is a commonly used metal gate electrode. Here, when a metal gate electrode having a work function different from TiN is required, if a metal electrode different from TiN is used, a process integration problem (for example, processing problem, thermal stability, diffusion stability, etc.), etc. There is relatively high difficulty. Against this background, it is possible to adjust Vth (threshold voltage, threshold voltage) based on the process of depositing TiN because of the high affinity of the process for integration with commonly used technologies. There is an increasing demand for a metal film that can be tuned (adjusted and modulated) in terms of a work metal value. In addition, with the high integration and high performance of semiconductor devices such as MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistor), various types of metal films are used as electrodes and wirings. Of these, metal carbide-based and metal nitride-based metal films are often used from the viewpoints of oxidation resistance, electrical resistivity, work function, etc., for gate electrodes and DRAM (Dynamic Random Access Memory) capacitor electrodes.
特開2011-216846号公報JP 2011-216846 A 特開2011-6783号公報JP 2011-6783 A
 本発明の目的は、一般に使用されている技術とのインテグレーションにおけるプロセスの親和性を確保しつつ、仕事関数値を所望の値に調整することができる技術を提供することである。 An object of the present invention is to provide a technique capable of adjusting a work function value to a desired value while ensuring process affinity in integration with a commonly used technique.
 本発明の一態様によれば、
 基板に対して金属元素を含む金属含有ガスと炭素含有ガスを供給することで、前記基板上に前記金属元素および炭素を含む第1の層を形成する工程と、
 前記第1の層が形成された前記基板に対して窒素含有ガスを供給することで、前記第1の層を窒化して前記金属元素、炭素および窒素を含む第2の層を形成する工程と、
を交互に所定回数ずつ実施することで、基板上に所定膜厚の前記金属元素、炭素および窒素を含む膜を形成し、前記第2の層を形成する工程の実施回数に対する前記第1の層を形成する工程の実施回数を制御することにより、前記金属元素、炭素および窒素を含む膜の仕事関数が所望の値となるよう調整する工程を有する半導体装置の製造方法が提供される。
According to one aspect of the invention,
Supplying a metal-containing gas containing a metal element and a carbon-containing gas to the substrate to form a first layer containing the metal element and carbon on the substrate;
Supplying a nitrogen-containing gas to the substrate on which the first layer is formed, thereby nitriding the first layer to form a second layer containing the metal element, carbon and nitrogen; ,
The first layer with respect to the number of executions of the step of forming the second layer by forming a film containing the metal element, carbon and nitrogen with a predetermined thickness on the substrate by alternately performing the predetermined number of times. A method for manufacturing a semiconductor device is provided which includes a step of adjusting the work function of the film containing the metal element, carbon, and nitrogen to a desired value by controlling the number of times the step of forming the film is performed.
 本発明によれば、一般に使用されている技術とのインテグレーションにおけるプロセスの親和性を確保しつつ、仕事関数値を調整することが可能となる。 According to the present invention, it is possible to adjust the work function value while ensuring the affinity of the process in the integration with a generally used technology.
本発明の実施形態に係る基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus which concerns on embodiment of this invention, and is a figure which shows a processing furnace part with a longitudinal cross-sectional view. 図1に示されている縦型処理炉の処理炉部分を図1におけるA-A線断面図で示す図である。FIG. 2 is a view showing a processing furnace part of the vertical processing furnace shown in FIG. 図1に示す基板処理装置10が有するコントローラの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the controller which the substrate processing apparatus 10 shown in FIG. 1 has. 図1に示す基板処理装置の第1の実施形態のシーケンスにおける成膜フローを示す図である。It is a figure which shows the film-forming flow in the sequence of 1st Embodiment of the substrate processing apparatus shown in FIG. 図4に示す第1の実施形態のシーケンスにおけるガス供給のタイミングを示す図である。It is a figure which shows the timing of the gas supply in the sequence of 1st Embodiment shown in FIG. 第3の実施形態のシーケンスにおけるガス供給タイミングを示す図である。It is a figure which shows the gas supply timing in the sequence of 3rd Embodiment. 第3の実施形態のシーケンスにおけるガス供給タイミングを示す図である。It is a figure which shows the gas supply timing in the sequence of 3rd Embodiment. 第4の実施形態に係る技術が適用される半導体装置の構成例を示す図である。It is a figure which shows the structural example of the semiconductor device with which the technique which concerns on 4th Embodiment is applied. 図8に示す半導体装置のゲート製造工程例を示す処理フロー図である。FIG. 9 is a process flowchart showing an example of a gate manufacturing process of the semiconductor device shown in FIG. 8. 図9に示すゲート製造工程における金属膜の成膜工程例を示す処理フロー図である。FIG. 10 is a process flow diagram illustrating an example of a metal film formation process in the gate manufacturing process illustrated in FIG. 9. 図10に示す成膜工程におけるガス供給のタイミングを示す図である。It is a figure which shows the timing of the gas supply in the film-forming process shown in FIG. 実施例1~3で得られたTiCN膜に対するXPS分析結果に基づくC/Ti比を示す図である。It is a figure which shows C / Ti ratio based on the XPS analysis result with respect to the TiCN film | membrane obtained in Examples 1-3. 図13(a)は実施例1~3で得られたTiCN膜に対するXPSで測定したTiCN膜中のC濃度を示す図であり、図13(b)は実施例1~3で得られたTiCN膜に対するXPSで測定したTiCN膜中のN濃度を示す図である。FIG. 13A is a diagram showing the C concentration in the TiCN film measured by XPS with respect to the TiCN film obtained in Examples 1 to 3, and FIG. 13B is the TiCN obtained in Examples 1 to 3. It is a figure which shows N concentration in the TiCN film | membrane measured by XPS with respect to the film | membrane. 実験のために作成されたキャパシタの構成を示す図であり、図14(a)がキャパシタ268aを示す図であり、図14(b)がキャパシタ268bを示す図であり、図14(c)がキャパシタ268cを示す図である。FIG. 14A is a diagram illustrating a configuration of a capacitor created for an experiment, FIG. 14A is a diagram illustrating a capacitor 268a, FIG. 14B is a diagram illustrating a capacitor 268b, and FIG. It is a figure which shows the capacitor 268c. 仕事関数を算出するためのデータがプロットされたグラフである。It is the graph by which the data for calculating a work function were plotted. 本発明の実施例4~8で成膜した金属膜のそれぞれについて、等価酸化膜厚とフラットバンド電圧の関係を示す図である。It is a figure which shows the relationship between an equivalent oxide film thickness and a flat band voltage about each of the metal film formed into Example 4-8 of this invention. 本発明の実施例4~8で成膜した金属膜のそれぞれについて、CとNの割合と、実効仕事関数の関係を示す図である。It is a figure which shows the relationship between the ratio of C and N, and an effective work function about each of the metal film formed into Example 4-8 of this invention. 図18(a)は、本発明の実施例4~8で成膜した金属膜のそれぞれについて、Cの割合に対する仕事関数を示す図であり、図18(b)は、本発明の実施例4~8で成膜した金属膜のそれぞれについて、Nの割合に対する仕事関数を示す図である。FIG. 18 (a) is a diagram showing the work function with respect to the ratio of C for each of the metal films formed in Examples 4 to 8 of the present invention, and FIG. 18 (b) is a diagram showing Example 4 of the present invention. FIG. 9 is a diagram showing a work function with respect to a ratio of N for each of the metal films formed in ˜8.
MOSFETの特性を示す重要なパラメータとして、閾値電圧(スレッショールド電圧、Vth)がある。この閾値電圧は、電極の仕事関数で決定される。電極の仕事関数は、電極を構成する金属膜によってチューニング(調整、変調)することができる。ここで、トランジスタでは、P型トランジスタとN型トランジスタとで必要とされる仕事関数の値が異なり、P型トランジスタでは5.0eV以上、N型トランジスタでは4.3eV以下が要求される。また、用途に応じてはその他の値が要求される場合もある。このような場合に、同じ元素組成を有する1つの膜で仕事関数を調整できることが望ましい。本発明によれば、例えばこのような場合に、同じ元素組成を有するTiCN膜(チタン炭窒化膜)において、C(単相)濃度を制御し、例えばC濃度を高くすることで仕事関数値を下げることにより、例えば用途等に応じて仕事関数を調整することが可能となる。 As an important parameter indicating the characteristics of the MOSFET, there is a threshold voltage (threshold voltage, Vth). This threshold voltage is determined by the work function of the electrode. The work function of the electrode can be tuned (adjusted or modulated) by the metal film constituting the electrode. Here, in the transistor, the required work function value is different between the P-type transistor and the N-type transistor, and the P-type transistor requires 5.0 eV or more, and the N-type transistor requires 4.3 eV or less. Also, other values may be required depending on the application. In such a case, it is desirable that the work function can be adjusted with one film having the same elemental composition. According to the present invention, for example, in such a case, in a TiCN film (titanium carbonitride film) having the same elemental composition, the C (single phase) concentration is controlled, for example, the work function value is increased by increasing the C concentration. By lowering, for example, the work function can be adjusted according to the application.
(第1の実施形態)
 次に本発明を実施するための形態を図面に基づいて説明する。図1および図2には、本発明の実施形態で好適に使用される基板処理装置10が示されている。基板処理装置10は、半導体装置(デバイス)の製造に使用される半導体製造装置の一例として構成されているものである。
(First embodiment)
Next, an embodiment for carrying out the present invention will be described with reference to the drawings. 1 and 2 show a substrate processing apparatus 10 preferably used in an embodiment of the present invention. The substrate processing apparatus 10 is configured as an example of a semiconductor manufacturing apparatus used for manufacturing a semiconductor device (device).
<処理炉の構成> <Processing furnace configuration>
 図1および図2に示す通り、処理炉202には基板としてのウエハ200を加熱するための加熱手段(加熱機構、加熱系)であるヒータ207が設けられている。ヒータ207は上方が閉塞された円筒形状の断熱部材と複数本のヒータ素線とを備えており、断熱部材に対しヒータ素線が設けられたユニット構成を有している。ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成する反応管203が配設されている。反応管203は例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。 As shown in FIGS. 1 and 2, the processing furnace 202 is provided with a heater 207 which is a heating means (heating mechanism, heating system) for heating the wafer 200 as a substrate. The heater 207 includes a cylindrical heat insulating member whose upper portion is closed and a plurality of heater wires, and has a unit configuration in which the heater wires are provided on the heat insulating member. Inside the heater 207, a reaction tube 203 constituting a reaction vessel (processing vessel) concentrically with the heater 207 is disposed. The reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and has a cylindrical shape with the upper end closed and the lower end opened.
 反応管203の下端には、例えばステンレス等によりマニホールド209が気密部材であるOリング220を介して下端開口は蓋体であるシールキャップ219によりOリング220を介して気密に閉塞され、少なくとも、反応管203、マニホールド209およびシールキャップ219により処理室201を形成している。シールキャップ219にはボート支持台218を介して基板支持手段(基板支持具)としての基板支持部材であるボート217が立設され、ボート支持台218はボートを支持した状態で保持する保持体となっている。 The lower end of the reaction tube 203 is airtightly closed at the lower end of the reaction tube 203 through, for example, stainless steel via an O-ring 220 that is an airtight member and the lower end opening is sealed through an O-ring 220 by a seal cap 219 that is a lid. A processing chamber 201 is formed by the pipe 203, the manifold 209, and the seal cap 219. A boat 217 which is a substrate support member as a substrate support means (substrate support) is erected on the seal cap 219 via the boat support 218, and the boat support 218 includes a holding body that holds the boat in a state of supporting the boat. It has become.
 ボート217にはバッチ処理される複数のウエハ200が水平姿勢で管軸方向に多段に積載される。そして、ボート217は、搬送手段(搬送機構)としてのボートエレベータ115により反応管203に対し昇降(出入り)することができるようになっている。ボート支持台218の下端部には、処理の均一性を向上するためにボート217を回転させるボート回転機構267が設けられている。ボート回転機構267を駆動させることにより、ボート支持台218に支持されたボート217を回転させることができるようになっている。ヒータ207は処理室201に挿入されたウエハ200を所定の温度に加熱する。 In the boat 217, a plurality of wafers 200 to be batch-processed are stacked in a multi-stage in the horizontal direction in the tube axis direction. The boat 217 can be moved up and down (in and out) with respect to the reaction tube 203 by a boat elevator 115 as a transport means (transport mechanism). A boat rotation mechanism 267 that rotates the boat 217 is provided at the lower end of the boat support 218 in order to improve processing uniformity. By driving the boat rotation mechanism 267, the boat 217 supported by the boat support 218 can be rotated. The heater 207 heats the wafer 200 inserted into the processing chamber 201 to a predetermined temperature.
 処理室201内には、ノズル410(第1のノズル410)、ノズル420(第2のノズル420)、ノズル430(第3のノズル430)が反応管203の下部を貫通するように設けられている。ノズル410、ノズル420、ノズル430には、ガス供給ラインとしてのガス供給管310(第1のガス供給管310)、320(第2のガス供給管320)、330(第3のガス供給管330)が、それぞれ接続されている。このように、反応管203には3本のノズル410、420、430と、3本のガス供給管310、320、330とが設けられており、処理室201内へ複数種類、ここでは3種類のガス(処理ガス)を供給することができるように構成されている。 In the processing chamber 201, a nozzle 410 (first nozzle 410), a nozzle 420 (second nozzle 420), and a nozzle 430 (third nozzle 430) are provided so as to penetrate the lower part of the reaction tube 203. Yes. The nozzle 410, the nozzle 420, and the nozzle 430 include a gas supply pipe 310 (first gas supply pipe 310), 320 (second gas supply pipe 320), and 330 (third gas supply pipe 330) as gas supply lines. ) Are connected to each other. As described above, the reaction tube 203 is provided with the three nozzles 410, 420, and 430 and the three gas supply tubes 310, 320, and 330. The gas (processing gas) can be supplied.
 ガス供給管310には上流側から順に流量制御装置(流量制御部)であるマスフローコントローラ312および開閉弁であるバルブ314が設けられている。ガス供給管310の先端部にはノズル410が連結されている。ノズル410は、L字型のロングノズルとして構成されており、その水平部はマニホールド209の側壁を貫通するように設けられている。その垂直部は、反応管203の内壁とウエハ200との間における円弧状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように(つまりウエハ配列領域の一端側から他端側に向かって立ち上がるように)設けられている。すなわち、ノズル410は、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。 The gas supply pipe 310 is provided with a mass flow controller 312 which is a flow rate control device (flow rate control unit) and a valve 314 which is an on-off valve in order from the upstream side. A nozzle 410 is connected to the tip of the gas supply pipe 310. The nozzle 410 is configured as an L-shaped long nozzle, and its horizontal portion is provided so as to penetrate the side wall of the manifold 209. The vertical portion rises in an arc-shaped space between the inner wall of the reaction tube 203 and the wafer 200 along the upper portion from the lower portion of the inner wall of the reaction tube 203 toward the upper side in the loading direction of the wafer 200 (that is, The wafer arrangement region is provided so as to rise from one end side toward the other end side). That is, the nozzle 410 is provided on the side of the wafer arrangement area where the wafers 200 are arranged, in a region that horizontally surrounds the wafer arrangement area, along the wafer arrangement area.
 ノズル410の側面にはガスを供給するガス供給孔410aが設けられている。ガス供給孔410aは反応管203の中心を向くように開口している。このガス供給孔410aは、反応管203の下部から上部にわたって複数設けられ、それぞれ同一または、大きさに傾斜をつけた開口面積を有し、更に同じ開口ピッチで設けられている。主に、ガス供給管310、マスフローコントローラ312、バルブ314、ノズル410により第1のガス供給系が構成される。 A gas supply hole 410 a for supplying gas is provided on the side surface of the nozzle 410. The gas supply hole 410 a is opened to face the center of the reaction tube 203. A plurality of the gas supply holes 410a are provided from the lower part to the upper part of the reaction tube 203, have the same or inclined opening areas, and are provided at the same opening pitch. A gas supply pipe 310, a mass flow controller 312, a valve 314, and a nozzle 410 constitute a first gas supply system.
 また、ガス供給管310にはキャリアガスを供給するためのキャリアガス供給管510が接続されている。キャリアガス供給管510にはマスフローコントローラ512およびバルブ514が設けられている。主に、キャリアガス供給管510、マスフローコントローラ512、バルブ514により第1のキャリアガス供給系が構成される。 Further, a carrier gas supply pipe 510 for supplying a carrier gas is connected to the gas supply pipe 310. The carrier gas supply pipe 510 is provided with a mass flow controller 512 and a valve 514. A carrier gas supply pipe 510, a mass flow controller 512, and a valve 514 mainly constitute a first carrier gas supply system.
 ガス供給管320には上流側から順に流量制御装置(流量制御部)であるマスフローコントローラ322および開閉弁であるバルブ324が設けられている。ガス供給管320の先端部にはノズル420が連結されている。ノズル420は、L字型のロングノズルとして構成されており、その水平部はマニホールド209の側壁を貫通するように設けられている。その垂直部は、反応管203の内壁とウエハ200との間における円弧状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように(つまりウエハ配列領域の一端側から他端側に向かって立ち上がるように)設けられている。すなわち、ノズル420は、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。 The gas supply pipe 320 is provided with a mass flow controller 322 as a flow rate control device (flow rate control unit) and a valve 324 as an on-off valve in order from the upstream side. A nozzle 420 is connected to the tip of the gas supply pipe 320. The nozzle 420 is configured as an L-shaped long nozzle, and a horizontal portion thereof is provided so as to penetrate the side wall of the manifold 209. The vertical portion rises in an arc-shaped space between the inner wall of the reaction tube 203 and the wafer 200 along the upper portion from the lower portion of the inner wall of the reaction tube 203 toward the upper side in the loading direction of the wafer 200 (that is, The wafer arrangement region is provided so as to rise from one end side toward the other end side). That is, the nozzle 420 is provided on the side of the wafer arrangement area where the wafers 200 are arranged, in a region that horizontally surrounds the wafer arrangement area, along the wafer arrangement area.
 ノズル420の側面にはガスを供給するガス供給孔420aが設けられている。ガス供給孔420aは反応管203の中心を向くように開口している。このガス供給孔420aは、反応管203の下部から上部にわたって複数設けられ、それぞれ同一または、大きさに傾斜をつけた開口面積を有し、更に同じ開口ピッチで設けられている。主に、ガス供給管320、マスフローコントローラ322、バルブ324、ノズル420により第2のガス供給系が構成される。 A gas supply hole 420 a for supplying gas is provided on the side surface of the nozzle 420. The gas supply hole 420 a is opened to face the center of the reaction tube 203. A plurality of the gas supply holes 420a are provided from the lower part to the upper part of the reaction tube 203, have the same or inclined opening areas, and are provided at the same opening pitch. The gas supply pipe 320, the mass flow controller 322, the valve 324, and the nozzle 420 mainly constitute a second gas supply system.
 更にガス供給管320にはキャリアガスを供給するためのキャリアガス供給管520が連結されている。キャリアガス供給管520にはマスフローコントローラ522およびバルブ524が設けられている。主に、キャリアガス供給管520、マスフローコントローラ522、バルブ524により第2のキャリアガス供給系が構成される。 Further, a carrier gas supply pipe 520 for supplying a carrier gas is connected to the gas supply pipe 320. The carrier gas supply pipe 520 is provided with a mass flow controller 522 and a valve 524. The carrier gas supply pipe 520, the mass flow controller 522, and the valve 524 mainly constitute a second carrier gas supply system.
 ガス供給管330には上流側から順に流量制御装置(流量制御部)であるマスフローコントローラ332および開閉弁であるバルブ334が設けられている。ガス供給管330の先端部にはノズル430が連結されている。ノズル430は、L字型のロングノズルとして構成されており、その水平部はマニホールド209の側壁を貫通するように設けられている。その垂直部は、反応管203の内壁とウエハ200との間における円弧状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように(つまりウエハ配列領域の一端側から他端側に向かって立ち上がるように)設けられている。すなわち、ノズル430は、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。 The gas supply pipe 330 is provided with a mass flow controller 332 that is a flow rate control device (flow rate control unit) and a valve 334 that is an on-off valve in order from the upstream side. A nozzle 430 is connected to the tip of the gas supply pipe 330. The nozzle 430 is configured as an L-shaped long nozzle, and a horizontal portion thereof is provided so as to penetrate the side wall of the manifold 209. The vertical portion rises in an arc-shaped space between the inner wall of the reaction tube 203 and the wafer 200 along the upper portion from the lower portion of the inner wall of the reaction tube 203 toward the upper side in the loading direction of the wafer 200 (that is, The wafer arrangement region is provided so as to rise from one end side toward the other end side). That is, the nozzle 430 is provided along the wafer arrangement region in a region that horizontally surrounds the wafer arrangement region on the side of the wafer arrangement region where the wafers 200 are arranged.
 ノズル430の側面にはガスを供給するガス供給孔430aが設けられている。ガス供給孔430aは反応管203の中心を向くように開口している。このガス供給孔430aは、反応管203の下部から上部にわたって複数設けられ、それぞれ同一または、大きさに傾斜をつけた開口面積を有し、更に同じ開口ピッチで設けられている。主に、ガス供給管330、マスフローコントローラ332、バルブ334、ノズル430により第3のガス供給系が構成される。 A gas supply hole 430a for supplying gas is provided on the side surface of the nozzle 430. The gas supply hole 430 a is opened to face the center of the reaction tube 203. A plurality of the gas supply holes 430a are provided from the lower part to the upper part of the reaction tube 203, have the same or inclined opening areas, and are provided at the same opening pitch. The gas supply pipe 330, the mass flow controller 332, the valve 334, and the nozzle 430 mainly constitute a third gas supply system.
 更にガス供給管330にはキャリアガスを供給するためのキャリアガス供給管530が連結されている。キャリアガス供給管530にはマスフローコントローラ532およびバルブ534が設けられている。主に、キャリアガス供給管530、マスフローコントローラ532、バルブ534により第3のキャリアガス供給系が構成される。 Further, a carrier gas supply pipe 530 for supplying a carrier gas is connected to the gas supply pipe 330. The carrier gas supply pipe 530 is provided with a mass flow controller 532 and a valve 534. A third carrier gas supply system is mainly configured by the carrier gas supply pipe 530, the mass flow controller 532, and the valve 534.
 このように、本実施形態におけるガス供給の方法は、反応管203の内壁と、積載された複数枚のウエハ200の端部とで定義される円弧状の縦長の空間内に配置したノズル410、420、430を経由してガスを搬送し、ノズル410、420、430にそれぞれ開口されたガス供給孔410a、420b、430cからウエハ200の近傍で初めて反応管203内にガスを噴出させており、反応管203内におけるガスの主たる流れをウエハ200の表面と平行な方向、すなわち水平方向としている。このような構成とすることで、各ウエハ200に均一にガスを供給でき、各ウエハ200に形成される薄膜の膜厚を均一にできる効果がある。なお、反応後の残ガスは、排気口、すなわち、後述する排気管231の方向に向かって流れるが、この残ガスの流れの方向は、排気口の位置によって適宜特定され、垂直方向に限ったものではない。 As described above, the gas supply method according to the present embodiment includes a nozzle 410 arranged in an arc-like vertically long space defined by the inner wall of the reaction tube 203 and the ends of a plurality of stacked wafers 200, The gas is conveyed through 420 and 430, and the gas is jetted into the reaction tube 203 for the first time in the vicinity of the wafer 200 from the gas supply holes 410a, 420b and 430c opened in the nozzles 410, 420 and 430, respectively. The main flow of gas in the reaction tube 203 is set in a direction parallel to the surface of the wafer 200, that is, in a horizontal direction. With such a configuration, there is an effect that the gas can be supplied uniformly to each wafer 200 and the thickness of the thin film formed on each wafer 200 can be made uniform. The residual gas after the reaction flows toward the exhaust port, that is, the direction of the exhaust pipe 231 described later. The direction of the residual gas flow is appropriately specified by the position of the exhaust port and is limited to the vertical direction. It is not a thing.
 上記構成に係る一例として、ガス供給管310からは、第1の所定元素を含む第1の処理ガスとして、例えば原料ガスである少なくとも金属含有ガス(金属化合物)であってチタン(Ti)元素を含むTi含有原料である四塩化チタン(TiCl)がマスフローコントローラ312、バルブ314、ノズル410を介して処理室201内に供給される。なお、TiClのように常温常圧下で液体状態である液体材料を用いる場合は、液体原料を気化器やバブラ等の気化システムにより気化して、Ti含有ガスであるTiClガスとして供給することとなる。 As an example of the above configuration, from the gas supply pipe 310, for example, at least a metal-containing gas (metal compound) that is a raw material gas and a titanium (Ti) element is used as the first processing gas containing the first predetermined element. Titanium tetrachloride (TiCl 4 ), which is a Ti-containing raw material, is supplied into the processing chamber 201 through the mass flow controller 312, the valve 314, and the nozzle 410. When using a liquid material that is in a liquid state at normal temperature and pressure, such as TiCl 4 , the liquid material is vaporized by a vaporization system such as a vaporizer or bubbler and supplied as TiCl 4 gas that is a Ti-containing gas. It becomes.
 ガス供給管320からは、第2の所定元素を含む第2の処理ガスとして、例えば第1の反応ガスである少なくとも炭素(C)元素を含むC含有ガス(炭素原料)であるHf[C(CH)](CHが処理室201内に供給される。なお、Hf[C(CH)](CHのように、常温常圧下で固体状態である固体材料を用いる場合は、材料を加熱したり、材料をECH(エチルシクロヘキサン)やTHF(テトラヒドロフラン)などの溶媒(ソルベント)に溶かしたりして液体状態とし、液体状態とした材料を気化器やバブラ等の気化システムにより気化して、ガスとして供給することとなる。 From the gas supply pipe 320, as the second processing gas containing the second predetermined element, for example, Hf [C 5], which is a C-containing gas (carbon raw material) containing at least a carbon (C) element as the first reaction gas. H 4 (CH 3 )] 2 (CH 3 ) 2 is supplied into the processing chamber 201. Incidentally, Hf [C 5 H 4 ( CH 3)] 2 (CH 3) as a 2, in the case of using a solid material which is a solid state at normal temperature and pressure, or by heating the material, the material ECH (ethylcyclohexane ) Or THF (tetrahydrofuran) or the like to form a liquid state, and the liquid state material is vaporized by a vaporization system such as a vaporizer or bubbler and supplied as a gas.
 ガス供給管330からは、第3の所定元素を含む第3の処理ガスとして、例えば第2の反応ガスである少なくとも窒素(N)を含むN含有ガスであり、窒化原料すなわち窒化ガスであるアンモニア(NH)が処理室201内に供給される。 From the gas supply pipe 330, as the third processing gas containing the third predetermined element, for example, an N-containing gas containing at least nitrogen (N) as the second reaction gas, and a nitriding raw material, ie, a nitriding gas, ammonia. (NH 3 ) is supplied into the processing chamber 201.
 キャリアガス供給管510、520および530からは、例えば窒素(N)ガスが、それぞれマスフローコントローラ512、522および532、バルブ514、524および534、ガス供給管510、520および530、ノズル410、420および430を介して処理室201内に供給される。 From the carrier gas supply pipes 510, 520 and 530, for example, nitrogen (N 2 ) gas is supplied from the mass flow controllers 512, 522 and 532, valves 514, 524 and 534, gas supply pipes 510, 520 and 530, and nozzles 410 and 420, respectively. And 430 to the inside of the processing chamber 201.
 なお、例えば各ガス供給管から上述のようなガスをそれぞれ流す場合、第1のガス供給系により原料ガス供給系が構成される。原料ガス供給系は金属含有ガス供給系とも称する。また第2のガス供給系によりC含有ガス供給系(炭素原料供給系)が構成される。また、第3のガス供給系によりN含有ガス供給系(窒化原料供給系)が構成される。また、C含有ガスおよびN含有ガスを総称して反応ガスと称する場合、C含有ガス供給系により第1の反応ガス供給系が構成され、N含有ガス供給系により第2の反応ガス供給系が構成される。なお、原料ガス供給系、C含有ガス供給系、N含有ガス供給系を、それぞれ、単に、金属原料供給系、炭素原料供給系、窒化原料供給系とも称する。 Note that, for example, when the gas as described above is flowed from each gas supply pipe, the source gas supply system is configured by the first gas supply system. The source gas supply system is also referred to as a metal-containing gas supply system. The second gas supply system constitutes a C-containing gas supply system (carbon raw material supply system). The third gas supply system constitutes an N-containing gas supply system (nitriding material supply system). When the C-containing gas and the N-containing gas are collectively referred to as a reaction gas, the C-containing gas supply system constitutes a first reaction gas supply system, and the N-containing gas supply system constitutes a second reaction gas supply system. Composed. The source gas supply system, the C-containing gas supply system, and the N-containing gas supply system are also simply referred to as a metal source supply system, a carbon source supply system, and a nitriding source supply system, respectively.
 反応管203には、処理室201内の雰囲気を排気する排気管231が設けられている。図2に示すように、横断面視において、排気管231は、反応管203のノズル410のガス供給孔410a、ノズル420のガス供給孔420a、およびノズル430のガス供給孔430aが設けられる側と対向する側、すなわちウエハ200を挟んでガス供給孔410a、420a、430aとは反対側に設けられている。また、図1に示すように縦断面視において、排気管231は、ガス供給孔410a、420a、430aが設けられる箇所よりも下方に設けられている。この構成により、ガス供給孔410a、420a、430aから処理室201内のウエハ200の近傍に供給されたガスは、水平方向、すなわちウエハ200の表面と平行な方向に向かって流れた後、下方に向かって流れ、排気管231より排気されることとなる。処理室201内におけるガスの主たる流れが水平方向へ向かう流れとなるのは上述の通りである。 The reaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201. As shown in FIG. 2, in a cross-sectional view, the exhaust pipe 231 has a side on which the gas supply hole 410 a of the nozzle 410 of the reaction pipe 203, the gas supply hole 420 a of the nozzle 420, and the gas supply hole 430 a of the nozzle 430 are provided. It is provided on the opposite side, that is, on the opposite side to the gas supply holes 410a, 420a, and 430a with the wafer 200 in between. In addition, as shown in FIG. 1, the exhaust pipe 231 is provided below the portion where the gas supply holes 410a, 420a, and 430a are provided in a longitudinal sectional view. With this configuration, the gas supplied from the gas supply holes 410a, 420a, and 430a to the vicinity of the wafer 200 in the processing chamber 201 flows in the horizontal direction, that is, in the direction parallel to the surface of the wafer 200, and then downward. Then, the air flows through the exhaust pipe 231. As described above, the main flow of gas in the processing chamber 201 is a flow in the horizontal direction.
 排気管231には、上流側から順に、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245、圧力調整器(圧力調整部)として構成された排気バルブとしてのAPC(Auto Pressure Controller)バルブ243、真空排気装置としての真空ポンプ246が接続されている。また、排気管231には、排気ガス中の反応副生成物や未反応の原料ガス等を捕捉するトラップ装置や排気ガス中に含まれる腐食性成分や有毒成分等を除害する除害装置が接続されている場合がある。主に、排気管231、APCバルブ243、圧力センサ245により、排気系すなわち排気ラインが構成される。なお、真空ポンプ246を排気系に含めて考えてもよい。さらには、トラップ装置や除害装置を排気系に含めて考えてもよい。 In the exhaust pipe 231, a pressure sensor 245 as a pressure detector (pressure detection unit) that detects the pressure in the processing chamber 201 in order from the upstream side, and an exhaust valve configured as a pressure regulator (pressure adjustment unit). An APC (Auto Pressure Controller) valve 243 and a vacuum pump 246 as a vacuum exhaust device are connected. Further, the exhaust pipe 231 has a trap device that captures reaction by-products and unreacted source gas in the exhaust gas, and a detoxification device that removes corrosive components and toxic components contained in the exhaust gas. May be connected. An exhaust system, that is, an exhaust line, is mainly configured by the exhaust pipe 231, the APC valve 243, and the pressure sensor 245. Note that the vacuum pump 246 may be included in the exhaust system. Furthermore, a trap device or a detoxifying device may be included in the exhaust system.
 なお、APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行なうことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。 Note that the APC valve 243 can open and close the vacuum pump 246 while the vacuum pump 246 is operated, thereby performing vacuum evacuation and stop of the vacuum exhaust in the processing chamber 201. Further, the APC valve 243 is in a state where the vacuum pump 246 is operated. The valve is configured so that the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening degree.
 反応管203内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル410、420および430と同様にL字型に構成されており、反応管203の内壁に沿って設けられている。 A temperature sensor 263 as a temperature detector is installed in the reaction tube 203, and the temperature in the processing chamber 201 is adjusted by adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263. It is configured to have a desired temperature distribution. The temperature sensor 263 is configured in an L shape similarly to the nozzles 410, 420, and 430, and is provided along the inner wall of the reaction tube 203.
 図3には、コントローラ121が示されている。図3に示されているように、コントローラ121は、CPU(Central  Processing  Unit)121a、RAM(Random
Access  Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
FIG. 3 shows the controller 121. As shown in FIG. 3, the controller 121 includes a CPU (Central Processing Unit) 121a, a RAM (Random).
(Access Memory) 121b, a storage device 121c, and an I / O port 121d. The RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e. For example, an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard  Disk  Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプロセスレシピ等が、読み出し可能に格納されている。なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 121c includes, for example, a flash memory, an HDD (Hard Disk Drive), and the like. In the storage device 121c, a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner. Note that the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 121 to execute each procedure in a substrate processing step to be described later, and functions as a program. Hereinafter, the process recipe, the control program, and the like are collectively referred to as simply a program. When the term “program” is used in this specification, it may include only a process recipe alone, may include only a control program alone, or may include both. The RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
 I/Oポート121dは、上述のマスフローコントローラ312、322、332、512、522,532、バルブ314、324、334、514、524、534、614、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。 The I / O port 121d includes the mass flow controllers 312, 322, 332, 512, 522, 532, the valves 314, 324, 334, 514, 524, 534, 614, the pressure sensor 245, the APC valve 243, the vacuum pump 246, The heater 207, temperature sensor 263, rotation mechanism 267, boat elevator 115, and the like are connected.
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピを読み出すように構成されている。そして、CPU121aは、読み出したプロセスレシピの内容に沿うように、マスフローコントローラ312、322、332、512、522、532による各種ガスの流量調整動作、バルブ314、324、334、514、524、534、614の開閉動作、APCバルブ243の開閉動作およびAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動および停止、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。 The CPU 121a is configured to read and execute a control program from the storage device 121c, and to read a process recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like. Then, the CPU 121a adjusts the flow rates of various gases by the mass flow controllers 312, 322, 332, 512, 522, 532, valves 314, 324, 334, 514, 524, 534, in accordance with the contents of the read process recipe. 614 opening and closing operation, APC valve 243 opening and closing operation, pressure adjustment operation based on pressure sensor 245 by APC valve 243, temperature adjustment operation of heater 207 based on temperature sensor 263, starting and stopping of vacuum pump 246, boat by rotation mechanism 267 It is configured to control the rotation and rotation speed adjustment operation of 217, the raising / lowering operation of the boat 217 by the boat elevator 115, and the like.
 なお、コントローラ121は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123を用意し、係る外部記憶装置123を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態に係るコントローラ121を構成することができる。なお、コンピュータにプログラムを供給するための手段は、外部記憶装置123を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置123を介さずにプログラムを供給するようにしてもよい。なお、記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。なお、本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。 Note that the controller 121 is not limited to being configured as a dedicated computer, and may be configured as a general-purpose computer. For example, an external storage device storing the above-described program (for example, magnetic tape, magnetic disk such as a flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card) 123 is prepared, and the controller 121 according to the present embodiment can be configured by installing a program in a general-purpose computer using the external storage device 123. The means for supplying the program to the computer is not limited to supplying the program via the external storage device 123. For example, the program may be supplied without using the external storage device 123 by using communication means such as the Internet or a dedicated line. The storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. Note that when the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both.
<基板処理工程>
 次に、上述の基板処理装置の処理炉202を用いて、半導体装置(デバイス)の製造工程の一工程として、ウエハ200上に薄膜を成膜する例について説明する。なお、以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
<Substrate processing process>
Next, an example in which a thin film is formed on the wafer 200 as one step of the semiconductor device (device) manufacturing process using the processing furnace 202 of the substrate processing apparatus described above will be described. In the following description, the operation of each unit constituting the substrate processing apparatus is controlled by the controller 121.
 図4は、本実施形態の好適なシーケンスにおける成膜フローを示す図である。図5は、本実施形態の好適なシーケンスにおけるガス供給のタイミングを示す図である。 FIG. 4 is a diagram showing a film forming flow in a preferred sequence of the present embodiment. FIG. 5 is a diagram showing gas supply timings in a preferred sequence of the present embodiment.
本実施形態の好適なシーケンスは、
 ウエハ200に対して、チタン(Ti)含有ガスと炭素(C)含有ガスとを供給することで、ウエハ200上にチタンおよび炭素を含む第1の層としての金属炭化層(TiC層)を形成する工程と、
 ウエハ200に対して、窒素(N)含有ガスを供給することで、金属炭化(TiC)層を窒化してチタン、炭素および窒素を含む第2の層としての金属炭窒化層(TiCN層)を形成する工程と、
を交互に所定回数ずつ実施することで、ウエハ200上に所定膜厚の金属炭窒化膜(TiCN膜)を形成し、金属炭窒化層(TiCN層)を形成する工程の実施回数に対する金属炭化層(TiC層)を形成する工程の実施回数を制御することにより、金属炭窒化膜(TiCN膜)の仕事関数が所望の値となるよう調整(チューニング、変調)する。
The preferred sequence of this embodiment is
By supplying a titanium (Ti) -containing gas and a carbon (C) -containing gas to the wafer 200, a metal carbide layer (TiC layer) as a first layer containing titanium and carbon is formed on the wafer 200. And a process of
By supplying a nitrogen (N) -containing gas to the wafer 200, the metal carbonization (TiC) layer is nitrided to form a metal carbonitride layer (TiCN layer) as a second layer containing titanium, carbon, and nitrogen. Forming, and
By alternately performing a predetermined number of times, a metal carbonized layer corresponding to the number of executions of the step of forming a metal carbonitride film (TiCN film) having a predetermined thickness on the wafer 200 and forming a metal carbonitride layer (TiCN layer) is performed. The work function of the metal carbonitride film (TiCN film) is adjusted (tuned and modulated) to a desired value by controlling the number of times the step of forming the (TiC layer) is performed.
 なお、本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合(すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合)がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。 In this specification, when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface thereof”. "(That is, a wafer including a predetermined layer or film formed on the surface). In addition, when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
 従って、本明細書において「ウエハに対して所定のガスを供給する」と記載した場合は、「ウエハそのものの表面(露出面)に対して所定のガスを直接供給する」ことを意味する場合や、「ウエハ上に形成されている層や膜等に対して、すなわち、積層体としてのウエハの最表面に対して所定のガスを供給する」ことを意味する場合がある。また、本明細書において「ウエハ上に所定の層(又は膜)を形成する」と記載した場合は、「ウエハそのものの表面(露出面)上に所定の層(又は膜)を直接形成する」ことを意味する場合や、「ウエハ上に形成されている層や膜等の上、すなわち、積層体としてのウエハの最表面の上に所定の層(又は膜)を形成する」ことを意味する場合がある。 Therefore, in the present specification, the phrase “supplying a predetermined gas to the wafer” means “supplying a predetermined gas directly to the surface (exposed surface) of the wafer itself”. , It may mean that “a predetermined gas is supplied to a layer, a film, or the like formed on the wafer, that is, to the outermost surface of the wafer as a laminated body”. Further, in this specification, when “describe a predetermined layer (or film) on the wafer” is described, “determine a predetermined layer (or film) directly on the surface (exposed surface) of the wafer itself”. This means that a predetermined layer (or film) is formed on a layer or film formed on the wafer, that is, on the outermost surface of the wafer as a laminate. There is a case.
 なお、本明細書において「基板」という言葉を用いた場合も「ウエハ」という言葉を用いた場合と同様であり、その場合、上記説明において、「ウエハ」を「基板」に置き換えて考えればよい。 Note that the term “substrate” in this specification is the same as the term “wafer”, and in that case, the “wafer” may be replaced with “substrate” in the above description. .
 また、「金属含有ガスと、炭素(C)含有ガスとを供給する」とは、金属含有ガスの供給と炭素含有ガスの供給とを1セットとした場合、このセットを1回行なう場合と、このセットを複数回行なう場合の両方を含む。すなわち、このセットを1回以上(所定回数)行なうことを意味する。なお、比較的C濃度の高いTiCN膜を得るには、このセットを複数回行なうことが好ましい。セットの実施回数を多くすることで、TiCN膜のC濃度を増加させることができる。また、比較的C濃度の低いTiCN膜を得るには、このセットの実施回数を少なくする(例えば1回とする)ことが好ましい。 In addition, “supplying the metal-containing gas and the carbon (C) -containing gas” means that when the supply of the metal-containing gas and the supply of the carbon-containing gas are set as one set, when this set is performed once, This includes both cases where this set is performed multiple times. In other words, this means that this set is performed once or more (a predetermined number of times). In order to obtain a TiCN film having a relatively high C concentration, this set is preferably performed a plurality of times. The C concentration of the TiCN film can be increased by increasing the number of times of performing the setting. Further, in order to obtain a TiCN film having a relatively low C concentration, it is preferable to reduce the number of executions of this set (for example, once).
 さらに、「TiC層を形成する工程とTiCN層を形成する工程とを交互に所定回数ずつ実施する」とは、「処理室201内のウエハ200に対して、Ti含有ガスとC含有ガスを供給することで、ウエハ200上にTiおよびCを含むTiC層を形成する工程」と「ウエハ200に対して、N含有ガスを供給することで、TiC層を窒化してTi、CおよびNを含むTiCN層を形成する工程」とを1サイクルとした場合、このサイクルを1回行なう場合と、このサイクルを複数回行なう場合の両方を含む。すなわち、このサイクルを1回以上(所定回数)行なうことを意味する。後述するように、このサイクルは、1回行なうよりも、複数回行なうことが好ましい。 Furthermore, “the step of forming the TiC layer and the step of forming the TiCN layer are alternately performed a predetermined number of times” means that “a Ti-containing gas and a C-containing gas are supplied to the wafer 200 in the processing chamber 201. Thus, a process of forming a TiC layer containing Ti and C on the wafer 200 ”and“ by supplying an N-containing gas to the wafer 200, the TiC layer is nitrided to contain Ti, C, and N ”. When the “step of forming the TiCN layer” is defined as one cycle, this includes both the case where this cycle is performed once and the case where this cycle is performed a plurality of times. In other words, this means that this cycle is performed once or more (a predetermined number of times). As will be described later, this cycle is preferably performed a plurality of times rather than once.
 なお、本明細書では、金属膜という用語は、金属原子を含む導電性の物質で構成される膜を意味しており、これには、金属単体で構成される導電性の金属単体膜の他、導電性の金属窒化膜、導電性の金属酸化膜、導電性の金属酸窒化膜、導電性の金属複合膜、導電性の金属合金膜、導電性の金属シリサイド膜、導電性の金属炭化膜(金属カーバイド膜)、導電性の金属炭窒化膜(金属カーボナイトライド膜)等も含まれる。なお、TiCN膜(チタン炭窒化膜)は導電性の金属炭窒化膜である。 In this specification, the term metal film means a film made of a conductive substance containing a metal atom, and includes a conductive single metal film made of a single metal. Conductive metal nitride film, conductive metal oxide film, conductive metal oxynitride film, conductive metal composite film, conductive metal alloy film, conductive metal silicide film, conductive metal carbide film (Metal carbide film), conductive metal carbonitride film (metal carbonitride film) and the like are also included. The TiCN film (titanium carbonitride film) is a conductive metal carbonitride film.
(ウエハチャージおよびボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介して反応管203の下端をシールした状態となる。
(Wafer charge and boat load)
When a plurality of wafers 200 are loaded into the boat 217 (wafer charge), as shown in FIG. 1, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 and processed in the processing chamber 201. It is carried in (boat loading). In this state, the seal cap 219 seals the lower end of the reaction tube 203 via the O-ring 220.
(圧力調整および温度調整)
 処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。なお、真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される(温度調整)。なお、ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。続いて、回転機構267によりボート217およびウエハ200の回転を開始する。なお、回転機構267によるボート217およびウエハ200の回転は、少なくとも、ウエハ200に対する処理が完了するまでの間は継続して行われる。その後、後述する6つのステップを順次実行する。
(Pressure adjustment and temperature adjustment)
The processing chamber 201 is evacuated by a vacuum pump 246 so that a desired pressure (degree of vacuum) is obtained. At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). Note that the vacuum pump 246 keeps being operated at least until the processing on the wafer 200 is completed. Further, the processing chamber 201 is heated by the heater 207 so as to have a desired temperature. At this time, the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment). Note that the heating of the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed. Subsequently, the rotation mechanism 267 starts the rotation of the boat 217 and the wafer 200. Note that the rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the processing on the wafer 200 is completed. Thereafter, the following six steps are sequentially executed.
 <ステップ11>
(TiClガス供給)
 ガス供給管310のバルブ314を開き、ガス供給管310内にTiClガスを流す。ガス供給管310内を流れたTiClガスは、マスフローコントローラ312により流量調整される。流量調整されたTiClガスは、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してTiClガスが供給されることとなる。すなわちウエハ200の表面はTiClガスに暴露されることとなる。このとき同時にバルブ514を開き、キャリアガス供給管510内にNガス等の不活性ガスを流す。キャリアガス供給管510内を流れたNガスは、マスフローコントローラ512により流量調整される。流量調整されたNガスはTiClガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル420、ノズル430内へのTiClガスの侵入を防止するために、バルブ524、534を開き、キャリアガス供給管520、キャリアガス供給管530内にNガスを流す。Nガスは、ガス供給管320、ガス供給管330、ノズル420、ノズル430を介して処理室201内に供給され、排気管231から排気される。
<Step 11>
(TiCl 4 gas supply)
The valve 314 of the gas supply pipe 310 is opened, and TiCl 4 gas is allowed to flow into the gas supply pipe 310. The flow rate of the TiCl 4 gas that has flowed through the gas supply pipe 310 is adjusted by the mass flow controller 312. The flow-adjusted TiCl 4 gas is supplied from the gas supply hole 410 a of the nozzle 410 into the processing chamber 201 and is exhausted from the exhaust pipe 231. At this time, TiCl 4 gas is supplied to the wafer 200. That is, the surface of the wafer 200 is exposed to TiCl 4 gas. At the same time, the valve 514 is opened, and an inert gas such as N 2 gas is allowed to flow into the carrier gas supply pipe 510. The flow rate of the N 2 gas flowing through the carrier gas supply pipe 510 is adjusted by the mass flow controller 512. The N 2 gas whose flow rate has been adjusted is supplied into the processing chamber 201 together with the TiCl 4 gas, and is exhausted from the exhaust pipe 231. At this time, in order to prevent the intrusion of TiCl 4 gas into the nozzles 420 and 430, the valves 524 and 534 are opened, and N 2 gas is allowed to flow into the carrier gas supply pipe 520 and the carrier gas supply pipe 530. N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 320, the gas supply pipe 330, the nozzle 420, and the nozzle 430, and is exhausted from the exhaust pipe 231.
 このときAPCバルブ243を適正に調整して、処理室201内の圧力を、例えば10~2000Paの範囲内の圧力とする。マスフローコントローラ512で制御するTiClガスの供給流量は、例えば10~2000sccmの範囲内の流量とする。マスフローコントローラ512、522、532で制御するNガスの供給流量は、それぞれ例えば100~10000sccmの範囲内の流量とする。TiClガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、例えば0.1~120秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば200~400℃の範囲内の温度となるような温度に設定する。なお、ウエハ温度が200℃未満となると、ステップ11~ステップ14を順に所定回数行なうことで形成されるTiC層と、ステップ15において供給されるNHとが反応しなくなり、ステップ15においてTiCN層が形成されなくなる。また、ウエハ温度が400℃を超えると、気相反応が支配的になることで膜厚均一性が悪化しやすくなり、その制御が困難となってしまう。よって、ウエハ200の温度は200~400℃の範囲内の温度とするのがよい。TiClガスの供給により、ウエハ200上に塩素(Cl)を含むチタン(Ti)含有層すなわちTiおよびClを含む層が形成される。Clを含むTi含有層は、TiClおよびTiClが分解してできたTiClの中間体による化学吸着層であってもよいし、TiClが熱分解することでできたClを含むチタン層(Ti層)、すなわち、Tiの堆積層であってもよいし、その両方を含んでいてもよい。 At this time, the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 10 to 2000 Pa. The supply flow rate of TiCl 4 gas controlled by the mass flow controller 512 is, for example, a flow rate in the range of 10 to 2000 sccm. The supply flow rate of the N 2 gas controlled by the mass flow controllers 512, 522, and 532 is set to a flow rate in the range of, for example, 100 to 10,000 sccm. The time for supplying the TiCl 4 gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, a time within the range of 0.1 to 120 seconds. At this time, the temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 becomes a temperature within the range of 200 to 400 ° C., for example. When the wafer temperature is less than 200 ° C., the TiC layer formed by sequentially performing steps 11 to 14 a predetermined number of times and the NH 3 supplied in step 15 do not react, and in step 15 the TiCN layer is formed. No longer formed. On the other hand, when the wafer temperature exceeds 400 ° C., the gas phase reaction becomes dominant, so that the film thickness uniformity tends to be deteriorated and the control becomes difficult. Therefore, the temperature of the wafer 200 is preferably set to a temperature within the range of 200 to 400 ° C. By supplying the TiCl 4 gas, a titanium (Ti) -containing layer containing chlorine (Cl), that is, a layer containing Ti and Cl is formed on the wafer 200. The Ti-containing layer containing Cl may be a chemisorption layer by an intermediate of TiCl 4 formed by decomposition of TiCl 4 and TiCl 4 , or a titanium layer containing Cl formed by thermal decomposition of TiCl 4 (Ti layer), that is, a Ti deposited layer, or both of them may be included.
 <ステップ12>
(残留ガス除去)
 Clを含むTi含有層が形成された後、ガス供給管310のバルブ314を閉じ、TiClガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはClを含むTi含有層形成に寄与した後のTiClガスを処理室201内から排除する。なお、このときバルブ514、524、534は開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくはClを含むTi含有層形成に寄与した後のTiClガスを処理室201内から排除する効果を高めることができる。
<Step 12>
(Residual gas removal)
After the Ti-containing layer containing Cl is formed, the valve 314 of the gas supply pipe 310 is closed, and the supply of TiCl 4 gas is stopped. At this time, after the APC valve 243 of the exhaust pipe 231 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246 to contribute to the formation of a Ti-containing layer containing unreacted or Cl remaining in the processing chamber 201. The TiCl 4 gas is removed from the processing chamber 201. At this time, the valves 514, 524, and 534 are kept open, and the supply of N 2 gas into the processing chamber 201 is maintained. The N 2 gas acts as a purge gas, thereby enhancing the effect of removing the TiCl 4 gas remaining in the processing chamber 201 or contributing to the formation of the Ti-containing layer containing Cl from the processing chamber 201. it can.
 なお、このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップ13において悪影響が生じることはない。このとき処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、ステップ13において悪影響が生じない程度のパージを行なうことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。 At this time, the gas remaining in the processing chamber 201 may not be completely removed, and the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, there will be no adverse effect in the subsequent step 13. At this time, the flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be a large flow rate. Purging to such an extent that no occurrence occurs can be performed. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
 <ステップ13>
(Hf[C(CH)](CHガス供給)
 ステップ12が終了し処理室201内の残留ガスを除去した後、ガス供給管320のバルブ324を開き、ガス供給管320内にHf[C(CH)](CHガスを流す。ガス供給管320内を流れたHf[C(CH)](CHガスは、マスフローコントローラ322により流量調整される。流量調整されたHf[C(CH)](CHガスは、ノズル420のガス供給孔420aから処理室201内へ供給され、排気管231から排気される。このときウエハ200に対してHf[C(CH)](CHガスが供給されることとなる。すなわちウエハ200の表面はHf[C(CH)](CHガスに暴露されることとなる。このとき同時にバルブ524を開き、キャリアガス供給管520内にNガスを流す。キャリアガス供給管520内を流れたNガスは、マスフローコントローラ522により流量調整される。流量調整されたNガスはHf[C(CH)](CHガスと一緒に処理室201内へ供給され、排気管231から排気される。なお、このとき、ノズル410、ノズル430内へのHf[C(CH)](CHガスの侵入を防止するために、バルブ510、530を開き、キャリアガス供給管510、キャリアガス供給管530内にNガスを流す。Nガスは、ガス供給管310、ガス供給管330、ノズル410、ノズル430を介して処理室201内に供給され、排気管231から排気される。
<Step 13>
(Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas supply)
After step 12 is completed and residual gas in the processing chamber 201 is removed, the valve 324 of the gas supply pipe 320 is opened, and Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 is placed in the gas supply pipe 320. Flow gas. The flow rate of Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas flowing through the gas supply pipe 320 is adjusted by the mass flow controller 322. The flow-adjusted Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas is supplied from the gas supply hole 420 a of the nozzle 420 into the processing chamber 201 and exhausted from the exhaust pipe 231. At this time, Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas is supplied to the wafer 200. That is, the surface of the wafer 200 is exposed to Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas. At the same time, the valve 524 is opened, and N 2 gas is caused to flow into the carrier gas supply pipe 520. The N 2 gas that has flowed through the carrier gas supply pipe 520 is adjusted in flow rate by the mass flow controller 522. The N 2 gas whose flow rate is adjusted is supplied into the processing chamber 201 together with the Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas, and is exhausted from the exhaust pipe 231. At this time, in order to prevent the intrusion of Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas into the nozzle 410 and the nozzle 430, the valves 510 and 530 are opened, and the carrier gas supply pipe is opened. 510, N 2 gas is allowed to flow into the carrier gas supply pipe 530. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 310, the gas supply pipe 330, the nozzle 410, and the nozzle 430 and is exhausted from the exhaust pipe 231.
 このときAPCバルブ243を適正に調整して、処理室201内の圧力を、ステップ11と同様、例えば10~2000Paの範囲内の圧力とする。マスフローコントローラ322で制御するHf[C(CH)](CHガスの供給流量は、例えば10~2000sccmの範囲内の流量とする。マスフローコントローラ522で制御するNガスの供給流量は、それぞれ例えば100~10000sccmの範囲内の流量とする。Hf[C(CH)](CHガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、例えば0.1~120秒の範囲内の時間とする。このときのヒータ207の温度は、ステップ11と同様、ウエハ200の温度が、例えば250~400℃の範囲内の温度となるような温度に設定する。 At this time, the APC valve 243 is appropriately adjusted, and the pressure in the processing chamber 201 is set to a pressure in the range of 10 to 2000 Pa, for example, as in Step 11. The supply flow rate of Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas controlled by the mass flow controller 322 is, for example, a flow rate in the range of 10 to 2000 sccm. The supply flow rate of N 2 gas controlled by the mass flow controller 522 is, for example, a flow rate in the range of 100 to 10,000 sccm. The time for supplying Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, within a range of 0.1 to 120 seconds. And The temperature of the heater 207 at this time is set to such a temperature that the temperature of the wafer 200 becomes a temperature in the range of 250 to 400 ° C., for example, as in step 11.
 Hf[C5H4(CH3)]2(CH3)2ガスの供給により、ステップ11でウエハ200上に形成されたClを含むTi含有層とHf[C5H4(CH3)]2(CH3)2ガスとが反応する。このとき、主に、ステップ11でウエハ200上に形成されたClを含むTi含有層のClと、Hf[C5H4(CH3)]2(CH3)2のHf[C5H4(CH3)]2とが反応してガス状物質を生成し、ガスとして排出される。このときClを含むTi含有層のClとHf[C5H4(CH3)]2(CH3)2のメチル基(CH3)やシクロペンタ基(C5H4)とが反応する場合もある。その際、Hf[C5H4(CH3)]2(CH3)2が分解することで、Hf[C5H4(CH3)]2(CH3)2を構成するハフニウム(Hf)や水素(H)等が、Clを含むTi含有層のClと反応する等してガス状物質を生成してガスとして排出される場合もある。このように、ステップ13では、TiCl4に含まれるClとHf[C5H4(CH3)]2(CH3)2に含まれるHfとをガス状物質に変換させて排出する。すなわち、TiCl4に含まれるClとHf[C5H4(CH3)]2(CH3)2に含まれるHfとを、Clを含むガス状物質とHfを含むガス状物質、および/または、ClおよびHfを含むガス状物質に変換させて排出する。したがって、Hfは形成される膜中には実質的に残らない。また、相乗効果により形成される膜中からClを排除する効果を高めることができる。これらの過程において、Hf[C5H4(CH3)]2(CH3)2ガスの分解によりHとの結合が切れたCや、分離したメチル基(CH3)の一部は、ガスとして排出されることなく残留し、Clを含むTi含有層のTiと結合する。これにより、Clを含むTi含有層は、チタン(Ti)および炭素(C)を含むチタン炭化層(TiC層)へと改質される。 By supplying the Hf [C5H4 (CH3)] 2 (CH3) 2 gas, the Ti-containing layer containing Cl formed on the wafer 200 in Step 11 reacts with the Hf [C5H4 (CH3)] 2 (CH3) 2 gas. To do. At this time, mainly the Cl of the Ti-containing layer containing Cl formed on the wafer 200 in Step 11 reacts with Hf [C5H4 (CH3)] 2 of Hf [C5H4 (CH3)] 2 (CH3) 2. Thus, a gaseous substance is generated and discharged as a gas. At this time, Cl in the Ti-containing layer containing Cl may react with the methyl group (CH3) or cyclopenta group (C5H4) of Hf [C5H4 (CH3)] 2 (CH3) 2. At that time, Hf [C5H4 (CH3)] 2 (CH3) 2 decomposes so that hafnium (Hf), hydrogen (H), etc. constituting Hf [C5H4 (CH3)] 2 (CH3) 2 There is a case where a gaseous substance is generated by reacting with Cl in the Ti-containing layer and is discharged as a gas. Thus, in step 13, Cl contained in TiCl4 and Hf contained in Hf [C5H4 (CH3)] 2 (CH3) 2 are converted into gaseous substances and discharged. That is, Cl contained in TiCl4 and Hf contained in Hf [C5H4 (CH3)] 2 (CH3) 2, a gaseous substance containing Cl, a gaseous substance containing Hf, and / or Cl and Hf It is converted into a gaseous substance and discharged. Therefore, Hf does not substantially remain in the formed film. In addition, the effect of eliminating Cl from the film formed by the synergistic effect can be enhanced. In these processes, C which has lost the bond with H due to decomposition of Hf [C5H4 (CH3)] 2 (CH3) 2 gas and a part of the separated methyl group (CH3) are not discharged as gas. It remains and bonds with Ti in the Ti-containing layer containing Cl. Thereby, the Ti-containing layer containing Cl is modified into a titanium carbide layer (TiC layer) containing titanium (Ti) and carbon (C).
<ステップ14>
(残留ガス除去)
 その後、ガス供給管320のバルブ324を閉じて、Hf[C(CH)](CHガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはTiC層形成に寄与した後のHf[C(CH)](CHガスや反応副生成物を処理室201内から排除する。なお、このときバルブ510、520、530は開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくはTiC層形成に寄与した後のHf[C(CH)](CHガスや反応副生成物を処理室201内から排除する効果を高めることができる。
<Step 14>
(Residual gas removal)
Thereafter, the valve 324 of the gas supply pipe 320 is closed, and the supply of Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas is stopped. At this time, the APC valve 243 of the exhaust pipe 231 is kept open, the process chamber 201 is evacuated by the vacuum pump 246, and Hf [C after contributing to unreacted or TiC layer formation remaining in the process chamber 201 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas and reaction by-products are excluded from the processing chamber 201. At this time, the valves 510, 520, and 530 remain open, and the supply of N 2 gas into the processing chamber 201 is maintained. The N 2 gas acts as a purge gas, whereby Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas and reaction after remaining in the processing chamber 201 or contributing to TiC layer formation. The effect of removing the by-product from the processing chamber 201 can be enhanced.
 なお、このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップ11もしくはステップ15において悪影響が生じることはない。このとき処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、ステップ11もしくはステップ15において悪影響が生じない程度のパージを行なうことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。 At this time, the gas remaining in the processing chamber 201 may not be completely removed, and the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, no adverse effects will occur in the subsequent step 11 or step 15. At this time, the flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be a large flow rate. For example, by supplying an amount similar to the volume of the reaction tube 203 (processing chamber 201), step 11 or step 15 can be purged to the extent that no adverse effects occur. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
 その後、上述したステップ11~14を1セットとして、このセットを所定回数行なうことにより、所定の厚さのTiC層を形成する。図5は、このセットをm回行なう様子を示している。セットの実施回数(m)は、例えば1~200回、好ましくは1~100回、更に好ましくは1~20回の範囲内の回数とする。セットの実施回数(m)は、例えば、数回、すなわち2~6回程度行なうようにしてもよい。セットの実施回数(m)を制御(調整)することにより、最終的に形成されるTiCN膜のC濃度を制御することが可能となる。このC濃度を変化させることによりTiCN膜の仕事関数を用途に応じて所望の値となるよう調整(チューニング)することが可能となる。比較的C濃度の高いTiCN膜を得るには、このセットは、1回行なうよりも、複数回行なう方が好ましい。セットの実施回数を多くすることで、TiCN膜のC濃度を増加させることができる。なお、比較的C濃度の低いTiCN膜を得るには、セットの実施回数(m)を少なく(例えば1回に)設定することが好ましい。 Thereafter, the above steps 11 to 14 are set as one set, and this set is performed a predetermined number of times to form a TiC layer having a predetermined thickness. FIG. 5 shows how this set is performed m times. The number of executions (m) of the setting is, for example, 1 to 200 times, preferably 1 to 100 times, and more preferably 1 to 20 times. For example, the set may be performed several times (m), for example, about 2 to 6 times. By controlling (adjusting) the number of executions (m) of setting, it is possible to control the C concentration of the TiCN film finally formed. By changing the C concentration, the work function of the TiCN film can be adjusted (tuned) to a desired value according to the application. In order to obtain a TiCN film having a relatively high C concentration, this set is preferably performed a plurality of times rather than once. The C concentration of the TiCN film can be increased by increasing the number of times of performing the setting. In order to obtain a TiCN film having a relatively low C concentration, it is preferable to set the number of executions (m) to be small (for example, once).
<ステップ15>
(NHガス供給工程)
 所定の厚さのTiC層を形成し、処理室201内の残留ガスを除去した後、ガス供給管330のバルブ334を開き、ガス供給管330内にNHガスを流す。ガス供給管330内を流れたNHガスは、マスフローコントローラ324により流量調整される。流量調整されたNHガスは、ノズル430のガス供給孔430aから処理室201内に供給される。処理室201内に供給されたNHガスは熱で活性化され、排気管231から排気される。このときウエハ200に対して、熱で活性化されたNHガスが供給されることとなる。すなわちウエハ200の表面は熱で活性化されたNHガスに暴露されることとなる。このとき同時にバルブ534を開き、キャリアガス供給管530内にNガスを流す。キャリアガス供給管530内を流れたNガスは、マスフローコントローラ532により流量調整される。NガスはNHガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル410、420内へのNHガスの侵入を防止するために、バルブ514、524を開き、キャリアガス供給管510、520内にNガスを流す。Nガスは、ガス供給管310、320、ノズル410、ノズル420を介して処理室201内に供給され、排気管231から排気される。
<Step 15>
(NH 3 gas supply process)
After a TiC layer having a predetermined thickness is formed and residual gas in the processing chamber 201 is removed, the valve 334 of the gas supply pipe 330 is opened, and NH 3 gas is allowed to flow into the gas supply pipe 330. The flow rate of the NH 3 gas flowing through the gas supply pipe 330 is adjusted by the mass flow controller 324. The NH 3 gas whose flow rate has been adjusted is supplied into the processing chamber 201 from the gas supply hole 430 a of the nozzle 430. The NH 3 gas supplied into the processing chamber 201 is activated by heat and exhausted from the exhaust pipe 231. At this time, NH 3 gas activated by heat is supplied to the wafer 200. That is, the surface of the wafer 200 is exposed to heat activated NH 3 gas. At the same time, the valve 534 is opened, and N 2 gas is caused to flow into the carrier gas supply pipe 530. The flow rate of the N 2 gas flowing through the carrier gas supply pipe 530 is adjusted by the mass flow controller 532. The N 2 gas is supplied into the processing chamber 201 together with the NH 3 gas, and is exhausted from the exhaust pipe 231. At this time, in order to prevent the NH 3 gas from entering the nozzles 410 and 420, the valves 514 and 524 are opened, and the N 2 gas is allowed to flow into the carrier gas supply pipes 510 and 520. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 310 and 320, the nozzle 410 and the nozzle 420, and is exhausted from the exhaust pipe 231.
 NHガスを熱で活性化させて流すときは、APCバルブ243を適正に調整して、処理室201内の圧力を、例えば10~2000Paの範囲内の圧力とする。処理室201内の圧力をこのような比較的高い圧力帯とすることで、NHガスをノンプラズマで熱的に活性化させることが可能となる。なお、NHガスを熱で活性化させて供給することで、ソフトな反応を生じさせることができ、後述する窒化をソフトに行なうことができる。マスフローコントローラ332で制御するNHガスの供給流量は、例えば10~10000sccmの範囲内の流量とする。マスフローコントローラ512、522、532で制御するNガスの供給流量は、それぞれ例えば100~10000sccmの範囲内の流量とする。熱で活性化させたNHガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、例えば0.1~120秒の範囲内の時間とする。このときのヒータ207の温度は、ステップ11、13と同様、ウエハ200の温度が、例えば200~400℃の範囲内の温度となるような温度に設定する。 When the NH 3 gas is activated by heat and flowed, the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 10 to 2000 Pa. By setting the pressure in the processing chamber 201 to such a relatively high pressure zone, the NH 3 gas can be thermally activated by non-plasma. In addition, a soft reaction can be caused by supplying the NH 3 gas activated by heat, and nitridation described later can be performed softly. The supply flow rate of NH 3 gas controlled by the mass flow controller 332 is, for example, a flow rate in the range of 10 to 10,000 sccm. The supply flow rate of the N 2 gas controlled by the mass flow controllers 512, 522, and 532 is set to a flow rate in the range of, for example, 100 to 10,000 sccm. The time for supplying the NH 3 gas activated by heat to the wafer 200, that is, the gas supply time (irradiation time) is, for example, a time within the range of 0.1 to 120 seconds. At this time, the temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 becomes a temperature in the range of 200 to 400 ° C., for example, as in Steps 11 and 13.
 このとき処理室201内に流しているガスは、処理室201内圧力を高くすることで熱的に活性化されたNHガスであり、処理室201内にはTiClガスもHf[C(CH)](CHガスも流していない。したがって、NHガスは気相反応を起こすことはなく、活性化されたNHガスは、ステップ13でウエハ200上に形成されたTiおよびCを含むTiC層の少なくとも一部と反応する。これによりTiC層は窒化されて、チタン炭窒化層(TiCN層)へと改質される。なお、TiCN層は、CドープドTiN層(C添加TiN層)と称する場合がある。 Gas at this time is flowing into the process chamber 201 is a NH 3 gas is thermally activated by increasing the pressure in the processing chamber 201, TiCl 4 gas into the processing chamber 201 Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas is not flowing. Therefore, the NH 3 gas does not cause a gas phase reaction, and the activated NH 3 gas reacts with at least a part of the TiC layer containing Ti and C formed on the wafer 200 in Step 13. Thereby, the TiC layer is nitrided and modified into a titanium carbonitride layer (TiCN layer). The TiCN layer may be referred to as a C-doped TiN layer (C-added TiN layer).
 なお、熱で活性化させたNHガスによりTiC層を熱窒化してTiCN層へと改質(変化)させる際、TiC層にN成分を付加しつつ、TiC層をTiCN層へと改質させることとなる。このとき、NHガスによる熱窒化の作用により、TiC層におけるTi-N結合が増加することとなる。すなわち、窒素濃度を増加させる方向に組成比を変化させつつTiC層をTiCN層へと改質させることができる。さらに、このとき処理室201内の圧力やガス供給時間等の処理条件を制御することで、TiCN層におけるN成分の割合、すなわち、窒素濃度を微調整することができ、TiCN層の組成比をより緻密に制御することができる。 In addition, when the TiC layer is thermally nitrided with NH 3 gas activated by heat and modified (changed) into the TiCN layer, the TiC layer is modified into the TiCN layer while adding an N component to the TiC layer. Will be allowed to. At this time, Ti—N bonds in the TiC layer increase due to the action of thermal nitridation by NH 3 gas. That is, the TiC layer can be modified into a TiCN layer while changing the composition ratio in the direction of increasing the nitrogen concentration. Furthermore, at this time, by controlling the processing conditions such as the pressure in the processing chamber 201 and the gas supply time, the ratio of the N component in the TiCN layer, that is, the nitrogen concentration can be finely adjusted, and the composition ratio of the TiCN layer can be adjusted. It can be controlled more precisely.
<ステップ16>
(残留ガス除去)
 その後、ガス供給管330のバルブ334を閉じて、NHガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはTiCN層形成に寄与した後のNHガスや反応副生成物を処理室201内から排除する。なお、このときバルブ514、524、534は開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくはTiCN層形成に寄与した後のNHガスや反応副生成物を処理室201内から排除する効果を高めることができる。
<Step 16>
(Residual gas removal)
Thereafter, the valve 334 of the gas supply pipe 330 is closed, and the supply of NH 3 gas is stopped. At this time, the APC valve 243 of the exhaust pipe 231 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the NH 3 gas remaining in the processing chamber 201 and contributing to the formation of the TiCN layer is left. And reaction by-products are removed from the processing chamber 201. At this time, the valves 514, 524, and 534 are kept open, and the supply of N 2 gas into the processing chamber 201 is maintained. The N 2 gas acts as a purge gas, thereby enhancing the effect of eliminating NH 3 gas and reaction by-products remaining in the processing chamber 201 and contributing to the formation of the TiCN layer from the processing chamber 201. Can do.
 なお、このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップ1において悪影響が生じることはない。このとき処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、ステップ1において悪影響が生じない程度のパージを行なうことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。 At this time, the gas remaining in the processing chamber 201 may not be completely removed, and the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, no adverse effect will occur in the subsequent step 1. At this time, the flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be a large flow rate. For example, by supplying an amount similar to the volume of the reaction tube 203 (processing chamber 201), there is an adverse effect in step 1. Purge to such an extent that no occurrence occurs. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
 その後、ステップ11~14を順に所定回数行なう工程と、ステップ15、16を行なう工程と、を1サイクルとし、このサイクルを所定回数行なうことにより、ウエハ200上に所定組成および所定膜厚のTiCN膜を成膜する。なお、TiCN膜は、CドープドTiN膜(C添加TiN膜)と称する場合がある。図5は、このサイクルをn回実施する様子を示している。サイクルの実施回数(n)を制御(調整)することにより、最終的に形成されるTiCN膜の膜厚を調整することができる。例えば、C濃度が10~30at%であり、膜厚が1~10nmであるようなゲート電極向けTiCN膜を形成するには、サイクルの実施回数(n)を1~5回の範囲内の回数とする。なお、このサイクルは、1回行なうよりも、複数回行なう方が好ましい。すなわち、1サイクルあたりに形成するTiCN層の厚さを所望の膜厚よりも小さくして、上述のサイクルを所望の膜厚になるまで複数回繰り返すのが好ましい。このように、1サイクルあたりに形成するTiCN層の厚さを小さくし、サイクルを複数回繰り返すようにすることで、ステップ15で行なう窒化の作用をTiC層の全体に届けることができる。そして、TiCN膜をより均一に窒化させ、TiCN膜のN濃度を厚さ方向にわたってより均一化できるようになる。 Thereafter, the step of sequentially performing steps 11 to 14 a predetermined number of times and the step of performing steps 15 and 16 are defined as one cycle. By performing this cycle a predetermined number of times, a TiCN film having a predetermined composition and a predetermined film thickness is formed on wafer 200. Is deposited. The TiCN film may be referred to as a C-doped TiN film (C-added TiN film). FIG. 5 shows how this cycle is performed n times. By controlling (adjusting) the number of executions (n) of the cycle, the thickness of the TiCN film finally formed can be adjusted. For example, in order to form a TiCN film for a gate electrode having a C concentration of 10 to 30 at% and a film thickness of 1 to 10 nm, the number of cycles (n) is set within a range of 1 to 5 times. And This cycle is preferably performed a plurality of times rather than once. That is, it is preferable that the thickness of the TiCN layer formed per cycle is made smaller than the desired film thickness, and the above cycle is repeated a plurality of times until the desired film thickness is obtained. Thus, by reducing the thickness of the TiCN layer formed per cycle and repeating the cycle a plurality of times, the action of nitriding performed in step 15 can be delivered to the entire TiC layer. Then, the TiCN film is nitrided more uniformly, and the N concentration of the TiCN film can be made more uniform in the thickness direction.
(パージおよび大気圧復帰)
 所定組成を有する所定膜厚のTiCN膜を形成する成膜処理がなされると、N等の不活性ガスが処理室201内へ供給され、排気管231から排気されることで、処理室201内が不活性ガスでパージされる(ガスパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(Purge and return to atmospheric pressure)
When a film forming process for forming a TiCN film having a predetermined composition and having a predetermined composition is performed, an inert gas such as N 2 is supplied into the processing chamber 201 and exhausted from the exhaust pipe 231, whereby the processing chamber 201 The inside is purged with an inert gas (gas purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
(ボートアンロードおよびウエハディスチャージ)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口されるとともに、処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済ウエハ200はボート217より取り出される。
(Boat unload and wafer discharge)
Thereafter, the seal cap 219 is lowered by the boat elevator 115, the lower end of the reaction tube 203 is opened, and the processed wafer 200 is supported by the boat 217 from the lower end of the reaction tube 203 to the outside of the reaction tube 203. Unload (boat unload). Thereafter, the processed wafer 200 is taken out from the boat 217.
 なお、上述の実施形態では、炭素原料として、Hf[C(CH)](CHガスを用いる例について説明しているが、これに限らず、Zr[C(CH)](CHガス、エチレン(C)、プロピレン(C)、ブテン(C)、ペンテン(C10)、へキセン(C12)、ヘプテン(C14)、オクテン(C16)、エタン(C)、プロパン(C)、ブタン(C10)、ペンタン(C12)、ヘキサン(C14)、ヘプタン(C16)、オクタン(C18)等を用いてもよい。 In the above-described embodiment, an example in which Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas is used as the carbon raw material has been described. However, the embodiment is not limited thereto, and Zr [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas, ethylene (C 2 H 4 ), propylene (C 3 H 6 ), butene (C 4 H 8 ), pentene (C 5 H 10 ), hexene (C 6 H 12), heptene (C 7 H 14), octene (C 8 H 16), ethane (C 2 H 6), propane (C 3 H 8), butane (C 4 H 10), pentane (C 5 H 12 ), hexane (C 6 H 14 ), heptane (C 7 H 16 ), octane (C 8 H 18 ) and the like may be used.
(第2の実施形態)
 次に第2の実施形態について説明する。第1の実施形態においては、ウエハ200上に所定膜厚のTiCN膜を成膜する例について説明したが、第2の実施形態では同様にしてウエハ200上に所定膜厚のチタンアルミニウム炭化膜(TiAlC膜)を成膜することができ、例えば3種類のガスを供給することでTiAlC膜を成膜することができる。ここでは、第1の実施形態と異なる点について詳細に説明し、同じ点については適宜省略する。
(Second Embodiment)
Next, a second embodiment will be described. In the first embodiment, an example in which a TiCN film having a predetermined film thickness is formed on the wafer 200 has been described. However, in the second embodiment, a titanium aluminum carbide film having a predetermined film thickness (on the wafer 200 in the same manner). TiAlC film) can be formed. For example, a TiAlC film can be formed by supplying three kinds of gases. Here, differences from the first embodiment will be described in detail, and the same points will be omitted as appropriate.
 図6には、ウエハ200に3種類のガスを供給することでTiAlC膜を形成する良好なシーケンスにおけるガス供給タイミングが示されている。図6に示すガス供給タイミングにおいては、ウエハ200に対してチタン(Ti)含有ガスである四塩化チタン(TiCl)ガスと、炭素(C)含有ガスとを交互に供給することを1セットとして、このセットを繰り返し、このセットの実施回数(m)を制御することにより最終的に形成されるTiAlC膜のC濃度制を制御することが可能となり、TiAlC膜の仕事関数を調整(チューニング)することが可能となる。 FIG. 6 shows gas supply timings in a good sequence for forming a TiAlC film by supplying three types of gases to the wafer 200. In the gas supply timing shown in FIG. 6, as one set, titanium tetrachloride (TiCl 4 ) gas that is titanium (Ti) -containing gas and carbon (C) -containing gas are alternately supplied to the wafer 200. By repeating this set and controlling the number of executions (m) of this set, it becomes possible to control the C concentration system of the TiAlC film finally formed, and adjust (tune) the work function of the TiAlC film. It becomes possible.
 より具体的には、以下のシーケンスにより所定膜厚のTiAlC膜を成膜することができる。処理室201内のウエハ200に対して、チタン(Ti)含有ガスである四塩化チタン(TiCl)ガスと、炭素(C)含有ガスとを交互に所定回数供給することで、ウエハ200上にチタン(Ti)および炭素(C)を含むチタン炭化層(TiC層)を形成する第1の工程と、
 処理室201内のウエハ200に対して、アルミニウム(Al)を含む金属原料ガスであるAl含有ガスとしてトリメチルアルミニウム(TMA、(CHAl)を供給することで、チタン(Ti)、炭素(C)およびアルミニウム(Al)を含むチタンアルミニウム炭化層(TiAlC層)を形成する第2の工程と、
を有し、
 チタン炭化層(TiC層)を形成する第1の工程とチタンアルミニウム炭化層(TiAlC層)を形成する第2の工程とを交互に所定回数ずつ実施することで、ウエハ200上に、所定膜厚のチタンアルミニウム炭化膜(TiAlC膜)を形成し、第1の工程を行なう回数を制御することにより、得られるTiAlC膜の仕事関数が所望の値となるよう調整(チューニング)する。
More specifically, a TiAlC film having a predetermined thickness can be formed by the following sequence. A titanium tetrachloride (TiCl 4 ) gas, which is a titanium (Ti) -containing gas, and a carbon (C) -containing gas are alternately supplied a predetermined number of times to the wafer 200 in the processing chamber 201, so that the wafer 200 is placed on the wafer 200. A first step of forming a titanium carbide layer (TiC layer) containing titanium (Ti) and carbon (C);
By supplying trimethylaluminum (TMA, (CH 3 ) 3 Al) as an Al-containing gas that is a metal source gas containing aluminum (Al) to the wafer 200 in the processing chamber 201, titanium (Ti), carbon A second step of forming a titanium aluminum carbide layer (TiAlC layer) containing (C) and aluminum (Al);
Have
The first step of forming the titanium carbide layer (TiC layer) and the second step of forming the titanium aluminum carbide layer (TiAlC layer) are alternately performed a predetermined number of times, whereby a predetermined film thickness is formed on the wafer 200. The titanium aluminum carbide film (TiAlC film) is formed, and the work function of the obtained TiAlC film is adjusted (tuned) by controlling the number of times the first step is performed.
(第3の実施形態)
 次に第3の実施形態について説明する。第2の実施形態では、TiAlC膜を形成する際に、3種の処理ガスを用いる例について説明したが、これに限らず、本発明は2種の処理ガスを用いてTiAlC膜を形成することも可能である。図7には、ウエハ200に2種類のガスを供給することでTiAlC膜を形成する良好なシーケンスにおけるガス供給タイミングが示されている。ここでは、第1の実施形態および第2の実施形態と異なる点について詳細に説明し、同じ点については適宜省略する。
(Third embodiment)
Next, a third embodiment will be described. In the second embodiment, an example of using three kinds of processing gases when forming a TiAlC film has been described. However, the present invention is not limited to this, and the present invention forms a TiAlC film using two kinds of processing gases. Is also possible. FIG. 7 shows gas supply timings in a good sequence in which a TiAlC film is formed by supplying two types of gases to the wafer 200. Here, differences from the first embodiment and the second embodiment will be described in detail, and the same points will be omitted as appropriate.
 図7に示すガス供給タイミングにおいては、以下のシーケンスにより所定膜厚のTiAlC膜を成膜することができる。処理室201内のウエハ200に対して、Ti含有ガスとしてTiClガスを供給する工程と、CおよびAlを含む原料としてTMAガスを供給する工程とを交互に所定回数供給することで、ウエハ200上にTi、Al、Cを含むTiAlC層を形成する。その際、TiClガスを供給する工程とTMAガスを供給する工程とを各工程を行なう回数の比を所定の値となるよう制御することにより、得られるTiAlC膜の仕事関数が所望の値となるよう調整(チューニング)する。 At the gas supply timing shown in FIG. 7, a TiAlC film having a predetermined thickness can be formed by the following sequence. The wafer 200 in the processing chamber 201 is alternately supplied a predetermined number of times by a process of supplying a TiCl 4 gas as a Ti-containing gas and a process of supplying a TMA gas as a raw material containing C and Al. A TiAlC layer containing Ti, Al, and C is formed thereon. At that time, the work function of the TiAlC film obtained is controlled to a desired value by controlling the ratio of the number of times of performing each step between the step of supplying the TiCl 4 gas and the step of supplying the TMA gas to a predetermined value. Adjust (tune) so that
 このとき、TMAガスを供給する工程を多く設定すればするほど得られたTiAlC膜におけるC濃度を高くすることができる。C濃度が高くなると仕事関数の値がより小さな値となる。また、TMAガスを供給する工程を少なく設定する(例えば1回)ことにより、得られたTiAlC膜におけるC濃度を低くすることができる。C濃度が低くなると仕事関数の値がより大きな値となる。 At this time, as the number of steps for supplying the TMA gas is set, the C concentration in the obtained TiAlC film can be increased. As the C concentration increases, the value of the work function becomes smaller. Moreover, the C concentration in the obtained TiAlC film can be lowered by setting the number of steps of supplying the TMA gas to a small number (for example, once). As the C concentration decreases, the work function value becomes larger.
 また、例えば、上述のTiAlC膜を形成する実施形態では、Al含有ガスである金属原料ガスとしてTMAガスを用いる例について説明しているが、これに限らず、AlCl等を用いてもよい。 Further, for example, in the embodiment to form a TiAlC film described above has described an example of using a TMA gas as the metal source gas is a Al-containing gas is not limited thereto, it may be used AlCl 3 or the like.
 また、例えば、上述の実施形態では、TiCN膜やTiAlC膜を形成する例について説明しているが、これに限らず、タンタル(Ta)、コバルト(Co)、タングステン(W)、モリブデン(Mo)、ルテニウム(Ru)、イットリウム(Y)、ランタン(La)、ジルコニウム(Zr)、ハフニウム(Hf)等の金属元素を1以上含む金属炭化膜もしくはこれらにシリコン(Si)を加えたシリサイド膜を形成する場合にも好適に適用可能である。その際、Ta含有原料としては塩化タンタル(TaCl)等を用いることができ、Co含有原料としてはCo amd[(tBu)NC(CH)N(tBu)Co]等を用いることができ、W含有原料としてはフッ化タングステン(WF)等を用いることができ、Mo含有原料としては塩化モリブデン(MoClもしくはMoCl)等を用いることができ、Ru含有原料としては2,4-ジメチルペンタジエニル(エチルシクロペンタジエニル)ルテニウム((Ru(EtCp)(C11))等を用いることができ、Y含有原料としてはトリスエチルシクロペンタジエニルイットリウム(Y(C)等を用いることができ、La含有原料としてはトリスイソプロピルシクロペンタジエニルランタン(La(i-C)等を用いることができ、Zr含有原料としてはテトラキスエチルメチルアミノジルコニウム(Zr(N(CH(C)))等を用いることができ、テトラキスエチルメチルアミノハフニウム(Hf(N(CH(C)))等を用いることができ、Si含有原料としてはテトラクロロシラン(SiCl)、ヘキサクロロジシラン(SiCl)、ジクロロシラン(SiHCl)、トリスジメチルアミノシラン(SiH(N(CH)、ビスターシャルブチルアミノシラン(HSi(HNC(CH)等を用いることができる。 For example, in the above-described embodiment, an example in which a TiCN film or a TiAlC film is formed is described. However, the present invention is not limited to this, and tantalum (Ta), cobalt (Co), tungsten (W), and molybdenum (Mo). Forming a metal carbide film containing one or more metal elements such as ruthenium (Ru), yttrium (Y), lanthanum (La), zirconium (Zr), hafnium (Hf), or a silicide film obtained by adding silicon (Si) to these metal elements In this case, it can be suitably applied. At that time, tantalum chloride (TaCl 4 ) or the like can be used as the Ta-containing raw material, and Co amd [(tBu) NC (CH 3 ) N (tBu) 2 Co] or the like can be used as the Co-containing raw material. Tungsten fluoride (WF 6 ) or the like can be used as the W-containing raw material, molybdenum chloride (MoCl 3 or MoCl 5 ) or the like can be used as the Mo-containing raw material, and 2,4- Dimethylpentadienyl (ethylcyclopentadienyl) ruthenium ((Ru (EtCp) (C 7 H 11 )) or the like can be used, and trisethylcyclopentadienyl yttrium (Y (C 2 H 5 C 5 H 4) 3) or the like can be used, as the La-containing material tris isopropylcyclopentadienyl Lanthanum (La (i-C 3 H 7 C 5 H 4) 3) or the like can be used, as the Zr-containing raw material tetrakis ethylmethylamino zirconium (Zr (N (CH 3 ( C 2 H 5)) 4) Tetrakisethylmethylaminohafnium (Hf (N (CH 3 (C 2 H 5 )) 4 ) or the like can be used, and tetrachlorosilane (SiCl 4 ), hexachlorodisilane (Si Si 2 Cl 6 ), dichlorosilane (SiH 2 Cl 2 ), trisdimethylaminosilane (SiH (N (CH 3 ) 2 ) 3 ), binary butylaminosilane (H 2 Si (HNC (CH 3 ) 2 ) 2 ), etc. Can be used.
 次に第4の実施形態について説明する。第1の実施形態においては、ウエハ200上に所定膜厚のTiCN膜を成膜する例について説明したが、第4の実施形態ではウエハ200上に所定膜厚のチタンアルミニウム炭窒化膜(TiAlCN膜)を成膜することができ、例えば3種類のガスを供給することでTiAlCN膜を成膜することができる。ここでは、第1の実施形態と異なる点について詳細に説明し、同じ点については適宜省略する。 Next, a fourth embodiment will be described. In the first embodiment, an example in which a TiCN film having a predetermined thickness is formed on the wafer 200 has been described. However, in the fourth embodiment, a titanium aluminum carbonitride film (TiAlCN film) having a predetermined thickness is formed on the wafer 200. For example, a TiAlCN film can be formed by supplying three kinds of gases. Here, differences from the first embodiment will be described in detail, and the same points will be omitted as appropriate.
 第1の実施形態とは異なり、 ガス供給管320からは、炭素、および、第2の金属元素を含む原料ガスとして、例えば少なくとも炭素(C)元素とアルミニウム(Al)元素とを含むTMA(トリメチルアルミニウム。(CHAl)がマスフローコントローラ322、バルブ324、ノズル420を介して処理室201内に供給される。なお、TMAのように液体状態である液体材料を用いる場合は、液体原料を気化器やバブラ等の気化システムにより気化して、CおよびAl含有ガスとして供給することとなる。そして、第2のガス供給系により炭素含有原料供給系(あるいは炭素および金属含有原料供給系)が構成される。 Unlike the first embodiment, from the gas supply pipe 320, TMA (trimethyl) containing at least a carbon (C) element and an aluminum (Al) element as a source gas containing carbon and a second metal element is used. Aluminum (CH 3 ) 3 Al) is supplied into the processing chamber 201 through the mass flow controller 322, the valve 324, and the nozzle 420. In addition, when using the liquid material which is in a liquid state like TMA, a liquid raw material will be vaporized by vaporization systems, such as a vaporizer and a bubbler, and will be supplied as C and Al containing gas. A carbon-containing raw material supply system (or carbon and metal-containing raw material supply system) is configured by the second gas supply system.
 次に、本実施形態に係る技術が適用される半導体装置の構成例について説明する。ここでは、半導体装置として、MOSFETを例に挙げる。 Next, a configuration example of a semiconductor device to which the technology according to the present embodiment is applied will be described. Here, a MOSFET is taken as an example of the semiconductor device.
 図8は、MOSFETのゲート構成例を示す説明図である。図示のように、MOSFETのゲートは、シリコン(Si)基板上に成膜された酸化シリコン(SiO)からなるシリコン系絶縁膜と、このSiO上に成膜された酸化ハフニウム(HfO)からなる高誘電体膜(High-k膜)と、このHfO上に成膜された炭窒化チタンアルミニウム(TiAlCN)からなるゲート電極としての金属膜とを積層したスタック構造とされる。本実施形態の特徴は、ゲート電極を構成する金属膜の成膜にある。 FIG. 8 is an explanatory diagram showing an example of the gate configuration of the MOSFET. As shown in the figure, the gate of the MOSFET includes a silicon-based insulating film made of silicon oxide (SiO 2 ) formed on a silicon (Si) substrate, and hafnium oxide (HfO 2 ) formed on this SiO 2. A high-dielectric film (High-k film) made of and a metal film as a gate electrode made of titanium aluminum carbonitride (TiAlCN) formed on this HfO 2 are stacked. The feature of this embodiment is the formation of a metal film that constitutes the gate electrode.
<半導体装置のゲート製造工程>
 次いで、図9を参照し、図8に示すMOSFETのゲート製造工程例について説明する。図9は、MOSFETのゲート製造工程例を示す処理フローである。
<Semiconductor device gate manufacturing process>
Next, an example of a gate manufacturing process of the MOSFET shown in FIG. 8 will be described with reference to FIG. FIG. 9 is a process flow showing an example of a MOSFET gate manufacturing process.
 まず、シリコン基板を、例えば1%HF水溶液で処理して、Si基板の犠牲酸化膜を除去する(「HF treatment」工程)。次いで、Si基板の表面に、酸化シリコン(SiO)を熱酸化により成膜する(「SiO formation」工程)。SiOは、Si基板と、この後に形成するHfOとの界面における界面層として形成される。  First, the silicon substrate is treated with, for example, a 1% HF aqueous solution to remove the sacrificial oxide film on the Si substrate (“HF treatment” step). Next, silicon oxide (SiO 2 ) is deposited on the surface of the Si substrate by thermal oxidation (“SiO 2 formation” step). SiO 2 is formed as an interface layer at the interface between the Si substrate and HfO 2 to be formed later.
 次に、酸化シリコン膜上に、高誘電体膜として酸化ハフニウム(HfO)を成膜する(「High-k formation」工程)。SiOとHfOにより、ゲート絶縁膜が構成される。HfOの成膜後、PDA(Post
Deposition Annealing)が行われる(「Post Deposition Annealing」工程)。このPDAは、例えば、熱処理炉(例えばRTP(Rapid Thermal Process)装置)を用い、RTP装置の処理室内にHfOが成膜されたSi基板を収容し、この処理室内にNガスを供給してアニール処理を行う。PDAは、HfO中の不純物除去、HfOの緻密化もしくは結晶化を目的として行う。
Next, hafnium oxide (HfO 2 ) is formed as a high dielectric film on the silicon oxide film (“High-k formation” step). A gate insulating film is composed of SiO 2 and HfO 2 . After film formation of HfO 2 , PDA (Post
Deposition Annealing) is performed (“Post Deposition Annealing” step). This PDA uses, for example, a heat treatment furnace (for example, an RTP (Rapid Thermal Process) apparatus), stores a Si substrate on which HfO 2 is formed in a processing chamber of the RTP apparatus, and supplies N 2 gas into the processing chamber. Annealing is performed. PDA is performed impurity removal during HfO 2, the densification or crystallization of HfO 2 purposes.
 次に、HfO上に、金属膜としてTiAlCNを成膜する(「TiAlCN deposition」工程)。図示のように、この工程では、窒化チタン(TiN)層(第1の層)を形成する処理(「TiN formation」)をX回(第1の所定回数)行う工程を実行した後、アルミニウム(Al)、炭素(C)、チタン(Ti)および窒素(N)を含むAlCTiN層(第2の層)を形成する処理(「AlCTiN formation」)をY回(第2の所定回数)行う工程が実行される。そして、それらの各工程が、Z回(第3の所定回数)交互に行われることで、TiAlCNが成膜される。この処理の詳細については後述する。 Next, TiAlCN is formed as a metal film on HfO 2 (“TiAlCN deposition” step). As shown in the figure, in this step, after performing a process of forming a titanium nitride (TiN) layer (first layer) (“TiN formation”) X times (first predetermined number of times), aluminum ( A step of performing a process (“AlCTiN formation”) for forming an AlCTiN layer (second layer) containing Al), carbon (C), titanium (Ti), and nitrogen (N) Y times (second predetermined number of times). Executed. Then, TiAlCN is formed by alternately performing these steps Z times (third predetermined number of times). Details of this processing will be described later.
 次いで、TiAlCN上に、Cap膜として例えばPVD(Physical
Vapor Deposition:物理気相成長)により窒化チタン(TiN)を成膜する(「Cap TiN deposition」工程)。そして、このTiN膜上にレジストをマスクにして、ゲート電極のフォトリソグラフィ技術を用いたパターニング(「Gate patterning」工程)と行うと共に、ドライエッチング技術を用いたパターンエッチング(「Gate etching」工程)を行う。その後、当該レジストを除去する(「Resist removal」工程))。そして、水素ガスアニーリング等のFGA(Forming
gas annealing)処理を行う(「FGA」工程)。
Next, for example, PVD (Physical) is formed as a Cap film on TiAlCN.
Titanium nitride (TiN) is deposited by vapor deposition (physical vapor deposition) (“Cap TiN deposition” step). Then, using the resist as a mask on the TiN film, patterning using a photolithography technique of the gate electrode (“Gate patterning” process) and pattern etching using a dry etching technique (“Gate etching” process) are performed. Do. Thereafter, the resist is removed (“Resist removal” step). And FGA (Forming) such as hydrogen gas annealing
gas annealing) process ("FGA" process).
<金属膜の成膜工程>
 次に、上記したゲート電極を構成する金属膜の成膜工程について説明する。金属膜の成膜工程は、上述した基板処理装置10の処理炉202を用いて、半導体装置(MOSFET)の製造工程の一工程として実行される。
<Metal film formation process>
Next, the film forming process of the metal film constituting the gate electrode described above will be described. The metal film forming step is performed as one step of the semiconductor device (MOSFET) manufacturing process using the processing furnace 202 of the substrate processing apparatus 10 described above.
 本実施形態の好適なシーケンスは、
 金属元素(例えばTi)と窒素(N)とを含む第1の層(例えばTiN)をウエハ200に形成する処理を第1の所定回数行う工程と、
 上記金属元素(例えばTi)と窒素(N)と炭素(C)とを含む第2の層(例えばAlCTiN)をウエハ200に形成する処理を第2の所定回数行う工程と、
 を交互に第3の所定回数行うことで、ウエハ200上に、窒素(C)と炭素(C)とを所定の割合で含む金属膜(例えばTiAlCN)を成膜する工程を有する。
The preferred sequence of this embodiment is
Performing a process for forming a first layer (eg, TiN) containing a metal element (eg, Ti) and nitrogen (N) on the wafer 200 for a first predetermined number of times;
Performing a process for forming a second layer (eg, AlCTiN) containing the metal element (eg, Ti), nitrogen (N), and carbon (C) on the wafer 200 a second predetermined number of times;
Are alternately performed for a third predetermined number of times to form a metal film (for example, TiAlCN) containing nitrogen (C) and carbon (C) at a predetermined ratio on the wafer 200.
 また、本実施形態の好適なシーケンスは、
 ウエハ200に対して、金属元素(例えばTi)を含む第1原料(例えばTiCl)と、窒素(N)を含む第2原料(例えばNH)とを交互に第1の所定回数供給する工程と、
 ウエハ200に対して、炭素(C)を含む第3原料(例えばTMA)と、上記金属元素(例えばTi)を含む第4原料(例えばTiCl)と、窒素(N)を含む第5原料(例えばNH)とを交互に第2の所定回数供給する工程と、
 を交互に第3の所定回数行うことで、ウエハ200上に、窒素(N)と炭素(C)とを所定の割合で含む金属膜(例えばTiAlCN)を成膜する工程を有する。
Moreover, the suitable sequence of this embodiment is
A step of alternately supplying a first raw material (eg, TiCl 4 ) containing a metal element (eg, Ti) and a second raw material (eg, NH 3 ) containing nitrogen (N) to the wafer 200 a first predetermined number of times. When,
With respect to the wafer 200, a third raw material (for example, TMA) containing carbon (C), a fourth raw material (for example, TiCl 4 ) containing the metal element (eg, Ti), and a fifth raw material containing nitrogen (N) ( For example, supplying NH 3 ) alternately for a second predetermined number of times;
Are alternately performed for a third predetermined number of times to form a metal film (for example, TiAlCN) containing nitrogen (N) and carbon (C) at a predetermined ratio on the wafer 200.
 また、本実施形態において、上記の第1の所定回数、第2の所定回数および第3の所定回数は、金属膜(例えばTiAlCN)に含める窒素(N)または炭素(C)の割合、換言すれば、目標とするゲート電極の仕事関数に応じて決定される。なお、TiAlCN(炭窒化チタンアルミニウム)は導電性の金属炭窒化膜である。 In the present embodiment, the first predetermined number of times, the second predetermined number of times, and the third predetermined number of times are the ratio of nitrogen (N) or carbon (C) included in the metal film (for example, TiAlCN), in other words, For example, it is determined according to the work function of the target gate electrode. TiAlCN (titanium aluminum carbonitride) is a conductive metal carbonitride film.
 図10は、図9に示す処理フローにおける金属膜(TiAlCN)の成膜工程例を示す処理フロー図である。図11は、図10に示す成膜工程におけるガス供給のタイミングを示す図である。なお、以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。 FIG. 10 is a process flow diagram showing an example of a metal film (TiAlCN) film forming process in the process flow shown in FIG. FIG. 11 is a diagram showing gas supply timings in the film forming process shown in FIG. In the following description, the operation of each unit constituting the substrate processing apparatus 10 is controlled by the controller 121.
(ウエハチャージおよびボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介して反応管203の下端開口を閉塞した状態となる。
(Wafer charge and boat load)
When a plurality of wafers 200 are loaded into the boat 217 (wafer charge), as shown in FIG. 1, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 and processed in the processing chamber 201. It is carried in (boat loading). In this state, the seal cap 219 closes the lower end opening of the reaction tube 203 via the O-ring 220.
(圧力調整および温度調整)
 処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。なお、真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。なお、ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。続いて、回転機構267によりボート217およびウエハ200の回転を開始する。なお、回転機構267によるボート217およびウエハ200の回転は、少なくとも、ウエハ200に対する処理が完了するまでの間は継続して行われる。
(Pressure adjustment and temperature adjustment)
The processing chamber 201 is evacuated by a vacuum pump 246 so that a desired pressure (degree of vacuum) is obtained. At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). Note that the vacuum pump 246 keeps being operated at least until the processing on the wafer 200 is completed. Further, the processing chamber 201 is heated by the heater 207 so as to have a desired temperature. At this time, the energization amount to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the processing chamber 201 has a desired temperature distribution (temperature adjustment). Note that the heating of the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed. Subsequently, the rotation mechanism 267 starts the rotation of the boat 217 and the wafer 200. Note that the rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the processing on the wafer 200 is completed.
 続いて、TiN層を形成する工程(ステップ21からステップ24)を実行する。 Subsequently, a process of forming a TiN layer (Step 21 to Step 24) is performed.
 <ステップ21>
(TiClガス供給)
 ガス供給管310のバルブ314を開き、ガス供給管310内に第1の原料としてのTiClガスを流す。ガス供給管310内を流れたTiClガスは、マスフローコントローラ312により流量調整される。流量調整されたTiClガスは、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してTiClガスが供給されることとなる。すなわちウエハ200の表面はTiClガスに暴露されることとなる。このとき同時にバルブ514を開き、キャリアガス供給管510内にNガス等の不活性ガスを流す。キャリアガス供給管510内を流れたNガスは、マスフローコントローラ512により流量調整される。流量調整されたNガスはTiClガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル420、ノズル430内へのTiClガスの侵入を防止するために、バルブ524、534を開き、キャリアガス供給管520、キャリアガス供給管530内にNガスを流す。Nガスは、ガス供給管320、ガス供給管330、ノズル420、ノズル430を介して処理室201内に供給され、排気管231から排気される。
<Step 21>
(TiCl 4 gas supply)
The valve 314 of the gas supply pipe 310 is opened, and TiCl 4 gas as the first raw material is caused to flow into the gas supply pipe 310. The flow rate of the TiCl 4 gas that has flowed through the gas supply pipe 310 is adjusted by the mass flow controller 312. The flow-adjusted TiCl 4 gas is supplied from the gas supply hole 410 a of the nozzle 410 into the processing chamber 201 and is exhausted from the exhaust pipe 231. At this time, TiCl 4 gas is supplied to the wafer 200. That is, the surface of the wafer 200 is exposed to TiCl 4 gas. At the same time, the valve 514 is opened, and an inert gas such as N 2 gas is allowed to flow into the carrier gas supply pipe 510. The flow rate of the N 2 gas flowing through the carrier gas supply pipe 510 is adjusted by the mass flow controller 512. The N 2 gas whose flow rate has been adjusted is supplied into the processing chamber 201 together with the TiCl 4 gas, and is exhausted from the exhaust pipe 231. At this time, in order to prevent the intrusion of TiCl 4 gas into the nozzles 420 and 430, the valves 524 and 534 are opened, and N 2 gas is allowed to flow into the carrier gas supply pipe 520 and the carrier gas supply pipe 530. N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 320, the gas supply pipe 330, the nozzle 420, and the nozzle 430, and is exhausted from the exhaust pipe 231.
 このときAPCバルブ243を適正に調整して、処理室201内の圧力を、例えば1~10000Paの範囲内の圧力とする。マスフローコントローラ312で制御するTiClガスの供給流量は、例えば10~10000sccmの範囲内の流量とする。マスフローコントローラ512、522、532で制御するNガスの供給流量は、それぞれ例えば10~10000sccmの範囲内の流量とする。TiClガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、例えば0.1~120秒の
範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば200~500℃の範囲内の温度となるような温度に設定する。TiClガスの供給により、ウエハ200上に、例えば1原子層未満から数原子層程度の厚さのTi含有層が形成される。
At this time, the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 1 to 10,000 Pa. The supply flow rate of the TiCl 4 gas controlled by the mass flow controller 312 is, for example, a flow rate in the range of 10 to 10,000 sccm. The supply flow rate of N 2 gas controlled by the mass flow controllers 512, 522, and 532 is set to a flow rate in the range of 10 to 10,000 sccm, for example. The time for supplying the TiCl 4 gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, a time within the range of 0.1 to 120 seconds. At this time, the temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 becomes a temperature within a range of 200 to 500 ° C., for example. By supplying the TiCl 4 gas, a Ti-containing layer having a thickness of, for example, less than one atomic layer to several atomic layers is formed on the wafer 200.
 <ステップ22>
(残留ガス除去)
 Ti含有層が形成された後、ガス供給管310のバルブ314を閉じ、TiClガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはTi含有層形成に寄与した後のTiClガスを処理室201内から排除する。なお、このときバルブ514、524、534は開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくはTi含有層形成に寄与した後のTiClガスを処理室
201内から排除する効果を高めることができる。
<Step 22>
(Residual gas removal)
After the Ti-containing layer is formed, the valve 314 of the gas supply pipe 310 is closed and the supply of TiCl 4 gas is stopped. At this time, the APC valve 243 of the exhaust pipe 231 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and TiCl 4 after remaining in the processing chamber 201 or contributing to the formation of the Ti-containing layer. The gas is removed from the processing chamber 201. At this time, the valves 514, 524, and 534 are kept open, and the supply of N 2 gas into the processing chamber 201 is maintained. The N 2 gas acts as a purge gas, which can enhance the effect of removing the unreacted or residual TiCl 4 gas that has contributed to the formation of the Ti-containing layer from the processing chamber 201.
 なお、このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップにおいて悪影響が生じることはない。このとき処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、その後のステップにおいて悪影響が生じない程度のパージを行なうことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。 At this time, the gas remaining in the processing chamber 201 may not be completely removed, and the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, no adverse effect will occur in the subsequent steps. At this time, the flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be a large flow rate. Purge can be performed to the extent that no adverse effect occurs. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
 <ステップ23>
(NHガス供給)
 処理室201内の残留ガスを除去した後、ガス供給管330のバルブ334を開き、ガス供給管330内にNHガスを流す。ガス供給管330内を流れたNHガスは、マスフローコントローラ332により流量調整される。流量調整されたNHガスは、ノズル430のガス供給孔430aから処理室201内に供給される。処理室201内に供給されたNHガスは熱で活性化された後、排気管231から排気される。このときウエハ200に対して、熱で活性化されたNHガスが供給されることとなる。すなわちウエハ200の表面は熱で活性化されたNHガスに暴露されることとなる。このとき同時にバルブ534を開き、キャリアガス供給管530内にNガスを流す。キャリアガス供給管530内を流れたNガスは、マスフローコントローラ532により流量調整される。NガスはNHガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル410、420内へのNHガスの侵入を防止するために、バルブ514、524を開き、キャリアガス供給管510、520内にNガスを流す。Nガスは、ガス供給管310、320、ノズル410、ノズル420を介して処理室201内に供給され、排気管231から排気される。
<Step 23>
(NH 3 gas supply)
After removing the residual gas in the processing chamber 201, the valve 334 of the gas supply pipe 330 is opened, and NH 3 gas is allowed to flow into the gas supply pipe 330. The flow rate of the NH 3 gas that has flowed through the gas supply pipe 330 is adjusted by the mass flow controller 332. The NH 3 gas whose flow rate has been adjusted is supplied into the processing chamber 201 from the gas supply hole 430 a of the nozzle 430. The NH 3 gas supplied into the processing chamber 201 is activated by heat and then exhausted from the exhaust pipe 231. At this time, NH 3 gas activated by heat is supplied to the wafer 200. That is, the surface of the wafer 200 is exposed to heat activated NH 3 gas. At the same time, the valve 534 is opened, and N 2 gas is caused to flow into the carrier gas supply pipe 530. The flow rate of the N 2 gas flowing through the carrier gas supply pipe 530 is adjusted by the mass flow controller 532. The N 2 gas is supplied into the processing chamber 201 together with the NH 3 gas, and is exhausted from the exhaust pipe 231. At this time, in order to prevent the NH 3 gas from entering the nozzles 410 and 420, the valves 514 and 524 are opened, and the N 2 gas is allowed to flow into the carrier gas supply pipes 510 and 520. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipes 310 and 320, the nozzle 410 and the nozzle 420, and is exhausted from the exhaust pipe 231.
 NHガスを熱で活性化させて流すときは、APCバルブ243を適正に調整して、処理室201内の圧力を、例えば1~10000Paの範囲内の圧力とする。マスフローコントローラ332で制御するNHガスの供給流量は、例えば10~50000sccmの範囲内の流量とする。マスフローコントローラ512、522、532で制御するNガスの供給流量は、それぞれ例えば10~10000sccmの範囲内の流量とする。熱で活性化させたNHガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、例えば0.1~120秒の範囲内の時間とする。このときのヒータ207の温度は、ステップ21と同様、ウエハ200の温度が、例えば200~500℃の範囲内の温度となるような温度に設定する。 When the NH 3 gas is activated by heat and flowed, the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 1 to 10,000 Pa. The supply flow rate of NH 3 gas controlled by the mass flow controller 332 is set, for example, within a range of 10 to 50000 sccm. The supply flow rate of N 2 gas controlled by the mass flow controllers 512, 522, and 532 is set to a flow rate in the range of 10 to 10,000 sccm, for example. The time for supplying the NH 3 gas activated by heat to the wafer 200, that is, the gas supply time (irradiation time) is, for example, a time within the range of 0.1 to 120 seconds. The temperature of the heater 207 at this time is set to such a temperature that the temperature of the wafer 200 becomes a temperature within the range of 200 to 500 ° C., for example, as in step 21.
 このとき処理室201内に流しているガスは、処理室201内圧力を高くすることで熱的に活性化されたNHガスであり、この活性化されたNHガスは、ステップ21でウエハ200上に形成されたTi含有層の少なくとも一部と反応する。これによりTi含有層は窒化されて、窒化チタン層(TiN層)へと改質される。 At this time, the gas flowing in the processing chamber 201 is NH 3 gas that is thermally activated by increasing the pressure in the processing chamber 201, and this activated NH 3 gas is converted into the wafer in step 21. Reacts with at least a portion of the Ti-containing layer formed on 200. As a result, the Ti-containing layer is nitrided and modified into a titanium nitride layer (TiN layer).
 <ステップ24>
(残留ガス除去)
 TiN層を形成した後、ガス供給管330のバルブ334を閉じて、NHガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはTiN層形成に寄与した後のNHガスや反応副生成物を処理室201内から排除する。なお、このときバルブ514、524、534は開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくはTiN層形成に寄与した後のNHガスや反応副生成
物を処理室201内から排除する効果を高めることができる。
<Step 24>
(Residual gas removal)
After forming the TiN layer, the valve 334 of the gas supply pipe 330 is closed to stop the supply of NH 3 gas. At this time, the APC valve 243 of the exhaust pipe 231 is kept open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the NH 3 gas remaining in the processing chamber 201 and contributing to the formation of the TiN layer remains. And reaction by-products are removed from the processing chamber 201. At this time, the valves 514, 524, and 534 are kept open, and the supply of N 2 gas into the processing chamber 201 is maintained. The N 2 gas acts as a purge gas, thereby enhancing the effect of removing NH 3 gas and reaction by-products remaining in the processing chamber 201 and contributing to formation of the TiN layer from the processing chamber 201. Can do.
 なお、このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップにおいて悪影響が生じることはない。このとき処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、その後のステップにおいて悪影響が生じない程度のパージを行なうことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。 At this time, the gas remaining in the processing chamber 201 may not be completely removed, and the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, no adverse effect will occur in the subsequent steps. At this time, the flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be a large flow rate. Purge can be performed to the extent that no adverse effect occurs. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
 上記したステップ21からステップ24の処理を、予め設定されたX回(第1の所定回数)だけ実行する。すなわち、ステップ21からステップ24の処理を1セットとして、これらの処理をXセットだけ実行する。このように、TiClガス供給とNHガス供給とを交互にX回行うことにより、所定の厚さ(例えば0.03~20nm)のTiN層(第1の層)を形成する。 The above-described processing from step 21 to step 24 is executed X times (first predetermined number of times) set in advance. That is, the process from step 21 to step 24 is set as one set, and these processes are executed for X sets. In this way, TiN 4 gas supply and NH 3 gas supply are alternately performed X times to form a TiN layer (first layer) having a predetermined thickness (for example, 0.03 to 20 nm).
 上記したステップ21からステップ24の処理をX回(Xセット)行った後、以下に示すAlCTiN層を形成する工程(ステップ25からステップ30)を実行する。 After performing the above-described processing from step 21 to step 24 X times (X set), the following process of forming an AlCTiN layer (step 25 to step 30) is executed.
 <ステップ25>
(TMAガス供給)
 ガス供給管320のバルブ324を開き、ガス供給管320内にTMA(トリメチルアルミニウム。(CHAl)ガスを流す。ガス供給管320内を流れたTMAガスは、マスフローコントローラ322により流量調整される。流量調整されたTMAガスは、ノズル420のガス供給孔420aから処理室201内へ供給され、排気管231から排気される。このときウエハ200に対してTMAガスが供給されることとなる。すなわちウエハ200の表面はTMAガスに暴露されることとなる。このとき同時にバルブ524を開き、キャリアガス供給管520内にNガスを流す。キャリアガス供給管520内を流れたNガスは、マスフローコントローラ522により流量調整される。流量調整されたNガスはTMAガスと一緒に処理室201内へ供給され、排気管231から排気される。なお、このとき、ノズル410、ノズル430内へのTMAガスの侵入を防止するために、バルブ514、534を開き、キャリアガス供給管510、キャリアガス供給管530内にNガスを流す。Nガスは、ガス供給管310、ガス供給管330、ノズル410、ノズル430を介して処理室201内に供給され、排気管231から排気される。
<Step 25>
(TMA gas supply)
The valve 324 of the gas supply pipe 320 is opened, and TMA (trimethylaluminum. (CH 3 ) 3 Al) gas is allowed to flow through the gas supply pipe 320. The flow rate of the TMA gas flowing through the gas supply pipe 320 is adjusted by the mass flow controller 322. The flow-adjusted TMA gas is supplied from the gas supply hole 420 a of the nozzle 420 into the processing chamber 201 and is exhausted from the exhaust pipe 231. At this time, TMA gas is supplied to the wafer 200. That is, the surface of the wafer 200 is exposed to TMA gas. At the same time, the valve 524 is opened, and N 2 gas is caused to flow into the carrier gas supply pipe 520. The N 2 gas that has flowed through the carrier gas supply pipe 520 is adjusted in flow rate by the mass flow controller 522. The N 2 gas whose flow rate has been adjusted is supplied into the processing chamber 201 together with the TMA gas, and is exhausted from the exhaust pipe 231. At this time, in order to prevent the TMA gas from entering the nozzles 410 and 430, the valves 514 and 534 are opened, and N 2 gas is allowed to flow into the carrier gas supply pipe 510 and the carrier gas supply pipe 530. The N 2 gas is supplied into the processing chamber 201 through the gas supply pipe 310, the gas supply pipe 330, the nozzle 410, and the nozzle 430 and is exhausted from the exhaust pipe 231.
 このときAPCバルブ243を適正に調整して、処理室201内の圧力を、ステップ21と同様、例えば1~10000Paの範囲内の圧力とする。マスフローコントローラ322で制御するTMAガスの供給流量は、例えば10~10000sccmの範囲内の流量とする。マスフローコントローラ512、522、532で制御するNガスの供給流量は、それぞれ例えば10~10000sccmの範囲内の流量とする。TMAガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、例えば0.1~120秒の範囲内の時間とする。このときのヒータ207の温度は、ステップ21と同様、ウエハ200の温度が、例えば200~500℃の範囲内の温度となるような温度に設定する。TMAガスの供給により、TiN層上に炭素(C)およびアルミニウム(Al)を含む層が形成される。このCおよびAlを含む層は、例えば1原子層未満から数原子層程度の厚さに形成される。 At this time, the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 1 to 10000 Pa, as in step 21. The supply flow rate of TMA gas controlled by the mass flow controller 322 is, for example, a flow rate in the range of 10 to 10000 sccm. The supply flow rate of N 2 gas controlled by the mass flow controllers 512, 522, and 532 is set to a flow rate in the range of 10 to 10,000 sccm, for example. The time for supplying the TMA gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, a time within the range of 0.1 to 120 seconds. The temperature of the heater 207 at this time is set to such a temperature that the temperature of the wafer 200 becomes a temperature within the range of 200 to 500 ° C., for example, as in step 21. By supplying the TMA gas, a layer containing carbon (C) and aluminum (Al) is formed on the TiN layer. The layer containing C and Al is formed to a thickness of, for example, less than one atomic layer to several atomic layers.
 <ステップ26>
(残留ガス除去)
 その後、ガス供給管320のバルブ324を閉じてTMAガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは上記したCおよびAlを含む層の形成に寄与した後のTMAガスを処理室201内から排除する。なお、このときバルブ510、520、530は開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくは上記したCおよびAlを含む層の形成に寄与した後のTMAガスを処理室201内から排除する効果を高めることができる。
<Step 26>
(Residual gas removal)
Thereafter, the valve 324 of the gas supply pipe 320 is closed to stop the supply of TMA gas. At this time, the APC valve 243 of the exhaust pipe 231 is kept open, and the inside of the processing chamber 201 is evacuated by the vacuum pump 246 to form an unreacted or residual layer containing C and Al remaining in the processing chamber 201. The TMA gas after the contribution is removed from the processing chamber 201. At this time, the valves 510, 520, and 530 remain open, and the supply of N 2 gas into the processing chamber 201 is maintained. The N 2 gas acts as a purge gas, thereby increasing the effect of removing the TMA gas remaining in the processing chamber 201 or contributing to the formation of the layer containing C and Al from the processing chamber 201. be able to.
 なお、このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップにおいて悪影響が生じることはない。このとき処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、その後のステップにおいて悪影響が生じない程度のパージを行なうことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。 At this time, the gas remaining in the processing chamber 201 may not be completely removed, and the processing chamber 201 may not be completely purged. If the amount of gas remaining in the processing chamber 201 is very small, no adverse effect will occur in the subsequent steps. At this time, the flow rate of the N 2 gas supplied into the processing chamber 201 does not need to be a large flow rate. Purge can be performed to the extent that no adverse effect occurs. Thus, by not completely purging the inside of the processing chamber 201, the purge time can be shortened and the throughput can be improved. In addition, consumption of N 2 gas can be minimized.
 <ステップ27>
(TiClガス供給)
 次に、ステップ21と同様な処理により、TiClガスを処理室201内に供給する。このときAPCバルブ243を適正に調整して、処理室201内の圧力を、例えば1~10000Paの範囲内の圧力とする。マスフローコントローラ312で制御するTiClガスの供給流量は、例えば10~10000sccmの範囲内の流量とする。マスフローコントローラ512、522、532で制御するNガスの供給流量は、それぞれ例えば10~10000sccmの範囲内の流量とする。TiClガスをウエハ200に
対して供給する時間、すなわちガス供給時間(照射時間)は、例えば0.1~120秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば200~500℃の範囲内の温度となるような温度に設定する。処理室201内に供給されたTiClガスは、上記したCおよびAlを含む層の少なくとも一部と反応する。これにより、CおよびAlを含む層は、炭素(C)、アルミニウム(Al)およびチタン(Ti)を含む層に改質される。
<Step 27>
(TiCl 4 gas supply)
Next, TiCl 4 gas is supplied into the processing chamber 201 by the same processing as in step 21. At this time, the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 1 to 10,000 Pa. The supply flow rate of the TiCl 4 gas controlled by the mass flow controller 312 is, for example, a flow rate in the range of 10 to 10,000 sccm. The supply flow rate of N 2 gas controlled by the mass flow controllers 512, 522, and 532 is set to a flow rate in the range of 10 to 10,000 sccm, for example. The time for supplying the TiCl 4 gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, a time within the range of 0.1 to 120 seconds. At this time, the temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 becomes a temperature within a range of 200 to 500 ° C., for example. TiCl 4 gas supplied into the processing chamber 201 reacts with at least a part of the layer containing C and Al. Thereby, the layer containing C and Al is modified into a layer containing carbon (C), aluminum (Al), and titanium (Ti).
 <ステップ28>
(残留ガス除去)
 続いて、ステップ22等と同様な処理により、処理室201内に残留する未反応もしくは上記したC、AlおよびTiを含む層の形成に寄与した後のTiClガスおよび副生成物を処理室201内から排除する。
<Step 28>
(Residual gas removal)
Subsequently, TiCl 4 gas and by-products that have remained in the processing chamber 201 or contributed to the formation of the above-described layer containing C, Al, and Ti by the same processing as in step 22 and the like are processed in the processing chamber 201. Eliminate from within.
 <ステップ29>
(NHガス供給)
 次に、ステップ23と同様な処理により、NHガスを処理室201内に供給する。このとき、APCバルブ243を適正に調整して、処理室201内の圧力を、例えば1~10000Paの範囲内の圧力とする。マスフローコントローラ332で制御するNHガスの供給流量は、例えば10~50000sccmの範囲内の流量とする。マスフローコントローラ512、522、532で制御するNガスの供給流量は、それぞれ例えば10~10000sccmの範囲内の流量とする。熱で活性化させたNHガスをウエハ200に対して供給する時間、すなわちガス供給時間(照射時間)は、例えば0.1~12
0秒の範囲内の時間とする。このときのヒータ207の温度は、ステップ21と同様、ウエハ200の温度が、例えば200~500℃の範囲内の温度となるような温度に設定する。処理室201内に供給されたNHガスは、上記したC、AlおよびTiを含む層の少なくとも一部と反応する。これにより、C、AlおよびTiを含む層は、上述したAlCTiN含有層に改質される。
<Step 29>
(NH 3 gas supply)
Next, NH 3 gas is supplied into the processing chamber 201 by the same processing as in step 23. At this time, the APC valve 243 is appropriately adjusted so that the pressure in the processing chamber 201 is, for example, in the range of 1 to 10,000 Pa. The supply flow rate of NH 3 gas controlled by the mass flow controller 332 is set, for example, within a range of 10 to 50000 sccm. The supply flow rate of N 2 gas controlled by the mass flow controllers 512, 522, and 532 is set to a flow rate in the range of 10 to 10,000 sccm, for example. The time for supplying the NH 3 gas activated by heat to the wafer 200, that is, the gas supply time (irradiation time) is, for example, 0.1-12.
The time is in the range of 0 seconds. The temperature of the heater 207 at this time is set to such a temperature that the temperature of the wafer 200 becomes a temperature within the range of 200 to 500 ° C., for example, as in step 21. The NH 3 gas supplied into the processing chamber 201 reacts with at least a part of the layer containing C, Al, and Ti. Thereby, the layer containing C, Al, and Ti is modified into the AlCTiN-containing layer described above.
 <ステップ30>
(残留ガス除去)
 続いて、ステップ24等と同様な処理により、処理室201内に残留する未反応もしくはAlCTiN含有層の形成に寄与した後のTiClガスおよび副生成物を処理室201内から排除する。
<Step 30>
(Residual gas removal)
Subsequently, the TiCl 4 gas and the by-product remaining in the processing chamber 201 and contributing to the formation of the AlCTiN-containing layer are removed from the processing chamber 201 by the same processing as in step 24 and the like.
 上記したステップ25からステップ30の処理を、予め設定されたY回(第2の所定回数)だけ実行する。すなわち、ステップ25からステップ30の処理を1セットとして、これらの処理をYセットだけ実行する。このように、TMAガス供給と、TiClガス供給と、NHガス供給とを交互にY回行うことにより、所定の厚さ(例えば0.1~20nm)のAlCTiN層(第2の層)を形成する。 The processing from step 25 to step 30 described above is executed Y times (second predetermined number) set in advance. That is, the process from step 25 to step 30 is set as one set, and these processes are executed for Y sets. In this way, by alternately performing TMA gas supply, TiCl 4 gas supply, and NH 3 gas supply Y times, an AlCTiN layer (second layer) having a predetermined thickness (for example, 0.1 to 20 nm) Form.
 ゲート電極としてのTiAlCN膜は、上記したTiN層とAlCTiN層との積層体により構成される。上記したTiN層を形成する工程と、AlCTiN層を形成する工程とを、交互にZ回(第3の所定回数)繰り返して実行することにより、所定の厚さ(例えば1.0~20nm)のTiAlCN膜を成膜する。なお、TiAlCN膜は、TiN膜にAlおよびCをドープしたAlCドープドTiN膜(AlC添加TiN膜)と称するこ
ともできる。
The TiAlCN film as the gate electrode is composed of a laminate of the TiN layer and the AlCTiN layer described above. By repeating the step of forming the TiN layer and the step of forming the AlCTiN layer alternately Z times (a third predetermined number of times), a predetermined thickness (for example, 1.0 to 20 nm) is obtained. A TiAlCN film is formed. The TiAlCN film can also be referred to as an AlC-doped TiN film (AlC-added TiN film) obtained by doping Al and C into a TiN film.
 ここで、TiN層を形成するステップ21からステップ24までの処理を行う回数(上述のX、あるいはXとZの乗算値)と、AlCTiN層を形成するステップ25からステップ30までの処理を行う回数(上述のY、あるいはYとZの乗算値)とにより、TiAlCN膜に含まれる各元素の割合を調整することができる。すなわち、各処理の回数を調整することにより、TiAlCN膜から構成されるゲート電極の仕事関数をチューニング(調整、変調)することができる。 換言すれば、X,Y,Zの各値は、TiAlCN膜に含める窒素または炭素の割合(あるいは、窒素、炭素、チタンおよびアルミニウムの割合)に応じて決定される。なお、XおよびYは0以上の整数であり、Zは1以上の整数とする。Xおよび/またはYは、好適には、1以上の整数とする。 Here, the number of times of performing the processing from step 21 to step 24 for forming the TiN layer (the above-mentioned X or the multiplication value of X and Z) and the number of times of performing the processing from step 25 to step 30 for forming the AlCTiN layer. The ratio of each element contained in the TiAlCN film can be adjusted by (the above-mentioned Y or a multiplication value of Y and Z). In other words, the work function of the gate electrode formed of the TiAlCN film can be tuned (adjusted or modulated) by adjusting the number of times of each process. In other words, the values of X, Y, and Z are determined according to the ratio of nitrogen or carbon (or the ratio of nitrogen, carbon, titanium, and aluminum) included in the TiAlCN film. X and Y are integers of 0 or more, and Z is an integer of 1 or more. X and / or Y is preferably an integer of 1 or more.
 TiAlCN膜に含まれる各元素のうち、2つの金属元素(TiとAl)の仕事関数はいずれも約4.3eVである。本願発明者らは、TiAlCN膜において、CとNの割合を調整することにより、TiとAlの仕事関数である約4.3eVを基準に、仕事関数を上下させることができるという知見を得ている。具体的には、Cの割合を多くすると4.3eVよりも低い仕事関数が得られ、Nの割合を多くすると4.3eVよりも高い仕事関数が得ることができる。したがって、上述のX,Y,Zの各値を、TiAlCN膜に含めるNまたはCの割合に応じて決定することで、所望の仕事関数を有する金属膜を成膜こと
ができる。
Of each element contained in the TiAlCN film, the work functions of the two metal elements (Ti and Al) are both about 4.3 eV. The inventors of the present application have obtained the knowledge that the work function can be increased or decreased based on about 4.3 eV which is the work function of Ti and Al by adjusting the ratio of C and N in the TiAlCN film. Yes. Specifically, when the proportion of C is increased, a work function lower than 4.3 eV can be obtained, and when the proportion of N is increased, a work function higher than 4.3 eV can be obtained. Therefore, a metal film having a desired work function can be formed by determining each value of X, Y, and Z according to the ratio of N or C included in the TiAlCN film.
(パージおよび大気圧復帰)
 所定の膜厚のTiAlCN膜を形成する成膜処理がなされると、N等の不活性ガスが処理室201内へ供給され、排気管231から排気されることで、処理室201内が不活性ガスでパージされる(ガスパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(Purge and return to atmospheric pressure)
When a film forming process for forming a TiAlCN film having a predetermined thickness is performed, an inert gas such as N 2 is supplied into the processing chamber 201 and is exhausted from the exhaust pipe 231, so that the inside of the processing chamber 201 is incomplete. Purge with active gas (gas purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
(ボートアンロードおよびウエハディスチャージ)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口されるとともに、処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される。
(Boat unload and wafer discharge)
Thereafter, the seal cap 219 is lowered by the boat elevator 115, the lower end of the reaction tube 203 is opened, and the processed wafer 200 is supported by the boat 217 from the lower end of the reaction tube 203 to the outside of the reaction tube 203. Unload (boat unload). Thereafter, the processed wafer 200 is taken out from the boat 217.
(第5の実施形態)
 次に第5の実施形態について説明する。第4の実施形態の説明においては、TiAlCN膜を構成する第1の層としてTiN層、すなわち、金属窒化膜を形成するようにしたが、第5の実施形態では金属窒化膜に代えて、金属炭化膜を形成する。
(Fifth embodiment)
Next, a fifth embodiment will be described. In the description of the fourth embodiment, a TiN layer, that is, a metal nitride film is formed as the first layer constituting the TiAlCN film. However, in the fifth embodiment, a metal nitride film is used instead of the metal nitride film. A carbonized film is formed.
 例えば、以下のシーケンスにより第1の層として金属炭化膜を有するTiAlCN膜を成膜することができる。
 金属元素(例えばTi)と炭素(C)とを含む第1の層(例えばTiC)をウエハ200に形成する処理を第1の所定回数行う工程と、
 上記金属元素(例えばTi)と窒素(N)と炭素(C)とを含む第2の層(例えばAlCTiN)をウエハ200に形成する処理を第2の所定回数行う工程と、
 を交互に第3の所定回数行うことで、ウエハ200上に、窒素(C)と炭素(C)とを所定の割合で含む金属膜(例えばTiAlCN)を成膜する工程を有する。
For example, a TiAlCN film having a metal carbide film as the first layer can be formed by the following sequence.
Performing a process for forming a first layer (eg, TiC) containing a metal element (eg, Ti) and carbon (C) on the wafer 200 for a first predetermined number of times;
Performing a process for forming a second layer (eg, AlCTiN) containing the metal element (eg, Ti), nitrogen (N), and carbon (C) on the wafer 200 a second predetermined number of times;
Are alternately performed for a third predetermined number of times to form a metal film (for example, TiAlCN) containing nitrogen (C) and carbon (C) at a predetermined ratio on the wafer 200.
 また、本実施形態の好適なシーケンスは、
 ウエハ200に対して、金属元素(例えばTi)を含む第1原料(例えばTiCl)と、炭素(C)を含む第2原料(例えばHf[C(CH)](CH)とを交互に第1の所定回数供給する工程と、
 ウエハ200に対して、炭素(C)を含む第3原料(例えばTMA)と、上記金属元素(例えばTi)を含む第4原料(例えばTiCl)と、窒素(N)を含む第5原料(例えばNH)とを交互に第2の所定回数供給する工程と、
 を交互に第3の所定回数行うことで、ウエハ200上に、窒素(N)と炭素(C)とを所定の割合で含む金属膜(例えばTiAlCN)を成膜する工程を有する。
 なお、このシーケンス例においては、処理室201にHf[C(CH)](CHを供給するためのガス供給系を基板処理装置10に追加する。
Moreover, the suitable sequence of this embodiment is
A first raw material (for example, TiCl 4 ) containing a metal element (for example, Ti) and a second raw material (for example, Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) containing carbon (C) with respect to the wafer 200. ) 2 ) and alternately supplying the first predetermined number of times;
With respect to the wafer 200, a third raw material (for example, TMA) containing carbon (C), a fourth raw material (for example, TiCl 4 ) containing the metal element (eg, Ti), and a fifth raw material containing nitrogen (N) ( For example, supplying NH 3 ) alternately for a second predetermined number of times;
Are alternately performed for a third predetermined number of times to form a metal film (for example, TiAlCN) containing nitrogen (N) and carbon (C) at a predetermined ratio on the wafer 200.
In this sequence example, a gas supply system for supplying Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 to the processing chamber 201 is added to the substrate processing apparatus 10.
 なお、上述の第4実施形態および第5の実施形態では、ゲート電極を構成する金属膜としてTiAlCN膜を形成する例について説明しているが、金属膜はこれに限らず、タンタル(Ta)、コバルト(Co)、タングステン(W)、モリブデン(Mo)、ルテニウム(Ru)、イットリウム(Y)、ランタン(La)、ジルコニウム(Zr)、ハフニウム(Hf)等の金属元素を1以上含む金属炭化膜、金属窒化膜あるいは金属炭窒化膜、もしくはこれらにシリコン(Si)を加えたシリサイド膜を形成するようにしてもよい。その際、Ta含有原料としては塩化タンタル(TaCl)等を用いることができ、Co含有原料としてはCo amd[(tBu)NC(CH)N(tBu)Co]等を用いることができ、W含有原料としてはフッ化タングステン(WF)等を用いることができ、Mo含有原料としては塩化モリブデン(MoClもしくはMoCl)等を用いることができ、Ru含有原料としては2,4-ジメチルペンタジエニル(エチルシクロペンタジエニル)ルテニウム((Ru(EtCp)(C11))等を用いることができ、Y含有原料としてはトリスエチルシクロペンタジエニルイットリウム(Y(C)等を用いることができ、La含有原料としてはトリスイソプロピルシクロペンタジエニルランタン(La(i-C)等を用いることができ、Zr含有原料としてはテトラキスエチルメチルアミノジルコニウム(Zr(N(CH(C)))等を用いることができ、テトラキスエチルメチルアミノハフニウム(Hf(N(CH(C)))等を用いることができ、Si含有原料としてはテトラクロロシラン(SiCl)、ヘキサクロロジシラン(SiCl)、ジクロロシラン(SiHCl)、トリスジメチルアミノシラン(SiH(N(CH)、ビスターシャルブチルアミノシラン(HSi(HNC(CH)等を用いることができる。 In the fourth embodiment and the fifth embodiment described above, an example in which a TiAlCN film is formed as a metal film constituting a gate electrode is described. However, the metal film is not limited to this, and tantalum (Ta), Metal carbide film containing one or more metal elements such as cobalt (Co), tungsten (W), molybdenum (Mo), ruthenium (Ru), yttrium (Y), lanthanum (La), zirconium (Zr), hafnium (Hf) Alternatively, a metal nitride film, a metal carbonitride film, or a silicide film obtained by adding silicon (Si) to these may be formed. At that time, tantalum chloride (TaCl 4 ) or the like can be used as the Ta-containing raw material, and Co amd [(tBu) NC (CH 3 ) N (tBu) 2 Co] or the like can be used as the Co-containing raw material. Tungsten fluoride (WF 6 ) or the like can be used as the W-containing raw material, molybdenum chloride (MoCl 3 or MoCl 5 ) or the like can be used as the Mo-containing raw material, and 2,4- Dimethylpentadienyl (ethylcyclopentadienyl) ruthenium ((Ru (EtCp) (C 7 H 11 )) or the like can be used, and trisethylcyclopentadienyl yttrium (Y (C 2 H 5 C 5 H 4) 3) or the like can be used, as the La-containing material tris isopropylcyclopentadienyl Lanthanum (La (i-C 3 H 7 C 5 H 4) 3) or the like can be used, as the Zr-containing raw material tetrakis ethylmethylamino zirconium (Zr (N (CH 3 ( C 2 H 5)) 4) Tetrakisethylmethylaminohafnium (Hf (N (CH 3 (C 2 H 5 )) 4 ) or the like can be used, and tetrachlorosilane (SiCl 4 ), hexachlorodisilane (Si Si 2 Cl 6 ), dichlorosilane (SiH 2 Cl 2 ), trisdimethylaminosilane (SiH (N (CH 3 ) 2 ) 3 ), binary butylaminosilane (H 2 Si (HNC (CH 3 ) 2 ) 2 ), etc. Can be used.
 また、上述の第4実施形態および第5の実施形態では、炭素含有原料としてTMAガスやHf[C(CH)](CHを例に挙げたが、これに限らず、Zr[C(CH)](CHガス、エチレン(C)、プロピレン(C)、ブテン(C)、ペンテン(C10)、へキセン(C12)、ヘプテン(C14)、オクテン(C16)、エタン(C)、プロパン(C)、ブタン(C10)、ペンタン(C12)、ヘキサン(C14)、ヘプタン(C16)、オクタン(C18)等を用いてもよい。 In the fourth and fifth embodiments described above, TMA gas and Hf as a carbon-containing feedstock [C 5 H 4 (CH 3 )] 2 (CH 3) 2 and is taken as an example, limited to this not, Zr [C 5 H 4 ( CH 3)] 2 (CH 3) 2 gas, ethylene (C 2 H 4), propylene (C 3 H 6), butene (C 4 H 8), pentene (C 5 H 10), hexene (C 6 H 12), heptene (C 7 H 14), octene (C 8 H 16), ethane (C 2 H 6), propane (C 3 H 8), butane (C 4 H 10 ), Pentane (C 5 H 12 ), hexane (C 6 H 14 ), heptane (C 7 H 16 ), octane (C 8 H 18 ), and the like.
 また、上述の第4実施形態および第5の実施形態では、第1の層として1つの金属元素を含む例を示したが、第1の層が2つ以上の金属元素(例えばTiとAl)を含むようにしてもよい。なお、上述の第4実施形態および第5の実施形態では、第1の層および第2の層に同一の金属元素を含めるようにしたが、必ずしもその必要はない。例えば、上述の実施形態において、第1の層にTiを含め、第2の層にはTiを含めないようにしてもよい。 In the fourth and fifth embodiments described above, an example in which one metal element is included as the first layer has been described. However, the first layer includes two or more metal elements (for example, Ti and Al). May be included. In the fourth and fifth embodiments described above, the same metal element is included in the first layer and the second layer, but this is not always necessary. For example, in the above-described embodiment, Ti may be included in the first layer and Ti may not be included in the second layer.
 また、上述の第4実施形態および第5の実施形態において、金属膜に含まれるCの割合を0にする場合は、TiAlCN膜に代えて、TiAlN膜またはTiN膜を成膜することができる。また、金属膜に含まれるNの割合を0にする場合は、TiAlCN膜に代えて、TiAlC膜またはTiC膜を成膜することもできる。 In the fourth and fifth embodiments described above, when the proportion of C contained in the metal film is set to 0, a TiAlN film or a TiN film can be formed instead of the TiAlCN film. Further, when the ratio of N contained in the metal film is set to 0, a TiAlC film or a TiC film can be formed instead of the TiAlCN film.
 また、上述の第4実施形態および第5の実施形態において、TiAlCN膜を成膜する際、TiN層、AlCTiN層の順で形成するようにしたが、AlCTiN層、TiN層の順で形成してもよい。同様に、TiC層、AlCTiN層の順に代えて、AlCTiN層、TiC層の順に形成してもよい。 In the fourth and fifth embodiments described above, when the TiAlCN film is formed, the TiN layer and the AlCTiN layer are formed in this order, but the AlCTiN layer and the TiN layer are formed in this order. Also good. Similarly, instead of the TiC layer and the AlCTiN layer in this order, the AlCTiN layer and the TiC layer may be formed in this order.
 また、上述の実施形態や各変形例や各応用例等は、適宜組み合わせて用いることができる。さらに、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 Also, the above-described embodiment, each modification, each application, and the like can be used in appropriate combination. Furthermore, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
 上述の実施の形態では、一度に複数枚の基板を処理するバッチ式の縦型装置である基板処理装置を用いて成膜する例について説明したが、本発明はこれに限定されず、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて成膜する場合にも、好適に適用できる。また、上述の実施形態では、ホットウォール型の処理炉を有する基板処理装置を用いて成膜する例について説明したが、本発明はこれに限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて成膜する場合にも、好適に適用できる。 In the above-described embodiment, an example in which film formation is performed using a substrate processing apparatus which is a batch type vertical apparatus that processes a plurality of substrates at a time has been described. However, the present invention is not limited to this, and the present invention is not limited to this. The present invention can also be suitably applied when a film is formed using a single-wafer type substrate processing apparatus that processes one or several substrates. In the above-described embodiment, an example of forming a film using a substrate processing apparatus having a hot wall type processing furnace has been described. However, the present invention is not limited to this, and the substrate processing having a cold wall type processing furnace is performed. The present invention can also be suitably applied when forming a film using an apparatus.
 また、例えば、上述の実施形態では、Ti含有原料である金属原料ガスとして、TiClガスを用いる例について説明しているが、これに限らず、テトラキスジメチルアミノチタン(TDMAT、Ti[N(CH)、テトラキスジエチルアミノチタン(TDEAT、Ti[N(CHCH)等のハロゲン化合物以外の有機化合物あるいはアミノ系化合物であるチタン(Ti)含有ガスを用いてもよい。 For example, in the above-described embodiment, an example in which TiCl 4 gas is used as the metal source gas that is a Ti-containing source is described. However, the present invention is not limited to this, and tetrakisdimethylaminotitanium (TDMAT, Ti [N (CH 3 ) 2 ] 4 ), tetrakisdiethylaminotitanium (TDEAT, Ti [N (CH 2 CH 3 ) 2 ] 4 ) or other organic compounds other than halogen compounds or titanium (Ti) containing gas that is an amino compound may be used. Good.
 また、例えば、上述の実施形態では、窒化原料として、NHガスを用いる例について説明しているが、これに限らず、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス、窒素(N)、亜酸化窒素(NO)、モノメチルヒドラジン(CH)、ジメチルヒドラジン(C)等を用いてもよい。 Further, for example, in the above-described embodiment, an example in which NH 3 gas is used as a nitriding raw material has been described. However, the present invention is not limited to this, but diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas, nitrogen (N 2 ), nitrous oxide (N 2 O), monomethylhydrazine (CH 6 N 2 ), dimethylhydrazine (C 2 H 8 N 2 ), or the like may be used.
 また、不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いてもよい。 Further, as the inert gas, a rare gas such as Ar gas, He gas, Ne gas, Xe gas, etc. may be used in addition to N 2 gas.
 また、本発明は、例えば、既存の基板処理装置のプロセスレシピを変更することでも実現できる。プロセスレシピを変更する場合は、本発明に係るプロセスレシピを電気通信回線や当該プロセスレシピを記録した記録媒体を介して既存の基板処理装置にインストールしたり、また、既存の基板処理装置の入出力装置を操作し、そのプロセスレシピ自体を本発明に係るプロセスレシピに変更したりすることも可能である。 Also, the present invention can be realized by changing a process recipe of an existing substrate processing apparatus, for example. When changing a process recipe, the process recipe according to the present invention is installed in an existing substrate processing apparatus via a telecommunication line or a recording medium recording the process recipe, or input / output of the existing substrate processing apparatus It is also possible to operate the apparatus and change the process recipe itself to the process recipe according to the present invention.
 以下に実施例を説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Examples will be described below, but the present invention is not limited to these examples.
 上述の第1の実施形態におけるシーケンスによりウエハ200上にTiCN膜を形成してXPS分析を行なう実験を実施した。なお、本実施例では、第1の処理ガスとしてTi含有ガスであるTiClガスを、第2の処理ガスとしてC含有ガスであるHf[C(CH)](CHガスを、第3の処理ガスとしてN含有ガスであるNHガスを用い、図4の成膜フローおよび図5のガス供給タイミングによりTiCN膜を形成した。すなわち、処理室内にウエハを搬入し(ウエハローディング)、N雰囲気下でウエハを加熱し(プレヒート)、TiClガスとHf[C(CH)](CHガスとを交互に繰り返し供給することによるTiC層の形成(金属炭化層の形成)と、形成したTiC層へのNHの照射(窒化処理)と、を交互に繰り返し、TiCN膜を形成した後、処理室内の残留物質を排気し(ガス排気)、成膜済のウエハを処理室内から搬出し(ウエハアンロード)、XPS(X-ray Photoelectron Spectroscopy)分析を行った。そのときの各ステップにおける処理条件は次のように設定した。 An experiment was performed in which a TiCN film was formed on the wafer 200 by the sequence in the first embodiment and XPS analysis was performed. In this embodiment, TiCl 4 gas that is Ti-containing gas is used as the first processing gas, and Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) that is C-containing gas is used as the second processing gas. A TiCN film was formed by using NH 3 gas, which is N-containing gas, as the third processing gas, using the two gases and the film formation flow of FIG. 4 and the gas supply timing of FIG. That is, the wafer is loaded into the processing chamber (wafer loading), the wafer is heated under N 2 atmosphere (preheating), TiCl 4 gas and Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas TiC film formation (metal carbide layer formation) by alternately and repeatedly supplying NH 3 irradiation (nitriding treatment) to the formed TiC layer alternately, forming a TiCN film, and then processing Residual substances in the chamber were evacuated (gas exhaust), the film-formed wafer was unloaded from the processing chamber (wafer unload), and XPS (X-ray Photoelectron Spectroscopy) analysis was performed. The processing conditions in each step at that time were set as follows.
 (ステップ11)
   処理室内温度:400℃
   処理室内圧力:50Pa(0.38Torr)
   TiClガス供給流量:10~50sccm
   TiClガス照射時間:2秒
 (ステップ13)
   処理室内温度:400℃
   処理室内圧力:50Pa(0.38Torr)
   Hf[C(CH)](CHガス供給流量:10~50sccm
   Hf[C(CH)](CHガス照射時間:50秒
 (ステップ15)
   処理室内温度:400℃
   処理室内圧力:50Pa(0.38Torr)
   NH供給流量:1000sccm
   NH照射時間:20秒
(Step 11)
Processing room temperature: 400 ° C
Processing chamber pressure: 50 Pa (0.38 Torr)
TiCl 4 gas supply flow rate: 10-50 sccm
TiCl 4 gas irradiation time: 2 seconds (Step 13)
Processing room temperature: 400 ° C
Processing chamber pressure: 50 Pa (0.38 Torr)
Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas supply flow rate: 10 to 50 sccm
Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas irradiation time: 50 seconds (step 15)
Processing room temperature: 400 ° C
Processing chamber pressure: 50 Pa (0.38 Torr)
NH 3 supply flow rate: 1000 sccm
NH 3 irradiation time: 20 seconds
 このとき、ステップ15およびステップ16を1回行なうのに対して、ステップ11~14の1セットの実施回数、すなわちTiC層を形成するセット数を1セットとした(m=1)。形成するTiCN膜の膜厚は5nmとし、さらに、得られたTiCN膜の上にキャップ層として5nmのTiN膜をインサイチュで形成した。 At this time, step 15 and step 16 are performed once, whereas the number of executions of one set of steps 11 to 14, that is, the number of sets for forming the TiC layer is set to one set (m = 1). The thickness of the TiCN film to be formed was 5 nm, and a 5 nm TiN film was formed in situ as a cap layer on the obtained TiCN film.
 実施例2として、ステップ15およびステップ16を1回行なうのに対して、ステップ11~14の1セットの実施回数、すなわちTiC層を形成するセット数を3セットとして(m=3)、TiCN膜の形成を行った。その他の処理条件等は実施例1と同様とした。 In the second embodiment, the steps 15 and 16 are performed once, whereas the number of executions of one set of steps 11 to 14, that is, the number of sets for forming the TiC layer is set to 3 sets (m = 3). Was formed. Other processing conditions were the same as in Example 1.
 実施例3として、ステップ15およびステップ16を1回行なうのに対して、ステップ11~14の1セットの実施回数、すなわちTiC層を形成するセット数を5セットとして(m=5)、TiCN膜の形成を行った。その他の処理条件等は実施例1と同様とした。 In the third embodiment, the steps 15 and 16 are performed once, whereas the number of executions of one set of steps 11 to 14, that is, the number of sets for forming the TiC layer is set to 5 (m = 5). Was formed. Other processing conditions were the same as in Example 1.
 表1に、実施例1~3における処理条件等および得られたTiCN膜のC濃度についてまとめた。得られたTiCN膜のC濃度は、それぞれ実施例1では17~18%、実施例2では25~30%、実施例3では25~30%となった。 Table 1 summarizes the processing conditions in Examples 1 to 3 and the C concentration of the obtained TiCN film. The C concentration of the obtained TiCN film was 17 to 18% in Example 1, 25 to 30% in Example 2, and 25 to 30% in Example 3, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に実施例1~3の実験により得られた結果を説明する。 Next, the results obtained from the experiments of Examples 1 to 3 will be described.
 図12に、各例にて得られたTiCN膜に対しXPSにて測定したTi強度とC強度をC/Ti比としてまとめた図を示す。横軸にステップ11~14のセット数m、縦軸にXPS分析によるC/Ti比が示されている。ここで、C/Ti比はTiCN膜中のC濃度と同等の意味を持つと考えて差し支えない。この結果から、C濃度は少なくともm=3までは増加傾向にあることがわかる。すなわちステップ11~14のセット数を制御することにより、膜中のC濃度を制御することができることがわかる。また、m=5ではC濃度はm=3の場合と変わらず、飽和していることがわかる。 FIG. 12 shows a graph summarizing Ti strength and C strength measured by XPS for the TiCN film obtained in each example as a C / Ti ratio. The horizontal axis represents the number m of sets of steps 11 to 14, and the vertical axis represents the C / Ti ratio by XPS analysis. Here, the C / Ti ratio can be considered to have the same meaning as the C concentration in the TiCN film. From this result, it can be seen that the C concentration tends to increase at least until m = 3. That is, it can be seen that the C concentration in the film can be controlled by controlling the number of sets in steps 11-14. It can also be seen that at m = 5, the C concentration is not different from that at m = 3 and is saturated.
 次に、図13(a)に、各例にて得られたTiCN膜に対しXPSで測定したTiCN膜中のC濃度を、図13(b)に各例にて得られたTiCN膜に対しXPSで測定したTiCN膜中のN濃度を示す。図13(a)(b)には横軸にエッチング時間、縦軸にそれぞれC原子濃度(C atomic %)、N原子濃度(N atomic %)が示されている。また、図13(a)(b)の上部には、横軸に沿って対応するエッチング時間においてエッチングがなされる層が示されている。 Next, FIG. 13A shows the C concentration in the TiCN film measured by XPS with respect to the TiCN film obtained in each example, and FIG. 13B shows the C concentration in the TiCN film obtained in each example. The N concentration in the TiCN film measured by XPS is shown. In FIGS. 13A and 13B, the horizontal axis indicates the etching time, and the vertical axis indicates the C atom concentration (C atomic%) and the N atom concentration (N atomic%), respectively. 13A and 13B, a layer to be etched in the corresponding etching time along the horizontal axis is shown.
 図13(a)から、TiCN膜に対する分析結果を示すエッチング時間におけるC原子濃度は実施例1に対して実施例2、3の場合は約11%増加したことがわかる。また、図13(b)から、TiCN膜に対する分析結果を示すエッチング時間におけるN原子濃度は実施例1に対して実施例2、3の場合は約3.6%減少したことがわかる。このように図13(a)(b)を比較すると、C原子濃度とN原子濃度はトレードオフの関係にあることがわかる。 FIG. 13A shows that the C atom concentration at the etching time indicating the analysis result for the TiCN film increased by about 11% in the case of Examples 2 and 3 with respect to Example 1. Further, FIG. 13B shows that the N atom concentration in the etching time indicating the analysis result for the TiCN film was reduced by about 3.6% in the case of Examples 2 and 3 with respect to Example 1. Thus, comparing FIGS. 13A and 13B, it can be seen that the C atom concentration and the N atom concentration are in a trade-off relationship.
 図14(a)~(c)には、実験のために作成されたキャパシタ268a~cがそれぞれ示されている。図14(a)~(c)に示されているように、キャパシタ268a~cは、シリコン(Si)のウエハ200の表面に絶縁膜であるSiO膜(シリコン酸化膜)270を形成し、SiO膜270に積層させるように絶縁膜であるHfO膜(ハフニウム酸化膜)272a~cをそれぞれ形成し、HfO膜272a~cにそれぞれ積層させるようにTiCN膜276を形成し、TiCN膜276に積層させるようにTiN膜(チタン窒化膜)278を形成した構成となっている。 14 (a) to 14 (c) show capacitors 268a to 268c created for the experiment, respectively. As shown in FIGS. 14A to 14C, the capacitors 268a to 268c form an SiO 2 film (silicon oxide film) 270 as an insulating film on the surface of the silicon (Si) wafer 200, HfO 2 films (hafnium oxide films) 272a to 272c, which are insulating films, are formed so as to be stacked on the SiO 2 film 270, and a TiCN film 276 is formed so as to be stacked on the HfO 2 films 272a to 272c, respectively. The TiN film (titanium nitride film) 278 is formed so as to be laminated on the H.276.
 具体的には、基板に対してHF処理を行った後、SiO膜270の形成、HfO膜272a~cの形成、TiCN膜276の形成、TiN膜278の形成を行い、さらにキャップTiN膜の形成、ゲートパターニング、ゲートエッチング、レジスト除去、400℃でのFGA(Forming Gas Anneel)処理を行った。 Specifically, after performing HF treatment on the substrate, formation of the SiO 2 film 270, formation of the HfO 2 films 272a to 272c, formation of the TiCN film 276, formation of the TiN film 278, and further the cap TiN film Formation, gate patterning, gate etching, resist removal, and FGA (Forming Gas Anneel) treatment at 400 ° C. were performed.
 TiCN膜276は、上述の実施形態で説明をしたシーケンスにより成膜されている。すなわち、TiCN膜276は、Ti含有ガスとしてTiClガスを、C含有ガスとしてHf[CH4(CH)](CHガスを、N含有ガスとしてNHガスを用い、図4の成膜フローおよび図5のガス供給タイミングにより成膜されている。ここで、図14(a)~(c)に示すキャパシタでは、TiCN膜276は実施例2と同様のセット数m=3セットの条件で形成されており、絶縁膜であるHfO膜の膜厚をそれぞれ変化させることによりそれぞれ絶縁膜272a、272b、272cが形成されている。 The TiCN film 276 is formed by the sequence described in the above embodiment. That is, the TiCN film 276 uses TiCl 4 gas as the Ti-containing gas, Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 gas as the C-containing gas, and NH 3 gas as the N-containing gas. The film is formed by the film formation flow 4 and the gas supply timing shown in FIG. Here, in the capacitors shown in FIGS. 14A to 14C, the TiCN film 276 is formed under the condition of the set number m = 3 sets as in the second embodiment, and is a film of an HfO 2 film as an insulating film. The insulating films 272a, 272b, and 272c are formed by changing the thicknesses, respectively.
 これらのキャパシタのEOT(等価酸化膜厚、Equivalent Oxide Thickness)ごとのeWF(実効仕事関数、Effective Work Function)をグラフ上にプロットして仕事関数を算出したものを図15として示す。 FIG. 15 shows the work function calculated by plotting eWF (Effective Work Function) for each EOT (Equivalent Oxide Thickness) of these capacitors on a graph.
 図15は、キャパシタ268a、キャパシタ268b、キャパシタ268cにおけるTiCN膜のEOTとeWFとの値をプロットしたグラフである。HfO膜等のHigh-k膜では工程中の熱処理により、High-k膜中の酸素が拡散してHigh-k膜から抜け出るため、High-k膜と界面層との間に界面ダイポールが形成されて実効仕事関数は高くなる。TiN膜の仕事関数は、ダイポール込みで5.0eV程度であるのに対して、図15に示すグラフから算出したTiCN膜276の仕事関数は、表2に示すように、4.55~4.68eVである。なお、ダイポールによる影響e△dipole(0.31eV、Y. Kamimura et al.,IEDM(2007)、PP.341-344.より引用)を考慮したところ、仕事関数Φ=Φm,meas.-e△dipole=4.24~4.37eVとなった。このように、C濃度を制御することにより、Vth(スレッショルド電圧、閾値電圧)を調整することが可能なメタル、すなわち仕事関数値がチューニング可能な金属膜としてのTiCN膜が提供されることが実験により確認された。したがって、本発明によれば、用途に応じて異なる仕事関数の値を要求された場合であっても、同じ元素組成を有する1つの膜で仕事関数を調整可能であることが確認された。 FIG. 15 is a graph plotting the EOT and eWF values of the TiCN film in the capacitors 268a, 268b, and 268c. In a High-k film such as an HfO 2 film, oxygen in the High-k film diffuses and escapes from the High-k film due to heat treatment in the process, so that an interface dipole is formed between the High-k film and the interface layer. As a result, the effective work function becomes high. The work function of the TiN film is about 5.0 eV including the dipole, whereas the work function of the TiCN film 276 calculated from the graph shown in FIG. 68 eV. It should be noted that the effect of the dipole e △ dipole was taking into account the (0.31eV, Y. Kamimura et al ., IEDM (2007), PP.341-344. Quoted from), the work function Φ m = Φ m, meas. -EΔ dipole = 4.24 to 4.37 eV. Thus, by controlling the C concentration, it is an experiment that a metal capable of adjusting Vth (threshold voltage, threshold voltage), that is, a TiCN film as a metal film whose work function value can be tuned is provided. Confirmed by Therefore, according to the present invention, it was confirmed that the work function can be adjusted with one film having the same elemental composition even when different work function values are required depending on the application.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 次に第4の実施形態に係る実施例を説明するが、本発明はこれらの実施例により何ら限定されるものではない。以下の各実施例では、上述の図10および図11に示すシーケンスにより、ウエハ200上(具体的には高誘電体膜であるHfO膜上)にTiAlCN膜を成膜した。 Next, examples according to the fourth embodiment will be described, but the present invention is not limited to these examples. In each of the following examples, a TiAlCN film was formed on the wafer 200 (specifically, on the HfO film which is a high dielectric film) by the sequence shown in FIGS. 10 and 11 described above.
 実施例4では、上述したX,Y,Zを、それぞれ6,1,36に設定した。すなわち、実施例4では、TiN層を形成する処理を6回(X=6)行う工程と、AlCTiN層を形成する処理を1回(Y=1)行う工程とを、交互に36回(Z=36)繰り返して行うことで、TiAlCN膜を成膜した。 In Example 4, X, Y, and Z described above were set to 6, 1 and 36, respectively. That is, in Example 4, the process of forming the TiN layer 6 times (X = 6) and the process of forming the AlCTiN layer 1 time (Y = 1) alternately 36 times (Z = 36) A TiAlCN film was formed by repeating the process.
 具体的には、実施例4では、TiClガスとNHガスとを交互に6回ずつ供給してTiN層を形成する工程と、TMAガスとTiClガスとNHガスとを1回ずつ供給してAlCTiN層を形成する工程とを、交互に36回繰り返して行うことで、TiAlCN膜を成膜した。そのときの各ステップにおける処理条件は次のように設定した。 Specifically, in Example 4, a process of forming TiN layers by alternately supplying TiCl 4 gas and NH 3 gas six times, and TMA gas, TiCl 4 gas, and NH 3 gas once each. The TiAlCN film was formed by alternately repeating the step of supplying and forming the AlCTiN layer 36 times. The processing conditions in each step at that time were set as follows.
 <TiN層形成>
 (ステップ21)
   処理室内温度:350℃
   処理室内圧力:45Pa
   TiClガス供給量:1.16g/min
   TiClガス照射時間:5秒
 (ステップ23)
   処理室内温度:350℃
   処理室内圧力:65Pa
   NHガス供給流量:7500sccm
   NHガス照射時間:15秒
<TiN layer formation>
(Step 21)
Processing room temperature: 350 ° C
Processing chamber pressure: 45Pa
TiCl 4 gas supply rate: 1.16 g / min
TiCl 4 gas irradiation time: 5 seconds (step 23)
Processing room temperature: 350 ° C
Processing chamber pressure: 65 Pa
NH 3 gas supply flow rate: 7500sccm
NH 3 gas irradiation time: 15 seconds
 <AlCTiN層形成>
 (ステップ25)
   処理室内温度:350℃
   処理室内圧力:65Pa
   TMAガス供給量:0.6g/min
   TMAガス照射時間:6秒
 (ステップ27)
   処理室内温度:350℃
   処理室内圧力:45Pa
   TiClガス供給量:1.16g/min
   TiClガス照射時間:5秒
 (ステップ29)
   処理室内温度:350℃
   処理室内圧力:65Pa
   NHガス供給流量:7500sccm
   NHガス照射時間:15秒
<AlCTiN layer formation>
(Step 25)
Processing room temperature: 350 ° C
Processing chamber pressure: 65 Pa
TMA gas supply amount: 0.6 g / min
TMA gas irradiation time: 6 seconds (Step 27)
Processing room temperature: 350 ° C
Processing chamber pressure: 45Pa
TiCl 4 gas supply rate: 1.16 g / min
TiCl 4 gas irradiation time: 5 seconds (step 29)
Processing room temperature: 350 ° C
Processing chamber pressure: 65 Pa
NH 3 gas supply flow rate: 7500sccm
NH 3 gas irradiation time: 15 seconds
 上記の処理で成膜されたTiAlCN膜の膜厚は10nmであり、さらに、TiAlCN膜の上にキャップ層として30nmのTiN膜を形成した。 The thickness of the TiAlCN film formed by the above treatment was 10 nm, and a 30 nm TiN film was formed as a cap layer on the TiAlCN film.
 実施例5では、上述したX,Y,Zを、それぞれ3,1,52に設定した。すなわち、実施例5では、TiN層を形成する処理を3回(X=3)行う工程と、AlCTiN層を形成する処理を1回(Y=1)行う工程とを、交互に52回(Z=52)繰り返して行うことで、TiAlCN膜を成膜した。 In Example 5, X, Y, and Z described above were set to 3, 1, and 52, respectively. That is, in Example 5, the process of forming the TiN layer three times (X = 3) and the process of forming the AlCTiN layer once (Y = 1) are alternately performed 52 times (Z = 52) A TiAlCN film was formed by repeating the process.
 具体的には、実施例5では、TiClガスとNHガスとを交互に3回ずつ供給してTiN層を形成する工程と、TMAガスとTiClガスとNHガスとを1回ずつ供給してAlCTiN層を形成する工程とを、交互に52回繰り返して行うことで、TiAlCN膜を成膜した。そのときの各ステップにおける処理条件は、実施例4と同様である。また、実施例5で成膜されたTiAlCN膜の膜厚は10nmである。 Specifically, in Example 5, a process of forming TiN layers by alternately supplying TiCl 4 gas and NH 3 gas three times, and TMA gas, TiCl 4 gas, and NH 3 gas once each. The step of supplying and forming the AlCTiN layer was repeated 52 times alternately to form a TiAlCN film. The processing conditions in each step at that time are the same as in the fourth embodiment. The thickness of the TiAlCN film formed in Example 5 is 10 nm.
 実施例6では、上述したX,Y,Zを、それぞれ1,1,78に設定した。すなわち、実施例6では、TiN層を形成する処理を1回(X=1)行う工程と、AlCTiN層を形成する処理を1回(Y=1)行う工程とを、交互に78回(Z=78)繰り返して行うことで、TiAlCN膜を成膜した。 In Example 6, X, Y, and Z described above were set to 1, 1 and 78, respectively. That is, in Example 6, the process of forming the TiN layer once (X = 1) and the process of forming the AlCTiN layer once (Y = 1) are alternately performed 78 times (Z = 78) A TiAlCN film was formed by repeating the process.
 具体的には、実施例6では、TiClガスとNHガスとを1回ずつ供給してTiN層を形成する工程と、TMAガスとTiClガスとNHガスとを1回ずつ供給してAlCTiN層を形成する工程とを、交互に78回繰り返して行うことで、TiAlCN膜を成膜した。そのときの各ステップにおける処理条件は、実施例4と同様である。また、実施例6で成膜されたTiAlCN膜の膜厚は10nmである。 Specifically, in Example 6, a process of forming a TiN layer by supplying TiCl 4 gas and NH 3 gas once, and supplying TMA gas, TiCl 4 gas, and NH 3 gas once each. Then, the step of forming the AlCTiN layer was alternately repeated 78 times to form a TiAlCN film. The processing conditions in each step at that time are the same as in the fourth embodiment. The thickness of the TiAlCN film formed in Example 6 is 10 nm.
 実施例4では、上述したX,Y,Zを、それぞれ0,1,100に設定した。すなわち、実施例4では、TiN層を形成する処理は行わず(X=0)、AlCTiN層を形成する処理を1回(Y=1)行う工程を100回(Z=100)繰り返して行うことで、TiAlCN膜を成膜した。 In Example 4, X, Y, and Z described above were set to 0, 1,100, respectively. That is, in Example 4, the process of forming the TiN layer is not performed (X = 0), and the process of forming the AlCTiN layer once (Y = 1) is repeated 100 times (Z = 100). Then, a TiAlCN film was formed.
 具体的には、実施例4では、TMAガスとTiClガスとNHガスとを1回ずつ供給してAlCTiN層を形成する工程を100回繰り返して行うことで、TiAlCN膜を成膜した。そのときの各ステップにおける処理条件は、実施例4と同様である。また、実施例4で成膜されたTiAlCN膜の膜厚は10nmである。 Specifically, in Example 4, the TiAlCN film was formed by repeating the process of supplying the TMA gas, TiCl 4 gas, and NH 3 gas once to form the AlCTiN layer 100 times. The processing conditions in each step at that time are the same as in the fourth embodiment. The thickness of the TiAlCN film formed in Example 4 is 10 nm.
 実施例5では、上述したX,Y,Zを、それぞれ1,0,340に設定した。すなわち、実施例5では、AlCTiN層を形成する処理は行わず(Y=0)、TiN層を形成する処理を1回(X=1)行う工程を340回(Z=340)繰り返して行うことで、TiN膜を成膜した。 In Example 5, X, Y, and Z described above were set to 1,0, 340, respectively. That is, in Example 5, the process of forming the AlCTiN layer is not performed (Y = 0), and the process of forming the TiN layer once (X = 1) is repeated 340 times (Z = 340). Then, a TiN film was formed.
 具体的には、実施例5では、TiClガスとNHガスとを1回ずつ供給してTiN層を形成する工程を340回繰り返して行うことで、TiN膜を成膜した。そのときの各ステップにおける処理条件は、実施例4と同様である。また、実施例5で成膜されたTiN膜の膜厚は10nmである。 Specifically, in Example 5, the TiN film was formed by repeating the process of supplying the TiCl 4 gas and the NH 3 gas once to form the TiN layer 340 times. The processing conditions in each step at that time are the same as in the fourth embodiment. Further, the thickness of the TiN film formed in Example 5 is 10 nm.
 図16に、実施例4~8で成膜した金属膜(TiAlCN膜あるいはTiN膜)のそれぞれについて、EOT(等価酸化膜厚)とVfb(フラットバンド電圧)の関係を示す。図示のように、Cの割合(濃度)が高い(Nの割合(濃度)が低い)実施例ほど、Vfbは負方向へシフトしていることがわかる。Vfbが負方向へシフトすると、仕事関数は減少する。 FIG. 16 shows the relationship between EOT (equivalent oxide thickness) and Vfb (flat band voltage) for each of the metal films (TiAlCN film or TiN film) formed in Examples 4 to 8. As shown in the figure, it can be seen that the Vfb shifts in the negative direction as the C ratio (concentration) is higher (N ratio (concentration) is lower). When Vfb shifts in the negative direction, the work function decreases.
 図17に、実施例4~8で成膜した金属膜(TiAlCN膜あるいはTiN膜)のそれぞれについて、CとNの割合と、実効仕事関数eWFの関係を示す。また、図18(a)に、実施例4~8で成膜した金属膜のそれぞれについて、Cの割合に対する仕事関数を示し、図18(b)に、実施例4~8で成膜した金属膜のそれぞれについて、Nの割合に対する仕事関数を示す。なお、上述の各実施例では、X,Y,Zの各値を調整することで、金属膜そのものの仕事関数をチューニングしているが、図17および図18では、各実施例で成膜した金属膜を含むゲート電極の実効仕事関数eWFを示している。この実効仕事関数eWFは、上述のVfbから算出された値であり、HfO/SiO界面のダイポール込みの値である。 FIG. 17 shows the relationship between the ratio of C and N and the effective work function eWF for each of the metal films (TiAlCN film or TiN film) formed in Examples 4 to 8. 18A shows the work function with respect to the ratio of C for each of the metal films formed in Examples 4 to 8, and FIG. 18B shows the metal film formed in Examples 4 to 8. For each of the films, the work function for the percentage of N is shown. In each of the above-described embodiments, the work function of the metal film itself is tuned by adjusting each value of X, Y, and Z. However, in FIGS. 17 and 18, the film was formed in each embodiment. The effective work function eWF of the gate electrode containing a metal film is shown. This effective work function eWF is a value calculated from the above-mentioned Vfb, and is a value including a dipole at the HfO 2 / SiO 2 interface.
 図17および図18に示すように、TiAlCN膜(あるいはTiN膜)に含まれるCの割合を増加させるほど実効仕事関数eWFが小さくなり、Nの割合を増加させるほど実効仕事関数eWFが大きくなる。ダイポールは高誘電体膜の種別に応じて決定されるものであり、各実施例で一定である。したがって、TiAlCN膜に含まれるCの割合を増加させるほどTiAlCN膜の仕事関数は小さくなり、Nの割合を増加させるほどTiAlCN膜の仕事関数が大きくなると言える。 As shown in FIGS. 17 and 18, the effective work function eWF decreases as the ratio of C contained in the TiAlCN film (or TiN film) increases, and the effective work function eWF increases as the ratio of N increases. The dipole is determined according to the type of the high dielectric film, and is constant in each embodiment. Therefore, it can be said that the work function of the TiAlCN film decreases as the proportion of C contained in the TiAlCN film increases, and the work function of the TiAlCN film increases as the proportion of N increases.
 HfO膜等のHigh-k膜では、工程中の熱処理により、High-k膜中の酸素が拡散してHigh-k膜から抜け出るため、High-k膜と界面層との間に界面ダイポールが形成されて実効仕事関数は高くなる。図17に示すように、実施例5に係る金属膜であるTiN膜の仕事関数はダイポール込みで5.0eV程度であるのに対して、実施例4~4に係る金属膜であるTiAlCN膜の仕事関数は4.52~4.68eVである。なお、ダイポールによる影響eΔdipole(0.31eV。Y. Kamimura et al.,IEDM(2007)、PP.341-344.より引用)を考慮すれば、TiAlCN膜の仕事関数は4.21~4.37eV程度であり、それに含まれるCおよび/またはNの割合を制御することにより、上述したTiとAlの仕事関数(約4.3eV)を基準に仕事関数をチューニングすることができることが確認された。 In a High-k film such as an HfO 2 film, oxygen in the High-k film diffuses and escapes from the High-k film due to the heat treatment in the process, so that an interface dipole is formed between the High-k film and the interface layer. As a result, the effective work function is increased. As shown in FIG. 17, the work function of the TiN film that is the metal film according to the fifth embodiment is about 5.0 eV including the dipole, whereas the work function of the TiAlCN film that is the metal film according to the fourth to fourth embodiments. The work function is 4.52 to 4.68 eV. In consideration of the influence of dipoledipole (0.31 eV. Quoted from Y. Kamimura et al., IEDM (2007), PP. 341-344), the work function of the TiAlCN film is 4.21-4. It was confirmed that the work function can be tuned based on the above-described work function of Ti and Al (about 4.3 eV) by controlling the ratio of C and / or N contained therein. .
 また、金属元素としてTiを含みCを含まないTiAlN膜およびTiN膜の仕事関数は約4.6~4.7eVであり、金属元素としてTiを含みNを含まないTiAlC膜の仕事関数は約4.1Vであることが発明者らにより確認されている。すなわち、金属元素としてTiを含み、さらにCおよびNを含むTiAlCN膜は、CおよびNの割合を制御することで、その仕事関数を、TiAlC膜の仕事関数とTiAlN膜(またはTiN膜)の仕事関数との間の所望の値にチューニングすることができる。 The work function of TiAlN film containing Ti as a metal element and not containing C and TiN film is about 4.6 to 4.7 eV, and the work function of TiAlC film containing Ti as a metal element and not containing N is about 4 The inventors have confirmed that the voltage is 1 V. That is, the TiAlCN film containing Ti as a metal element and further containing C and N controls the work function of the TiAlC film and the work function of the TiAlN film (or TiN film) by controlling the ratio of C and N. It can be tuned to the desired value between functions.
 このように、Cおよび/またはNの割合を制御することにより、Vth(スレッショルド電圧、閾値電圧)を調整することが可能なメタル、すなわち仕事関数がチューニング可能な金属膜としてのTiAlCN膜が提供されることが実験により確認された。したがって、本発明によれば、用途に応じて異なる仕事関数の値を要求された場合であっても、同じ元素組成を有する1つの金属膜で仕事関数を調整することが可能である。 Thus, by controlling the ratio of C and / or N, a metal capable of adjusting Vth (threshold voltage, threshold voltage), that is, a TiAlCN film as a metal film whose work function can be tuned is provided. It was confirmed by experiments. Therefore, according to the present invention, it is possible to adjust the work function with one metal film having the same elemental composition even when different work function values are required depending on the application.
 なお、実効仕事関数は、φダイポールやφFLP(Fermi-Level Pinning)でもチューニングすることができるが、以下の理由により、ゲート電極を構成する金属膜そのものの仕事関数をチューニングすることが望ましい。 The effective work function can be tuned by a φ dipole or φFLP (Fermi-Level Pinning). However, it is desirable to tune the work function of the metal film itself constituting the gate electrode for the following reason.
 φダイポールの値は、高誘電体膜の膜種で制御するか、ゲート電極からAlやLa等を高誘電体膜に拡散させて制御する。しかし、高誘電体膜の膜種で制御する場合、NMOSもPMOSも同じ方向にダイポールの値がシフトする(NMOSでは負方向、PMOSでは正方向にシフトするダイポールが必要)。そのため、NMOSとPMOSで高誘電体膜を作り分ける必要があり、プロセスが複雑化してしまう。また、ゲート電極からAlやLa等を拡散させて制御する場合、1000℃程度の熱処理が必要である。しかし、高誘電体膜を用いる場合は、一般にゲートラストプロセスであり、1000℃程度の熱処理は、ゲートスタック(電極/高誘電体膜/SiO/Si基板)の形成よりも前に行われる。なお、この熱処理は、ソースドレインを活性化させるための処理である。したがって、ゲートラストプロセスでは、ゲートスタック後に1000℃程度の熱処理が不要であることが望ましい。さらに、実効仕事関数のチューニング量を大きくするには、φダイポールを大きくする必要があるが、φダイポールが大きくなると、移動度(電子や正孔の動くスピード)が低下する要因にもなる。また、φFLPの値は電極にSiを入れることによって制御することができるが、その場合、電極の抵抗が高くなる可能性がある。したがって、金属膜そのものの仕事関数をチューニングすることが望ましい。 The value of the φ dipole is controlled by the film type of the high dielectric film or by diffusing Al, La, or the like from the gate electrode into the high dielectric film. However, when controlling by the type of the high dielectric film, the dipole value is shifted in the same direction in both NMOS and PMOS (a dipole that shifts in the negative direction in NMOS and in the positive direction in PMOS is required). Therefore, it is necessary to make a high dielectric film separately for NMOS and PMOS, which complicates the process. Further, when Al, La, or the like is diffused and controlled from the gate electrode, heat treatment at about 1000 ° C. is necessary. However, when a high dielectric film is used, it is generally a gate last process, and the heat treatment at about 1000 ° C. is performed before the formation of the gate stack (electrode / high dielectric film / SiO 2 / Si substrate). This heat treatment is a process for activating the source / drain. Therefore, in the gate last process, it is desirable that a heat treatment at about 1000 ° C. is unnecessary after the gate stack. Furthermore, in order to increase the tuning amount of the effective work function, it is necessary to increase the φ dipole. However, if the φ dipole is increased, the mobility (speed of movement of electrons and holes) may be reduced. Further, the value of φFLP can be controlled by adding Si to the electrode, but in this case, the resistance of the electrode may be increased. Therefore, it is desirable to tune the work function of the metal film itself.
 以下、本発明の望ましい形態について付記する。 Hereinafter, desirable modes of the present invention will be additionally described.
〔付記1〕
 本発明の一態様によれば、
 基板に対して金属元素を含む金属含有ガスと炭素含有ガスを供給することで、前記基板上に前記第1の金属元素および炭素を含む第1の層を形成する工程と、
 前記第1の層が形成された前記基板に対して窒素含有ガスを供給することで、前記第1の層を窒化して前記第1の金属元素、炭素および窒素を含む第2の層を形成する工程と、
 を交互に所定回数ずつ実施することで、基板上に所定膜厚の前記第1の金属元素、炭素および窒素を含む膜を形成し、前記第2の層を形成する工程の実施回数に対する前記第1の層を形成する工程の実施回数を制御することにより、前記第1の金属元素、炭素および窒素を含む膜の仕事関数が所望の値となるよう調整する工程を有する半導体装置の製造方法が提供される。
[Appendix 1]
According to one aspect of the invention,
Forming a first layer containing the first metal element and carbon on the substrate by supplying a metal-containing gas containing a metal element and a carbon-containing gas to the substrate;
By supplying a nitrogen-containing gas to the substrate on which the first layer has been formed, the first layer is nitrided to form a second layer containing the first metal element, carbon and nitrogen And a process of
Are alternately performed a predetermined number of times to form a film containing the first metal element, carbon and nitrogen with a predetermined film thickness on the substrate, and the second layer is formed with respect to the number of executions of the step of forming the second layer. A method for manufacturing a semiconductor device, comprising: adjusting a work function of a film containing the first metal element, carbon, and nitrogen to have a desired value by controlling the number of times of performing the step of forming one layer. Provided.
〔付記2〕
 好ましくは、前記第1の金属元素はタンタル(Ta)、コバルト(Co)、タングステン(W)、モリブデン(Mo)、ルテニウム(Ru)、イットリウム(Y)、ランタン(La)、ジルコニウム(Zr)、ハフニウム(Hf)からなる群より選択された少なくとも一つの元素を含む。
[Appendix 2]
Preferably, the first metal element is tantalum (Ta), cobalt (Co), tungsten (W), molybdenum (Mo), ruthenium (Ru), yttrium (Y), lanthanum (La), zirconium (Zr), It contains at least one element selected from the group consisting of hafnium (Hf).
〔付記3〕
 好ましくは、前記金属含有ガスはTiCl4、TaClを含む。
[Appendix 3]
Preferably, the metal-containing gas includes TiCl 4 and TaCl 4 .
〔付記4〕
 好ましくは、前記炭素含有ガスはHf[C(CH)](CHを含む。
[Appendix 4]
Preferably, the carbon-containing gas contains Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 .
〔付記5〕
 好ましくは、前記炭素含有ガスは前記第1の金属元素とは異なる第2の金属元素を含む。
[Appendix 5]
Preferably, the carbon-containing gas includes a second metal element different from the first metal element.
〔付記6〕
 好ましくは、前記第2の金属元素はハフニウムを含む。
[Appendix 6]
Preferably, the second metal element includes hafnium.
〔付記7〕
 好ましくは、前記第2の層を形成する工程の実施回数と比較して前記第1の層を形成する工程の実施回数を多くすることにより、前記第1の金属元素、炭素および窒素を含む膜の仕事関数が高くなるよう調整する。
[Appendix 7]
Preferably, the film containing the first metal element, carbon, and nitrogen is increased by increasing the number of times of performing the step of forming the first layer as compared with the number of times of performing the step of forming the second layer. Adjust the work function to be higher.
〔付記8〕
 好ましくは、前記第2の層を形成する工程の実施回数に対する前記第1の層を形成する工程の実施回数を制御することにより前記第1の金属元素、炭素および窒素を含む膜に含まれる炭素の濃度を調整して前記第1の金属元素、炭素および窒素を含む膜の仕事関数が所望の値となるよう調整する。
[Appendix 8]
Preferably, carbon contained in the film containing the first metal element, carbon and nitrogen is controlled by controlling the number of times of the step of forming the first layer with respect to the number of times of the step of forming the second layer. The work function of the film containing the first metal element, carbon, and nitrogen is adjusted to a desired value.
〔付記9〕
 本発明の他の態様によれば、
 基板に対して、金属元素を含む金属含有ガスを供給する工程と、
 前記基板に対して、炭素含有ガスを供給する工程と、
 前記基板に対して、窒素含有ガスを供給する工程と、
を所定回数ずつ実施することにより、前記基板上に所定膜厚の前記金属元素、炭素および窒素を含む膜を形成し、前記金属含有ガスを供給する工程および/または窒素含有ガスを供給する工程の回数に対して前記炭素含有ガスを供給する工程の回数を制御することにより、前記金属元素、炭素および窒素を含む膜の仕事関数が所望の値となるよう調整する工程を有する半導体装置の製造方法が提供される。
[Appendix 9]
According to another aspect of the invention,
Supplying a metal-containing gas containing a metal element to the substrate;
Supplying a carbon-containing gas to the substrate;
Supplying a nitrogen-containing gas to the substrate;
A step of supplying the metal-containing gas and / or supplying the nitrogen-containing gas by forming a film containing the metal element, carbon and nitrogen having a predetermined thickness on the substrate. A method of manufacturing a semiconductor device, comprising: adjusting a work function of a film containing the metal element, carbon, and nitrogen to a desired value by controlling the number of times of supplying the carbon-containing gas with respect to the number of times Is provided.
〔付記10〕
 また、本発明の他の態様によれば、
 基板に対して、第1の金属元素を含む第1の金属含有ガスを供給することで、前記基板上に前記第1の金属元素を含む第1の層を形成する工程と、
 前記第1の層が形成された前記基板に対して、第2の金属元素および炭素を含む第2の金属含有ガスを供給することで、前記基板上に前記第1の金属元素、前記第2の金属元素および炭素を含む第2の層を形成する工程と、
 を所定回数ずつ実施することで、前記基板上に所定膜厚の前記第1の金属元素、前記第2の金属元素および炭素を含む膜を形成し、前記第1の層を形成する工程の実施回数に対する前記第2の層を形成する工程の実施回数を制御することにより、前記第1の金属元素、前記第2の金属元素および炭素を含む膜の仕事関数が所望の値となるよう調整する工程を有する半導体装置の製造方法が提供される。
[Appendix 10]
According to another aspect of the invention,
Forming a first layer containing the first metal element on the substrate by supplying a first metal-containing gas containing the first metal element to the substrate;
By supplying a second metal-containing gas containing a second metal element and carbon to the substrate on which the first layer is formed, the first metal element and the second metal element on the substrate are supplied. Forming a second layer containing a metal element and carbon,
Performing the step of forming the first layer by forming a film containing the first metal element, the second metal element, and carbon having a predetermined thickness on the substrate The work function of the film containing the first metal element, the second metal element, and carbon is adjusted to a desired value by controlling the number of times of performing the step of forming the second layer with respect to the number of times. A method of manufacturing a semiconductor device having a process is provided.
〔付記11〕
 好ましくは、第1の金属元素はチタンもしくはタンタルを含み、第2の金属元素はアルミニウムを含む。
[Appendix 11]
Preferably, the first metal element includes titanium or tantalum, and the second metal element includes aluminum.
〔付記12〕
 好ましくは、第1の金属含有ガスはTiCl、TaClを含み、第2の金属含有ガスはTMAを含む。
[Appendix 12]
Preferably, the first metal-containing gas includes TiCl 4 and TaCl 4 , and the second metal-containing gas includes TMA.
〔付記13〕
 また、本発明の他の態様によれば、
 基板を収容する処理室と、
 前記処理室内の基板に対して金属元素を含む金属含有ガスを供給する金属含有ガス供給系と、
 前記処理室内の基板に対して炭素含有ガスを供給する炭素含有ガス供給系と、
 前記処理室内の基板に対して窒素含有ガスを供給する窒素含有ガス供給系と、
 前記処理室内の基板に対して前記金属含有ガスと前記炭素含有ガスを供給することで、前記基板上に前記金属元素および炭素を含む第1の層を形成する処理と、前記第1の層が形成された前記基板に対して窒素含有ガスを供給することで、前記第1の層を窒化して前記金属元素、炭素および窒素を含む第2の層を形成する処理と、を交互に所定回数ずつ実施することで、基板上に所定膜厚の前記金属元素、炭素および窒素を含む膜を形成し、前記第2の層を形成する工程の実施回数に対する前記第1の層を形成する工程の実施回数を制御することにより、前記金属元素、炭素および窒素を含む膜の仕事関数が所望の値となるよう調整するように、前記金属含有ガス供給系、前記炭素含有ガス供給系および前記窒素含有ガス供給系を制御するよう構成される制御部と、
 を有する基板処理装置が提供される。
[Appendix 13]
According to another aspect of the invention,
A processing chamber for accommodating the substrate;
A metal-containing gas supply system for supplying a metal-containing gas containing a metal element to the substrate in the processing chamber;
A carbon-containing gas supply system for supplying a carbon-containing gas to the substrate in the processing chamber;
A nitrogen-containing gas supply system for supplying a nitrogen-containing gas to the substrate in the processing chamber;
A process of forming a first layer containing the metal element and carbon on the substrate by supplying the metal-containing gas and the carbon-containing gas to a substrate in the processing chamber; and A process of nitriding the first layer to form the second layer containing the metal element, carbon, and nitrogen by supplying a nitrogen-containing gas to the formed substrate is alternately performed a predetermined number of times. Forming the first layer with respect to the number of executions of the step of forming the second layer by forming a film containing the metal element, carbon and nitrogen with a predetermined thickness on the substrate. By controlling the number of executions, the metal-containing gas supply system, the carbon-containing gas supply system, and the nitrogen-containing gas are adjusted so that the work function of the film containing the metal element, carbon, and nitrogen is adjusted to a desired value. I will control the gas supply system When configured control unit,
A substrate processing apparatus is provided.
〔付記14〕
 また、本発明の他の態様によれば、
 基板を収容する処理室と、
 前記処理室内の基板に対して第1の金属元素を含む第1の金属含有ガスを供給する第1の金属含有ガス供給系と、
 前記処理室内の基板に対して第2の金属元素および炭素を含む第2の金属含有ガスを供給する第2の金属含有ガス供給系と、
 前記処理室内の基板に対して、前記第1の金属含有ガスを供給することで、前記基板上に前記第1の金属元素を含む第1の層を形成する処理と、前記第1の層が形成された前記基板に対して、前記第2の金属含有ガスを供給することで、前記基板上に前記第1の金属元素、前記第2の金属元素および炭素を含む第2の層を形成する処理と、を所定回数ずつ実施することにより、前記基板上に所定膜厚の前記第1の金属元素、前記第2の金属元素および炭素を含む膜を形成し、前記第1の層を形成する工程の実施回数に対する前記第2の層を形成する工程の実施回数を制御することにより、前記第1の金属元素、前記第2の金属元素および炭素を含む膜の仕事関数が所望の値となるよう調整するように、前記第1の金属含有ガス供給系および前記第2の金属含有ガス供給系を制御するよう構成される制御部と、
を有する基板処理装置が提供される。
[Appendix 14]
According to another aspect of the invention,
A processing chamber for accommodating the substrate;
A first metal-containing gas supply system for supplying a first metal-containing gas containing a first metal element to the substrate in the processing chamber;
A second metal-containing gas supply system for supplying a second metal-containing gas containing a second metal element and carbon to the substrate in the processing chamber;
A process of forming the first layer containing the first metal element on the substrate by supplying the first metal-containing gas to the substrate in the processing chamber; and A second layer containing the first metal element, the second metal element, and carbon is formed on the substrate by supplying the second metal-containing gas to the formed substrate. By performing the processing a predetermined number of times, a film containing the first metal element, the second metal element, and carbon having a predetermined film thickness is formed on the substrate, and the first layer is formed. By controlling the number of executions of the step of forming the second layer with respect to the number of executions of the step, the work function of the film containing the first metal element, the second metal element and carbon becomes a desired value. Adjusting the first metal-containing gas supply system and the front When configured controller to control the second metal-containing gas supply system,
A substrate processing apparatus is provided.
〔付記15〕
 また、本発明の他の態様によれば、
 基板処理装置の処理室内の基板に対して金属元素を含む金属含有ガスと炭素含有ガスとを供給することで、前記基板上に前記金属元素を含む第1の層を形成する手順と、
 前記第1の層が形成された前記基板に対して窒素含有ガスを供給することで、前記第1の層を窒化して前記金属元素、炭素および窒素を含む第2の層を形成する手順と、
を所定回数ずつ実施することで、前記基板上に所定膜厚の前記金属元素、炭素および窒素を含む膜を形成し、前記第2の層を形成する手順の実施回数に対する前記第1の層を形成する手順の実施回数を制御することにより、前記金属元素、炭素および窒素を含む膜の仕事関数が所望の値となるよう調整する手順をコンピュータに実行させるプログラムが提供される。
[Appendix 15]
According to another aspect of the invention,
Forming a first layer containing the metal element on the substrate by supplying a metal-containing gas containing a metal element and a carbon-containing gas to a substrate in a processing chamber of the substrate processing apparatus;
A step of nitriding the first layer by supplying a nitrogen-containing gas to the substrate on which the first layer is formed to form the second layer containing the metal element, carbon and nitrogen; ,
Is performed a predetermined number of times to form a film containing the metal element, carbon and nitrogen with a predetermined film thickness on the substrate, and the first layer with respect to the number of executions of the procedure of forming the second layer By controlling the number of executions of the forming procedure, there is provided a program for causing a computer to execute a procedure for adjusting the work function of the film containing the metal element, carbon and nitrogen to a desired value.
〔付記16〕
 また、本発明の他の態様によれば、
 基板処理装置の処理室内の基板に対して、第1の金属元素を含む第1の金属含有ガスを供給することで、前記基板上に前記第1の金属元素を含む第1の層を形成する手順と、
 前記第1の層が形成された前記基板に対して、第2の金属元素および炭素を含む第2の金属含有ガスを供給することで、前記基板上に前記第1の金属元素、前記第2の金属元素および炭素を含む第2の層を形成する手順と、
を所定回数ずつ実施することで前記基板上に所定膜厚の前記第1の金属元素、前記第2の金属元素および炭素を形成し、前記第1の層を形成する手順の実施回数に対する前記第2の層を形成する手順の実施回数を制御することにより、前記第1の金属元素、前記第2の金属元素および炭素を含む膜の仕事関数が所望の値となるよう調整する手順をコンピュータに実行させるプログラムが提供される。
[Appendix 16]
According to another aspect of the invention,
By supplying a first metal-containing gas containing a first metal element to a substrate in a processing chamber of the substrate processing apparatus, a first layer containing the first metal element is formed on the substrate. Procedure and
By supplying a second metal-containing gas containing a second metal element and carbon to the substrate on which the first layer is formed, the first metal element and the second metal element on the substrate are supplied. Forming a second layer comprising a metal element and carbon,
The first metal element, the second metal element, and carbon having a predetermined thickness are formed on the substrate by performing the predetermined number of times, and the first layer is formed with respect to the number of executions of the procedure for forming the first layer. By adjusting the number of executions of the procedure for forming the second layer, a procedure for adjusting the work function of the film containing the first metal element, the second metal element, and carbon to a desired value is stored in the computer. A program to be executed is provided.
〔付記17〕
 また、本発明の他の態様によれば、
 基板処理装置の処理室内の基板に対して、金属元素を含む金属含有ガスと炭素含有ガスとを供給することで、前記基板上に前記金属元素および炭素を含む第1の層を形成する手順と、
 前記第1の層が形成された基板に対して、窒素含有ガスを供給することで、前記基板上に前記金属元素、炭素および窒素を含む第2の層を形成する手順と、
を所定回数ずつ実施することで前記基板上に所定膜厚の前記金属元素、炭素および窒素を含む膜を形成し、前記第1の層を形成する手順の実施回数に対する前記第2の層を形成する手順の実施回数を制御することにより、前記金属元素、炭素および窒素を含む膜の仕事関数が所望の値となるよう調整する手順をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
[Appendix 17]
According to another aspect of the invention,
A procedure for forming a first layer containing the metal element and carbon on the substrate by supplying a metal-containing gas containing a metal element and a carbon-containing gas to a substrate in a processing chamber of the substrate processing apparatus; ,
A step of forming a second layer containing the metal element, carbon and nitrogen on the substrate by supplying a nitrogen-containing gas to the substrate on which the first layer is formed;
Is performed a predetermined number of times to form a film containing the metal element, carbon and nitrogen with a predetermined film thickness on the substrate, and the second layer is formed with respect to the number of executions of the procedure of forming the first layer. A computer-readable recording medium storing a program for causing a computer to execute a procedure for adjusting the work function of the film containing the metal element, carbon, and nitrogen to a desired value by controlling the number of times the procedure is performed Provided.
〔付記18〕
 また、本発明の他の態様によれば、
 基板処理装置の処理室内の基板に対して、第1の金属元素を含む第1の金属含有ガスを供給することで、前記基板上に前記第1の金属元素を含む第1の層を形成する手順と、
 前記第1の層を形成された前記基板に対して、第2の金属元素および炭素を含む第2の金属含有ガスを供給することで、前記基板上に前記第1の金属元素、前記第2の金属元素および炭素を含む第2の層を形成する手順と、
を所定回数ずつ実施することで前記基板上に所定膜厚の前記第1の金属元素、前記第2の金属元素および炭素を含む膜を形成し、前記第1の層を形成する手順の実施回数に対する前記第2の層を形成する手順の実施回数を制御することにより、前記第1の金属元素、前記第2の金属元素および炭素を含む膜の仕事関数が所望の値となるよう調整する手順をコンピュータに実行させるプログラムを記録した記録媒体が提供される。
[Appendix 18]
According to another aspect of the invention,
By supplying a first metal-containing gas containing a first metal element to a substrate in a processing chamber of the substrate processing apparatus, a first layer containing the first metal element is formed on the substrate. Procedure and
By supplying a second metal-containing gas containing a second metal element and carbon to the substrate on which the first layer has been formed, the first metal element and the second metal are formed on the substrate. Forming a second layer comprising a metal element and carbon,
Is performed a predetermined number of times to form the first metal element, the second metal element, and the carbon film containing carbon with a predetermined thickness on the substrate, and the number of executions of the procedure for forming the first layer. Adjusting the work function of the film containing the first metal element, the second metal element, and carbon to a desired value by controlling the number of times the procedure for forming the second layer is performed There is provided a recording medium on which a program for causing a computer to execute is recorded.
〔付記19〕
 また、本発明の他の態様によれば、
 基板を窒素含有ガスに暴露する工程を1回行なうごとに、前記基板をチタン含有ガスおよび炭素含有ガスに交互に暴露する工程を2回以上行なうことにより、チタン炭窒化膜の炭素濃度を増加させる半導体装置の製造方法が提供される。
[Appendix 19]
According to another aspect of the invention,
Each time the step of exposing the substrate to the nitrogen-containing gas is performed once, the carbon concentration of the titanium carbonitride film is increased by performing the step of alternately exposing the substrate to the titanium-containing gas and the carbon-containing gas twice or more. A method for manufacturing a semiconductor device is provided.
〔付記20〕
 好ましくは、前記基板をチタン含有ガスおよび炭素含有ガスに交互に暴露する工程を2回以上行なう際は、最初に前記チタン含有ガスに前記基板を暴露する。
[Appendix 20]
Preferably, when the step of alternately exposing the substrate to the titanium-containing gas and the carbon-containing gas is performed twice or more, the substrate is first exposed to the titanium-containing gas.
〔付記21〕
 本発明の一態様によれば、
 金属元素と窒素または炭素とを含む第1の層を形成する処理を第1の所定回数行う工程と、
 前記金属元素と窒素と炭素とを含む第2の層を形成する処理を第2の所定回数行う工程と、
 を交互に第3の所定回数行うことで、基板上に、窒素と炭素とを所定の割合で含む金属膜を成膜する工程を有する半導体装置の製造方法が提供される。
[Appendix 21]
According to one aspect of the invention,
Performing a process for forming a first layer containing a metal element and nitrogen or carbon for a first predetermined number of times;
Performing a second predetermined number of times to form a second layer containing the metal element, nitrogen and carbon;
By alternately performing the third predetermined number of times, a method of manufacturing a semiconductor device including a step of forming a metal film containing nitrogen and carbon at a predetermined ratio on a substrate is provided.
〔付記22〕
 本発明の他の態様によれば、
 基板に対して、金属元素を含む第1原料と、窒素または炭素を含む第2原料とを交互に第1の所定回数供給する工程と、
 前記基板に対して、炭素を含む第3原料と、前記金属元素を含む第4原料と、窒素を含む第5原料とを交互に第2の所定回数供給する工程と、
 を交互に第3の所定回数行うことで、基板上に、窒素と炭素とを所定の割合で含む金属膜を成膜する工程を有する半導体装置の製造方法が提供される。
[Appendix 22]
According to another aspect of the invention,
Supplying a first raw material containing a metal element and a second raw material containing nitrogen or carbon to the substrate alternately for a first predetermined number of times;
Supplying a third raw material containing carbon, a fourth raw material containing the metal element, and a fifth raw material containing nitrogen alternately to the substrate a second predetermined number of times;
By alternately performing the third predetermined number of times, a method of manufacturing a semiconductor device including a step of forming a metal film containing nitrogen and carbon at a predetermined ratio on a substrate is provided.
〔付記23〕
 付記21または22において、前記第1の所定回数、前記第2の所定回数および前記第3の所定回数は、前記金属膜に含める窒素または炭素の割合に応じて決定される。
[Appendix 23]
In Supplementary Note 21 or 22, the first predetermined number of times, the second predetermined number of times, and the third predetermined number of times are determined according to a ratio of nitrogen or carbon included in the metal film.
〔付記24〕
 付記21において、前記第2の層は、前記金属元素とは異なる第2金属元素を含む。
[Appendix 24]
In Additional Statement 21, the second layer includes a second metal element different from the metal element.
〔付記25〕
 付記22において、前記第3原料は、前記金属元素とは異なる第2金属元素を含む。
[Appendix 25]
In Additional Note 22, the third raw material includes a second metal element different from the metal element.
〔付記26〕
 付記21から25のいずれかにおいて、前記金属膜は、前記基板に形成された高誘電体膜の上に成膜される。
[Appendix 26]
In any one of appendices 21 to 25, the metal film is formed on a high dielectric film formed on the substrate.
〔付記27〕
 付記21から26のいずれかにおいて、前記金属元素は、チタン、タンタル、ハフニウム、ジルコニウム、モリブデンおよびタングステンからなる群より選択された少なくとも一つの元素を含む。
[Appendix 27]
In any one of appendices 21 to 26, the metal element includes at least one element selected from the group consisting of titanium, tantalum, hafnium, zirconium, molybdenum, and tungsten.
〔付記28〕
 付記24または25において、前記第2金属元素は、アルミニウムを含む。
[Appendix 28]
In Additional Statement 24 or 25, the second metal element includes aluminum.
〔付記29〕
 付記22において、前記第1原料および前記第4原料は、TiClを含む。
[Appendix 29]
In Additional Note 22, the first raw material and the fourth raw material include TiCl 4 .
〔付記30〕
 付記25において、前記第3原料は、TMA(トリメチルアルミニウム)を含む。
[Appendix 30]
In Additional Note 25, the third raw material includes TMA (trimethylaluminum).
〔付記31〕
 付記21から30において、前記金属元素はチタンであり、前記金属膜の仕事関数は、TiNまたはTiAlNの仕事関数とTiAlCの仕事関数の間の値である。
[Appendix 31]
In Additional Notes 21 to 30, the metal element is titanium, and the work function of the metal film is a value between the work function of TiN or TiAlN and the work function of TiAlC.
〔付記32〕
 付記24または25において、前記金属元素はチタンであり、前記第2金属元素はアルミニウムであり、前記金属膜の仕事関数は、TiNまたはTiAlNの仕事関数とTiAlCの仕事関数の間の値である。
[Appendix 32]
In Additional Statement 24 or 25, the metal element is titanium, the second metal element is aluminum, and the work function of the metal film is a value between the work function of TiN or TiAlN and the work function of TiAlC.
〔付記33〕
 本発明の他の態様によれば、
 金属元素と窒素または炭素とを含む第1の層を形成する処理を第1の所定回数行う工程と、
 前記金属元素と窒素と炭素とを含む第2の層を形成する処理を第2の所定回行う工程と、
 を交互に第3の所定回数行うことで、基板上に、窒素と炭素とを所定の割合で含む金属膜を成膜する工程を有する基板処理方法が提供される。
[Appendix 33]
According to another aspect of the invention,
Performing a process for forming a first layer containing a metal element and nitrogen or carbon for a first predetermined number of times;
Performing a second predetermined treatment for forming a second layer containing the metal element, nitrogen and carbon;
By alternately performing the third predetermined number of times, a substrate processing method including a step of forming a metal film containing nitrogen and carbon at a predetermined ratio on the substrate is provided.
〔付記34〕
 本発明の他の態様によれば、
 基板に対して、金属元素を含む第1原料と、窒素または炭素を含む第2原料とを交互に第1の所定回数供給する工程と、
 前記基板に対して、炭素を含む第3原料と、前記金属元素を含む第4原料と、窒素を含む第5原料とを交互に第2の所定回数供給する工程と、
 を交互に第3の所定回数行うことで、前記基板上に、窒素と炭素とを所定の割合で含む金属膜を成膜する工程を有する基板処理方法が提供される。
[Appendix 34]
According to another aspect of the invention,
Supplying a first raw material containing a metal element and a second raw material containing nitrogen or carbon to the substrate alternately for a first predetermined number of times;
Supplying a third raw material containing carbon, a fourth raw material containing the metal element, and a fifth raw material containing nitrogen alternately to the substrate a second predetermined number of times;
By alternately performing the third predetermined number of times, there is provided a substrate processing method including a step of forming a metal film containing nitrogen and carbon at a predetermined ratio on the substrate.
〔付記35〕
 付記33または34において、前記第1の所定回数、前記第2の所定回数および前記第3の所定回数は、前記金属膜に含める窒素または炭素の割合に応じて決定される。
[Appendix 35]
In Supplementary Note 33 or 34, the first predetermined number of times, the second predetermined number of times, and the third predetermined number of times are determined according to a ratio of nitrogen or carbon included in the metal film.
〔付記36〕
 本発明の他の態様によれば、
 基板を収容する処理室と、
 前記処理室に接続され、前記処理室に収容された前記基板に対して、金属元素を含む金属含有原料を供給する金属含有原料供給系と、
 前記処理室に接続され、前記処理室に収容された前記基板に対して、窒素を含む窒素含有原料を供給する窒素含有原料供給系と、
 前記処理室に接続され、前記処理室に収容された前記基板に対して、炭素を含む炭素含有原料を供給する炭素含有原料供給系と、
 前記金属含有原料供給系、前記窒素含有原料供給系および前記炭素含有原料供給系に接続されると共に、前記処理室に収容された前記基板に対して、前記金属含有原料と前記窒素含有原料または前記炭素含有原料とを交互に第1の所定回数供給する処理と、前記金属含有原料と前記窒素含有原料と前記炭素含有原料とを交互に第2の所定回数供給する処理とを、交互に第3の所定回数行うことで、前記基板上に、窒素と炭素とを所定の割合で含む金属膜を成膜する処理を、前記金属含有原料供給系、前記窒素含有原料供給系および前記炭素含有原料供給系を制御して実行させるように構成された制御部と、
 を有する基板処理装置が提供される。
[Appendix 36]
According to another aspect of the invention,
A processing chamber for accommodating the substrate;
A metal-containing raw material supply system for supplying a metal-containing raw material containing a metal element to the substrate connected to the processing chamber and housed in the processing chamber;
A nitrogen-containing material supply system for supplying a nitrogen-containing material containing nitrogen to the substrate connected to the processing chamber and housed in the processing chamber;
A carbon-containing raw material supply system for supplying a carbon-containing raw material containing carbon to the substrate connected to the processing chamber and housed in the processing chamber;
The metal-containing raw material supply system, the nitrogen-containing raw material supply system and the carbon-containing raw material supply system are connected to the substrate housed in the processing chamber and the metal-containing raw material and the nitrogen-containing raw material or the A process of alternately supplying a carbon-containing raw material for a first predetermined number of times and a process of alternately supplying the metal-containing raw material, the nitrogen-containing raw material, and the carbon-containing raw material for a second predetermined number of times are thirdly performed. Performing the process of forming a metal film containing nitrogen and carbon at a predetermined ratio on the substrate, the metal-containing raw material supply system, the nitrogen-containing raw material supply system, and the carbon-containing raw material supply. A control unit configured to control and execute the system;
A substrate processing apparatus is provided.
〔付記37〕
 付記36において、前記第1の所定回数、前記第2の所定回数および前記第3の所定回数は、前記金属膜に含める前記窒素または前記炭素の割合に応じて決定される。
[Appendix 37]
In Supplementary Note 36, the first predetermined number of times, the second predetermined number of times, and the third predetermined number of times are determined according to a ratio of the nitrogen or the carbon included in the metal film.
〔付記38〕
 本発明の他の態様によれば、
 金属元素と窒素または炭素とを含む第1の層を形成する処理を第1の所定回数行う手順と、
 前記金属元素と窒素と炭素とを含む第2の層を形成する処理を第2の所定回行う手順と、
 を交互に第3の所定回数行うことで、基板上に、前記窒素と前記炭素とを所定の割合で含む金属膜を形成する手順をコンピュータに実行させるプログラムが提供される。
[Appendix 38]
According to another aspect of the invention,
A procedure of performing a first predetermined number of times to form a first layer containing a metal element and nitrogen or carbon;
A step of performing a process for forming a second layer containing the metal element, nitrogen and carbon for a second predetermined time;
By alternately performing the third predetermined number of times, there is provided a program for causing a computer to execute a procedure for forming a metal film containing nitrogen and carbon at a predetermined ratio on a substrate.
〔付記39〕
 付記38において、前記第1の所定回数、前記第2の所定回数および前記第3の所定回数は、前記金属膜に含める窒素または炭素の割合に応じて決定される。
[Appendix 39]
In Supplementary Note 38, the first predetermined number of times, the second predetermined number of times, and the third predetermined number of times are determined according to a ratio of nitrogen or carbon included in the metal film.
〔付記40〕
 本発明の他の態様によれば、
 金属元素と窒素または炭素とを含む第1の層を形成する処理を第1の所定回数行う手順と、
 前記金属元素と前記窒素と前記炭素とを含む第2の層を形成する処理を第2の所定回行う手順と、
 を交互に第3の所定回数行うことで、基板上に、窒素と炭素とを所定の割合で含む金属膜を形成する手順をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
[Appendix 40]
According to another aspect of the invention,
A procedure of performing a first predetermined number of times to form a first layer containing a metal element and nitrogen or carbon;
A step of performing a process for forming a second layer containing the metal element, the nitrogen, and the carbon for a second predetermined time;
By alternately performing the third predetermined number of times, there is provided a computer-readable recording medium on which a program for causing a computer to execute a procedure for forming a metal film containing nitrogen and carbon at a predetermined ratio on a substrate is provided. The
〔付記41〕
 付記40において、前記第1の所定回数、前記第2の所定回数および前記第3の所定回数は、前記金属膜に含める窒素または炭素の割合に応じて決定される。
[Appendix 41]
In Supplementary Note 40, the first predetermined number of times, the second predetermined number of times, and the third predetermined number of times are determined according to a ratio of nitrogen or carbon included in the metal film.
 この出願は、2013年1月18日に出願された日本出願特願2013-006965、2014年1月16日に出願された日本出願特願2014-005809、2013年1月22日に日本出願特願2013-009577を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。 This application includes Japanese Patent Application No. 2013-006965 filed on Jan. 18, 2013, Japanese Application No. 2014-005809 filed on Jan. 16, 2014, and Japanese Application No. 2014-005809 filed on Jan. 22, 2013. We claim the benefit of priority on the basis of application 2013-009577, the entire disclosure of which is incorporated herein by reference.
 以上のように、本発明は、例えば、半導体装置の製造方法、半導体ウエハやガラス基板等の基板を処理する基板処理装置等に利用することができる。 As described above, the present invention can be used for, for example, a method for manufacturing a semiconductor device, a substrate processing apparatus for processing a substrate such as a semiconductor wafer or a glass substrate, and the like.
  10・・・基板処理装置
  200・・・ウエハ
  201・・・処理室
  202・・・処理炉
DESCRIPTION OF SYMBOLS 10 ... Substrate processing apparatus 200 ... Wafer 201 ... Processing chamber 202 ... Processing furnace

Claims (10)

  1.  基板に対して金属元素を含む金属含有ガスと炭素含有ガスを供給することで、前記基板上に前記第1の金属元素および炭素を含む第1の層を形成する工程と、
     前記第1の層が形成された前記基板に対して窒素含有ガスを供給することで、前記第1の層を窒化して前記第1の金属元素、炭素および窒素を含む第2の層を形成する工程と、
     を交互に所定回数ずつ実施することで、基板上に所定膜厚の前記第1の金属元素、炭素および窒素を含む膜を形成し、前記第2の層を形成する工程の実施回数に対する前記第1の層を形成する工程の実施回数を制御することにより、前記第1の金属元素、炭素および窒素を含む膜の仕事関数が所望の値となるよう調整する工程を有する半導体装置の製造方法。
    Forming a first layer containing the first metal element and carbon on the substrate by supplying a metal-containing gas containing a metal element and a carbon-containing gas to the substrate;
    By supplying a nitrogen-containing gas to the substrate on which the first layer has been formed, the first layer is nitrided to form a second layer containing the first metal element, carbon and nitrogen And a process of
    Are alternately performed a predetermined number of times to form a film containing the first metal element, carbon and nitrogen with a predetermined thickness on the substrate, and the second layer is formed with respect to the number of executions of the step of forming the second layer. A method for manufacturing a semiconductor device, comprising: adjusting a work function of a film containing the first metal element, carbon, and nitrogen to a desired value by controlling the number of times of performing the step of forming one layer.
  2.  前記第1の金属元素はタンタル(Ta)、コバルト(Co)、タングステン(W)、モリブデン(Mo)、ルテニウム(Ru)、イットリウム(Y)、ランタン(La)、ジルコニウム(Zr)、ハフニウム(Hf)からなる群より選択された少なくとも一つの元素を含む請求項1に記載の半導体装置の製造方法。 The first metal element is tantalum (Ta), cobalt (Co), tungsten (W), molybdenum (Mo), ruthenium (Ru), yttrium (Y), lanthanum (La), zirconium (Zr), hafnium (Hf). The method for manufacturing a semiconductor device according to claim 1, comprising at least one element selected from the group consisting of:
  3.  前記金属含有ガスはTiCl、TaClのいずれかである請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the metal-containing gas is one of TiCl 4 and TaCl 4 .
  4.  前記炭素含有ガスはHf[C(CH)](CHを含む請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the carbon-containing gas contains Hf [C 5 H 4 (CH 3 )] 2 (CH 3 ) 2 .
  5.  前記炭素含有ガスは前記第1の金属元素とは異なる第2の金属元素を含む請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the carbon-containing gas includes a second metal element different from the first metal element.
  6.  前記第2の金属元素はハフニウムを含む請求項5に記載の半導体装置の製造方法。 6. The method of manufacturing a semiconductor device according to claim 5, wherein the second metal element includes hafnium.
  7.  前記第2の層を形成する工程の実施回数と比較して前記第1の層を形成する工程の実施回数を多くすることにより、前記第1の金属元素、炭素および窒素を含む膜の仕事関数が高くなるよう調整する請求項1に記載の半導体装置の製造方法。 The work function of the film containing the first metal element, carbon and nitrogen is increased by increasing the number of times of performing the step of forming the first layer as compared with the number of times of performing the step of forming the second layer. The method for manufacturing a semiconductor device according to claim 1, wherein the adjustment is performed so that the height of the semiconductor device increases.
  8.  前記第2の層を形成する工程の実施回数に対する前記第1の層を形成する工程の実施回数を制御することにより前記第1の金属元素、炭素および窒素を含む膜に含まれる炭素の濃度を調整して前記第1の金属元素、炭素および窒素を含む膜の仕事関数が所望の値となるよう調整する請求項1に記載の半導体装置の製造方法。 The concentration of carbon contained in the film containing the first metal element, carbon and nitrogen is controlled by controlling the number of times of the step of forming the first layer with respect to the number of times of the step of forming the second layer. The method for manufacturing a semiconductor device according to claim 1, wherein the work function of the film containing the first metal element, carbon, and nitrogen is adjusted to be a desired value.
  9.  金属元素と窒素または炭素とを含む第1の層を形成する処理を第1の所定回数行う工程と、
     前記金属元素と窒素と炭素とを含む第2の層を形成する処理を第2の所定回数行う工程と、
     を交互に第3の所定回数行うことで、基板上に、窒素と炭素とを所定の割合で含む金属膜を成膜する工程を有する半導体装置の製造方法。
    Performing a process for forming a first layer containing a metal element and nitrogen or carbon for a first predetermined number of times;
    Performing a second predetermined number of times to form a second layer containing the metal element, nitrogen and carbon;
    Are alternately performed for a third predetermined number of times to form a metal film containing nitrogen and carbon at a predetermined ratio on the substrate.
  10. 基板を収容する処理室と、
     前記処理室内の基板に対して金属元素を含む金属含有ガスを供給する金属含有ガス供給系と、
     前記処理室内の基板に対して炭素含有ガスを供給する炭素含有ガス供給系と、
     前記処理室内の基板に対して窒素含有ガスを供給する窒素含有ガス供給系と、
     前記処理室内の基板に対して前記金属含有ガスと前記炭素含有ガスを供給することで、前記基板上に前記金属元素および炭素を含む第1の層を形成する処理と、前記第1の層が形成された前記基板に対して窒素含有ガスを供給することで、前記第1の層を窒化して前記金属元素、炭素および窒素を含む第2の層を形成する処理と、を交互に所定回数ずつ実施することで、基板上に所定膜厚の前記金属元素、炭素および窒素を含む膜を形成し、前記第2の層を形成する工程の実施回数に対する前記第1の層を形成する工程の実施回数を制御することにより、前記金属元素、炭素および窒素を含む膜の仕事関数が所望の値となるよう調整するように、前記金属含有ガス供給系、前記炭素含有ガス供給系および前記窒素含有ガス供給系を制御するよう構成される制御部と、
     を有する基板処理装置。

     
    A processing chamber for accommodating the substrate;
    A metal-containing gas supply system for supplying a metal-containing gas containing a metal element to the substrate in the processing chamber;
    A carbon-containing gas supply system for supplying a carbon-containing gas to the substrate in the processing chamber;
    A nitrogen-containing gas supply system for supplying a nitrogen-containing gas to the substrate in the processing chamber;
    A process of forming a first layer containing the metal element and carbon on the substrate by supplying the metal-containing gas and the carbon-containing gas to a substrate in the processing chamber; and A process of nitriding the first layer to form the second layer containing the metal element, carbon, and nitrogen by supplying a nitrogen-containing gas to the formed substrate is alternately performed a predetermined number of times. Forming the first layer with respect to the number of executions of the step of forming the second layer by forming a film containing the metal element, carbon and nitrogen with a predetermined thickness on the substrate. By controlling the number of executions, the metal-containing gas supply system, the carbon-containing gas supply system, and the nitrogen-containing gas are adjusted so that the work function of the film containing the metal element, carbon, and nitrogen is adjusted to a desired value. I will control the gas supply system When configured control unit,
    A substrate processing apparatus.

PCT/JP2014/050751 2013-01-18 2014-01-17 Semiconductor device producing method and substrate treatment device WO2014112572A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/801,984 US20150325447A1 (en) 2013-01-18 2015-07-17 Method of manufacturing semiconductor device and substrate processing apparatus
US15/961,277 US20180247819A1 (en) 2013-01-18 2018-04-24 Method of manufacturing semiconductor device and substrate processing apparatus
US16/240,197 US10388530B2 (en) 2013-01-18 2019-01-04 Method of manufacturing semiconductor device and substrate processing apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-006965 2013-01-18
JP2013006965 2013-01-18
JP2013-009577 2013-01-22
JP2013009577A JP6061385B2 (en) 2013-01-22 2013-01-22 Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2014005809A JP2014158019A (en) 2013-01-18 2014-01-16 Method of manufacturing semiconductor device, substrate processing device, and program
JP2014-005809 2014-01-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/801,984 Continuation US20150325447A1 (en) 2013-01-18 2015-07-17 Method of manufacturing semiconductor device and substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2014112572A1 true WO2014112572A1 (en) 2014-07-24

Family

ID=51209661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050751 WO2014112572A1 (en) 2013-01-18 2014-01-17 Semiconductor device producing method and substrate treatment device

Country Status (1)

Country Link
WO (1) WO2014112572A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021068894A (en) * 2019-10-21 2021-04-30 三星電子株式会社Samsung Electronics Co.,Ltd. Manufacturing method for metal nitride film and electronic element including metal nitride film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034511A (en) * 2008-06-25 2010-02-12 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device and substrate treatment device
JP2012069942A (en) * 2010-08-27 2012-04-05 Toshiba Corp Gate electrode of multigate field-effect transistor and method of manufacturing the same
JP2012119432A (en) * 2010-11-30 2012-06-21 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, substrate processing apparatus, and semiconductor device
JP2012124215A (en) * 2010-12-06 2012-06-28 Panasonic Corp Semiconductor device and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034511A (en) * 2008-06-25 2010-02-12 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device and substrate treatment device
JP2012069942A (en) * 2010-08-27 2012-04-05 Toshiba Corp Gate electrode of multigate field-effect transistor and method of manufacturing the same
JP2012119432A (en) * 2010-11-30 2012-06-21 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, substrate processing apparatus, and semiconductor device
JP2012124215A (en) * 2010-12-06 2012-06-28 Panasonic Corp Semiconductor device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021068894A (en) * 2019-10-21 2021-04-30 三星電子株式会社Samsung Electronics Co.,Ltd. Manufacturing method for metal nitride film and electronic element including metal nitride film
JP7279003B2 (en) 2019-10-21 2023-05-22 三星電子株式会社 METHOD FOR MANUFACTURING METAL NITRIDE FILM, AND ELECTRONIC DEVICE INCLUDING METAL NITRIDE FILM

Similar Documents

Publication Publication Date Title
US10388530B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
US9418855B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and non-transitory computer-readable recording medium
US9837262B2 (en) Method of manufacturing a SiOCN film, substrate processing apparatus and recording medium
US9455137B2 (en) Method of manufacturing semiconductor device
KR101434116B1 (en) Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus and computer-readable recording medium
US8946092B2 (en) Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus
TWI492300B (en) Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus and non-transitory computer-readable recording medium
US10066298B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20160233085A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
KR101737215B1 (en) Method and apparatus of manufacturing semiconductor device, and computer program
US9502233B2 (en) Method for manufacturing semiconductor device, method for processing substrate, substrate processing device and recording medium
JP6469495B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2007113103A (en) Film deposition method, film deposition system, and recording medium
JP6061385B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
WO2014112572A1 (en) Semiconductor device producing method and substrate treatment device
JP2014158019A (en) Method of manufacturing semiconductor device, substrate processing device, and program
US20230212738A1 (en) Method and device for forming tungsten film, and device for forming intermediate film before forming tungsten film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740679

Country of ref document: EP

Kind code of ref document: A1