WO2014112543A1 - Transparent resin layer composition, receiving layer for inkjet inks which is produced using same, and display element - Google Patents

Transparent resin layer composition, receiving layer for inkjet inks which is produced using same, and display element Download PDF

Info

Publication number
WO2014112543A1
WO2014112543A1 PCT/JP2014/050634 JP2014050634W WO2014112543A1 WO 2014112543 A1 WO2014112543 A1 WO 2014112543A1 JP 2014050634 W JP2014050634 W JP 2014050634W WO 2014112543 A1 WO2014112543 A1 WO 2014112543A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
transparent resin
meth
composition
emulsion
Prior art date
Application number
PCT/JP2014/050634
Other languages
French (fr)
Japanese (ja)
Inventor
今野 高志
和久 浦野
藤城 光一
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to KR1020157018038A priority Critical patent/KR20150106882A/en
Priority to JP2014557489A priority patent/JPWO2014112543A1/en
Priority to CN201480005057.9A priority patent/CN104918995A/en
Publication of WO2014112543A1 publication Critical patent/WO2014112543A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5254Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1802C2-(meth)acrylate, e.g. ethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1812C12-(meth)acrylate, e.g. lauryl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate

Definitions

  • the present invention relates to a transparent resin layer composition, a receiving layer for inkjet ink using the same, and a display element, and more specifically, a transparent resin layer composition for forming an ink receiving layer when drawing using inkjet ink. And a receiving layer for inkjet ink and a display element.
  • inkjet printers are not only used in homes, but are also being considered for use in the manufacture of electronic devices such as the manufacture of large advertising signs and the like, the printing of color filters for liquid crystal displays and alignment films.
  • pigment inks which are known to be capable of forming printed images having high colorability comparable to dye inks and superior in durability compared to conventional dye inks, has recently been in the field of printed matter. Then, it is becoming mainstream.
  • pigment inks used for electronic devices solvent-based pigment inks in which pigment ink particles are dispersed in an organic solvent have come to be suitably used because of device reliability requirements. Also called pigment ink. Since the ink particles themselves are relatively hydrophobic, the ink can be suitably used for forming a printed image having a level of water resistance that does not cause bleeding of the printed image due to moisture in the environment on the printed substrate. Has attracted attention in recent years.
  • Patent Document 2 discloses that 50 to 100% by weight of methyl methacrylate and (meth) acrylic or vinylic monomers other than methylmethacrylate.
  • a receiving agent is disclosed which forms an ink receiving layer composed mainly of an acrylic resin composed of 0 to 50% by weight of a monomer and having a weight average molecular weight of 300,000 to 1,000,000.
  • the ink receiving layer described in Patent Document 2 can sufficiently absorb the organic solvent contained in the ink when inkjet printing is performed on a relatively large medium such as an outdoor advertisement. Therefore, it may cause a significant decrease in the drying property of the ink and the occurrence of bleeding and cracks in the printed image.
  • the ink receiving layer described in Patent Document 2 is formed by using an ink jet receiving agent in which the specific acrylic resin as described above is dissolved in an organic solvent. In some cases, a process for volatilizing a large amount of an organic solvent is required.
  • Patent Document 3 discloses that ink jet ink acceptance for oil pigment inks in which a vinyl polymer having a glass transition temperature of 10 to 70 ° C. and a weight average molecular weight of 800,000 or more is dispersed in an aqueous medium. Agents are disclosed.
  • oil-based ink-jet ink is dropped on a coating film obtained after drying the ink-jet receiving agent, there is a problem that when the molecular weight is 800,000 or more, the absorption speed is slow and the droplet diameter is widened. This is the same even when the glass transition temperature of the vinyl polymer is 70 ° C. or higher, and the droplet spreading has not been controlled.
  • JP-A-11-216945 Japanese Patent Laid-Open No. 2004-291561 Japanese Patent No. 4444218
  • the present invention sufficiently receives the landed ink-jet ink and stabilizes the shape after drying while controlling the droplet spreading diameter.
  • An object of the present invention is to provide a transparent resin layer composition for forming a receiving layer.
  • the present invention is obtained by drawing an inkjet ink on a receiving layer for inkjet ink formed using this transparent resin layer composition and a transparent resin layer formed from the transparent resin layer composition.
  • An object of the present invention is to provide a display element.
  • the present inventors have determined that the glass transition temperature and the molecular weight of the resin constituting the Elsion particles in the transparent resin layer composition suppress the spread diameter of the ink droplets or the shape after drying.
  • the particle size of Elsion particles in the transparent resin layer composition it is possible to solve the problems of the prior art by coexisting a predetermined surfactant or organic solvent. The present invention was completed.
  • the present invention is obtained by polymerizing a mixed monomer containing (1) methyl methacrylate (i) and (meth) acrylic acid alkyl ester (ii) having 2 to 8 carbon atoms in the alkyl group by emulsion polymerization.
  • the glass transition temperature of the contained resin is 10 ° C. or more and less than 70 ° C.
  • the weight average molecular weight is 100,000 or more and less than 800,000
  • the number average particle size is 10 nm or more and less than 500 nm (meth).
  • a transparent resin layer composition comprising an alkyl acrylate copolymer resin fine particle dispersed emulsion, (2) a surfactant having fluidity at room temperature of 23 ° C., and (3) an organic solvent. It is.
  • the present invention is an ink-jet ink receiving layer in which a transparent resin layer formed using the transparent resin layer composition is formed on a support substrate. Furthermore, this invention is a display element obtained by drawing an inkjet ink on the transparent resin layer formed using the said transparent resin layer composition.
  • (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion in the present invention (i) using methyl methacrylate as an essential component so that the glass transition temperature is in the range of 10 ° C. or higher and lower than 70 ° C. (Ii) A (meth) acrylic acid alkyl ester having 2 to 8 carbon atoms is introduced and a mixed monomer containing at least (i) and (ii) is polymerized by emulsion polymerization.
  • the resin contained in the obtained (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion has a weight average molecular weight of 100,000 to less than 800,000 and a number average particle diameter of 10 to 500 nm. Less than.
  • the alkyl group carbon number of the (meth) acrylic acid alkyl ester of (ii) above shows the tackiness of the coating film made of the composition of the present invention or the stability of the pixel shape formed on the coating film with inkjet ink.
  • the number of carbon atoms is 2 to 8 because there is a risk that the property may be lowered.
  • the meaning of the mixed monomer is lost in the case of (i) methyl methacrylate.
  • the number of carbon atoms is 8 or more, the tackiness of the transparent resin layer is remarkably exhibited, or pixel cracking may occur due to drying performed after ink printing and drawing, which is not preferable.
  • the (meth) acrylic acid alkyl ester having 2 to 8 carbon atoms in the alkyl group (ii) is a kind of monomer constituting the (meth) acrylic acid alkyl ester copolymer.
  • Examples include ethyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, (meth) 2-ethylhexyl acrylate, octyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4- (meth) acrylic acid 4- Hydroxybutyl etc. are mentioned.
  • (meth) acrylic acid alkyl ester means acrylic acid alkyl ester or methacrylic acid alkyl ester.
  • the glass transition temperature of the resin in the (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion is in the range of 10 ° C. or higher and lower than 70 ° C.
  • the temperature is lower than 10 ° C.
  • the pixels formed by printing when absorbing and drying the solvent in the ink are connected to adjacent pixels due to the outflow of the resin, and the color inks are mixed.
  • the temperature is 70 ° C.
  • the solvent in the ink is poorly absorbed, so that the solvent wets and spreads, and an orderly pixel shape with a desired size may not be obtained. Since the penetration into the inside becomes uneven, the flatness of the coating film around the pixel is remarkably lowered, and as a result, the transparency may be lowered.
  • weight ratio of methyl methacrylate (i) is less than this range, there is a risk of color mixing of printed matter and cracks in the print pixel as described above. It is desirable to be within this range because there is a concern about deterioration of the property.
  • a monomer having a crosslinking group can be introduced within a range that does not affect the above-mentioned physical properties for the purpose of preventing the strength of the transparent resin layer and inkjet ink pixel cracks.
  • examples thereof include glycidyl group-containing polymerizable monomers such as glycidyl (meth) acrylate and allyl glycidyl ether, aminoethyl (meth) acrylate, N-monoalkylaminoalkyl (meth) acrylate, (meth) acrylic acid
  • Amino group-containing polymerizable monomers such as N, N-dialkylaminoalkyl, vinyltrichlorosilane, vinyltrimethoxysilane, N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane and its hydrochloride Silyl group-containing polymerizable monomers, aziridinyl
  • Isocyanate Group and / or blocked isocyanate group-containing polymerizable monomers 2-isopropenyl-2-oxazoline, oxazoline group-containing polymerizable monomers such as 2-vinyl-2-oxazoline, and cyclohexane such as (meth) acrylate dicyclopentenyl.
  • Pentanyl group-containing polymerizable monomers such as allyl (meth) acrylate, carbonyl group-containing vinyl monomers such as acrolein, ethylene glycol di (meth) acrylate, 1,6-hexanediol di ( (Meth) acrylic acid ester, neopentyl glycol di (meth) acrylic acid ester, trimethylolpropane tri (meth) acrylic acid ester, polyethylene glycol di (meth) acrylic acid ester, polypropylene glycol di (meth) acrylic acid ester, diary Phthalic acid esters, divinylbenzene, allyl (meth) acrylic acid esters, etc., methylol group-containing vinyl monomers such as N-methylolacrylamide, itaconic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, citraconic acid, cinnamon There are carboxyl group-containing vinyl monomers such as acids.
  • the weight average molecular weight of the resin in the (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion must be 100,000 or more and less than 800,000, and absorption of the solvent in the ink is less than 100,000. Although it is good, since the drying property is poor, bleeding occurs in the pixels and the image quality of the printed matter is deteriorated. On the other hand, when the amount is 800,000 or more, the solvent is poorly absorbed, so that the solvent wets and spreads, and an orderly shape with a desired size cannot be obtained.
  • the particle diameter of the (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion must be 10 nm or more and less than 500 nm in terms of number average particle diameter, and those less than 10 nm can be used in various monomer mixtures in the present invention. It cannot be obtained in the emulsion polymerization method employed. On the other hand, those having a thickness of 500 nm or more are not uniform in ink absorbability, have irregularities at the end of the dots and cannot form an orderly pixel shape, and the occurrence of aggregates is observed as the particle size increases. The transparency of the transparent resin layer composition is not preferable because it lacks stability.
  • the number average particle size referred to here is an average particle size obtained by analyzing the autocorrelation function obtained by the dynamic light scattering method by the cumulant method.
  • the above emulsion polymerization method is not particularly limited, and the above monomer mixture, polymerization initiator, and optionally chain transfer agent and emulsifier are continuously supplied to the aqueous medium at a predetermined temperature and with stirring. It is obtained by doing it. If the concentration of the monomer mixture and the emulsifier mixture is 10 to 80% by weight based on the total amount charged, a (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion can be stably obtained. In the emulsion of the present invention, 20 to 50% by weight is preferable for further stabilization.
  • polymerization initiator examples include persulfates such as ammonium persulfate, potassium persulfate and sodium persulfate, organic peroxides such as benzoyl peroxide, cumene hydroperoxide and tert-butyl hydroperoxide, Hydrogen peroxide etc. can be mentioned, radical polymerization using only these peroxides, or reducing agents such as the above-mentioned peroxides and ascorbic acid, metal salts of formaldehyde sulfoxylate, sodium thiosulfate, ferric chloride, etc.
  • persulfates such as ammonium persulfate, potassium persulfate and sodium persulfate
  • organic peroxides such as benzoyl peroxide, cumene hydroperoxide and tert-butyl hydroperoxide
  • Hydrogen peroxide etc. can be mentioned, radical polymerization using only these peroxides, or reducing agents such as the above-mentione
  • a redox polymerization initiator system in combination with azo polymerization initiators such as 4,4′-azobis (4-cyanovaleric acid) and 2,2′-azobis (2-amidinopropane) dibasic acid. These can be used singly or in combination.
  • the emulsifier examples include anionic surfactants, nonionic surfactants, cationic surfactants, and zwitterionic surfactants, but from the applicability to the composition of the present invention. It is desirable to use an anionic surfactant and a nonionic surfactant, each of which can be used alone or in combination of two or more.
  • anionic surfactant examples include higher fatty acid salts such as sodium oleate, alkylaryl sulfonates such as sodium dodecylbenzene sulfonate, alkyl sulfate esters such as sodium lauryl sulfate, and polyoxyethylene lauryl ether.
  • Polyoxyethylene alkyl ether sulfates such as sodium sulfate, polyoxyethylene alkylaryl ether sulfates such as sodium polyoxyethylene nonylphenyl ether sulfate, sodium monooctyl sulfosuccinate, sodium dioctyl sulfosuccinate, polyoxyethylene lauryl sulfosuccinic acid Examples thereof include alkylsulfosuccinic acid ester salts such as sodium and derivatives thereof.
  • nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether and other polyoxyethylene alkyl ethers.
  • Sorbitan higher fatty acid esters such as oxyethylene alkylphenyl ethers, sorbitan monolaurate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene sorbitan higher fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene mono Polyoxyethylene higher fatty acid esters such as laurate and polyoxyethylene monostearate, oleic acid monoglyceride, stearic acid monoglyceride Glycerine higher fatty acid esters and the like, other, polyoxyethylene - can be exemplified polyoxypropylene block copolymers and the like.
  • reactive surfactants can be mentioned as surfactants other than those exemplified above.
  • examples include alkylsulfosuccinic acid alkenyl ether salt systems, alkylsulfosuccinic acid alkenyl ester salt systems, methylene bispolyoxyethylene alkylphenyl alkenyl ether sulfate salt systems, alkylalkenyl succinic acid ester salt systems, polyoxyalkylene (meth) acrylates.
  • Sulfate ester polyoxyalkylene alkyl ether aliphatic unsaturated dicarboxylic acid ester salt, (meth) acrylic acid sulfoalkyl ester salt, dihydroxyalkyl (meth) acrylate sulfate ester salt, mono or di (glycerol- 1-alkylphenyl-3-allyl-2-polyoxyalkylene ether) phosphate ester-based, polyoxyalkylene alkylphenyl ether (meth) acrylate-based reactive surfactant It can be exemplified.
  • the general addition amount of the surfactants exemplified as these emulsifiers is 0.1 to 20% by weight with respect to the total amount of the essential monomer components described above, but the stability of the composition of the present invention and the aforementioned Considering printability, 1 to 15% by weight is preferable.
  • the surfactant having fluidity (2) is added separately from the above emulsifier, and indicates a liquid or slurry surfactant having fluidity at room temperature of 23 ° C. It is a mixture of one or more selected from anionic surfactants, nonionic surfactants, silicon surfactants, and fluorine surfactants.
  • the surfactant not only improves the penetrability of the printing ink and prevents ink bleeding, but also improves the stability of the composition and the leveling property when applied to the substrate, and the antifoaming property. Since an effect such as improvement is obtained, it is an essential component for the composition of the present invention.
  • anionic surfactants include higher fatty acid salts such as sodium oleate, alkylaryl sulfonates such as sodium dodecylbenzene sulfonate, alkyl sulfate salts such as sodium lauryl sulfate, polyoxyethylene lauryl ether sodium sulfate Polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene alkylaryl ether sulfates such as sodium polyoxyethylene nonylphenyl ether sulfate, sodium monooctyl sulfosuccinate, sodium dioctyl sulfosuccinate, sodium polyoxyethylene lauryl sulfosuccinate, etc.
  • alkylsulfosuccinic acid ester salts examples thereof include alkylsulfosuccinic acid ester salts and derivatives thereof.
  • the alkyl chain preferably has 4 to 18 carbon atoms
  • the polyoxyethylene chain preferably has 4 to 22 oxyethylene as a repeating unit.
  • nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether, polyoxyethylene such as polyoxyethylene octylphenyl ether and polyoxyethylene nonielphenyl ether.
  • Sorbitan higher fatty acid esters such as alkylphenyl ethers, sorbitan monolaurate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene sorbitan higher fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene monolaurate , Polyoxyethylene higher fatty acid esters such as polyoxyethylene monostearate, oleic acid monoglyceride, stearic acid monoglyceride, etc. Glycerine higher fatty acid esters, other polyoxyethylene - polyoxypropylene block copolymers and the like.
  • the alkyl chain preferably has 2 to 22 carbon atoms
  • the polyoxyethylene chain preferably has 2 to 22 oxyethylene repeating units
  • the polyoxypropylene chain has 1 to 20 oxypropylene repeating units.
  • silicone surfactants include dimethyl silicon, amino silane, acrylic silane, vinyl benzyl silane, vinyl benzicyl amino silane, glycid silane, mercapto silane, dimethyl silane, polydimethyl siloxane, polyalkoxy siloxane, hydrogen modified siloxane, vinyl modified.
  • alkylene oxide-modified siloxane is exemplified as one having high applicability to the composition of the present invention, and a copolymer resin with a (meth) acrylic acid alkyl ester compound in which the skeleton is further incorporated is applicable. Is higher and more preferable.
  • fluorosurfactant known ones can be used.
  • fluorosurfactant known ones can be used.
  • the addition amount of the surfactant is preferably an addition amount that does not impair the printing properties, tackiness and the like on the coating film, and is 0.1 to 10% by weight based on the total amount of the composition of the present invention. Is preferred. When the addition amount is 0.1% by weight or less, the composition lacks stability or the effects such as leveling properties are reduced. In addition, when the content is 10% by weight or more, the ink absorption ability is remarkably lowered to cause bleeding and repelling, and the coating film strength tends to be remarkably lowered. 5% by weight is more preferred.
  • the organic solvent (3) provides an effect of preventing skinning due to drying of the composition when the composition of the present invention is applied by a coating method described later.
  • An essential ingredient When no additive is added, dry foreign matter accumulates on the coating equipment during continuous coating, resulting in adhesion of foreign matter on the coating film, deterioration of the flatness of the coating film, and deterioration of the image quality of the ink print. There is a fear.
  • the properties required for the organic solvent are preferably those having miscibility with an aqueous medium and a boiling point of 150 to 300 ° C. The reason for this is that the effect of preventing skinning cannot be obtained when the boiling point is 150 ° C. or lower, and when 300 ° C. or higher, the drying property deteriorates and the ink absorbability tends to decrease, or tackiness tends to be exhibited. .
  • organic solvent examples include alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, phenyl ether, ethylene glycol Monobenzyl ether, ethylene glycol monoethyl hexyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether Ethers such as ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene
  • the addition amount of the organic solvent is preferably such that it does not impair the printing properties and tackiness of the coating film, and is preferably 1 to 20% by weight based on the total amount of the composition of the present invention.
  • the addition amount is less than 1% by weight, the effect of preventing skinning cannot be obtained.
  • it exceeds 20% by weight the ink absorption ability is remarkably lowered to cause bleeding and repellency, or the coating film strength is significantly lowered and the transportability of the coated substrate is lowered due to the appearance of the tackiness of the coating film. There is a tendency.
  • the transparent resin layer of the present invention is obtained by coating the composition of the present invention on a supporting substrate such as glass, polyethylene terephthalate film, polycarbonate film, cycloolefin copolymer film, polyimide film, polyethylene naphthalate film, and drying.
  • the coating method includes spray coating, spin coating, die coating, gravure coating, knife coating, dip coating, comma coating, kiss coating, curtain coating, air knife coating, blade coating, reverse roll coating, slit coating, etc.
  • a drying method any of an in-line coating method and an offline coating method in which a hot air dryer is arranged can be applied.
  • the transparent resin layer of the present invention is excellent in transparency because the number average particle diameter of the resin constituting the (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion is nano-sized.
  • the transparent resin layer formed using the transparent resin layer composition in this invention draws an inkjet ink on it, for example, a color filter, a transparent conductive film, a surface protection film with a decoration, etc. It is suitable for obtaining a display element such as a liquid crystal display device, an EL display device, a touch panel, or the like.
  • the ink-jet ink that has landed sufficiently is received, the shape after drying is stabilized while controlling the droplet spreading diameter, and the transparency is excellent. Therefore, the display element constituted thereby gives a clear image.
  • Plane observation view showing the spread of dots at one dot Plan view showing the dot drawing order of 9-drop pixels
  • Plane observation diagram showing a good state of a pixel consisting of 9 drops
  • Plane observation diagram showing the state where the tear of the pixel consisting of 9 drops has occurred
  • Plan view showing pixels consisting of 9 squares
  • 3D image analysis diagram showing that pixels are formed in good condition
  • 3D image analysis diagram showing a state in which pixels are connected by the outflow of resin
  • ⁇ Glass transition temperature> The resin emulsions obtained in the following examples and comparative examples were spin-coated on a glass substrate and dried at 70 ° C. for 30 minutes. Measurement was performed using a differential scanning calorimeter.
  • the autocorrelation function obtained by the dynamic light scattering method was analyzed by the cumulant method to obtain the number average particle size.
  • a transparent resin layer composition having the composition shown above was spin-coated on a glass substrate and dried at 70 ° C. for 3 minutes to obtain a coated substrate. Then, another glass substrate was bonded to the coated surface, and 1 kg The weight was placed and left for 5 minutes, and the glass substrate was peeled off. At this time, if it can be peeled off, it was marked as ⁇ , and if it could not be peeled off, it was marked as x.
  • a substrate with a transparent resin layer having a film thickness of 10 ⁇ m obtained by the same method as above was measured with U-4000 manufactured by Hitachi High-Tech Fielding Co., Ltd., using the substrate itself as a reference with a wavelength of 400 nm.
  • ⁇ Contact angle measurement> Place a substrate with a transparent resin layer with a film thickness of ⁇ m obtained in the same manner as above on a table that is kept horizontal, drop 0.5 ⁇ l of ethyl carbitol acetate (organic solvent: ECA) droplets from the top, The contact angle 1 second after landing was measured using a high-speed contact angle meter OCAH-200 system manufactured by Eihiro Seiki Co., Ltd.
  • the ECA has a thickness of about 10 ⁇ m as shown in FIG.
  • the spread area was observed by drawing with one dot every 200 ⁇ m pitch. Those having a dot system of 80 ⁇ m or less were regarded as good wet spread areas.
  • the dot system, the pixel shape stability, and the receptive performance satisfying two of the three items were evaluated as ⁇ .
  • the transparent resin layer composition having the composition shown above is continuously applied to a 300 mm glass substrate at 280 mm without a head cleaning operation. And repeated.
  • the target number of glass substrates coated at 280 ⁇ mm is ⁇ when the number is 20 or more, ⁇ when the number is 10 or more and 20 or less continuously, and ⁇ when the number is 10 or less continuously.
  • Emulsify 160 g of that and 200 g of pure water are charged into a 1500 mL flask equipped with a stirrer, reflux condenser, dropping funnel, nitrogen inlet tube and thermometer, and the remaining 627 g of the pre-emulsified liquid is charged into the dropping funnel. After raising the temperature to 70 to 80 ° C. and holding for 30 minutes in an atmosphere, reserve from the dropping funnel Continuously added dropwise over of liquid 3 hours to terminate the polymerization and stirring continued After completion of the dropwise 5 hours. After cooling to room temperature, the solid content concentration was measured, and pure water was added so that the solid content concentration was 40% to obtain a resin emulsion 1.
  • the Tg of the resin contained in the obtained resin emulsion 1 was 41 ° C.
  • the particle diameter of the resin particles in the emulsion was 40 nm
  • the weight average molecular weight Mw 300,000.
  • the remaining 630 g of the preliminary emulsion was charged into a dropping funnel and heated to 70-80 ° C. under a nitrogen atmosphere and maintained for 30 minutes, and then the preliminary emulsion was added from the dropping funnel for 3 hours.
  • the solution was continuously dropped over a period of 5 hours after the dropping was completed, and the polymerization was terminated by stirring. After cooling to room temperature, the solid content concentration was measured, and pure water was added so that the solid content concentration was 40% to obtain a resin emulsion 2.
  • the Tg of the resin contained in the obtained resin emulsion 2 was 41 ° C.
  • the particle size of the resin particles in the emulsion was 38 nm
  • the weight average molecular weight Mw 5800000.
  • Example 5 (Synthesis Examples 5 to 7) In the same manner as in Example 1 in Table 2, methyl methacrylate and ethyl acrylate were blended.
  • polymerization was performed in the same manner as described in Synthesis Example 1, and resin emulsions 5 to 7 was obtained.
  • the glass transition temperature, particle diameter, and weight average molecular weight were measured for each. The results are shown in Examples 5 to 7 in Table 2.
  • Example 1 61.3 g of the resin emulsion 1 obtained in Synthesis Example 1, (2) 0.5 g of Emulgen 103 manufactured by Kao Corporation, (3) 10.0 g of Solfine EP manufactured by Showa Denko KK, and (4) pure 28.2 g of water was weighed, stirred and mixed for 30 minutes or more, and subjected to pressure filtration with a 1.0 ⁇ m filter at 0.5 kg / cm 2 to obtain a desired transparent resin layer composition. Next, using this, a glass substrate Corning EX-G (glass plate thickness 0.75 mm) manufactured by Corning Co., Ltd. was applied by slit coating so that the film thickness after drying was about 10 ⁇ m, and was applied on a hot plate at 70 ° C. And dried for 5 minutes to obtain a glass substrate with a transparent resin layer. The film thickness of the transparent resin layer was 11 ⁇ m and the surface was not tacky. Further, the transmittance at a wavelength of 400 nm was 92%.
  • the glass substrate with the transparent resin layer obtained as described above was placed on a table that was kept horizontal, 0.5 ⁇ l of ECA droplets were dropped from the top, and the contact angle after 1 second from the landing was measured. It was 45 °.
  • the ECA is drawn at one dot every 200 ⁇ m pitch.
  • the spreading area was observed.
  • the dot diameter immediately after drawing was 67 ⁇ m.
  • the dots are drawn with the center-to-center distance being 30 ⁇ m apart in the X and Y directions with respect to the first dot, and this is repeated continuously to draw nine drops. Pixels were formed. Thereafter, when the sample was dried at 60 ° C. for 5 minutes and observed with a microscope, the pixel shape was maintained as shown in FIG.
  • FIG. 1 the pixels of FIG. 1 were taken as one square, and as shown in FIG. 5, a further 9 squares were drawn so as to be adjacent to each other, thereby forming a total of 9 square pixels. Since the landscape as shown in FIG. 6 was observed from the 3D image analysis using the optical interference type surface roughness meter immediately after that, the grids were not connected by the outflow of the resin, and the grids were neatly arranged. ⁇ .
  • the coating film made from the composition shown in Example 1 has a high ability as the receiving layer. It was set as ⁇ evaluation judged to be a thing.
  • Example 1 Furthermore, the operation of coating the composition shown in Example 1 with a 280 mm wide slit coater head on a 300 ⁇ mm glass substrate at 280 ⁇ mm was repeated without a head cleaning operation. Since 20 or more sheets could be continuously coated at the target 280 ⁇ mm, it was evaluated as “Good”.
  • Examples 2 to 10 Transparent resin layer compositions according to Examples 2 to 10 were obtained in the same manner as in Example 1 except that (1) resin emulsions 2 to 10 obtained in Synthesis Examples 2 to 10 were used, respectively. . Next, using these, each glass substrate with a transparent resin layer was obtained in the same manner as in Example 1. Various evaluations were performed in the same manner as in Example 1, and the evaluation results are shown in Table 2.
  • Examples 11, 12, and 13 A transparent resin layer composition was obtained by applying composition A in Example 11, composition B in Example 12, and composition C in Example 13 in the composition described in Table 1 above. Next, using these, each glass substrate with a transparent resin layer was obtained in the same manner as in Example 1. And evaluation was implemented similarly to Example 1, and the evaluation result was described in Table 2.
  • the remaining 1123 g of the preliminary emulsion was charged into the dropping funnel, heated to 70-80 ° C. under a nitrogen atmosphere, and held for 30 minutes.
  • the emulsion was continuously dropped from the dropping funnel over 3 hours, and stirred for 5 hours after the dropping was completed to complete the polymerization.
  • the solid content concentration was measured, and pure water was added so that the solid content concentration was 40% to obtain a resin emulsion.
  • the Tg of the resin contained in the obtained resin emulsion was 20 ° C.
  • the particle diameter of the resin particles in the emulsion was 50 nm
  • the weight average molecular weight Mw 530000.
  • the substrate was placed on a table that was kept horizontal as described above, 0.5 ⁇ l of ECA droplet was dropped from the top, and the contact angle one second after landing was measured to be 43 °.
  • the ECA is drawn at one dot every 200 ⁇ m pitch.
  • the spreading area was observed.
  • the dot diameter immediately after drawing was 60 ⁇ m.
  • the dots are drawn with the center-to-center distance being 30 ⁇ m apart in the X and Y directions with respect to the first dot, and this is repeated continuously to draw nine drops. Pixels were formed. Thereafter, when the sample was dried at 60 ° C. for 5 minutes and observed with a microscope, the pixel was torn as shown in FIG.
  • FIG. 1 the pixels of FIG. 1 were taken as one square, and as shown in FIG. 5, eight more squares were drawn so as to be adjacent to form a total of nine square pixels. From the 3D image analysis using the optical interference type surface roughness meter immediately after that, as shown in FIG. 7, the grids were connected by the outflow of the resin.
  • the dot diameter was 60 ⁇ m, but the pixel shape stability was x and the receptive performance was x. Therefore, the coating film made from the composition shown in Comparative Example 1 has the ability as a receptive layer. X was evaluated as low.
  • Comparative Example 1 when the composition shown in Comparative Example 1 was applied to a 300 ⁇ mm glass substrate at 280 ⁇ mm using an apparatus provided with a 280 mm wide slit coater head, the operation was repeated without a head cleaning operation. Since the number of substrates that could be continuously coated at a target of 280 mm was 10 or less, it was evaluated as x.
  • Comparative Example 2 A transparent resin layer composition according to Comparative Example 2 was obtained in the same manner as Comparative Example 1 except that a resin emulsion having a monomer composition described in Comparative Example 2 of Table 3 was used. Next, using this, a glass substrate with a transparent resin layer was obtained in the same manner as in Comparative Example 1. And when evaluation similar to the comparative example 1 was implemented, since the transmittance
  • the coating film made from the composition shown in Comparative Example 2 was evaluated as x evaluation that was judged to have a low ability as a receiving layer.
  • coating property evaluation was performed. As a result, the number of substrates that could be continuously coated at a target of 280 ⁇ mm was 20 or more, so it was rated as “Good”.
  • Comparative Example 3 A transparent resin layer composition according to Comparative Example 3 was obtained in the same manner as Comparative Example 1 except that the resin emulsion having the monomer composition described in Comparative Example 3 of Table 3 was used. Next, using this, a glass substrate with a transparent resin layer was obtained in the same manner as in Comparative Example 1. Then, when the same evaluation as in Comparative Example 1 was performed, the dot diameter was as small as 53 ⁇ m. However, the pixel breaks as shown in FIG. 4 and the connections between the squares as shown in FIG. 7 were observed. The pixel shape stability and the acceptance performance evaluation were evaluated as x. From the above evaluation results, the coating film made from the composition shown in Comparative Example 3 was evaluated as x evaluation that was judged to have low ability as a receiving layer.
  • coating property evaluation was performed, and the number of substrates that could be continuously coated at a target of 280 ⁇ mm was 10 or less.
  • Comparative Example 4 A transparent resin layer composition according to Comparative Example 4 was obtained in the same manner as Comparative Example 1 except that the resin emulsion having the monomer composition described in Comparative Example 4 in Table 3 was used. Next, using this, a glass substrate with a transparent resin layer was obtained in the same manner as in Comparative Example 1. When the same evaluation as in Comparative Example 1 was performed, the dot diameter was as large as 110 ⁇ m, and the pixels and grids as shown in FIGS. 2 and 5 could not be drawn. The evaluation was x, and the coating film made from the composition shown in Comparative Example 4 was evaluated as x, which was judged to have a low ability as a receiving layer.
  • coating property evaluation was performed. As a result, the number of substrates that could be continuously coated at a target of 280 ⁇ mm was 20 or more.
  • Comparative Example 7 A transparent resin layer composition according to Comparative Example 7 was obtained in the same manner as Comparative Example 1 except that the resin emulsion having the monomer composition described in Comparative Example 7 in Table 3 was used. Next, using this, a glass substrate with a transparent resin layer was obtained in the same manner as in Comparative Example 1. Then, when the same evaluation as in Comparative Example 1 was performed, the dot diameter was 62 ⁇ m and the pixel shape of nine overlapping pixels was maintained. Since the eyes could not be drawn, the acceptance performance was set to x. From the above evaluation results, the coating film made from the composition shown in Comparative Example 7 was evaluated as ⁇ evaluation that was judged to be moderate as the receiving layer having a lower ability than those described in the Examples.
  • coating property evaluation was performed. As a result, the number of substrates that could be continuously coated at a target of 280 ⁇ mm was 20 or more, so it was rated as “Good”.
  • composition D in comparative example 8 composition E in comparative example 9, composition F in comparative example 10, composition G in comparative example 11, and composition 12 in comparative example 12
  • Composition H was applied to obtain a transparent resin layer composition.
  • each glass substrate with a transparent resin layer was obtained in the same manner as in Comparative Example 1.
  • evaluation is implemented similarly to the comparative example 1, the evaluation result is described in Table 2, and the evaluation reason is described below.
  • the coating film has tackiness, and the shape of the pixel that overlaps 9 drops is as shown in FIG. 4, so that the pixel shape stability is indicated as x, and further, the connection between the squares is visible as shown in FIG. Therefore, the receiving performance was evaluated as x, and the receiving layer performance was evaluated as x.
  • the dot diameter is as large as 81 ⁇ m, the coating film surface is not uniform, and some repellency is observed on the dots, a pixel of a certain size cannot be drawn depending on the position of the square, and 9 drops overlap Since the shape of the pixel was as shown in FIG. 4, the pixel shape stability was evaluated as x, and since a slight connection was observed between the cells as shown in FIG. From the above results, the receiving layer performance was evaluated as x evaluation.
  • Comparative Example 11 the coating film has tackiness, and the shape of the pixel that overlaps 9 drops is as shown in FIG. 4, so that the pixel shape stability is x, and further, the pixels are connected as shown in FIG. The acceptability was marked with x. From the above results, the receiving layer performance was evaluated as x evaluation.
  • Comparative Example 12 the coating film has tackiness, and the shape of the pixel that overlaps 9 drops is as shown in FIG. 4, so that the pixel shape stability is x, and further, the pixels are connected as shown in FIG. The acceptability was marked with x. From the above results, the receiving layer performance was evaluated as x evaluation.
  • the target number of substrates that could be continuously coated at 280 mm was 10 to 20 Since it was a sheet, since Comparative Example 8, 9, and 12 were 10 sheets or less, it was set as x evaluation in ⁇ evaluation.
  • a glass substrate Corning EX-G glass plate thickness 0.75 mm
  • the film was vacuum-dried at 400 Pa for 30 seconds and then heat-dried on a hot plate at 70 ° C. for 5 minutes to obtain a glass substrate with a transparent resin layer.
  • the film thickness of the transparent resin layer was 11 ⁇ m and the surface was not tacky. Further, the transmittance at a wavelength of 400 nm was 88%.
  • the substrate was placed on a table that was kept horizontal as described above, 0.5 ⁇ l of ECA droplet was dropped from the top, and the contact angle one second after landing was measured to be 32 °.
  • the ECA is drawn at one dot every 200 um pitch.
  • the spreading area was observed.
  • the dot diameter immediately after drawing was 91 ⁇ m.
  • coating property evaluation was performed. As a result, the number of substrates that could be continuously coated at a target of 280 ⁇ mm was 20 or more.
  • coating property evaluation was performed. As a result, the number of substrates that could be continuously coated at a target of 280 ⁇ mm was 20 or more.
  • MMA Methyl methacrylate
  • EA Ethyl acrylate
  • BA Butyl acrylate
  • EHMA 2-ethylhexyl methacrylate
  • LMA Lauryl methacrylate
  • St Styrene
  • Tg Glass transition temperature
  • Mw Weight average molecular weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

Provided is a transparent resin layer composition for forming a receiving layer which can receive a spotted droplet of an inkjet ink sufficiently, and whereby it becomes possible to stabilize the shape of the dried droplet of the inkjet ink while controlling the spreading diameter of the droplet of the inkjet ink. Also provided are: a receiving layer for inkjet inks, which is formed using the transparent resin layer composition; and a display element. A transparent resin layer composition comprising (1) an emulsion in which alkyl (meth)acrylate ester-type copolymer resin microparticles are dispersed, (2) a surfactant which has fluidability at room temperature that is 23˚C and (3) and an organic solvent, wherein the emulsion is produced by the emulsion polymerization of a monomer mixture comprising (i) methyl methacrylate and (ii) an alkyl (meth)acrylate ester having a C2-8 alkyl group, the glass transition temperature of a resin contained in the emulsion is 10˚C or higher and lower than 70˚C, and the emulsion has a weight average molecular weight of 100,000 or more and less than 800,000 and a number average particle diameter of 10 nm or more and less than 500 nm; a receiving layer for inkjet inks, which comprises a support base and a transparent resin layer comprising the above-mentioned composition and formed on the support base; and a display element which is produced by drawing with an inkjet ink on a transparent resin layer formed using the above-mentioned composition.

Description

透明性樹脂層組成物、これを用いたインクジェットインク用受容層及び表示素子Transparent resin layer composition, ink-jet ink receiving layer and display element using the same
 本発明は、透明性樹脂層組成物、これを用いたインクジェットインク用受容層及び表示素子に関し、詳しくは、インクジェットインクを用いて描画する際のインク受容層を形成するための透明性樹脂層組成物、インクジェットインク用受容層、及び表示素子に関する。 The present invention relates to a transparent resin layer composition, a receiving layer for inkjet ink using the same, and a display element, and more specifically, a transparent resin layer composition for forming an ink receiving layer when drawing using inkjet ink. And a receiving layer for inkjet ink and a display element.
 近年、成長が著しいインクジェット印刷関連業界では、インクジェットプリンターの高性能化やインキの改良等が飛躍的に進み、一般家庭でも容易に銀塩写真並みの高精細で鮮明な画像を得ることが可能となりつつある。このため、インクジェットプリンターは、家庭内での使用にとどまらず、大型広告看板等の製造や液晶ディスプレイ用カラーフィルターや配向膜の印刷など電子デバイス製造に使用することも検討されている。 In recent years, in the industry related to ink-jet printing, where the growth is remarkable, the performance of ink-jet printers and the improvement of ink have advanced dramatically, making it possible to easily obtain high-definition and clear images similar to silver halide photographs even in ordinary households. It's getting on. For this reason, inkjet printers are not only used in homes, but are also being considered for use in the manufacture of electronic devices such as the manufacture of large advertising signs and the like, the printing of color filters for liquid crystal displays and alignment films.
 また、インクジェット印刷物の高画質化は、前記プリンターの高性能化とともに、印刷インクの改良によるところも大きい。具体的には、染料インクに匹敵する高発色性を有し、かつ従来の染料インクと比較して耐久性に優れた印刷画像を形成できるものとして知られる顔料インクの使用が、近年印刷物の分野では、主流となりつつある。一方、電子デバイス用に用いられる顔料インクとしては、デバイスの信頼性要求から、有機溶剤中に顔料インクの粒子が分散した溶剤系顔料インクが好適に用いられるようになり、このようなものは油性顔料インクとも言われる。かかるインクは、インクの粒子自体が比較的疎水性であるため、印刷基板上に環境中の水分などによる印刷画像のにじみ等を引き起こさないレベルの耐水性を有する印刷画像の形成に好適に使用できることから、近年注目されている。 Also, the improvement in image quality of inkjet prints is largely due to improvements in printing ink as well as higher performance of the printer. Specifically, the use of pigment inks, which are known to be capable of forming printed images having high colorability comparable to dye inks and superior in durability compared to conventional dye inks, has recently been in the field of printed matter. Then, it is becoming mainstream. On the other hand, as pigment inks used for electronic devices, solvent-based pigment inks in which pigment ink particles are dispersed in an organic solvent have come to be suitably used because of device reliability requirements. Also called pigment ink. Since the ink particles themselves are relatively hydrophobic, the ink can be suitably used for forming a printed image having a level of water resistance that does not cause bleeding of the printed image due to moisture in the environment on the printed substrate. Has attracted attention in recent years.
 ところで、従来のインクジェット記録媒体の多くは、水性の染料インク用に開発されたインク受理層を有するものであって、インク中の水性媒体の吸収性の向上や染料の定着性の向上を目的として設計されたものである(例えば特許文献1参照)。そのため、このようなインクジェット記録媒体に前記溶剤系顔料インクを用いて印刷しても、インク受理層が有機溶剤を効率良く吸収することができず、その結果、高発色で、にじみや色落ちを防止した鮮明な画像を得ることができない。 By the way, many of the conventional ink jet recording media have an ink receiving layer developed for aqueous dye inks, with the aim of improving the absorbability of aqueous media in ink and improving the fixability of dyes. It is designed (see, for example, Patent Document 1). Therefore, even if printing is performed on such an ink jet recording medium using the solvent-based pigment ink, the ink receiving layer cannot absorb the organic solvent efficiently, and as a result, high color development, bleeding and discoloration occur. Prevented clear images cannot be obtained.
 そこで、近年、溶剤系顔料インクに対応した受理層の検討が進められており、例えば特許文献2には、メチルメタクリレート50~100重量%、およびメチルメタクリレート以外の(メタ)アクリル系またはビニル系単量体0~50重量%から構成され、重量平均分子量が30万以上100万以下のアクリル系樹脂を主成分とするインク受容層を形成する受理剤が開示されている。 In recent years, therefore, studies have been made on a receiving layer corresponding to a solvent-based pigment ink. For example, Patent Document 2 discloses that 50 to 100% by weight of methyl methacrylate and (meth) acrylic or vinylic monomers other than methylmethacrylate. A receiving agent is disclosed which forms an ink receiving layer composed mainly of an acrylic resin composed of 0 to 50% by weight of a monomer and having a weight average molecular weight of 300,000 to 1,000,000.
 しかしながら、前記特許文献2に記載されたようなインク受容層では、例えば屋外広告等の比較的大きい媒体にインクジェット印刷を施した場合に、そのインク中に含まれる有機溶剤を十分に吸収することができないため、インクの乾燥性の著しい低下や印刷画像のにじみ及びクラック等の発生を引き起こす場合がある。また、この特許文献2記載のインク受容層は、上記のような特定のアクリル系樹脂が有機溶剤中に溶解したインクジェット受理剤を用いて形成されるものであるため、インクジェット記録媒体を製造する際に大量の有機溶剤を揮発する工程が必要となる場合がある。 However, the ink receiving layer described in Patent Document 2 can sufficiently absorb the organic solvent contained in the ink when inkjet printing is performed on a relatively large medium such as an outdoor advertisement. Therefore, it may cause a significant decrease in the drying property of the ink and the occurrence of bleeding and cracks in the printed image. The ink receiving layer described in Patent Document 2 is formed by using an ink jet receiving agent in which the specific acrylic resin as described above is dissolved in an organic solvent. In some cases, a process for volatilizing a large amount of an organic solvent is required.
 一方、油性顔料インク用インクジェット受容層に関して、特許文献3には、そのガラス転移温度が10~70℃重量平均分子量80万以上のビニル重合体が水系媒体に分散してなる油性顔料インク用インクジェット受理剤が開示されている。しかしながら、このインクジェット受理剤を乾燥させた後に得られる塗膜上において油性インクジェットインキを滴下した場合、分子量80万以上ではその吸収速度が遅く、液滴径が広がってしまう問題がある。このことは、ビニル重合体のガラス転移温度が70℃以上の場合においても同様であり、液滴拡がりを制御するに至らなかった。 On the other hand, regarding the ink jet receiving layer for oil pigment inks, Patent Document 3 discloses that ink jet ink acceptance for oil pigment inks in which a vinyl polymer having a glass transition temperature of 10 to 70 ° C. and a weight average molecular weight of 800,000 or more is dispersed in an aqueous medium. Agents are disclosed. However, when oil-based ink-jet ink is dropped on a coating film obtained after drying the ink-jet receiving agent, there is a problem that when the molecular weight is 800,000 or more, the absorption speed is slow and the droplet diameter is widened. This is the same even when the glass transition temperature of the vinyl polymer is 70 ° C. or higher, and the droplet spreading has not been controlled.
特開平11-216945号公報JP-A-11-216945 特開平2004-291561号公報Japanese Patent Laid-Open No. 2004-291561 特許第4442718号公報Japanese Patent No. 4444218
 本発明は、溶剤系顔料インクのような油性インクジェットインクを描画する受容層において、着弾したインクジェットインクを十分に受容するとともに、液滴拡がり径を制御しながらその乾燥後の形状を安定化させることができる受容層形成用の透明性樹脂層組成物を提供することを目的とする。また、本発明は、この透明性樹脂層組成物を用いて形成したインクジェットインク用受容層、及び、透明性樹脂層組成物から形成された透明性樹脂層上にインクジェットインクを描画して得られた表示素子を提供することを目的とする。 In the receiving layer for drawing an oil-based ink-jet ink such as a solvent-based pigment ink, the present invention sufficiently receives the landed ink-jet ink and stabilizes the shape after drying while controlling the droplet spreading diameter. An object of the present invention is to provide a transparent resin layer composition for forming a receiving layer. In addition, the present invention is obtained by drawing an inkjet ink on a receiving layer for inkjet ink formed using this transparent resin layer composition and a transparent resin layer formed from the transparent resin layer composition. An object of the present invention is to provide a display element.
 かかる課題を解決する手段として、本発明者らは、透明性樹脂層組成物におけるエルション粒子を構成する樹脂のガラス転移温度及び分子量が、インク液滴の拡がり径を抑制したり、乾燥後の形状の安定性を担保する上で重要であり、加えて、透明性樹脂層組成物におけるエルション粒子の粒径のほか、所定の界面活性剤や有機溶剤を共存させることで従来技術の問題を解決できることを見出し、本発明を完成させた。 As means for solving such problems, the present inventors have determined that the glass transition temperature and the molecular weight of the resin constituting the Elsion particles in the transparent resin layer composition suppress the spread diameter of the ink droplets or the shape after drying. In addition to the particle size of Elsion particles in the transparent resin layer composition, it is possible to solve the problems of the prior art by coexisting a predetermined surfactant or organic solvent. The present invention was completed.
 すなわち、本発明は、(1)メタクリル酸メチル(i)とアルキル基の炭素原子数が2~8の(メタ)アクリル酸アルキルエステル(ii)とを含む混合モノマーを乳化重合で重合して得られて、含まれる樹脂のガラス転位温度が10℃以上70℃未満であり、重量平均分子量が10万以上~80万未満であり、かつ、数平均粒子径が10nm以上500nm未満である(メタ)アクリル酸アルキルエステル系共重合体樹脂微粒子分散エマルション、(2)23℃の室温下で流動性を有する界面活性剤、及び(3)有機溶剤を含有することを特徴とする透明性樹脂層組成物である。 That is, the present invention is obtained by polymerizing a mixed monomer containing (1) methyl methacrylate (i) and (meth) acrylic acid alkyl ester (ii) having 2 to 8 carbon atoms in the alkyl group by emulsion polymerization. The glass transition temperature of the contained resin is 10 ° C. or more and less than 70 ° C., the weight average molecular weight is 100,000 or more and less than 800,000, and the number average particle size is 10 nm or more and less than 500 nm (meth). A transparent resin layer composition comprising an alkyl acrylate copolymer resin fine particle dispersed emulsion, (2) a surfactant having fluidity at room temperature of 23 ° C., and (3) an organic solvent. It is.
 また、本発明は、上記透明性樹脂層組成物を用いて形成された透明性樹脂層が支持基材上に形成されてなるインクジェットインク受容層である。更に、本発明は、上記透明性樹脂層組成物を用いて形成された透明性樹脂層上にインクジェットインクを描画することで得られる表示素子である。 Further, the present invention is an ink-jet ink receiving layer in which a transparent resin layer formed using the transparent resin layer composition is formed on a support substrate. Furthermore, this invention is a display element obtained by drawing an inkjet ink on the transparent resin layer formed using the said transparent resin layer composition.
 本発明における(メタ)アクリル酸アルキルエステル系共重合体樹脂微粒子分散エマルションを得るにあたっては、(i)メタクリル酸メチルを必須成分として、ガラス転位温度が10℃以上70℃未満の範囲になるように、(ii)炭素原子数が2~8の(メタ)アクリル酸アルキルエステルを導入して、少なくともこの(i)と(ii)を含んだ混合モノマーを乳化重合で重合したものである。そして、得られた(メタ)アクリル酸アルキルエステル系共重合体樹脂微粒子分散エマルションに含まれる樹脂は、その重量平均分子量は10万以上80万未満であり、また、数平均粒子径が10以上500nm未満のものである。 In obtaining the (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion in the present invention, (i) using methyl methacrylate as an essential component so that the glass transition temperature is in the range of 10 ° C. or higher and lower than 70 ° C. (Ii) A (meth) acrylic acid alkyl ester having 2 to 8 carbon atoms is introduced and a mixed monomer containing at least (i) and (ii) is polymerized by emulsion polymerization. The resin contained in the obtained (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion has a weight average molecular weight of 100,000 to less than 800,000 and a number average particle diameter of 10 to 500 nm. Less than.
 上記(ii)の(メタ)アクリル酸アルキルエステルのアルキル基炭素数は、本発明の組成物から成る塗膜のタック性が発現したり、インクジェットインキで塗膜上に形成された画素形状の安定性が低下する恐れがあるため、炭素原子数は2~8である。炭素数1では(i)のメタクリル酸メチルにあたり、混合モノマーとする意味合いが無くなってしまう。反対に炭素数8以上では、透明性樹脂層のタック性が著しく発現したり、インク印刷描画後に行う乾燥で画素クラックが起こって、画素形状が悪化する恐れがあるため好ましくない。 The alkyl group carbon number of the (meth) acrylic acid alkyl ester of (ii) above shows the tackiness of the coating film made of the composition of the present invention or the stability of the pixel shape formed on the coating film with inkjet ink. The number of carbon atoms is 2 to 8 because there is a risk that the property may be lowered. When the number of carbon atoms is 1, the meaning of the mixed monomer is lost in the case of (i) methyl methacrylate. On the other hand, when the number of carbon atoms is 8 or more, the tackiness of the transparent resin layer is remarkably exhibited, or pixel cracking may occur due to drying performed after ink printing and drawing, which is not preferable.
 上記(ii)のアルキル基の炭素原子数が2~8の(メタ)アクリル酸アルキルエステルとは、(メタ)アクリル酸アルキルエステル系共重合体を構成するモノマー(単量体)の一種であり、例としては(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸iso-ブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。なお、(メタ)アクリル酸アルキルエステルは、アクリル酸アルキルエステル又はメタアクリル酸アルキルエステルを意味する。 The (meth) acrylic acid alkyl ester having 2 to 8 carbon atoms in the alkyl group (ii) is a kind of monomer constituting the (meth) acrylic acid alkyl ester copolymer. Examples include ethyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, (meth) 2-ethylhexyl acrylate, octyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4- (meth) acrylic acid 4- Hydroxybutyl etc. are mentioned. In addition, (meth) acrylic acid alkyl ester means acrylic acid alkyl ester or methacrylic acid alkyl ester.
 上記の(メタ)アクリル酸アルキルエステル系共重合体樹脂微粒子分散エマルション中の樹脂のガラス転位温度は10℃以上70℃未満の範囲である。10℃未満のものではインク中の溶剤を吸収、乾燥させる際に印字によって形成された画素が樹脂の流出が要因となって、隣接する画素と連結してしまい、カラーインク同士が混色することや溶解・乾燥収縮による印刷画素上でのクラックの発生の恐れがある。また、塗膜のタック性の発現による塗工基板の搬送性の低下が起こる傾向にある。一方、70℃以上のものでは、インク中の溶剤の吸収が悪いために溶剤が濡れ拡がってしまい、目的とする大きさで整然とした画素形状が得られないことがあり、また、溶剤の塗膜中への浸透が不均一となるために画素周辺の塗膜の平坦性が著しく低下し、結果として透明性の低下が起こる恐れがある。 The glass transition temperature of the resin in the (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion is in the range of 10 ° C. or higher and lower than 70 ° C. When the temperature is lower than 10 ° C., the pixels formed by printing when absorbing and drying the solvent in the ink are connected to adjacent pixels due to the outflow of the resin, and the color inks are mixed. There is a risk of cracks occurring on the printed pixels due to dissolution and drying shrinkage. Moreover, there exists a tendency for the conveyance property of a coating substrate to fall by expression of the tackiness of a coating film. On the other hand, when the temperature is 70 ° C. or higher, the solvent in the ink is poorly absorbed, so that the solvent wets and spreads, and an orderly pixel shape with a desired size may not be obtained. Since the penetration into the inside becomes uneven, the flatness of the coating film around the pixel is remarkably lowered, and as a result, the transparency may be lowered.
 前項に記述したガラス転位温度範囲内となる(メタ)アクリル酸アルキルエステル系共重合体樹脂中の(i)メタクリル酸メチルと(ii)炭素原子数が2~8の(メタ)アクリル酸アルキルエステルの組成比としては、重量比で(i):(ii)=1:0.25~1:2の範囲であるのがよい。特に、(i)のメタクリル酸メチルの重量比がこの範囲より少ない領域では上述のような印刷物の混色や印刷画素のクラックが発生する恐れがあり、この範囲より多い領域では画素形状の悪化、透明性の低下が懸念されるため、本範囲内であることが望ましい。 (I) Methyl methacrylate and (ii) (meth) acrylic acid alkyl ester having 2 to 8 carbon atoms in (meth) acrylic acid alkyl ester copolymer resin within the glass transition temperature range described in the previous section The composition ratio is preferably (i) :( ii) = 1: 0.25 to 1: 2 by weight. In particular, in a region where the weight ratio of methyl methacrylate (i) is less than this range, there is a risk of color mixing of printed matter and cracks in the print pixel as described above. It is desirable to be within this range because there is a concern about deterioration of the property.
 上記共重合体樹脂においては、透明性樹脂層の強度、インクジェットインク画素クラックを防止する目的で前述の物性に影響を与えない範囲内で架橋基を有するモノマーを導入できる。その例としては、(メタ)アクリル酸グリシジル、アリルグリシジルエーテル等のグリシジル基含有重合性モノマー、(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N-モノアルキルアミノアルキル、(メタ)アクリル酸N,N-ジアルキルアミノアルキル等のアミノ基含有重合性モノマー、ビニルトリクロロシラン、ビニルトリメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)―γ―アミノプロピルトリメトキシシラン及びその塩酸塩等のシリル基含有重合性モノマー、(メタ)アクリル酸2-アジリジニルエチル等のアジリジニル基含有重合性モノマー、(メタ)アクリロイルイソシアナート、(メタ)アクリロイルイソシアナートエチルのフェノールあるいはメチルエチルケトオキシム付加物等のイソシアナート基及び/またはブロック化イソシアナート基含有重合性モノマー、2-イソプロペニル-2-オキサゾリン、2-ビニル-2-オキサゾリン等のオキサゾリン基含有重合性モノマー、(メタ)アクリル酸ジシクロペンテニル等のシクロペンタニル基含有重合性モノマー、(メタ)アクリル酸アリル等のアリル基含有重合性モノマー、アクロレイン等のカルボニル基含有ビニルモノマー、エチレングリコールジ(メタ)アクリル酸エステル、1,6-ヘキサンジオールジ(メタ)アクリル酸エステル、ネオペンチルグリコールジ(メタ)アクリル酸エステル、トリメチロールプロパントリ(メタ)アクリル酸エステル、ポリエチレングリコールジ(メタ)アクリル酸エステル、ポリプロピレングリコールジ(メタ)アクリル酸エステル、ジアリルフタル酸エステル、ジビニルベンゼン、アリル(メタ)アクリル酸エステル等、N-メチロールアクリルアミド等のメチロール基含有アクリルアミド系ビニルモノマー、イタコン酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、シトラコン酸、桂皮酸等のカルボキシル基含有ビニルモノマーがある。その添加量は上述の必須モノマー成分(i)と(ii)の総量に対して0.01~3重量%の範囲内であれば、本発明の組成物の効果には影響しない。 In the copolymer resin, a monomer having a crosslinking group can be introduced within a range that does not affect the above-mentioned physical properties for the purpose of preventing the strength of the transparent resin layer and inkjet ink pixel cracks. Examples thereof include glycidyl group-containing polymerizable monomers such as glycidyl (meth) acrylate and allyl glycidyl ether, aminoethyl (meth) acrylate, N-monoalkylaminoalkyl (meth) acrylate, (meth) acrylic acid N Amino group-containing polymerizable monomers such as N, N-dialkylaminoalkyl, vinyltrichlorosilane, vinyltrimethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane and its hydrochloride Silyl group-containing polymerizable monomers, aziridinyl group-containing polymerizable monomers such as 2-aziridinylethyl (meth) acrylate, (meth) acryloyl isocyanate, phenols of (meth) acryloyl isocyanate ethyl or methyl ethyl ketoxime adducts, etc. Isocyanate Group and / or blocked isocyanate group-containing polymerizable monomers, 2-isopropenyl-2-oxazoline, oxazoline group-containing polymerizable monomers such as 2-vinyl-2-oxazoline, and cyclohexane such as (meth) acrylate dicyclopentenyl. Pentanyl group-containing polymerizable monomers, allyl group-containing polymerizable monomers such as allyl (meth) acrylate, carbonyl group-containing vinyl monomers such as acrolein, ethylene glycol di (meth) acrylate, 1,6-hexanediol di ( (Meth) acrylic acid ester, neopentyl glycol di (meth) acrylic acid ester, trimethylolpropane tri (meth) acrylic acid ester, polyethylene glycol di (meth) acrylic acid ester, polypropylene glycol di (meth) acrylic acid ester, diary Phthalic acid esters, divinylbenzene, allyl (meth) acrylic acid esters, etc., methylol group-containing vinyl monomers such as N-methylolacrylamide, itaconic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, citraconic acid, cinnamon There are carboxyl group-containing vinyl monomers such as acids. If the amount added is in the range of 0.01 to 3% by weight based on the total amount of the essential monomer components (i) and (ii), the effect of the composition of the present invention is not affected.
 上記の(メタ)アクリル酸アルキルエステル系共重合体樹脂微粒子分散エマルション中の樹脂の重量平均分子量は10万以上80万未満でなければならず、10万未満のものはインク中の溶剤の吸収は良好であるが、乾燥性が悪いために画素に滲みが発生して印字物の画質が低下してしまう。一方、80万以上のものでは溶剤の吸収が悪いために溶剤が濡れ拡がってしまい、目的とする大きさで整然とした形状が得られないために好ましくない。 The weight average molecular weight of the resin in the (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion must be 100,000 or more and less than 800,000, and absorption of the solvent in the ink is less than 100,000. Although it is good, since the drying property is poor, bleeding occurs in the pixels and the image quality of the printed matter is deteriorated. On the other hand, when the amount is 800,000 or more, the solvent is poorly absorbed, so that the solvent wets and spreads, and an orderly shape with a desired size cannot be obtained.
 上記の(メタ)アクリル酸アルキルエステル系共重合体樹脂微粒子分散エマルションの粒子径は数平均粒子径で10nm以上500nm未満でなければならず、10nm未満のものは種々のモノマー混合物においても本発明で採用する乳化重合法においては得ることが出来ない。一方、500nm以上のものはインク吸収性が均一ではなく、ドット端部に凹凸が出来て整然とした画素形状が得られないこと、粒子径が大きくなるにつれて凝集物の発生が観られるために本発明の透明性樹脂層組成物の組成物としての安定性に欠けることから、好ましくない。なお、ここで言う数平均粒子径とは動的光散乱法により得られる自己相関関数をキュムラント法で解析した平均粒子径である。 The particle diameter of the (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion must be 10 nm or more and less than 500 nm in terms of number average particle diameter, and those less than 10 nm can be used in various monomer mixtures in the present invention. It cannot be obtained in the emulsion polymerization method employed. On the other hand, those having a thickness of 500 nm or more are not uniform in ink absorbability, have irregularities at the end of the dots and cannot form an orderly pixel shape, and the occurrence of aggregates is observed as the particle size increases. The transparency of the transparent resin layer composition is not preferable because it lacks stability. The number average particle size referred to here is an average particle size obtained by analyzing the autocorrelation function obtained by the dynamic light scattering method by the cumulant method.
 上記の乳化重合方法は特に限定されるものではなく、水性媒体中に上記のモノマー混合物、重合開始剤、必要に応じて連鎖移動剤や乳化剤等を、所定温度下、攪拌下で連続的に供給しながら行うことで得られる。前述のモノマー混合物および乳化剤の混合物の濃度は、仕込み全量に対して10~80重量%であれば、安定して(メタ)アクリル酸アルキルエステル系共重合体樹脂微粒子分散エマルションを得ることが出来るが、本発明のエマルションにおいては20~50重量%がより安定化するために好ましい。 The above emulsion polymerization method is not particularly limited, and the above monomer mixture, polymerization initiator, and optionally chain transfer agent and emulsifier are continuously supplied to the aqueous medium at a predetermined temperature and with stirring. It is obtained by doing it. If the concentration of the monomer mixture and the emulsifier mixture is 10 to 80% by weight based on the total amount charged, a (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion can be stably obtained. In the emulsion of the present invention, 20 to 50% by weight is preferable for further stabilization.
 前記の重合開始剤の例としては、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩類、過酸化ベンゾイル、クメンハイドロパーオキサイド、tert-ブチルハイドロパーオキサイド等の有機過酸化物類、過酸化水素等を挙げることができ、これら過酸化物のみを用いてラジカル重合させるか、前記過酸化物とアスコルビン酸、ホルムアルデヒドスルホキシラートの金属塩、チオ硫酸ナトリウム、塩化第二鉄等の還元剤とを併用したレドックス重合開始剤系、また、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2-アミジノプロパン)二塩基酸等のアゾ系重合開始剤を用いることができ、これらを単独またはそれ以上の混合系も用いることができる。 Examples of the polymerization initiator include persulfates such as ammonium persulfate, potassium persulfate and sodium persulfate, organic peroxides such as benzoyl peroxide, cumene hydroperoxide and tert-butyl hydroperoxide, Hydrogen peroxide etc. can be mentioned, radical polymerization using only these peroxides, or reducing agents such as the above-mentioned peroxides and ascorbic acid, metal salts of formaldehyde sulfoxylate, sodium thiosulfate, ferric chloride, etc. And a redox polymerization initiator system in combination with azo polymerization initiators such as 4,4′-azobis (4-cyanovaleric acid) and 2,2′-azobis (2-amidinopropane) dibasic acid. These can be used singly or in combination.
 前記の乳化剤としては、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤、両性イオン性界面活性剤等が挙げられるが、本発明の組成物への適用性からは陰イオン性界面活性剤および非イオン性界面活性剤を用いることが望ましく、それぞれは単独あるいは2種以上を組み合わせて用いることもできる。 Examples of the emulsifier include anionic surfactants, nonionic surfactants, cationic surfactants, and zwitterionic surfactants, but from the applicability to the composition of the present invention. It is desirable to use an anionic surfactant and a nonionic surfactant, each of which can be used alone or in combination of two or more.
 前記の陰イオン性界面活性剤の例としては、オレイン酸ナトリウム等の高級脂肪酸塩類、ドデシルベンゼンスルホン酸ナトリウム等のアルキルアリールスルホン酸塩類、ラウリル硫酸ナトリウム等のアルキル硫酸エステル塩類、ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸エステル塩類、ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルアリールエーテル硫酸エステル塩類、モノオクチルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム、ポリオキシエチレンラウリルスルホコハク酸ナトリウム等のアルキルスルホコハク酸エステル塩及びその誘導体等を例示することができる。また、非イオン性界面活性剤の例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニエルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類、ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタントリオレエート等のソルビタン高級脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート等のポリオキシエチレンソルビタン高級脂肪酸エステル類、ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレート等のポリオキシエチレン高級脂肪酸エステル類、オレイン酸モノグリセライド、ステアリン酸モノグリセライド等のグリセリン高級脂肪酸エステル類、その他、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー等を例示することができる。 Examples of the anionic surfactant include higher fatty acid salts such as sodium oleate, alkylaryl sulfonates such as sodium dodecylbenzene sulfonate, alkyl sulfate esters such as sodium lauryl sulfate, and polyoxyethylene lauryl ether. Polyoxyethylene alkyl ether sulfates such as sodium sulfate, polyoxyethylene alkylaryl ether sulfates such as sodium polyoxyethylene nonylphenyl ether sulfate, sodium monooctyl sulfosuccinate, sodium dioctyl sulfosuccinate, polyoxyethylene lauryl sulfosuccinic acid Examples thereof include alkylsulfosuccinic acid ester salts such as sodium and derivatives thereof. Examples of nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether and other polyoxyethylene alkyl ethers. Sorbitan higher fatty acid esters such as oxyethylene alkylphenyl ethers, sorbitan monolaurate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene sorbitan higher fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene mono Polyoxyethylene higher fatty acid esters such as laurate and polyoxyethylene monostearate, oleic acid monoglyceride, stearic acid monoglyceride Glycerine higher fatty acid esters and the like, other, polyoxyethylene - can be exemplified polyoxypropylene block copolymers and the like.
 また、上記に例示されたもの以外の界面活性剤として反応性界面活性剤を挙げることができる。その例としては、アルキルスルホコハク酸アルケニルエーテル塩系、アルキルスルホコハク酸アルケニルエステル塩系、メチレンビスポリオキシエチレンアルキルフェニルアルケニルエーテル硫酸エステル塩系、アルキルアルケニルコハク酸エステル塩系、ポリオキシアルキレン(メタ)アクリレート硫酸エステル塩系、ポリオキシアルキレンアルキルエーテル脂肪族不飽和ジカルボン酸エステル塩系、(メタ)アクリル酸スルホアルキルエステル塩系、フタル酸ジヒドロキシアルキル(メタ)アクリレート硫酸エステル塩系、モノもしくはジ(グリセロール-1-アルキルフェニル-3-アリル-2-ポリオキシアルキレンエーテル)リン酸エステル塩系、ポリオキシアルキレンアルキルフェニルエーテル(メタ)アクリレート系反応性界面活性剤等を例示することができる。また、これら乳化剤として例示される界面活性剤の一般的な添加量は上述の必須モノマー成分の総量に対して0.1~20重量%であるが、本発明の組成物の安定性および前述の印刷性を考慮すると1~15重量%が好ましい。 Moreover, reactive surfactants can be mentioned as surfactants other than those exemplified above. Examples include alkylsulfosuccinic acid alkenyl ether salt systems, alkylsulfosuccinic acid alkenyl ester salt systems, methylene bispolyoxyethylene alkylphenyl alkenyl ether sulfate salt systems, alkylalkenyl succinic acid ester salt systems, polyoxyalkylene (meth) acrylates. Sulfate ester, polyoxyalkylene alkyl ether aliphatic unsaturated dicarboxylic acid ester salt, (meth) acrylic acid sulfoalkyl ester salt, dihydroxyalkyl (meth) acrylate sulfate ester salt, mono or di (glycerol- 1-alkylphenyl-3-allyl-2-polyoxyalkylene ether) phosphate ester-based, polyoxyalkylene alkylphenyl ether (meth) acrylate-based reactive surfactant It can be exemplified. Further, the general addition amount of the surfactants exemplified as these emulsifiers is 0.1 to 20% by weight with respect to the total amount of the essential monomer components described above, but the stability of the composition of the present invention and the aforementioned Considering printability, 1 to 15% by weight is preferable.
 次に、(2)の流動性を有する界面活性剤とは、上記乳化剤とは別に添加されるものであって、23℃の室温下で流動性を有する液状またはスラリー状の界面活性剤を示しており、陰イオン性界面活性剤、非イオン性界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤から選ばれる、単独またはそれ以上を混合して成るものである。該界面活性剤は添加により印刷インクの浸透性向上、インク滲み防止の効果が得られるだけではなく、組成物の安定性向上および基材への塗工時のレベリング性の向上、消泡性の向上等の効果が得られるため、本発明の組成物としては必須の成分である。 Next, the surfactant having fluidity (2) is added separately from the above emulsifier, and indicates a liquid or slurry surfactant having fluidity at room temperature of 23 ° C. It is a mixture of one or more selected from anionic surfactants, nonionic surfactants, silicon surfactants, and fluorine surfactants. The surfactant not only improves the penetrability of the printing ink and prevents ink bleeding, but also improves the stability of the composition and the leveling property when applied to the substrate, and the antifoaming property. Since an effect such as improvement is obtained, it is an essential component for the composition of the present invention.
 陰イオン性界面活性剤の例としては、オレイン酸ナトリウム等の高級脂肪酸塩類、ドデシルベンゼンスルホン酸ナトリウム等のアルキルアリールスルホン酸塩類、ラウリル硫酸ナトリウム等のアルキル硫酸エステル塩類、ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸エステル塩類、ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルアリールエーテル硫酸エステル塩類、モノオクチルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム、ポリオキシエチレンラウリルスルホコハク酸ナトリウム等のアルキルスルホコハク酸エステル塩及びその誘導体等を例示できる。上記のうち、アルキル鎖は炭素原子数として4~18、ポリオキシエチレン鎖はオキシエチレンを繰り返し単位として4~22であるものが好ましい。 Examples of anionic surfactants include higher fatty acid salts such as sodium oleate, alkylaryl sulfonates such as sodium dodecylbenzene sulfonate, alkyl sulfate salts such as sodium lauryl sulfate, polyoxyethylene lauryl ether sodium sulfate Polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene alkylaryl ether sulfates such as sodium polyoxyethylene nonylphenyl ether sulfate, sodium monooctyl sulfosuccinate, sodium dioctyl sulfosuccinate, sodium polyoxyethylene lauryl sulfosuccinate, etc. Examples thereof include alkylsulfosuccinic acid ester salts and derivatives thereof. Of the above, the alkyl chain preferably has 4 to 18 carbon atoms, and the polyoxyethylene chain preferably has 4 to 22 oxyethylene as a repeating unit.
 非イオン性界面活性剤の例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニエルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類、ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタントリオレエート等のソルビタン高級脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート等のポリオキシエチレンソルビタン高級脂肪酸エステル類、ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレート等のポリオキシエチレン高級脂肪酸エステル類、オレイン酸モノグリセライド、ステアリン酸モノグリセライド等のグリセリン高級脂肪酸エステル類、その他、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー等を例示できる。上記のうち、アルキル鎖は炭素原子数として2~22、ポリオキシエチレン鎖はオキシエチレンを繰り返し単位として2~22、ポリオキシプロピレン鎖はオキシプロピレンを繰り返し単位として1~20であるものが好ましい。 Examples of nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether, polyoxyethylene such as polyoxyethylene octylphenyl ether and polyoxyethylene nonielphenyl ether. Sorbitan higher fatty acid esters such as alkylphenyl ethers, sorbitan monolaurate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene sorbitan higher fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene monolaurate , Polyoxyethylene higher fatty acid esters such as polyoxyethylene monostearate, oleic acid monoglyceride, stearic acid monoglyceride, etc. Glycerine higher fatty acid esters, other polyoxyethylene - polyoxypropylene block copolymers and the like. Of these, the alkyl chain preferably has 2 to 22 carbon atoms, the polyoxyethylene chain preferably has 2 to 22 oxyethylene repeating units, and the polyoxypropylene chain has 1 to 20 oxypropylene repeating units.
 シリコン系界面活性剤の例としては、ジメチルシリコン、アミノシラン、アクリルシラン、ビニルベンジルシラン、ビニルベンジシルアミノシラン、グリシドシラン、メルカプトシラン、ジメチルシラン、ポリジメチルシロキサン、ポリアルコキシシロキサン、ハイドロジェン変性シロキサン、ビニル変性シロキサン、ビトロキシ変性シロキサン、アミノ変性シロキサン、カルボキシル変性シロキサン、ハロゲン化変性シロキサン、エポキシ変性シロキサン、メタクリロキシ変性シロキサン、メルカプト変性シロキサン、フッ素変性シロキサン、アルキル基変性シロキサン、フェニル変性シロキサン、アルキレンオキシド変性シロキサン等を例示できる。前記のうち、本発明の組成物への適用性が高いものとしてアルキレンオキシド変性シロキサンが挙げられ、さらに該骨格が組み込まれた(メタ)アクリル酸アルキルエステル系化合物との共重合体樹脂は適用性が高く、より好ましい。 Examples of silicone surfactants include dimethyl silicon, amino silane, acrylic silane, vinyl benzyl silane, vinyl benzicyl amino silane, glycid silane, mercapto silane, dimethyl silane, polydimethyl siloxane, polyalkoxy siloxane, hydrogen modified siloxane, vinyl modified. Siloxane, Vitroxy modified siloxane, Amino modified siloxane, Carboxyl modified siloxane, Halogenated modified siloxane, Epoxy modified siloxane, Methacryloxy modified siloxane, Mercapto modified siloxane, Fluorine modified siloxane, Alkyl group modified siloxane, Phenyl modified siloxane, Alkylene oxide modified siloxane etc. It can be illustrated. Among them, alkylene oxide-modified siloxane is exemplified as one having high applicability to the composition of the present invention, and a copolymer resin with a (meth) acrylic acid alkyl ester compound in which the skeleton is further incorporated is applicable. Is higher and more preferable.
 フッ素系界面活性剤の例としては、公知のものを用いることができ、例えば、四フッ化エチレン、パーフルオロアルキルアンモニウム塩、パーフルオロアルキルスルホン酸アミド、パーフルオロアルキルスルホン酸ナトリウム、パーフルオロアルキルカリウム塩、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルエチレンオキシド付加物、パーフルオロアルキルトリメチルアンモニウム塩、パーフルオロアルキルアミノスルホン酸塩、パーフルオロアルキルリン酸エステル、パーフルオロアルキルアルキル化合物、パーフルオロアルキルアルキルベタイン、パーフルオロアルキルハロゲン化物等を例示できる。前記のうち、本発明の組成物への適用性が高いものとしてパーフルオロアルキルエチレンオキシド付加物が挙げられ、さらに該骨格が組み込まれた(メタ)アクリル酸アクリルエステル系化合物との共重合体樹脂は適用性が高く、より好ましい。 As examples of the fluorosurfactant, known ones can be used. For example, tetrafluoroethylene, perfluoroalkyl ammonium salt, perfluoroalkyl sulfonic acid amide, sodium perfluoroalkyl sulfonate, perfluoroalkyl potassium. Salt, perfluoroalkylcarboxylate, perfluoroalkylsulfonate, perfluoroalkylethylene oxide adduct, perfluoroalkyltrimethylammonium salt, perfluoroalkylaminosulfonate, perfluoroalkyl phosphate ester, perfluoroalkylalkyl compound And perfluoroalkylalkylbetaines, perfluoroalkyl halides, and the like. Among them, a perfluoroalkylethylene oxide adduct is mentioned as one having high applicability to the composition of the present invention, and a copolymer resin with a (meth) acrylic acid acrylic ester compound in which the skeleton is further incorporated. High applicability and more preferable.
 上記の界面活性剤の添加量は、塗膜への印刷特性、タック性等を阻害しない程度の添加量とするのが好ましく、本発明の組成物の全量に対して0.1~10重量%が好ましい。添加量が0.1重量%以下では、組成物の安定性に欠けたり、レベリング性等の効果を低下させてしまう。また、10重量%以上では、インクの吸収能が著しく低下して滲みやハジキが発生したり、塗膜強度が著しく低下する傾向にあるため、前述の効果がより得られる範囲として0.1~5重量%がより好ましい。 The addition amount of the surfactant is preferably an addition amount that does not impair the printing properties, tackiness and the like on the coating film, and is 0.1 to 10% by weight based on the total amount of the composition of the present invention. Is preferred. When the addition amount is 0.1% by weight or less, the composition lacks stability or the effects such as leveling properties are reduced. In addition, when the content is 10% by weight or more, the ink absorption ability is remarkably lowered to cause bleeding and repelling, and the coating film strength tends to be remarkably lowered. 5% by weight is more preferred.
 また、次に、(3)の有機溶剤とは、本発明の組成物を後記の塗工方法にて塗工した際に組成物の乾燥による皮張りを防止する効果を付与するものであるため、必須の成分である。無添加の場合には、連続塗工時の塗工設備上へ乾燥異物が蓄積することで、塗膜上への異物の付着、塗膜の平坦性の悪化、インク印刷物の画質の低下が起こる恐れがある。また、該有機溶剤に求める性質としては、水系媒質に対する混和性を有し、沸点が150~300℃であるものが好ましい。その事由は、沸点が150℃以下のものでは皮張り防止効果が得られない、300℃以上では乾燥性が悪化してインク吸収能が低下したり、タック性が発現する傾向にあるためである。 Next, the organic solvent (3) provides an effect of preventing skinning due to drying of the composition when the composition of the present invention is applied by a coating method described later. , An essential ingredient. When no additive is added, dry foreign matter accumulates on the coating equipment during continuous coating, resulting in adhesion of foreign matter on the coating film, deterioration of the flatness of the coating film, and deterioration of the image quality of the ink print. There is a fear. Further, the properties required for the organic solvent are preferably those having miscibility with an aqueous medium and a boiling point of 150 to 300 ° C. The reason for this is that the effect of preventing skinning cannot be obtained when the boiling point is 150 ° C. or lower, and when 300 ° C. or higher, the drying property deteriorates and the ink absorbability tends to decrease, or tackiness tends to be exhibited. .
 上記の有機溶剤の例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等のアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、フェニルエーテル、エチレングリコールモノベンジルエーテル、エチレングリコールモノエチルヘキシルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のエーテル類、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールジメチルエーテルアセテート、エチレングリコールジエチルエーテルアセテート、エチレングリコールジブチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテルアセテート、ジエチレングリコールジエチルエーテルアセテート、ジエチレングリコールジブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、トリプロピレングリコールモノメチルエーテルアセテート、2-メトキシエチルアセテート、2-エトキシエチルアセテート、2-ブトキシエチルアセテート、2-エチルヘキシルアセテート、フタル酸ジメチル、フタル酸ジエチル、乳酸ブチル等のエステル類、シクロヘキサノン等のケトン類が挙げられる。 Examples of the organic solvent include alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, phenyl ether, ethylene glycol Monobenzyl ether, ethylene glycol monoethyl hexyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether Ethers such as ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate , Ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol dimethyl ether acetate, ethylene glycol diethyl ether acetate, ethylene glycol dibutyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol No ethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether acetate, diethylene glycol diethyl ether acetate, diethylene glycol dibutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, Dipropylene glycol monoethyl ether acetate, tripropylene glycol monomethyl ether acetate, 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate, 2-ethylhexyl acetate, dimethyl phthalate , Esters such as diethyl phthalate and butyl lactate, and ketones such as cyclohexanone.
 上記の有機溶剤の添加量は、塗膜への印刷特性、タック性等を阻害しない程度の添加量とするのが好ましく、本発明の組成物の全量に対し1~20重量%が好ましい。添加量が1重量%未満では、皮張り防止の効果が得られない。また、20重量%超では、インクの吸収能が著しく低下して滲みやハジキが発生したり、塗膜強度の著しい低下や塗膜のタック性の発現による塗工基板の搬送性の低下が起こる傾向にある。 The addition amount of the organic solvent is preferably such that it does not impair the printing properties and tackiness of the coating film, and is preferably 1 to 20% by weight based on the total amount of the composition of the present invention. When the addition amount is less than 1% by weight, the effect of preventing skinning cannot be obtained. On the other hand, if it exceeds 20% by weight, the ink absorption ability is remarkably lowered to cause bleeding and repellency, or the coating film strength is significantly lowered and the transportability of the coated substrate is lowered due to the appearance of the tackiness of the coating film. There is a tendency.
 本発明の透明性樹脂層は、本発明の組成物をガラス、ポリエチレンテレフタレートフィルム、ポリカーボネートフィルム、シクロオレフィンコポリマーフィルム、ポリイミドフィルム、ポリエチレンナフタレートフィルム等の支持基材に対して塗工、乾燥して成る層であり、その塗工方法としては、スプレーコート、スピンコート、ダイコート、グラビアコート、ナイフコート、ディップコート、コンマコート、キスコート、カーテンコート、エアナイフコート、ブレードコート、リバースロールコート、スリットコート等の一般的な方式が適用でき、また乾燥方式としては、熱風乾燥機を配したインラインコート方式およびオフラインコート方式いずれをも適用できる。 The transparent resin layer of the present invention is obtained by coating the composition of the present invention on a supporting substrate such as glass, polyethylene terephthalate film, polycarbonate film, cycloolefin copolymer film, polyimide film, polyethylene naphthalate film, and drying. The coating method includes spray coating, spin coating, die coating, gravure coating, knife coating, dip coating, comma coating, kiss coating, curtain coating, air knife coating, blade coating, reverse roll coating, slit coating, etc. As a drying method, any of an in-line coating method and an offline coating method in which a hot air dryer is arranged can be applied.
 また、本発明の透明性樹脂層は、(メタ)アクリル酸アルキルエステル系共重合体樹脂微粒子分散エマルションを構成する樹脂の数平均粒子径がナノサイズであることから透明性に優れる。好適には、透明性樹脂層組成物を用いて厚さ1~30μmの範囲の樹脂層を形成した場合に、その400nmの波長における光線透過率は80%以上である。そして、本発明における透明性樹脂層組成物を用いて形成された透明性樹脂層は、その上にインクジェットインクを描画することで、例えば、カラーフィルター、透明導電膜、加飾付表面保護膜等を形成することができ、液晶表示装置、EL表示装置、タッチパネル等のような表示素子を得るのに好適である。 The transparent resin layer of the present invention is excellent in transparency because the number average particle diameter of the resin constituting the (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion is nano-sized. Preferably, when a resin layer having a thickness of 1 to 30 μm is formed using the transparent resin layer composition, the light transmittance at a wavelength of 400 nm is 80% or more. And the transparent resin layer formed using the transparent resin layer composition in this invention draws an inkjet ink on it, for example, a color filter, a transparent conductive film, a surface protection film with a decoration, etc. It is suitable for obtaining a display element such as a liquid crystal display device, an EL display device, a touch panel, or the like.
 以上、本発明は油性インクジェットインクを描画する受容層において、着弾したインクジェットインクを十分に受容するとともに、液滴拡がり径を制御しながらその乾燥後の形状を安定したものとし、透明性に優れることから、これより構成された表示素子は鮮明な画像を与える。これらは、例えば液晶ディスプレイや電子ペーパー、デジタルサイネージ用表示素子のカラーフィルターや絶縁層、タッチパネルなどの高精彩化に貢献するものである。 As described above, in the receiving layer for drawing the oil-based ink-jet ink, the ink-jet ink that has landed sufficiently is received, the shape after drying is stabilized while controlling the droplet spreading diameter, and the transparency is excellent. Therefore, the display element constituted thereby gives a clear image. These contribute to high-definition of color filters, insulating layers, touch panels, and the like of liquid crystal displays, electronic paper, and digital signage display elements.
1打点のドットの広がりを示す平面観察図Plane observation view showing the spread of dots at one dot 9滴からなる画素のドット描画順を示す平面図Plan view showing the dot drawing order of 9-drop pixels 9滴からなる画素の良好な状態を示す平面観察図Plane observation diagram showing a good state of a pixel consisting of 9 drops 9滴からなる画素の断裂が生じた状態を示す平面観察図Plane observation diagram showing the state where the tear of the pixel consisting of 9 drops has occurred 9マスよりなる画素を示す平面図Plan view showing pixels consisting of 9 squares 画素間が良好な状態で形成されていることを示す3D画像解析図3D image analysis diagram showing that pixels are formed in good condition 画素間が樹脂の流出によって連結されている状態を示す3D画像解析図3D image analysis diagram showing a state in which pixels are connected by the outflow of resin
 次に、本発明の実施例および比較例を示すが、本発明はこれらの実施例に限定されるものではない。先ず、本発明に用いる測定・評価方法を以下に示す。 Next, examples and comparative examples of the present invention will be shown, but the present invention is not limited to these examples. First, the measurement / evaluation method used in the present invention is shown below.
<固形分濃度>
 下記の実施例および比較例で得られた樹脂エマルションまたは樹脂溶液1gをガラスフィルター[重量:W0(g)]に含浸させて秤量し[W1(g)]、105℃にて2時間加熱した後の重量[W2(g)]から次式より求めた。
   固形分濃度(重量%)=100×(W2-W0)/(W1-W0)
<Concentration of solid content>
After impregnating 1 g of the resin emulsion or resin solution obtained in the following Examples and Comparative Examples into a glass filter [weight: W0 (g)] and weighing [W1 (g)], and heating at 105 ° C. for 2 hours From the weight [W2 (g)] of
Solid content concentration (% by weight) = 100 × (W2-W0) / (W1-W0)
<ガラス転移温度>
 下記の実施例および比較例で得られた樹脂エマルションをガラス基板上にスピンコートし、70℃で30分間乾燥した後に得られた塗膜を用いて、エスアイアイ・ナノテクノロジー社製EXSTAR-6000 DSC示差走査熱量計を用いて測定した。
<Glass transition temperature>
The resin emulsions obtained in the following examples and comparative examples were spin-coated on a glass substrate and dried at 70 ° C. for 30 minutes. Measurement was performed using a differential scanning calorimeter.
<粒子径測定>
 下記の合成例で得られた樹脂エマルションを1g採取し、純水を加えて5gとした後に大塚電子社製のFPAR-1000を用いて測定した。ここでは、動的光散乱法により得られる自己相関関数をキュムラント法で解析して数平均粒子径を求めた。
<Particle size measurement>
1 g of the resin emulsion obtained in the following synthesis example was collected and added with pure water to make 5 g, and then measured using an FPAR-1000 manufactured by Otsuka Electronics Co., Ltd. Here, the autocorrelation function obtained by the dynamic light scattering method was analyzed by the cumulant method to obtain the number average particle size.
<分子量>
 下記の実施例および比較例で得られた樹脂エマルション50mg採取してテトラヒドロフラン(THF)5mLを添加、溶解させた後にTHFを溶離液として用いたゲル・パーミュエーション・クロマトグラフィー法(GPC法)にて標準ポリスチレン換算値として重量平均分子量(Mw)を求めた。測定装置として東ソー社製高速液体クロマトグラフHLC-8220型を用い、カラムにはTSKgel SuperH4000、3000、2000、2000の順で接続されたカラムシステムを使用し、RI検出器を用いて測定した。
<Molecular weight>
50 mg of the resin emulsions obtained in the following Examples and Comparative Examples were collected, and 5 mL of tetrahydrofuran (THF) was added and dissolved, followed by gel permeation chromatography method (GPC method) using THF as an eluent. The weight average molecular weight (Mw) was determined as a standard polystyrene equivalent value. A high-performance liquid chromatograph HLC-8220 manufactured by Tosoh Corporation was used as a measuring device, and a column system connected in the order of TSKgel SuperH4000, 3000, 2000, 2000 was used as a column, and measurement was performed using an RI detector.
 <透明性樹脂層組成物の調製>
 本発明の樹脂の性能を明確にするために以下の組成比を固定して評価を実施したが、各構成物およびその組成比は本発明において限定されるものではない。
 下記の合成例で得られた樹脂エマルション(合成例1:(1))61.3g、(2)花王社製エマルゲン103(流動性界面活性剤:ポリオキシエチレンラウリルエーテル)0.5g、(3)昭和電工社製ソルファインEP(有機溶剤:エチル-3-エトキシプロピオネート)10.0g、(4)純水28.2gを秤量し、30分以上攪拌・混合した。
 この操作を基に下表のような組成物を調製して、実施例11~13、及び比較例8~12で使用した。なお、組成Hにおいては、(3)成分を東京化成製テトラエチレングリコールに変更した。
<Preparation of transparent resin layer composition>
In order to clarify the performance of the resin of the present invention, evaluation was carried out with the following composition ratios fixed, but each component and its composition ratio are not limited in the present invention.
Resin emulsion obtained in the following synthesis example (Synthesis example 1: (1)) 61.3 g, (2) Emulgen 103 (fluid surfactant: polyoxyethylene lauryl ether) manufactured by Kao Corporation, (3 ) 10.0 g of Solfine EP (organic solvent: ethyl-3-ethoxypropionate) manufactured by Showa Denko KK and (4) 28.2 g of pure water were weighed, and stirred and mixed for 30 minutes or more.
Based on this operation, compositions as shown in the following table were prepared and used in Examples 11 to 13 and Comparative Examples 8 to 12. In composition H, component (3) was changed to tetraethylene glycol manufactured by Tokyo Chemical Industry.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <タック性>
 上記に示す配合からなる透明性樹脂層組成物をガラス基板上にスピンコートし、70℃で3分間乾燥して塗工基板を得た後、塗工面にその他のガラス基板を貼り合わせ、1Kgの錘を乗せて5分間放置し、ガラス基板の引き剥がしを行った。この時、引き剥がすことが出来れば○、引き剥がすことが出来なければ×とした。
<Tackiness>
A transparent resin layer composition having the composition shown above was spin-coated on a glass substrate and dried at 70 ° C. for 3 minutes to obtain a coated substrate. Then, another glass substrate was bonded to the coated surface, and 1 kg The weight was placed and left for 5 minutes, and the glass substrate was peeled off. At this time, if it can be peeled off, it was marked as ◯, and if it could not be peeled off, it was marked as x.
 <膜厚測定>
 上記に示す配合からなる透明性樹脂層組成物8.5mLをガラス基板上で回転数200rpmにてスピンコートし、70℃で3分間乾燥して得られた塗工基板を作製した後、一部を削り取ることで出来る段差を小坂研究所社製ET-4000AKを用いて測定した。
<Film thickness measurement>
After producing a coated substrate obtained by spin-coating 8.5 mL of the transparent resin layer composition having the above composition on a glass substrate at a rotation speed of 200 rpm and drying at 70 ° C. for 3 minutes, The level difference that can be obtained by scraping the surface was measured using an ET-4000AK manufactured by Kosaka Laboratory.
<光線透過率測定>
 上記と同様な方法で得られる膜厚が10μmの透明樹脂層付き基板を日立ハイテクフィールディング社製U-4000にて波長400nm光で基板自身をリファレンスとして測定した。
<Light transmittance measurement>
A substrate with a transparent resin layer having a film thickness of 10 μm obtained by the same method as above was measured with U-4000 manufactured by Hitachi High-Tech Fielding Co., Ltd., using the substrate itself as a reference with a wavelength of 400 nm.
<接触角測定>
 上記と同様な方法で得られる膜厚μmの透明性樹脂層付き基板を水平が保たれている台に置き、上部より0.5μlのエチルカルビトールアセテート(有機溶剤:ECA)液滴を落とし、着地後から1秒後の接触角について英弘精機社製高速度接触角計OCAH-200システムを用いて測定した。
<Contact angle measurement>
Place a substrate with a transparent resin layer with a film thickness of μm obtained in the same manner as above on a table that is kept horizontal, drop 0.5 μl of ethyl carbitol acetate (organic solvent: ECA) droplets from the top, The contact angle 1 second after landing was measured using a high-speed contact angle meter OCAH-200 system manufactured by Eihiro Seiki Co., Ltd.
<ドット径>
 コニカミノルタ製インクジェットヘッドKM512M(14pl吐出可能なノズル512穴を装着)が装備されたインクジェット装置を用いて、図1に示すようにECAを上記の透明性樹脂層組成物が10μm程度の膜厚となるようにスリットコーターにて塗工されたガラス基板上に200μmピッチ毎に1打点で描画して拡がり領域を観察した。ドット系が80μm以下のものが良好な濡れ広がり領域とした。
<Dot diameter>
Using an inkjet apparatus equipped with a Konica Minolta inkjet head KM512M (equipped with a nozzle that can eject 14 pl), the ECA has a thickness of about 10 μm as shown in FIG. On the glass substrate coated with the slit coater, the spread area was observed by drawing with one dot every 200 μm pitch. Those having a dot system of 80 μm or less were regarded as good wet spread areas.
<画素形状安定性>
 続いて、図2に示すように1ドット目に対して中心間距離をXおよびY方向で各50μmとなるように離して4ドットを描画し、さらに各ドット間を埋めるように繰り返し連続して描画することで9滴重なる画素を形成した。その後、60℃で5分間乾燥させた後に倍率300倍の顕微鏡観察した際、図3の例のように画素形状が保たれていれば○、図4の例のように画素形状が保たれていなければ×とした。なお、図4の×評価の例では、図2に示したドット5、6、7~9の部分で断裂した状態を示している。
<Pixel shape stability>
Subsequently, as shown in FIG. 2, four dots are drawn with the distance between the centers to be 50 μm in the X and Y directions with respect to the first dot, and repeated continuously so as to fill the space between the dots. Nine drops of overlapping pixels were formed by drawing. Thereafter, when the sample was dried at 60 ° C. for 5 minutes and observed with a microscope at a magnification of 300 times, if the pixel shape was maintained as in the example of FIG. 3, the pixel shape was maintained as in the example of FIG. Otherwise, it was marked as x. Note that the x evaluation example in FIG. 4 shows a state where the dots 5, 6, and 7 to 9 shown in FIG. 2 are broken.
<受容性能>
 次に、図2の画素を1マスとして、図5に示すように隣接させて更に8マス描画することで、合計9マスの画素を形成させた。この時、Veeco社製光干渉式表面粗さ計を用いた3D画像解析により、マス目が整然と整っている場合は評価を○(図6)、マス目間が溶剤溶解によって起こる樹脂の流出によって連結している場合は評価を×(図7)、その間を△とした。
<Acceptance performance>
Next, assuming that the pixels in FIG. 2 are one square, and further adjacent eight squares are drawn as shown in FIG. 5, pixels in a total of nine squares are formed. At this time, when 3D image analysis using an optical interference type surface roughness meter manufactured by Veeco was used, the evaluation was ○ when the cells were neatly arranged (FIG. 6). In the case of connection, the evaluation is x (FIG. 7), and the interval between them is Δ.
<受容層性能>
 上記の評価のうち、ドット径が80μm以下でかつ、画素形状安定性が○、受容性能が○のものを本発明の組成物から造られる塗膜が受容層として能力の高いものとして○評価を、ドット系、画素形状安定性、受容性能の3項目のうち2つを満たすものを△、2つ以下のものは能力が低いものとして×評価とした。
<Receiving layer performance>
Among the above evaluations, a film having a dot diameter of 80 μm or less, a pixel shape stability of ○, and a receptive performance of ○ is evaluated as having a high ability as a coating layer made from the composition of the present invention. The dot system, the pixel shape stability, and the receptive performance satisfying two of the three items were evaluated as Δ.
<塗工性>
 上記に示す配合からなる透明性樹脂層組成物を280mm幅のスリットコーターヘッドが配された装置を用い、300□mmのガラス基板上に280□mmで塗工する操作をヘッドクリーニング操作無しに連続して繰り返し行った。ここで目的とする280□mmで塗工出来ているガラス基板の枚数が連続して20枚以上では○、連続して10枚以上20枚以下では△、連続して10枚以下では×とした。
<Coating property>
Using a device with a slit coater head having a width of 280 mm, the transparent resin layer composition having the composition shown above is continuously applied to a 300 mm glass substrate at 280 mm without a head cleaning operation. And repeated. Here, the target number of glass substrates coated at 280 □ mm is ○ when the number is 20 or more, Δ when the number is 10 or more and 20 or less continuously, and × when the number is 10 or less continuously. .
(合成例1)
 表2の実施例1に示す組成(重量比)となるように、メタクリル酸メチル175.3g(1.75mol)、アクリル酸エチル175.3g(1.75mol)、重合開始剤として過硫酸アンモニウム16.0g(0.07mol)、乳化剤としてラテムルPD-104(花王社製:ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム)36.5g(モノマー総重量に対して10重量%)、純水400gをビーカーに仕込みホモジナイザーで予備乳化させ、その内の160g及び純水200gを攪拌機、還流冷却器、滴下ロート、窒素導入管及び温度計を備えた1500mLフラスコ中に、また、予備乳化液の残り627gを滴下ロートに仕込み、窒素雰囲気下で70~80℃に昇温させて30分間保持した後、滴下ロートより予備乳化液を3時間かけて連続滴下し、滴下終了後5時間継続して攪拌して重合を終結させた。室温に冷却後、固形分濃度を測定し、その固形分濃度が40%になるように純水を加えて、樹脂エマルション1を得た。得られた樹脂エマルション1に含まれる樹脂のTgは41℃、エマルション中の樹脂粒子の粒子径は40nm、重量平均分子量Mw=300000であった。
(Synthesis Example 1)
175.3 g (1.75 mol) of methyl methacrylate, 175.3 g (1.75 mol) of ethyl acrylate, and ammonium persulfate as a polymerization initiator so that the composition (weight ratio) shown in Example 1 of Table 2 is obtained. 0g (0.07 mol), Latemul PD-104 (manufactured by Kao Corporation: polyoxyalkylene alkenyl ether ammonium sulfate) as an emulsifier 36.5 g (10% by weight based on the total monomer weight), 400 g of pure water were charged into a beaker and preliminarily prepared with a homogenizer. Emulsify, 160 g of that and 200 g of pure water are charged into a 1500 mL flask equipped with a stirrer, reflux condenser, dropping funnel, nitrogen inlet tube and thermometer, and the remaining 627 g of the pre-emulsified liquid is charged into the dropping funnel. After raising the temperature to 70 to 80 ° C. and holding for 30 minutes in an atmosphere, reserve from the dropping funnel Continuously added dropwise over of liquid 3 hours to terminate the polymerization and stirring continued After completion of the dropwise 5 hours. After cooling to room temperature, the solid content concentration was measured, and pure water was added so that the solid content concentration was 40% to obtain a resin emulsion 1. The Tg of the resin contained in the obtained resin emulsion 1 was 41 ° C., the particle diameter of the resin particles in the emulsion was 40 nm, and the weight average molecular weight Mw = 300,000.
(合成例2)
 表2の実施例2に示す組成となるように、メタクリル酸メチル175.3g(1.75mol)、アクリル酸エチル175.3g(1.75mol)、過硫酸アンモニウム8.0g(0.04mol)、ラテムルPD-104(花王社製)36.5.g(モノマー総重量に対して10重量%)、純水400gをビーカーに仕込みホモジナイザーで予備乳化させ、その内の160g及び純水200gを攪拌機、還流冷却器、滴下ロート、窒素導入管及び温度計を備えた1500mLフラスコ中に、また、予備乳化液の残り630gを滴下ロートに仕込み、窒素雰囲気下で70~80℃に昇温させて30分間保持した後、滴下ロートより予備乳化液を3時間かけて連続滴下し、滴下終了後5時間継続して攪拌して重合を終結させた。室温に冷却後、固形分濃度を測定し、その固形分濃度が40%になるように純水を加えて、樹脂エマルション2を得た。得られた樹脂エマルション2に含まれる樹脂のTgは41℃、エマルション中の樹脂粒子の粒子径は38nm、重量平均分子量Mw=580000であった。
(Synthesis Example 2)
In order to achieve the composition shown in Example 2 of Table 2, methyl methacrylate 175.3 g (1.75 mol), ethyl acrylate 175.3 g (1.75 mol), ammonium persulfate 8.0 g (0.04 mol), latemul PD-104 (manufactured by Kao Corporation) 36.5. g (10% by weight with respect to the total weight of monomers), 400 g of pure water was charged into a beaker and pre-emulsified with a homogenizer, and 160 g and 200 g of pure water were agitated, reflux condenser, dropping funnel, nitrogen inlet tube and thermometer. The remaining 630 g of the preliminary emulsion was charged into a dropping funnel and heated to 70-80 ° C. under a nitrogen atmosphere and maintained for 30 minutes, and then the preliminary emulsion was added from the dropping funnel for 3 hours. The solution was continuously dropped over a period of 5 hours after the dropping was completed, and the polymerization was terminated by stirring. After cooling to room temperature, the solid content concentration was measured, and pure water was added so that the solid content concentration was 40% to obtain a resin emulsion 2. The Tg of the resin contained in the obtained resin emulsion 2 was 41 ° C., the particle size of the resin particles in the emulsion was 38 nm, and the weight average molecular weight Mw = 5800000.
(合成例3、4)
 表2の実施例3、4に示す組成となるように、メタクリル酸メチル、アクリル酸エチルを配合した以外は合成例1と同様に重合させて、樹脂エマルション3、4を得た。それぞれについてガラス転位温度、粒子径、重量平均分子量を測定した。その結果を表2の実施例3、4欄に記載した。
(Synthesis Examples 3 and 4)
Resin emulsions 3 and 4 were obtained by polymerization in the same manner as in Synthesis Example 1 except that methyl methacrylate and ethyl acrylate were blended so as to have the compositions shown in Examples 3 and 4 of Table 2. The glass transition temperature, particle diameter, and weight average molecular weight were measured for each. The results are shown in Example 3, columns 4 of Table 2.
(合成例5~7)
 表2の実施例1と同様にして、メタクリル酸メチル、アクリル酸エチルを配合し、実施例5においては乳化剤をラテムルPD-104からラテムルPD-104/ラテムルPD-420(花王社製:ポリオキシアルキレンアルケニルエーテル)=4:1の混合物に変更し、実施例6においてはラテムルPD-104/ラテムルPD-420=1:4の混合物に変更し、実施例7においてはラテムルPD-104/ラテムルPD-450=1:4の混合物に変更して、それぞれモノマー総重量に対して10重量%となるように配合し、それ以外は合成例1に記す方法と同様に重合させて、樹脂エマルション5~7を得た。それぞれについてガラス転位温度、粒子径、重量平均分子量を測定した。その結果を表2の実施例5~7欄に記載した。
(Synthesis Examples 5 to 7)
In the same manner as in Example 1 in Table 2, methyl methacrylate and ethyl acrylate were blended. In Example 5, the emulsifiers were Latemul PD-104 to Latemul PD-104 / Latemuru PD-420 (manufactured by Kao Corporation: Polyoxy Alkylene alkenyl ether) = 4: 1, changed to a mixture of Latem PD-104 / latemul PD-420 = 1: 4 in Example 6, and changed to a mixture of Latem PD-104 / latem PD in Example 7. The mixture was changed to a mixture of −450 = 1: 4 and blended so as to be 10% by weight with respect to the total weight of the monomers. Otherwise, polymerization was performed in the same manner as described in Synthesis Example 1, and resin emulsions 5 to 7 was obtained. The glass transition temperature, particle diameter, and weight average molecular weight were measured for each. The results are shown in Examples 5 to 7 in Table 2.
(合成例8~10)
 表2の実施例8~10に示す組成となるように、メタクリル酸メチルおよびアクリル酸ブチルまたはメタクリル酸2-エチルヘキシルを配合し、合成例1に記す方法と同様に重合させて、樹脂エマルション8~10を得た。それぞれについてガラス転位温度、粒子径、重量平均分子量を測定した。その結果を表2の実施例8~10欄に記載した。
(Synthesis Examples 8 to 10)
Methyl methacrylate and butyl acrylate or 2-ethylhexyl methacrylate were blended so as to have the compositions shown in Examples 8 to 10 in Table 2, and polymerized in the same manner as described in Synthesis Example 1 to obtain resin emulsions 8 to 10 was obtained. The glass transition temperature, particle diameter, and weight average molecular weight were measured for each. The results are shown in Examples 8 to 10 in Table 2.
<実施例1>
 合成例1で得られた(1)樹脂エマルション1を61.3g、(2)花王社製エマルゲン103を0.5g、(3)昭和電工社製ソルファインEPを10.0g、(4)純水28.2gを秤量し、30分以上攪拌・混合し、1.0μmフィルターで0.5kg/cmで加圧ろ過を行って、所望の透明性樹脂層組成物を得た。次に、これを用いてコーニング社製ガラス基板コーニングEX-G(ガラス板厚0.75mm)に乾燥後膜厚が10μm程度となるようにスリットコートにて塗工し、70℃のホットプレート上で5分間熱乾燥させて透明性樹脂層付ガラス基板を得た。透明性樹脂層の膜厚は11μmでかつ表面にタック性はなかった。また、波長400nmにおける透過率は92%であった。
<Example 1>
61.3 g of the resin emulsion 1 obtained in Synthesis Example 1, (2) 0.5 g of Emulgen 103 manufactured by Kao Corporation, (3) 10.0 g of Solfine EP manufactured by Showa Denko KK, and (4) pure 28.2 g of water was weighed, stirred and mixed for 30 minutes or more, and subjected to pressure filtration with a 1.0 μm filter at 0.5 kg / cm 2 to obtain a desired transparent resin layer composition. Next, using this, a glass substrate Corning EX-G (glass plate thickness 0.75 mm) manufactured by Corning Co., Ltd. was applied by slit coating so that the film thickness after drying was about 10 μm, and was applied on a hot plate at 70 ° C. And dried for 5 minutes to obtain a glass substrate with a transparent resin layer. The film thickness of the transparent resin layer was 11 μm and the surface was not tacky. Further, the transmittance at a wavelength of 400 nm was 92%.
 続いて、上記で得られた透明性樹脂層付ガラス基板を水平が保たれている台に置き、上部より0.5μlのECA液滴を落とし、着地後から1秒後の接触角を測定したところ45°であった。 Subsequently, the glass substrate with the transparent resin layer obtained as described above was placed on a table that was kept horizontal, 0.5 μl of ECA droplets were dropped from the top, and the contact angle after 1 second from the landing was measured. It was 45 °.
 続いて、コニカミノルタ製インクジェットヘッドKM512M(14pl吐出可能なノズル512穴を装着)が装備されたインクジェット装置を用いて、図1に示すようにECAを200μmピッチ毎に1打点で描画してドットの拡がり領域を観察した。描画直後のドット径は67μmであった。 Subsequently, using an inkjet apparatus equipped with a Konica Minolta inkjet head KM512M (equipped with a nozzle that can eject 14 pl), as shown in FIG. 1, the ECA is drawn at one dot every 200 μm pitch. The spreading area was observed. The dot diameter immediately after drawing was 67 μm.
 続いて、図2に示すように1ドット目に対して中心間距離をXおよびY方向で各30μmとなるように離してドットを描画し、これを繰り返し連続して描画することで9滴重なる画素を形成した。その後、60℃で5分間乾燥させた後に顕微鏡観察した際、図3の様に画素形状が保たれていたので、評価を○とした。 Subsequently, as shown in FIG. 2, the dots are drawn with the center-to-center distance being 30 μm apart in the X and Y directions with respect to the first dot, and this is repeated continuously to draw nine drops. Pixels were formed. Thereafter, when the sample was dried at 60 ° C. for 5 minutes and observed with a microscope, the pixel shape was maintained as shown in FIG.
 続いて、図1の画素を1マスとして、図5に示すように、これらを隣接するようにさらに8マス描画することで合計9マスの画素を形成させた。その直後の光干渉式表面粗さ計を用いた3D画像解析から図6の様な景観が観察されたため、マス目間が樹脂の流出によって連結せず、マス目が整然と整っている評価である○とした。 Subsequently, the pixels of FIG. 1 were taken as one square, and as shown in FIG. 5, a further 9 squares were drawn so as to be adjacent to each other, thereby forming a total of 9 square pixels. Since the landscape as shown in FIG. 6 was observed from the 3D image analysis using the optical interference type surface roughness meter immediately after that, the grids were not connected by the outflow of the resin, and the grids were neatly arranged. ○.
 上記の評価結果から、ドット径は67μmであり、画素形状安定性が○、受容性能が○であったことから、実施例1に示す組成物から造られる塗膜が受容層として高い能力を有するものと判断される○評価とした。 From the above evaluation results, since the dot diameter was 67 μm, the pixel shape stability was ○, and the receiving performance was ○, the coating film made from the composition shown in Example 1 has a high ability as the receiving layer. It was set as ○ evaluation judged to be a thing.
 更に、実施例1に示す組成物を280mm幅のスリットコーターヘッドが配された装置を用い、300□mmのガラス基板上に280□mmで塗工する操作をヘッドクリーニング操作無しに繰り返し行ったところ、目的とする280□mmで20枚以上連続して塗工出来たため、○評価とした。 Furthermore, the operation of coating the composition shown in Example 1 with a 280 mm wide slit coater head on a 300 □ mm glass substrate at 280 □ mm was repeated without a head cleaning operation. Since 20 or more sheets could be continuously coated at the target 280 □ mm, it was evaluated as “Good”.
<実施例2~10>
 合成例2~10で得られた(1)樹脂エマルション2~10をそれぞれ用いた以外は上述の実施例1と同様にして、実施例2~10に係る透明性樹脂層組成物をそれぞれ得た。次に、これらを用いて、実施例1と同様にして各透明性樹脂層付ガラス基板を得た。そして、実施例1と同様に各種の評価を実施し、その評価結果を表2に記した。
<Examples 2 to 10>
Transparent resin layer compositions according to Examples 2 to 10 were obtained in the same manner as in Example 1 except that (1) resin emulsions 2 to 10 obtained in Synthesis Examples 2 to 10 were used, respectively. . Next, using these, each glass substrate with a transparent resin layer was obtained in the same manner as in Example 1. Various evaluations were performed in the same manner as in Example 1, and the evaluation results are shown in Table 2.
<実施例11、12、13>
 上記に示す表1に記述された組成にて、実施例11においては組成A、実施例12においては組成B、実施例13においては組成Cを適用させて透明性樹脂層組成物を得た。次に、これらを用いて、実施例1と同様にして各透明性樹脂層付ガラス基板を得た。そして、実施例1と同様に評価を実施し、その評価結果を表2に記した。
<Examples 11, 12, and 13>
A transparent resin layer composition was obtained by applying composition A in Example 11, composition B in Example 12, and composition C in Example 13 in the composition described in Table 1 above. Next, using these, each glass substrate with a transparent resin layer was obtained in the same manner as in Example 1. And evaluation was implemented similarly to Example 1, and the evaluation result was described in Table 2.
(参考合成例1)
 表3の比較例1に示す組成となるように、メタクリル酸メチル176.2g(1.76mol)、メタクリル酸ラウリル447.8g(1.76mol)、過硫酸アンモニウム16.0g(0.07mol)、ラテムルPD-104(花王社製)64.0g(モノマー総重量に対して10重量%)、純水700gをビーカーに仕込みホモジナイザーで予備乳化させ、その内の280g及び純水280gを攪拌機、還流冷却器、滴下ロート、窒素導入管及び温度計を備えた3000mLフラスコ中に、また、予備乳化液の残り1123gを滴下ロートに仕込み、窒素雰囲気下で70~80℃に昇温させて30分間保持した後、滴下ロートより乳化液を3時間かけて連続滴下し、滴下終了後5時間継続して攪拌して重合を終結させた。室温に冷却後、固形分濃度を測定し、その固形分濃度が40%になるように純水を加えて、樹脂エマルションを得た。得られた樹脂エマルションに含まれる樹脂のTgは20℃、エマルション中の樹脂粒子の粒子径は50nm、重量平均分子量Mw=530000であった。
(Reference Synthesis Example 1)
176.2 g (1.76 mol) of methyl methacrylate, 447.8 g (1.76 mol) of lauryl methacrylate, 16.0 g (0.07 mol) of ammonium persulfate, lathemul so as to have the composition shown in Comparative Example 1 of Table 3 PD-104 (manufactured by Kao Corporation) 64.0 g (10% by weight with respect to the total weight of monomers) and 700 g of pure water were placed in a beaker and pre-emulsified with a homogenizer. Into a 3000 mL flask equipped with a dropping funnel, a nitrogen introducing tube and a thermometer, the remaining 1123 g of the preliminary emulsion was charged into the dropping funnel, heated to 70-80 ° C. under a nitrogen atmosphere, and held for 30 minutes. The emulsion was continuously dropped from the dropping funnel over 3 hours, and stirred for 5 hours after the dropping was completed to complete the polymerization. After cooling to room temperature, the solid content concentration was measured, and pure water was added so that the solid content concentration was 40% to obtain a resin emulsion. The Tg of the resin contained in the obtained resin emulsion was 20 ° C., the particle diameter of the resin particles in the emulsion was 50 nm, and the weight average molecular weight Mw = 530000.
(参考合成例2~7)
 表3の比較例2~7に示す組成となるように、メタクリル酸メチルおよび各種モノマーを配合し、参考合成例1に記す方法と同様に重合させ、各樹脂エマルションを得た。それぞれについてガラス転位温度、粒子径、重量平均分子量を測定した。その結果を表3の実施例2~7欄に記載した。
(Reference Synthesis Examples 2 to 7)
Methyl methacrylate and various monomers were blended so as to have the compositions shown in Comparative Examples 2 to 7 in Table 3, and polymerized in the same manner as described in Reference Synthesis Example 1 to obtain each resin emulsion. The glass transition temperature, particle diameter, and weight average molecular weight were measured for each. The results are shown in Examples 2 to 7 in Table 3.
(参考合成例8)
 窒素導入管及び還流管付き1500ml四つ口フラスコ中にメタクリル酸メチル175.3g(1.75mol)、アクリル酸エチル175.3g(1.75mol)、2,2’-アゾビス(2-メチル-ブチロニトリル)(AIBN)11.5g(0.07mol)、及びプロピレングリコールモノメチルエーテルアセテート(PGMEA)500gを仕込み、窒素雰囲気下、80~85℃で8時間、95~100℃で5時間攪拌して重合させた。室温に冷却後、その固形分を40%に調整するようにPGMEAを加えて、樹脂溶液を得た。この樹脂溶液に含まれる樹脂のガラス転位温度は41℃、重量平均分子量は50000であった。
(Reference Synthesis Example 8)
In a 1500 ml four-necked flask equipped with a nitrogen introduction tube and a reflux tube, 175.3 g (1.75 mol) of methyl methacrylate, 175.3 g (1.75 mol) of ethyl acrylate, 2,2′-azobis (2-methyl-butyronitrile) ) (AIBN) 11.5 g (0.07 mol) and propylene glycol monomethyl ether acetate (PGMEA) 500 g were charged and polymerized by stirring at 80 to 85 ° C. for 8 hours and at 95 to 100 ° C. for 5 hours in a nitrogen atmosphere. It was. After cooling to room temperature, PGMEA was added to adjust the solid content to 40% to obtain a resin solution. The resin contained in this resin solution had a glass transition temperature of 41 ° C. and a weight average molecular weight of 50,000.
(参考合成例9、10)
 表3の比較例14、15に示す組成となるように、メタクリル酸メチルおよびアクリル酸エチルを調合し、AIBNの添加量を0.07molから比較例14では0.01mol、比較例15では0.005molに変更して参考合成例8に記す方法と同様に重合させ、各樹脂溶液を得た。それぞれについてガラス転位温度、重量平均分子量を測定した。その結果を表3の比較例14、15欄に記載した。
(Reference Synthesis Examples 9 and 10)
Methyl methacrylate and ethyl acrylate were prepared so as to have the compositions shown in Comparative Examples 14 and 15 of Table 3, and the amount of AIBN added was 0.07 mol to 0.01 mol in Comparative Example 14, and 0.2 in Comparative Example 15. Polymerization was carried out in the same manner as described in Reference Synthesis Example 8 while changing to 005 mol to obtain each resin solution. The glass transition temperature and the weight average molecular weight were measured for each. The results are shown in Comparative Examples 14 and 15 in Table 3.
<比較例1>
 参考合成例1で得られた(1)樹脂エマルションを61.3g、(2)花王社製エマルゲン103を0.5g、(3)昭和電工社製ソルファインEPを10.0g、(4)純水28.2gを秤量し、30分以上攪拌・混合し、1.0μmフィルターで0.5kg/cmで加圧ろ過を行って、所望の透明性樹脂層組成物を得た。次にこれを用いてコーニング社製ガラス基板コーニングEX-G(ガラス板厚0.75mm)に乾燥後膜厚が10μm程度となるようにスリットコートにて塗工し、その後70℃のホットプレート上で5分間熱乾燥させて透明性樹脂層付ガラス基板を得た。透明性樹脂層の膜厚は13μmでかつ表面にタック性が確認された。また、波長400nmにおける透過率は85%であった。
<Comparative Example 1>
61.3 g of the resin emulsion obtained in Reference Synthesis Example 1, (2) 0.5 g of Emulgen 103 manufactured by Kao Corporation, (3) 10.0 g of Solfine EP manufactured by Showa Denko KK, (4) Pure 28.2 g of water was weighed, stirred and mixed for 30 minutes or more, and subjected to pressure filtration with a 1.0 μm filter at 0.5 kg / cm 2 to obtain a desired transparent resin layer composition. Next, using this, it was applied to a glass substrate Corning EX-G (glass thickness 0.75 mm) manufactured by Corning by slit coating so that the film thickness after drying was about 10 μm, and then applied to a hot plate at 70 ° C. And dried for 5 minutes to obtain a glass substrate with a transparent resin layer. The film thickness of the transparent resin layer was 13 μm, and tackiness was confirmed on the surface. Further, the transmittance at a wavelength of 400 nm was 85%.
 続いて、上記で基板を水平が保たれている台に置き、上部より0.5μlのECA液滴を落とし、着地後から1秒後の接触角を測定したところ43°であった。 Subsequently, the substrate was placed on a table that was kept horizontal as described above, 0.5 μl of ECA droplet was dropped from the top, and the contact angle one second after landing was measured to be 43 °.
 続いて、コニカミノルタ製インクジェットヘッドKM512M(14pl吐出可能なノズル512穴を装着)が装備されたインクジェット装置を用いて、図1に示すようにECAを200μmピッチ毎に1打点で描画してドットの拡がり領域を観察した。描画直後のドット径は60μmであった。 Subsequently, using an inkjet apparatus equipped with a Konica Minolta inkjet head KM512M (equipped with a nozzle that can eject 14 pl), as shown in FIG. 1, the ECA is drawn at one dot every 200 μm pitch. The spreading area was observed. The dot diameter immediately after drawing was 60 μm.
 続いて、図2に示すように1ドット目に対して中心間距離をXおよびY方向で各30μmとなるように離してドットを描画し、これを繰り返し連続して描画することで9滴重なる画素を形成した。その後、60℃で5分間乾燥させた後に顕微鏡観察した際、図4の様に画素が断裂していたので、評価を×とした。 Subsequently, as shown in FIG. 2, the dots are drawn with the center-to-center distance being 30 μm apart in the X and Y directions with respect to the first dot, and this is repeated continuously to draw nine drops. Pixels were formed. Thereafter, when the sample was dried at 60 ° C. for 5 minutes and observed with a microscope, the pixel was torn as shown in FIG.
 続いて、図1の画素を1マスとして図5に示すように隣接するようにさらに8マス描画することで合計9マスの画素を形成させた。その直後の光干渉式表面粗さ計を用いた3D画像解析から図7の様にマス目間が樹脂の流出によって連結していたので、評価を×とした。 Subsequently, the pixels of FIG. 1 were taken as one square, and as shown in FIG. 5, eight more squares were drawn so as to be adjacent to form a total of nine square pixels. From the 3D image analysis using the optical interference type surface roughness meter immediately after that, as shown in FIG. 7, the grids were connected by the outflow of the resin.
 上記の評価結果から、ドット径は60μmであったが、画素形状安定性が×、受容性能が×であったことから、比較例1に示す組成物から造られる塗膜は受容層としての能力が低いものと判断される×評価とした。 From the above evaluation results, the dot diameter was 60 μm, but the pixel shape stability was x and the receptive performance was x. Therefore, the coating film made from the composition shown in Comparative Example 1 has the ability as a receptive layer. X was evaluated as low.
 更に、比較例1に示す組成物を280mm幅のスリットコーターヘッドが配された装置を用い、300□mmのガラス基板上に280□mmで塗工する操作をヘッドクリーニング操作無しに繰り返し行ったところ、目的とする280□mmで連続して塗工出来た基板の枚数が10枚以下であったことから、×評価とした。 Furthermore, when the composition shown in Comparative Example 1 was applied to a 300 □ mm glass substrate at 280 □ mm using an apparatus provided with a 280 mm wide slit coater head, the operation was repeated without a head cleaning operation. Since the number of substrates that could be continuously coated at a target of 280 mm was 10 or less, it was evaluated as x.
<比較例2>
 表3の比較例2に記すモノマー組成から成る樹脂エマルションを用いた以外は上述の比較例1と同様にして、比較例2に係る透明性樹脂層組成物を得た。次に、これを用いて、比較例1と同様にして透明性樹脂層付ガラス基板を得た。そして、比較例1と同様な評価を実施したところ、透過率は75%であったことから透明性に影響するものと推考される。
<Comparative Example 2>
A transparent resin layer composition according to Comparative Example 2 was obtained in the same manner as Comparative Example 1 except that a resin emulsion having a monomer composition described in Comparative Example 2 of Table 3 was used. Next, using this, a glass substrate with a transparent resin layer was obtained in the same manner as in Comparative Example 1. And when evaluation similar to the comparative example 1 was implemented, since the transmittance | permeability was 75%, it is estimated that it influences transparency.
 また、ドット径は82μmと80μmを超えているが、9滴重なる画素の形状は保たれていたので画素形状安定性については○とした。しかし、図5に記すマス目が描画出来でいても図7のような画素連結が若干観られたことから評価を△とした。
 以上の評価結果より、比較例2に示す組成物から造られる塗膜は受容層として能力が低いものと判断される×評価とした。
In addition, although the dot diameters exceeded 82 μm and 80 μm, the shape of the pixel that overlapped 9 drops was maintained, so the pixel shape stability was evaluated as “good”. However, even though the cells shown in FIG. 5 could be drawn, the pixel connection as shown in FIG.
From the above evaluation results, the coating film made from the composition shown in Comparative Example 2 was evaluated as x evaluation that was judged to have a low ability as a receiving layer.
 更に、上記評価の他に塗工性評価を実施したところ、目的とする280□mmで連続して塗工出来た基板の枚数が20枚以上であったことから、○評価とした。 Furthermore, in addition to the above evaluations, coating property evaluation was performed. As a result, the number of substrates that could be continuously coated at a target of 280 □ mm was 20 or more, so it was rated as “Good”.
 <比較例3>
 表3の比較例3に記すモノマー組成から成る樹脂エマルションを用いた以外は上述の比較例1と同様にして、比較例3に係る透明性樹脂層組成物を得た。次に、これを用いて、比較例1と同様にして透明性樹脂層付ガラス基板を得た。そして、比較例1と同様な評価を実施したところ、ドット径は53μmと小さくなっているが、図4の様な画素の断裂および図7のようなマス目間の連結が観られたことから、画素形状安定性および受容性能評価については×とした。
 以上の評価結果より、比較例3に示す組成物から造られる塗膜は受容層として能力が低いものと判断される×評価とした。
<Comparative Example 3>
A transparent resin layer composition according to Comparative Example 3 was obtained in the same manner as Comparative Example 1 except that the resin emulsion having the monomer composition described in Comparative Example 3 of Table 3 was used. Next, using this, a glass substrate with a transparent resin layer was obtained in the same manner as in Comparative Example 1. Then, when the same evaluation as in Comparative Example 1 was performed, the dot diameter was as small as 53 μm. However, the pixel breaks as shown in FIG. 4 and the connections between the squares as shown in FIG. 7 were observed. The pixel shape stability and the acceptance performance evaluation were evaluated as x.
From the above evaluation results, the coating film made from the composition shown in Comparative Example 3 was evaluated as x evaluation that was judged to have low ability as a receiving layer.
 更に、上記評価の他に塗工性評価を実施したところ、目的とする280□mmで連続して塗工出来た基板の枚数が10枚以下であったことから、×評価とした。 Furthermore, in addition to the above evaluation, coating property evaluation was performed, and the number of substrates that could be continuously coated at a target of 280 □ mm was 10 or less.
 <比較例4>
 表3の比較例4に記すモノマー組成から成る樹脂エマルションを用いた以外は上述の比較例1と同様にして、比較例4に係る透明性樹脂層組成物を得た。次に、これを用いて、比較例1と同様にして透明性樹脂層付ガラス基板を得た。そして、比較例1と同様な評価を実施したところ、ドット径は110μmと非常に大きく、図2および図5の様な画素およびマス目が描画出来なかったことから、画素形状安定性および受容性能評価については×とし、比較例4に示す組成物から造られる塗膜は受容層として能力が低いものと判断される×評価とした。
<Comparative example 4>
A transparent resin layer composition according to Comparative Example 4 was obtained in the same manner as Comparative Example 1 except that the resin emulsion having the monomer composition described in Comparative Example 4 in Table 3 was used. Next, using this, a glass substrate with a transparent resin layer was obtained in the same manner as in Comparative Example 1. When the same evaluation as in Comparative Example 1 was performed, the dot diameter was as large as 110 μm, and the pixels and grids as shown in FIGS. 2 and 5 could not be drawn. The evaluation was x, and the coating film made from the composition shown in Comparative Example 4 was evaluated as x, which was judged to have a low ability as a receiving layer.
 また、上記評価の他に塗工性評価を実施したところ、目的とする280□mmで連続して塗工出来た基板の枚数が20枚以上であったことから、○評価とした。 Further, in addition to the above evaluation, coating property evaluation was performed. As a result, the number of substrates that could be continuously coated at a target of 280 □ mm was 20 or more.
<比較例5、6>
 表3の比較例5、6に記すモノマー組成から成る樹脂エマルションを用いた以外は上述の比較例1と同様にして、比較例5、6に係る透明性樹脂層組成物を得た。次に、これを用いて、比較例1と同様にして透明性樹脂層付ガラス基板を得た。そして、比較例1と同様な評価を実施したところ、透過率はそれぞれ81%、83%であったことから透明性に影響するものと推考される。また、ドット径はそれぞれ57μm、58μmと実施例と同等であったが、樹脂層表面は粒子径が大きいために粗く、整然としたマス目が得られなかったことから、評価を△とした。
 以上の評価結果より、比較例5、6に示す組成物から造られる塗膜は受容層として能力が実施例に記すものよりも低く、中程度であると判断される△評価とした。
<Comparative Examples 5 and 6>
Transparent resin layer compositions according to Comparative Examples 5 and 6 were obtained in the same manner as Comparative Example 1 except that the resin emulsions having the monomer compositions described in Comparative Examples 5 and 6 in Table 3 were used. Next, using this, a glass substrate with a transparent resin layer was obtained in the same manner as in Comparative Example 1. And when the same evaluation as Comparative Example 1 was performed, the transmittances were 81% and 83%, respectively, and it is assumed that the transparency was affected. Further, the dot diameters were 57 μm and 58 μm, respectively, which were the same as those in the examples. However, the resin layer surface was coarse due to the large particle diameter, and no regular grid was obtained.
Based on the above evaluation results, the coating films made from the compositions shown in Comparative Examples 5 and 6 were evaluated as Δ evaluations that were judged to be moderate and lower in capacity as receiving layers than those described in the Examples.
 更に、上記評価の他に塗工性評価を実施したところ、目的とする280□mmで塗工したところ、基板表面に凝集物由来の突起物が多く観られ、平坦性が良好な基板が得られなかったことから、×評価とした。 Furthermore, in addition to the above evaluation, when coating property evaluation was performed, when coating was performed at the target 280 mm, a large number of projections derived from aggregates were observed on the substrate surface, and a substrate with good flatness was obtained. Since it was not possible, it was set as x evaluation.
<比較例7>
 表3の比較例7に記すモノマー組成から成る樹脂エマルションを用いた以外は上述の比較例1と同様にして、比較例7に係る透明性樹脂層組成物を得た。次に、これを用いて、比較例1と同様にして透明性樹脂層付ガラス基板を得た。そして、比較例1と同様な評価を実施したところ、ドット径は62μmであり、9滴重なる画素の画素形状を保っていたが、ECAの吸収性が悪いために濡れ拡がってしまい、整然としたマス目が描画出来ていなかったことから、受容性能は×とした。
 以上の評価結果より、比較例7に示す組成物から造られる塗膜は受容層として能力が実施例に記すものよりも低く、中程度であると判断される△評価とした。
<Comparative Example 7>
A transparent resin layer composition according to Comparative Example 7 was obtained in the same manner as Comparative Example 1 except that the resin emulsion having the monomer composition described in Comparative Example 7 in Table 3 was used. Next, using this, a glass substrate with a transparent resin layer was obtained in the same manner as in Comparative Example 1. Then, when the same evaluation as in Comparative Example 1 was performed, the dot diameter was 62 μm and the pixel shape of nine overlapping pixels was maintained. Since the eyes could not be drawn, the acceptance performance was set to x.
From the above evaluation results, the coating film made from the composition shown in Comparative Example 7 was evaluated as Δ evaluation that was judged to be moderate as the receiving layer having a lower ability than those described in the Examples.
 更に、上記評価の他に塗工性評価を実施したところ、目的とする280□mmで連続して塗工出来た基板の枚数が20枚以上であったことから、○評価とした。 Furthermore, in addition to the above evaluations, coating property evaluation was performed. As a result, the number of substrates that could be continuously coated at a target of 280 □ mm was 20 or more, so it was rated as “Good”.
<比較例8~12>
 上記に示す表1に記述された組成にて、比較例8においては組成D、比較例9においては組成E、比較例10においては組成F、比較例11においては組成G、比較例12においては組成Hを適用させ、透明性樹脂層組成物を得た。次に、これらを用いて、比較例1と同様にして各透明性樹脂層付ガラス基板を得た。そして、比較例1と同様に評価を実施し、その評価結果を表2に記し、以下に評価事由を記述する。
<Comparative Examples 8-12>
In the composition described in Table 1 above, composition D in comparative example 8, composition E in comparative example 9, composition F in comparative example 10, composition G in comparative example 11, and composition 12 in comparative example 12 Composition H was applied to obtain a transparent resin layer composition. Next, using these, each glass substrate with a transparent resin layer was obtained in the same manner as in Comparative Example 1. And evaluation is implemented similarly to the comparative example 1, the evaluation result is described in Table 2, and the evaluation reason is described below.
 比較例8においてはドット径が82μmと大きく、ECAが濡れ拡がるために図7の様にマス目間の連結が観えたために受容性能を×とし、受容層性能は×評価とした。 In Comparative Example 8, since the dot diameter was as large as 82 μm and the ECA wetted and spread, the connection between the cells was seen as shown in FIG.
 比較例9においては塗膜にタック性があり、9滴重なる画素の形状が図4の様になるために画素形状安定性を×に、更に図7の様にマス目間の連結が観えたために受容性能を×とし、受容層性能を×評価とした。 In Comparative Example 9, the coating film has tackiness, and the shape of the pixel that overlaps 9 drops is as shown in FIG. 4, so that the pixel shape stability is indicated as x, and further, the connection between the squares is visible as shown in FIG. Therefore, the receiving performance was evaluated as x, and the receiving layer performance was evaluated as x.
 比較例10においてはドット径が81μmと大きく、かつ、塗膜表面が均一ではなくドットには若干のハジキが観られ、マスの位置によって一定の大きさの画素が描画出来ないこと、9滴重なる画素の形状が図4の様になっていたことから、画素形状安定性を×に、さらに図7の様にマス目間に若干の連結が観られたことから、受容性能を△とした。以上の結果から、受容層性能を×評価とした。 In Comparative Example 10, the dot diameter is as large as 81 μm, the coating film surface is not uniform, and some repellency is observed on the dots, a pixel of a certain size cannot be drawn depending on the position of the square, and 9 drops overlap Since the shape of the pixel was as shown in FIG. 4, the pixel shape stability was evaluated as x, and since a slight connection was observed between the cells as shown in FIG. From the above results, the receiving layer performance was evaluated as x evaluation.
 比較例11においては塗膜にタック性があり、9滴重なる画素の形状が図4のようになるために画素形状安定性を×に、更に図7の様に画素が連結していたことから受容性能を×とした。以上の結果から、受容層性能を×評価とした。 In Comparative Example 11, the coating film has tackiness, and the shape of the pixel that overlaps 9 drops is as shown in FIG. 4, so that the pixel shape stability is x, and further, the pixels are connected as shown in FIG. The acceptability was marked with x. From the above results, the receiving layer performance was evaluated as x evaluation.
 比較例12においては塗膜にタック性があり、9滴重なる画素の形状が図4のようになるために画素形状安定性を×に、更に図7の様に画素が連結していたことから受容性能を×とした。以上の結果から、受容層性能を×評価とした。 In Comparative Example 12, the coating film has tackiness, and the shape of the pixel that overlaps 9 drops is as shown in FIG. 4, so that the pixel shape stability is x, and further, the pixels are connected as shown in FIG. The acceptability was marked with x. From the above results, the receiving layer performance was evaluated as x evaluation.
 更に、上記評価の他に比較例8~12において塗工性評価を実施したところ、比較例10および11においては目的とする280□mmで連続して塗工出来た基板の枚数が10~20枚であったことから、△評価に、比較例8、9、12は10枚以下であったため、×評価とした。 Further, in addition to the above evaluation, when the coating properties were evaluated in Comparative Examples 8 to 12, in Comparative Examples 10 and 11, the target number of substrates that could be continuously coated at 280 mm was 10 to 20 Since it was a sheet, since Comparative Example 8, 9, and 12 were 10 sheets or less, it was set as x evaluation in △ evaluation.
<比較例13>
 参考合成例8で得られた樹脂溶液を61.3g、花王社製エマルゲン103を0.5g、昭和電工社製ソルファインEPを38.2g秤量し、30分以上攪拌・混合し、0.5μmのフィルターで0.5kg/cmで加圧ろ過を行って、所望の透明性樹脂組成物を得た。次にこれを用いてコーニング社製ガラス基板コーニングEX-G(ガラス板厚0.75mm)に乾燥後膜厚が10um程度となるようにスリットコートにて塗工し、常温下にて1200Paで20秒間、400Paで30秒間、真空乾燥させ、その後70℃のホットプレート上で5分間熱乾燥させて透明性樹脂層付ガラス基板を得た。透明性樹脂層の膜厚は11μmでかつ表面にタック性はなかった。また、波長400nmにおける透過率は88%であった。
<Comparative Example 13>
61.3 g of the resin solution obtained in Reference Synthesis Example 8, 0.5 g of Emulgen 103 manufactured by Kao Co., Ltd., and 38.2 g of Solfine EP manufactured by Showa Denko Co., Ltd. were weighed, and stirred and mixed for 30 minutes or more. Was filtered under pressure at 0.5 kg / cm 2 to obtain a desired transparent resin composition. Next, using this, a glass substrate Corning EX-G (glass plate thickness 0.75 mm) manufactured by Corning Co., Ltd. was coated with a slit coat so that the film thickness after drying was about 10 μm, and 20 ° C. at 1200 Pa at room temperature. The film was vacuum-dried at 400 Pa for 30 seconds and then heat-dried on a hot plate at 70 ° C. for 5 minutes to obtain a glass substrate with a transparent resin layer. The film thickness of the transparent resin layer was 11 μm and the surface was not tacky. Further, the transmittance at a wavelength of 400 nm was 88%.
 続いて、上記で基板を水平が保たれている台に置き、上部より0.5μlのECA液滴を落とし、着地後から1秒後の接触角を測定したところ32°であった。 Subsequently, the substrate was placed on a table that was kept horizontal as described above, 0.5 μl of ECA droplet was dropped from the top, and the contact angle one second after landing was measured to be 32 °.
 続いて、コニカミノルタ製インクジェットヘッドKM512M(14pl吐出可能なノズル512穴を装着)が装備されたインクジェット装置を用いて、図1に示すようにECAを200umピッチ毎に1打点で描画してドットの拡がり領域を観察した。描画直後のドット径は91μmであった。 Subsequently, using an inkjet apparatus equipped with a Konica Minolta inkjet head KM512M (equipped with a nozzle that can eject 14 pl), as shown in FIG. 1, the ECA is drawn at one dot every 200 um pitch. The spreading area was observed. The dot diameter immediately after drawing was 91 μm.
 続いて、図2に示すように1ドット目に対して中心間距離をXおよびY方向で各50μmとなるように離して4ドットを描画し、さらに各ドット間を埋めるように繰り返し連続して描画することで9滴重なる画素の形成を試みたが、図2および図5の様な画素およびマス目が描画出来なかったことから、画素形状安定性および受容性能評価については×とし、比較例4に示す組成物から造られる塗膜は受容層として能力が低いものと判断される×評価とした。 Subsequently, as shown in FIG. 2, four dots are drawn with the distance between the centers to be 50 μm in the X and Y directions with respect to the first dot, and repeated continuously so as to fill the space between the dots. Although we tried to form a pixel with 9 drops by drawing, the pixels and grids as shown in FIGS. 2 and 5 could not be drawn. The coating film made from the composition shown in No. 4 was evaluated as x evaluated as having a low ability as a receiving layer.
 また、上記評価の他に塗工性評価を実施したところ、目的とする280□mmで連続して塗工出来た基板の枚数が20枚以上であったことから、○評価とした。 Further, in addition to the above evaluation, coating property evaluation was performed. As a result, the number of substrates that could be continuously coated at a target of 280 □ mm was 20 or more.
 <比較例14、15>
 上述の比較例13と同様に評価を実施したが、比較例13と同様に画素が得られなかったため、画素形状安定性、受容性能および受容層性能について×評価とした。
<Comparative Examples 14 and 15>
Evaluation was performed in the same manner as in Comparative Example 13 described above. However, since pixels were not obtained in the same manner as in Comparative Example 13, pixel shape stability, receptive performance, and receptive layer performance were evaluated as x.
 また、上記評価の他に塗工性評価を実施したところ、目的とする280□mmで連続して塗工出来た基板の枚数が20枚以上であったことから、○評価とした。 Further, in addition to the above evaluation, coating property evaluation was performed. As a result, the number of substrates that could be continuously coated at a target of 280 □ mm was 20 or more.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、表2および表3中の略語の意味は次のとおりである。
 MMA :メタクリル酸メチル
 EA  :アクリル酸エチル
 BA  :アクリル酸ブチル
 EHMA:メタクリル酸2-エチルヘキシル
 LMA :メタクリル酸ラウリル
 St  :スチレン
 Tg  :ガラス転位温度
 Mw  :重量平均分子量
The meanings of the abbreviations in Tables 2 and 3 are as follows.
MMA: Methyl methacrylate EA: Ethyl acrylate BA: Butyl acrylate EHMA: 2-ethylhexyl methacrylate LMA: Lauryl methacrylate St: Styrene Tg: Glass transition temperature Mw: Weight average molecular weight

Claims (5)

  1.  (1)メタクリル酸メチル(i)とアルキル基の炭素原子数が2~8の(メタ)アクリル酸アルキルエステル(ii)とを含む混合モノマーを乳化重合で重合して得られて、含まれる樹脂のガラス転位温度が10℃以上70℃未満であり、重量平均分子量が10万以上~80万未満であり、かつ、数平均粒子径が10nm以上500nm未満である(メタ)アクリル酸アルキルエステル系共重合体樹脂微粒子分散エマルション、(2)23℃の室温下で流動性を有する界面活性剤、及び(3)有機溶剤を含有することを特徴とする透明性樹脂層組成物。 (1) A resin obtained by polymerizing a mixed monomer containing methyl methacrylate (i) and (meth) acrylic acid alkyl ester (ii) having 2 to 8 carbon atoms in an alkyl group by emulsion polymerization, (Meth) acrylic acid alkyl ester copolymer having a glass transition temperature of 10 ° C. or more and less than 70 ° C., a weight average molecular weight of 100,000 or more and less than 800,000 and a number average particle size of 10 nm or more and less than 500 nm. A transparent resin layer composition comprising a polymer resin fine particle-dispersed emulsion, (2) a surfactant having fluidity at room temperature of 23 ° C., and (3) an organic solvent.
  2.  (メタ)アクリル酸アルキルエステル系共重合体樹脂微粒子分散エマルションの(i)メタクリル酸メチルと(ii)炭素原子数が2~8の(メタ)アクリル酸アルキルエステルとの組成比は、重量比で(i):(ii)=1:0.25~1:2の範囲にある請求項1に記載の透明性樹脂層組成物。 The composition ratio of (i) methyl methacrylate and (ii) (meth) acrylic acid alkyl ester having 2 to 8 carbon atoms in the (meth) acrylic acid alkyl ester copolymer resin fine particle dispersed emulsion is as follows: 2. The transparent resin layer composition according to claim 1, wherein (i) :( ii) = 1: 0.25 to 1: 2.
  3.  厚さ1~30μmの範囲で樹脂層を形成した場合、400nmの波長における光線透過率が80%以上である請求項1又は2に記載の透明性樹脂層組成物。 3. The transparent resin layer composition according to claim 1, wherein when the resin layer is formed in a thickness range of 1 to 30 μm, the light transmittance at a wavelength of 400 nm is 80% or more.
  4.  請求項1乃至3のいずれかに記載の透明性樹脂層組成物を用いて形成された透明性樹脂層が支持基材上に形成されてなるインクジェットインク受容層。 An inkjet ink receiving layer, wherein a transparent resin layer formed using the transparent resin layer composition according to any one of claims 1 to 3 is formed on a support substrate.
  5.  請求項1乃至3のいずれかに記載の透明性樹脂層組成物を用いて形成された透明性樹脂層上にインクジェットインクを描画することで得られる表示素子。 A display element obtained by drawing inkjet ink on a transparent resin layer formed using the transparent resin layer composition according to any one of claims 1 to 3.
PCT/JP2014/050634 2013-01-17 2014-01-16 Transparent resin layer composition, receiving layer for inkjet inks which is produced using same, and display element WO2014112543A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157018038A KR20150106882A (en) 2013-01-17 2014-01-16 Transparent resin layer composition, receiving layer for inkjet inks which is produced using same, and display element
JP2014557489A JPWO2014112543A1 (en) 2013-01-17 2014-01-16 Transparent resin layer composition, ink-jet ink receiving layer and display element using the same
CN201480005057.9A CN104918995A (en) 2013-01-17 2014-01-16 Transparent resin layer composition, receiving layer for inkjet inks which is produced using same, and display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013006036 2013-01-17
JP2013-006036 2013-01-17

Publications (1)

Publication Number Publication Date
WO2014112543A1 true WO2014112543A1 (en) 2014-07-24

Family

ID=51209632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050634 WO2014112543A1 (en) 2013-01-17 2014-01-16 Transparent resin layer composition, receiving layer for inkjet inks which is produced using same, and display element

Country Status (5)

Country Link
JP (1) JPWO2014112543A1 (en)
KR (1) KR20150106882A (en)
CN (1) CN104918995A (en)
TW (1) TW201434928A (en)
WO (1) WO2014112543A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216005A (en) * 1994-01-27 1995-08-15 Daicel Chem Ind Ltd Aqueous emulsion composition and its production
JP2004291561A (en) * 2003-03-28 2004-10-21 Toyo Ink Mfg Co Ltd Ink jet receptive sheet
JP2005103888A (en) * 2003-09-30 2005-04-21 Nippon Zeon Co Ltd Copolymer latex for inkjet recording medium and inkjet recording medium
WO2010001664A1 (en) * 2008-07-01 2010-01-07 Dic株式会社 Inkjet accepting agent for oily pigment ink, inkjet recording medium for oily pigment ink and printed article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216005A (en) * 1994-01-27 1995-08-15 Daicel Chem Ind Ltd Aqueous emulsion composition and its production
JP2004291561A (en) * 2003-03-28 2004-10-21 Toyo Ink Mfg Co Ltd Ink jet receptive sheet
JP2005103888A (en) * 2003-09-30 2005-04-21 Nippon Zeon Co Ltd Copolymer latex for inkjet recording medium and inkjet recording medium
WO2010001664A1 (en) * 2008-07-01 2010-01-07 Dic株式会社 Inkjet accepting agent for oily pigment ink, inkjet recording medium for oily pigment ink and printed article

Also Published As

Publication number Publication date
TW201434928A (en) 2014-09-16
JPWO2014112543A1 (en) 2017-01-19
KR20150106882A (en) 2015-09-22
CN104918995A (en) 2015-09-16

Similar Documents

Publication Publication Date Title
EP2578648B1 (en) Aqueous inkjet ink composition
JP5385530B2 (en) Inorganic fine particle dispersed paste composition
TWI471339B (en) Paste composition for printing
JP5729066B2 (en) Binder resin composition for aqueous inkjet ink and aqueous inkjet ink composition using the same
TW200906998A (en) Composition for anti-glare film and anti-glare film prepared using the same
TWI498391B (en) Coating solution for forming transparent coated film and substrate with the transparent coated film
JP6740018B2 (en) Inkjet recording method
WO2018135237A1 (en) Magenta ink for inkjet
JP2019111687A (en) Fine particle dispersion used in primer and primer using the same
CN101679792B (en) Ink composition for roll printing
JP6061008B1 (en) Inkjet magenta ink
CN106985587B (en) Resin composition for protective layer of transfer paper, process for producing the same, and decorative transfer paper
JP4442718B2 (en) Inkjet acceptor for oil pigment ink, inkjet recording medium for oil pigment ink, and printed matter
WO2014112543A1 (en) Transparent resin layer composition, receiving layer for inkjet inks which is produced using same, and display element
CN102666749A (en) Ink composition for letterpress reverse printing, printed matter, and color filters
JP5143683B2 (en) Slurry composition for forming plasma display panel electrode
JP6939184B2 (en) Inkjet ink, image forming method, and image forming material
JP2011074121A (en) Ink composition for forming fine pattern
CN108690417A (en) The manufacturing method of aqueous liquid dispersion
KR102106933B1 (en) Print media for water-based color ink jet printing and method for manufacturing same
JP7147233B2 (en) Water-based inkjet ink, ink set, and image forming method
JP5609372B2 (en) LAMINATED FILM AND MANUFACTURING METHOD
JP5055712B2 (en) Inorganic particle-containing composition, transfer film, and method for producing plasma display panel
JP2006052368A (en) Paste composition, fired product, resin for paste, resin solution composition for paste and method for producing front plate of plasma display panel
TW201937200A (en) Coat film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740577

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20157018038

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014557489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740577

Country of ref document: EP

Kind code of ref document: A1