WO2014112359A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2014112359A1
WO2014112359A1 PCT/JP2014/000130 JP2014000130W WO2014112359A1 WO 2014112359 A1 WO2014112359 A1 WO 2014112359A1 JP 2014000130 W JP2014000130 W JP 2014000130W WO 2014112359 A1 WO2014112359 A1 WO 2014112359A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
carbon atoms
unsubstituted
ring
Prior art date
Application number
PCT/JP2014/000130
Other languages
French (fr)
Japanese (ja)
Inventor
亮平 橋本
圭 吉田
俊裕 岩隈
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2014112359A1 publication Critical patent/WO2014112359A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Definitions

  • the present invention relates to an organic electroluminescence element.
  • Organic electroluminescence (EL) elements include a fluorescent type and a phosphorescent type, and an optimum element design has been studied according to each light emission mechanism. With respect to phosphorescent organic EL elements, it is known from their light emission characteristics that high-performance elements cannot be obtained by simple diversion of fluorescent element technology. The reason is generally considered as follows. Since phosphorescent light emission is light emission using triplet excitons, the energy gap of the compound used for the light emitting layer needs to be large. This is because the energy gap (hereinafter also referred to as singlet energy) of a compound is usually larger than the triplet energy (which means the energy difference between the lowest excited triplet state and the ground state) of the compound. It is.
  • a host material having a triplet energy larger than the triplet energy of the phosphorescent dopant material must first be used for the light emitting layer.
  • Patent Documents 1 to 3 the development of a layer in contact with the anode side of the light emitting layer and the development of an element have been energetically performed.
  • Patent Document 3 proposes that a compound having an amine skeleton is used for the hole transport layer and the charge balance in the light emitting layer is adjusted to achieve both high efficiency and long life of the device.
  • a white organic EL device for illumination or the like includes a green light-emitting layer or a red light-emitting layer / green light-emitting layer, and a red light-emitting layer / blue light-emitting layer through an intermediate electrode, the first light-emitting unit and the second light-emitting unit.
  • stacked tandem light-emitting elements are used.
  • An object of the present invention is to provide a long-life organic EL element in which a red light emitting layer / blue light emitting layer are laminated.
  • the present inventors have found that a compound represented by formula (1) having a specific structure and a red phosphorescent material are included in the first light-emitting layer, and a compound or dibenzo containing a dibenzofuran skeleton in the second light-emitting layer.
  • the present invention was completed by finding that an organic EL device containing a compound containing a thiophene skeleton and a blue phosphorescent material has a long lifetime.
  • the first light emitting layer includes a compound represented by the following formula (1) and a red phosphorescent material
  • the second light emitting layer is provided with an organic electroluminescence device including a compound containing a dibenzofuran skeleton or a compound containing a dibenzothiophene skeleton and a blue phosphorescent material.
  • X is a group represented by O, S, or N-Ra.
  • Y 1 to Y 12 are each a group represented by N or C—Ra.
  • Ar 1 and Ar 2 are each a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • Ra is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, a substituted or unsubstituted carbon atom having 1 to 30 carbon atoms.
  • the plurality of Ras may be the same or different.
  • a long-life organic EL element in which a red light emitting layer / blue light emitting layer are laminated can be provided.
  • the organic EL element of the present invention is Between the anode and the cathode, including a first light emitting layer and a second light emitting layer,
  • the first light emitting layer includes a compound represented by the following formula (1) and a red phosphorescent material
  • the second light-emitting layer includes a compound containing a dibenzofuran skeleton or a compound containing a dibenzothiophene skeleton and a blue phosphorescent material.
  • X is a group represented by O, S, or N-Ra.
  • Y 1 to Y 12 are each a group represented by N or C—Ra.
  • Ar 1 and Ar 2 are each a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • Ra is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, a substituted or unsubstituted carbon atom having 1 to 30 carbon atoms.
  • the plurality of Ras may be the same or different.
  • Y 1 and Y 12 , Y 2 and Y 11 , Y 3 and Y 10 , Y 4 and Y 9 , Y 5 and Y 8 , and Y 6 and Y At least one pair of 7 is not identical to each other.
  • Y 1 and Y 12 , Y 2 and Y 11 , Y 3 and Y 10 , Y 4 and Y 9 , Y 5 and Y 8 and at least one pair of Y 6 and Y 7 are not identical to each other. That is, the carbazole moiety including Y 1 to Y 6 and the carbazole moiety including Y 7 to Y 12 are different from each other, and the two carbazole moieties do not have a line-symmetric structure.
  • Ar 1 and Ar 2 are preferably different substituents.
  • the crystallinity is reduced, and appropriate charge transport can be maintained by maintaining an amorphous organic film.
  • the organic EL device of the present invention in which a red light emitting layer / blue light emitting layer is laminated includes a green light emitting layer and a red light emitting layer / blue light emitting layer that are stacked as a first light emitting unit and a second light emitting unit via an intermediate electrode.
  • the tandem white light-emitting organic EL device is useful as either the first or second light-emitting unit.
  • the organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a light source such as a copying machine, a printer, a backlight of a liquid crystal display or an instrument, a display board, a marker lamp, an illumination device, and the like.
  • X is preferably O or S, more preferably O.
  • the two adjacent Ras may combine to form a ring.
  • the ring formed by combining two adjacent Ras is preferably an aromatic ring.
  • the ring-forming atom may be a heteroaromatic ring containing a heteroatom such as N, O, or S.
  • Y 1 to Y 12 are preferably C—Ra, more preferably C—H.
  • Ar 1 and / or Ar 2 is represented by -L 1 -R 1 .
  • L 1 represents a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms
  • R 1 represents a substituted or unsubstituted ring aryl group. It represents an aryl group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • the compound represented by the formula (1) is preferably a compound represented by the following formula (1a).
  • X, Ar 1 , Ar 2 , Y 1 , Y 2 , Y 5 , Y 6 , Y 7 , Y 8 , Y 11 and Y 12 are as defined in the formula (1). .
  • the compound represented by the formula (1) is preferably a compound represented by the following formula (1b).
  • X, Ar 2 , Y 1 , Y 2 , Y 5 , Y 6 , Y 7 , Y 8 , Y 11 and Y 12 are as defined in the formula (1).
  • Ar 11 is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • X is preferably O.
  • Ar 2 is preferably a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • Ar 1 and Ar 2 , or Ar 11 and Ar 2 are preferably different groups.
  • Ra is substituted or unsubstituted (X 10 is O, S or C—RaRa, Ra is as defined in the above formula (1), Y 20 is C—H or N). It is preferable.
  • the triplet energy of the compound of formula (1) is preferably 2.85 eV or more. Although an upper limit is not limited, Usually, it is 3.5 eV or less. Since the compound of formula (1) has a high hole transport property, the voltage of the device can be reduced.
  • the hole mobility of the compound of formula (1) is preferably 5 ⁇ 10 ⁇ 8 cm 2 / Vs or more. High hole mobility is preferable because the voltage is lowered.
  • the hole mobility (cm 2 / Vs) can be measured using impedance spectroscopy. Specifically, ITO (indium tin oxide) is used as an anode on a substrate, an organic layer containing a measurement target compound is formed thereon, and then Al is stacked as a cathode, thereby producing a hole-only device. A DC voltage carrying an AC voltage of 100 mV is applied, and the complex modulus is measured.
  • the number of ring-forming carbon atoms constitutes the ring itself of a compound having a structure in which atoms are bonded cyclically (for example, a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, or a heterocyclic compound). Represents the number of carbon atoms in the atom.
  • the carbon contained in the substituent is not included in the number of ring-forming carbons.
  • the “ring-forming carbon number” described below is the same unless otherwise specified.
  • the benzene ring has 6 ring carbon atoms
  • the naphthalene ring has 10 ring carbon atoms
  • the pyridinyl group has 5 ring carbon atoms
  • the furanyl group has 4 ring carbon atoms.
  • the carbon number of the alkyl group is not included in the number of ring-forming carbons.
  • the carbon number of the fluorene ring as a substituent is not included in the number of ring-forming carbons.
  • the number of ring-forming atoms means a compound (for example, a monocyclic compound, a condensed ring compound, a bridging compound, a carbocyclic compound, a heterocycle) having a structure in which atoms are bonded in a cyclic manner (for example, a monocyclic ring, a condensed ring, or a ring assembly) Of the ring compound) represents the number of atoms constituting the ring itself.
  • An atom that does not constitute a ring for example, a hydrogen atom that terminates a bond of an atom that constitutes a ring
  • an atom contained in a substituent when the ring is substituted by a substituent is not included in the number of ring-forming atoms.
  • the “number of ring-forming atoms” described below is the same unless otherwise specified.
  • the pyridine ring has 6 ring atoms
  • the quinazoline ring has 10 ring atoms
  • the furan ring has 5 ring atoms.
  • a hydrogen atom bonded to a carbon atom of a pyridine ring or a quinazoline ring or an atom constituting a substituent is not included in the number of ring-forming atoms. Further, when, for example, a fluorene ring is bonded to the fluorene ring as a substituent (including a spirofluorene ring), the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
  • the “carbon number XX to YY” in the expression “substituted or unsubstituted ZZ group having XX to YY” represents the number of carbon atoms in the case where the ZZ group is unsubstituted. The carbon number of the substituent in the case where it is present is not included.
  • “YY” is larger than “XX”, and “XX” and “YY” each mean an integer of 1 or more.
  • atom number XX to YY in the expression “a ZZ group having a substituted or unsubstituted atom number XX to YY” represents the number of atoms when the ZZ group is unsubstituted. In this case, the number of substituent atoms is not included.
  • YY is larger than “XX”, and “XX” and “YY” each mean an integer of 1 or more.
  • unsubstituted in the case of “substituted or unsubstituted” means that a hydrogen atom is bonded without being substituted with the above substituent.
  • the aromatic hydrocarbon ring includes a monocyclic aromatic hydrocarbon ring group and a condensed aromatic hydrocarbon ring group in which a plurality of hydrocarbon rings are condensed, and the heteroaromatic ring is a monocyclic heterocycle.
  • An aromatic ring group, a hetero-fused aromatic ring group in which a plurality of heteroaromatic rings are condensed, and a hetero-fused aromatic ring group in which an aromatic hydrocarbon ring and a heteroaromatic ring are condensed are included.
  • the hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (triuterium), and tritium.
  • the substituent is, for example, a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 ring carbon atoms, or a carbon number
  • Examples thereof include a 5- to 18-heteroaromatic ring group, a silyl group, a fluorine atom, a fluoroalkyl group having 1 to 20 carbon atoms, a fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n- Heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n- And heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 2-methylpentyl group, 1-pentylhexyl group, 1-butylpentyl group, 1-heptyloctyl group,
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a norbornyl group, an adamantyl group, etc. Among them, those having 5 or 6 ring carbon atoms are preferable.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, and a hexyloxy group.
  • Those having 3 or more carbon atoms may be linear, cyclic or branched, Of these, those having 1 to 6 carbon atoms are preferred.
  • cycloalkoxy group examples include a cyclopentoxy group and a cyclohexyloxy group, and among them, those having 5 or 6 ring carbon atoms are preferable.
  • aromatic hydrocarbon ring group examples include phenyl group, tolyl group, xylyl group, mesityl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, o-terphenyl group, m -Terphenyl group, p-terphenyl group, naphthyl group, phenanthryl group, triphenylene group and the like.
  • a phenyl group, m-biphenyl group, and m-terphenyl group are preferred. Those having 6 to 18 ring carbon atoms are preferred.
  • arylene group examples include groups in which the above-described aromatic hydrocarbon ring group (aryl group) is divalent.
  • aralkyl group examples include the above-described alkyl group substituted by the above-described aromatic hydrocarbon ring group (aryl group).
  • aromatic heterocyclic group (heteroaromatic ring group) (heteroaryl group)
  • aromatic heterocyclic group include pyrrolyl group, pyrazinyl group, pyridinyl group, pyrimidinyl group, pyridazinyl group, triazinyl group, indolyl group, isoindolyl group, furyl group, Benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, dibenzothiophenyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, carbazolyl group, azacarbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, thienyl Group, pyrrolidinyl group, dioxanyl group, piperidinyl group, morpholinyl group, piperazinyl group, carbazolyl group, thiopheny
  • heteroarylene group examples include groups in which the above-described aromatic heterocyclic group (heteroaryl group) is divalent.
  • fluoroalkyl group examples include a group in which one or more fluorine atoms are substituted on the above-described alkyl group, and specifically include a trifluoromethyl group, a pentafluoroethyl group, a 2,2,2-trifluoroethyl group. Etc. are preferred.
  • fluoroalkoxy group examples include groups in which one or more fluorine atoms are substituted on the above-described alkoxy group, and specifically include a trifluoromethoxy group, a pentafluoroethoxy group, a 2,2,2-trifluoroethoxy group. Etc. are preferred.
  • Examples of the aryloxy group include a group in which the above-described aryl group is substituted on an oxygen atom.
  • Examples of the arylthio group include a group in which the above aryl group is substituted on a sulfur atom.
  • Examples of the arylsulfonyl group include a group in which the above aryl group is substituted on the sulfonyl group.
  • Examples of the heteroaryloxy group include groups in which the above-described heteroaryl group is substituted on an oxygen atom.
  • Examples of the heteroarylthio group include a group in which the above-described heteroaryl group is substituted on a sulfur atom.
  • heteroarylsulfonyl group examples include a group in which the above aryl group is substituted on the sulfonyl group.
  • alkylene group the group which made the alkyl group mentioned above bivalent is mentioned.
  • cycloalkylene group examples include groups in which the above-described cycloalkyl group is divalent.
  • the triplet energy of the compound of the second light emitting layer is usually 2.85 eV or more, preferably 2.90 eV or more. Although an upper limit is not limited, Usually, it is 3.5 eV or less.
  • the compound of the second light emitting layer has a dibenzofuran skeleton or a dibenzothiophene skeleton. If a compound of the second light-emitting layer having a skeleton such as a dibenzofuran ring or a dibenzothiophene ring having electron resistance while maintaining the electron transporting ability is used, the lifetime can be extended.
  • the compounds of the second light-emitting layer will be described with specific structural formulas, but each compound includes a dibenzofuran skeleton and / or a dibenzothiophene skeleton as a partial structure.
  • the compound of the second light emitting layer is a compound represented by the following formula (2).
  • X 1 is an oxygen atom or a sulfur atom
  • One of X 2 and Y 2 is an oxygen atom, a sulfur atom or NR, and the other is a single bond, C (R) 2 , NR, an oxygen atom or a sulfur atom
  • Each R is independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted ring forming carbon number;
  • Z 1 , Z 2 and Z 3 are each independently a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 30 ring carbon atoms or
  • n is an integer of 0 to 5, and when n is 2 or more, the plurality of Z 2 may be the same or different from each other, and the plurality of X 2 may be the same or different from each other The plurality of Y 2 may be the same as or different from each other.
  • n is an integer of 0 or 1.
  • R ′ is, for example, a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a cycloalkyl group having 3 to 20 ring carbon atoms.
  • the compound of the second light emitting layer is preferably a compound represented by the following formula (2-1).
  • G 1 to G 6 are each independently CR 1 or a nitrogen atom.
  • G 11 to G 18 are each independently CR 2 or a nitrogen atom.
  • R and R 1 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted carbon, An alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, a substituted or unsubstituted aromatic hydrocarbon ring group having 6 to 18 ring carbon atoms, a substituted or unsubstituted ring group; Aryloxy group having 6 to 18 ring carbon atoms, substituted or unsubstituted heteroaryloxy group having 5 to 18 ring atoms, substituted or unsubstitute
  • R 1 of G 2 and G 5 is each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, substituted or An unsubstituted silyl group, a fluorine atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms.
  • R 2 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • each R 2 may be the same or different.
  • R, R 1 and R 2 have a substituent
  • the substituent R ′ is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 ring carbon atoms, or 1 to 20 carbon atoms.
  • a heteroaromatic ring group a silyl group, a fluorine atom, a fluoroalkyl group having 1 to 20 carbon atoms, a fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group.
  • Xa is an oxygen atom or a sulfur atom.
  • the compound of the second light emitting layer is preferably represented by any one of the following formulas (2-2a) to (2-2c), (2-3a) to (2-3c), and (2-4a). Is done.
  • G 211 to G 214 are each independently CR 21 or a nitrogen atom.
  • G 221 to G 228 are each independently CR 22 or a nitrogen atom.
  • Ga to Gk are each independently CR 23 or a nitrogen atom.
  • G 214 and Ga are carbon atoms, they may be bonded via an oxygen or sulfur atom.
  • G213 and Gd are carbon atoms, they may be bonded via an oxygen or sulfur atom.
  • R 21 , R 22 and R 23 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, substituted or unsubstituted Unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon ring group having 6 to 18 ring carbon atoms, substituted Or an unsubstituted aryloxy group having 6 to 18 carbon atoms, a substituted or unsubstituted heteroaromatic ring group having 5 to 18 ring atoms, a substituted or unsubstituted silyl group, a fluorine atom, substituted or unsubstituted A fluoroalkyl group having 1 to 20 carbon atoms,
  • the plurality of R 21 may be the same or different from each other.
  • the plurality of R 22 may be the same or different from each other.
  • the plurality of R 23 may be the same or different from each other.
  • R 21 , R 22 and R 23 have a substituent
  • the substituent R ′ is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 ring carbon atoms, or 1 to 20 alkoxy groups, cycloalkoxy groups having 3 to 20 ring carbon atoms, aromatic hydrocarbon ring groups having 6 to 18 ring carbon atoms, aryloxy groups having 6 to 18 ring carbon atoms, 5 to 5 ring atoms
  • X 1 is an oxygen atom or a sulfur atom.
  • X 2 is an oxygen atom, a sulfur atom, or C (CH 3 ) 2 . )
  • the compound of the second light emitting layer is preferably represented by any of the following formulas (2-5a) to (2-5f).
  • E 1 and E 2 are each independently an oxygen atom, a sulfur atom or NR 5 ; However, at least one of E 1 and E 2 is an oxygen atom or a sulfur atom, G 51 to G 60 are each independently CR 6 or a nitrogen atom.
  • R 5 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted ring carbon atom having 6 to 30 carbon atoms.
  • R 6 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • the plurality of R 5 may be the same or different from each other.
  • the plurality of R 6 may be the same or different from each other.
  • R 5 and R 6 have a substituent
  • the substituent R ′ is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 ring carbon atoms, or an alkoxy having 1 to 20 carbon atoms.
  • a cycloalkoxy group having 3 to 20 ring carbon atoms an aromatic hydrocarbon ring group having 6 to 18 ring carbon atoms, an aryloxy group having 6 to 18 ring carbon atoms, and a hetero ring having 5 to 18 ring atoms.
  • the compound of the second light emitting layer may be a compound represented by the following formulas (2-4) to (2-9).
  • X 1 and X 2 are each independently an oxygen atom or a sulfur atom
  • Each R 1 independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted ring forming carbon;
  • An aromatic hydrocarbon ring group of 6-30, or a substituted or unsubstituted aromatic heterocyclic group of 3-30 ring-forming atoms, s, t, and u are each independently an integer of 1-4.
  • each group and its substituent in the compound of the second light emitting layer include those exemplified for the compound of formula (1).
  • a phosphorescent material (sometimes called a phosphorescent dopant) will be described.
  • the phosphorescent material is a so-called phosphorescent dopant.
  • the phosphorescent dopant include metal complex compounds, preferably a compound having a metal atom selected from Ir, Pt, Os, Au, Cu, Re and Ru and a ligand.
  • the ligand preferably has an ortho metal bond.
  • the phosphorescent dopant is preferably a compound containing a metal atom selected from Ir, Os and Pt in that the phosphorescent quantum yield is high and the external quantum efficiency of the light-emitting element can be further improved, and an iridium complex, It is more preferable that it is a metal complex such as an osmium complex and a platinum complex, among which an iridium complex and a platinum complex are more preferable, and an orthometalated iridium complex is most preferable.
  • the dopant may be a single type or a mixture of two or more types.
  • the red phosphorescent material contained in the first light emitting layer is a compound that can emit phosphorescence having an emission wavelength in the range of 550 to 750 nm, preferably in the range of 570 to 730 nm.
  • Examples of the compound used as the red phosphorescent material include Ir (pic) 3 , (pic) 2 Ir (acac), (btp) 2 Ir (acac), and (pic) 2 Ir (acac), (Btp) 2 Ir (acac) and the like are preferable.
  • the triplet energy Eg T of the red phosphorescent material is preferably 2.10 eV or more.
  • the blue phosphorescent material contained in the second light emitting layer is a compound that can emit phosphorescence having an emission wavelength in the range of 430 to 550 nm, preferably in the range of 430 to 530 nm, more preferably in the range of 430 to 510 nm.
  • the compound used as the blue phosphorescent material include FIrpic, FCNIrpic, FIr6, iridium complex of carbene ligand, iridium complex of phenylimidazole ligand, iridium complex of carbene ligand, phenylimidazole, and the like.
  • An iridium complex of a ligand or the like is preferable.
  • the triplet energy Eg T of the blue phosphorescent material is preferably 2.70 eV or more.
  • the organic EL device of the present invention includes a first light emitting layer containing the compound of the above formula (1) and a red phosphorescent material, and a compound containing a dibenzofuran skeleton or a compound containing a dibenzothiophene skeleton and a blue phosphorescent material.
  • Other configurations are not particularly limited as long as they have an element configuration including a second light-emitting layer that includes.
  • the first light emitting layer may contain one or more compounds of formula (1).
  • the first light-emitting layer contains one kind of red phosphorescent material (phosphorescent dopant) alone or two or more kinds.
  • the second light emitting layer may contain one or more compounds containing a dibenzofuran skeleton and / or a compound containing a dibenzothiophene skeleton.
  • a 2nd light emitting layer contains blue phosphorescent light emitting material (phosphorescent dopant) 1 type individually, or contains 2 or more types.
  • the first light emitting layer and the second light emitting layer are preferably adjacent to each other.
  • the organic layer adjacent to the second light emitting layer may contain a compound containing a dibenzofuran skeleton and / or a compound containing a dibenzothiophene skeleton alone or in combination of two or more.
  • This organic layer can function as a hole blocking layer.
  • a hole transporting material is added to the first light emitting layer, deterioration of the compound of the formula (1) is suppressed, so that the lifetime of the element can be improved.
  • the first light-emitting layer is preferably composed of only the compound of formula (1) and the red phosphorescent material, or only the compound of formula (1), the red phosphorescent material and the hole transporting material (including inevitable impurities). .
  • the addition concentration of the red phosphorescent dopant or hole transporting material in the first light emitting layer is not particularly limited, but is preferably 0.1 to 20% by weight (wt%), more preferably 0.1% each. ⁇ 10 wt% (wt%).
  • Examples of the hole transporting material include a material for a hole injection / transport layer described later.
  • the addition concentration of the blue phosphorescent dopant in the second light emitting layer is not particularly limited, but is preferably 0.1 to 40% by weight (wt%), more preferably 0.1 to 30% by weight (wt%). It is.
  • FIG. 1 is a schematic view showing a layer structure of an embodiment of the organic EL device of the present invention.
  • the organic EL element 1 includes an anode 20, a hole injection layer 30, a hole transport layer 40, an electron blocking layer 50, a first light emitting layer 60, a second light emitting layer 62, and a hole blocking layer 70 on a substrate 10.
  • the electron transport layer 80, the electron injection layer 90, and the cathode 100 are stacked in this order. Any of the hole injection layer, the hole transport layer, the electron blocking layer, the hole blocking layer, the electron transport layer, and the electron injection layer may be formed.
  • the organic EL element of the present invention can employ various known configurations.
  • the configuration other than the layer using the organic EL element material of the present invention described above is not particularly limited, and a known material or the like can be used.
  • a known material or the like can be used.
  • the layer of the element of Embodiment 1 is demonstrated easily, the material applied to the organic EL element of this invention is not limited to the following.
  • a glass plate, a polymer plate or the like can be used as the substrate.
  • the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfone, and polysulfone.
  • the anode is made of, for example, a conductive material, and a conductive material having a work function larger than 4 eV is suitable.
  • the conductive material include carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, and their alloys, ITO substrate, tin oxide used for NESA substrate, indium oxide, and the like.
  • examples thereof include metal oxides and organic conductive resins such as polythiophene and polypyrrole.
  • the anode may be formed with a layer structure of two or more layers if necessary.
  • the cathode is made of, for example, a conductive material, and a conductive material having a work function smaller than 4 eV is suitable.
  • the conductive material include, but are not limited to, magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and alloys thereof.
  • the alloy include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto.
  • the ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio.
  • the cathode may be formed with a layer structure of two or more layers, and the cathode can be produced by forming a thin film from the conductive material by a method such as vapor deposition or sputtering.
  • the transmittance of the cathode for light emission is preferably greater than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • the organic EL element of the present invention may have a fluorescent light emitting layer.
  • a known material can be used for the fluorescent light emitting layer.
  • the light emitting layer may be a double host (also referred to as a host / cohost). Specifically, the carrier balance in the light emitting layer may be adjusted by combining an electron transporting host and a hole transporting host in the light emitting layer. Moreover, it is good also as a double dopant.
  • each dopant emits light by adding two or more dopant materials having a high quantum yield. For example, a yellow light emitting layer may be realized by co-evaporating a host, a red dopant, and a green dopant.
  • the light emitting layer may be a single layer or a laminated structure. When the light emitting layer is stacked, the recombination region can be concentrated on the light emitting layer interface by accumulating electrons and holes at the light emitting layer interface. This improves the quantum efficiency.
  • the hole injection layer and the hole transport layer help to inject holes into the light emitting layer and transport them to the light emitting region, and have high hole mobility and low ionization energy. Is a layer.
  • As the material for the hole injection / transport layer a material that transports holes to the light emitting layer with lower electric field strength is preferable. Further, when an electric field is applied with a hole mobility of, for example, 10 4 to 10 6 V / cm, At least 10 ⁇ 4 cm 2 / V ⁇ sec is preferable.
  • the material for the hole injection / transport layer include triazole derivatives (see US Pat. No. 3,112,197) and oxadiazole derivatives (see US Pat. No. 3,189,447). ), Imidazole derivatives (see JP-B-37-16096, etc.), polyarylalkane derivatives (US Pat. Nos. 3,615,402, 3,820,989, 3,542,544) Nos. 45-555, 51-10983, 51-93224, 55-17105, 56-4148, 55-108667, 55-156953, 56-36656, etc.), pyrazoline derivatives and pyrazolone derivatives (US Pat. No. 3,180,729, No. 4) Nos.
  • Gazette 55-52063, 55-52064, 55-46760, 57-11350, 57- No. 148749, JP-A-2-311591, etc.), stilbene derivatives (JP-A Nos. 61-210363, 61-228451, 61-14642, 61-72255, etc.) 62-47646, 62-36684, 62-10652, 62-30255, 60-93455, 60-94462, 60-174749, 60 -175052, etc.), silazane derivatives (US Pat. No. 4,950,950), polysilanes (JP-A-2-204996), aniline copolymers (JP-A-2-282263) Etc.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material.
  • a cross-linkable material can be used as the material for the hole injection / transport layer.
  • Mater. 2008, 20, 413-422, Chem. Mater. Examples include a layer obtained by insolubilizing a cross-linking material such as 2011, 23 (3), 658-681, WO2008108430, WO2009102027, WO2009123269, WO2010016555, WO2010018813 by heat, light or the like.
  • the electron injection layer and the electron transport layer are layers that assist the injection of electrons into the light emitting layer and transport them to the light emitting region, and have high electron mobility.
  • an electrode for example, a cathode
  • the electron injecting / transporting layer is appropriately selected with a film thickness of several nm to several ⁇ m.
  • the electron mobility is preferably at least 10 ⁇ 5 cm 2 / Vs or more when an electric field of V / cm is applied.
  • an aromatic heterocyclic compound containing one or more heteroatoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, such as a pyridine ring. , Pyrimidine ring, triazine ring, benzimidazole ring, phenanthroline ring, quinazoline ring and the like.
  • an organic layer having semiconductivity may be formed by doping a donor material (n) and acceptor material (p).
  • a donor material (n) and acceptor material (p) A typical example of N doping is to dope an electron transport material with a metal such as Li or Cs, and a typical example of P doping is to dope an acceptor material such as F4TCNQ into a hole transport material (for example, see Japanese Patent No. 3695714).
  • each layer of the organic EL device of the present invention a known method such as a dry film forming method such as vacuum deposition, sputtering, plasma, or ion plating, or a wet film forming method such as spin coating, dipping, or flow coating is applied. be able to.
  • the thickness of each layer is not particularly limited, but must be set to an appropriate thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied.
  • the normal film thickness is suitably in the range of 5 nm to 10 ⁇ m, but more preferably in the range of 10 nm to 0.2 ⁇ m.
  • the measuring method of the characteristic of a compound is as follows.
  • (1) Triplet energy (E T ) The measurement was performed using a commercially available apparatus F-4500 (manufactured by Hitachi).
  • the conversion formula of triplet energy (E T ) is as follows.
  • E T (eV) 1239.85 / ⁇ ph
  • “ ⁇ ph ” (unit: nm) draws a tangent line to the rising edge of the phosphorescence spectrum on the short wavelength side when the phosphorescence spectrum is represented with the phosphorescence intensity on the vertical axis and the wavelength on the horizontal axis. , The wavelength value of the intersection of the tangent and the horizontal axis.
  • Ionization potential A thin film of the measurement compound was formed on the ITO substrate by a vacuum deposition method or a coating method, and the measurement was performed using a commercially available atmospheric photoelectron spectrometer AC-3 (manufactured by Riken Keiki Co., Ltd.).
  • the evaluation method of the organic EL element is as follows.
  • the organic EL device of the example using the compound of the present invention as the host of the red phosphorescent light emitting layer has an improved half-life compared to the device of Comparative Example 1.
  • Example 1 A glass substrate with a 130 nm-thick ITO electrode line (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • the glass substrate with the ITO electrode line after the cleaning is mounted on the substrate holder of the vacuum deposition apparatus, and the compound (HI1) is first thickened so as to cover the ITO electrode line on the surface on which the ITO electrode line is formed.
  • the compound (HT1) was then vapor deposited by resistance heating at a thickness of 50 nm, and thin films were sequentially formed. The film formation rate was 1 ⁇ / s. These thin films function as a hole injection layer and a hole transport layer, respectively.
  • a compound (1) and a compound (RD1) were simultaneously deposited by resistance heating to form a thin film having a thickness of 10 nm.
  • the film formation rates were 1.0 ⁇ / s and 0.064 ⁇ / s, respectively.
  • the compound (RD1) was deposited so as to have a mass ratio of 6% with respect to the total mass of the compound (1) and the compound (RD1).
  • This thin film functions as a red phosphorescent light emitting layer.
  • the compound (H1) and the compound (BD1) were simultaneously deposited by resistance heating to form a thin film having a thickness of 50 nm.
  • the compound (BD1) was deposited so as to have a mass ratio of 20% with respect to the total mass of the compound (H1) and the compound (BD1).
  • the film formation rates were 1.2 ⁇ / s and 0.3 ⁇ / s, respectively.
  • This thin film functions as a phosphorescent light emitting layer.
  • a thin film having a thickness of 10 nm was formed on the phosphorescent light emitting layer by resistance heating vapor deposition of the compound (H1). The film formation rate was 1 ⁇ / s. This thin film functions as a hole blocking layer.
  • a compound (ET1) was deposited by resistance heating vapor deposition to form a thin film having a thickness of 10 nm.
  • the film formation rate was 1 ⁇ / s.
  • This film functions as an electron injection layer.
  • LiF having a film thickness of 1.0 nm was deposited on the electron injection layer at a film formation rate of 0.1 ⁇ / s.
  • metal aluminum was vapor-deposited on the LiF film at a film formation rate of 8.0 ⁇ / s to form a metal cathode having a film thickness of 80 nm, thereby manufacturing an organic EL element.
  • Example 2 and Comparative Examples 1 and 2 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in Table 2 were used as the host material for the red phosphorescent light emitting layer instead of the compound (1). The results are shown in Table 3. The “half life (relative%)” is a relative ratio when the half life of the element of Comparative Example 2 is 100%. Table 1 shows the triplet energy and ionization potential of the compounds used, and Table 2 shows the evaluation results of the devices.
  • the organic EL device of the example using the compound of the present invention as the host material of the red phosphorescent light emitting layer has an improved lifetime as compared with the devices of Comparative Examples 1 and 2. .
  • Example 3 and 4 and Comparative Examples 3 and 4 The same procedure as in Example 1 was conducted except that compound (H2) was used as the host for the phosphorescent layer instead of compound (H1), and the compounds listed in Table 3 were used as the host material for the red phosphorescent layer instead of compound (1). Thus, an organic EL element was produced and evaluated. The results are shown in Table 3. The “half life (relative%)” is a relative ratio when the half life of the element of Comparative Example 4 is 100%.
  • the organic EL device of the example using the compound of the present invention as the host material of the red phosphorescent light emitting layer has an improved lifetime as compared with the devices of Comparative Examples 3 and 4. .

Abstract

This organic electroluminescent element contains a first light-emitting layer and a second light-emitting layer between a positive electrode and a negative electrode, the first light-emitting layer contains a red phosphorescent light-emitting material and a compound represented by formula (1), and the second light-emitting layer contains a blue phosphorescent light-emitting material and a compound containing a dibenzothiophene skeleton or a compound containing a dibenzofuran skeleton.

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence element.
 有機エレクトロルミネッセンス(EL)素子には、蛍光型及び燐光型があり、それぞれの発光メカニズムに応じ、最適な素子設計が検討されている。燐光型の有機EL素子については、その発光特性から、蛍光素子技術の単純な転用では高性能な素子が得られないことが知られている。その理由は、一般的に以下のように考えられている。
 燐光発光は、三重項励起子を利用した発光であるため、発光層に用いる化合物のエネルギーギャップが大きい必要がある。これは、化合物のエネルギーギャップ(以下、一重項エネルギーともいう)の値は、通常、その化合物の三重項エネルギー(最低励起三重項状態と基底状態とのエネルギー差をいう)の値よりも大きいためである。
Organic electroluminescence (EL) elements include a fluorescent type and a phosphorescent type, and an optimum element design has been studied according to each light emission mechanism. With respect to phosphorescent organic EL elements, it is known from their light emission characteristics that high-performance elements cannot be obtained by simple diversion of fluorescent element technology. The reason is generally considered as follows.
Since phosphorescent light emission is light emission using triplet excitons, the energy gap of the compound used for the light emitting layer needs to be large. This is because the energy gap (hereinafter also referred to as singlet energy) of a compound is usually larger than the triplet energy (which means the energy difference between the lowest excited triplet state and the ground state) of the compound. It is.
 燐光発光性ドーパント材料の三重項エネルギーを効率的に発光層内に閉じ込めるためには、まず、燐光発光性ドーパント材料の三重項エネルギーよりも大きい三重項エネルギーのホスト材料を発光層に用いなければならない。 In order to efficiently confine the triplet energy of the phosphorescent dopant material in the light emitting layer, a host material having a triplet energy larger than the triplet energy of the phosphorescent dopant material must first be used for the light emitting layer. .
 有機EL素子の駆動電圧を低減するためには、電荷注入性又は電荷輸送性に優れる材料を用いる必要がある。しかし、このように電荷注入性、電荷輸送性に優れる材料を用いる場合、駆動電圧が低減する代わりに、発光層内の電荷バランスが悪化し、素子の短寿命化に繋がる場合がある。即ち素子の寿命を維持した上で、駆動電圧を低減する電荷輸送材料が必要となる。 In order to reduce the driving voltage of the organic EL element, it is necessary to use a material excellent in charge injection property or charge transport property. However, in the case of using such a material excellent in charge injection property and charge transport property, instead of reducing the driving voltage, the charge balance in the light emitting layer is deteriorated, which may lead to shortening of the device life. That is, a charge transport material that reduces the driving voltage while maintaining the lifetime of the element is required.
 以上のような理由から、燐光型の有機EL素子の高性能化には、蛍光型の有機EL素子と異なる材料選択及び素子設計が必要になっている。 For the reasons described above, material enhancement and element design different from those of fluorescent organic EL elements are required for enhancing the performance of phosphorescent organic EL elements.
また、特許文献1~3に示すように、発光層の陽極側に接する層の開発及び素子開発についても精力的に行われている。例えば、特許文献3では、正孔輸送層にはアミン骨格を有する化合物を用い、発光層内の電荷バランスを整えることで、素子の高効率化と長寿命化を両立させる提案がされている。 Further, as shown in Patent Documents 1 to 3, the development of a layer in contact with the anode side of the light emitting layer and the development of an element have been energetically performed. For example, Patent Document 3 proposes that a compound having an amine skeleton is used for the hole transport layer and the charge balance in the light emitting layer is adjusted to achieve both high efficiency and long life of the device.
WO2007-108459パンフレットWO2007-108459 brochure 特開2010-205815号公報JP 2010-205815 A WO2012-128298パンフレットWO2012-128298 Brochure
 照明等を目的とする白色有機EL素子は、緑色発光層又は赤色発光層/緑色発光層と、赤色発光層/青色発光層を、中間電極を介して第一の発光ユニットと第二の発光ユニットとして重ねたタンデム型発光素子が一般的に用いられている。
 しかしながら、発光ユニットの一方として用いられる、従来の赤色発光層/青色発光層を積層した有機EL素子の寿命は十分とは言えない。
A white organic EL device for illumination or the like includes a green light-emitting layer or a red light-emitting layer / green light-emitting layer, and a red light-emitting layer / blue light-emitting layer through an intermediate electrode, the first light-emitting unit and the second light-emitting unit. In general, stacked tandem light-emitting elements are used.
However, it cannot be said that the lifetime of a conventional organic EL element in which a red light emitting layer / blue light emitting layer are stacked, which is used as one of the light emitting units, is sufficient.
 本発明の目的は、赤色発光層/青色発光層を積層した長寿命な有機EL素子を提供することである。 An object of the present invention is to provide a long-life organic EL element in which a red light emitting layer / blue light emitting layer are laminated.
 本発明者らは鋭意研究した結果、第一の発光層に特定構造を有する式(1)で表される化合物と赤色燐光発光材料を含み、第二の発光層にジベンゾフラン骨格を含む化合物又はジベンゾチオフェン骨格を含む化合物と青色燐光発光材料を含む有機EL素子が長寿命であることを見出し、本発明を完成させた。 As a result of intensive studies, the present inventors have found that a compound represented by formula (1) having a specific structure and a red phosphorescent material are included in the first light-emitting layer, and a compound or dibenzo containing a dibenzofuran skeleton in the second light-emitting layer. The present invention was completed by finding that an organic EL device containing a compound containing a thiophene skeleton and a blue phosphorescent material has a long lifetime.
 本願発明の一態様によれば、
 陽極と陰極との間に、第一の発光層と第二の発光層を含み、
 第一の発光層は、下記式(1)で表される化合物と、赤色燐光発光材料を含み、
 第二の発光層は、ジベンゾフラン骨格を含む化合物又はジベンゾチオフェン骨格を含む化合物と、青色燐光発光材料を含む有機エレクトロルミネッセンス素子が提供される。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、
 Xは、O、S、又はN-Raで表わされる基である。
 Y~Y12は、それぞれN又はC-Raで表わされる基である。
 Ar及びArは、それぞれ置換若しくは無置換の環形成炭素数6~30のアリール基、又は、置換若しくは無置換の環形成原子数5~30のヘテロアリール基である。
 Raは、水素原子、置換基若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換の環形成原子数5~30のヘテロアリール基、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の炭素数1~30のフルオロアルキル基、置換若しくは無置換の環形成炭素数3~30のシクロアルキル基、置換若しくは無置換の炭素数7~30のアラルキル基、置換ホスホリル基、置換シリル基、シアノ基、ニトロ基、又はカルボキシ基である。
 式(1)中に、Raが2つ以上ある場合は、複数のRaは、それぞれ同一でも異なっていてもよい。)
According to one aspect of the present invention,
Between the anode and the cathode, including a first light emitting layer and a second light emitting layer,
The first light emitting layer includes a compound represented by the following formula (1) and a red phosphorescent material,
The second light emitting layer is provided with an organic electroluminescence device including a compound containing a dibenzofuran skeleton or a compound containing a dibenzothiophene skeleton and a blue phosphorescent material.
Figure JPOXMLDOC01-appb-C000001
(In the formula (1),
X is a group represented by O, S, or N-Ra.
Y 1 to Y 12 are each a group represented by N or C—Ra.
Ar 1 and Ar 2 are each a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
Ra is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, a substituted or unsubstituted carbon atom having 1 to 30 carbon atoms. An alkyl group, a substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, A substituted phosphoryl group, a substituted silyl group, a cyano group, a nitro group, or a carboxy group.
In Formula (1), when there are two or more Ras, the plurality of Ras may be the same or different. )
 本発明によれば、赤色発光層/青色発光層を積層した長寿命な有機EL素子が提供できる。 According to the present invention, a long-life organic EL element in which a red light emitting layer / blue light emitting layer are laminated can be provided.
本発明の有機EL素子の一実施形態の層構成を示す概略図である。It is the schematic which shows the layer structure of one Embodiment of the organic EL element of this invention.
 本発明の有機EL素子は、
 陽極と陰極との間に、第一の発光層と第二の発光層を含み、
 第一の発光層は、下記式(1)で表される化合物と、赤色燐光発光材料を含み、
 第二の発光層は、ジベンゾフラン骨格を含む化合物又はジベンゾチオフェン骨格を含む化合物と、青色燐光発光材料を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000002
The organic EL element of the present invention is
Between the anode and the cathode, including a first light emitting layer and a second light emitting layer,
The first light emitting layer includes a compound represented by the following formula (1) and a red phosphorescent material,
The second light-emitting layer includes a compound containing a dibenzofuran skeleton or a compound containing a dibenzothiophene skeleton and a blue phosphorescent material.
Figure JPOXMLDOC01-appb-C000002
 式(1)中、
 Xは、O、S、又はN-Raで表わされる基である。
 Y~Y12は、それぞれN又はC-Raで表わされる基である。
 Ar及びArは、それぞれ置換若しくは無置換の環形成炭素数6~30のアリール基、又は、置換若しくは無置換の環形成原子数5~30のヘテロアリール基である。
 Raは、水素原子、置換基若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換の環形成原子数5~30のヘテロアリール基、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の炭素数1~30のフルオロアルキル基、置換若しくは無置換の環形成炭素数3~30のシクロアルキル基、置換若しくは無置換の炭素数7~30のアラルキル基、置換ホスホリル基、置換シリル基、シアノ基、ニトロ基、又はカルボキシ基である。
 式(1)中に、Raが2つ以上ある場合は、複数のRaは、それぞれ同一でも異なっていてもよい。
 但し、ArとArが同一の基である場合、YとY12、YとY11、YとY10、YとY、YとY、及びYとYのうちの少なくとも1つのペアは、互いに同一とはならない。
In formula (1),
X is a group represented by O, S, or N-Ra.
Y 1 to Y 12 are each a group represented by N or C—Ra.
Ar 1 and Ar 2 are each a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
Ra is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, a substituted or unsubstituted carbon atom having 1 to 30 carbon atoms. An alkyl group, a substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, A substituted phosphoryl group, a substituted silyl group, a cyano group, a nitro group, or a carboxy group.
In Formula (1), when there are two or more Ras, the plurality of Ras may be the same or different.
However, when Ar 1 and Ar 2 are the same group, Y 1 and Y 12 , Y 2 and Y 11 , Y 3 and Y 10 , Y 4 and Y 9 , Y 5 and Y 8 , and Y 6 and Y At least one pair of 7 is not identical to each other.
 式(1)の化合物は、ArとArが同一の置換基である場合、YとY12、YとY11、YとY10、YとY、YとY、及びYとYのうちの少なくとも1つのペアは、互いに同一とはならない。即ち、Y~Yを含んで構成されるカルバゾール部位と、Y~Y12を含んで構成されるカルバゾール部位が互いに異なる構造であり、2つのカルバゾール部位は線対称構造を取らない。
 式(1)の化合物は、ArとArが異なる置換基であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
In the compound of formula (1), when Ar 1 and Ar 2 are the same substituent, Y 1 and Y 12 , Y 2 and Y 11 , Y 3 and Y 10 , Y 4 and Y 9 , Y 5 and Y 8 and at least one pair of Y 6 and Y 7 are not identical to each other. That is, the carbazole moiety including Y 1 to Y 6 and the carbazole moiety including Y 7 to Y 12 are different from each other, and the two carbazole moieties do not have a line-symmetric structure.
In the compound of formula (1), Ar 1 and Ar 2 are preferably different substituents.
Figure JPOXMLDOC01-appb-C000003
 式(1)の化合物が非対称構造化合物であることで、結晶性が低減し、アモルファスな有機膜を維持することで、適切な電荷輸送を維持することができる。 When the compound of the formula (1) is an asymmetric structure compound, the crystallinity is reduced, and appropriate charge transport can be maintained by maintaining an amorphous organic film.
 赤色発光層/青色発光層を積層した本発明の有機EL素子は、緑色発光層と、赤色発光層/青色発光層を、中間電極を介して第一の発光ユニットと第二の発光ユニットとして重ねたタンデム型白色発光有機EL素子の、第一及び第二いずれかの発光ユニットとして有用である。
 本発明の有機EL素子は、壁掛けテレビのフラットパネルディスプレイ等の平面発光体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、表示板、標識灯、照明装置等に利用できる。
The organic EL device of the present invention in which a red light emitting layer / blue light emitting layer is laminated includes a green light emitting layer and a red light emitting layer / blue light emitting layer that are stacked as a first light emitting unit and a second light emitting unit via an intermediate electrode. The tandem white light-emitting organic EL device is useful as either the first or second light-emitting unit.
The organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a light source such as a copying machine, a printer, a backlight of a liquid crystal display or an instrument, a display board, a marker lamp, an illumination device, and the like.
 Xは、O又はSであることが好ましく、Oであることがより好ましい。 X is preferably O or S, more preferably O.
 Y~Y12は、長寿命化の点で好ましくはそれぞれC-Raで表わされる基である。更に好ましくは、-CH(Ra=H)である。
 Y~Y12のうちの隣接する2つがC-Ra(-CHでもよい。)の場合、この隣接する2つのRaが結合して環を形成してもよい。π共役平面の広がりの維持という点では、隣接する2つのRaが結合して形成する環は芳香族環が好ましい。この場合、環形成原子として、N,O,Sのようなヘテロ原子を含む複素芳香族環でもよい。
 Y~Y12は、C-Raであることが好ましく、C-Hであることがより好ましい。
Y 1 to Y 12 are each preferably a group represented by C—Ra from the viewpoint of extending the life. More preferred is —CH (Ra = H).
When two adjacent ones of Y 1 to Y 12 are C—Ra (may be —CH), the two adjacent Ras may combine to form a ring. In terms of maintaining the spread of the π-conjugated plane, the ring formed by combining two adjacent Ras is preferably an aromatic ring. In this case, the ring-forming atom may be a heteroaromatic ring containing a heteroatom such as N, O, or S.
Y 1 to Y 12 are preferably C—Ra, more preferably C—H.
 一の態様において、Ar及び/又はArは、-L-Rで表される。Lは、置換若しくは無置換の環形成炭素数6~30のアリーレン基、又は、置換若しくは無置換の環形成原子数5~30のヘテロアリーレン基を表し、Rは、置換若しくは無置換の環形成炭素数6~30のアリール基、又は、置換若しくは無置換の環形成原子数5~30のヘテロアリール基を表す。 In one embodiment, Ar 1 and / or Ar 2 is represented by -L 1 -R 1 . L 1 represents a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms, and R 1 represents a substituted or unsubstituted ring aryl group. It represents an aryl group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
 前記式(1)で表される化合物は、下記式(1a)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(1a)中、X、Ar、Ar、Y、Y、Y、Y、Y、Y、Y11及びY12は、前記式(1)で定義した通りである。
The compound represented by the formula (1) is preferably a compound represented by the following formula (1a).
Figure JPOXMLDOC01-appb-C000004
In the formula (1a), X, Ar 1 , Ar 2 , Y 1 , Y 2 , Y 5 , Y 6 , Y 7 , Y 8 , Y 11 and Y 12 are as defined in the formula (1). .
 前記式(1)で表される化合物は、さらに下記式(1b)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(1b)中、X、Ar、Y、Y、Y、Y、Y、Y、Y11及びY12は、前記式(1)で定義した通りである。
 Ar11は、置換若しくは無置換の環形成炭素数6~30のアリール基である。
The compound represented by the formula (1) is preferably a compound represented by the following formula (1b).
Figure JPOXMLDOC01-appb-C000005
In the formula (1b), X, Ar 2 , Y 1 , Y 2 , Y 5 , Y 6 , Y 7 , Y 8 , Y 11 and Y 12 are as defined in the formula (1).
Ar 11 is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
 Xは、Oであることが好ましい。 X is preferably O.
 Arは、置換若しくは無置換の環形成炭素数6~30のアリール基であることが好ましい。 Ar 2 is preferably a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
 ArとAr、又はAr11とArが異なる基であることが好ましい。 Ar 1 and Ar 2 , or Ar 11 and Ar 2 are preferably different groups.
 Raが、置換若しくは無置換の
Figure JPOXMLDOC01-appb-C000006
(X10はO、S又はC-RaRaであり、Raは前記式(1)で定義した通りであり、Y20はC-H又はNである。)からなる群から選択される基であることが好ましい。
Ra is substituted or unsubstituted
Figure JPOXMLDOC01-appb-C000006
(X 10 is O, S or C—RaRa, Ra is as defined in the above formula (1), Y 20 is C—H or N). It is preferable.
 式(1)の化合物の三重項エネルギーは、好ましくは2.85eV以上である。上限は限定されないが、通常3.5eV以下である。
 式(1)の化合物は正孔輸送性が高いため、素子の低電圧化が可能である。
The triplet energy of the compound of formula (1) is preferably 2.85 eV or more. Although an upper limit is not limited, Usually, it is 3.5 eV or less.
Since the compound of formula (1) has a high hole transport property, the voltage of the device can be reduced.
 また、式(1)の化合物の正孔移動度は、好ましくは5×10-8cm/Vs以上である。正孔移動度が高いと、低電圧化するため、好ましい。
 正孔移動度(cm/Vs)は、インピーダンス分光法を用いて測定できる。
 具体的には、基板上に陽極としてITO(インジウム錫酸化物)を用い、その上に測定対象化合物を含む有機層を、続けて陰極としてAlを積層することにより正孔オンリーデバイスを作製し、100mVの交流電圧を乗せたDC電圧を印加し、複素モジュラスを測定する。モジュラスの虚部が最大となる周波数をfmax(Hz)としたとき、
応答時間T(秒)をT=1/2/π/fmaxとして算出し、
この値を用いて正孔移動度の電界強度依存性を決定し、電界強度0.25MV/cmに外挿した値を正孔移動度とする。
The hole mobility of the compound of formula (1) is preferably 5 × 10 −8 cm 2 / Vs or more. High hole mobility is preferable because the voltage is lowered.
The hole mobility (cm 2 / Vs) can be measured using impedance spectroscopy.
Specifically, ITO (indium tin oxide) is used as an anode on a substrate, an organic layer containing a measurement target compound is formed thereon, and then Al is stacked as a cathode, thereby producing a hole-only device. A DC voltage carrying an AC voltage of 100 mV is applied, and the complex modulus is measured. When the frequency at which the imaginary part of the modulus is maximum is f max (Hz),
The response time T (second) is calculated as T = 1/2 / π / f max ,
This value is used to determine the electric field strength dependence of the hole mobility, and the value extrapolated to the electric field strength of 0.25 MV / cm 2 is defined as the hole mobility.
 以下、上述した式の各基の例について説明する。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。
Hereinafter, examples of each group of the above-described formula will be described.
In this specification, the number of ring-forming carbon atoms constitutes the ring itself of a compound having a structure in which atoms are bonded cyclically (for example, a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, or a heterocyclic compound). Represents the number of carbon atoms in the atom. When the ring is substituted with a substituent, the carbon contained in the substituent is not included in the number of ring-forming carbons. The “ring-forming carbon number” described below is the same unless otherwise specified. For example, the benzene ring has 6 ring carbon atoms, the naphthalene ring has 10 ring carbon atoms, the pyridinyl group has 5 ring carbon atoms, and the furanyl group has 4 ring carbon atoms. Further, when an alkyl group is substituted as a substituent on the benzene ring or naphthalene ring, the carbon number of the alkyl group is not included in the number of ring-forming carbons. In addition, for example, when a fluorene ring is bonded to the fluorene ring as a substituent (including a spirofluorene ring), the carbon number of the fluorene ring as a substituent is not included in the number of ring-forming carbons.
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば環を構成する原子の結合手を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環は環形成原子数は6であり、キナゾリン環は環形成原子数が10であり、フラン環の環形成原子数が5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。 In this specification, the number of ring-forming atoms means a compound (for example, a monocyclic compound, a condensed ring compound, a bridging compound, a carbocyclic compound, a heterocycle) having a structure in which atoms are bonded in a cyclic manner (for example, a monocyclic ring, a condensed ring, or a ring assembly) Of the ring compound) represents the number of atoms constituting the ring itself. An atom that does not constitute a ring (for example, a hydrogen atom that terminates a bond of an atom that constitutes a ring) or an atom contained in a substituent when the ring is substituted by a substituent is not included in the number of ring-forming atoms. The “number of ring-forming atoms” described below is the same unless otherwise specified. For example, the pyridine ring has 6 ring atoms, the quinazoline ring has 10 ring atoms, and the furan ring has 5 ring atoms. A hydrogen atom bonded to a carbon atom of a pyridine ring or a quinazoline ring or an atom constituting a substituent is not included in the number of ring-forming atoms. Further, when, for example, a fluorene ring is bonded to the fluorene ring as a substituent (including a spirofluorene ring), the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表すものであり、置換されている場合の置換基の炭素数は含めない。ここで、「YY」は「XX」よりも大きく、「XX」と「YY」はそれぞれ1以上の整数を意味する。 In the present specification, the “carbon number XX to YY” in the expression “substituted or unsubstituted ZZ group having XX to YY” represents the number of carbon atoms in the case where the ZZ group is unsubstituted. The carbon number of the substituent in the case where it is present is not included. Here, “YY” is larger than “XX”, and “XX” and “YY” each mean an integer of 1 or more.
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表すものであり、置換されている場合の置換基の原子数は含めない。ここで、「YY」は「XX」よりも大きく、「XX」と「YY」はそれぞれ1以上の整数を意味する。 In this specification, “atom number XX to YY” in the expression “a ZZ group having a substituted or unsubstituted atom number XX to YY” represents the number of atoms when the ZZ group is unsubstituted. In this case, the number of substituent atoms is not included. Here, “YY” is larger than “XX”, and “XX” and “YY” each mean an integer of 1 or more.
 本明細書において、「置換もしくは無置換の」という場合における「無置換」とは前記置換基で置換されておらず、水素原子が結合していることを意味する。 In this specification, “unsubstituted” in the case of “substituted or unsubstituted” means that a hydrogen atom is bonded without being substituted with the above substituent.
 本明細書において、芳香族炭化水素環は、単環の芳香族炭化水素環基及び複数の炭化水素環が縮合した縮合芳香族炭化水素環基を含み、ヘテロ芳香族環は、単環のヘテロ芳香族環基、並びに複数のヘテロ芳香族環が縮合したヘテロ縮合芳香族環基、及び芳香族炭化水素環とヘテロ芳香族環とが縮合したヘテロ縮合芳香族環基を含む。 In this specification, the aromatic hydrocarbon ring includes a monocyclic aromatic hydrocarbon ring group and a condensed aromatic hydrocarbon ring group in which a plurality of hydrocarbon rings are condensed, and the heteroaromatic ring is a monocyclic heterocycle. An aromatic ring group, a hetero-fused aromatic ring group in which a plurality of heteroaromatic rings are condensed, and a hetero-fused aromatic ring group in which an aromatic hydrocarbon ring and a heteroaromatic ring are condensed are included.
 本発明に用いる化合物において、水素原子とは、中性子数が異なる同位体、すなわち、軽水素(protium)、重水素(deuterium)、三重水素(tritium)、を包含する。 In the compound used in the present invention, the hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (triuterium), and tritium.
 Ar、Ar、Raの各基が置換基を有する場合の当該置換基は、例えば、水素原子、炭素数1~20のアルキル基、環形成炭素数3~20のシクロアルキル基、炭素数1~20のアルコキシ基、環形成炭素数3~20のシクロアルコキシ基、環形成炭素数6~18の芳香族炭化水素環基、環形成炭素数6~18のアリールオキシ基、環形成原子数5~18のヘテロ芳香族環基、シリル基、フッ素原子、炭素数1~20のフルオロアルキル基、炭素数1~20のフルオロアルコキシ基又はシアノ基が挙げられる。 When each group of Ar 1 , Ar 2 , and Ra has a substituent, the substituent is, for example, a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 ring carbon atoms, or a carbon number An alkoxy group having 1 to 20 carbon atoms, a cycloalkoxy group having 3 to 20 ring carbon atoms, an aromatic hydrocarbon ring group having 6 to 18 ring carbon atoms, an aryloxy group having 6 to 18 ring carbon atoms, and the number of ring atoms Examples thereof include a 5- to 18-heteroaromatic ring group, a silyl group, a fluorine atom, a fluoroalkyl group having 1 to 20 carbon atoms, a fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group.
 アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、3-メチルペンチル基等が挙げられ、このうち炭素数1~6のものが好ましい。 Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n- Heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n- And heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 2-methylpentyl group, 1-pentylhexyl group, 1-butylpentyl group, 1-heptyloctyl group, 3-methylpentyl group and the like. Of these, those having 1 to 6 carbon atoms are preferred.
 シクロアルキル基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられ、このうち環形成炭素数5又は6のものが好ましい。 Specific examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a norbornyl group, an adamantyl group, etc. Among them, those having 5 or 6 ring carbon atoms are preferable.
 アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよく、このうち炭素数1~6のものが好ましい。 Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, and a hexyloxy group. Those having 3 or more carbon atoms may be linear, cyclic or branched, Of these, those having 1 to 6 carbon atoms are preferred.
 シクロアルコキシ基としては、シクロペントキシ基、シクロヘキシルオキシ基等が挙げられ、このうち環形成炭素数5又は6のものが好ましい。 Examples of the cycloalkoxy group include a cyclopentoxy group and a cyclohexyloxy group, and among them, those having 5 or 6 ring carbon atoms are preferable.
 芳香族炭化水素環基(アリール基)の具体例としては、フェニル基、トリル基、キシリル基、メシチル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、o-ターフェニル基、m-ターフェニル基、p-ターフェニル基、ナフチル基、フェナントリル基、トリフェニレン基等が挙げられる。中でもフェニル基、m-ビフェニル基、m-ターフェニル基が好ましい。環形成炭素数6~18のものが好ましい。 Specific examples of the aromatic hydrocarbon ring group (aryl group) include phenyl group, tolyl group, xylyl group, mesityl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, o-terphenyl group, m -Terphenyl group, p-terphenyl group, naphthyl group, phenanthryl group, triphenylene group and the like. Of these, a phenyl group, m-biphenyl group, and m-terphenyl group are preferred. Those having 6 to 18 ring carbon atoms are preferred.
 アリーレン基としては、上述した芳香族炭化水素環基(アリール基)を2価にした基が挙げられる。 Examples of the arylene group include groups in which the above-described aromatic hydrocarbon ring group (aryl group) is divalent.
 アラルキル基としては、上述した芳香族炭化水素環基(アリール基)が置換した上述したアルキル基が挙げられる。 Examples of the aralkyl group include the above-described alkyl group substituted by the above-described aromatic hydrocarbon ring group (aryl group).
 芳香族複素環基(ヘテロ芳香族環基)(ヘテロアリール基)の具体例としては、ピロリル基、ピラジニル基、ピリジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、インドリル基、イソインドリル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、ジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、カルバゾリル基、アザカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、チエニル基、ピロリジニル基、ジオキサニル基、ピペリジニル基、モルフォリニル基、ピペラジニル基、カルバゾリル基、チオフェニル基、オキサゾリル基、オキサジアゾリル基、ベンゾオキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリル基、トリアゾリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラニル基、ベンゾ[c]ジベンゾフラニル基、アザジベンゾフラニル基、アザジベンゾチオフェニル基、アザカルバゾリル基等が挙げられ、このうち環形成原子数6~14のものが好ましい。 Specific examples of the aromatic heterocyclic group (heteroaromatic ring group) (heteroaryl group) include pyrrolyl group, pyrazinyl group, pyridinyl group, pyrimidinyl group, pyridazinyl group, triazinyl group, indolyl group, isoindolyl group, furyl group, Benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, dibenzothiophenyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, carbazolyl group, azacarbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, thienyl Group, pyrrolidinyl group, dioxanyl group, piperidinyl group, morpholinyl group, piperazinyl group, carbazolyl group, thiophenyl group, oxazolyl group, oxadiazolyl group, benzoxazolyl group, thiazolyl group, thiadiazolyl group, benzothiazolyl group, Examples include a riazolyl group, an imidazolyl group, a benzimidazolyl group, a pyranyl group, a benzo [c] dibenzofuranyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azacarbazolyl group, and of these, those having 6 to 14 ring atoms Those are preferred.
 ヘテロアリーレン基としては、上述した芳香族複素環基(ヘテロアリール基)を2価にした基が挙げられる。 Examples of the heteroarylene group include groups in which the above-described aromatic heterocyclic group (heteroaryl group) is divalent.
 フルオロアルキル基としては、上述したアルキル基に1つ以上のフッ素原子が置換した基が挙げられ、具体的には、トリフルオロメチル基、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基等が好ましい。 Examples of the fluoroalkyl group include a group in which one or more fluorine atoms are substituted on the above-described alkyl group, and specifically include a trifluoromethyl group, a pentafluoroethyl group, a 2,2,2-trifluoroethyl group. Etc. are preferred.
 フルオロアルコキシ基としては、上述したアルコキシ基に1つ以上のフッ素原子が置換した基が挙げられ、具体的には、トリフルオロメトキシ基、ペンタフルオロエトキシ基、2,2,2-トリフルオロエトキシ基等が好ましい。 Examples of the fluoroalkoxy group include groups in which one or more fluorine atoms are substituted on the above-described alkoxy group, and specifically include a trifluoromethoxy group, a pentafluoroethoxy group, a 2,2,2-trifluoroethoxy group. Etc. are preferred.
 アリールオキシ基としては、酸素原子に上述したアリール基が置換した基が挙げられる。
 アリールチオ基としては、硫黄原子に上述したアリール基が置換した基が挙げられる。
 アリールスルホニル基としては、スルホニル基に上述したアリール基が置換した基が挙げられる。
 ヘテロアリールオキシ基としては、酸素原子に上述したヘテロアリール基が置換した基が挙げられる。
 ヘテロアリールチオ基としては、硫黄原子に上述したヘテロアリール基が置換した基が挙げられる。
 ヘテロアリールスルホニル基としては、スルホニル基に上述したアリール基が置換した基が挙げられる。
 アルキレン基としては、上述したアルキル基を2価にした基が挙げられる。
 シクロアルキレン基としては、上述したシクロアルキル基を2価にした基が挙げられる。
Examples of the aryloxy group include a group in which the above-described aryl group is substituted on an oxygen atom.
Examples of the arylthio group include a group in which the above aryl group is substituted on a sulfur atom.
Examples of the arylsulfonyl group include a group in which the above aryl group is substituted on the sulfonyl group.
Examples of the heteroaryloxy group include groups in which the above-described heteroaryl group is substituted on an oxygen atom.
Examples of the heteroarylthio group include a group in which the above-described heteroaryl group is substituted on a sulfur atom.
Examples of the heteroarylsulfonyl group include a group in which the above aryl group is substituted on the sulfonyl group.
As an alkylene group, the group which made the alkyl group mentioned above bivalent is mentioned.
Examples of the cycloalkylene group include groups in which the above-described cycloalkyl group is divalent.
 上記式(1)で表される化合物の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000007
Specific examples of the compound represented by the above formula (1) are shown below.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 次に、第二の発光層に含有されるジベンゾフラン骨格を含む化合物及びジベンゾチオフェン骨格を含む化合物(以下、第二の発光層の化合物ということがある)について説明する。 Next, a compound containing a dibenzofuran skeleton and a compound containing a dibenzothiophene skeleton contained in the second light emitting layer (hereinafter sometimes referred to as a compound of the second light emitting layer) will be described.
 第二の発光層の化合物の三重項エネルギーは、通常2.85eV以上であり、好ましくは2.90eV以上である。上限は限定されないが、通常3.5eV以下である。
 第二の発光層の化合物は、ジベンゾフラン骨格又はジベンゾチオフェン骨格を有する。
 電子輸送能を保持しつつ電子耐性を有するジベンゾフラン環やジベンゾチオフェン環のような骨格を有する第二発光層の化合物を用いれば、長寿命化が可能である。
 以下、第二の発光層の化合物について、具体的な構造式を挙げて説明するが、いずれの化合物も部分構造として、ジベンゾフラン骨格及び/又はジベンゾチオフェン骨格を含む。
The triplet energy of the compound of the second light emitting layer is usually 2.85 eV or more, preferably 2.90 eV or more. Although an upper limit is not limited, Usually, it is 3.5 eV or less.
The compound of the second light emitting layer has a dibenzofuran skeleton or a dibenzothiophene skeleton.
If a compound of the second light-emitting layer having a skeleton such as a dibenzofuran ring or a dibenzothiophene ring having electron resistance while maintaining the electron transporting ability is used, the lifetime can be extended.
Hereinafter, the compounds of the second light-emitting layer will be described with specific structural formulas, but each compound includes a dibenzofuran skeleton and / or a dibenzothiophene skeleton as a partial structure.
 好ましくは、第二の発光層の化合物は、下記式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000023
 式(2)中、
 Xは酸素原子又は硫黄原子であり、
 X及びYの一方は、酸素原子、硫黄原子又はNRであり、他方は、単結合、C(R)、NR、酸素原子、又は硫黄原子であり、
 Rは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換もしくは無置換の環形成原子数3~30の芳香族複素環基であり、
 Z、Z及びはZ、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数3~30の芳香族複素環であり、
 nは0~5の整数であり、nが2以上の場合、複数のZは互いに同一であっても異なっていてもよく、複数のXは互いに同一であっても異なっていてもよく、複数のYは互いに同一であっても異なっていてもよい。好ましくは、nは0又は1の整数である。
Preferably, the compound of the second light emitting layer is a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000023
In formula (2),
X 1 is an oxygen atom or a sulfur atom,
One of X 2 and Y 2 is an oxygen atom, a sulfur atom or NR, and the other is a single bond, C (R) 2 , NR, an oxygen atom or a sulfur atom,
Each R is independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted ring forming carbon number; An aromatic hydrocarbon ring group having 6 to 30 or a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 ring atoms;
Z 1 , Z 2 and Z 3 are each independently a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 30 ring carbon atoms or a substituted or unsubstituted aromatic hetero ring having 3 to 30 ring atoms. A ring,
n is an integer of 0 to 5, and when n is 2 or more, the plurality of Z 2 may be the same or different from each other, and the plurality of X 2 may be the same or different from each other The plurality of Y 2 may be the same as or different from each other. Preferably n is an integer of 0 or 1.
 R、Z、Z及びはZが置換基を有する場合の当該置換基R’は、例えば、水素原子、炭素数1~20のアルキル基、環形成炭素数3~20のシクロアルキル基、炭素数1~20のアルコキシ基、環形成炭素数3~20のシクロアルコキシ基、環形成炭素数6~18の芳香族炭化水素環基、環形成炭素数6~18のアリールオキシ基、環形成原子数5~18のヘテロ芳香族環基、シリル基、フッ素原子、炭素数1~20のフルオロアルキル基、炭素数1~20のフルオロアルコキシ基又はシアノ基である。 When R, Z 1 , Z 2 and Z 3 have a substituent, the substituent R ′ is, for example, a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a cycloalkyl group having 3 to 20 ring carbon atoms. An alkoxy group having 1 to 20 carbon atoms, a cycloalkoxy group having 3 to 20 ring carbon atoms, an aromatic hydrocarbon ring group having 6 to 18 ring carbon atoms, an aryloxy group having 6 to 18 ring carbon atoms, a ring A heteroaromatic cyclic group having 5 to 18 atoms, a silyl group, a fluorine atom, a fluoroalkyl group having 1 to 20 carbon atoms, a fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group.
 第二の発光層の化合物は、さらに具体的には、下記式(2-1)で表される化合物が好ましい。 More specifically, the compound of the second light emitting layer is preferably a compound represented by the following formula (2-1).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式(2-1)中、
 G~Gは、それぞれ独立に、CR又は窒素原子である。
 G11~G18は、それぞれ独立に、CR又は窒素原子である。
 R及びRは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環基、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロアリールオキシ基、置換もしくは無置換の環形成炭素数6~18のアリールチオ基、置換もしくは無置換の環形成原子数5~18のヘテロアリールチオ基、置換もしくは無置換の環形成炭素数6~18のアリールスルホニル基、置換もしくは無置換の環形成原子数5~18のヘテロアリールスルホニル基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環基、置換もしくは無置換のシリル基、フッ素原子、置換もしくは無置換のフルオロアルキル基、置換もしくは無置換のフルオロアルコキシ基又はシアノ基である。
 複数のCRが存在するとき、複数のRは、互いに同一又は異なっていてもよい。
 但し、G及びGの一方又は両方がCRである場合は、G及びGのRは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換のシリル基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、又は置換もしくは無置換の炭素数1~20のフルオロアルコキシ基である。
 Rは、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環基、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環基、置換もしくは無置換のシリル基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基又はシアノ基である。
 複数のCRが存在するときは、それぞれのRは同一又は異なっていてもよい。
 R、R、Rが置換基を有する場合の当該置換基R’は、水素原子、炭素数1~20のアルキル基、環形成炭素数3~20のシクロアルキル基、炭素数1~20のアルコキシ基、環形成炭素数3~20のシクロアルコキシ基、環形成炭素数6~18の芳香族炭化水素環基、環形成炭素数6~18のアリールオキシ基、環形成原子数5~18のヘテロ芳香族環基、シリル基、フッ素原子、炭素数1~20のフルオロアルキル基、炭素数1~20のフルオロアルコキシ基又はシアノ基である。
 Xaは、酸素原子又は硫黄原子である。)
(In the formula (2-1),
G 1 to G 6 are each independently CR 1 or a nitrogen atom.
G 11 to G 18 are each independently CR 2 or a nitrogen atom.
R and R 1 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted carbon, An alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, a substituted or unsubstituted aromatic hydrocarbon ring group having 6 to 18 ring carbon atoms, a substituted or unsubstituted ring group; Aryloxy group having 6 to 18 ring carbon atoms, substituted or unsubstituted heteroaryloxy group having 5 to 18 ring atoms, substituted or unsubstituted arylthio group having 6 to 18 ring carbon atoms, substituted or unsubstituted A heteroarylthio group having 5 to 18 ring atoms, a substituted or unsubstituted arylsulfonyl group having 6 to 18 ring carbon atoms, and a substituted or unsubstituted ring atom number 5-18 heteroarylsulfonyl group, substituted or unsubstituted heteroaromatic ring group having 5 to 18 ring atoms, substituted or unsubstituted silyl group, fluorine atom, substituted or unsubstituted fluoroalkyl group, substituted or An unsubstituted fluoroalkoxy group or a cyano group.
When a plurality of CR 1 are present, the plurality of R 1 may be the same as or different from each other.
However, when one or both of G 2 and G 5 are CR 1 , R 1 of G 2 and G 5 is each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, substituted or An unsubstituted silyl group, a fluorine atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms.
R 2 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms. A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, a substituted or unsubstituted aromatic hydrocarbon ring group having 6 to 18 ring carbon atoms, a substituted or unsubstituted ring carbon number 6 to 18 aryloxy groups, substituted or unsubstituted heteroaromatic ring groups having 5 to 18 ring atoms, substituted or unsubstituted silyl groups, fluorine atoms, substituted or unsubstituted fluoroalkyl groups having 1 to 20 carbon atoms A substituted or unsubstituted C 1-20 fluoroalkoxy group or cyano group.
When a plurality of CR 2 are present, each R 2 may be the same or different.
When R, R 1 and R 2 have a substituent, the substituent R ′ is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 ring carbon atoms, or 1 to 20 carbon atoms. Alkoxy groups having 3 to 20 ring carbon atoms, aromatic hydrocarbon ring groups having 6 to 18 ring carbon atoms, aryloxy groups having 6 to 18 ring carbon atoms, and 5 to 18 ring atoms. A heteroaromatic ring group, a silyl group, a fluorine atom, a fluoroalkyl group having 1 to 20 carbon atoms, a fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group.
Xa is an oxygen atom or a sulfur atom. )
 また、第二の発光層の化合物は、好ましくは、下記式(2-2a)~(2-2c)、(2-3a)~(2-3c)、(2-4a)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000025
The compound of the second light emitting layer is preferably represented by any one of the following formulas (2-2a) to (2-2c), (2-3a) to (2-3c), and (2-4a). Is done.
Figure JPOXMLDOC01-appb-C000025
(式(2-2a)~(2-2c)中、
 G211~G214は、それぞれ独立に、CR21又は窒素原子である。
 G221~G228は、それぞれ独立に、CR22又は窒素原子である。
 Ga~Gkはそれぞれ独立に、CR23又は窒素原子である。
 G214とGaが炭素原子の場合、酸素または硫黄原子を介して結合してもよい。
 G213とGdが炭素原子の場合、酸素または硫黄原子を介して結合してもよい。
 R21、R22、R23は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環基、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環基、置換もしくは無置換のシリル基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基又はシアノ基である。
 複数のCR21が存在する場合、複数のR21は、それぞれ同一又は異なっていてもよい。
 複数のCR22が存在する場合、複数のR22は、それぞれ同一又は異なっていてもよい。
 複数のCR23が存在する場合、複数のR23は、それぞれ同一又は異なっていてもよい。
 R21、R22及びR23が置換基を有する場合の当該置換基R’は、水素原子、炭素数1~20のアルキル基、環形成炭素数3~20のシクロアルキル基、炭素数1~20のアルコキシ基、環形成炭素数3~20のシクロアルコキシ基、環形成炭素数6~18の芳香族炭化水素環基、環形成炭素数6~18のアリールオキシ基、環形成原子数5~18のヘテロ芳香族環基、シリル基、フッ素原子、炭素数1~20のフルオロアルキル基、炭素数1~20のフルオロアルコキシ基又はシアノ基である。
 Xは、酸素原子、又は硫黄原子である。
 Xは、酸素原子、硫黄原子、又はC(CHである。)
(In the formulas (2-2a) to (2-2c),
G 211 to G 214 are each independently CR 21 or a nitrogen atom.
G 221 to G 228 are each independently CR 22 or a nitrogen atom.
Ga to Gk are each independently CR 23 or a nitrogen atom.
When G 214 and Ga are carbon atoms, they may be bonded via an oxygen or sulfur atom.
When G213 and Gd are carbon atoms, they may be bonded via an oxygen or sulfur atom.
R 21 , R 22 and R 23 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, substituted or unsubstituted Unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon ring group having 6 to 18 ring carbon atoms, substituted Or an unsubstituted aryloxy group having 6 to 18 carbon atoms, a substituted or unsubstituted heteroaromatic ring group having 5 to 18 ring atoms, a substituted or unsubstituted silyl group, a fluorine atom, substituted or unsubstituted A fluoroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group.
When a plurality of CR 21 are present, the plurality of R 21 may be the same or different from each other.
When a plurality of CR 22 are present, the plurality of R 22 may be the same or different from each other.
When a plurality of CR 23 are present, the plurality of R 23 may be the same or different from each other.
When R 21 , R 22 and R 23 have a substituent, the substituent R ′ is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 ring carbon atoms, or 1 to 20 alkoxy groups, cycloalkoxy groups having 3 to 20 ring carbon atoms, aromatic hydrocarbon ring groups having 6 to 18 ring carbon atoms, aryloxy groups having 6 to 18 ring carbon atoms, 5 to 5 ring atoms An 18 heteroaromatic ring group, a silyl group, a fluorine atom, a fluoroalkyl group having 1 to 20 carbon atoms, a fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group.
X 1 is an oxygen atom or a sulfur atom.
X 2 is an oxygen atom, a sulfur atom, or C (CH 3 ) 2 . )
 また、第二の発光層の化合物は、好ましくは、下記式(2-5a)~(2-5f)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000026
The compound of the second light emitting layer is preferably represented by any of the following formulas (2-5a) to (2-5f).
Figure JPOXMLDOC01-appb-C000026
(式(2-5a)~(2-5f)中、
 E、Eは、それぞれ独立に、酸素原子、硫黄原子又はNRであり、
 ただし、E、Eの少なくとも一方は、酸素原子又は硫黄原子であり、
 G51~G60は、それぞれ独立に、CR又は窒素原子である。
 Rは、水素原子、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換もしくは無置換の環形成原子数3~30の芳香族複素環基であり、
 Rは、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素基、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環基、置換もしくは無置換のシリル基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基又はシアノ基である。
 複数のNRが存在する場合、複数のRは、それぞれ同一又は異なっていてもよい。
 複数のCRが存在する場合、複数のRは、それぞれ同一又は異なっていてもよい。
 R、Rが置換基を有する場合の当該置換基R’は、水素原子、炭素数1~20のアルキル基、環形成炭素数3~20のシクロアルキル基、炭素数1~20のアルコキシ基、環形成炭素数3~20のシクロアルコキシ基、環形成炭素数6~18の芳香族炭化水素環基、環形成炭素数6~18のアリールオキシ基、環形成原子数5~18のヘテロ芳香族環基、シリル基、フッ素原子、炭素数1~20のフルオロアルキル基、炭素数1~20のフルオロアルコキシ基又はシアノ基である。)
(In the formulas (2-5a) to (2-5f),
E 1 and E 2 are each independently an oxygen atom, a sulfur atom or NR 5 ;
However, at least one of E 1 and E 2 is an oxygen atom or a sulfur atom,
G 51 to G 60 are each independently CR 6 or a nitrogen atom.
R 5 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted ring carbon atom having 6 to 30 carbon atoms. An aromatic hydrocarbon ring group or a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 ring atoms,
R 6 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms. Group, substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 ring carbon atoms, substituted or unsubstituted ring carbon atoms having 6 to 18 carbon atoms An aryloxy group, a substituted or unsubstituted heteroaromatic ring group having 5 to 18 ring atoms, a substituted or unsubstituted silyl group, a fluorine atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted C1-C20 fluoroalkoxy group or cyano group.
When a plurality of NR 5 are present, the plurality of R 5 may be the same or different from each other.
When a plurality of CR 6 are present, the plurality of R 6 may be the same or different from each other.
When R 5 and R 6 have a substituent, the substituent R ′ is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 ring carbon atoms, or an alkoxy having 1 to 20 carbon atoms. Group, a cycloalkoxy group having 3 to 20 ring carbon atoms, an aromatic hydrocarbon ring group having 6 to 18 ring carbon atoms, an aryloxy group having 6 to 18 ring carbon atoms, and a hetero ring having 5 to 18 ring atoms. An aromatic ring group, a silyl group, a fluorine atom, a fluoroalkyl group having 1 to 20 carbon atoms, a fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group. )
 さらに、第二の発光層の化合物は、下記式(2-4)~(2-9)で表わされる化合物でもよい。
Figure JPOXMLDOC01-appb-C000027
Further, the compound of the second light emitting layer may be a compound represented by the following formulas (2-4) to (2-9).
Figure JPOXMLDOC01-appb-C000027
 式(2-4)~(2-9)中、X及びXは、それぞれ独立に、酸素原子又は硫黄原子であり、
 Rは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換もしくは無置換の環形成原子数3~30の芳香族複素環基であり、
 s、t、及びuは、それぞれ独立に、1-4の整数である。
In formulas (2-4) to (2-9), X 1 and X 2 are each independently an oxygen atom or a sulfur atom,
Each R 1 independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted ring forming carbon; An aromatic hydrocarbon ring group of 6-30, or a substituted or unsubstituted aromatic heterocyclic group of 3-30 ring-forming atoms,
s, t, and u are each independently an integer of 1-4.
 第二の発光層の化合物における各基及びその置換基の具体例としては、式(1)の化合物において例示したものが挙げられる。 Specific examples of each group and its substituent in the compound of the second light emitting layer include those exemplified for the compound of formula (1).
 第二の発光層に含まれるジベンゾフラン骨格を含む化合物及びジベンゾチオフェン骨格を含む化合物の具体例を以下に示す。 Specific examples of the compound containing a dibenzofuran skeleton and the compound containing a dibenzothiophene skeleton contained in the second light emitting layer are shown below.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 次に、燐光発光材料(燐光ドーパントと呼ぶこともある)について説明する。 Next, a phosphorescent material (sometimes called a phosphorescent dopant) will be described.
 燐光発光材料とは、いわゆる燐光ドーパントである。
燐光ドーパントとしては、金属錯体化合物が挙げられ、好ましくはIr,Pt,Os,Au,Cu,Re及びRuから選択される金属原子と、配位子とを有する化合物である。配位子は、オルトメタル結合を有すると好ましい。
 燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、燐光ドーパントは、Ir,Os及びPtから選ばれる金属原子を含有する化合物であると好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体であるとさらに好ましく、中でもイリジウム錯体及び白金錯体がより好ましく、オルトメタル化イリジウム錯体が最も好ましい。ドーパントは、1種単独でも、2種以上の混合物でもよい。
 第一の発光層に含有される赤色燐光発光材料は、発光波長が550~750nmの範囲、好ましくは570~730nmの範囲の燐光を発光し得る化合物である。
 赤色燐光発光材料として用いられる化合物としては、例えば、Ir(pic),(pic)Ir(acac),(btp)Ir(acac)等が挙げられ、(pic)Ir(acac),(btp)Ir(acac)等が好ましい。
The phosphorescent material is a so-called phosphorescent dopant.
Examples of the phosphorescent dopant include metal complex compounds, preferably a compound having a metal atom selected from Ir, Pt, Os, Au, Cu, Re and Ru and a ligand. The ligand preferably has an ortho metal bond.
The phosphorescent dopant is preferably a compound containing a metal atom selected from Ir, Os and Pt in that the phosphorescent quantum yield is high and the external quantum efficiency of the light-emitting element can be further improved, and an iridium complex, It is more preferable that it is a metal complex such as an osmium complex and a platinum complex, among which an iridium complex and a platinum complex are more preferable, and an orthometalated iridium complex is most preferable. The dopant may be a single type or a mixture of two or more types.
The red phosphorescent material contained in the first light emitting layer is a compound that can emit phosphorescence having an emission wavelength in the range of 550 to 750 nm, preferably in the range of 570 to 730 nm.
Examples of the compound used as the red phosphorescent material include Ir (pic) 3 , (pic) 2 Ir (acac), (btp) 2 Ir (acac), and (pic) 2 Ir (acac), (Btp) 2 Ir (acac) and the like are preferable.
 赤色燐光発光材料の三重項エネルギーEgは、2.10eV以上であることが好ましい。 The triplet energy Eg T of the red phosphorescent material is preferably 2.10 eV or more.
 第二の発光層に含有される青色燐光発光材料は、発光波長が430~550nmの範囲、好ましくは430~530nmの範囲、より好ましくは430~510nmの範囲の燐光を発光し得る化合物である。
 青色燐光発光材料として用いられる化合物としては、例えば、FIrpic,FCNIrpic,FIr6,カルベン配位子のイリジウム錯体,フェニルイミダゾール配位子のイリジウム錯体等が挙げられ、カルベン配位子のイリジウム錯体,フェニルイミダゾール配位子のイリジウム錯体等が好ましい。
The blue phosphorescent material contained in the second light emitting layer is a compound that can emit phosphorescence having an emission wavelength in the range of 430 to 550 nm, preferably in the range of 430 to 530 nm, more preferably in the range of 430 to 510 nm.
Examples of the compound used as the blue phosphorescent material include FIrpic, FCNIrpic, FIr6, iridium complex of carbene ligand, iridium complex of phenylimidazole ligand, iridium complex of carbene ligand, phenylimidazole, and the like. An iridium complex of a ligand or the like is preferable.
 青色燐光発光材料の三重項エネルギーEgは、2.70eV以上であることが好ましい。 The triplet energy Eg T of the blue phosphorescent material is preferably 2.70 eV or more.
 本発明の有機EL素子は、上述した式(1)の化合物と赤色燐光発光材料を含む第一の発光層、及び、上述したジベンゾフラン骨格を含む化合物又はジベンゾチオフェン骨格を含む化合物と青色燐光発光材料を含む第二の発光層を含む素子構成を有していれば、他の構成は特に限定されない。 The organic EL device of the present invention includes a first light emitting layer containing the compound of the above formula (1) and a red phosphorescent material, and a compound containing a dibenzofuran skeleton or a compound containing a dibenzothiophene skeleton and a blue phosphorescent material. Other configurations are not particularly limited as long as they have an element configuration including a second light-emitting layer that includes.
 第一の発光層は、式(1)化合物を1種単独で、又は2種以上を含んでもよい。第一の発光層は、赤色燐光発光材料(燐光ドーパント)1種単独で、又は2種以上を含む。
 第二の発光層は、ジベンゾフラン骨格を含む化合物及び/又はジベンゾチオフェン骨格を含む化合物を1種単独で、又は2種以上を含んでもよい。第二の発光層は、青色燐光発光材料(燐光ドーパント)1種単独で、又は2種以上を含む。
The first light emitting layer may contain one or more compounds of formula (1). The first light-emitting layer contains one kind of red phosphorescent material (phosphorescent dopant) alone or two or more kinds.
The second light emitting layer may contain one or more compounds containing a dibenzofuran skeleton and / or a compound containing a dibenzothiophene skeleton. A 2nd light emitting layer contains blue phosphorescent light emitting material (phosphorescent dopant) 1 type individually, or contains 2 or more types.
 第一の発光層と第二の発光層は隣接していることが好ましい。
 また、第二の発光層に隣接した有機層は、ジベンゾフラン骨格を含む化合物及び/又はジベンゾチオフェン骨格を含む化合物を1種単独で、又は2種以上を含んでもよい。この有機層は正孔阻止層として機能し得る。
 さらに、第一の発光層に正孔輸送性材料を添加すると、式(1)の化合物の劣化が抑制されるため、素子の寿命を向上させることができる。
 第一の発光層は、好ましくは、式(1)の化合物と赤色燐光発光材料のみ、又は式(1)の化合物、赤色燐光発光材料及び正孔輸送性材料のみからなる(不可避不純物は含む)。
The first light emitting layer and the second light emitting layer are preferably adjacent to each other.
In addition, the organic layer adjacent to the second light emitting layer may contain a compound containing a dibenzofuran skeleton and / or a compound containing a dibenzothiophene skeleton alone or in combination of two or more. This organic layer can function as a hole blocking layer.
Furthermore, when a hole transporting material is added to the first light emitting layer, deterioration of the compound of the formula (1) is suppressed, so that the lifetime of the element can be improved.
The first light-emitting layer is preferably composed of only the compound of formula (1) and the red phosphorescent material, or only the compound of formula (1), the red phosphorescent material and the hole transporting material (including inevitable impurities). .
 第一の発光層の赤色燐光ドーパント又は正孔輸送性材料の添加濃度は特に限定されるものではないが、好ましくはそれぞれ0.1~20重量%(wt%)、より好ましくはそれぞれ0.1~10重量%(wt%)である。 The addition concentration of the red phosphorescent dopant or hole transporting material in the first light emitting layer is not particularly limited, but is preferably 0.1 to 20% by weight (wt%), more preferably 0.1% each. ˜10 wt% (wt%).
 正孔輸送性材料の例としては、後述する正孔注入・輸送層の材料等が挙げられる。 Examples of the hole transporting material include a material for a hole injection / transport layer described later.
 第二の発光層の青色燐光ドーパントの添加濃度は特に限定されるものではないが、好ましくは0.1~40重量%(wt%)、より好ましくは0.1~30重量%(wt%)である。 The addition concentration of the blue phosphorescent dopant in the second light emitting layer is not particularly limited, but is preferably 0.1 to 40% by weight (wt%), more preferably 0.1 to 30% by weight (wt%). It is.
 図1は、本発明の有機EL素子の一実施形態の層構成を示す概略図である。
 有機EL素子1は、基板10上に、陽極20、正孔注入層30、正孔輸送層40、電子阻止層50、第一の発光層60、第二の発光層62、正孔阻止層70、電子輸送層80、電子注入層90及び陰極100を、この順で積層した構成を有する。
 正孔注入層、正孔輸送層、電子阻止層、正孔阻止層、電子輸送層、電子注入層は、いずれも形成してもしなくてもよい。
FIG. 1 is a schematic view showing a layer structure of an embodiment of the organic EL device of the present invention.
The organic EL element 1 includes an anode 20, a hole injection layer 30, a hole transport layer 40, an electron blocking layer 50, a first light emitting layer 60, a second light emitting layer 62, and a hole blocking layer 70 on a substrate 10. The electron transport layer 80, the electron injection layer 90, and the cathode 100 are stacked in this order.
Any of the hole injection layer, the hole transport layer, the electron blocking layer, the hole blocking layer, the electron transport layer, and the electron injection layer may be formed.
 上述した実施形態の他に、本発明の有機EL素子は、公知の様々な構成を採用できる。 In addition to the above-described embodiments, the organic EL element of the present invention can employ various known configurations.
 本発明の有機EL素子では、上述した本発明の有機EL素子用材料を使用した層以外の構成については、特に限定されず、公知の材料等を使用できる。以下、実施形態1の素子の層について簡単に説明するが、本発明の有機EL素子に適用される材料は以下に限定されない。 In the organic EL element of the present invention, the configuration other than the layer using the organic EL element material of the present invention described above is not particularly limited, and a known material or the like can be used. Hereinafter, although the layer of the element of Embodiment 1 is demonstrated easily, the material applied to the organic EL element of this invention is not limited to the following.
[基板]
 基板としてはガラス板、ポリマー板等を用いることができる。
 ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリサルフォン等を挙げることができる。
[substrate]
As the substrate, a glass plate, a polymer plate or the like can be used.
Examples of the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfone, and polysulfone.
[陽極]
 陽極は例えば導電性材料からなり、4eVより大きな仕事関数を有する導電性材料が適している。
 上記導電性材料としては、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等及びそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が挙げられる。
 陽極は、必要があれば2層以上の層構成により形成されていてもよい。
[anode]
The anode is made of, for example, a conductive material, and a conductive material having a work function larger than 4 eV is suitable.
Examples of the conductive material include carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, and their alloys, ITO substrate, tin oxide used for NESA substrate, indium oxide, and the like. Examples thereof include metal oxides and organic conductive resins such as polythiophene and polypyrrole.
The anode may be formed with a layer structure of two or more layers if necessary.
[陰極]
 陰極は例えば導電性材料からなり、4eVより小さな仕事関数を有する導電性材料が適している。
 上記導電性材料としては、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム、フッ化リチウム等及びこれらの合金が挙げられるが、これらに限定されるものではない。
 また、上記合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。
 陰極は、必要があれば2層以上の層構成により形成されていてもよく、陰極は上記導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
[cathode]
The cathode is made of, for example, a conductive material, and a conductive material having a work function smaller than 4 eV is suitable.
Examples of the conductive material include, but are not limited to, magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and alloys thereof.
Examples of the alloy include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto. The ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio.
If necessary, the cathode may be formed with a layer structure of two or more layers, and the cathode can be produced by forming a thin film from the conductive material by a method such as vapor deposition or sputtering.
 発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。
 また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~1μmであり、好ましくは50~200nmである。
When light emitted from the light emitting layer is taken out from the cathode, the transmittance of the cathode for light emission is preferably greater than 10%.
The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 nm to 1 μm, preferably 50 to 200 nm.
[発光層]
 本発明の有機EL素子の第一及び第二の発光層に加えて、さらに燐光発光層を形成する場合、燐光発光層の材料として公知の材料が使用できる。具体的には、特願2005-517938等を参照すればよい。
 本発明の有機EL素子は、蛍光発光層を有していてもよい。蛍光発光層としては、公知の材料が使用できる。
[Light emitting layer]
In the case where a phosphorescent light emitting layer is further formed in addition to the first and second light emitting layers of the organic EL device of the present invention, known materials can be used as the material of the phosphorescent light emitting layer. Specifically, Japanese Patent Application No. 2005-517938 may be referred to.
The organic EL element of the present invention may have a fluorescent light emitting layer. A known material can be used for the fluorescent light emitting layer.
 発光層は、ダブルホスト(ホスト・コホストともいう)としてもよい。具体的に、発光層において電子輸送性のホストと正孔輸送性のホストを組み合わせることで、発光層内のキャリアバランスを調整してもよい。
 また、ダブルドーパントとしてもよい。発光層において、量子収率の高いドーパント材料を2種類以上入れることによって、それぞれのドーパントが発光する。例えば、ホストと赤色ドーパント、緑色のドーパントを共蒸着することによって、黄色の発光層を実現することがある。
 発光層は単層でもよく、また、積層構造でもよい。発光層を積層させると、発光層界面に電子と正孔を蓄積させることによって再結合領域を発光層界面に集中させることができる。これによって、量子効率を向上させる。
The light emitting layer may be a double host (also referred to as a host / cohost). Specifically, the carrier balance in the light emitting layer may be adjusted by combining an electron transporting host and a hole transporting host in the light emitting layer.
Moreover, it is good also as a double dopant. In the light emitting layer, each dopant emits light by adding two or more dopant materials having a high quantum yield. For example, a yellow light emitting layer may be realized by co-evaporating a host, a red dopant, and a green dopant.
The light emitting layer may be a single layer or a laminated structure. When the light emitting layer is stacked, the recombination region can be concentrated on the light emitting layer interface by accumulating electrons and holes at the light emitting layer interface. This improves the quantum efficiency.
[正孔注入層及び正孔輸送層]
 正孔注入層及び正孔輸送層(正孔注入・輸送層)は、発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが小さい層である。
 正孔注入・輸送層の材料としては、より低い電界強度で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば10~10V/cmの電界印加時に、少なくとも10-4cm/V・秒であれば好ましい。
[Hole injection layer and hole transport layer]
The hole injection layer and the hole transport layer (hole injection / transport layer) help to inject holes into the light emitting layer and transport them to the light emitting region, and have high hole mobility and low ionization energy. Is a layer.
As the material for the hole injection / transport layer, a material that transports holes to the light emitting layer with lower electric field strength is preferable. Further, when an electric field is applied with a hole mobility of, for example, 10 4 to 10 6 V / cm, At least 10 −4 cm 2 / V · sec is preferable.
 正孔注入・輸送層の材料としては、具体的には、トリアゾール誘導体(米国特許3,112,197号明細書等参照)、オキサジアゾール誘導体(米国特許3,189,447号明細書等参照)、イミダゾール誘導体(特公昭37-16096号公報等参照)、ポリアリールアルカン誘導体(米国特許3,615,402号明細書、同第3,820,989号明細書、同第3,542,544号明細書、特公昭45-555号公報、同51-10983号公報、特開昭51-93224号公報、同55-17105号公報、同56-4148号公報、同55-108667号公報、同55-156953号公報、同56-36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体(米国特許第3,180,729号明細書、同第4,278,746号明細書、特開昭55-88064号公報、同55-88065号公報、同49-105537号公報、同55-51086号公報、同56-80051号公報、同56-88141号公報、同57-45545号公報、同54-112637号公報、同55-74546号公報等参照)、フェニレンジアミン誘導体(米国特許第3,615,404号明細書、特公昭51-10105号公報、同46-3712号公報、同47-25336号公報、同54-119925号公報等参照)、アリールアミン誘導体(米国特許第3,567,450号明細書、同第3,240,597号明細書、同第3,658,520号明細書、同第4,232,103号明細書、同第4,175,961号明細書、同第4,012,376号明細書、特公昭49-35702号公報、同39-27577号公報、特開昭55-144250号公報、同56-119132号公報、同56-22437号公報、西独特許第1,110,518号明細書等参照)、アミノ置換カルコン誘導体(米国特許第3,526,501号明細書等参照)、オキサゾール誘導体(米国特許第3,257,203号明細書等に開示のもの)、スチリルアントラセン誘導体(特開昭56-46234号公報等参照)、フルオレノン誘導体(特開昭54-110837号公報等参照)、ヒドラゾン誘導体(米国特許第3,717,462号明細書、特開昭54-59143号公報、同55-52063号公報、同55-52064号公報、同55-46760号公報、同57-11350号公報、同57-148749号公報、特開平2-311591号公報等参照)、スチルベン誘導体(特開昭61-210363号公報、同第61-228451号公報、同61-14642号公報、同61-72255号公報、同62-47646号公報、同62-36674号公報、同62-10652号公報、同62-30255号公報、同60-93455号公報、同60-94462号公報、同60-174749号公報、同60-175052号公報等参照)、シラザン誘導体(米国特許第4,950,950号明細書)、ポリシラン系(特開平2-204996号公報)、アニリン系共重合体(特開平2-282263号公報)等を挙げることができる。
 また、p型Si、p型SiC等の無機化合物も正孔注入材料として使用することができる。
Specific examples of the material for the hole injection / transport layer include triazole derivatives (see US Pat. No. 3,112,197) and oxadiazole derivatives (see US Pat. No. 3,189,447). ), Imidazole derivatives (see JP-B-37-16096, etc.), polyarylalkane derivatives (US Pat. Nos. 3,615,402, 3,820,989, 3,542,544) Nos. 45-555, 51-10983, 51-93224, 55-17105, 56-4148, 55-108667, 55-156953, 56-36656, etc.), pyrazoline derivatives and pyrazolone derivatives (US Pat. No. 3,180,729, No. 4) Nos. 278,746, 55-88064, 55-88065, 49-105537, 55-51086, 56-80051, 56-88141 57-45545, 54-112737, 55-74546, etc.), phenylenediamine derivatives (US Pat. No. 3,615,404, JP-B 51-10105, 46-3712, 47-25336, 54-119925, etc.), arylamine derivatives (US Pat. Nos. 3,567,450, 3,240,597, No. 3,658,520, No. 4,232,103, No. 4,175,961, No. 4,012,376 Description, JP-B-49-35702, JP-A-39-27577, JP-A-55-144250, JP-A-56-119132, JP-A-56-22437, West German Patent No. 1,110,518 ), Amino-substituted chalcone derivatives (see US Pat. No. 3,526,501, etc.), oxazole derivatives (disclosed in US Pat. No. 3,257,203 etc.), styrylanthracene derivatives (See JP 56-46234 A, etc.), fluorenone derivatives (see JP 54-110837 A, etc.), hydrazone derivatives (US Pat. No. 3,717,462, JP 54-59143 A). Gazette, 55-52063, 55-52064, 55-46760, 57-11350, 57- No. 148749, JP-A-2-311591, etc.), stilbene derivatives (JP-A Nos. 61-210363, 61-228451, 61-14642, 61-72255, etc.) 62-47646, 62-36684, 62-10652, 62-30255, 60-93455, 60-94462, 60-174749, 60 -175052, etc.), silazane derivatives (US Pat. No. 4,950,950), polysilanes (JP-A-2-204996), aniline copolymers (JP-A-2-282263) Etc.
In addition, inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material.
 正孔注入・輸送層の材料には架橋型材料を用いることができ、架橋型の正孔注入輸送層としては、例えば、Chem.Mater.2008,20,413-422、Chem.Mater.2011,23(3),658-681、WO2008108430、WO2009102027、WO2009123269、WO2010016555、WO2010018813等の架橋材を、熱、光等により不溶化した層が挙げられる。 As the material for the hole injection / transport layer, a cross-linkable material can be used. Mater. 2008, 20, 413-422, Chem. Mater. Examples include a layer obtained by insolubilizing a cross-linking material such as 2011, 23 (3), 658-681, WO2008108430, WO2009102027, WO2009123269, WO2010016555, WO2010018813 by heat, light or the like.
[電子注入層及び電子輸送層]
 電子注入層及び電子輸送層(電子注入・輸送層)は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きい層である。
 有機EL素子は発光した光が電極(例えば陰極)により反射するため、直接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干渉することが知られている。この干渉効果を効率的に利用するため、電子注入・輸送層は数nm~数μmの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避けるために、10~10V/cmの電界印加時に電子移動度が少なくとも10-5cm/Vs以上であることが好ましい。
[Electron injection layer and electron transport layer]
The electron injection layer and the electron transport layer (electron injection / transport layer) are layers that assist the injection of electrons into the light emitting layer and transport them to the light emitting region, and have high electron mobility.
In the organic EL element, since emitted light is reflected by an electrode (for example, a cathode), it is known that light emitted directly from the anode interferes with light emitted via reflection by the electrode. In order to efficiently use this interference effect, the electron injecting / transporting layer is appropriately selected with a film thickness of several nm to several μm. However, particularly when the film thickness is large, in order to avoid a voltage increase, 10 4 to 10 6. The electron mobility is preferably at least 10 −5 cm 2 / Vs or more when an electric field of V / cm is applied.
 電子注入・輸送層に用いる電子輸送性材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましく、例えば、ピリジン環、ピリミジン環、トリアジン環、ベンズイミダゾール環、フェナントロリン環、キナゾリン環等を骨格に含む化合物が挙げられる。 As the electron transporting material used for the electron injection / transport layer, an aromatic heterocyclic compound containing one or more heteroatoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable. The nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, such as a pyridine ring. , Pyrimidine ring, triazine ring, benzimidazole ring, phenanthroline ring, quinazoline ring and the like.
 その他、ドナー性材料のドーピング(n)、アクセプター材料のドーピング(p)により、半導体性を備えた有機層を形成してもよい。Nドーピングの代表例は、電子輸送性材料にLiやCs等の金属をドーピングさせるものであり、Pドーピングの代表例は、正孔輸送性材料にF4TCNQ等のアクセプター材をドープするものである(例えば、特許3695714参照)。 In addition, an organic layer having semiconductivity may be formed by doping a donor material (n) and acceptor material (p). A typical example of N doping is to dope an electron transport material with a metal such as Li or Cs, and a typical example of P doping is to dope an acceptor material such as F4TCNQ into a hole transport material ( For example, see Japanese Patent No. 3695714).
 本発明の有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法等の公知の方法を適用することができる。
 各層の膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nm~10μmの範囲が適しているが、10nm~0.2μmの範囲がさらに好ましい。
For the formation of each layer of the organic EL device of the present invention, a known method such as a dry film forming method such as vacuum deposition, sputtering, plasma, or ion plating, or a wet film forming method such as spin coating, dipping, or flow coating is applied. be able to.
The thickness of each layer is not particularly limited, but must be set to an appropriate thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal film thickness is suitably in the range of 5 nm to 10 μm, but more preferably in the range of 10 nm to 0.2 μm.
 次に、実施例を用いて本発明をさらに詳細に説明する。ただし、本発明は以下の実施例に限定されない。 Next, the present invention will be described in further detail using examples. However, the present invention is not limited to the following examples.
1.実施例及び比較例の有機EL素子の製造に用いた材料を以下に示す。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
1. The material used for manufacture of the organic EL element of an Example and a comparative example is shown below.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
2.化合物の特性の測定方法は下記の通りである。
(1)三重項エネルギー(E
 市販の装置F-4500(日立社製)を用いて測定した。三重項エネルギー(E)の換算式は以下の通りである。
 E(eV)=1239.85/λph
 式中、「λph」(単位:nm)は、縦軸に燐光強度、横軸に波長をとって、燐光スペクトルを表したときに、燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸の交点の波長値を意味する。
2. The measuring method of the characteristic of a compound is as follows.
(1) Triplet energy (E T )
The measurement was performed using a commercially available apparatus F-4500 (manufactured by Hitachi). The conversion formula of triplet energy (E T ) is as follows.
E T (eV) = 1239.85 / λ ph
In the formula, “λ ph ” (unit: nm) draws a tangent line to the rising edge of the phosphorescence spectrum on the short wavelength side when the phosphorescence spectrum is represented with the phosphorescence intensity on the vertical axis and the wavelength on the horizontal axis. , The wavelength value of the intersection of the tangent and the horizontal axis.
(2)イオン化ポテンシャル
 真空蒸着法又は塗布法により、ITO基板上に測定化合物の薄膜を形成し、市販の装置大気中光電子分光装置AC-3(理研計器社製)を用いて測定した。
(2) Ionization potential A thin film of the measurement compound was formed on the ITO substrate by a vacuum deposition method or a coating method, and the measurement was performed using a commercially available atmospheric photoelectron spectrometer AC-3 (manufactured by Riken Keiki Co., Ltd.).
3.有機EL素子の評価方法は下記の通りである。 3. The evaluation method of the organic EL element is as follows.
(1)半減寿命(時間)
 初期輝度1000cd/mで連続通電試験(直流)を行い、初期輝度が半減するまでの時間を測定した。
(1) Half life (hours)
A continuous energization test (DC) was performed at an initial luminance of 1000 cd / m 2 and the time until the initial luminance was reduced by half was measured.
(2)電圧(V)
 23℃、乾燥窒素ガス雰囲気下で、KEITHLY 236 SOURCE MEASURE UNITを用いて、電気配線された素子に電圧を印加して発光させ、素子以外の配線抵抗にかかる電圧を差し引いて素子印加電圧を測定した。
 電圧の印加・測定と同時に輝度計(ミノルタ社製分光輝度放射計CS-1000)を用いて輝度測定も行い、これらの測定結果から素子輝度が1000cd/m時の電圧を読み取った。
(2) Voltage (V)
Using a KEITLY 236 SOURCE MEASURE UNIT under a dry nitrogen gas atmosphere at 23 ° C., voltage was applied to the electrically wired element to emit light, and the voltage applied to the wiring resistance other than the element was subtracted to measure the element applied voltage. .
At the same time as the voltage application / measurement, the luminance was also measured using a luminance meter (Spectral Luminance Radiometer CS-1000 manufactured by Minolta Co., Ltd.), and the voltage when the element luminance was 1000 cd / m 2 was read from these measurement results.
 表2が示すように、本発明の化合物を赤色燐光発光層のホストに用いた実施例の有機EL素子は、比較例1の素子に比べて、半減寿命が改善していることが分かる。 As shown in Table 2, it can be seen that the organic EL device of the example using the compound of the present invention as the host of the red phosphorescent light emitting layer has an improved half-life compared to the device of Comparative Example 1.
実施例1
 膜厚130nmのITO電極ライン付きガラス基板(ジオマティック社製)を、イソプロピルアルコール中で5分間、超音波洗浄した後、UVオゾン洗浄を30分間行なった。
 洗浄後のITO電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まずITO電極ラインが形成されている側の面上に、ITO電極ラインを覆うようにして化合物(HI1)を厚さ20nmで、次いで化合物(HT1)を厚さ50nmで抵抗加熱蒸着し、順次薄膜を成膜した。成膜レートは1Å/sとした。これらの薄膜は、それぞれ正孔注入層及び正孔輸送層として機能する。
Example 1
A glass substrate with a 130 nm-thick ITO electrode line (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
The glass substrate with the ITO electrode line after the cleaning is mounted on the substrate holder of the vacuum deposition apparatus, and the compound (HI1) is first thickened so as to cover the ITO electrode line on the surface on which the ITO electrode line is formed. At 20 nm, the compound (HT1) was then vapor deposited by resistance heating at a thickness of 50 nm, and thin films were sequentially formed. The film formation rate was 1 Å / s. These thin films function as a hole injection layer and a hole transport layer, respectively.
 この正孔注入・輸送層上に、化合物(1)と化合物(RD1)を同時に抵抗加熱蒸着して膜厚10nmの薄膜を成膜した。成膜レートはそれぞれ1.0Å/s、0.064Å/sとした。このとき、化合物(RD1)を、化合物(1)と化合物(RD1)の総質量に対し質量比で6%になるように蒸着した。この薄膜は赤色燐光発光層として機能する。
 次に、この電子阻止層上に、化合物(H1)と化合物(BD1)を同時に抵抗加熱蒸着して膜厚50nmの薄膜を成膜した。このとき、化合物(BD1)を、化合物(H1)と化合物(BD1)の総質量に対し質量比で20%になるように蒸着した。成膜レートはそれぞれ1.2Å/s、0.3Å/sとした。この薄膜は、燐光発光層として機能する。
 次に、この燐光発光層上に、化合物(H1)を抵抗加熱蒸着して膜厚10nmの薄膜を成膜した。成膜レートは1Å/sとした。この薄膜は正孔阻止層として機能する。
On this hole injection / transport layer, a compound (1) and a compound (RD1) were simultaneously deposited by resistance heating to form a thin film having a thickness of 10 nm. The film formation rates were 1.0 Å / s and 0.064 Å / s, respectively. At this time, the compound (RD1) was deposited so as to have a mass ratio of 6% with respect to the total mass of the compound (1) and the compound (RD1). This thin film functions as a red phosphorescent light emitting layer.
Next, on the electron blocking layer, the compound (H1) and the compound (BD1) were simultaneously deposited by resistance heating to form a thin film having a thickness of 50 nm. At this time, the compound (BD1) was deposited so as to have a mass ratio of 20% with respect to the total mass of the compound (H1) and the compound (BD1). The film formation rates were 1.2 Å / s and 0.3 Å / s, respectively. This thin film functions as a phosphorescent light emitting layer.
Next, a thin film having a thickness of 10 nm was formed on the phosphorescent light emitting layer by resistance heating vapor deposition of the compound (H1). The film formation rate was 1 Å / s. This thin film functions as a hole blocking layer.
 この正孔阻止層上に、化合物(ET1)を抵抗加熱蒸着して膜厚10nmの薄膜を成膜した。成膜レートは1Å/sとした。この膜は電子注入層として機能する。
 この電子注入層上に膜厚1.0nmのLiFを成膜レート0.1Å/sで蒸着した。
 次に、このLiF膜上に金属アルミニウムを成膜レート8.0Å/sにて蒸着し、膜厚80nmの金属陰極を形成して有機EL素子を製造した。
On this hole blocking layer, a compound (ET1) was deposited by resistance heating vapor deposition to form a thin film having a thickness of 10 nm. The film formation rate was 1 Å / s. This film functions as an electron injection layer.
LiF having a film thickness of 1.0 nm was deposited on the electron injection layer at a film formation rate of 0.1 Å / s.
Next, metal aluminum was vapor-deposited on the LiF film at a film formation rate of 8.0 Å / s to form a metal cathode having a film thickness of 80 nm, thereby manufacturing an organic EL element.
実施例2及び比較例1,2
 化合物(1)の代わりに表2に記載の化合物を赤色燐光発光層のホスト材料として用いた以外は実施例1と同様にして有機EL素子を作製し、評価した。結果を表3に示す。尚、「半減寿命(相対%)」とは、比較例2の素子の半減寿命を100%とした場合の相対割合である。使用した化合物の三重項エネルギー及びイオン化ポテンシャルを表1に、素子の評価結果を表2に示す。
Example 2 and Comparative Examples 1 and 2
An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the compounds shown in Table 2 were used as the host material for the red phosphorescent light emitting layer instead of the compound (1). The results are shown in Table 3. The “half life (relative%)” is a relative ratio when the half life of the element of Comparative Example 2 is 100%. Table 1 shows the triplet energy and ionization potential of the compounds used, and Table 2 shows the evaluation results of the devices.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2が示すように、本発明の化合物を赤色燐光発光層のホスト材料に用いた実施例の有機EL素子は、比較例1,2の素子に比べて、寿命が改善していることが分かる。 As shown in Table 2, it can be seen that the organic EL device of the example using the compound of the present invention as the host material of the red phosphorescent light emitting layer has an improved lifetime as compared with the devices of Comparative Examples 1 and 2. .
実施例3,4及び比較例3,4
 化合物(H1)の代わりに化合物(H2)を燐光発光層のホスト、化合物(1)の代わりに表3に記載の化合物を赤色燐光発光層のホスト材料として用いた以外は実施例1と同様にして有機EL素子を作製し、評価した。結果を表3に示す。尚、「半減寿命(相対%)」とは、比較例4の素子の半減寿命を100%とした場合の相対割合である。
Examples 3 and 4 and Comparative Examples 3 and 4
The same procedure as in Example 1 was conducted except that compound (H2) was used as the host for the phosphorescent layer instead of compound (H1), and the compounds listed in Table 3 were used as the host material for the red phosphorescent layer instead of compound (1). Thus, an organic EL element was produced and evaluated. The results are shown in Table 3. The “half life (relative%)” is a relative ratio when the half life of the element of Comparative Example 4 is 100%.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3が示すように、本発明の化合物を赤色燐光発光層のホスト材料に用いた実施例の有機EL素子は、比較例3,4の素子に比べて、寿命が改善していることが分かる。 As shown in Table 3, the organic EL device of the example using the compound of the present invention as the host material of the red phosphorescent light emitting layer has an improved lifetime as compared with the devices of Comparative Examples 3 and 4. .
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
The entire contents of the documents described in this specification are incorporated herein by reference.

Claims (22)

  1.  陽極と陰極との間に、第一の発光層と第二の発光層を含み、
     第一の発光層は、下記式(1)で表される化合物と、赤色燐光発光材料を含み、
     第二の発光層は、ジベンゾフラン骨格を含む化合物又はジベンゾチオフェン骨格を含む化合物と、青色燐光発光材料を含む有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000048
    (式(1)中、
     Xは、O、S、又はN-Raで表わされる基である。
     Y~Y12は、それぞれN又はC-Raで表わされる基である。
     Ar及びArは、それぞれ置換若しくは無置換の環形成炭素数6~30のアリール基、又は、置換若しくは無置換の環形成原子数5~30のヘテロアリール基である。
     Raは、水素原子、置換基若しくは無置換の環形成炭素数6~30のアリール基、置換若しくは無置換の環形成原子数5~30のヘテロアリール基、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の炭素数1~30のフルオロアルキル基、置換若しくは無置換の環形成炭素数3~30のシクロアルキル基、置換若しくは無置換の炭素数7~30のアラルキル基、置換ホスホリル基、置換シリル基、シアノ基、ニトロ基、又はカルボキシ基である。
     式(1)中に、Raが2つ以上ある場合は、複数のRaは、それぞれ同一でも異なっていてもよい。)
    Between the anode and the cathode, including a first light emitting layer and a second light emitting layer,
    The first light emitting layer includes a compound represented by the following formula (1) and a red phosphorescent material,
    The second light-emitting layer is an organic electroluminescence device including a compound containing a dibenzofuran skeleton or a compound containing a dibenzothiophene skeleton and a blue phosphorescent material.
    Figure JPOXMLDOC01-appb-C000048
    (In the formula (1),
    X is a group represented by O, S, or N-Ra.
    Y 1 to Y 12 are each a group represented by N or C—Ra.
    Ar 1 and Ar 2 are each a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
    Ra is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, a substituted or unsubstituted carbon atom having 1 to 30 carbon atoms. An alkyl group, a substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, A substituted phosphoryl group, a substituted silyl group, a cyano group, a nitro group, or a carboxy group.
    In Formula (1), when there are two or more Ras, the plurality of Ras may be the same or different. )
  2.  前記式(1)で表される化合物が下記式(1a)で表される化合物である請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000049
    (式(1a)中、X、Ar、Ar、Y、Y、Y、Y、Y、Y、Y11及びY12は、前記式(1)で定義した通りである。)
    The organic electroluminescence device according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the following formula (1a).
    Figure JPOXMLDOC01-appb-C000049
    (In the formula (1a), X, Ar 1 , Ar 2 , Y 1 , Y 2 , Y 5 , Y 6 , Y 7 , Y 8 , Y 11 and Y 12 are as defined in the formula (1). is there.)
  3.  前記式(1)で表される化合物が下記式(1b)で表される化合物である請求項2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000050
    (式(1b)中、X、Ar、Y、Y、Y、Y、Y、Y、Y11及びY12は、前記式(1)で定義した通りである。
     Ar11は、置換若しくは無置換の環形成炭素数6~30のアリール基である。)
    The organic electroluminescent device according to claim 2, wherein the compound represented by the formula (1) is a compound represented by the following formula (1b).
    Figure JPOXMLDOC01-appb-C000050
    (In the formula (1b), X, Ar 2 , Y 1 , Y 2 , Y 5 , Y 6 , Y 7 , Y 8 , Y 11 and Y 12 are as defined in the formula (1).
    Ar 11 is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms. )
  4.  Xが、Oである請求項1~3のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 3, wherein X is O.
  5.  Arが、置換若しくは無置換の環形成炭素数6~30のアリール基である請求項1~4のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 4, wherein Ar 2 is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  6.  ArとAr、又はAr11とArが異なる基である請求項1~5のいずれかに記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence device according to claim 1 , wherein Ar 1 and Ar 2 , or Ar 11 and Ar 2 are different groups.
  7.  Raが、置換若しくは無置換の
    Figure JPOXMLDOC01-appb-C000051
    (X10はO、S又はC-RaRaであり、Raは前記式(1)で定義した通りであり、Y20はC-H又はNである。)からなる群から選択される基である請求項1~6のいずれかに記載の有機エレクトロルミネッセンス素子。
    Ra is substituted or unsubstituted
    Figure JPOXMLDOC01-appb-C000051
    (X 10 is O, S or C—RaRa, Ra is as defined in the above formula (1), Y 20 is C—H or N). The organic electroluminescence device according to any one of claims 1 to 6.
  8.  前記赤色燐光発光材料の発光波長が、550~750nmの範囲である請求項1~7のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 7, wherein an emission wavelength of the red phosphorescent material is in a range of 550 to 750 nm.
  9.  前記青色燐光発光材料の発光波長が、440~550nmの範囲である請求項1~8のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 8, wherein an emission wavelength of the blue phosphorescent material is in a range of 440 to 550 nm.
  10.  前記式(1)で表される化合物の三重項エネルギーが2.85eV以上である請求項1~9のいずれかに記載の有機エレクトロルミネッセンス素子。 10. The organic electroluminescence device according to claim 1, wherein the compound represented by the formula (1) has a triplet energy of 2.85 eV or more.
  11.  前記式(1)で表される化合物の三重項エネルギーが2.85eV以上かつ3.5eV以下である請求項10に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent device according to claim 10, wherein the triplet energy of the compound represented by the formula (1) is 2.85 eV or more and 3.5 eV or less.
  12.  前記式(1)で表される化合物の正孔移動度が、5×10-8cm/Vs以上である請求項1~11のいずれかに記載の有機エレクトロルミネッセンス素子。 12. The organic electroluminescence device according to claim 1, wherein the hole mobility of the compound represented by the formula (1) is 5 × 10 −8 cm 2 / Vs or more.
  13.  前記ジベンゾフラン骨格を含む化合物又はジベンゾチオフェン骨格を含む化合物が、下記式(2)で表される請求項1~12のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000052
    (式(I)中、
     Xは酸素原子又は硫黄原子であり、
     X及びYの一方は、酸素原子、硫黄原子又はNRであり、他方は、単結合、C(R)、NR、酸素原子、又は硫黄原子であり、
     Rは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換もしくは無置換の環形成原子数3~30の芳香族複素環基であり、
     Z、Z及びはZ、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数3~30の芳香族複素環であり、
     nは0~5の整数であり、nが2以上の場合、複数のZは互いに同一であっても異なっていてもよく、複数のXは互いに同一であっても異なっていてもよく、複数のYは互いに同一であっても異なっていてもよい。
     ただし、式(I)の化合物は部分構造として、ジベンゾチオフェン骨格又はジベンゾチオフェン骨格を含む。)
    The organic electroluminescence device according to any one of claims 1 to 12, wherein the compound containing the dibenzofuran skeleton or the compound containing the dibenzothiophene skeleton is represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000052
    (In the formula (I),
    X 1 is an oxygen atom or a sulfur atom,
    One of X 2 and Y 2 is an oxygen atom, a sulfur atom or NR, and the other is a single bond, C (R) 2 , NR, an oxygen atom or a sulfur atom,
    Each R is independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted ring forming carbon number; An aromatic hydrocarbon ring group having 6 to 30 or a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 ring atoms;
    Z 1 , Z 2 and Z 3 are each independently a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 30 ring carbon atoms or a substituted or unsubstituted aromatic hetero ring having 3 to 30 ring atoms. A ring,
    n is an integer of 0 to 5, and when n is 2 or more, the plurality of Z 2 may be the same or different from each other, and the plurality of X 2 may be the same or different from each other The plurality of Y 2 may be the same as or different from each other.
    However, the compound of formula (I) includes a dibenzothiophene skeleton or a dibenzothiophene skeleton as a partial structure. )
  14.  前記式(2)の化合物が、下記式(2-1)で表される請求項13に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000053
    (式(2-1)中、
     G~Gは、それぞれ独立に、CR又は窒素原子である。
     G11~G18は、それぞれ独立に、CR又は窒素原子である。
     R及びRは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環基、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロアリールオキシ基、置換もしくは無置換の環形成炭素数6~18のアリールチオ基、置換もしくは無置換の環形成原子数5~18のヘテロアリールチオ基、置換もしくは無置換の環形成炭素数6~18のアリールスルホニル基、置換もしくは無置換の環形成原子数5~18のヘテロアリールスルホニル基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環基、置換もしくは無置換のシリル基、フッ素原子、置換もしくは無置換のフルオロアルキル基、置換もしくは無置換のフルオロアルコキシ基又はシアノ基である。
     複数のCRが存在するとき、複数のRは、互いに同一又は異なっていてもよい。
     但し、G及びGの一方又は両方がCRである場合は、G及びGのRは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換のシリル基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、又は置換もしくは無置換の炭素数1~20のフルオロアルコキシ基である。
     Rは、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環基、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環基、置換もしくは無置換のシリル基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基又はシアノ基である。
     複数のCRが存在するときは、それぞれのRは同一又は異なっていてもよい。
     R、R、Rが置換基を有する場合の当該置換基R’は、水素原子、炭素数1~20のアルキル基、環形成炭素数3~20のシクロアルキル基、炭素数1~20のアルコキシ基、環形成炭素数3~20のシクロアルコキシ基、環形成炭素数6~18の芳香族炭化水素環基、環形成炭素数6~18のアリールオキシ基、環形成原子数5~18のヘテロ芳香族環基、シリル基、フッ素原子、炭素数1~20のフルオロアルキル基、炭素数1~20のフルオロアルコキシ基又はシアノ基である。
     Xaは、酸素原子又は硫黄原子である。)
    The organic electroluminescence device according to claim 13, wherein the compound of the formula (2) is represented by the following formula (2-1).
    Figure JPOXMLDOC01-appb-C000053
    (In the formula (2-1),
    G 1 to G 6 are each independently CR 1 or a nitrogen atom.
    G 11 to G 18 are each independently CR 2 or a nitrogen atom.
    R and R 1 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted carbon, An alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, a substituted or unsubstituted aromatic hydrocarbon ring group having 6 to 18 ring carbon atoms, a substituted or unsubstituted ring group; Aryloxy group having 6 to 18 ring carbon atoms, substituted or unsubstituted heteroaryloxy group having 5 to 18 ring atoms, substituted or unsubstituted arylthio group having 6 to 18 ring carbon atoms, substituted or unsubstituted A heteroarylthio group having 5 to 18 ring atoms, a substituted or unsubstituted arylsulfonyl group having 6 to 18 ring carbon atoms, and a substituted or unsubstituted ring atom number 5-18 heteroarylsulfonyl group, substituted or unsubstituted heteroaromatic ring group having 5 to 18 ring atoms, substituted or unsubstituted silyl group, fluorine atom, substituted or unsubstituted fluoroalkyl group, substituted or An unsubstituted fluoroalkoxy group or a cyano group.
    When a plurality of CR 1 are present, the plurality of R 1 may be the same as or different from each other.
    However, when one or both of G 2 and G 5 are CR 1 , R 1 of G 2 and G 5 is each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, substituted or An unsubstituted silyl group, a fluorine atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms.
    R 2 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms. A substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, a substituted or unsubstituted aromatic hydrocarbon ring group having 6 to 18 ring carbon atoms, a substituted or unsubstituted ring carbon number 6 to 18 aryloxy groups, substituted or unsubstituted heteroaromatic ring groups having 5 to 18 ring atoms, substituted or unsubstituted silyl groups, fluorine atoms, substituted or unsubstituted fluoroalkyl groups having 1 to 20 carbon atoms A substituted or unsubstituted C 1-20 fluoroalkoxy group or cyano group.
    When a plurality of CR 2 are present, each R 2 may be the same or different.
    When R, R 1 and R 2 have a substituent, the substituent R ′ is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 ring carbon atoms, or 1 to 20 carbon atoms. Alkoxy groups having 3 to 20 ring carbon atoms, aromatic hydrocarbon ring groups having 6 to 18 ring carbon atoms, aryloxy groups having 6 to 18 ring carbon atoms, and 5 to 18 ring atoms. A heteroaromatic ring group, a silyl group, a fluorine atom, a fluoroalkyl group having 1 to 20 carbon atoms, a fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group.
    Xa is an oxygen atom or a sulfur atom. )
  15.  前記式(2)の化合物が、下記式(2-2a)~(2-2c)のいずれかで表される請求項13又は14に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000054
    (式(2-2a)~(2-2c)中、
     G211~G214は、それぞれ独立に、CR21又は窒素原子である。
     G221~G228は、それぞれ独立に、CR22又は窒素原子である。
     Ga~Gkはそれぞれ独立に、CR23又は窒素原子である。
     G214とGaが炭素原子の場合又はG213とGdが炭素原子の場合、酸素または硫黄原子を介して結合してもよい。
     G213とGdが炭素原子の場合又はG213とGdが炭素原子の場合、酸素または硫黄原子を介して結合してもよい。
     R21、R22、R23は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環基、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環基、置換もしくは無置換のシリル基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基又はシアノ基である。
     複数のCR21が存在する場合、複数のR21は、それぞれ同一又は異なっていてもよい。
     複数のCR22が存在する場合、複数のR22は、それぞれ同一又は異なっていてもよい。
     複数のCR23が存在する場合、複数のR23は、それぞれ同一又は異なっていてもよい。
     R21、R22及びR23が置換基を有する場合の当該置換基R’は、水素原子、炭素数1~20のアルキル基、環形成炭素数3~20のシクロアルキル基、炭素数1~20のアルコキシ基、環形成炭素数3~20のシクロアルコキシ基、環形成炭素数6~18の芳香族炭化水素環基、環形成炭素数6~18のアリールオキシ基、環形成原子数5~18のヘテロ芳香族環基、シリル基、フッ素原子、炭素数1~20のフルオロアルキル基、炭素数1~20のフルオロアルコキシ基又はシアノ基である。
     Xは、酸素原子、又は硫黄原子である。
     Xは、酸素原子、硫黄原子、又はC(CHである。)
    The organic electroluminescence device according to claim 13, wherein the compound of the formula (2) is represented by any one of the following formulas (2-2a) to (2-2c).
    Figure JPOXMLDOC01-appb-C000054
    (In the formulas (2-2a) to (2-2c),
    G 211 to G 214 are each independently CR 21 or a nitrogen atom.
    G 221 to G 228 are each independently CR 22 or a nitrogen atom.
    Ga to Gk are each independently CR 23 or a nitrogen atom.
    When G 214 and Ga are carbon atoms, or G 213 and Gd are carbon atoms, they may be bonded via an oxygen or sulfur atom.
    When G213 and Gd are carbon atoms, or when G213 and Gd are carbon atoms, they may be bonded via an oxygen or sulfur atom.
    R 21 , R 22 and R 23 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, substituted or unsubstituted Unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon ring group having 6 to 18 ring carbon atoms, substituted Or an unsubstituted aryloxy group having 6 to 18 carbon atoms, a substituted or unsubstituted heteroaromatic ring group having 5 to 18 ring atoms, a substituted or unsubstituted silyl group, a fluorine atom, substituted or unsubstituted A fluoroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group.
    When a plurality of CR 21 are present, the plurality of R 21 may be the same or different from each other.
    When a plurality of CR 22 are present, the plurality of R 22 may be the same or different from each other.
    When a plurality of CR 23 are present, the plurality of R 23 may be the same or different from each other.
    When R 21 , R 22 and R 23 have a substituent, the substituent R ′ is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 ring carbon atoms, or 1 to 20 alkoxy groups, cycloalkoxy groups having 3 to 20 ring carbon atoms, aromatic hydrocarbon ring groups having 6 to 18 ring carbon atoms, aryloxy groups having 6 to 18 ring carbon atoms, 5 to 5 ring atoms An 18 heteroaromatic ring group, a silyl group, a fluorine atom, a fluoroalkyl group having 1 to 20 carbon atoms, a fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group.
    X 1 is an oxygen atom or a sulfur atom.
    X 2 is an oxygen atom, a sulfur atom, or C (CH 3 ) 2 . )
  16.  前記式(2)で表される化合物が、下記式(2-5a)~(2-5f)のいずれかで表される請求項13又は14に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000055
    (式(2-5a)~(2-5f)中、
     E、Eは、それぞれ独立に、酸素原子、硫黄原子又はNRであり、
     ただし、E、Eの少なくとも一方は、酸素原子又は硫黄原子であり、
     G51~G60は、それぞれ独立に、CR又は窒素原子である。
     Rは、水素原子、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換もしくは無置換の環形成原子数3~30の芳香族複素環基であり、
     Rは、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数3~20のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素基、置換もしくは無置換の環形成炭素数6~18のアリールオキシ基、置換もしくは無置換の環形成原子数5~18のヘテロ芳香族環基、置換もしくは無置換のシリル基、フッ素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基又はシアノ基である。
     複数のNRが存在する場合、複数のRは、それぞれ同一又は異なっていてもよい。
     複数のCRが存在する場合、複数のRは、それぞれ同一又は異なっていてもよい。
     R、Rが置換基を有する場合の当該置換基R’は、水素原子、炭素数1~20のアルキル基、環形成炭素数3~20のシクロアルキル基、炭素数1~20のアルコキシ基、環形成炭素数3~20のシクロアルコキシ基、環形成炭素数6~18の芳香族炭化水素環基、環形成炭素数6~18のアリールオキシ基、環形成原子数5~18のヘテロ芳香族環基、シリル基、フッ素原子、炭素数1~20のフルオロアルキル基、炭素数1~20のフルオロアルコキシ基又はシアノ基である。)
    The organic electroluminescence device according to claim 13, wherein the compound represented by the formula (2) is represented by any one of the following formulas (2-5a) to (2-5f).
    Figure JPOXMLDOC01-appb-C000055
    (In the formulas (2-5a) to (2-5f),
    E 1 and E 2 are each independently an oxygen atom, a sulfur atom or NR 5 ;
    However, at least one of E 1 and E 2 is an oxygen atom or a sulfur atom,
    G 51 to G 60 are each independently CR 6 or a nitrogen atom.
    R 5 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted ring carbon atom having 6 to 30 carbon atoms. An aromatic hydrocarbon ring group or a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 ring atoms,
    R 6 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 ring carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms. Group, substituted or unsubstituted cycloalkoxy group having 3 to 20 ring carbon atoms, substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 ring carbon atoms, substituted or unsubstituted ring carbon atoms having 6 to 18 carbon atoms An aryloxy group, a substituted or unsubstituted heteroaromatic ring group having 5 to 18 ring atoms, a substituted or unsubstituted silyl group, a fluorine atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted C1-C20 fluoroalkoxy group or cyano group.
    When a plurality of NR 5 are present, the plurality of R 5 may be the same or different from each other.
    When a plurality of CR 6 are present, the plurality of R 6 may be the same or different from each other.
    When R 5 and R 6 have a substituent, the substituent R ′ is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 ring carbon atoms, or an alkoxy having 1 to 20 carbon atoms. Group, a cycloalkoxy group having 3 to 20 ring carbon atoms, an aromatic hydrocarbon ring group having 6 to 18 ring carbon atoms, an aryloxy group having 6 to 18 ring carbon atoms, and a hetero ring having 5 to 18 ring atoms. An aromatic ring group, a silyl group, a fluorine atom, a fluoroalkyl group having 1 to 20 carbon atoms, a fluoroalkoxy group having 1 to 20 carbon atoms, or a cyano group. )
  17.  前記第一の発光層に隣接して、電子阻止層を含む請求項1~16のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 16, further comprising an electron blocking layer adjacent to the first light emitting layer.
  18.  前記第二の発光層に隣接して、正孔阻止層を含む請求項1~17のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 17, further comprising a hole blocking layer adjacent to the second light emitting layer.
  19.  前記第一の発光層が、さらに正孔輸送性材料を含有する請求項1~18のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 18, wherein the first light emitting layer further contains a hole transporting material.
  20.  前記陽極と前記第一の発光層の間に、さらに正孔注入層及び正孔輸送層の一方又は両方を有する請求項1~20のいずれかに記載の有機エレクトロルミネッセンス素子。 21. The organic electroluminescence device according to claim 1, further comprising one or both of a hole injection layer and a hole transport layer between the anode and the first light emitting layer.
  21.  請求項1~20のいずれかに記載の有機エレクトロルミネッセンス素子を、中間電極を介して第一の発光ユニットと第二の発光ユニットとを積層したタンデム型発光素子の、前記第一又は第二の発光ユニットとして用いた白色発光素子。 The organic electroluminescent device according to any one of claims 1 to 20, wherein the first or second tandem type light emitting device in which a first light emitting unit and a second light emitting unit are laminated via an intermediate electrode. A white light emitting device used as a light emitting unit.
  22.  フラットパネルディスプレイの平面発光体、複写機、プリンター若しくは液晶ディスプレイのバックライト、計器類の光源、表示板、標識灯又は照明装置である請求項21に記載の白色発光素子。 The white light-emitting element according to claim 21, which is a flat light emitter of a flat panel display, a backlight of a copying machine, a printer or a liquid crystal display, a light source of an instrument, a display board, a marker lamp or a lighting device.
PCT/JP2014/000130 2013-01-15 2014-01-14 Organic electroluminescent element WO2014112359A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013004809 2013-01-15
JP2013-004809 2013-01-15

Publications (1)

Publication Number Publication Date
WO2014112359A1 true WO2014112359A1 (en) 2014-07-24

Family

ID=51209455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000130 WO2014112359A1 (en) 2013-01-15 2014-01-14 Organic electroluminescent element

Country Status (1)

Country Link
WO (1) WO2014112359A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159706A1 (en) * 2014-04-16 2015-10-22 出光興産株式会社 Compound, organic electroluminescent element and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149617A1 (en) * 2007-06-04 2008-12-11 Konica Minolta Holdings, Inc. Organic electroluminescence device and lighting apparatus
WO2009008100A1 (en) * 2007-07-10 2009-01-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence element, and organic electroluminescence element prepared by using the material
WO2009148062A1 (en) * 2008-06-05 2009-12-10 出光興産株式会社 Polycyclic compound and organic electroluminescent device using the same
US20120168734A1 (en) * 2009-08-11 2012-07-05 Duksan High Metal Co., Ltd. Compound containing 5-membered heterocycles, organic light-emitting device using same, and terminal comprising the latter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149617A1 (en) * 2007-06-04 2008-12-11 Konica Minolta Holdings, Inc. Organic electroluminescence device and lighting apparatus
WO2009008100A1 (en) * 2007-07-10 2009-01-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence element, and organic electroluminescence element prepared by using the material
WO2009148062A1 (en) * 2008-06-05 2009-12-10 出光興産株式会社 Polycyclic compound and organic electroluminescent device using the same
US20120168734A1 (en) * 2009-08-11 2012-07-05 Duksan High Metal Co., Ltd. Compound containing 5-membered heterocycles, organic light-emitting device using same, and terminal comprising the latter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159706A1 (en) * 2014-04-16 2015-10-22 出光興産株式会社 Compound, organic electroluminescent element and electronic device
US10249826B2 (en) 2014-04-16 2019-04-02 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescent element and electronic device

Similar Documents

Publication Publication Date Title
JP6148982B2 (en) Nitrogen-containing heteroaromatic ring compounds
JP6012611B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP6212391B2 (en) Organic electroluminescence device
WO2013105206A1 (en) Material for organic electroluminescent element, and element using same
WO2013175747A1 (en) Organic electroluminescent element
JP6220341B2 (en) Ladder compound and organic electroluminescence device using the same
JP6196554B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
WO2013102992A1 (en) Material for organic electroluminescence element and element using same
WO2013175746A1 (en) Organic electroluminescent element
WO2013069242A1 (en) Material for organic electroluminescent elements, and organic electroluminescent element using same
WO2013179645A1 (en) Organic-electroluminescent-element material, and organic electroluminescent element using same
JP2013108015A (en) Material for organic electroluminescent element
WO2013108589A1 (en) Novel compound, material for organic electroluminescent element and organic electroluminescent element
JP6031302B2 (en) Heteroaromatic compound and organic electroluminescence device using the same
US9496508B2 (en) Material for organic electroluminescent element and organic electroluminescent element using same
WO2014112359A1 (en) Organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP