WO2014112222A1 - Use method for byproduct ash from blast furnace - Google Patents

Use method for byproduct ash from blast furnace Download PDF

Info

Publication number
WO2014112222A1
WO2014112222A1 PCT/JP2013/082430 JP2013082430W WO2014112222A1 WO 2014112222 A1 WO2014112222 A1 WO 2014112222A1 JP 2013082430 W JP2013082430 W JP 2013082430W WO 2014112222 A1 WO2014112222 A1 WO 2014112222A1
Authority
WO
WIPO (PCT)
Prior art keywords
ash
blast furnace
unburned carbon
slurry
separated
Prior art date
Application number
PCT/JP2013/082430
Other languages
French (fr)
Japanese (ja)
Inventor
肇 和田
泰之 石田
浩司 鎌田
智文 菊崎
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to JP2014557350A priority Critical patent/JPWO2014112222A1/en
Priority to CN201380064397.4A priority patent/CN104870110A/en
Publication of WO2014112222A1 publication Critical patent/WO2014112222A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/28Cements from oil shales, residues or waste other than slag from combustion residues, e.g. ashes or slags from waste incineration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • C04B7/4407Treatment or selection of the fuel therefor, e.g. use of hazardous waste as secondary fuel ; Use of particular energy sources, e.g. waste hot gases from other processes
    • C04B7/4423Waste or refuse used as fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • B03D2203/04Non-sulfide ores
    • B03D2203/08Coal ores, fly ash or soot
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/125Fuels from renewable energy sources, e.g. waste or biomass

Definitions

  • the present invention relates to a method for effectively utilizing secondary ash in the blast furnace generated in the iron making process.
  • blast furnace secondary ash generated at steelworks is used as an alternative to iron raw materials in cement plants, but most of it is discarded and disposed of in landfills.
  • efforts to form a recycling-oriented society are being promoted, and development of a recycling method is also required for blast furnace secondary ash.
  • the secondary ash of the blast furnace contains 20% or more of unburned carbon
  • the unburned portion is incomplete during preheating with the preheater of the cement baking equipment.
  • combustion occurs and the preheater exhaust gas temperature rises. Therefore, the use as a cement raw material has a limit.
  • the present invention has been made in view of the above-mentioned problems in the prior art, and aims to expand the application of blast furnace secondary ash and contribute to the formation of a recycling society.
  • the present invention is a method for using secondary ash of a blast furnace, wherein the secondary ash of the blast furnace is separated into unburned carbon and ash, and the separated unburned carbon is used as a fuel.
  • the ash content after removing the carbon is used as a cement raw material.
  • separated from the blast furnace secondary ash can be used as a fuel and ash can be used as a cement raw material, the use of a blast furnace secondary ash can be expanded.
  • separation of the blast furnace secondary ash into unburned carbon and ash is performed by adding water to the blast furnace secondary ash to form a slurry, and surface-modifying the slurry.
  • the later slurry can be separated by flotation into a lipophilic component and a hydrophilic component, and the blast furnace secondary ash can be efficiently separated into unburned carbon and ash.
  • the pH of the separated filtrate can be adjusted to 8 or more and 9 or less to separate zinc from the filtrate.
  • FIG. 1 to FIG. 3 show an example of the configuration of a system for carrying out the method of using blast furnace secondary ash according to the present invention.
  • FIG. 1 shows a system for separating blast furnace secondary ash into unburned carbon and ash.
  • 2 and 3 show a system for removing zinc from ash.
  • a method of removing unburned carbon and zinc from the blast furnace secondary ash will be described with reference to FIGS.
  • a system 1 for separating the blast furnace secondary ash shown in FIG. 1 into unburned carbon and ash (hereinafter referred to as “unburned carbon separation system”) 1 adds water to the blast furnace secondary ash tank 11 and the blast furnace secondary ash. After adding the collecting agent C to the slurry S and the slurry S for producing the slurry S, the slurry S and the collecting agent C are subjected to shearing force to modify the surface of the unburned carbon.
  • the slurry tank 12 is provided to generate the slurry S with the blast furnace secondary ash and water, and includes a stirring blade for stirring the slurry S inside.
  • the submerged stirring device 14 is provided to modify the surface of the unburned carbon by applying a shearing force to the slurry S and the collecting agent C.
  • the submerged stirring device 14 includes, for example, a cylindrical main body, a plurality of partition walls that divide the main body into a plurality of rooms, and a plurality of stirring blades that are radially fixed to the rotation shaft, and a motor and a speed reducer. The rotating shaft and the stirring blade rotate through the.
  • the adjustment tank 17 adds the foaming agent B supplied from the foaming agent tank 19 to the slurry S and the collecting agent C from the submerged stirring device 14 and mixes them, and the stirring is performed inside. Provide feathers.
  • the flotation machine 21 attaches unburned carbon of the blast furnace secondary ash to the air bubbles and floats it up, and separates it into unburned carbon and ash from which the unburned carbon has been removed. Is provided with an air supply facility for generating bubbles.
  • the solid-liquid separator 23 is provided for solid-liquid separation of the tailing T containing the ash discharged from the flotation machine 21, and separates the tailing T into the cake C1 and the filtrate L1.
  • the filter press 28 is provided for solid-liquid separation of the floss F containing unburned carbon from the flotation machine 21, and can use unburned carbon UC contained in the separated cake C2 as fuel. Further, the filtrate L2 discharged from the filter press 28 can be reused in the slurry tank 12 or the like.
  • Blast furnace secondary ash is supplied from the blast furnace secondary ash tank 11 to the slurry tank 12 and mixed with water to generate slurry S.
  • the slurry S containing the blast furnace secondary ash in the slurry tank 12 is supplied to the submerged stirring device 14.
  • the light oil as the collecting agent C is supplied from the light oil tank 16 to the submerged stirring device 14.
  • scavengers such as kerosene and heavy oil can be used.
  • a shearing force is applied to the slurry S and the collecting agent C in the submerged stirring device 14.
  • a shearing force is applied to the slurry S and the collecting agent C supplied to the submerged stirring device 14 by rotating stirring blades in each room partitioned by a partition wall.
  • the partition wall prevents a short pass of the slurry S, and a shearing force can be reliably applied.
  • the slurry S and the collecting agent C to which the shearing force is applied are supplied to the adjustment tank 7.
  • the shearing force is applied to the blast furnace secondary ash slurry S and the collecting agent C in order to improve the flotation floatability by modifying the surface of unburned carbon. That is, the blast furnace secondary ash, unburned carbon, and the collection agent C were separately mixed in water by simply mixing the collection agent C with the slurry S containing the blast furnace secondary ash. It is only a state. Even if the slurry S is supplied to the flotation machine in such a state, the amount of unburned carbon adhering to the bubbles together with the scavenger C is small. Therefore, unburned carbon in the blast furnace secondary ash cannot be efficiently removed by flotation.
  • the floss F containing unburned carbon discharged from the flotation machine 21 is solid-liquid separated by the filter press 28, and unburned carbon UC is recovered.
  • the water dehydrated by the filter press 28 is supplied to the slurry tank 12 and added to new secondary blast furnace ash, or reused for defoaming when unburned carbon is attached to bubbles in the flotation machine 21. be able to.
  • the tailing T containing the blast furnace secondary ash from the flotation machine 21 can be used as a cement raw material or the like.
  • zinc removal system a system for removing zinc from ash after separating unburned carbon from secondary ash in the blast furnace
  • This zinc removal system 31 includes a solid-liquid separator 32 that performs solid-liquid separation after adding alkali to the tailing discharged from the flotation machine 21 after the flotation machine 21 shown in FIG. And an inclined plate sedimentation separator 33 for separating the sediment after adding CO 2 gas to the filtrate of the machine 32.
  • an alkali such as NaOH is added to the tailing to adjust the pH to 9.5 to 11.0.
  • an alkali such as NaOH is added to the tailing to adjust the pH to 9.5 to 11.0.
  • only zinc can be dissolved by adjusting the pH to 9.5 to 11.0.
  • the tailing after pH adjustment is subjected to solid-liquid separation by the solid-liquid separator 32, and the dehydrated cake containing the separated iron is used as a steel raw material.
  • the zinc removal system 41 includes a solid-liquid separator 42 that performs solid-liquid separation after adding acid to the tailing discharged from the flotation machine 21 after the flotation machine 21 shown in FIG. And an inclined plate sedimentation separator 33 for separating the sediment after adding alkali to the filtrate of the machine 42.
  • an acid such as sulfuric acid, nitric acid, acetic acid or the like is added to the tailing.
  • the tailing after the acid addition is solid-liquid separated by the solid-liquid separator 42, and the dehydrated cake containing the separated iron is used as a steel raw material.
  • an amphoteric metal containing zinc is precipitated by adding alkali to the filtrate separated by the solid-liquid separator 42 and adjusting the pH to 8-9.
  • the amphoteric metal containing zinc is recovered using the inclined plate sedimentation separator 43.
  • the water recovered by the inclined plate sedimentation separator 43 is reused as circulating water.

Abstract

[Problem] To expand the uses of byproduct ash from blast furnaces and contribute to the formation of a recycling-oriented society. [Solution] Byproduct ash from a blast furnace is separated into unburned carbon and ash, the separated unburned carbon is used as fuel, and the ash remaining after removal of the unburned carbon is used as a cement starting material. Zinc can be removed from the ash and used as a steel starting material. The byproduct ash from a blast furnace can be separated into unburned carbon and ash by adding water to the byproduct ash from a blast furnace to create a slurry (S), performing surface modification of the slurry, and using ore floatation to separate the post-surface modification slurry into a lipophilic component and a hydrophilic component.

Description

高炉2次灰の利用方法How to use secondary ash in blast furnace
 本発明は、製鉄工程で発生する高炉2次灰を有効利用する方法に関する。 The present invention relates to a method for effectively utilizing secondary ash in the blast furnace generated in the iron making process.
 従来、製鉄所で発生する高炉2次灰は、セメント工場において鉄原料代替として利用しているが、その大部分は廃棄され、埋め立て処分されている。近年、循環型社会の形成の取り組みが推進されている中で、高炉2次灰についても再利用方法の開発が求められている。 Conventionally, blast furnace secondary ash generated at steelworks is used as an alternative to iron raw materials in cement plants, but most of it is discarded and disposed of in landfills. In recent years, efforts to form a recycling-oriented society are being promoted, and development of a recycling method is also required for blast furnace secondary ash.
 しかし、上記高炉2次灰には、20%以上と高濃度の未燃カーボンが含まれているため、セメント原料として使用すると、セメント焼成装置のプレーヒータでの予熱中に未燃分の不完全燃焼を生じ、プレーヒータ排ガス温度が上昇するという問題がある。そのため、セメント原料としての利用には限界があった。 However, since the secondary ash of the blast furnace contains 20% or more of unburned carbon, when used as a cement raw material, the unburned portion is incomplete during preheating with the preheater of the cement baking equipment. There is a problem that combustion occurs and the preheater exhaust gas temperature rises. Therefore, the use as a cement raw material has a limit.
 そこで、本発明は、上記従来の技術における問題点に鑑みてなされたものであって、高炉2次灰の用途の拡大を図り、循環型社会の形成に資することを目的とする。 Therefore, the present invention has been made in view of the above-mentioned problems in the prior art, and aims to expand the application of blast furnace secondary ash and contribute to the formation of a recycling society.
 上記目的を達成するため、本発明は、高炉2次灰の利用方法であって、高炉2次灰を未燃カーボンと灰分とに分離し、分離した未燃カーボンを燃料として使用し、未燃カーボンを除去した後の灰分をセメント原料として使用することを特徴とする。 In order to achieve the above object, the present invention is a method for using secondary ash of a blast furnace, wherein the secondary ash of the blast furnace is separated into unburned carbon and ash, and the separated unburned carbon is used as a fuel. The ash content after removing the carbon is used as a cement raw material.
  そして、本発明によれば、高炉2次灰から分離した未燃カーボンを燃料として使用し、灰分をセメント原料として使用することができるため、高炉2次灰の用途を拡大することができる。 And according to this invention, since the unburned carbon isolate | separated from the blast furnace secondary ash can be used as a fuel and ash can be used as a cement raw material, the use of a blast furnace secondary ash can be expanded.
 上記高炉2次灰の利用方法において、前記灰分からさらに亜鉛を除去し、鉄鋼原料として使用することができ、高炉2次灰の用途をさらに拡大することができる。 In the above blast furnace secondary ash utilization method, zinc can be further removed from the ash and used as a steel raw material, and the application of the blast furnace secondary ash can be further expanded.
 上記高炉2次灰の利用方法において、前記高炉2次灰の未燃カーボン及び灰分への分離を、高炉2次灰に水を加えてスラリーとし、該スラリーを表面改質し、該表面改質後のスラリーを浮遊選鉱により親油性成分と親水性成分とに分離することによって行うことができ、高炉2次灰を未燃カーボンと灰分とに効率よく分離することができる。 In the method of using the blast furnace secondary ash, separation of the blast furnace secondary ash into unburned carbon and ash is performed by adding water to the blast furnace secondary ash to form a slurry, and surface-modifying the slurry. The later slurry can be separated by flotation into a lipophilic component and a hydrophilic component, and the blast furnace secondary ash can be efficiently separated into unburned carbon and ash.
 前記灰分を含むスラリーにアルカリを添加し、pHを9.5以上11.0以下に調整した後、固液分離し、分離された鉄分を含む脱水ケーキを鉄鋼原料に利用し、固液分離によって分離されたろ液のpHを8以上9以下に調整して該ろ液から亜鉛を分離することができる。 After adding alkali to the ash-containing slurry and adjusting the pH to 9.5 or more and 11.0 or less, solid-liquid separation is performed, and the dehydrated cake containing the separated iron content is used as a steel raw material. The pH of the separated filtrate can be adjusted to 8 or more and 9 or less to separate zinc from the filtrate.
 前記灰分を含むスラリーに酸を添加した後固液分離し、分離された鉄分を含む脱水ケーキを鉄鋼原料に利用し、固液分離によって分離されたろ液のpHを8以上9以下に調整して該ろ液から亜鉛を分離することができる。 After the acid is added to the slurry containing ash, solid-liquid separation is performed, and the dehydrated cake containing the separated iron is used as a steel raw material, and the pH of the filtrate separated by solid-liquid separation is adjusted to 8 or more and 9 or less. Zinc can be separated from the filtrate.
 以上のように、本発明によれば、高炉2次灰の用途の拡大を図り、循環型社会の形成に資することができる。 As described above, according to the present invention, it is possible to expand the application of blast furnace secondary ash and contribute to the formation of a recycling society.
本発明にかかる高炉2次灰の利用方法を実施するためのシステムのうち、高炉2次灰を未燃カーボンと灰分とに分離するシステムの一例を示す全体構成図である。It is a whole block diagram which shows an example of the system which isolate | separates a blast furnace secondary ash into unburned carbon and ash among the systems for implementing the utilization method of the blast furnace secondary ash concerning this invention. 本発明にかかる高炉2次灰の利用方法を実施するためのシステムのうち、高炉2次灰から分離した灰分から亜鉛を除去するシステムの一例を示す全体構成図である。It is a whole block diagram which shows an example of the system which removes zinc from the ash isolate | separated from the blast furnace secondary ash among the systems for implementing the utilization method of the blast furnace secondary ash concerning this invention. 高炉2次灰から分離した灰分から亜鉛を除去するシステムの他の例を示す全体構成図である。It is a whole block diagram which shows the other example of the system which removes zinc from the ash content isolate | separated from the blast furnace secondary ash. 両性金属を含む溶液のpHと溶存重金属量との関係を示すグラフである。It is a graph which shows the relationship between pH of the solution containing an amphoteric metal, and the amount of dissolved heavy metals.
  次に、本発明を実施するための形態について図面を参照しながら詳細に説明する。 Next, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
 図1~図3は、本発明にかかる高炉2次灰の利用方法を実施するためのシステムの構成例を示し、図1は、高炉2次灰を未燃カーボンと灰分とに分離するシステムを、図2及び図3は、灰分から亜鉛を除去するシステムを示す。以下、図1~図3を順次参照しながら、高炉2次灰からの未燃カーボン及び亜鉛の除去方法について説明する。 FIG. 1 to FIG. 3 show an example of the configuration of a system for carrying out the method of using blast furnace secondary ash according to the present invention. FIG. 1 shows a system for separating blast furnace secondary ash into unburned carbon and ash. 2 and 3 show a system for removing zinc from ash. Hereinafter, a method of removing unburned carbon and zinc from the blast furnace secondary ash will be described with reference to FIGS.
 図1に示す高炉2次灰を未燃カーボンと灰分とに分離するシステム(以下、「未燃カーボン分離システム」という)1は、高炉2次灰タンク11と、高炉2次灰に水を加えてスラリーSを生成するためのスラリータンク12と、スラリーSに捕集剤Cを添加した後、スラリーS及び捕集剤Cに剪断力を付与して未燃カーボンの表面を改質する液中撹拌装置14と、スラリーSに起泡剤Bを加えて気泡を発生させ、該気泡に高炉2次灰の未燃カーボンを付着させて浮上させることにより未燃カーボンを分離する浮選機21と、浮選機21からのテーリングTを固液分離する固液分離器23と、浮選機21からのフロスFを固液分離して未燃カーボンを得るためのフィルタープレス28等で構成される。 A system 1 for separating the blast furnace secondary ash shown in FIG. 1 into unburned carbon and ash (hereinafter referred to as “unburned carbon separation system”) 1 adds water to the blast furnace secondary ash tank 11 and the blast furnace secondary ash. After adding the collecting agent C to the slurry S and the slurry S for producing the slurry S, the slurry S and the collecting agent C are subjected to shearing force to modify the surface of the unburned carbon. A stirrer 14 and a flotation machine 21 for separating the unburned carbon by adding the foaming agent B to the slurry S to generate bubbles, causing the unburned carbon of the blast furnace secondary ash to adhere to the bubbles and floating The solid-liquid separator 23 for solid-liquid separation of the tailing T from the flotation machine 21 and the filter press 28 for solid-liquid separation of the floss F from the flotation machine 21 to obtain unburned carbon, etc. .
 スラリータンク12は、高炉2次灰と水とでスラリーSを生成するために備えられ、スラリーSを撹拌するための撹拌羽根を内部に備える。 The slurry tank 12 is provided to generate the slurry S with the blast furnace secondary ash and water, and includes a stirring blade for stirring the slurry S inside.
 液中撹拌装置14は、スラリーS及び捕集剤Cに剪断力を付与して未燃カーボンの表面を改質するために設けられる。この液中撹拌装置14は、例えば、円筒状の本体と、本体を複数の部屋に分割する複数の仕切壁と、回転軸に放射状に固定された複数の撹拌羽根とを備え、モータ及び減速機を介して回転軸、撹拌羽根が回転する。 The submerged stirring device 14 is provided to modify the surface of the unburned carbon by applying a shearing force to the slurry S and the collecting agent C. The submerged stirring device 14 includes, for example, a cylindrical main body, a plurality of partition walls that divide the main body into a plurality of rooms, and a plurality of stirring blades that are radially fixed to the rotation shaft, and a motor and a speed reducer. The rotating shaft and the stirring blade rotate through the.
 調整槽17は、液中撹拌装置14からのスラリーS及び捕集剤Cに、起泡剤タンク19から供給された起泡剤Bを添加してこれらを混合するものであって、内部に撹拌羽根を備える。 The adjustment tank 17 adds the foaming agent B supplied from the foaming agent tank 19 to the slurry S and the collecting agent C from the submerged stirring device 14 and mixes them, and the stirring is performed inside. Provide feathers.
 浮選機21は、気泡に高炉2次灰の未燃カーボンを付着させて浮上させ、未燃カーボンと、未燃カーボンが除去された灰分とに分離するものであり、浮選機21の上方には、泡を発生させるための空気供給設備が設けられる。 The flotation machine 21 attaches unburned carbon of the blast furnace secondary ash to the air bubbles and floats it up, and separates it into unburned carbon and ash from which the unburned carbon has been removed. Is provided with an air supply facility for generating bubbles.
 固液分離器23は、浮選機21から排出された灰分を含むテーリングTを固液分離するために備えられ、テーリングTをケークC1とろ液L1とに分離する。 The solid-liquid separator 23 is provided for solid-liquid separation of the tailing T containing the ash discharged from the flotation machine 21, and separates the tailing T into the cake C1 and the filtrate L1.
 フィルタープレス28は、浮選機21からの未燃カーボンを含むフロスFを固液分離するために備えられ、分離されたケークC2に含まれる未燃カーボンUCを燃料として利用することができる。また、フィルタープレス28から排出されたろ液L2は、スラリータンク12等で再利用することができる。 The filter press 28 is provided for solid-liquid separation of the floss F containing unburned carbon from the flotation machine 21, and can use unburned carbon UC contained in the separated cake C2 as fuel. Further, the filtrate L2 discharged from the filter press 28 can be reused in the slurry tank 12 or the like.
 次に、上記未燃カーボン分離システム1を用いた未燃カーボンの分離方法について、図1を参照しながら説明する。 Next, an unburned carbon separation method using the unburned carbon separation system 1 will be described with reference to FIG.
 スラリータンク12に高炉2次灰タンク11より高炉2次灰を供給し、水と混合してスラリーSを生成する。 Blast furnace secondary ash is supplied from the blast furnace secondary ash tank 11 to the slurry tank 12 and mixed with water to generate slurry S.
 次に、スラリータンク12内の高炉2次灰を含むスラリーSを液中撹拌装置14に供給する。一方、液中撹拌装置14には、軽油タンク16から捕集剤Cとしての軽油を供給する。軽油の他にも、灯油、重油等の捕集剤を使用することができる。 Next, the slurry S containing the blast furnace secondary ash in the slurry tank 12 is supplied to the submerged stirring device 14. On the other hand, the light oil as the collecting agent C is supplied from the light oil tank 16 to the submerged stirring device 14. In addition to light oil, scavengers such as kerosene and heavy oil can be used.
 次に、液中撹拌装置14において、スラリーS及び捕集剤Cに剪断力を付与する。液中撹拌装置14に供給されたスラリーS及び捕集剤Cに、仕切壁で仕切られた各部屋において、回転する撹拌羽根によって剪断力を付与する。仕切壁によってスラリーSのショートパスを防止し、確実に剪断力を付与することができる。剪断力が付与されたスラリーS及び捕集剤Cは、調整槽7へと供給される。 Next, a shearing force is applied to the slurry S and the collecting agent C in the submerged stirring device 14. A shearing force is applied to the slurry S and the collecting agent C supplied to the submerged stirring device 14 by rotating stirring blades in each room partitioned by a partition wall. The partition wall prevents a short pass of the slurry S, and a shearing force can be reliably applied. The slurry S and the collecting agent C to which the shearing force is applied are supplied to the adjustment tank 7.
 上述のように、高炉2次灰スラリーS及び捕集剤Cに剪断力を付与するのは、未燃カーボンの表面を改質して浮選浮遊性を向上させるために行う。すなわち、高炉2次灰を含むスラリーSに捕集剤Cを単に混合しただけでは、水の中に、高炉2次灰と、未燃カーボンと、捕集剤Cとが各々別々に混合された状態となっているに過ぎない。このような状態でスラリーSを浮選機に供給しても、気泡に捕集剤Cとともに付着する未燃カーボンの量は少ない。従って、浮選によって高炉2次灰中の未燃カーボンを効率よく除去することができない。 As described above, the shearing force is applied to the blast furnace secondary ash slurry S and the collecting agent C in order to improve the flotation floatability by modifying the surface of unburned carbon. That is, the blast furnace secondary ash, unburned carbon, and the collection agent C were separately mixed in water by simply mixing the collection agent C with the slurry S containing the blast furnace secondary ash. It is only a state. Even if the slurry S is supplied to the flotation machine in such a state, the amount of unburned carbon adhering to the bubbles together with the scavenger C is small. Therefore, unburned carbon in the blast furnace secondary ash cannot be efficiently removed by flotation.
 一方、スラリーS及び捕集剤Cに剪断力を付与して表面改質を行うと、未燃カーボンが捕集剤Cに吸着される。そして、浮選機を用いて浮選を行う際には、捕集剤Cに吸着された未燃カーボンが気泡に付着して浮上する。このようにして、未燃カーボンの浮選浮遊性を向上させることができる。 On the other hand, when surface modification is performed by applying a shearing force to the slurry S and the collecting agent C, unburned carbon is adsorbed by the collecting agent C. And when performing flotation using a flotation machine, the unburned carbon adsorbed by the trapping agent C adheres to the bubbles and floats. In this way, the flotation floatability of unburned carbon can be improved.
 次に、浮選機21から排出された未燃カーボンを含むフロスFをフィルタープレス28によって固液分離し、未燃カーボンUCを回収する。フィルタープレス28で脱水された水分は、スラリータンク12に供給し、新たな高炉2次灰へ添加したり、浮選機21において、気泡に未燃カーボンを付着させる際の消泡に再使用することができる。 Next, the floss F containing unburned carbon discharged from the flotation machine 21 is solid-liquid separated by the filter press 28, and unburned carbon UC is recovered. The water dehydrated by the filter press 28 is supplied to the slurry tank 12 and added to new secondary blast furnace ash, or reused for defoaming when unburned carbon is attached to bubbles in the flotation machine 21. be able to.
 一方、浮選機21からの高炉2次灰を含むテーリングTをセメント原料等に利用することができる。 On the other hand, the tailing T containing the blast furnace secondary ash from the flotation machine 21 can be used as a cement raw material or the like.
 次に、高炉2次灰から未燃カーボンを分離した後の灰分から亜鉛を除去するシステム(以下、「亜鉛除去システム」という)の一例について図2を参照しながら説明する。 Next, an example of a system for removing zinc from ash after separating unburned carbon from secondary ash in the blast furnace (hereinafter referred to as “zinc removal system”) will be described with reference to FIG.
 この亜鉛除去システム31は、上記図1に示した浮選機21の後段に、浮選機21から排出されたテーリングにアルカリを添加した後固液分離する固液分離機32と、固液分離機32のろ液にCO2ガスを添加した後沈降物を分離する傾斜板沈降分離装置33とを備える。 This zinc removal system 31 includes a solid-liquid separator 32 that performs solid-liquid separation after adding alkali to the tailing discharged from the flotation machine 21 after the flotation machine 21 shown in FIG. And an inclined plate sedimentation separator 33 for separating the sediment after adding CO 2 gas to the filtrate of the machine 32.
 浮選機21から排出されたテーリングに含まれる亜鉛のみを溶解させるため、テーリングにNaOH等のアルカリを添加し、pHを9.5~11.0に調整する。図4に示すように、pHを9.5~11.0に調整することで亜鉛のみを溶解させることができる。pH調整後のテーリングを固液分離機32によって固液分離し、分離された鉄分を含む脱水ケーキを鉄鋼原料に利用する。 In order to dissolve only zinc contained in the tailing discharged from the flotation machine 21, an alkali such as NaOH is added to the tailing to adjust the pH to 9.5 to 11.0. As shown in FIG. 4, only zinc can be dissolved by adjusting the pH to 9.5 to 11.0. The tailing after pH adjustment is subjected to solid-liquid separation by the solid-liquid separator 32, and the dehydrated cake containing the separated iron is used as a steel raw material.
 一方、固液分離機32で分離されたろ液にCO2ガスを添加してろ液のpHを8~9に下げることで、ろ液中に亜鉛が沈殿し、この亜鉛を傾斜板沈降分離装置43を用いて回収する。傾斜板沈降分離装置33で回収した水は、循環水として再利用する。 On the other hand, by adding CO 2 gas to the filtrate separated by the solid-liquid separator 32 and lowering the pH of the filtrate to 8-9, zinc is precipitated in the filtrate. Use to recover. The water collected by the inclined plate sedimentation separator 33 is reused as circulating water.
 次に、亜鉛除去システムの他の例について図3を参照しながら説明する。 Next, another example of the zinc removal system will be described with reference to FIG.
 この亜鉛除去システム41は、上記図1に示した浮選機21の後段に、浮選機21から排出されたテーリングに酸を添加した後固液分離する固液分離機42と、固液分離機42のろ液にアルカリを添加した後沈降物を分離する傾斜板沈降分離装置33とを備える。 The zinc removal system 41 includes a solid-liquid separator 42 that performs solid-liquid separation after adding acid to the tailing discharged from the flotation machine 21 after the flotation machine 21 shown in FIG. And an inclined plate sedimentation separator 33 for separating the sediment after adding alkali to the filtrate of the machine 42.
 浮選機21から排出されたテーリングに含まれる亜鉛以外の金属も溶解させるため、テーリングに、硫酸、硝酸、酢酸等の酸を添加する。酸添加後のテーリングを固液分離機42によって固液分離し、分離された鉄分を含む脱水ケーキを鉄鋼原料に利用する。 To add metal other than zinc contained in the tailing discharged from the flotation machine 21, an acid such as sulfuric acid, nitric acid, acetic acid or the like is added to the tailing. The tailing after the acid addition is solid-liquid separated by the solid-liquid separator 42, and the dehydrated cake containing the separated iron is used as a steel raw material.
 一方、固液分離機42で分離されたろ液にアルカリを添加し、pHを8~9に調整することで、亜鉛を含む両性金属が沈殿する。この亜鉛を含む両性金属を傾斜板沈降分離装置43を用いて回収する。傾斜板沈降分離装置43で回収した水は、循環水として再利用する。 On the other hand, an amphoteric metal containing zinc is precipitated by adding alkali to the filtrate separated by the solid-liquid separator 42 and adjusting the pH to 8-9. The amphoteric metal containing zinc is recovered using the inclined plate sedimentation separator 43. The water recovered by the inclined plate sedimentation separator 43 is reused as circulating water.
 次に、上記亜鉛除去に関する試験例について説明する。
(1)使用した酸・アルカリ溶液
 酸溶液として硝酸・硫酸・酢酸、アルカリ溶液としてアンモニア水・水酸化ナトリウム溶液を使用した。水酸化ナトリウム溶液は、常温と70℃程度まで加熱したものを使用した。具体的には、表1に示す通りである。
Next, a test example relating to the zinc removal will be described.
(1) Used acid / alkali solution Nitric acid / sulfuric acid / acetic acid was used as the acid solution, and aqueous ammonia / sodium hydroxide solution was used as the alkaline solution. The sodium hydroxide solution used was heated to room temperature and about 70 ° C. Specifically, it is as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2)試験方法は、以下の通りである。
(a)高炉二次灰を100℃で乾燥する。
(b)各溶液と乾燥させた高炉二次灰を、三角フラスコ内でL/S=10(300mL/30g)で混合する。
(c)スターラーで適宜撹拌(100-200rpm)しながら、30分間溶出する(No.6以外は常温で行う)。
(d)5Cろ紙で吸引ろ過し、ろ紙上残を1Lの蒸留水で洗浄する。
(e)残渣をろ紙ごと100℃で乾燥する。
(f)乾燥残渣を950℃で2時間加熱し、強熱減量測定する。
(g)強熱減量残渣を粉砕し、蛍光エックス線オーダー分析する。
(3)試験結果を表2に示す。
(2) The test method is as follows.
(a) Dry the blast furnace secondary ash at 100 ° C.
(b) Each solution and the dried blast furnace secondary ash are mixed in an Erlenmeyer flask at L / S = 10 (300 mL / 30 g).
(c) Elute for 30 minutes while stirring with a stirrer (100-200 rpm) (perform at room temperature except for No. 6).
(d) Suction-filter with 5C filter paper, and wash the residue on the filter paper with 1 L of distilled water.
(e) The residue is dried together with the filter paper at 100 ° C.
(f) The dried residue is heated at 950 ° C. for 2 hours and measured for loss on ignition.
(g) The ignition loss residue is pulverized and subjected to fluorescent X-ray order analysis.
(3) Table 2 shows the test results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上より、酸・アルカリ溶液による高炉二次灰中の亜鉛の溶出は以下の順番となり、最も亜鉛が溶解した10%硫酸の溶出率は54%であった。 From the above, the elution of zinc in the blast furnace secondary ash by the acid / alkali solution was in the following order, and the elution rate of 10% sulfuric acid in which zinc was dissolved was 54%.
  10%硫酸>10%硝酸>20%NaOH(高温)>10%酢酸>20%NaOH(常温)>NH310% sulfuric acid> 10% nitric acid> 20% NaOH (high temperature)> 10% acetic acid> 20% NaOH (room temperature)> NH 3 water
1 未燃カーボン分離システム
11 高炉2次灰タンク
12 スラリータンク
14 液中撹拌装置
16 軽油タンク
17 調整槽
19 起泡剤タンク
21 浮選機
23 固液分離器
28 フィルタープレス
31 亜鉛除去システム
32 固液分離機
33 傾斜板沈降分離装置
41  亜鉛除去システム
42 固液分離機
43 傾斜板沈降分離装置
DESCRIPTION OF SYMBOLS 1 Unburned carbon separation system 11 Blast furnace secondary ash tank 12 Slurry tank 14 Submerged stirring device 16 Light oil tank 17 Adjustment tank 19 Foaming agent tank 21 Flotation machine 23 Solid-liquid separator 28 Filter press 31 Zinc removal system 32 Solid liquid Separator 33 Inclined plate sedimentation device 41 Zinc removal system 42 Solid-liquid separator 43 Inclined plate sedimentation device

Claims (5)

  1.  高炉2次灰を未燃カーボンと灰分とに分離し、分離した未燃カーボンを燃料として使用し、未燃カーボンを除去した後の灰分をセメント原料として使用することを特徴とする高炉2次灰の利用方法。 Blast furnace secondary ash is characterized by separating the blast furnace secondary ash into unburned carbon and ash, using the separated unburned carbon as fuel, and using the ash after removing the unburned carbon as cement raw material How to use
  2.  前記灰分から亜鉛を除去し、鉄鋼原料として使用することを特徴とする請求項1に記載の高炉2次灰の利用方法。 Zinc is removed from the ash and used as a steel raw material. The method for using secondary ash in the blast furnace according to claim 1.
  3.  前記高炉2次灰の未燃カーボン及び灰分への分離を、高炉2次灰に水を加えてスラリーとし、該スラリーを表面改質し、該表面改質後のスラリーを浮遊選鉱により親油性成分と親水性成分とに分離することによって行うことを特徴とする請求項1に記載の高炉2次灰の利用方法。 Separation of the blast furnace secondary ash into unburned carbon and ash is made by adding water to the blast furnace secondary ash to form a slurry, and the slurry is surface-modified. The method for using secondary ash in the blast furnace according to claim 1, wherein the ash is separated into a hydrophilic component and a hydrophilic component.
  4.  前記灰分を含むスラリーにアルカリを添加し、pHを9.5以上11.0以下に調整した後、固液分離し、分離された鉄分を含む脱水ケーキを鉄鋼原料に利用し、固液分離によって分離されたろ液のpHを8以上9以下に調整して該ろ液から亜鉛を分離することを特徴とする請求項2に記載の高炉2次灰の利用方法。 After adding alkali to the ash-containing slurry and adjusting the pH to 9.5 or more and 11.0 or less, solid-liquid separation is performed, and the dehydrated cake containing the separated iron content is used as a steel raw material. The method for using secondary ash in a blast furnace according to claim 2, wherein the pH of the separated filtrate is adjusted to 8 or more and 9 or less to separate zinc from the filtrate.
  5.  前記灰分を含むスラリーに酸を添加した後固液分離し、分離された鉄分を含む脱水ケーキを鉄鋼原料に利用し、固液分離によって分離されたろ液のpHを8以上9以下に調整して該ろ液から亜鉛を分離することを特徴とする請求項2に記載の高炉2次灰の利用方法。 After the acid is added to the slurry containing ash, solid-liquid separation is performed, and the dehydrated cake containing the separated iron is used as a steel raw material, and the pH of the filtrate separated by solid-liquid separation is adjusted to 8 or more and 9 or less. The method for using secondary ash in a blast furnace according to claim 2, wherein zinc is separated from the filtrate.
PCT/JP2013/082430 2013-01-16 2013-12-03 Use method for byproduct ash from blast furnace WO2014112222A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014557350A JPWO2014112222A1 (en) 2013-01-16 2013-12-03 How to use secondary ash in blast furnace
CN201380064397.4A CN104870110A (en) 2013-01-16 2013-12-03 Use method for byproduct ash from blast furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-005054 2013-01-16
JP2013005054 2013-01-16

Publications (1)

Publication Number Publication Date
WO2014112222A1 true WO2014112222A1 (en) 2014-07-24

Family

ID=51209332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082430 WO2014112222A1 (en) 2013-01-16 2013-12-03 Use method for byproduct ash from blast furnace

Country Status (4)

Country Link
JP (1) JPWO2014112222A1 (en)
CN (1) CN104870110A (en)
TW (1) TW201429918A (en)
WO (1) WO2014112222A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061734A (en) * 2021-03-29 2021-07-02 攀钢集团攀枝花钢铁研究院有限公司 Method for recovering zinc, indium and lead in blast furnace cloth bag ash

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143504A (en) * 1975-06-06 1976-12-09 Nippon Steel Corp A process for treatment of powder containing metals
JPS5779127A (en) * 1980-10-31 1982-05-18 Sumitomo Metal Ind Ltd Treatment of dust after iron manufacture
JP2007007485A (en) * 2003-10-09 2007-01-18 Taiheiyo Cement Corp Method of removing unburned carbon from fly ash
JP2012062208A (en) * 2010-09-15 2012-03-29 Taiheiyo Cement Corp Method for treating exhaust gas from cement manufacturing equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1966743B (en) * 2005-11-18 2010-06-09 中国环境科学研究院 Method for reclaiming heavy metal in fly ash or secondary fly ash
CN101725993B (en) * 2008-10-29 2012-12-26 映诚股份有限公司 Method for treating incinerated fly ash with harmful heavy metals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143504A (en) * 1975-06-06 1976-12-09 Nippon Steel Corp A process for treatment of powder containing metals
JPS5779127A (en) * 1980-10-31 1982-05-18 Sumitomo Metal Ind Ltd Treatment of dust after iron manufacture
JP2007007485A (en) * 2003-10-09 2007-01-18 Taiheiyo Cement Corp Method of removing unburned carbon from fly ash
JP2012062208A (en) * 2010-09-15 2012-03-29 Taiheiyo Cement Corp Method for treating exhaust gas from cement manufacturing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061734A (en) * 2021-03-29 2021-07-02 攀钢集团攀枝花钢铁研究院有限公司 Method for recovering zinc, indium and lead in blast furnace cloth bag ash

Also Published As

Publication number Publication date
CN104870110A (en) 2015-08-26
JPWO2014112222A1 (en) 2017-01-19
TW201429918A (en) 2014-08-01

Similar Documents

Publication Publication Date Title
JP3613347B1 (en) How to remove unburned carbon in fly ash
KR101441877B1 (en) System for producing cement and production method
JP4960600B2 (en) Waste gypsum treatment method
JP2013193078A (en) Method and device of treating fly ash
CN101623898A (en) Chemical recovery method for mortar in wire cutting technology
WO2010004941A1 (en) Method and apparatus for removing unburned carbon in fly ash
JP2006299394A (en) Method for treating fine powder containing calcium component and lead component
WO2014112222A1 (en) Use method for byproduct ash from blast furnace
JP2010104949A (en) Method for removing chromium from waste and chromium removal device
JP2022503824A (en) Deashing method for solid carbonaceous materials
CN102161514B (en) Method for extracting metal hydroxide from gangue
CN115215365A (en) Method for generating and separating gypsum from titanium extraction tailings
CN101583578A (en) Method of processing coal ash and processing system
JP6973128B2 (en) Method for manufacturing fly ash for concrete and method for manufacturing cement composition
JPH0824831A (en) Recovery of metal from fly ash
JP2013023719A (en) Method of reusing wet dust present in material generated in blast furnace
JP6065594B2 (en) Combustion ash treatment method and cement production method
JP2009172552A (en) Method of and apparatus for treating waste containing water-soluble chlorine
JP7146628B2 (en) How to treat combustion fly ash
JP6195238B2 (en) How to recycle gypsum in gypsum board waste as dihydrate gypsum
JP2017042709A (en) Treatment method for fluidized bed boiler ash
JP7372829B2 (en) Method for producing modified fly ash
KR101504513B1 (en) Valuable Mineral Collection Method From Fly Ash By Soot Preprocessing
JP6083797B2 (en) Method for removing lead in lead-containing gypsum
JP2802906B2 (en) Wet treatment of heavy oil ash

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872205

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014557350

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872205

Country of ref document: EP

Kind code of ref document: A1