WO2014112179A1 - Signal transmission insulation device and power semiconductor module - Google Patents

Signal transmission insulation device and power semiconductor module Download PDF

Info

Publication number
WO2014112179A1
WO2014112179A1 PCT/JP2013/079537 JP2013079537W WO2014112179A1 WO 2014112179 A1 WO2014112179 A1 WO 2014112179A1 JP 2013079537 W JP2013079537 W JP 2013079537W WO 2014112179 A1 WO2014112179 A1 WO 2014112179A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
insulating film
signal transmission
dielectric
power semiconductor
Prior art date
Application number
PCT/JP2013/079537
Other languages
French (fr)
Japanese (ja)
Inventor
健一 菅
崇夫 釣本
塩田 裕基
健一 諸熊
西川 和康
昭一 折田
為谷 典孝
西田 信也
玲 米山
貴公 井上
紫織 魚田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014557327A priority Critical patent/JP5855285B2/en
Publication of WO2014112179A1 publication Critical patent/WO2014112179A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/08Transformers having magnetic bias, e.g. for handling pulses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5227Inductive arrangements or effects of, or between, wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/08Transformers having magnetic bias, e.g. for handling pulses
    • H01F2019/085Transformer for galvanic isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a signal transmission insulating device and a power semiconductor module including the same.
  • a first coil is formed by forming a lower coil at the bottom of a recess provided in a semiconductor substrate, filling the recess with liquid polyimide resin, and curing it.
  • a device is known in which an upper coil is formed thereon and the thickness of the first insulating film is adjusted to ensure a dielectric strength voltage between the lower coil and the upper coil (for example, Patent Documents). 1).
  • a signal transmission insulating device having such a thin film transformer structure when a voltage is applied to the upper coil and the lower coil, electric field concentration occurs at the corners of the upper coil and the lower coil.
  • a signal transmission insulating device having a transformer structure has a plurality of corners, and when the applied voltage increases, dielectric breakdown occurs from either corner of the upper coil or the lower coil.
  • a second insulating film having a higher dielectric constant than the first insulating film is provided on the surface of the lower coil facing the upper coil, and the second insulating film is provided on the second insulating film.
  • a second insulating film having a higher dielectric constant than the first insulating film is formed on the lower coil on the lower coil side between the lower coil and the upper coil. Since they are formed in contact with each other, the electric field in the second insulating film is reduced, and the electric field concentration at the corners of the lower coil in contact with the second insulating film can be reduced.
  • the thickness of the insulating film must be increased more than necessary in consideration of electric field concentration at the corners of the upper coil.
  • the thickness of the insulating film is increased, the distance between the upper coil and the lower coil becomes longer, resulting in a problem that transmission characteristics such as signal transmission speed and transmission strength deteriorate.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a signal transmission insulating device capable of suppressing a decrease in signal transmission characteristics and improving a withstand voltage.
  • a signal transmission insulating device is provided between a first coil, a second coil facing the first coil and constituting a transformer together with the first coil, and the first coil and the second coil facing each other.
  • a first insulating film made of one dielectric, a first main surface facing the second coil of the first coil, and a second main surface facing the first coil of the first insulating film;
  • a second insulating film made of a second dielectric material having a dielectric constant higher than that of the first dielectric film, and a surface of the second coil facing the first coil and a surface of the first insulating film facing the second coil.
  • a third insulating film made of a third dielectric having a dielectric constant higher than that of the first dielectric.
  • the second insulating film, the first insulating film, and the third insulating film are sequentially formed between the first coil that is the lower coil and the second coil that is the upper coil.
  • the dielectric constants of the second insulating film and the third insulating film are higher than the dielectric constant of the first insulating film, the electric field in the second insulating film and the third insulating film is reduced. Therefore, the electric field concentration at the corners of the lower coil in contact with the second insulating film and the corners of the upper coil in contact with the third insulating film can be reduced. Accordingly, since the withstand voltage can be improved without increasing the thickness of the first insulating film, it is possible to improve the withstand voltage and to suppress a decrease in signal transmission characteristics.
  • FIG. 1 is a plan view showing the configuration of the signal transmission insulating device 1a according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the signal transmission insulating device 1a according to the first exemplary embodiment of the present invention.
  • FIG. 2 corresponds to a cross-sectional view taken along the line AA in FIG.
  • the signal transmission insulating device 1 a includes a coil-shaped first coil 4 and a second coil 5 in which wiring is wound around a plurality of turns, and the first coil 4 and the second coil 5 face each other. Configure the transformer. In FIG. 1, the portion of the first coil 4 that overlaps the second coil 5 is not shown.
  • the signal transmission insulating device 1a has a structure in which a so-called thin film transformer structure 9 is formed on a semiconductor substrate 2 made of Si or the like.
  • the thin film transformer structure 9 includes a lower insulating film 15, a first coil 4, a second insulating film 6 a, a first insulating film 3, a third insulating film 7, a second coil 5, and an upper insulating film 16.
  • a lower insulating film 15 is formed on the semiconductor substrate 2, and the first coil 4, which is a lower coil, is buried in the lower insulating film 15. However, the first main surface which is the upper surface of the first coil 4 is not buried in the lower insulating film 15.
  • a second insulating film 6 a is formed on the first coil 4 so as to cover the first main surface of the first coil 4. Further, a third insulating film 7 is formed on the second insulating film 6 a via the first insulating film 3, and the second coil 5 and the upper insulating film 16 are formed on the third insulating film 7. ing.
  • the first insulating film 3, the lower insulating film 15, and the upper insulating film 16 are insulating films made of SiO 2 (silicon oxide) film
  • the second insulating film 6a and the third insulating film 7 are made of SiO 2 .
  • the first coil 4 and the second coil 5 are formed so as to face each other, and the second insulating film 6a is formed so as to cover the first main surface of the first coil 4 facing the second coil 5.
  • the second insulating surface of the second coil 5 facing the first coil 4 is also formed so as to cover the third insulating film.
  • the second insulating film 6 a is in contact with all the coil portions on different circumferences of the first coil 4, and the third insulating film 7 is also in contact with all the coil portions on different circumferences of the second coil 5.
  • SiO 2 is used for the first insulating film 3, the lower insulating film 15, and the upper insulating film 16.
  • the present invention is not limited to this, and the first insulating film 3,
  • Other materials such as polyimide may be used for the lower insulating film 15 and the upper insulating film 16, and the same material or different materials may be used.
  • SiN is used for the second insulating film 6 a and the third insulating film 7, but the second insulating film 6 a and the third insulating film 7 have a dielectric constant higher than that of the dielectric used for the first insulating film 3.
  • Other high insulating materials may be used, and the second insulating film 6a and the third insulating film 7 may be made of the same material or different materials.
  • FIG. 3 is a sectional view showing a manufacturing flow of the signal transmission insulating device 1a according to the first embodiment of the present invention.
  • an insulating film 17 to be a lower insulating film 15 made of SiO 2 is formed on a semiconductor substrate 2 made of Si or the like by a CVD (Chemical Vapor Deposition) method. Then, a metal film 8a such as aluminum is formed on the insulating film 17 which becomes a part of the lower insulating film 15 by sputtering deposition.
  • CVD Chemical Vapor Deposition
  • the first coil 4 is formed by etching the metal film 8a. Then, an insulating film 17 made of SiO 2 is formed between the adjacent coil portions of the first coil 4 and on the surface of the first coil 4 facing the second coil 5 using the CVD method. To be buried. After that, the insulating film 17 protruding from the surface of the first coil 4 facing the second coil 5 to the second coil 5 side is polished by CMP (Chemical Mechanical Polish) method, and next to the first coil 4. The upper surface of the insulating film 17 formed between the perimeters is flush with the upper surface of the first coil 4. Thus, the lower insulating film 15 shown in FIG. 2 is formed. Thereby, a flat film can be formed on the lower insulating film 15 and the first coil 4.
  • CMP Chemical Mechanical Polish
  • a second insulating film 6a made of SiN is formed by a CVD method. Then, the first insulating film 3 made of SiO 2 is formed on the second insulating film 6a. Further, a third insulating film 7 is formed on the first insulating film 3. Thereafter, a metal film 8b is formed on the third insulating film 7 by sputtering deposition.
  • the second coil 5 is formed by etching the metal film 8b. Then, the upper insulating film 16 is formed between adjacent coil portions of the second coil 5 and on the upper surface of the second coil 5. Through the above steps, the signal transmission insulating device 1a shown in FIG. 2 can be obtained.
  • the signal transmission insulating device 1a having the thin film transformer structure 9 when a potential difference is generated between the first coil 4 and the second coil 5 due to the above configuration.
  • electric field concentration occurs at a plurality of corners of the first coil 4 and the second coil 5, but the first insulating film 3 having a different dielectric constant between the first coil 4 and the second coil 5, Since the second insulating film 6a and the third insulating film 7 are formed, the electric field inside the second insulating film 6a and the third insulating film 7 having a dielectric constant higher than that of the first insulating film 3 is relaxed.
  • the electric field concentration at the corner portion is reduced. Alleviated.
  • the distance between the first coil 4 and the second coil 5 can be reduced without increasing the thickness of the insulating film.
  • the withstand voltage can be improved without increasing the length. Therefore, it is possible to improve the withstand voltage and to suppress a decrease in transmission characteristics such as signal transmission speed and transmission intensity.
  • the second insulating film 6a and the third insulating film 7 are provided symmetrically on the entire lower surface side and upper surface side of the first insulating film 3, such as warpage of the first insulating film 3 and the like. Deformation can be effectively suppressed.
  • each insulating film so that the stresses generated by 6a and the third insulating film cancel each other. Thereby, since the stress which generate
  • the stress generated in each insulating film is determined by complex conditions such as the temperature at which the insulating film is formed, the gas flow rate, and the film thickness of the insulating film. What is necessary is just to adjust and manufacture these conditions.
  • the first insulating film 3 may be formed so that tensile stress is generated, and the second insulating film 6a and the third insulating film 7 may be compressed.
  • the metal film 8a and the metal film 8b are formed by sputtering deposition, respectively.
  • the present invention is not limited to this, and is formed by using thermal deposition, electron beam deposition, or the like. It is good as well.
  • the semiconductor substrate 2 is not limited to Si, but may be another semiconductor substrate such as SiC, and the metal film 8a and the metal film 8b are not limited to aluminum, and other materials such as Cu are used. be able to.
  • the signal transmission insulating device 1a according to the first embodiment of the present invention can be used for a power semiconductor module such as IPM (Intelligent Power Module).
  • IPM Intelligent Power Module
  • FIG. 4 is a block diagram showing a motor driving apparatus 100 using the power semiconductor module 50 including the signal transmission insulating device 1a according to Embodiment 1 of the present invention.
  • the motor driving device 100 includes a power semiconductor module 50 and a motor 30, and can drive the motor 30 by appropriately converting power output from a driving power source (not shown) by the power semiconductor module 50. .
  • the power semiconductor module 50 includes a control unit 10 (also referred to as “control circuit”), a signal transmission insulating device 1a, a drive circuit 11, a power semiconductor device 21, and a sensor 22.
  • the drive circuit 11 operates in accordance with a control signal 12 input from the control unit 10 via the signal transmission insulating device 1 a and outputs a drive signal 13 to the power semiconductor device 21.
  • the power semiconductor device 21 is a semiconductor device such as an IGBT or a MOSFET, and performs a switching operation based on the drive signal 13.
  • the sensor 22 measures the chip temperature of the power semiconductor device 21 and the flowing current, and outputs the sensor signal 14 to the drive circuit 11 and the control unit 10.
  • the control unit 10 outputs a control signal 12 to the drive circuit 11 based on the sensor signal 14 or the like input from the sensor 22 via the signal transmission insulating device 1a, and controls the power semiconductor device 21. And the control part 10 controls operation
  • the drive circuit 11 moves to the power semiconductor device 21.
  • the output of the drive signal 13 is stopped, and the power semiconductor device 21 is protected.
  • the power semiconductor device 21 can be protected by the drive circuit 11 and the sensor 22 provided in the power semiconductor module 50. Therefore, the power semiconductor module 50 has a protection function. Functionalized.
  • the control unit 10 since a signal with a relatively low voltage flows in the motor drive device 100 on the control unit 10 side, the control unit 10 has a low potential in the motor drive device 100.
  • a relatively high voltage signal flows in the motor drive device 100, and thus the main circuit of the inverter circuit such as the drive circuit 11 and the power semiconductor device 21. Is at a high potential in the motor driving apparatus 100.
  • a potential difference of several hundreds to thousands of volts is generated between the control unit 10 and the main circuit of the inverter circuit such as the drive circuit 11 or the power semiconductor device 21, and the drive circuit 11 or the power semiconductor is generated by this potential difference.
  • the elements of the control unit 10 may be destroyed.
  • control unit 10 and the drive circuit 11 are transmitted by transmitting signals between the control unit 10 and the drive circuit 11 or an inverter circuit such as the power semiconductor device 21 via the signal transmission insulating device 1a.
  • an inverter circuit such as the power semiconductor device 21
  • the signal transmission insulating device 1a can improve the withstand voltage and suppress the deterioration of signal transmission characteristics, when the predetermined withstand voltage is set, the signal transmission insulating device 1a
  • the transmission characteristics such as signal transmission speed and transmission intensity are higher than those of the signal transmission insulation device. Therefore, by applying the signal transmission insulating device 1a according to the first embodiment to the power semiconductor module 50, the insulation between the control unit 10 and the main circuit of the inverter circuit such as the drive circuit 11 or the power semiconductor device 21 is provided.
  • the transmission characteristics of the control signal 12 and the sensor signal 14 can be improved.
  • the power semiconductor device 21 can be operated at higher speed.
  • the power semiconductor module 50 becomes a power semiconductor module capable of high-speed response without impairing safety against dielectric breakdown. That is, the power semiconductor module has high quality and high safety.
  • the power semiconductor module 50 having the protection function is provided by providing the sensor 22 in the power semiconductor module 50.
  • the present invention is not limited to this.
  • a power semiconductor module which does not have may be used. Even in such a case, the power semiconductor module can be provided with the signal transmission insulating device 1a to insulate the drive circuit from the control unit and improve the transmission characteristics of the control signal 12 and the like, and can operate at high speed. It becomes.
  • FIG. The configuration of the present invention is not limited to the configuration of the signal transmission insulating device 1a according to the first embodiment, and may be other configurations. Therefore, a configuration different from the signal transmission insulating device 1a according to the first embodiment will be described. In the following, the second insulating film 6a that is different from the first embodiment of the present invention will be described, and description of other parts that are the same or corresponding will be omitted.
  • FIG. 5 is a sectional view showing a configuration of the signal transmission insulating device 1b according to the second exemplary embodiment of the present invention.
  • the same reference numerals as those in FIG. 2 denote the same or corresponding components, and the description thereof is omitted.
  • the signal transmission insulating device 1b according to the second embodiment is different from the signal transmission insulating device 1a according to the first embodiment in the configuration of the second insulating film 6a and the second insulating film 6b.
  • the second insulating film 6b is in contact with the first main surface facing the second coil 5 of the first coil 4 and is formed on the coil portions of different circumferences of the first coil 4 so as to be in contact with the side surface perpendicular to the first main surface. It is also provided in between.
  • FIG. 6 is a cross-sectional view showing a manufacturing flow of the signal transmission insulating device 1b according to the first exemplary embodiment of the present invention.
  • a lower insulating film 15 is formed on the semiconductor substrate 2 made of Si or the like by a CVD method. Then, a metal film 8a such as aluminum is formed on the lower insulating film 15 by sputtering deposition.
  • the first coil 4 is formed by etching the metal film 8a. Then, a second insulating film 6b is formed by a CVD method on each of the adjacent peripheral coil portions of the first coil 4 and on the surface of the first coil 4 facing the second coil 5.
  • the first insulating film 3 is formed on the second insulating film 6b by the CVD method. Then, the first insulating film 3 is polished to be flush with the CMP method. Further, a third insulating film 7 is formed on the first insulating film 3. Thereafter, a metal film 8b is formed on the third insulating film 7 by sputtering deposition.
  • the second coil 5 is formed by etching the metal film 8b. Then, the upper insulating film 16 is formed between adjacent coil portions of the second coil 5 and on the upper surface of the second coil 5.
  • the signal transmission insulation device 1b shown in FIG. 5 can be obtained by performing the above-described ten steps.
  • the configuration as described above is different between the first coil 4 and the second coil 5 when a potential difference is generated between the first coil 4 and the second coil 5. Since the first dielectric film 3, the second dielectric film 6b, and the third dielectric film 7 having a dielectric constant are formed, the electric field concentration at the corners of the first coil 4 and the second coil 5 is alleviated. As a result, the withstand voltage can be improved without increasing the thickness of the insulating film, that is, without increasing the distance between the first coil 4 and the second coil 5. It is possible to suppress a decrease in transmission characteristics such as transmission speed and transmission intensity.
  • the manufacture of the portion including the lower insulating film 15, the first coil 4, and the second insulating film 6b is simplified.
  • the number of processes can be reduced, and the production cost can be reduced.
  • the signal transmission insulating device 1b according to the second embodiment to a power semiconductor module, a high-quality and highly safe power semiconductor module can be provided.
  • FIG. 7 is sectional drawing which shows the structure of the signal transmission insulation device 1c concerning Embodiment 3 of this invention. 7, the same reference numerals as those in FIG. 2 denote the same or corresponding configurations.
  • the present embodiment differs from the first embodiment in the configuration of the second insulating film 6a and the third insulating film 7. Therefore, only the difference will be described below, and other configurations will be described. Will not be described.
  • the second insulating film 6 a and the third insulating film 7 are made of a dielectric having a resistivity lower than that of the dielectric used for the first insulating film 3.
  • the resistivity of a general SiO 2 film is 1 ⁇ 10 13 ⁇ m, and thus a SiN film is used as the second insulating film 6 a and the third insulating film 7.
  • a SiN film is used as the second insulating film 6 a and the third insulating film 7.
  • the combination of the first insulating film 3, the second insulating film 6a, and the third insulating film 7 is not limited to the SiO 2 film and the SiN film, but is used for the second insulating film 6a and the third insulating film 7.
  • the dielectric can be appropriately selected from dielectrics such as SiO 2 , SiN, and polyimide so that the dielectric has a combination having a lower resistivity than the dielectric used for the first insulating film 3.
  • the method for manufacturing the signal transmission insulating device 1c according to the third embodiment of the present invention is the same as the method for manufacturing the signal transmission insulating device 1a according to the first embodiment.
  • the configuration as described above is different between the first coil 4 and the second coil 5 when a potential difference occurs between the first coil 4 and the second coil 5. Since the first insulating film 3, the second insulating film 6 b, and the third insulating film 7 having the resistivity are formed, the electric field concentration at the corners of the first coil 4 and the second coil 5 is alleviated. As a result, the withstand voltage can be improved without increasing the thickness of the insulating film, that is, without increasing the distance between the first coil 4 and the second coil 5. It is possible to suppress a decrease in transmission characteristics such as transmission speed and transmission intensity.
  • the second insulating film 6a and the third insulating film 7 have a resistivity equal to or higher than a resistivity that does not cause an electrical short circuit between adjacent coils of the first coil 4 or between adjacent coils of the second coil 5.
  • FIG. 8 shows operation waveforms of the signal transmission insulating device 1c according to the third embodiment.
  • 8A shows an input rectangular wave electric signal
  • FIG. 8B shows an output pulse electric signal.
  • the vertical axis represents the voltage of each signal
  • the horizontal axis represents time.
  • a rectangular wave electric signal V in respect one of the first coil 4 and second coil 5 is input, the rising of the input square wave electrical signal V in Corresponding to the falling, a pulse electric signal Vout having a frequency F is output to the other coil.
  • T / 2 shown in FIG.
  • the time constant ⁇ between adjacent coils needs to satisfy the formula (1).
  • the time constant ⁇ is obtained by the equation (2) using the resistivity ⁇ , the relative dielectric constant ⁇ r , and the vacuum dielectric constant ⁇ 0 .
  • the second insulating film 6a and the third insulating film 7 are SiN films, if ⁇ r of the SiN film is 7 and ⁇ 0 is 8.85 ⁇ 10 ⁇ 12 F / m, the equations (1) and (2)
  • the resistivity of the second insulating film 6a and the third insulating film 7 must be greater than 16 ⁇ m. Therefore, a SiN film having a resistivity larger than 16 ⁇ m may be selected.
  • the signal transmission insulating device 1c according to the second embodiment to a power semiconductor module, a high-quality and highly safe power semiconductor module can be provided.
  • FIG. 9 is sectional drawing which shows the structure of the signal transmission insulation device 1d concerning Embodiment 4 of this invention.
  • the same reference numerals as those in FIG. 5 denote the same or corresponding configurations.
  • the present embodiment differs from the second embodiment in the configuration of the second insulating film 6b and the third insulating film 7, so that only the difference will be described below and other configurations will be described. Will not be described.
  • the second insulating film 6 b and the third insulating film 7 are made of a dielectric having a resistivity lower than that of the dielectric used for the first insulating film 3.
  • the resistivity of a general SiO 2 film is 1 ⁇ 10 13 ⁇ m, and thus a SiN film as the second insulating film 6 b and the third insulating film 7. Can be used.
  • the combination of the first insulating film 3, the second insulating film 6b, and the third insulating film 7 is not limited to the SiO 2 film and the SiN film, but is used for the second insulating film 6b and the third insulating film 7.
  • the dielectric can be appropriately selected from dielectrics such as SiO 2 , SiN, and polyimide so that the dielectric has a combination having a lower resistivity than the dielectric used for the first insulating film 3.
  • the frequency F of the output pulse electric signal Vout is 1 GHz
  • the SiO 2 film is used as the first insulating film 3
  • the second insulating film 6b and the third insulating film 7 are used.
  • the resistivity should be larger than 16 ⁇ m.
  • the manufacturing method of the signal transmission insulating device 1d according to the fourth embodiment of the present invention is the same as the manufacturing method of the signal transmission insulating device 1b according to the second embodiment.
  • the configuration as described above is different between the first coil 4 and the second coil 5 when a potential difference is generated between the first coil 4 and the second coil 5. Since the first insulating film 3, the second insulating film 6 b, and the third insulating film 7 having the resistivity are formed, the electric field concentration at the corners of the first coil 4 and the second coil 5 is alleviated. As a result, the withstand voltage can be improved without increasing the thickness of the insulating film, that is, without increasing the distance between the first coil 4 and the second coil 5. It is possible to suppress a decrease in transmission characteristics such as transmission speed and transmission intensity.
  • the manufacturing of the portion including the lower insulating film 15, the first coil 4, and the second insulating film 6b is simplified.
  • the number of processes during manufacturing can be reduced, and the production cost can be reduced.
  • the embodiments can be freely combined within the scope of the invention, and the embodiments can be appropriately modified or omitted.
  • 1a 1b 1c 1d signal transmission insulation device 2 semiconductor substrate, 3 first insulating film, 4 first coil, 5 second coil, 6a 6b second insulating film, 7 third insulating film, 8a 8b metal film, 9 Thin-film transformer structure, 10 control unit, 11 drive circuit, 12 control signal, 13 drive signal, 14 sensor signal, 15 lower insulating film, 16 upper insulating film, 17 insulating film, 21 power semiconductor devices, 22 sensors, 30 motors, 50 power semiconductor module, 100 motor drive device.

Abstract

The present invention pertains to a signal transmission insulation device provided with the following: a first coil; a second coil that faces the first coil and constitutes a transformer along with the first coil; a first insulating film that is provided in a space where the first coil and second coil are opposed, and that comprises a first dielectric; a second insulating film that is provided between a first primary surface of the first coil opposing the second coil and a surface of the first insulating film opposing the first coil, and that comprises a second dielectric having a higher dielectric constant than the first dielectric; and a third insulating film that is provided between a surface of the second coil opposing the first coil and a surface of the first insulating film opposing the second coil, and that comprises a third dielectric having a higher dielectric constant than the first dielectric.

Description

信号伝送絶縁デバイス及びパワー半導体モジュールSignal transmission isolation device and power semiconductor module
 本発明は、信号伝送絶縁デバイス及びこれを備えたパワー半導体モジュールに関するものである。 The present invention relates to a signal transmission insulating device and a power semiconductor module including the same.
 従来の薄膜トランス構造を有する信号伝送絶縁デバイスにおいては、半導体基板に設けた凹部の底部に下側コイルを形成し、液状のポリイミド樹脂で凹部を充填し硬化させることで第1絶縁膜を形成して、その上に上側コイルを形成し、第1絶縁膜の厚さを調整することで、下側コイルと上側コイルとの間の絶縁耐圧を確保するものが知られている(例えば、特許文献1参照)。 In a signal transmission insulating device having a conventional thin film transformer structure, a first coil is formed by forming a lower coil at the bottom of a recess provided in a semiconductor substrate, filling the recess with liquid polyimide resin, and curing it. In addition, a device is known in which an upper coil is formed thereon and the thickness of the first insulating film is adjusted to ensure a dielectric strength voltage between the lower coil and the upper coil (for example, Patent Documents). 1).
 このような薄膜トランス構造を有する信号伝送絶縁デバイスでは、上側コイル及び下側コイルに電圧が印加された場合、上側コイル及び下側コイルそれぞれの角部において電界集中が発生する。そして、トランス構造を有する信号伝送絶縁デバイスでは複数の角部があり、印加される電圧が大きくなると上側コイル又は下側コイルのいずれかの角部から絶縁破壊が生じる。一方、特許文献2に記載された信号伝送絶縁デバイスのように、下側コイルの上側コイルに対向する面上に第1絶縁膜よりも誘電率の高い第2絶縁膜を設け、その上に第1絶縁膜及び上側コイルを順次形成した信号伝送絶縁デバイスでは、下側コイルと上側コイルとの間の下側コイル側に第1絶縁膜よりも誘電率の高い第2絶縁膜が下側コイルに接して形成されているため、第2絶縁膜内での電界が小さくなり、第2絶縁膜に接する下側コイルの角部での電界集中を緩和することができる。 In the signal transmission insulating device having such a thin film transformer structure, when a voltage is applied to the upper coil and the lower coil, electric field concentration occurs at the corners of the upper coil and the lower coil. A signal transmission insulating device having a transformer structure has a plurality of corners, and when the applied voltage increases, dielectric breakdown occurs from either corner of the upper coil or the lower coil. On the other hand, like the signal transmission insulating device described in Patent Document 2, a second insulating film having a higher dielectric constant than the first insulating film is provided on the surface of the lower coil facing the upper coil, and the second insulating film is provided on the second insulating film. In a signal transmission insulating device in which an insulating film and an upper coil are sequentially formed, a second insulating film having a higher dielectric constant than the first insulating film is formed on the lower coil on the lower coil side between the lower coil and the upper coil. Since they are formed in contact with each other, the electric field in the second insulating film is reduced, and the electric field concentration at the corners of the lower coil in contact with the second insulating film can be reduced.
特開2007-165343号公報JP 2007-165343 A 特開2010-80774号公報JP 2010-80774 A
 しかしながら、上述の第2絶縁膜を有する信号伝送絶縁デバイスであっても、薄膜トランス構造の上下コイルに電圧が印加された場合、下側コイルの角部における電界集中は緩和されるものの、上側コイルの角部においては依然として電界集中が発生する。ところで、絶縁破壊は電界が集中する最も絶縁が弱い箇所が起点となって開始することが通常である。従って、印加される電圧が大きくなると、電界が集中する絶縁の弱点箇所である上側コイルの角部から絶縁破壊が生じてしまい、絶縁耐圧を向上させることが困難となっていた。そのため、所定の耐圧を確保するためには、上側コイルの角部における電界集中を考慮して必要以上に絶縁膜の厚みを厚くしなくてはならない。しかし、絶縁膜の厚みを厚くしてしまうと、上側コイルと下側コイルとの間の距離が長くなり、信号の伝送速度や伝送強度といった伝送特性が低下するという問題が生じていた。 However, even in the signal transmission insulating device having the second insulating film described above, when voltage is applied to the upper and lower coils of the thin film transformer structure, the electric field concentration at the corners of the lower coil is reduced, but the upper coil Electric field concentration still occurs at the corners. By the way, it is normal that the dielectric breakdown starts from the place where the insulation is weakest where the electric field is concentrated. Therefore, when the applied voltage is increased, dielectric breakdown occurs from the corner portion of the upper coil, which is a weak point of insulation where the electric field concentrates, and it is difficult to improve the withstand voltage. Therefore, in order to ensure a predetermined breakdown voltage, the thickness of the insulating film must be increased more than necessary in consideration of electric field concentration at the corners of the upper coil. However, if the thickness of the insulating film is increased, the distance between the upper coil and the lower coil becomes longer, resulting in a problem that transmission characteristics such as signal transmission speed and transmission strength deteriorate.
 本発明は、上述のような問題を解決するためになされたもので、信号の伝送特性の低下を抑制するとともに耐圧を向上させることができる信号伝送絶縁デバイスを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a signal transmission insulating device capable of suppressing a decrease in signal transmission characteristics and improving a withstand voltage.
 本発明にかかる信号伝送絶縁デバイスは、第1コイルと、第1コイルに対向し第1コイルとともにトランスを構成する第2コイルと、第1コイルと第2コイルとが対向する間に設けられ第1の誘電体からなる第1絶縁膜と、第1コイルの第2コイルに対向する第一主面と第1絶縁膜の第1コイルに対向する第二主面との間に設けられ第1の誘電体よりも誘電率が高い第2の誘電体からなる第2絶縁膜と、第2コイルの第1コイルに対向する面と第1絶縁膜の第2コイルに対向する面との間に設けられ第1の誘電体よりも誘電率が高い第3の誘電体からなる第3絶縁膜とを備えたものである。 A signal transmission insulating device according to the present invention is provided between a first coil, a second coil facing the first coil and constituting a transformer together with the first coil, and the first coil and the second coil facing each other. A first insulating film made of one dielectric, a first main surface facing the second coil of the first coil, and a second main surface facing the first coil of the first insulating film; A second insulating film made of a second dielectric material having a dielectric constant higher than that of the first dielectric film, and a surface of the second coil facing the first coil and a surface of the first insulating film facing the second coil. And a third insulating film made of a third dielectric having a dielectric constant higher than that of the first dielectric.
 本発明にかかる信号伝送絶縁デバイスによれば、下側コイルである第1コイルと上側コイルである第2コイルとの間に第2絶縁膜、第1絶縁膜及び第3絶縁膜が順に形成されており、かつ第2絶縁膜及び第3絶縁膜の誘電率は第1絶縁膜の誘電率よりも高いので、第2絶縁膜及び第3絶縁膜内での電界が小さくなる。そのため、第2絶縁膜に接する下側コイルの角部及び第3絶縁膜に接する上側コイルの角部での電界集中を緩和することができる。よって、第1絶縁膜の厚みを厚くすることなく絶縁耐圧を向上させることができるため、絶縁耐圧を向上させるとともに信号の伝送特性の低下を抑制することができる。 According to the signal transmission insulating device of the present invention, the second insulating film, the first insulating film, and the third insulating film are sequentially formed between the first coil that is the lower coil and the second coil that is the upper coil. In addition, since the dielectric constants of the second insulating film and the third insulating film are higher than the dielectric constant of the first insulating film, the electric field in the second insulating film and the third insulating film is reduced. Therefore, the electric field concentration at the corners of the lower coil in contact with the second insulating film and the corners of the upper coil in contact with the third insulating film can be reduced. Accordingly, since the withstand voltage can be improved without increasing the thickness of the first insulating film, it is possible to improve the withstand voltage and to suppress a decrease in signal transmission characteristics.
本発明の実施の形態1にかかる信号伝送絶縁デバイスの構成を示す平面図である。It is a top view which shows the structure of the signal-transmission insulation device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる信号伝送絶縁デバイスの構成を示す断面図である。It is sectional drawing which shows the structure of the signal-transmission insulation device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる信号伝送絶縁デバイスの製造フローを示す断面図である。It is sectional drawing which shows the manufacture flow of the signal-transmission insulation device concerning Embodiment 1 of this invention. 本発明の実施の形態1に係る信号伝送絶縁デバイスを備えたパワー半導体モジュールを用いたモータ駆動装置を示すブロック図である。It is a block diagram which shows the motor drive device using the power semiconductor module provided with the signal transmission insulation device which concerns on Embodiment 1 of this invention. 本発明の実施の形態2にかかる信号伝送絶縁デバイスの構造を示す断面図である。It is sectional drawing which shows the structure of the signal-transmission insulation device concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる信号伝送絶縁デバイスの製造フローを示す断面図である。It is sectional drawing which shows the manufacture flow of the signal-transmission insulation device concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる信号伝送絶縁デバイスの構造を示す断面図である。It is sectional drawing which shows the structure of the signal-transmission insulation device concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる信号伝送絶縁デバイスの動作波形を示す波形図である。It is a wave form diagram which shows the operation | movement waveform of the signal-transmission insulation device concerning Embodiment 3 of this invention. 本発明の実施の形態4にかかる信号伝送絶縁デバイスの構造を示す断面図である。It is sectional drawing which shows the structure of the signal-transmission insulation device concerning Embodiment 4 of this invention.
実施の形態1.
 まず、本発明の実施の形態1にかかる信号伝送絶縁デバイスの構成について説明する。図1は、本発明の実施の形態1にかかる信号伝送絶縁デバイス1aの構成を示す平面図である。図2は、本発明の実施の形態1にかかる信号伝送絶縁デバイス1aの構成を示す断面図である。なお、図2は、図1におけるA-A断面図に相当するものである。
Embodiment 1 FIG.
First, the configuration of the signal transmission insulating device according to the first exemplary embodiment of the present invention will be described. FIG. 1 is a plan view showing the configuration of the signal transmission insulating device 1a according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view showing the configuration of the signal transmission insulating device 1a according to the first exemplary embodiment of the present invention. FIG. 2 corresponds to a cross-sectional view taken along the line AA in FIG.
 図1において、信号伝送絶縁デバイス1aは、配線が複数周巻き回されたコイル形状の第1コイル4と第2コイル5を備えており、第1コイル4と第2コイル5とは互いに対向しトランスを構成する。なお、図1において、第1コイル4の第2コイル5に重なっている部分については図示省略している。 In FIG. 1, the signal transmission insulating device 1 a includes a coil-shaped first coil 4 and a second coil 5 in which wiring is wound around a plurality of turns, and the first coil 4 and the second coil 5 face each other. Configure the transformer. In FIG. 1, the portion of the first coil 4 that overlaps the second coil 5 is not shown.
 図2において、信号伝送絶縁デバイス1aは、Si等からなる半導体基板2上にいわゆる薄膜トランス構造9が形成された構造となっている。薄膜トランス構造9は、下側絶縁膜15、第1コイル4、第2絶縁膜6a、第1絶縁膜3、第3絶縁膜7、第2コイル5、及び上側絶縁膜16から構成されている。半導体基板2の上には、下側絶縁膜15が形成されており、下側絶縁膜15に下側コイルである第1コイル4が埋もれるように形成されている。ただし、第1コイル4の上側の面である第一主面は下側絶縁膜15の中に埋もれていない。また、第1コイル4上には、第2絶縁膜6aが第1コイル4の第一主面を覆うように形成されている。さらに、第2絶縁膜6a上には、第1絶縁膜3を介して第3絶縁膜7が形成されており、第3絶縁膜7上には第2コイル5及び上側絶縁膜16が形成されている。 In FIG. 2, the signal transmission insulating device 1a has a structure in which a so-called thin film transformer structure 9 is formed on a semiconductor substrate 2 made of Si or the like. The thin film transformer structure 9 includes a lower insulating film 15, a first coil 4, a second insulating film 6 a, a first insulating film 3, a third insulating film 7, a second coil 5, and an upper insulating film 16. . A lower insulating film 15 is formed on the semiconductor substrate 2, and the first coil 4, which is a lower coil, is buried in the lower insulating film 15. However, the first main surface which is the upper surface of the first coil 4 is not buried in the lower insulating film 15. A second insulating film 6 a is formed on the first coil 4 so as to cover the first main surface of the first coil 4. Further, a third insulating film 7 is formed on the second insulating film 6 a via the first insulating film 3, and the second coil 5 and the upper insulating film 16 are formed on the third insulating film 7. ing.
 ここで、第1絶縁膜3、下側絶縁膜15、及び上側絶縁膜16はSiO(酸化珪素)膜から成る絶縁膜であり、第2絶縁膜6a及び第3絶縁膜7はSiOよりも誘電率の高いSiN(窒化珪素)膜から成る絶縁膜である。また、第1コイル4と第2コイル5は互いに対向するように形成されており、第1コイル4の第2コイル5に対向する第一主面を覆うように第2絶縁膜6aが形成されているのと同様に、第2コイル5の第1コイル4に対向する第二主面についても第3絶縁膜が覆うように形成されている。さらに、第2絶縁膜6aは第1コイル4の異なる周におけるコイル部分全てに接しており、第3絶縁膜7も同様に第2コイル5の異なる周におけるコイル部分全てに接している。 Here, the first insulating film 3, the lower insulating film 15, and the upper insulating film 16 are insulating films made of SiO 2 (silicon oxide) film, and the second insulating film 6a and the third insulating film 7 are made of SiO 2 . Is an insulating film made of a SiN (silicon nitride) film having a high dielectric constant. The first coil 4 and the second coil 5 are formed so as to face each other, and the second insulating film 6a is formed so as to cover the first main surface of the first coil 4 facing the second coil 5. In the same manner as described above, the second insulating surface of the second coil 5 facing the first coil 4 is also formed so as to cover the third insulating film. Further, the second insulating film 6 a is in contact with all the coil portions on different circumferences of the first coil 4, and the third insulating film 7 is also in contact with all the coil portions on different circumferences of the second coil 5.
 なお、本実施の形態では、第1絶縁膜3、下側絶縁膜15、及び上側絶縁膜16にSiOを用いることとしているが、これに限定されるものではなく、第1絶縁膜3、下側絶縁膜15、及び上側絶縁膜16にはポリイミド等の他の材料を用いることとしてもよく、同一の材料であっても異なる材料であっても構わない。また、第2絶縁膜6a及び第3絶縁膜7にSiNを用いることとしているが、第2絶縁膜6a及び第3絶縁膜7には第1絶縁膜3に用いた誘電体よりも誘電率の高い他の絶縁材料を用いることとすればよく、第2絶縁膜6a及び第3絶縁膜7は同一の材料であっても異なる材料であっても構わない。 In the present embodiment, SiO 2 is used for the first insulating film 3, the lower insulating film 15, and the upper insulating film 16. However, the present invention is not limited to this, and the first insulating film 3, Other materials such as polyimide may be used for the lower insulating film 15 and the upper insulating film 16, and the same material or different materials may be used. SiN is used for the second insulating film 6 a and the third insulating film 7, but the second insulating film 6 a and the third insulating film 7 have a dielectric constant higher than that of the dielectric used for the first insulating film 3. Other high insulating materials may be used, and the second insulating film 6a and the third insulating film 7 may be made of the same material or different materials.
 次に、本発明の実施の形態1にかかる信号伝送絶縁デバイス1aの製造方法について説明する。図3は、本発明の実施の形態1にかかる信号伝送絶縁デバイス1aの製造フローを示す断面図である。 Next, a method for manufacturing the signal transmission insulating device 1a according to the first embodiment of the present invention will be described. FIG. 3 is a sectional view showing a manufacturing flow of the signal transmission insulating device 1a according to the first embodiment of the present invention.
 図3(a)において、Si等からなる半導体基板2上に、CVD(Chemical Vapor Deposition:化学気相法)法によりSiOからなる下側絶縁膜15となる絶縁膜17を形成する。そして、この下側絶縁膜15の一部となる絶縁膜17上に、スパッタ蒸着法により、アルミニウムなどの金属膜8aを形成する。 In FIG. 3A, an insulating film 17 to be a lower insulating film 15 made of SiO 2 is formed on a semiconductor substrate 2 made of Si or the like by a CVD (Chemical Vapor Deposition) method. Then, a metal film 8a such as aluminum is formed on the insulating film 17 which becomes a part of the lower insulating film 15 by sputtering deposition.
 図3(b)において、金属膜8aをエッチングして第1コイル4を形成する。そして、第1コイル4の隣り合う周のコイル部分それぞれの間と第1コイル4の第2コイル5に対向する面上に、CVD法を用いてSiOからなる絶縁膜17を第1コイル4が埋もれるように形成する。その後、CMP(Chemichal Mechanical Polish:化学機械研磨)法により第1コイル4の第2コイル5に対向する面から第2コイル5側にはみ出している絶縁膜17を研磨し、第1コイル4の隣り合う周の間に形成された絶縁膜17の上面と第1コイル4の上面とを面一にする。以上により、図2に示された下側絶縁膜15が形成される。これにより、下側絶縁膜15と第1コイル4との上に平坦な膜を形成することができる。 In FIG. 3B, the first coil 4 is formed by etching the metal film 8a. Then, an insulating film 17 made of SiO 2 is formed between the adjacent coil portions of the first coil 4 and on the surface of the first coil 4 facing the second coil 5 using the CVD method. To be buried. After that, the insulating film 17 protruding from the surface of the first coil 4 facing the second coil 5 to the second coil 5 side is polished by CMP (Chemical Mechanical Polish) method, and next to the first coil 4. The upper surface of the insulating film 17 formed between the perimeters is flush with the upper surface of the first coil 4. Thus, the lower insulating film 15 shown in FIG. 2 is formed. Thereby, a flat film can be formed on the lower insulating film 15 and the first coil 4.
 図3(c)において、CVD法によりSiNからなる第2絶縁膜6aを形成する。そして、第2絶縁膜6a上にSiOからなる第1絶縁膜3を形成する。さらに、第1絶縁膜3上に第3絶縁膜7を形成する。その後、第3絶縁膜7上に、スパッタ蒸着法により、金属膜8bを形成する。 In FIG. 3C, a second insulating film 6a made of SiN is formed by a CVD method. Then, the first insulating film 3 made of SiO 2 is formed on the second insulating film 6a. Further, a third insulating film 7 is formed on the first insulating film 3. Thereafter, a metal film 8b is formed on the third insulating film 7 by sputtering deposition.
 図3(d)において、金属膜8bをエッチングして第2コイル5を形成する。そして、第2コイル5の隣接する周のコイル部分の間と第2コイル5の上面に上側絶縁膜16を形成する。以上の工程により、図2に示した信号伝送絶縁デバイス1aを得ることができる。 In FIG. 3D, the second coil 5 is formed by etching the metal film 8b. Then, the upper insulating film 16 is formed between adjacent coil portions of the second coil 5 and on the upper surface of the second coil 5. Through the above steps, the signal transmission insulating device 1a shown in FIG. 2 can be obtained.
 本発明の実施の形態1では、以上のような構成としたことにより、第1コイル4と第2コイル5との間に電位差が生じた場合に、薄膜トランス構造9を有する信号伝送絶縁デバイス1aでは第1コイル4と第2コイル5の複数の角部において電界集中が発生することとなるが、第1コイル4と第2コイル5との間に異なる誘電率の第1絶縁膜3、第2絶縁膜6a、及び第3絶縁膜7が形成されているため、第1絶縁膜3よりも誘電率の高い第2絶縁膜6a及び第3絶縁膜7の内部の電界が緩和される。そして、電界集中が生じる第1コイル4及び第2コイル5それぞれの角部が、電界が緩和される第2絶縁膜6a及び第3絶縁膜7に接しているため、当該角部における電界集中が緩和される。その結果、第1コイル4及び第2コイル5側の双方での電界集中が緩和されるため、絶縁膜の厚さを厚くすることなく、すなわち第1コイル4と第2コイル5との距離を長くすることなく絶縁耐圧を向上させることができる。よって、絶縁耐圧を向上させるとともに信号の伝送速度や伝送強度といった伝送特性の低下を抑制することができる。 In the first embodiment of the present invention, the signal transmission insulating device 1a having the thin film transformer structure 9 when a potential difference is generated between the first coil 4 and the second coil 5 due to the above configuration. In this case, electric field concentration occurs at a plurality of corners of the first coil 4 and the second coil 5, but the first insulating film 3 having a different dielectric constant between the first coil 4 and the second coil 5, Since the second insulating film 6a and the third insulating film 7 are formed, the electric field inside the second insulating film 6a and the third insulating film 7 having a dielectric constant higher than that of the first insulating film 3 is relaxed. Since the corner portions of the first coil 4 and the second coil 5 where the electric field concentration occurs are in contact with the second insulating film 6a and the third insulating film 7 where the electric field is relaxed, the electric field concentration at the corner portion is reduced. Alleviated. As a result, since the electric field concentration on both the first coil 4 and the second coil 5 side is relaxed, the distance between the first coil 4 and the second coil 5 can be reduced without increasing the thickness of the insulating film. The withstand voltage can be improved without increasing the length. Therefore, it is possible to improve the withstand voltage and to suppress a decrease in transmission characteristics such as signal transmission speed and transmission intensity.
 また、第1絶縁膜3の下面側と上面側には、それぞれの全面に第2絶縁膜6aと第3絶縁膜7とが対称に設けられているため、第1絶縁膜3の反り等の変形を効果的に抑制することができる。 Further, since the second insulating film 6a and the third insulating film 7 are provided symmetrically on the entire lower surface side and upper surface side of the first insulating film 3, such as warpage of the first insulating film 3 and the like. Deformation can be effectively suppressed.
 さらに、第1絶縁膜3では圧縮応力が発生し、第2絶縁膜6a及び第3絶縁膜7では引張応力が発生するように、すなわち、第1絶縁膜3で発生する応力と第2絶縁膜6a及び第3絶縁膜とで発生する応力とが打ち消し合うように、各絶縁膜を形成することが望ましい。これにより、各絶縁膜同士で発生する応力が打ち消し合うため、半導体基板2や各絶縁膜の反り変形を低減することができる。なお、各絶縁膜で発生する応力は絶縁膜を形成する際の温度やガスの流量、さらには絶縁膜の膜厚といった複合的な条件によって定まるため、膜を積層する際に応力を計測しながらこれらの条件を調整し製造すればよい。また、第1絶縁膜3では引張応力が発生し、第2絶縁膜6a及び第3絶縁膜7では圧縮応力が発生するように形成することとしてもよい。 Further, compressive stress is generated in the first insulating film 3, and tensile stress is generated in the second insulating film 6a and the third insulating film 7, that is, the stress generated in the first insulating film 3 and the second insulating film. It is desirable to form each insulating film so that the stresses generated by 6a and the third insulating film cancel each other. Thereby, since the stress which generate | occur | produces between each insulating film cancels, the curvature deformation of the semiconductor substrate 2 or each insulating film can be reduced. The stress generated in each insulating film is determined by complex conditions such as the temperature at which the insulating film is formed, the gas flow rate, and the film thickness of the insulating film. What is necessary is just to adjust and manufacture these conditions. The first insulating film 3 may be formed so that tensile stress is generated, and the second insulating film 6a and the third insulating film 7 may be compressed.
 なお、本実施の形態では金属膜8a及び金属膜8bをそれぞれスパッタ蒸着法により形成することとしたが、これに限定されるものではなく、熱蒸着法や電子ビーム蒸着法等を用いて形成することとしてもよい。また、半導体基板2はSiに限定されるものでなくSiC等の他の半導体基板でもよく、金属膜8a及び金属膜8bはいずれもアルミニウムに限定されるものではなくCu等の他の材料を用いることができる。 In the present embodiment, the metal film 8a and the metal film 8b are formed by sputtering deposition, respectively. However, the present invention is not limited to this, and is formed by using thermal deposition, electron beam deposition, or the like. It is good as well. Further, the semiconductor substrate 2 is not limited to Si, but may be another semiconductor substrate such as SiC, and the metal film 8a and the metal film 8b are not limited to aluminum, and other materials such as Cu are used. be able to.
 また、本発明の実施の形態1にかかる信号伝送絶縁デバイス1aは、IPM(Intelligent Power Module)をはじめとするパワー半導体モジュールに用いることができる。以下、本発明の実施の形態1にかかる信号伝送絶縁デバイス1aを備えたパワー半導体モジュールを、モータ駆動装置に用いた場合について説明する。図4は、本発明の実施の形態1に係る信号伝送絶縁デバイス1aを備えたパワー半導体モジュール50を用いたモータ駆動装置100を示すブロック図である。 Further, the signal transmission insulating device 1a according to the first embodiment of the present invention can be used for a power semiconductor module such as IPM (Intelligent Power Module). Hereinafter, the case where the power semiconductor module provided with the signal transmission insulation device 1a concerning Embodiment 1 of this invention is used for a motor drive device is demonstrated. FIG. 4 is a block diagram showing a motor driving apparatus 100 using the power semiconductor module 50 including the signal transmission insulating device 1a according to Embodiment 1 of the present invention.
 図4において、モータ駆動装置100は、パワー半導体モジュール50及びモータ30から構成され、図示しない駆動用電源から出力される電力をパワー半導体モジュール50によって適宜変換することでモータ30を駆動することができる。 In FIG. 4, the motor driving device 100 includes a power semiconductor module 50 and a motor 30, and can drive the motor 30 by appropriately converting power output from a driving power source (not shown) by the power semiconductor module 50. .
 パワー半導体モジュール50は、制御部10(「制御回路」ともいう。)、信号伝送絶縁デバイス1a、駆動回路11、パワー半導体装置21、及びセンサ22から構成される。駆動回路11は、制御部10から信号伝送絶縁デバイス1aを介して入力される制御信号12によって動作し、パワー半導体装置21に駆動信号13を出力する。パワー半導体装置21はIGBTやMOSFET等の半導体装置であり、駆動信号13に基づいてスイッチング動作を行う。一方、センサ22は、パワー半導体装置21のチップ温度や通流する電流を計測し、センサ信号14を駆動回路11及び制御部10に出力する。制御部10は、センサ22から信号伝送絶縁デバイス1aを介して入力されるセンサ信号14等に基づいて駆動回路11に制御信号12を出力し、パワー半導体装置21を制御する。そして、制御部10がパワー半導体装置21の動作を制御することで、インバータ回路として所定の電力変換が行われモータ30を駆動することができる。なお、制御部10と駆動回路11又はセンサ22との信号の入出力は、パワー半導体モジュール50に設けられた信号伝送絶縁デバイス1aを介して行われる。 The power semiconductor module 50 includes a control unit 10 (also referred to as “control circuit”), a signal transmission insulating device 1a, a drive circuit 11, a power semiconductor device 21, and a sensor 22. The drive circuit 11 operates in accordance with a control signal 12 input from the control unit 10 via the signal transmission insulating device 1 a and outputs a drive signal 13 to the power semiconductor device 21. The power semiconductor device 21 is a semiconductor device such as an IGBT or a MOSFET, and performs a switching operation based on the drive signal 13. On the other hand, the sensor 22 measures the chip temperature of the power semiconductor device 21 and the flowing current, and outputs the sensor signal 14 to the drive circuit 11 and the control unit 10. The control unit 10 outputs a control signal 12 to the drive circuit 11 based on the sensor signal 14 or the like input from the sensor 22 via the signal transmission insulating device 1a, and controls the power semiconductor device 21. And the control part 10 controls operation | movement of the power semiconductor device 21, and predetermined | prescribed power conversion is performed as an inverter circuit and the motor 30 can be driven. In addition, input / output of signals between the control unit 10 and the drive circuit 11 or the sensor 22 is performed via a signal transmission insulating device 1 a provided in the power semiconductor module 50.
 また、センサ22がパワー半導体装置21への過電流を計測した場合やパワー半導体装置21のチップ温度が所定の値以上に上昇したことを計測した場合には、駆動回路11はパワー半導体装置21への駆動信号13の出力を停止し、パワー半導体装置21を保護する。このような構成とすることで、パワー半導体モジュール50に設けられた駆動回路11及びセンサ22によってパワー半導体装置21を保護することが可能となるため、パワー半導体モジュール50が保護機能を有することとなり高機能化される。 Further, when the sensor 22 measures an overcurrent to the power semiconductor device 21 or when the chip temperature of the power semiconductor device 21 is measured to be higher than a predetermined value, the drive circuit 11 moves to the power semiconductor device 21. The output of the drive signal 13 is stopped, and the power semiconductor device 21 is protected. By adopting such a configuration, the power semiconductor device 21 can be protected by the drive circuit 11 and the sensor 22 provided in the power semiconductor module 50. Therefore, the power semiconductor module 50 has a protection function. Functionalized.
 ここで、制御部10側ではモータ駆動装置100の中でも相対的に低い電圧の信号が流れるため、制御部10はモータ駆動装置100の中でも低電位となる。一方、駆動回路11やパワー半導体装置21などのインバータ回路の主回路ではモータ駆動装置100の中でも相対的に高い電圧の信号が流れるため、駆動回路11やパワー半導体装置21などのインバータ回路の主回路はモータ駆動装置100の中でも高電位となる。その結果、制御部10と駆動回路11又はパワー半導体装置21などのインバータ回路の主回路との間には、数百から数千ボルトの電位差が生じることとなり、この電位差によって駆動回路11又はパワー半導体装置21などのインバータ回路の主回路側から制御部10側へと電流が流れると制御部10の素子が破壊されてしまうことがあった。 Here, since a signal with a relatively low voltage flows in the motor drive device 100 on the control unit 10 side, the control unit 10 has a low potential in the motor drive device 100. On the other hand, in the main circuit of the inverter circuit such as the drive circuit 11 and the power semiconductor device 21, a relatively high voltage signal flows in the motor drive device 100, and thus the main circuit of the inverter circuit such as the drive circuit 11 and the power semiconductor device 21. Is at a high potential in the motor driving apparatus 100. As a result, a potential difference of several hundreds to thousands of volts is generated between the control unit 10 and the main circuit of the inverter circuit such as the drive circuit 11 or the power semiconductor device 21, and the drive circuit 11 or the power semiconductor is generated by this potential difference. When current flows from the main circuit side of the inverter circuit such as the device 21 to the control unit 10 side, the elements of the control unit 10 may be destroyed.
 そこで、図4に示すように、信号伝送絶縁デバイス1aを介して制御部10と駆動回路11又はパワー半導体装置21などのインバータ回路との信号の伝送を行うことにより、制御部10と駆動回路11又はパワー半導体装置21などのインバータ回路の主回路との間において絶縁を保つとともにセンサ信号14や制御信号12の伝送を行うことができる。 Therefore, as shown in FIG. 4, the control unit 10 and the drive circuit 11 are transmitted by transmitting signals between the control unit 10 and the drive circuit 11 or an inverter circuit such as the power semiconductor device 21 via the signal transmission insulating device 1a. Alternatively, it is possible to maintain insulation with the main circuit of the inverter circuit such as the power semiconductor device 21 and to transmit the sensor signal 14 and the control signal 12.
 上述したように、信号伝送絶縁デバイス1aは絶縁耐圧を向上させるとともに信号の伝送特性の低下を抑制することができるため、所定の絶縁耐圧が設定された場合には、信号伝送絶縁デバイス1aは他の信号伝送絶縁デバイスよりも信号の伝送速度や伝送強度といった伝送特性が高いものとなる。そのため、実施の形態1にかかる信号伝送絶縁デバイス1aをパワー半導体モジュール50に適用することにより、制御部10と駆動回路11又はパワー半導体装置21などのインバータ回路の主回路との間の絶縁性を維持するとともに、制御信号12やセンサ信号14の伝送特性の向上させることができる。そして、伝送特性の向上により制御遅れ等が低減されるため、パワー半導体装置21をより高速で動作させることができる。その結果、パワー半導体モジュール50は、絶縁破壊に対する安全性を損なうことなく、かつ、高速での応答等が可能なパワー半導体モジュールとなる。すなわち、高品質で安全性の高いパワー半導体モジュールとなる。 As described above, since the signal transmission insulating device 1a can improve the withstand voltage and suppress the deterioration of signal transmission characteristics, when the predetermined withstand voltage is set, the signal transmission insulating device 1a The transmission characteristics such as signal transmission speed and transmission intensity are higher than those of the signal transmission insulation device. Therefore, by applying the signal transmission insulating device 1a according to the first embodiment to the power semiconductor module 50, the insulation between the control unit 10 and the main circuit of the inverter circuit such as the drive circuit 11 or the power semiconductor device 21 is provided. In addition, the transmission characteristics of the control signal 12 and the sensor signal 14 can be improved. And since the control delay etc. are reduced by the improvement of the transmission characteristic, the power semiconductor device 21 can be operated at higher speed. As a result, the power semiconductor module 50 becomes a power semiconductor module capable of high-speed response without impairing safety against dielectric breakdown. That is, the power semiconductor module has high quality and high safety.
 なお、本実施の形態では、パワー半導体モジュール50内にセンサ22を設けることで保護機能を有するパワー半導体モジュール50としたが、これに限定されるものではなく、センサが設けられてなく保護機能を有さないパワー半導体モジュールであっても構わない。そのような場合でも、パワー半導体モジュールは信号伝送絶縁デバイス1aを備えることによって駆動回路と制御部との絶縁を行うとともに制御信号12等の伝送特性を向上させることが可能となり、高速動作等が可能となる。 In the present embodiment, the power semiconductor module 50 having the protection function is provided by providing the sensor 22 in the power semiconductor module 50. However, the present invention is not limited to this. A power semiconductor module which does not have may be used. Even in such a case, the power semiconductor module can be provided with the signal transmission insulating device 1a to insulate the drive circuit from the control unit and improve the transmission characteristics of the control signal 12 and the like, and can operate at high speed. It becomes.
実施の形態2.
 本発明の構成は、実施の形態1にかかる信号伝送絶縁デバイス1aの構成に限定されるものでなく、他の構成とすることもできる。そこで、実施の形態1にかかる信号伝送絶縁デバイス1aとは異なる構成について説明する。なお、以下において、本発明の実施の形態1と相違する第2絶縁膜6aの部分について説明し、同一または対応する他の部分についての説明は省略する。
Embodiment 2. FIG.
The configuration of the present invention is not limited to the configuration of the signal transmission insulating device 1a according to the first embodiment, and may be other configurations. Therefore, a configuration different from the signal transmission insulating device 1a according to the first embodiment will be described. In the following, the second insulating film 6a that is different from the first embodiment of the present invention will be described, and description of other parts that are the same or corresponding will be omitted.
 まず、実施の形態2にかかる信号伝送絶縁デバイス1bの構成について説明する。図5は、本発明の実施の形態2にかかる信号伝送絶縁デバイス1bの構成を示す断面図である。図5において、図2と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。 First, the configuration of the signal transmission insulating device 1b according to the second embodiment will be described. FIG. 5 is a sectional view showing a configuration of the signal transmission insulating device 1b according to the second exemplary embodiment of the present invention. In FIG. 5, the same reference numerals as those in FIG. 2 denote the same or corresponding components, and the description thereof is omitted.
 図5において、実施の形態2にかかる信号伝送絶縁デバイス1bは、実施の形態1にかかる信号伝送絶縁デバイス1aと比較して第2絶縁膜6aと第2絶縁膜6bの構成が相違する。第2絶縁膜6bは、第1コイル4の第2コイル5に対向する第一主面に接するとともに、第一主面に垂直な側面に接するように第1コイル4の異なる周のコイル部分の間にも設けられている。 5, the signal transmission insulating device 1b according to the second embodiment is different from the signal transmission insulating device 1a according to the first embodiment in the configuration of the second insulating film 6a and the second insulating film 6b. The second insulating film 6b is in contact with the first main surface facing the second coil 5 of the first coil 4 and is formed on the coil portions of different circumferences of the first coil 4 so as to be in contact with the side surface perpendicular to the first main surface. It is also provided in between.
 次に、本発明の実施の形態2にかかる信号伝送絶縁デバイス1bの製造方法について説明する。図6は、本発明の実施の形態1にかかる信号伝送絶縁デバイス1bの製造フローを示す断面図である。 Next, a method for manufacturing the signal transmission insulating device 1b according to the second exemplary embodiment of the present invention will be described. FIG. 6 is a cross-sectional view showing a manufacturing flow of the signal transmission insulating device 1b according to the first exemplary embodiment of the present invention.
 図6(a)において、Si等からなる半導体基板2上に、CVD法により下側絶縁膜15を形成する。そして、下側絶縁膜15上に、スパッタ蒸着法により、アルミニウムなどの金属膜8aを形成する。 6A, a lower insulating film 15 is formed on the semiconductor substrate 2 made of Si or the like by a CVD method. Then, a metal film 8a such as aluminum is formed on the lower insulating film 15 by sputtering deposition.
 図6(b)において、金属膜8aをエッチングして第1コイル4を形成する。そして、第1コイル4の隣接する周のコイル部分それぞれの間と第1コイル4の第2コイル5と向かい合う面上に、CVD法により第2絶縁膜6bを形成する。 6B, the first coil 4 is formed by etching the metal film 8a. Then, a second insulating film 6b is formed by a CVD method on each of the adjacent peripheral coil portions of the first coil 4 and on the surface of the first coil 4 facing the second coil 5.
 図6(c)において、CVD法により第2絶縁膜6b上に第1絶縁膜3を形成する。そして、CMP法により第1絶縁膜3を研磨して面一にする。さらに、第1絶縁膜3上に第3絶縁膜7を形成する。その後、第3絶縁膜7上に、スパッタ蒸着法により、金属膜8bを形成する。 In FIG. 6C, the first insulating film 3 is formed on the second insulating film 6b by the CVD method. Then, the first insulating film 3 is polished to be flush with the CMP method. Further, a third insulating film 7 is formed on the first insulating film 3. Thereafter, a metal film 8b is formed on the third insulating film 7 by sputtering deposition.
 図6(d)において、金属膜8bをエッチングして第2コイル5を形成する。そして、第2コイル5の隣接する周のコイル部分の間と第2コイル5の上面に上側絶縁膜16を形成する。このように、上述の10個の工程を行うことにより、図5に示した信号伝送絶縁デバイス1bを得ることができる。 6 (d), the second coil 5 is formed by etching the metal film 8b. Then, the upper insulating film 16 is formed between adjacent coil portions of the second coil 5 and on the upper surface of the second coil 5. Thus, the signal transmission insulation device 1b shown in FIG. 5 can be obtained by performing the above-described ten steps.
 実施の形態2では、以上のような構成とすることにより、第1コイル4と第2コイル5との間に電位差が生じた場合に、第1コイル4と第2コイル5との間に異なる誘電率の第1絶縁膜3、第2絶縁膜6b、及び第3絶縁膜7が形成されているため、第1コイル4及び第2コイル5それぞれの角部における電界集中が緩和される。その結果、絶縁膜の厚さを厚くすることなく、すなわち第1コイル4と第2コイル5との距離を長くすることなく絶縁耐圧を向上させることができるので、絶縁耐圧を向上させるとともに信号の伝送速度や伝送強度といった伝送特性の低下を抑制することができる。 In the second embodiment, the configuration as described above is different between the first coil 4 and the second coil 5 when a potential difference is generated between the first coil 4 and the second coil 5. Since the first dielectric film 3, the second dielectric film 6b, and the third dielectric film 7 having a dielectric constant are formed, the electric field concentration at the corners of the first coil 4 and the second coil 5 is alleviated. As a result, the withstand voltage can be improved without increasing the thickness of the insulating film, that is, without increasing the distance between the first coil 4 and the second coil 5. It is possible to suppress a decrease in transmission characteristics such as transmission speed and transmission intensity.
 また、実施の形態1にかかる信号伝送絶縁デバイス1aと比較して、下側絶縁膜15、第1コイル4、及び第2絶縁膜6bからなる部分の製造が簡易となることから、製造時の工程数を削減することができ、生産コストを低減することができる。 Further, as compared with the signal transmission insulating device 1a according to the first embodiment, the manufacture of the portion including the lower insulating film 15, the first coil 4, and the second insulating film 6b is simplified. The number of processes can be reduced, and the production cost can be reduced.
 さらに、実施の形態1と同様に、実施の形態2にかかる信号伝送絶縁デバイス1bをパワー半導体モジュールに適用することにより、高品質で安全性の高いパワー半導体モジュールを提供することができる。 Furthermore, as in the first embodiment, by applying the signal transmission insulating device 1b according to the second embodiment to a power semiconductor module, a high-quality and highly safe power semiconductor module can be provided.
 なお、本発明の実施の形態2では、本発明の実施の形態1と相違する部分について説明し、同一または対応する部分についての説明は省略した。 In the second embodiment of the present invention, portions different from the first embodiment of the present invention are described, and descriptions of the same or corresponding portions are omitted.
実施の形態3.
 実施の形態3にかかる信号伝送絶縁デバイス1cの構成について説明する。図7は、本発明の実施の形態3にかかる信号伝送絶縁デバイス1cの構成を示す断面図である。図7において、図2と同じ符号を付けたものは、同一または対応する構成を示している。また、本実施の形態は、実施の形態1と比較して、第2絶縁膜6a、第3絶縁膜7の構成で相違するため、以下においては当該相違点についてのみ説明し、他の構成については説明を省略する。
Embodiment 3 FIG.
A configuration of the signal transmission insulating device 1c according to the third embodiment will be described. FIG. 7: is sectional drawing which shows the structure of the signal transmission insulation device 1c concerning Embodiment 3 of this invention. 7, the same reference numerals as those in FIG. 2 denote the same or corresponding configurations. In addition, the present embodiment differs from the first embodiment in the configuration of the second insulating film 6a and the third insulating film 7. Therefore, only the difference will be described below, and other configurations will be described. Will not be described.
 図7において、実施の形態3にかかる信号伝送絶縁デバイス1cは、第2絶縁膜6a及び第3絶縁膜7には、第1絶縁膜3に用いた誘電体よりも抵抗率の低い誘電体を用いる。例えば、第1絶縁膜3としてSiO膜を用いる場合には、一般的なSiO膜の抵抗率は1×1013Ωmであるため、第2絶縁膜6aと第3絶縁膜7としてSiN膜を用いることができる。なお、第1絶縁膜3、第2絶縁膜6a、及び第3絶縁膜7の組合せは、SiO膜とSiN膜とに限らず、第2絶縁膜6aと第3絶縁膜7とに用いた誘電体が第1絶縁膜3に用いた誘電体よりも抵抗率が低い組み合わせとなるように、SiO、SiN、ポリイミド等の誘電体から適宜選択することができる。 In FIG. 7, in the signal transmission insulating device 1 c according to the third embodiment, the second insulating film 6 a and the third insulating film 7 are made of a dielectric having a resistivity lower than that of the dielectric used for the first insulating film 3. Use. For example, when a SiO 2 film is used as the first insulating film 3, the resistivity of a general SiO 2 film is 1 × 10 13 Ωm, and thus a SiN film is used as the second insulating film 6 a and the third insulating film 7. Can be used. The combination of the first insulating film 3, the second insulating film 6a, and the third insulating film 7 is not limited to the SiO 2 film and the SiN film, but is used for the second insulating film 6a and the third insulating film 7. The dielectric can be appropriately selected from dielectrics such as SiO 2 , SiN, and polyimide so that the dielectric has a combination having a lower resistivity than the dielectric used for the first insulating film 3.
 なお、本発明の実施の形態3にかかる信号伝送絶縁デバイス1cの製造方法については、実施の形態1にかかる信号伝送絶縁デバイス1aの製造方法と同じである。 The method for manufacturing the signal transmission insulating device 1c according to the third embodiment of the present invention is the same as the method for manufacturing the signal transmission insulating device 1a according to the first embodiment.
 実施の形態3では、以上のような構成とすることにより、第1コイル4と第2コイル5との間に電位差が生じた場合に、第1コイル4と第2コイル5との間に異なる抵抗率の第1絶縁膜3、第2絶縁膜6b、及び第3絶縁膜7が形成されているため、第1コイル4及び第2コイル5それぞれの角部における電界集中が緩和される。その結果、絶縁膜の厚さを厚くすることなく、すなわち第1コイル4と第2コイル5との距離を長くすることなく絶縁耐圧を向上させることができるので、絶縁耐圧を向上させるとともに信号の伝送速度や伝送強度といった伝送特性の低下を抑制することができる。 In the third embodiment, the configuration as described above is different between the first coil 4 and the second coil 5 when a potential difference occurs between the first coil 4 and the second coil 5. Since the first insulating film 3, the second insulating film 6 b, and the third insulating film 7 having the resistivity are formed, the electric field concentration at the corners of the first coil 4 and the second coil 5 is alleviated. As a result, the withstand voltage can be improved without increasing the thickness of the insulating film, that is, without increasing the distance between the first coil 4 and the second coil 5. It is possible to suppress a decrease in transmission characteristics such as transmission speed and transmission intensity.
 また、本実施の形態のように、第2絶縁膜6aと第3絶縁膜7に相対的に抵抗率の低い絶縁材料を用いると、薄膜トランス構造9を構成する第1コイル4の隣り合うコイル間、又は第2コイル5の隣り合うコイル間において、第2絶縁膜6a又は第3絶縁膜7を介して電気的に短絡することで、トランスとしての機能を失ってしまう恐れがある。そこで、第2絶縁膜6aと第3絶縁膜7とは、第1コイル4の隣り合うコイル間又は第2コイル5の隣り合うコイル間において電気的に短絡しない抵抗率以上の抵抗率とする。 In addition, when an insulating material having a relatively low resistivity is used for the second insulating film 6a and the third insulating film 7 as in the present embodiment, adjacent coils of the first coil 4 constituting the thin film transformer structure 9 are used. Between the adjacent coils of the second coil 5 or between the adjacent coils of the second coil 5, there is a possibility that the function as a transformer may be lost by short-circuiting via the second insulating film 6 a or the third insulating film 7. Therefore, the second insulating film 6 a and the third insulating film 7 have a resistivity equal to or higher than a resistivity that does not cause an electrical short circuit between adjacent coils of the first coil 4 or between adjacent coils of the second coil 5.
 図8に、実施の形態3にかかる信号伝送絶縁デバイス1cの動作波形を示す。図8において、図8(a)は入力矩形波電気信号を示し、図8(b)は出力パルス電気信号を示す。また、縦軸は各信号の電圧を示し、横軸は時間を示している。例えば、図8(a)に示すように、第1コイル4又は第2コイル5のいずれか一方に対して矩形波電気信号Vinが入力され、入力された矩形波電気信号Vinの立上りと立下りに対応して、他方のコイルに周波数Fのパルス電気信号Voutが出力される。かかる場合、図8(b)に示す半周期T/2が0.5[ns]、すなわち周波数Fが1GHzとすると、パルス電気信号Voutが出力される第1コイル4又は第2コイル5の隣り合うコイル間が電気的に短絡しないためには、隣り合うコイル間の時定数τが式(1)を満たす必要がある。 FIG. 8 shows operation waveforms of the signal transmission insulating device 1c according to the third embodiment. 8A shows an input rectangular wave electric signal, and FIG. 8B shows an output pulse electric signal. The vertical axis represents the voltage of each signal, and the horizontal axis represents time. For example, as shown in FIG. 8 (a), a rectangular wave electric signal V in respect one of the first coil 4 and second coil 5 is input, the rising of the input square wave electrical signal V in Corresponding to the falling, a pulse electric signal Vout having a frequency F is output to the other coil. In such a case, when the half cycle T / 2 shown in FIG. 8B is 0.5 [ns], that is, the frequency F is 1 GHz, the first coil 4 or the second coil 5 that outputs the pulse electric signal V out is output. In order to prevent an electrical short circuit between adjacent coils, the time constant τ between adjacent coils needs to satisfy the formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 時定数τは抵抗率ρと比誘電率ε、真空の誘電率εを用いて、式(2)によって求まる。 The time constant τ is obtained by the equation (2) using the resistivity ρ, the relative dielectric constant ε r , and the vacuum dielectric constant ε 0 .
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 第2絶縁膜6aと第3絶縁膜7がSiN膜の場合、SiN膜のεを7、εを8.85×10-12F/mとすると、式(1)及び(2)より、第2絶縁膜6aと第3絶縁膜7の抵抗率は16Ωmよりも大きいものでなければならない。よって、SiN膜として抵抗率は16Ωmよりも大きいものを選択することとすればよい。 When the second insulating film 6a and the third insulating film 7 are SiN films, if ε r of the SiN film is 7 and ε 0 is 8.85 × 10 −12 F / m, the equations (1) and (2) The resistivity of the second insulating film 6a and the third insulating film 7 must be greater than 16Ωm. Therefore, a SiN film having a resistivity larger than 16 Ωm may be selected.
 さらに、実施の形態1と2と同様に、実施の形態2にかかる信号伝送絶縁デバイス1cをパワー半導体モジュールに適用することにより、高品質で安全性の高いパワー半導体モジュールを提供することができる。 Furthermore, as in the first and second embodiments, by applying the signal transmission insulating device 1c according to the second embodiment to a power semiconductor module, a high-quality and highly safe power semiconductor module can be provided.
実施の形態4.
 実施の形態4にかかる信号伝送絶縁デバイス1dの構成について説明する。図9は、本発明の実施の形態4にかかる信号伝送絶縁デバイス1dの構成を示す断面図である。図9において、図5と同じ符号を付けたものは、同一または対応する構成を示している。また、本実施の形態は、実施の形態2と比較して、第2絶縁膜6b、第3絶縁膜7の構成で相違するため、以下においては当該相違点についてのみ説明し、他の構成については説明を省略する。
Embodiment 4 FIG.
A configuration of the signal transmission insulating device 1d according to the fourth exemplary embodiment will be described. FIG. 9: is sectional drawing which shows the structure of the signal transmission insulation device 1d concerning Embodiment 4 of this invention. 9, the same reference numerals as those in FIG. 5 denote the same or corresponding configurations. In addition, the present embodiment differs from the second embodiment in the configuration of the second insulating film 6b and the third insulating film 7, so that only the difference will be described below and other configurations will be described. Will not be described.
 図9において、実施の形態4にかかる信号伝送絶縁デバイス1dは、第2絶縁膜6b及び第3絶縁膜7には、第1絶縁膜3に用いた誘電体よりも抵抗率の低い誘電体を用いる。例えば、第1絶縁膜3としてSiO膜を用いる場合には、一般的なSiO膜の抵抗率は1×1013Ωmであるため、第2絶縁膜6bと第3絶縁膜7としてSiN膜を用いることができる。なお、第1絶縁膜3、第2絶縁膜6b、及び第3絶縁膜7の組合せは、SiO膜とSiN膜とに限らず、第2絶縁膜6bと第3絶縁膜7とに用いた誘電体が第1絶縁膜3に用いた誘電体よりも抵抗率が低い組み合わせとなるように、SiO、SiN、ポリイミド等の誘電体から適宜選択することができる。 In FIG. 9, in the signal transmission insulating device 1 d according to the fourth exemplary embodiment, the second insulating film 6 b and the third insulating film 7 are made of a dielectric having a resistivity lower than that of the dielectric used for the first insulating film 3. Use. For example, when a SiO 2 film is used as the first insulating film 3, the resistivity of a general SiO 2 film is 1 × 10 13 Ωm, and thus a SiN film as the second insulating film 6 b and the third insulating film 7. Can be used. The combination of the first insulating film 3, the second insulating film 6b, and the third insulating film 7 is not limited to the SiO 2 film and the SiN film, but is used for the second insulating film 6b and the third insulating film 7. The dielectric can be appropriately selected from dielectrics such as SiO 2 , SiN, and polyimide so that the dielectric has a combination having a lower resistivity than the dielectric used for the first insulating film 3.
 また、実施の形態3と同様に、出力されるパルス電気信号Voutの周波数Fを1GHzとすると、第1絶縁膜3としてSiO膜を用いる場合、第2絶縁膜6bと第3絶縁膜7の抵抗率は16Ωmよりも大きければよい。 Similarly to the third embodiment, when the frequency F of the output pulse electric signal Vout is 1 GHz, when the SiO 2 film is used as the first insulating film 3, the second insulating film 6b and the third insulating film 7 are used. The resistivity should be larger than 16 Ωm.
 本発明の実施の形態4にかかる信号伝送絶縁デバイス1dの製造方法については、実施の形態2にかかる信号伝送絶縁デバイス1bの製造方法と同じである。 The manufacturing method of the signal transmission insulating device 1d according to the fourth embodiment of the present invention is the same as the manufacturing method of the signal transmission insulating device 1b according to the second embodiment.
 実施の形態4では、以上のような構成とすることにより、第1コイル4と第2コイル5との間に電位差が生じた場合に、第1コイル4と第2コイル5との間に異なる抵抗率の第1絶縁膜3、第2絶縁膜6b、及び第3絶縁膜7が形成されているため、第1コイル4及び第2コイル5それぞれの角部における電界集中が緩和される。その結果、絶縁膜の厚さを厚くすることなく、すなわち第1コイル4と第2コイル5との距離を長くすることなく絶縁耐圧を向上させることができるので、絶縁耐圧を向上させるとともに信号の伝送速度や伝送強度といった伝送特性の低下を抑制することができる。 In the fourth embodiment, the configuration as described above is different between the first coil 4 and the second coil 5 when a potential difference is generated between the first coil 4 and the second coil 5. Since the first insulating film 3, the second insulating film 6 b, and the third insulating film 7 having the resistivity are formed, the electric field concentration at the corners of the first coil 4 and the second coil 5 is alleviated. As a result, the withstand voltage can be improved without increasing the thickness of the insulating film, that is, without increasing the distance between the first coil 4 and the second coil 5. It is possible to suppress a decrease in transmission characteristics such as transmission speed and transmission intensity.
 また、実施の形態1又は3にかかる信号伝送絶縁デバイス1a、1c比較して、下側絶縁膜15、第1コイル4、及び第2絶縁膜6bからなる部分の製造が簡易となることから、製造時の工程数を削減することができ、生産コストを低減することができる。 In addition, compared to the signal transmission insulating devices 1a and 1c according to the first or third embodiment, the manufacturing of the portion including the lower insulating film 15, the first coil 4, and the second insulating film 6b is simplified. The number of processes during manufacturing can be reduced, and the production cost can be reduced.
 さらに、実施の形態1ないし3と同様に、実施の形態2にかかる信号伝送絶縁デバイス1bをパワー半導体モジュールに適用することにより、高品質で安全性の高いパワー半導体モジュールを提供することができる。 Furthermore, similarly to the first to third embodiments, by applying the signal transmission insulating device 1b according to the second embodiment to a power semiconductor module, a high-quality and highly safe power semiconductor module can be provided.
 なお、本発明は、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。 In the present invention, the embodiments can be freely combined within the scope of the invention, and the embodiments can be appropriately modified or omitted.
1a 1b 1c 1d 信号伝送絶縁デバイス、2 半導体基板、
3 第1絶縁膜、4 第1コイル、5 第2コイル、
6a 6b 第2絶縁膜、7 第3絶縁膜、8a 8b 金属膜、
9 薄膜トランス構造、10 制御部、11 駆動回路、
12 制御信号、13 駆動信号、14 センサ信号、
15 下側絶縁膜、16 上側絶縁膜、17 絶縁膜、
21 パワー半導体装置、22 センサ、30 モータ、
50 パワー半導体モジュール、100 モータ駆動装置。
1a 1b 1c 1d signal transmission insulation device, 2 semiconductor substrate,
3 first insulating film, 4 first coil, 5 second coil,
6a 6b second insulating film, 7 third insulating film, 8a 8b metal film,
9 Thin-film transformer structure, 10 control unit, 11 drive circuit,
12 control signal, 13 drive signal, 14 sensor signal,
15 lower insulating film, 16 upper insulating film, 17 insulating film,
21 power semiconductor devices, 22 sensors, 30 motors,
50 power semiconductor module, 100 motor drive device.

Claims (9)

  1. 第1コイルと、
    前記第1コイルに対向し前記第1コイルとともにトランスを構成する第2コイルと、
    前記第1コイルと前記第2コイルとが対向する間に設けられ、第1の誘電体からなる第1絶縁膜と、
    前記第1コイルの前記第2コイルに対向する第一主面と前記第1絶縁膜の前記第1コイルに対向する面との間に設けられ、前記第1の誘電体よりも誘電率が高い第2の誘電体からなる第2絶縁膜と、
    前記第2コイルの前記第1コイルに対向する第二主面と前記第1絶縁膜の前記第2コイルに対向する面との間に設けられ、前記第1の誘電体よりも誘電率が高い第3の誘電体からなる第3絶縁膜と、
    を備えたことを特徴とする信号伝送絶縁デバイス。
    A first coil;
    A second coil that faces the first coil and forms a transformer together with the first coil;
    A first insulating film provided between the first coil and the second coil and made of a first dielectric;
    Provided between the first main surface of the first coil that faces the second coil and the surface of the first insulating film that faces the first coil, and has a higher dielectric constant than the first dielectric. A second insulating film made of a second dielectric;
    Provided between the second main surface of the second coil that faces the first coil and the surface of the first insulating film that faces the second coil, and has a higher dielectric constant than the first dielectric. A third insulating film made of a third dielectric;
    A signal transmission insulation device comprising:
  2. 第1コイルと、
    前記第1コイルに対向し前記第1コイルとともにトランスを構成する第2コイルと、
    前記第1コイルと前記第2コイルとが対向する間に設けられ、第1の誘電体からなる第1絶縁膜と、
    前記第1コイルの前記第2コイルに対向する第一主面と前記第1絶縁膜の前記第1コイルに対向する面との間に設けられ、前記第1の誘電体よりも抵抗率が低い第2の誘電体からなる第2絶縁膜と、
    前記第2コイルの前記第1コイルに対向する第二主面と前記第1絶縁膜の前記第2コイルに対向する面との間に設けられ、前記第1の誘電体よりも抵抗率が低い第3の誘電体からなる第3絶縁膜と、
    を備えたことを特徴とする信号伝送絶縁デバイス。
    A first coil;
    A second coil that faces the first coil and forms a transformer together with the first coil;
    A first insulating film provided between the first coil and the second coil and made of a first dielectric;
    Provided between a first main surface of the first coil facing the second coil and a surface of the first insulating film facing the first coil, and having a lower resistivity than the first dielectric. A second insulating film made of a second dielectric;
    Provided between a second main surface of the second coil facing the first coil and a surface of the first insulating film facing the second coil, and having a lower resistivity than the first dielectric. A third insulating film made of a third dielectric;
    A signal transmission insulation device comprising:
  3. 前記第2絶縁膜は、前記第1コイルの前記第一主面を覆うように形成され、
    前記第3絶縁膜は、前記第2コイルの前記第二主面を覆うように形成される、
    ことを特徴とする請求項1又は2に記載の信号伝送絶縁デバイス。
    The second insulating film is formed so as to cover the first main surface of the first coil,
    The third insulating film is formed so as to cover the second main surface of the second coil.
    The signal transmission insulation device according to claim 1 or 2, wherein
  4. 前記第1コイルは半導体基板上に形成され、
    前記第2絶縁膜は前記第1コイルの前記第一主面に垂直な側面に接するように設けられている、
    ことを特徴とする請求項3記載の信号伝送絶縁デバイス。
    The first coil is formed on a semiconductor substrate;
    The second insulating film is provided in contact with a side surface perpendicular to the first main surface of the first coil;
    The signal transmission insulation device according to claim 3.
  5. 前記第1絶縁膜では圧縮応力が発生し、
    前記第2絶縁膜及び前記第3絶縁膜では引張応力が発生する、
    ことを特徴とする請求項1乃至4のいずれか1項に記載の信号伝送絶縁デバイス。
    Compressive stress is generated in the first insulating film,
    Tensile stress is generated in the second insulating film and the third insulating film.
    5. The signal transmission insulation device according to claim 1, wherein
  6. 前記第1の誘電体はSiOである、
    ことを特徴とする請求項1乃至5のいずれか1項に記載の信号伝送絶縁デバイス。
    The first dielectric is SiO 2 ;
    The signal transmission insulation device according to claim 1, wherein
  7. 前記第2の誘電体はSiNである、
    ことを特徴とする請求項1乃至6のいずれか1項に記載の信号伝送絶縁デバイス。
    The second dielectric is SiN;
    The signal transmission insulating device according to claim 1, wherein
  8. 前記第3の誘電体はSiNである、
    ことを特徴とする請求項1乃至7のいずれか1項に記載の信号伝送絶縁デバイス。
    The third dielectric is SiN;
    The signal transmission insulation device according to claim 1, wherein the signal transmission insulation device is a signal transmission insulation device.
  9. パワー半導体装置と、
    前記パワー半導体装置を駆動する駆動回路と、
    前記駆動回路と前記パワー半導体装置を制御する制御回路との間の信号を伝送するとともに、前記駆動回路と前記制御回路とを絶縁する請求項1乃至8のいずれか1項に記載の信号伝送デバイスと、
    を備えたことを特徴とするパワー半導体モジュール。
    A power semiconductor device;
    A drive circuit for driving the power semiconductor device;
    The signal transmission device according to claim 1, wherein the signal transmission device transmits a signal between the drive circuit and a control circuit that controls the power semiconductor device, and insulates the drive circuit from the control circuit. When,
    A power semiconductor module comprising:
PCT/JP2013/079537 2013-01-18 2013-10-31 Signal transmission insulation device and power semiconductor module WO2014112179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014557327A JP5855285B2 (en) 2013-01-18 2013-10-31 Signal transmission isolation device and power semiconductor module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-007558 2013-01-18
JP2013007558 2013-01-18
JP2013164352 2013-08-07
JP2013-164352 2013-08-07

Publications (1)

Publication Number Publication Date
WO2014112179A1 true WO2014112179A1 (en) 2014-07-24

Family

ID=51209291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079537 WO2014112179A1 (en) 2013-01-18 2013-10-31 Signal transmission insulation device and power semiconductor module

Country Status (2)

Country Link
JP (1) JP5855285B2 (en)
WO (1) WO2014112179A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5889501B1 (en) * 2014-11-18 2016-03-22 三菱電機株式会社 Signal transmission isolation device and power semiconductor module
WO2016080034A1 (en) * 2014-11-18 2016-05-26 三菱電機株式会社 Signal transmission insulative device and power semiconductor module
JP2016103941A (en) * 2014-11-28 2016-06-02 三菱電機株式会社 Semiconductor module and electric power conversion system
EP4195227A1 (en) * 2021-12-09 2023-06-14 Texas Instruments Incorporated Integrated high voltage electronic device with high relative permittivity layers
WO2023171391A1 (en) * 2022-03-09 2023-09-14 ローム株式会社 Insulated chip and signal transmitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358215A (en) * 2000-06-16 2001-12-26 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2007258195A (en) * 2006-03-20 2007-10-04 Fujitsu Ltd Manufacturing method of semiconductor device and of magnetic head
JP2008258553A (en) * 2007-03-15 2008-10-23 Kyocera Corp Substrate with built-in coil
JP2010080774A (en) * 2008-09-26 2010-04-08 Rohm Co Ltd Semiconductor device
JP2011258876A (en) * 2010-06-11 2011-12-22 Mitsubishi Electric Corp High breakdown voltage flat transformer
JP2012015557A (en) * 2011-10-19 2012-01-19 Mitsubishi Electric Corp Insulation sheet and semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264525A (en) * 1988-08-31 1990-03-05 Matsushita Electric Ind Co Ltd Tn type liquid crystal panel
JP4501379B2 (en) * 2003-09-02 2010-07-14 Jsr株式会社 Method for forming ruthenium-silicon mixed film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358215A (en) * 2000-06-16 2001-12-26 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2007258195A (en) * 2006-03-20 2007-10-04 Fujitsu Ltd Manufacturing method of semiconductor device and of magnetic head
JP2008258553A (en) * 2007-03-15 2008-10-23 Kyocera Corp Substrate with built-in coil
JP2010080774A (en) * 2008-09-26 2010-04-08 Rohm Co Ltd Semiconductor device
JP2011258876A (en) * 2010-06-11 2011-12-22 Mitsubishi Electric Corp High breakdown voltage flat transformer
JP2012015557A (en) * 2011-10-19 2012-01-19 Mitsubishi Electric Corp Insulation sheet and semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5889501B1 (en) * 2014-11-18 2016-03-22 三菱電機株式会社 Signal transmission isolation device and power semiconductor module
WO2016080034A1 (en) * 2014-11-18 2016-05-26 三菱電機株式会社 Signal transmission insulative device and power semiconductor module
CN106716622A (en) * 2014-11-18 2017-05-24 三菱电机株式会社 Signal transmission insulative device and power semiconductor module
CN106716622B (en) * 2014-11-18 2019-07-05 三菱电机株式会社 Signal transmits insulator arrangement and power semiconductor modular
JP2016103941A (en) * 2014-11-28 2016-06-02 三菱電機株式会社 Semiconductor module and electric power conversion system
EP4195227A1 (en) * 2021-12-09 2023-06-14 Texas Instruments Incorporated Integrated high voltage electronic device with high relative permittivity layers
WO2023171391A1 (en) * 2022-03-09 2023-09-14 ローム株式会社 Insulated chip and signal transmitting device

Also Published As

Publication number Publication date
JP5855285B2 (en) 2016-02-09
JPWO2014112179A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP5855285B2 (en) Signal transmission isolation device and power semiconductor module
US10115684B2 (en) Semiconductor device
JP5148562B2 (en) High voltage drive circuit using capacitive signal coupling and related apparatus and method
US9431379B2 (en) Signal transmission arrangement
US9929038B2 (en) Insulating structure, a method of forming an insulating structure, and a chip scale isolator including such an insulating structure
JP4858290B2 (en) Load drive device
JP5658429B2 (en) Circuit equipment
KR102173470B1 (en) Semiconductor device
US11044022B2 (en) Back-to-back isolation circuit
JP5324829B2 (en) Semiconductor device
US10199340B2 (en) Signal transmission insulative device and power semiconductor module
JP5496541B2 (en) Semiconductor device
US10566410B2 (en) High breakdown voltage passive element
JP2014022600A (en) Semiconductor integrated circuit
JP2009065017A (en) Signal transmission device
JP5889501B1 (en) Signal transmission isolation device and power semiconductor module
JP6062486B2 (en) Semiconductor device
JP2021005598A (en) Semiconductor device and manufacturing method therefor
JP5676423B2 (en) Isolator and semiconductor device
JP5968968B2 (en) Semiconductor device
JP2013239731A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557327

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871549

Country of ref document: EP

Kind code of ref document: A1