WO2014112033A1 - 風力発電施設及びその運転方法、並びにウィンドファームの制御装置 - Google Patents

風力発電施設及びその運転方法、並びにウィンドファームの制御装置 Download PDF

Info

Publication number
WO2014112033A1
WO2014112033A1 PCT/JP2013/050523 JP2013050523W WO2014112033A1 WO 2014112033 A1 WO2014112033 A1 WO 2014112033A1 JP 2013050523 W JP2013050523 W JP 2013050523W WO 2014112033 A1 WO2014112033 A1 WO 2014112033A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
wind power
wind
voltage phase
local grid
Prior art date
Application number
PCT/JP2013/050523
Other languages
English (en)
French (fr)
Inventor
山下 幸生
篠田 尚信
丈博 名嘉
強志 若狭
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2014557209A priority Critical patent/JP5960291B2/ja
Priority to PCT/JP2013/050523 priority patent/WO2014112033A1/ja
Priority to EP13871350.8A priority patent/EP2908004B1/en
Publication of WO2014112033A1 publication Critical patent/WO2014112033A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7064Application in combination with an electrical generator of the alternating current (A.C.) type
    • F05B2220/70642Application in combination with an electrical generator of the alternating current (A.C.) type of the synchronous type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks

Definitions

  • the present disclosure relates to a wind power generation facility, an operation method thereof, and a wind farm control device.
  • a wind power generation facility generally includes a wind farm composed of a plurality of wind power generators and a wind farm controller (WF controller) that centrally controls each wind power generator.
  • WF controller wind farm controller
  • Wind power generation facilities and wind power generators connected to the grid must follow the grid code (system connection rules). For example, even if a grid fault such as a line short circuit or a ground fault occurs, the grid cord can maintain the interconnection of power generation facilities if the degree of voltage drop or the duration of voltage drop is within a predetermined range.
  • the required rule FRT; Fault Ride Through is included.
  • Patent Document 1 discloses FRT technology in a wind turbine generator in which a permanent magnet generator of a wind turbine generator is connected to a grid via a generator converter and a system inverter.
  • an electrical resistance provided between a permanent magnet generator and a generator-side converter or an electrical resistance provided between a generator-side converter and a system-side inverter is used. The surplus energy that the grid cannot receive out of the active power output from the wind turbine generator is dissipated.
  • the wind power generation facility is often provided at a location away from the connection point to the grid such as offshore or mountainous area.
  • installation may be planned in a place where the distance from the connection point to the grid exceeds 100 km.
  • direct current power transmission without reactive power is more advantageous in terms of power transmission loss than alternating current power transmission.
  • AC transmission tends to increase transmission loss, and DC transmission is considered appropriate.
  • a submarine cable generally has a structure in which a conductor is surrounded by a relatively thin layer of an insulator and a conductor sheath, and has a high capacitance.
  • the grid is connected to a grid via a high voltage direct current (HVDC) system.
  • the HVDC system has a sending converter (SEC) provided on the wind power generation facility side and a receiving converter (REC) receiving on the grid side.
  • a direct current transmission line is provided between the sending converter and the receiving converter.
  • the sending converter converts AC power from the wind power generation facility into DC power, receives the DC power via the DC power transmission path, and supplies the DC power to the converter.
  • the receiving converter converts the DC power received from the sending converter through the DC power transmission path into AC power and supplies it to the grid.
  • Patent Literature 2 and Non-Patent Literature 1 disclose FRT technology in a DC power transmission type wind power generation facility or wind power generation apparatus. Specifically, in Patent Document 2 (FIG. 20 and pages 31 to 30 lines), in a wind farm connected to a grid through a high-voltage direct current system, the pitch control of each wind power generator is performed when the system is abnormal. It describes reducing the energy received from the wind. Further, in Patent Document 2, for the purpose of improving the power generation efficiency, the frequency of the generator-side grid is changed by the high-voltage DC system, and the frequency of the fixed-speed induction generator of each wind power generator is changed. Is also disclosed.
  • Non-Patent Document 1 in a wind power generator connected to a grid via a high-voltage DC system, when a system abnormality occurs, the frequency of the sending converter is changed to adjust the slip of the DFIG type induction generator, It is described that the effective power output from the wind turbine generator is reduced.
  • Patent Document 1 it is necessary to dissipate excess energy of several percent to several tens of percent of the generated power of the entire wind farm with electric resistance, so it is necessary to install a large capacity electric resistance. There is a cost. Further, the method described in Patent Document 2 is not sufficient as an FRT technique that requires a very short time after occurrence of a system abnormality because the response speed of pitch control is relatively slow. Furthermore, the method described in Non-Patent Document 1 uses the characteristics of an induction generator whose active power depends on slip, and since there is no slip in the case of a synchronous generator, the method includes a synchronous generator. It cannot be applied to wind power generation facilities including wind power generators.
  • An object of at least one embodiment of the present invention is to provide a wind farm including a wind farm including a plurality of wind power generators each having a synchronous generator, and having a FRT function at a low cost when the system is abnormal.
  • An operation method and a wind farm control device are provided.
  • a wind power generation facility includes a wind farm including a plurality of wind power generators each having a synchronous generator, a local grid to which the wind farm is connected, and between the local grid and the grid.
  • a direct current transmission line provided in the transmission line, a sending converter for converting alternating current power from the local grid into direct current power and supplying the direct current power transmission line, and converting the direct current power from the direct current transmission line into alternating current power
  • a receiving converter for supplying to the grid, an abnormality detecting unit for detecting an abnormal event of the grid, and a local event in the local grid when the abnormal event of the grid is detected by the abnormality detecting unit. Shows the difference in generator voltage phase of the synchronous generator of each wind turbine generator with respect to the grid voltage phase By controlling the feed converter as the load angle becomes smaller, characterized in that it comprises a first 1WF controller for adjusting the local grid voltage phase.
  • the sending converter adjusts the local grid voltage phase under the control of the first WF controller, and the load angle of the synchronous generator of each wind power generation device Decrease.
  • the power generation output (active power) of each wind power generation device of the wind farm is quickly reduced collectively by the control of the sending converter, and the wind farm is able to reduce the effective power that can be supplied from the sending converter to the grid side. It is possible to alleviate a state where the generated effective power is excessive. Moreover, it is not necessary to introduce a component for dissipating excess energy such as electrical resistance. Therefore, the FRT function when the system is abnormal can be realized at low cost.
  • the first WF controller determines a target local grid voltage phase such that a sum of squares of deviations from the generator voltage phase for each wind turbine generator is minimized, and the local grid voltage phase Is configured to control the delivery transducer such that is at the target local grid voltage phase.
  • the target local grid voltage phase can be obtained so that the sum of the squares of deviations from the generator voltage phase for each wind turbine generator is minimized.
  • some synchronous generators have negative load angles. Some of the synchronous generators having negative load angles temporarily function as motors, and receive and consume active power from other synchronous generators. Therefore, it is possible to effectively relieve the state where the effective power generated from the wind farm is excessive with respect to the effective power that can be supplied from the sending converter to the grid side.
  • the first WF controller selects a minimum phase among the generator voltage phases for each wind turbine generator as a target local grid voltage phase, and the local grid voltage phase is the target local grid voltage phase. It is comprised so that the said delivery converter may be controlled. Thereby, the load angle of all the synchronous generators can be set to zero or more so that the synchronous generators do not function as motors even if temporarily. Therefore, the said structure of a 1st WF controller is suitable when it wants to avoid the burden on the drive train of a wind power generator resulting from the motor operation
  • each wind turbine generator is driven by wind energy to generate pressure oil and is driven by the pressure oil to input mechanical energy to the synchronous generator.
  • the apparatus further includes a second WF controller configured to send a command value of the displacement volume to the motor control unit so that the mechanical energy of the hydraulic motor of the power generation apparatus is reduced.
  • the mechanical energy input from the hydraulic motor to the synchronous generator is quickly reduced in the event of a system abnormality, and the synchronous generator rotor acceleration is caused by a mismatch between the mechanical energy and the power generation output of the synchronous generator. Can be suppressed.
  • the second WF controller determines a reduction amount of the mechanical energy for each wind turbine generator based on individual information of each wind turbine generator, and based on the reduction amount, the second WF controller Send the command value to the hydraulic motor.
  • the second WF controller limits the load angle to a range of 0 rad or more with respect to a wind power generator having a rotor rotational speed that reaches a rated rotational speed among the plurality of wind power generators.
  • the load angle is configured to allow a range of less than 0 rad.
  • each wind power generator of the wind farm has an abnormal event of the grid caused by an exciter for supplying a field current to a field winding of the synchronous generator and the abnormality detection unit. Immediately after being detected, it further includes an exciter control unit for controlling the exciter of each wind power generator so that the field current increases.
  • the generator terminal voltage of the synchronous generator decreases instantaneously, and the electrical output (active power) of the generator also decreases instantaneously. Therefore, the mechanical input from the hydraulic motor becomes excessive with respect to the electrical output of the generator, the rotor of the synchronous generator is accelerated, and the synchronous generator may be stepped out.
  • a wind power generation facility operating method includes a wind farm including a plurality of wind power generators each having a synchronous generator, a local grid to which the wind farm is connected, and the local grid A DC transmission path provided between the grid and the grid, a sending converter for converting AC power from the local grid into DC power and supplying the DC power to the DC transmission path, and the DC power from the DC transmission path
  • a wind power generation facility comprising a receiving converter for converting AC power into AC power and supplying the converted power to the grid, wherein the detection step detects an abnormal event of the grid, and the abnormal event is detected by the detection step.
  • each wind turbine generator for the local grid voltage phase in the local grid The load angle indicating the difference between the generator voltage phase of the synchronous generator characterized by comprising a converter control step of controlling the delivery transducer so as to decrease the.
  • the local grid voltage phase is adjusted by the control of the sending converter, and the load angle of the synchronous generator of each wind power generator is set. Get smaller.
  • the power generation output (active power) of each wind power generation device of the wind farm is quickly reduced collectively by the control of the sending converter, and the wind farm is able to reduce the effective power that can be supplied from the sending converter to the grid side. It is possible to alleviate a state where the generated effective power is excessive. Moreover, it is not necessary to introduce a component for dissipating excess energy such as electrical resistance. Therefore, the FRT function when the system is abnormal can be realized at low cost.
  • the converter control step determines a target local grid voltage phase such that a sum of squares of deviations from the generator voltage phase for each wind turbine generator is minimized, and the local grid voltage The delivery converter is controlled so that the phase becomes the target local grid voltage phase.
  • the active power generated from the entire wind farm can be effectively reduced.
  • Some synchronous generators with negative load angles temporarily function as motors, accepting and consuming active power from other synchronous generators. Therefore, it is possible to effectively relieve the state where the effective power generated from the wind farm is excessive with respect to the effective power that can be supplied from the sending converter to the grid side.
  • the converter control step selects a minimum phase among the generator voltage phases for each wind turbine generator as a target local grid voltage phase, and the local grid voltage phase is the target local grid voltage.
  • the delivery converter is controlled so as to be in phase.
  • the load angle of all the synchronous generators can be set to zero or more so that the synchronous generators do not function as motors even if temporarily. Therefore, the above content of the converter control step is suitable when it is desired to avoid a burden on the drive train of the wind turbine generator due to the motor operation of the synchronous generator.
  • each wind turbine generator is driven by wind energy to generate pressure oil and is driven by the pressure oil to input mechanical energy to the synchronous generator.
  • a hydraulic motor and a motor control unit that controls a displacement of the hydraulic motor of each wind power generation device, and the wind power generation facility operating method is configured such that when the abnormal event is detected by the detection step,
  • the apparatus further includes a motor command step of sending a command value of the displacement volume to the motor control unit so that the mechanical energy of the hydraulic motor of the power generator is reduced.
  • the motor command step determines a reduction amount of the mechanical energy for each wind power generation device based on individual information of each wind power generation device, and the wind power generation device determines the mechanical energy reduction amount based on the reduction amount.
  • the load angle is limited to a range of 0 rad or more with respect to the wind power generator in which the rotor rotational speed has reached the rated rotational speed among the plurality of wind power generators. With respect to the load angle, a range of less than 0 rad is allowed.
  • the wind turbine generator synchronous generator that has received a relatively weak wind and the rotor rotation speed has not yet reached the rated rotation speed temporarily functions as a motor, and the effective power from other wind turbine generators. Can be consumed. Therefore, it is possible to effectively relieve the state where the effective power generated from the wind farm is excessive with respect to the effective power that can be supplied from the sending converter to the grid side.
  • each wind power generation device of the wind farm further includes an exciter for supplying a field current to a field winding of the synchronous generator
  • the operation method of the wind power generation facility includes: The exciter control step of controlling the exciter of each wind power generator so that the field current increases immediately after the abnormal event is detected by the detecting step.
  • a wind farm control device includes a plurality of synchronous generators each connected to a local grid connected to a grid via a sending converter, a DC transmission line, and a receiving converter.
  • the wind farm control device including the wind power generator of the synchronous generator of each wind power generator with respect to the local grid voltage phase in the local grid when an abnormal event of the grid is detected And a first WF controller for controlling the delivery converter so as to adjust the local grid voltage phase so that a load angle indicating a difference between the first and second converters is reduced.
  • the sending converter adjusts the local grid voltage phase under the control of the first WF controller, and the load angle of the synchronous generator of each wind power generation device. Decrease.
  • the power generation output (active power) of each wind power generation device of the wind farm is quickly reduced collectively by the control of the sending converter, and the wind farm is able to reduce the effective power that can be supplied from the sending converter to the grid side. It is possible to alleviate a state where the generated effective power is excessive. Moreover, it is not necessary to introduce a component for dissipating excess energy such as electrical resistance. Therefore, the FRT function when the system is abnormal can be realized at low cost.
  • the local grid voltage phase is adjusted by control of the feed converter to reduce the load angle of the synchronous generator of each wind turbine generator.
  • the power generation output (active power) of each wind power generation device of the wind farm is quickly reduced collectively by the control of the sending converter, and the wind farm is able to reduce the effective power that can be supplied from the sending converter to the grid side. It is possible to alleviate a state where the generated effective power is excessive. Moreover, it is not necessary to introduce a component for dissipating excess energy such as electrical resistance. Therefore, the FRT function when the system is abnormal can be realized at low cost.
  • FIG. 3 is a diagram illustrating a principle of determination of a target local grid voltage phase D SEC_tgt in a target phase determination unit in the embodiment
  • FIG. 3A is a vector diagram during normal operation in which no abnormal event occurs in the grid 3 (b) and 3 (c) are vector diagrams after an abnormal event occurs in the grid.
  • 6 is a graph showing an exemplary relationship between active power Pe and load angle D before and after occurrence of an abnormal event in the grid.
  • FIG. 1 is a diagram illustrating an overall configuration of a wind power generation facility according to an embodiment. As shown in the figure, the wind power generation facility 1 is provided between a wind farm 10 including a plurality of wind power generation devices 12, a local grid 2 to which the wind farm 10 is connected, and the local grid 2 and the grid 4. HVDC20.
  • Each wind power generator 12 of the wind farm 10 uses the rotational energy of the rotor 13 that receives wind to rotate, the drive train 14 connected to the rotor 13, and the rotor 13 transmitted through the drive train 14 as electric energy. And a synchronous generator 15 for conversion.
  • the blades of the rotor 13 can be adjusted in pitch angle by a pitch control mechanism that operates under the control of the pitch control device 18.
  • the drive train 14 includes a variable displacement hydraulic pump 14A driven by a rotor 13 and a variable displacement drive driven by pressure oil generated by the hydraulic pump 14A.
  • Hydraulic motor 14B The hydraulic pump 14A and the hydraulic motor 14B are connected to each other via a high pressure oil line 14C and a low pressure oil line 14D. Therefore, the hydraulic oil (high pressure oil) discharged from the hydraulic pump 14A is supplied to the hydraulic motor 14B via the high pressure oil line 14C, and the hydraulic oil (low pressure oil) after working in the hydraulic motor 14B is the low pressure oil line 14D. Is returned to the hydraulic pump 14A. Note that an oil tank in which hydraulic oil is stored may be connected to the low-pressure oil line 14D.
  • an accumulator 14E is connected to the high pressure oil line 14C.
  • the accumulator 14E prevents pulsation in the high-pressure oil line 14C, accumulates high-pressure oil generated by the hydraulic pump 14A, and absorbs the difference between the discharge amount of the hydraulic pump 14A and the suction amount of the hydraulic motor 14B.
  • the wind power generator 12 further includes an exciter 16 for supplying a field current to the field winding of the synchronous generator 15.
  • the displacements of the hydraulic pump 14A and the hydraulic motor 14B are controlled by the pump control unit 17A and the motor control unit 17B, respectively.
  • the drive train 14 includes a gear-type gearbox provided between the rotor 13 and the generator 15.
  • the HVDC 20 is a sending converter (SEC) 22 that converts AC power from the local grid 2 into DC power, and a receiving converter (REC) that converts DC power received from the SEC 22 side into AC power and supplies it to the grid 4. 24 and a DC power transmission path 26 provided between the SEC 22 and the REC 24.
  • SEC sending converter
  • REC receiving converter
  • DC power transmission path 26 provided between the SEC 22 and the REC 24.
  • wind farm 10 and SEC 22 are installed offshore, and grid 4 and REC 24 are installed on land.
  • most of the DC power transmission line 26 is a submarine cable installed on the seabed.
  • the wind power generation facility 1 linked to the grid 4 needs to comply with the requirements of the grid code. For example, even if a system fault such as a line short circuit or a ground fault occurs, the wind power generation facility 1 maintains the connection to the grid 4 if the degree of voltage drop and the duration of the voltage drop are within a predetermined range. Must be done (FRT). At this time, the wind power generation facility 1 has the following effects. First, due to the occurrence of an abnormal event in the grid 4, the effective power that can be sent from the HVDC 20 to the grid 4 decreases.
  • the output of active power from the wind farm 10 is suppressed by the control of the SEC 22 when an abnormal event of the grid 4 occurs.
  • a wind farm centralized control device (WF centralized control device) 6 is provided in the wind power generation facility 1, and the first WF controller 30 included in the WF centralized control device 6 performs the wind In order to suppress the output of active power from the farm 1, the SEC 22 is controlled.
  • FIG. 2 is a block diagram illustrating control logic in the first WF controller 30 according to an embodiment.
  • the first WF controller 30 determines the load angle calculation unit 32 for calculating the load angle of the synchronous generator 15 of each wind turbine generator 12 and the target local grid voltage phase of the local grid 2.
  • a command value output unit 36 that outputs a command value to the SEC 22 based on the target local grid voltage phase.
  • the load angle calculation unit 32 receives the detection result of the abnormal event in the grid 4 from the abnormality detection unit 28, the generator voltage of the synchronous generator 15 of each wind power generator 12-i (where i is an integer of 2 or more). get the phase angle d i from the wind farm 10, to obtain a local grid voltage phase angle D SEC local grid 2 from the detector 27.
  • the reason why the load angle D i is calculated for each wind power generator 12-i is that the load angle D i varies depending on the power generation output of each wind power generator 12-i.
  • the target phase determination unit 34 obtains the target local grid voltage phase D SEC_tgt of the local grid 2 based on the load angle D i received from the load angle calculation unit 32.
  • the target local grid voltage phase D SEC_tgt is determined so that the load angle D i for each wind turbine generator 12- i is small.
  • the command value output unit 36 sends a command value (for example, a PWM signal as a command value) to the SEC 22 so that the target local grid voltage phase D SEC_tgt is realized.
  • the SEC 22 adjusts the voltage phase of the local grid 2 to the target local grid voltage phase D SEC_tgt according to the command value from the command value output unit 36.
  • FIG. 3 is a diagram illustrating the principle of determination of the target local grid voltage phase D SEC_tgt in the target phase determination unit 34 according to the embodiment
  • FIG. 3 (a) is a diagram during normal operation in which no abnormal event has occurred in the grid 4.
  • FIG. 3B and FIG. 3C are vector diagrams after an abnormal event occurs in the grid 4.
  • 3 (a) to 3 (c) describe the case where the wind farm 10 includes two wind power generators 12-1 and 12-2.
  • the target local grid voltage phase DSEC_tgt can be determined based on the same principle even when there are three or more units.
  • the vectors 101 and 102 indicating the generator voltage of the synchronous generator 15 of the wind power generators 12-1 and 12-2 are the local grid voltage in the local grid 2, respectively. having a phase difference angle D 1 and D 2 to the vector 100 showing the.
  • This synchronous generator 15 of the wind turbine generator 12-1 and 12-2 it is operated at synchronous speed at a load angle D 1 and D 2 only phase leading with respect to the voltage phase of the local grid 2 Means. It is known that the effective power output from the synchronous generator is proportional to the sine function of the load angle.
  • the active power from the synchronous generator 15 of each wind power generator 12-1 and 12-2 can be treated as being proportional to the load angles D 1 and D 2. it can. Therefore, if the target phase determination unit 34 sets the target local grid voltage phase D SEC_tgt closer to the load angles D 1 and D 2 , the load angle of each of the wind turbine generators 12-1 and 12-2 is reduced by the control of the SEC 22. Thus, the effective power output from the synchronous generator 15 can be suppressed.
  • Set target local grid voltage phase D SEC_tgt to a value between D 2 .
  • the target local grid voltage phase D SEC_tgt may be set such that the evaluation function J shown in the following equation is minimized.
  • the load angle of the synchronous generator 15 of each wind power generator 12-1, 12-2 is reduced by the control of the SEC 22, and the active power from the wind farm 10 is reduced. Output is suppressed.
  • the synchronous generator 15 of some wind power generators in the example shown in FIG. 3B, the wind power generator 12-1) temporarily functions as a motor with a negative load angle. It accepts and consumes active power from the synchronous generator 15 of another wind power generator (wind power generator 12-2 in the example shown in FIG. 3B). Therefore, it is possible to effectively relieve the state in which the effective power output from the wind farm 10 is excessive with respect to the effective power that can be received from the SEC 22 on the grid 4 side.
  • the smallest load angle D 2 is selected from among the load angles (D 1 , D 2 ) for all wind power generators 12-1, 12-2, the target local grid voltage phase D SEC_tgt set to the minimum load angle D 2.
  • the target local grid voltage phase D SEC_tgt is set by the above method, the load angle of the synchronous generator 15 of each wind power generator 12-1, 12-2 is reduced by the control of the SEC 22, and the active power from the wind farm 10 is reduced. Output is suppressed.
  • the load angle of the synchronous generator 15 of all the wind power generators 12-1 and 12-2 is maintained at zero or more, the synchronous generator 15 can function as a motor even if temporarily. There can be no. Therefore, the above method is suitable when it is desired to avoid the burden on the drive train of the wind turbine generator due to the motor operation of the synchronous generator.
  • the effective power output from the synchronous generator 15 rapidly decreases as the terminal voltage of the synchronous generator 15 decreases, so that the mechanical input from the hydraulic motor 14 ⁇ / b> B is synchronously generated.
  • the electrical output of the machine 15 may be exceeded and the rotor of the synchronous generator 15 may be accelerated.
  • the mechanical input from the hydraulic motor 14B is more than the electrical output of the synchronous generator 15. It becomes further excessive and the rotor of the synchronous generator 15 is likely to be accelerated.
  • FIG. 4 is a graph showing an exemplary relationship between the active power Pe and the load angle D before and after the occurrence of an abnormal event in the grid 4.
  • abnormal event at the grid 4 will occur, rapidly decreases the terminal voltage of the synchronous generator 15 is also reduced sharply active power P e which is output from the alternator 15 (state 1 ⁇ state 2 in FIG. 4).
  • the grid 4 may have a plurality of lines in order to minimize the influence of an accident such as a short circuit between lines or a ground fault. In this case, the grid 4 is cut off by interrupting the line where the accident occurred. An abnormal event is removed.
  • the synchronizing force dP / dD that tries to return the load angle D to D a works, so that the load angle D is stable at D a .
  • the P e -D curve of the synchronous generator 15 instantaneously drops from the state 1 to the state 2.
  • the inertia of the rotor of the synchronous generator 15 the load angle D remains D a. Therefore, the operating point of the synchronous generator 15 instantaneously shifts from the l point to the m point due to the occurrence of an abnormal event.
  • the mechanical input P m from the hydraulic motor 14B is excessive relative to the electrical output P e of the synchronous generator 15 and the rotor of the synchronous generator 15 is accelerated toward the m points in n points
  • the operating point of the synchronous generator 15 moves. Therefore, the load angle D increases toward the D b from D a.
  • the load angle D is when it reaches the D b, abnormal event has occurred line is interrupted, abnormal event are retired.
  • the P e -D curve of the synchronous generator 15 instantaneously increases from the state 2 to the state 3.
  • the load angle D remains D b.
  • the operating point of the synchronous generator 15 instantaneously shifts from the n point to the o point. Therefore, the electrical output P e of the synchronous generator 15 is now above the mechanical input P m from the hydraulic motor 14B, the rotor of the synchronous generator 15 starts to be decelerated. Therefore, the load angle D is started to decline after reaching D c, although subsequent load angle to vibrate repeatedly increase and decrease, eventually stably attenuated by the damping force of the synchronous generator 15 become.
  • p point is turning point of load angle D is an acceleration energy represented by area S 1 surrounded by P e -D curve at the input P m and state 2 from the hydraulic motor 14B, P in the state 3 e a deceleration energy represented by area S 2 surrounded by the output P m of -D curve and the hydraulic motor 14 is operating point matching.
  • the rotor of the synchronous generator 15 may be accelerated with the occurrence of an abnormal event in the grid 4.
  • the load angle of the synchronous generator 15 becomes large, and eventually the synchronous generator 15 will step out beyond the stability limit. Therefore, when an abnormal event occurs in the grid 4, mechanical input from the hydraulic motor 14 ⁇ / b> B of each wind power generator 12 to the synchronous generator 15 may be suppressed.
  • a command value for the displacement volume of the hydraulic motor 14B is given to the motor control unit 17B from the second WF controller 40 included in the WF centralized control device 6, and the mechanical force of the hydraulic motor 14B is increased. Reduce input (mechanical energy).
  • FIG. 5 is a block diagram illustrating control logic in the second WF controller 40 according to an embodiment.
  • the second WF controller 40 determines a load angle calculation unit 42 for calculating the load angle of the synchronous generator 15 of each wind turbine generator 12 and a target load angle for each wind turbine generator 12. And a command value output unit 46 that outputs a command value to the motor control unit 17B based on the target load angle.
  • the load angle calculation unit 42 receives the detection result of the abnormal event in the grid 4 from the abnormality detection unit 28, each of the wind power generators 12-i (where i is an integer of 2 to N, where N is the wind farm 10).
  • Target load angle determination unit 44 based on the individual information of each wind turbine generator 12-i received from the load angle D i and the wind farm 10 received from the load angle calculating section 42, a target for each wind turbine generator 12-i The load angle D i_tgt is determined.
  • the individual information of each wind turbine generator 12-i includes the wind speed, the blade pitch angle of the rotor 13, the rotation speed of the rotor 13, the pressure of the accumulator 14E, the power generation output, the reactive power, the power factor, and the power loss of the feeder cable.
  • the command value output unit 46 sends the command value of the displacement volume of the hydraulic motor 14B to the motor control unit 17B of each wind power generator 12-i so that the target load angle D i_tgt is realized for each wind power generator 12-i. send.
  • the motor control unit 17B adjusts the displacement volume of the hydraulic motor 14B according to the command value from the command value output unit 46.
  • the second WF controller 40 includes a target mechanical input determination unit instead of the target load angle determination unit 44.
  • the target mechanical input determination unit determines the target mechanical input P m_tgt based on the individual information of each wind turbine generator 12-i acquired from the wind farm 10, the terminal voltage of the synchronous generator 15, and the internal induced voltage.
  • the target mechanical input P m_tgt is set to a value smaller than the mechanical input P m before the occurrence of the abnormal event in the grid 4.
  • the command value output unit 46 determines the command value of the displacement volume of the hydraulic motor 14B to the motor control unit 17B of each wind power generator 12-i so that the target mechanical input Pm_tgt is realized.
  • the command value output unit 46 displacement of the hydraulic motor 14B by dividing the target mechanical input (target mechanical energy) P m_tgt at the pressure P H of the speed and the high pressure oil passage 14C of the hydraulic motor 14B volume
  • the command value may be determined.
  • the motor control unit 17B of each wind power generator 12-i adjusts the displacement volume of the hydraulic motor 14B according to the command value from the command value output unit 46.
  • Figure 6 is a diagram showing the effect on the balance between the mechanical input P m control by the 2WF controller 40 according to the embodiment according to the electrical output P e and the hydraulic motor 14B of the synchronous generator 15.
  • Figure 6 is similar to FIG. 4, the process proceeds to P e -D curve state 2 from P e -D curve state 1 by the occurrence of abnormal event at the grid 4, then retirement of abnormal events in the grid 4 Exemplifies the case of shifting to the P e -D curve in state 3.
  • the change in the P e -D curve as in the states 1 to 3 shown in FIG. 6 can be detected from the terminal voltage and the internal induced voltage of the synchronous generator 15.
  • the Pe-D curve is instantaneously lowered from the state 1 to the state 2, and the operating point of the synchronous generator 15 is changed from the l point to the m point. migrated, the load angle D with the acceleration of the rotor of the synchronous generator 15 starts to increase from D a to. Therefore, the target load angle determination unit 44 sets the target load angle D i_tgt , and the command value output unit 46 sets a new mechanical input P m2 that can suppress the load angle D of the synchronous generator 15 to the target load angle D i_tgt. A command value for the displacement volume of the hydraulic motor 14B to be realized is immediately sent to the motor control unit 17B.
  • the n point is turning point of load angle D close to the m points
  • the synchronization of the time P e -D curve is state 2
  • the maximum value D max of the load angle D of the generator 15 can be reduced.
  • the target load angle determination unit 44 sets the target load angle D i_tgt again, and the command value output unit 46 However, the command value of the displacement volume of the hydraulic motor 14B for realizing the new mechanical input P m3 that can bring the load angle D of the synchronous generator 15 close to the new target load angle D i_tgt is immediately sent to the motor control unit 17B. .
  • the target mechanical input determination unit sets the target mechanical input P m_tgt to P m2 , and this target mechanical input P m2
  • the command value of the hydraulic motor 14B for realizing the above is given from the command value output unit 46 to the motor control unit 17B of each wind turbine generator 12-i.
  • the target mechanical input determination unit sets the target mechanical input P m_tgt to P m3, and a new hydraulic motor 14B for realizing the target mechanical input P m3 is set.
  • the command value is given from the command value output unit 46 to the motor control unit 17B of each wind turbine generator 12-i.
  • the target load angle determination unit 44 and the target mechanical input determination unit consider the individual information of each wind turbine generator 12 when determining the target load angle D i_tgt or the target mechanical input P m_tgt. .
  • FIG. 7 is a diagram illustrating an example of individual information of each wind turbine generator 12.
  • a wind farm 10 shown in FIG. 1 includes a plurality of wind power generators 12 belonging to each of groups 1 to 3.
  • Each wind power generator 12 of the wind farm 10 has at least one of wind speed, blade pitch angle of the rotor 13, rotational speed of the rotor 13, pressure of the accumulator 14E, power generation output, reactive power, power factor, and power loss of the feeder cable.
  • Individual information including As shown in FIG. 7, the magnitudes of the wind speed received by the wind power generators 12 belonging to the groups 1 to 3 are V1, V2, and V3, respectively, and are different among the groups 1 to 3. Even within the same group, the wind speed varies depending on the individual wind power generator 12.
  • each wind power generator 12 since a typical variable speed wind power generator is operated at a desired operating point corresponding to the wind speed, if the wind speed of each wind power generator 12 is different, the operation state of each wind power generator 12 (the pitch angle of the blade, The rotational speed of the rotor 13, the pressure of the accumulator 14E, the power generation output, the reactive power, and the power factor) are also different. Furthermore, since each wind power generator 12 has the difference in the length of the feeder cable to HVDC20, the power loss of a feeder cable differs mutually.
  • the target load angle determination unit 44 calculates the target load angle D i_tgt for the wind power generator 12 that has a large contribution to the active power output from the entire wind farm 10 based on the individual information of the wind power generator 12. It is set smaller than other wind power generators 12. For example, since the wind power generator 12 with a large wind speed and a small distance to the HVDC 20 has a large contribution to the active power output from the entire wind farm 10, the wind power generator 12 has a target compared to the wind power generator 12 with a small wind speed and a large distance to the HVDC 20.
  • the load angle Di_tgt is set small.
  • the target load angle determination unit 44 sets the target load angle D i_tgt for the wind power generator 12 with a small pressure P ACC of the accumulator 14E based on the individual information of the wind power generator 12 to the other wind power generators 12. Set smaller than.
  • the mechanical input P m of the hydraulic motor 14B is decreased, and the balance between the discharge amount of the hydraulic pump 14A and the suction amount of the hydraulic motor 14B is lost, and the high pressure oil line The pressure of 14C tends to increase.
  • the target load angle D i_tgt for the wind turbine generator having an accumulator 14E that can absorb the difference between the discharge amount of the hydraulic pump 14A and the suction amount of the hydraulic motor 14B (that is, the accumulator 14E having a small pressure P ACC ) is set to other values .
  • the target mechanical input determination unit determines the target mechanical input P m_tgt for the wind power generator 12 with a small pressure P ACC of the accumulator 14E based on the individual information of the wind power generator 12 It is set smaller than the wind power generator 12.
  • the target load angle determination unit 44 sets the target load angle D i_tgt to 0 rad for the wind turbine generator 12 in which the rotation speed of the rotor 13 has reached the rated rpm based on the individual information of the wind turbine generator 12.
  • the above range is set, and the target load angle Di_tgt related to the other wind turbine generators 12 is allowed to be less than 0 rad. Accordingly, the synchronous generator 15 of the wind power generator 12 that has received a relatively weak wind and the rotational speed of the rotor 13 has not yet reached the rated rotational speed is temporarily functioned as a motor, so that another wind power generator The active power from 12 can be consumed. Therefore, it is possible to effectively relieve the state where the effective power generated from the wind farm 10 is excessive with respect to the effective power that can be supplied from the SEC 22 to the grid 4 side.
  • the displacement of the hydraulic pump 14A by the pump controller 17A is avoided in order to avoid deviation from the pressure management range of the high pressure oil line 14C due to adjustment of the displacement of the hydraulic motor 14B by the motor controller 17B.
  • adjustment of the pitch angle by the pitch controller 18 is performed.
  • the difference between the suction amount of the hydraulic motor 14B and the discharge amount of the hydraulic pump 14A determined from the displacement volume of the hydraulic motor 14B is The motor control unit 17A adjusts the displacement volume of the hydraulic pump 14A so as to decrease.
  • the pitch control part 18 adjusts the pitch angle of a braid
  • the exciter 16 of each wind power generator 12 is controlled so that the field current of the synchronous generator 15 increases immediately after an abnormal event in the grid 4 is detected by the anomaly detector 28.
  • Increasing the field current means lifting the P e -D curve in the state 2 or 3 in FIGS. 4 and 6 upward.
  • an internal induced voltage of the synchronous generator 15 is increased, the electrical output P e of the synchronous generator 15 is increased. Therefore, the synchronization force dP e / dD of the synchronous generator 15 is increased, the first wave fluctuation of the synchronous generator 15 after the occurrence of the abnormal event is suppressed, and the transient stability is improved. In this way, the step-out of the synchronous generator 15 is prevented.
  • Such control of the exciter 16 for improving the transient stability can be suitably performed by, for example, thyristor type super-fast response excitation control.
  • a power system stabilizer (PSS: Power System Stabilizer) may be provided in the exciter controller 19.
  • FIG. 8 is a flowchart illustrating a procedure of a method for operating a wind power generation facility according to an embodiment. As shown in FIG. 8, it is determined whether or not an abnormal event of the grid 4 is detected by the abnormality detection unit 28 (step S2). If no abnormal event of the grid 4 is detected, step S2 is repeated. If abnormal event of the grid 4 has been detected, the process proceeds to step S4, and calculates the load angle D i of the synchronous generator 15 of the wind turbine generators 12.
  • step S6 the target local grid voltage phase D SEC_tgt is determined so that the load angle D i related to each wind power generator 12-i becomes small.
  • step S8 the voltage phase of the local grid 2 is adjusted to the target local grid voltage phase D SEC_tgt by the SEC 22 so that the target local grid voltage phase D SEC_tgt is realized (step S8).
  • step S10 based on the load angle D i of the synchronous generator 15 and the individual information of each wind power generator 12-i received from the wind farm 10, the target load angle D i_tgt related to each wind power generator 12-i. To decide.
  • the individual information of each wind turbine generator 12-i includes the wind speed, the blade pitch angle of the rotor 13, the rotation speed of the rotor 13, the pressure of the accumulator 14E, the power generation output, the reactive power, the power factor, and the power loss of the feeder cable. Including at least one of Then, the displacement of the hydraulic motor 14B is adjusted by the motor control unit 17B of each wind power generator 12-i so that the target load angle D i_tgt is realized for each wind power generator 12-i (step S12). Furthermore, in step S14, the exciter 16 of each wind power generator 12 is controlled so that the field current of the synchronous generator 15 increases.
  • step S2 when an abnormal event occurs in the grid 4 in step S2, the control of the SEC 22 including steps S4 to S8, the control of the hydraulic motor 14B including steps S10 to S12, and Although the control of the exciter 16 including step S14 is sequentially performed, in other embodiments, the order of these controls may be changed, or at least two of these controls may be performed in parallel.
  • step S2 the determination result of whether there is an abnormal event in the grid 4
  • the calculation of the load angle D i in step S4 the determination of the target local grid voltage phase D SEC_tgt in step S6, and the target load in step S10
  • the determination of the angle D i_tgt may be performed constantly.
  • the SEC 22 is controlled using the target local grid voltage phase D SEC_tgt that has already been determined, and the hydraulic motor 14B using the target load angle D i_tgt that has already been determined. It is possible to perform control.
  • the displacement of the hydraulic motor 14B in step S12 is adjusted based on the target load angle Di_tgt determined in step S10.
  • the displacement of the hydraulic motor 14B is adjusted based on the individual information of each wind turbine generator 12-i obtained from the above and the target mechanical input P m_tgt determined based on the terminal voltage and the internal induced voltage of the synchronous generator 15. Also good.
  • the SEC 22 adjusts the local grid voltage phase under the control of the first WF controller 30, and each wind power The load angle Di of the synchronous generator 15 of the power generator 12- i is decreased.
  • the power generation output (active power) of each wind power generation device 12-i of the wind farm 10 is rapidly reduced collectively by the control of the SEC 22, and the wind farm is compared with the effective power that can be supplied from the SEC 22 to the grid 4 side.
  • the state where the active power generated from 10 is excessive can be relaxed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

 風力発電施設は、同期発電機をそれぞれ有する複数の風力発電装置を含むウィンドファームと、前記ウィンドファームが接続されるローカルグリッドと、前記ローカルグリッドとグリッドとの間に設けられる直流送電路と、前記ローカルグリッドからの交流電力を直流電力に変換して前記直流送電路に供給するための送り出し変換器と、前記直流送電路からの前記直流電力を交流電力に変換して前記グリッドに供給するための受け取り変換器と、前記グリッドの異常事象を検出するための異常検出部と、前記異常検出部によって前記グリッドの異常事象が検出されたとき、前記ローカルグリッドにおけるローカルグリッド電圧位相に対する、各風力発電装置の前記同期発電機の発電機電圧位相の差を示す負荷角が小さくなるように前記送り出し変換器を制御して前記ローカルグリッド電圧位相を調節するための第1WFコントローラとを備える。

Description

風力発電施設及びその運転方法、並びにウィンドファームの制御装置
 本開示は、風力発電施設及びその運転方法並びにウィンドファームの制御装置に関する。
 近年、地球環境の保全の観点から、大規模な風力発電施設の普及が進んでいる。風力発電施設は、一般に、複数の風力発電装置からなるウィンドファームと、各風力発電装置を集中制御するウィンドファームコントローラ(WFコントローラ)とを備えている。
 グリッド(系統)に連系される風力発電施設や風力発電装置はグリッドコード(系統連系規定)に従う必要がある。グリッドコードには、例えば、線路短絡や地絡等の系統事故が発生しても、電圧低下の程度や、電圧低下の継続時間が所定の範囲内であれば、発電施設の連系の維持を求める規定(FRT;Fault Ride Through)が含まれている。
 例えば、特許文献1には、発電機側コンバータ及び系統側インバータを介して、風力発電装置の永久磁石式発電機がグリッドに接続された風力発電装置におけるFRT技術が開示されている。特許文献1のFRT技術では、永久磁石式発電機と発電機側コンバータとの間に設けられた電気抵抗や、発電機側コンバータと系統側インバータとの間に設けられた電気抵抗を利用して、風力発電装置から出力される有効電力のうち、グリッドが受け取ることができない余剰エネルギーを消散するようになっている。
 ところで、風力発電施設は、洋上や山間部などグリッドへの接続点から離れた場所に設けられることが多い。例えば、洋上風力発電施設では、グリッドへの接続点からの距離が100kmを超すような場所に設置を計画することがあり得る。この場合、風力発電施設からグリッドの接続点までの送電距離が大きいと、無効電力が存在しない直流送電の方が交流送電に比べて送電ロスの観点で有利である。特に、長距離の海底ケーブルを用いる必要がある場合には、交流送電だと送電ロスが大きくなる傾向にあり、直流送電が適切であるとされている。これは、海底ケーブルは、一般的に、絶縁体および導体シースの比較的薄い層で導体が囲まれた構成になっており、高い静電容量を有するためである。
 直流送電方式の風力発電施設では、高圧直流(HVDC;High Voltage Direct Current)システムを介してグリッドに接続される。HVDCシステムは、風力発電施設側に設けられる送り出し変換器(SEC;Sending End Converter)と、グリッド側に設けられる受け取り変換器(REC;Receiving End Converter)とを有している。送り出し変換器と受け取り変換器の間には、直流送電路が設けられる。送り出し変換器は、風力発電施設からの交流電力を直流電力に変換し、直流送電路を介して受け取り変換器に直流電力を供給する。受け取り変換器は、直流送電路を介して送り出し変換器から受け取った直流電力を交流電力に変換し、グリッドにこれを供給する。
 特許文献2及び非特許文献1には、直流送電方式の風力発電施設又は風力発電装置におけるFRT技術が開示されている。
 具体的には、特許文献2(Fig.20及び31頁21~30行)には、高圧直流システムを介してグリッドに接続されたウィンドファームにおいて、系統異常時、各風力発電装置のピッチ制御により風から受け取るエネルギーを低減することが記載されている。また、特許文献2には、発電効率の向上などの目的で、高圧直流システムによって発電機側グリッドの周波数を変更して、各風力発電装置の固定速式の誘導発電機の周波数を変化させることも開示されている。
 また、非特許文献1には、高圧直流システムを介してグリッドに接続された風力発電装置において、系統異常時、送り出し変換器の周波数を変化させてDFIG式の誘導発電機のすべりを調節し、風力発電装置から出力される有効電力を低減することが記載されている。
欧州特許出願公開第2270331号明細書 国際公開第2009/082326号
Christian Feltes、外3名、"Enhanced Fault Ride-Through Method for Wind Farms Connected to the Grid Through VSC-BasedHVDC Transmission"、IEEE TRANSACTIONS ON POWER SYSTEMS、2009年8月、VOL.24、NO.3、1537-1546頁
 しかしながら、特許文献1記載のFRT技術では、ウィンドファーム全体の発電電力のうち数%~数十%程度の過剰エネルギーを電気抵抗で消散しなければならないため、大容量の電気抵抗を設置する必要があり、コストが嵩む。
 また、特許文献2記載の方法では、ピッチ制御の応答速度が比較的遅いため、系統異常発生後の非常に短い時間で対応を迫られるFRT技術としては十分とはいえない。
 さらに、非特許文献1に記載の方法は、有効電力がすべりに依存する誘導発電機の特性を利用したものであって、同期発電機の場合にはすべりが存在しないため、同期発電機を備えた風力発電装置を含む風力発電施設には適用できない。
 本発明の少なくとも一実施形態の目的は、同期発電機をそれぞれ有する複数の風力発電装置を含むウィンドファームを有し、系統異常時におけるFRT機能を低コストで具備した風力発電施設及び風力発電施設の運転方法、並びにウィンドファームの制御装置を提供することである。
 本発明の少なくとも一実施形態に係る風力発電施設は、同期発電機をそれぞれ有する複数の風力発電装置を含むウィンドファームと、前記ウィンドファームが接続されるローカルグリッドと、前記ローカルグリッドとグリッドとの間に設けられる直流送電路と、前記ローカルグリッドからの交流電力を直流電力に変換して前記直流送電路に供給するための送り出し変換器と、前記直流送電路からの前記直流電力を交流電力に変換して前記グリッドに供給するための受け取り変換器と、前記グリッドの異常事象を検出するための異常検出部と、前記異常検出部によって前記グリッドの異常事象が検出されたとき、前記ローカルグリッドにおけるローカルグリッド電圧位相に対する、各風力発電装置の前記同期発電機の発電機電圧位相の差を示す負荷角が小さくなるように前記送り出し変換器を制御して前記ローカルグリッド電圧位相を調節するための第1WFコントローラとを備えることを特徴とする。
 上記風力発電施設では、異常検出部によってグリッドの異常事象が検出されたとき、第1WFコントローラによる制御下で送り出し変換器がローカルグリッド電圧位相を調節し、各風力発電装置の同期発電機の負荷角を減少させる。これにより、ウィンドファームの各風力発電装置の発電出力(有効電力)が送り出し変換器の制御によって一括して迅速に低減され、送り出し変換器からグリッド側に供給可能な有効電力に対してウィンドファームから発生する有効電力が過剰である状態を緩和できる。また、電気抵抗のように過剰エネルギーを消散するための部品を導入する必要がない。
 したがって、系統異常時におけるFRT機能を低コストで実現できる。
 幾つかの実施形態において、前記第1WFコントローラは、各風力発電装置についての前記発電機電圧位相との偏差の二乗の総和が最小になるような目標ローカルグリッド電圧位相を求め、前記ローカルグリッド電圧位相が前記目標ローカルグリッド電圧位相になるように前記送り出し変換器を制御するように構成されている。
 これにより、ウィンドファーム全体から発生する有効電力を効果的に低減することができる。また、発電機電圧位相は各風力発電装置の発電出力に応じて異なるから、各風力発電装置についての発電機電圧位相との偏差の二乗の総和が最小になるように目標ローカルグリッド電圧位相を求めれば、一部の同期発電機は負荷角が負になる。そして、負荷角が負になった一部の同期発電機は一時的にモータとして機能し、他の同期発電機からの有効電力を受け容れてこれを消費する。したがって、送り出し変換器からグリッド側に供給可能な有効電力に対してウィンドファームから発生する有効電力が過剰である状態を効果的に緩和できる。
 他の実施形態において、前記第1WFコントローラは、各風力発電装置についての前記発電機電圧位相のうち最小の位相を目標ローカルグリッド電圧位相として選択し、前記ローカルグリッド電圧位相が前記目標ローカルグリッド電圧位相になるように前記送り出し変換器を制御するように構成されている。
 これにより、全ての同期発電機の負荷角をゼロ以上として、同期発電機が一時的であれモータとして機能することが無いようにすることができる。よって、第1WFコントローラの上記構成は、同期発電機のモータ動作に起因した風力発電装置のドライブトレインへの負担を避けたい場合に好適である。
 幾つかの実施形態では、各風力発電装置は、風力エネルギーによって駆動されて圧油を生成するための油圧ポンプと、前記圧油によって駆動されて前記同期発電機に機械的エネルギーを入力するための油圧モータと、各風力発電装置の前記油圧モータの押しのけ容積を制御するモータ制御部とを有し、前記風力発電施設は、前記異常検出部によって前記グリッドの異常事象が検出されたとき、各風力発電装置の前記油圧モータの前記機械的エネルギーが低減されるように前記押しのけ容積の指令値を前記モータ制御部に送るように構成された第2WFコントローラをさらに備える。
 これにより、系統異常時、油圧モータから同期発電機に入力される機械的エネルギーを迅速に低減し、前記機械エネルギーと同期発電機の発電出力とのミスマッチに起因した同期発電機の回転子の加速を抑制することができる。
 幾つかの実施形態において、前記第2WFコントローラは、各風力発電装置の個別情報に基づき前記機械的エネルギーの低減量を各風力発電装置について決定し、該低減量に基づいて各風力発電装置の前記油圧モータへの前記指令値を送る。
 これにより、各風力発電装置の個別情報を考慮して、各風力発電装置の同期発電機の負荷角を個別かつ細やかに制御することで、同期発電機に対する電気的ストレス及び油圧ポンプ及び油圧モータを含むドライブトレインに対する機械的ストレスを効果的に緩和できる。
 一実施形態では、前記第2WFコントローラは、前記複数の風力発電装置のうちロータ回転数が定格回転数に達した風力発電装置について前記負荷角を0rad以上の範囲に制限し、他の風力発電装置に関する前記負荷角については0rad未満の範囲を許容するように構成される。
 これにより、比較的弱い風を受けており、ロータ回転数が未だ定格回転数に達していない風力発電装置の同期発電機を一時的にモータとして機能させて、他の風力発電装置からの有効電力を消費することができる。よって、送り出し変換器からグリッド側に供給可能な有効電力に対してウィンドファームから発生する有効電力が過剰である状態を効果的に緩和できる。
 幾つかの実施形態において、前記ウィンドファームの各風力発電装置は、前記同期発電機の界磁巻線に界磁電流を供給するための励磁機と、前記異常検出部によって前記グリッドの異常事象が検出された直後、前記界磁電流が増加するように各風力発電装置の前記励磁機を制御するための励磁機制御部とをさらに有する。
 グリッドに異常事象が発生した直後、同期発電機の発電機端子電圧は瞬時に低下し、これに伴って発電機の電気的出力(有効電力)も瞬時に低下する。そのため、油圧モータからの機械的入力が発電機の電気的出力に対して過剰になり、同期発電機の回転子が加速され、同期発電機の脱調が起きてしまうおそれがある。そこで、系統異常発生直後、界磁電流を増加させることで、発電機内部誘起電圧が大きくなり、発電機の電気的出力が上昇する。そのため、同期発電機の同期化力が大きくなって、異常事象発生後の同期発電機の第一波動揺が抑制され、過渡安定度が向上する。このようにして同期発電機の脱調が防止される。
 なお、このような過渡安定度を向上させるための励磁機の制御は、超速応励磁方式と称される応答速度が非常に速い励磁方式(例えばサイリスタ励磁方式)によって好適に実現できる。
 また、本発明の少なくとも一実施形態に係る風力発電施設の運転方法は、同期発電機をそれぞれ有する複数の風力発電装置を含むウィンドファームと、前記ウィンドファームが接続されるローカルグリッドと、前記ローカルグリッドとグリッドとの間に設けられる直流送電路と、前記ローカルグリッドからの交流電力を直流電力に変換して前記直流送電路に供給するための送り出し変換器と、前記直流送電路からの前記直流電力を交流電力に変換して前記グリッドに供給するための受け取り変換器とを備える風力発電施設の運転方法であって、前記グリッドの異常事象を検出する検出ステップと、前記検出ステップによって前記異常事象が検出されたとき、前記ローカルグリッドにおけるローカルグリッド電圧位相に対する、各風力発電装置の前記同期発電機の発電機電圧位相の差を示す負荷角が小さくなるように前記送り出し変換器を制御する変換器制御ステップとを備えることを特徴とする。
 上記風力発電施設の運転方法によれば、検出ステップによってグリッドの異常事象が検出されたとき、送り出し変換器の制御によってローカルグリッド電圧位相が調節され、各風力発電装置の同期発電機の負荷角が小さくなる。これにより、ウィンドファームの各風力発電装置の発電出力(有効電力)が送り出し変換器の制御によって一括して迅速に低減され、送り出し変換器からグリッド側に供給可能な有効電力に対してウィンドファームから発生する有効電力が過剰である状態を緩和できる。また、電気抵抗のように過剰エネルギーを消散するための部品を導入する必要がない。
 したがって、系統異常時におけるFRT機能を低コストで実現できる。
 幾つかの実施形態において、前記変換器制御ステップは、各風力発電装置についての前記発電機電圧位相との偏差の二乗の総和が最小になるような目標ローカルグリッド電圧位相を求め、前記ローカルグリッド電圧位相が前記目標ローカルグリッド電圧位相になるように前記送り出し変換器を制御する。
 これにより、ウィンドファーム全体から発生する有効電力を効果的に低減することができる。また、負荷角が負になった一部の同期発電機は一時的にモータとして機能し、他の同期発電機からの有効電力を受け容れてこれを消費する。したがって、送り出し変換器からグリッド側に供給可能な有効電力に対してウィンドファームから発生する有効電力が過剰である状態を効果的に緩和できる。
 他の実施形態において、前記変換器制御ステップは、各風力発電装置についての前記発電機電圧位相のうち最小の位相を目標ローカルグリッド電圧位相として選択し、前記ローカルグリッド電圧位相が前記目標ローカルグリッド電圧位相になるように前記送り出し変換器を制御する。
 これにより、全ての同期発電機の負荷角をゼロ以上として、同期発電機が一時的であれモータとして機能することが無いようにすることができる。よって、変換器制御ステップの上記内容は、同期発電機のモータ動作に起因した風力発電装置のドライブトレインへの負担を避けたい場合に好適である。
 幾つかの実施形態において、各風力発電装置は、風力エネルギーによって駆動されて圧油を生成するための油圧ポンプと、前記圧油によって駆動されて前記同期発電機に機械的エネルギーを入力するための油圧モータと、各風力発電装置の前記油圧モータの押しのけ容積を制御するモータ制御部とを有し、前記風力発電施設の運転方法は、前記検出ステップによって前記異常事象が検出されたとき、各風力発電装置の前記油圧モータの前記機械的エネルギーが低減されるように前記押しのけ容積の指令値を前記モータ制御部に送るモータ指令ステップをさらに備える。
 これにより、系統異常時、油圧モータから同期発電機に入力される機械的エネルギーを迅速に低減し、前記機械エネルギーと同期発電機の発電出力とのミスマッチに起因した同期発電機の回転子の加速を抑制することができる。
 幾つかの実施形態において、前記モータ指令ステップは、各風力発電装置の個別情報に基づき前記機械的エネルギーの低減量を各風力発電装置について決定し、前記低減量に基づいて各風力発電装置の前記油圧モータへの前記指令値を送る。
 これにより、各風力発電装置の個別情報を考慮して、各風力発電装置の同期発電機の負荷角を個別かつ細やかに制御することで、同期発電機に対する電気的ストレス及び油圧ポンプ及び油圧モータを含むドライブトレインに対する機械的ストレスを効果的に緩和できる。
 一実施形態では、前記モータ指令ステップでは、前記複数の風力発電装置のうちロータ回転数が定格回転数に達した風力発電装置について前記負荷角を0rad以上の範囲に制限し、他の風力発電装置に関する前記負荷角については0rad未満の範囲を許容する。
 これにより、比較的弱い風を受けており、ロータ回転数が未だ定格回転数に達していない風力発電装置の同期発電機を一時的にモータとして機能させて、他の風力発電装置からの有効電力を消費することができる。よって、送り出し変換器からグリッド側に供給可能な有効電力に対してウィンドファームから発生する有効電力が過剰である状態を効果的に緩和できる。
 幾つかの実施形態において、前記ウィンドファームの各風力発電装置は、前記同期発電機の界磁巻線に界磁電流を供給するための励磁機をさらに有し、前記風力発電施設の運転方法は、前記検出ステップによって前記異常事象が検出された直後、前記界磁電流が増加するように各風力発電装置の前記励磁機を制御する励磁機制御ステップをさらに備える。
 これにより、界磁電流の増加に伴い同期発電機の同期化力が大きくなって、異常事象発生後の同期発電機の第一波動揺が抑制され、過渡安定度が向上する。このようにして同期発電機の脱調が防止される。
 また本発明の少なくとも一実施形態に係るウィンドファームの制御装置は、送り出し変換器、直流送電路及び受け取り変換器を介してグリッドに連系されるローカルグリッドに接続され、同期発電機をそれぞれ有する複数の風力発電装置を含むウィンドファームの制御装置であって、前記グリッドの異常事象が検出されたとき、前記ローカルグリッドにおけるローカルグリッド電圧位相に対する、各風力発電装置の前記同期発電機の発電機電圧位相の差を示す負荷角が小さくなるように前記送り出し変換器を制御して前記ローカルグリッド電圧位相を調節するための第1WFコントローラを備えることを特徴とする。
 上記ウィンドファームの制御装置によれば、グリッドの異常事象が検出されたとき、第1WFコントローラによる制御下で送り出し変換器がローカルグリッド電圧位相を調節し、各風力発電装置の同期発電機の負荷角を減少させる。これにより、ウィンドファームの各風力発電装置の発電出力(有効電力)が送り出し変換器の制御によって一括して迅速に低減され、送り出し変換器からグリッド側に供給可能な有効電力に対してウィンドファームから発生する有効電力が過剰である状態を緩和できる。また、電気抵抗のように過剰エネルギーを消散するための部品を導入する必要がない。
 したがって、系統異常時におけるFRT機能を低コストで実現できる。
 本発明の少なくとも一実施形態によれば、グリッドの異常事象が検出されたとき、送り出し変換器の制御によってローカルグリッド電圧位相を調節し、各風力発電装置の同期発電機の負荷角が減少する。これにより、ウィンドファームの各風力発電装置の発電出力(有効電力)が送り出し変換器の制御によって一括して迅速に低減され、送り出し変換器からグリッド側に供給可能な有効電力に対してウィンドファームから発生する有効電力が過剰である状態を緩和できる。また、電気抵抗のように過剰エネルギーを消散するための部品を導入する必要がない。
 したがって、系統異常時におけるFRT機能を低コストで実現できる。
一実施形態に係る風力発電施設の全体構成を示す図である。 一実施形態に係る第1WFコントローラにおける制御ロジックを示すブロック図である。 実施形態における、目標位相決定部における目標ローカルグリッド電圧位相DSEC_tgtの決定原理を示す図であり、図3(a)はグリッドに異常事象が発生していない通常運転時におけるベクトル図であり、図3(b)及び(c)はグリッドに異常事象が発生した後のベクトル図である。 グリッドにおける異常事象発生前後における有効電力Pと負荷角Dとの例示的な関係を示すグラフである。 一実施形態に係る第2WFコントローラにおける制御ロジックを示すブロック図である。 実施形態に係る第2WFコントローラによる制御が同期発電機の電気的出力Pと油圧モータによる機械的入力Pとのバランスに与える影響を示す図である。 各風力発電装置の個別情報の例を示す図である。 一実施形態に係る風力発電施設の運転方法の手順を示すフローチャートである。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 図1は、一実施形態に係る風力発電施設の全体構成を示す図である。
 同図に示すように、風力発電施設1は、複数の風力発電装置12を含むウィンドファーム10と、ウィンドファーム10が接続されるローカルグリッド2と、ローカルグリッド2とグリッド4との間に設けられるHVDC20とを備える。
 ウィンドファーム10の各風力発電装置12は、風を受けて回転するロータ13と、ロータ13に接続されるドライブトレイン14と、ドライブトレイン14を介して伝達されるロータ13の回転エネルギーを電力エネルギーに変換する同期発電機15とを有する。なお、ロータ13のブレードは、ピッチ制御装置18による制御下で作動するピッチ制御機構によってピッチ角の調節が可能になっている。
 幾つかの実施形態では、図1に示すように、ドライブトレイン14は、ロータ13によって駆動される可変容量型の油圧ポンプ14Aと、油圧ポンプ14Aで生成された圧油によって駆動される可変容量型の油圧モータ14Bとを備える。油圧ポンプ14A及び油圧モータ14Bは、高圧油ライン14Cと低圧油ライン14Dを介して互いに接続されている。そのため、油圧ポンプ14Aから吐出された作動油(高圧油)は高圧油ライン14Cを介して油圧モータ14Bに供給され、油圧モータ14Bで仕事をした後の作動油(低圧油)は低圧油ライン14Dを介して油圧ポンプ14Aに戻される。なお、低圧油ライン14Dには、作動油が貯留されたオイルタンクを接続してもよい。一実施形態では、高圧油ライン14Cにはアキュムレータ14Eが接続される。アキュムレータ14Eは、高圧油ライン14Cにおける脈動を防止したり、油圧ポンプ14Aで生成された高圧油を蓄積したり、油圧ポンプ14Aの吐出量と油圧モータ14Bの吸込み量との差を吸収したりする役割を有する。また、一実施形態では、風力発電装置12は、同期発電機15の界磁巻線に界磁電流を供給するための励磁機16をさらに有する。なお、油圧ポンプ14A及び油圧モータ14Bの押しのけ容積は、それぞれ、ポンプ制御部17Aとモータ制御部17Bとで制御される。
 他の実施形態では、ドライブトレイン14は、ロータ13と発電機15との間に設けられる歯車式の増速機を備える。
 HVDC20は、ローカルグリッド2からの交流電力を直流電力に変換する送り出し変換器(SEC)22と、SEC22側から受け取った直流電力を交流電力に変換してグリッド4に供給する受け取り変換器(REC)24と、SEC22及びREC24間に設けられる直流送電路26とを備える。
 幾つかの実施形態では、ウィンドファーム10及びSEC22が洋上に設置され、グリッド4及びREC24が陸上に設置される。この場合、直流送電路26の大部分は海底に設置される海底ケーブルである。
 グリッド4に連系される風力発電施設1は、グリッドコードの要求に従う必要がある。例えば、線路短絡や地絡等の系統事故が発生しても、電圧低下の程度や、電圧低下の継続時間が所定の範囲内であれば、風力発電施設1はグリッド4への連系を維持しなければならない(FRT)。
 このとき、風力発電施設1には次のような影響が表れる。まず、グリッド4の異常事象発生により、HVDC20からグリッド4に送り出すことができる有効電力が減少する。そのため、グリッド4の異常事象発生直後、ウィンドファーム10からHVDC20に供給される有効電力が余剰になり、直流送電路26における電力の需給の不均衡に起因して直流送電路26の電圧が上昇し、SEC22やREC24が損傷する可能性がある。よって、直流送電路26における電圧上昇を抑制する観点から、ウィンドファーム10からHVDC20に供給される有効電力を迅速に低減することが望まれる。
 そこで、幾つかの実施形態では、SEC22の制御によって、グリッド4の異常事象発生時にウィンドファーム10からの有効電力の出力を抑制するようになっている。
 図1に示す例示的な実施形態では、風力発電施設1にはウィンドファーム集中制御装置(WF集中制御装置)6が設けられており、WF集中制御装置6に含まれる第1WFコントローラ30によって、ウィンドファーム1からの有効電力の出力を抑制するためにSEC22の制御を行う。
 図2は、一実施形態に係る第1WFコントローラ30における制御ロジックを示すブロック図である。
 同図に示すように、第1WFコントローラ30は、各風力発電装置12の同期発電機15の負荷角を算出するための負荷角算出部32と、ローカルグリッド2の目標ローカルグリッド電圧位相を決定するための目標位相決定部34と、目標ローカルグリッド電圧位相に基づいてSEC22に指令値を出力する指令値出力部36とを有する。
 負荷角算出部32は、グリッド4における異常事象の検出結果を異常検出部28から受け取ると、各風力発電装置12-i(ただし、iは2以上の整数)の同期発電機15の発電機電圧位相角dをウィンドファーム10から取得し、ローカルグリッド2のローカルグリッド電圧位相角DSECを検出器27から取得する。そして、負荷角算出部32において、ローカルグリッド電圧位相角DSECを基準とした発電機電圧位相角dの角度である負荷角D(=d-DSEC)が算出される。なお、各風力発電装置12-iに関して負荷角Dを算出するのは、各風力発電装置12-iの発電出力に応じて負荷角Dにばらつきがあるためである。
 目標位相決定部34は、負荷角算出部32から受け取った負荷角Dに基づいてローカルグリッド2の目標ローカルグリッド電圧位相DSEC_tgtを求める。目標ローカルグリッド電圧位相DSEC_tgtは、各風力発電装置12-iに関する負荷角Dが小さくなるように決定される。
 指令値出力部36は、目標ローカルグリッド電圧位相DSEC_tgtが実現されるように、SEC22に指令値(例えば、指令値としてのPWM信号)を送る。SEC22は、指令値出力部36からの指令値に従って、ローカルグリッド2の電圧位相を目標ローカルグリッド電圧位相DSEC_tgtに調節する。
 図3は実施形態に係る、目標位相決定部34における目標ローカルグリッド電圧位相DSEC_tgtの決定原理を示す図であり、図3(a)がグリッド4に異常事象が発生していない通常運転時におけるベクトル図であり、図3(b)及び(c)はグリッド4に異常事象が発生した後のベクトル図である。
 なお、図3(a)~(c)は、ウィンドファーム10が2台の風力発電装置12-1,12-2を含む場合について記述したものであり、ウィンドファーム10を構成する風力発電装置が3台以上の場合にも同様な原理で目標ローカルグリッド電圧位相DSEC_tgtを決定することができる。
 図3(a)に示すように、通常運転時、風力発電装置12-1,12-2の同期発電機15の発電機電圧を示すベクトル101,102は、それぞれ、ローカルグリッド2におけるローカルグリッド電圧を示すベクトル100に対して相差角D及びDを有する。これは、風力発電装置12-1,12-2の同期発電機15が、ローカルグリッド2の電圧位相に対して負荷角D及びDだけ進んだ位相にて同期速度で運転されていることを意味する。
 なお、同期発電機から出力される有効電力は負荷角の正弦関数に比例することが知られている。そのため、負荷角D,Dが小さい範囲では、各風力発電装置12-1,12-2の同期発電機15からの有効電力は負荷角D,Dに比例するものとして扱うことができる。
 よって、目標位相決定部34は、目標ローカルグリッド電圧位相DSEC_tgtを負荷角D,D寄りに設定すれば、SEC22の制御によって各風力発電装置12-1,12-2の負荷角が小さくなり、同期発電機15から出力される有効電力を抑制できる。
 一実施形態では、図3(b)に示すように、全風力発電装置12-1,12-2に関する負荷角(D,D)の中で最大の負荷角Dと最小の負荷角Dとの間の値に目標ローカルグリッド電圧位相DSEC_tgtを設定する。
 例えば、各風力発電装置12-1,12-2についての発電機電圧位相角d,dとの偏差の二乗の総和が最小になるように目標ローカルグリッド電圧位相DSEC_tgtを設定してもよい。すなわち、次式に示す評価関数Jが最小となるような目標ローカルグリッド電圧位相DSEC_tgtを設定してもよい。
 
Figure JPOXMLDOC01-appb-I000001
(ただし、Nはウィンドファーム10に属する風力発電装置12の総数である。)
 上記手法で目標ローカルグリッド電圧位相DSEC_tgtを設定すると、SEC22の制御によって、各風力発電装置12-1,12-2の同期発電機15の負荷角が小さくなり、ウィンドファーム10からの有効電力の出力が抑制される。なお、上記手法では、一部の風力発電装置(図3(b)に示す例では風力発電装置12-1)の同期発電機15は負荷角が負となって一時的にモータとして機能し、他の風力発電装置(図3(b)に示す例では風力発電装置12-2)の同期発電機15からの有効電力を受け容れてこれを消費する。そのため、SEC22からグリッド4側で受け入れ可能な有効電力に対してウィンドファーム10から出力される有効電力が過剰である状態を効果的に緩和できる。
 他の実施形態では、図3(c)に示すように、全風力発電装置12-1,12-2に関する負荷角(D,D)の中で最小の負荷角Dを選択し、目標ローカルグリッド電圧位相DSEC_tgtを最小負荷角Dに設定する。
 上記手法で目標ローカルグリッド電圧位相DSEC_tgtを設定すると、SEC22の制御によって、各風力発電装置12-1,12-2の同期発電機15の負荷角が小さくなり、ウィンドファーム10からの有効電力の出力が抑制される。また、上記手法では、全ての風力発電装置12-1,12-2の同期発電機15の負荷角がゼロ以上に維持されるから、同期発電機15が一時的であれモータとして機能することが無いようにすることができる。よって、上記手法は、同期発電機のモータ動作に起因した風力発電装置のドライブトレインへ14の負担を避けたい場合に好適である。
 ところで、グリッド4に異常事象が発生すると、同期発電機15の端子電圧の低下に伴って同期発電機15から出力される有効電力も急低下するから、油圧モータ14Bからの機械的入力が同期発電機15の電気的出力を上回り、同期発電機15の回転子が加速される可能性がある。また、上述のように第1WFコントローラ30による制御でウィンドファーム10から出力される有効電力を抑制する場合には、油圧モータ14Bからの機械的入力が同期発電機15の電気的出力に対してより一層過剰になって、同期発電機15の回転子が加速されやすい。
 ここで、グリッド4における異常事象発生に伴う同期発電機15の回転子の加速現象について具体的に説明する。
 図4は、グリッド4における異常事象発生前後における有効電力Pと負荷角Dとの例示的な関係を示すグラフである。
 グリッド4で異常事象が発生すると、同期発電機15の端子電圧が急激に低下し、同期発電機15から出力される有効電力Pも急低下する(図4の状態1→状態2)。グリッド4は、線間短絡や地絡等の事故の影響を最小限に止めるために複数回線になっている場合があり、この場合には事故が生じた回線を遮断することで、グリッド4での異常事象が除却される。グリッド4での異常事象が除却されると、同期発電機15から出力される有効電力Pは回復する(状態3)。ただし、事故が生じた一部の回線は遮断されたままであり、それ以外の回線のみでの送電であるから、同期発電機15から出力される電力は短絡事故発生前のレベル(状態1)まで回復しない。
 異常事象発生前は、状態1におけるP-D曲線上のl点で同期発電機15が運転されており、このときの負荷角DはDである。l点は、油圧モータ14Bからの機械的入力Pと状態1におけるP-D曲線との交点である。仮に負荷角DがDから少しでも逸脱すると、負荷角DをDに戻そうとする同期化力dP/dDが働くため、負荷角DはDで安定している。
 ところが、グリッド4で異常事象が発生すると、同期発電機15のP-D曲線は状態1から状態2に瞬時に降下する。一方、短絡事故が発生した直後は、同期発電機15の回転子の慣性によって、負荷角DはDのままである。そのため、異常事象発生によって、同期発電機15の運転点はl点からm点に瞬時に移行する。そして、油圧モータ14Bからの機械的入力Pが同期発電機15の電気的出力Pに対して過剰になり、同期発電機15の回転子が加速されて、m点からn点に向かって同期発電機15の運転点が移動する。そのため、負荷角DはDからDに向かって増加する。
 そして、負荷角DがDに達したときに、異常事象が生じた回線が遮断され、異常事象が除却される。これにより、同期発電機15のP-D曲線は状態2から状態3に瞬時に増加する。一方、異常事象が除去された直後は、同期発電機15の回転子の慣性によって、負荷角DはDのままである。そのため、異常事象の除去によって、同期発電機15の運転点はn点からo点に瞬時に移行する。よって、同期発電機15の電気的出力Pが油圧モータ14Bからの機械的入力Pを上回るようになり、同期発電機15の回転子が減速され始める。したがって、負荷角DはDに達した後に減少に転じ、それ以降の負荷角は増加と減少とを繰り返して振動するが、最終的には同期発電機15のダンピング力によって減衰して安定になる。
 なお、負荷角Dの折り返し点であるp点は、油圧モータ14Bからの入力Pと状態2におけるP-D曲線で囲まれる面積Sで表される加速エネルギーと、状態3におけるP-D曲線と油圧モータ14の出力Pで囲まれる面積Sで表される減速エネルギーとが一致する運転点である。
 このようにグリッド4における異常事象の発生に伴い同期発電機15の回転子が加速されるおそれがある。同期発電機15の回転子が加速されると、同期発電機15の負荷角が大きくなり、最終的には安定限度を超えて同期発電機15の脱調が起きてしまう。よって、グリッド4における異常事象の発生時、各風力発電装置12の油圧モータ14Bから同期発電機15への機械的入力を抑制してもよい。
 幾つかの実施形態では、図1に示すように、WF集中制御装置6に含まれる第2WFコントローラ40から油圧モータ14Bの押しのけ容積の指令値をモータ制御部17Bに与え、油圧モータ14Bの機械的入力(機械的エネルギー)を減少させる。
 図5は、一実施形態に係る第2WFコントローラ40における制御ロジックを示すブロック図である。
 同図に示すように、第2WFコントローラ40は、各風力発電装置12の同期発電機15の負荷角を算出するための負荷角算出部42と、各風力発電装置12に関する目標負荷角を決定するための目標負荷角決定部44と、目標負荷角に基づいてモータ制御部17Bに指令値を出力する指令値出力部46とを有する。
 負荷角算出部42は、グリッド4における異常事象の検出結果を異常検出部28から受け取ると、各風力発電装置12-i(ただし、iは2以上N以下の整数であり、Nはウィンドファーム10に属する風力発電装置12の総数。)の同期発電機15の発電機電圧位相角dをウィンドファーム10から取得し、ローカルグリッド2のローカルグリッド電圧位相角DSECを検出器27から取得する。そして、負荷角算出部42において、ローカルグリッド電圧位相角DSECを基準とした発電機電圧位相角dの角度差である負荷角D(=d-DSEC)が算出される。なお、負荷角算出部42は、基本的には第1WFコントローラ30の負荷角算出部32と同様な役割を担うから、負荷角算出部32としても兼用されてもよい。
 目標負荷角決定部44は、負荷角算出部42から受け取った負荷角Dおよびウィンドファーム10から受け取った各風力発電装置12-iの個別情報に基づいて、各風力発電装置12-iに関する目標負荷角Di_tgtを決定する。なお、各風力発電装置12-iの個別情報とは、風速、ロータ13のブレードのピッチ角、ロータ13の回転数、アキュムレータ14Eの圧力、発電出力、無効電力、力率、フィーダケーブルの電力損失の少なくとも一つを含む。
 指令値出力部46は、各風力発電装置12-iに関して目標負荷角Di_tgtが実現されるように、各風力発電装置12-iのモータ制御部17Bに油圧モータ14Bの押しのけ容積の指令値を送る。モータ制御部17Bは、指令値出力部46からの指令値に従って、油圧モータ14Bの押しのけ容積を調節する。
 他の実施形態では、第2WFコントローラ40は目標負荷角決定部44に替えて目標機械的入力決定部を備えている。目標機械的入力決定部は、ウィンドファーム10から取得した各風力発電装置12-iの個別情報並びに同期発電機15の端子電圧及び内部誘起電圧に基づいて目標機械的入力Pm_tgtを決定する。なお、目標機械的入力Pm_tgtは、グリッド4における異常事象の発生前の機械的入力Pよりも小さな値に設定される。指令値出力部46は、目標機械的入力Pm_tgtが実現されるように、各風力発電装置12-iのモータ制御部17Bに油圧モータ14Bの押しのけ容積の指令値を決定する。例えば、指令値出力部46は、目標機械的入力(目標機械的エネルギー)Pm_tgtを油圧モータ14Bの回転数と高圧油流路14Cの圧力Pとで除算することで油圧モータ14Bの押しのけ容積の指令値を決定してもよい。各風力発電装置12-iのモータ制御部17Bは、指令値出力部46からの指令値に従って油圧モータ14Bの押しのけ容積を調節する。
 図6は、実施形態に係る第2WFコントローラ40による制御が同期発電機15の電気的出力Pと油圧モータ14Bによる機械的入力Pとのバランスに与える影響を示す図である。図6には、図4と同様に、グリッド4で異常事象の発生によって状態1のP-D曲線から状態2のP-D曲線に移行し、その後、グリッド4での異常事象の除却によって状態3のP-D曲線に移行する場合を例示している。なお、図6に示す状態1~3のようなP-D曲線の変化は、同期発電機15の端子電圧及び内部誘起電圧から検知可能である。
 一実施形態では、異常検出部28によってグリッド4での異常事象が検出されると、Pe-D曲線が状態1から状態2に瞬時に下がり、同期発電機15の運転点がl点からm点に移行し、同期発電機15の回転子の加速に伴って負荷角DがDから増大し始める。そこで、目標負荷角決定部44は目標負荷角Di_tgtを設定し、指令値出力部46が、同期発電機15の負荷角Dを目標負荷角Di_tgtに抑制しうる新しい機械的入力Pm2を実現するための油圧モータ14Bの押しのけ容積の指令値をモータ制御部17Bに即座に送るようになっている。これにより、加速エネルギーSを小さくし、減速エネルギーSを大きくして、負荷角Dの折り返し点であるn点をm点に近づけて、P-D曲線が状態2であるときの同期発電機15の負荷角Dの最大値Dmaxを低減できる。また、異常事象が生じた回線の遮断によってPe-D曲線が状態2から状態3に瞬時に回復したら、目標負荷角決定部44は、目標負荷角Di_tgtを再び設定し、指令値出力部46が、同期発電機15の負荷角Dを新たな目標負荷角Di_tgtに近づけうる新しい機械的入力Pm3を実現するための油圧モータ14Bの押しのけ容積の指令値をモータ制御部17Bに即座に送る。
 他の実施形態では、異常検出部28によってグリッド4での異常事象が検出されると、目標機械的入力決定部が目標機械的入力Pm_tgtをPm2に設定し、この目標機械的入力Pm2を実現するための油圧モータ14Bの指令値が指令値出力部46から各風力発電装置12-iのモータ制御部17Bに与えられる。同様に、異常事象が生じた回線の遮断後、目標機械的入力決定部が目標機械的入力Pm_tgtをPm3に設定し、この目標機械的入力Pm3を実現するための油圧モータ14Bの新しい指令値が指令値出力部46から各風力発電装置12-iのモータ制御部17Bに与えられる。
 幾つかの実施形態では、目標負荷角決定部44及び目標機械的入力決定部は、目標負荷角Di_tgt又は目標機械的入力Pm_tgtを決定する際、各風力発電装置12の個別情報を考慮する。
 図7は、各風力発電装置12の個別情報の例を示す図である。同図に示すウィンドファーム10は、グループ1~3のそれぞれに属する複数の風力発電装置12を含んでいる。ウィンドファーム10の各風力発電装置12は、風速、ロータ13のブレードのピッチ角、ロータ13の回転数、アキュムレータ14Eの圧力、発電出力、無効電力、力率、フィーダケーブルの電力損失の少なくとも一つを含む個別情報をそれぞれ有している。
 図7に示すように、各グループ1~3に属する風力発電装置12が受ける風速の大きさの程度は、それぞれ、V1,V2,V3であり、グループ1~3間で異なる。また、同一グループ内であっても、個々の風力発電装置12によって風速に差が生じる。また、典型的な可変速風力発電装置は風速に応じた所望の運転点で運転されるから、各風力発電装置12の風速が異なると、各風力発電装置12の運転状態(ブレードのピッチ角、ロータ13の回転数、アキュムレータ14Eの圧力、発電出力、無効電力、力率)も相違する。さらに、各風力発電装置12は、HVDC20までのフィーダケーブルの長さに差があるためフィーダケーブルの電力損失は互いに異なる。
 一実施形態では、目標負荷角決定部44は、風力発電装置12の個別情報に基づいて、ウィンドファーム10全体から出力される有効電力に対する寄与が大きい風力発電装置12についての目標負荷角Di_tgtを他の風力発電装置12に比べて小さく設定する。例えば、風速が大きくHVDC20までの距離が小さい風力発電装置12は、ウィンドファーム10全体から出力される有効電力に対する寄与が大きいので、風速が小さくHVDC20までの距離が大きい風力発電装置12に比べて目標負荷角Di_tgtを小さく設定する。
 一実施形態では、目標負荷角決定部44は、風力発電装置12の個別情報に基づいて、アキュムレータ14Eの圧力PACCが小さい風力発電装置12についての目標負荷角Di_tgtを他の風力発電装置12に比べて小さく設定する。小さい目標負荷角Di_tgtを実現するには、油圧モータ14Bの機械的入力Pを減少させることになり、油圧ポンプ14Aの吐出量と油圧モータ14Bの吸込み量とのバランスが崩れて高圧油ライン14Cの圧力が上昇しやすくなる。そこで、油圧ポンプ14Aの吐出量と油圧モータ14Bの吸込み量との差を吸収可能なアキュムレータ14E(即ち、圧力PACCが小さいアキュムレータ14E)を有する風力発電装置についての目標負荷角Di_tgtを他の風力発電装置12に比べて小さく設定することで、高圧油ライン14Cの圧力上昇を緩和しながら、同期発電機15の加速を抑制できる。
 また、他の実施形態では、目標機械的入力決定部は、風力発電装置12の個別情報に基づいて、アキュムレータ14Eの圧力PACCが小さい風力発電装置12についての目標機械的入力Pm_tgtを他の風力発電装置12に比べて小さく設定する。
 幾つかの実施形態では、目標負荷角決定部44は、風力発電装置12の個別情報に基づいて、ロータ13の回転数が定格回転数に達した風力発電装置12について目標負荷角Di_tgtを0rad以上の範囲に設定し、他の風力発電装置12に関する目標負荷角Di_tgtについては0rad未満の範囲を許容する。
 これにより、比較的弱い風を受けており、ロータ13の回転数が未だ定格回転数に達していない風力発電装置12の同期発電機15を一時的にモータとして機能させて、他の風力発電装置12からの有効電力を消費することができる。よって、SEC22からグリッド4側に供給可能な有効電力に対してウィンドファーム10から発生する有効電力が過剰である状態を効果的に緩和できる。
 幾つかの実施形態では、モータ制御部17Bによる油圧モータ14Bの押しのけ容積の調節による高圧油ライン14Cの圧力の管理範囲からの逸脱を回避するために、ポンプ制御部17Aによる油圧ポンプ14Aの押しのけ容積の調節と、ピッチ制御部18によるピッチ角の調節とを行う。
 例えば、油圧モータ14Bの押しのけ容積の低減によって、高圧油ライン14Cの圧力の上昇が見込まれる場合、油圧モータ14Bの押しのけ容積から定まる油圧モータ14Bの吸込み量と油圧ポンプ14Aの吐出量との差が小さくなるようにモータ制御部17Aが油圧ポンプ14Aの押しのけ容積を調節する。そして、ロータ13の加速を抑制するために、ピッチ制御部18がブレードのピッチ角を調節してブレードが受け取る風力エネルギーを低減する。
 また、幾つかの実施形態では、異常検出部28によってグリッド4での異常事象が検出された直後、同期発電機15の界磁電流が増加するように各風力発電装置12の励磁機16を制御する。なお、界磁電流を増加することは、図4及び6における状態2又は3におけるP-D曲線を上方に持ち上げることを意味する。
 これにより、同期発電機15の内部誘起電圧が大きくなり、同期発電機15の電気的出力Pが上昇する。そのため、同期発電機15の同期化力dP/dDが大きくなって、異常事象発生後の同期発電機15の第一波動揺が抑制され、過渡安定度が向上する。このようにして同期発電機15の脱調が防止される。
 このような過渡安定度を向上させるための励磁機16の制御は、例えばサイリスタ方式の超速応励磁制御によって好適に行うことができる。なお、同期発電機15の定態安定度を向上させる観点から、励磁機制御部19に電力系統安定化装置(PSS:Power System Stabilizer)を設けてもよい。
 次に、風力発電施設の運転方法について説明する。図8は、一実施形態に係る風力発電施設の運転方法の手順を示すフローチャートである。
 図8に示すように、異常検出部28によってグリッド4の異常事象が検出されたか否かを判断する(ステップS2)。グリッド4の異常事象が検出されなければステップS2が繰り返される。グリッド4の異常事象が検出された場合、ステップS4に進んで、各風力発電装置12の同期発電機15の負荷角Dを算出する。続いて、同期発電機15の負荷角Dに基づいて、各風力発電装置12-iに関する負荷角Dが小さくなるように目標ローカルグリッド電圧位相DSEC_tgtを決定する(ステップS6)。そして、目標ローカルグリッド電圧位相DSEC_tgtが実現されるように、SEC22によってローカルグリッド2の電圧位相を目標ローカルグリッド電圧位相DSEC_tgtに調節する(ステップS8)。
 また、ステップS10では、同期発電機15の負荷角Dとウィンドファーム10から受け取った各風力発電装置12-iの個別情報とに基づいて、各風力発電装置12-iに関する目標負荷角Di_tgtを決定する。なお、各風力発電装置12-iの個別情報とは、風速、ロータ13のブレードのピッチ角、ロータ13の回転数、アキュムレータ14Eの圧力、発電出力、無効電力、力率、フィーダケーブルの電力損失の少なくとも一つを含む。そして、各風力発電装置12-iに関して目標負荷角Di_tgtが実現されるように、各風力発電装置12-iのモータ制御部17Bによって油圧モータ14Bの押しのけ容積を調節する(ステップS12)。
 さらに、ステップS14では、同期発電機15の界磁電流が増加するように各風力発電装置12の励磁機16を制御する。
 なお、図8に示す例示的な実施形態では、ステップS2にてグリッド4における異常事象が発生したとき、ステップS4~S8を含むSEC22の制御、ステップS10~S12を含む油圧モータ14Bの制御、および、ステップS14を含む励磁機16の制御が順次行われるが、他の実施形態ではこれらの制御の順番を入れ替えたり、これらの制御の少なくとも二つを並行して行ったりしてもよい。
 また、グリッド4の異常事象の有無の判断結果(ステップS2)に関わらず、ステップS4の負荷角Dの算出や、ステップS6の目標ローカルグリッド電圧位相DSEC_tgtの決定や、ステップS10の目標負荷角Di_tgtの決定を常時行っておいてもよい。この場合、グリッド4の異常事象が生じた直後、既に決定されている目標ローカルグリッド電圧位相DSEC_tgtを用いてSEC22の制御を行い、既に決定されている目標負荷角Di_tgtを用いて油圧モータ14Bの制御を行うことが可能である。
 さらに、図8に示す例示的な実施形態では、ステップS10にて決定された目標負荷角Di_tgtに基づいてステップS12の油圧モータ14Bの押しのけ容積調節を行うようになっているが、ウィンドファーム10から取得した各風力発電装置12-iの個別情報並びに同期発電機15の端子電圧及び内部誘起電圧に基づいて決定された目標機械的入力Pm_tgtに基づいて油圧モータ14Bの押しのけ容積調節を行ってもよい。
 以上説明したように、上述の実施形態によれば、異常検出部28によってグリッド4の異常事象が検出されたとき、第1WFコントローラ30による制御下でSEC22がローカルグリッド電圧位相を調節し、各風力発電装置12-iの同期発電機15の負荷角Dを減少させる。これにより、ウィンドファーム10の各風力発電装置12-iの発電出力(有効電力)がSEC22の制御によって一括して迅速に低減され、SEC22からグリッド4側に供給可能な有効電力に対してウィンドファーム10から発生する有効電力が過剰である状態を緩和できる。また、電気抵抗のように過剰エネルギーを消散するための部品を導入する必要がない。
 したがって、系統異常時におけるFRT機能を低コストで実現できる。
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。例えば、上述した実施形態のうち複数を適宜組み合わせてもよい。
 1      風力発電施設
 2      ローカルグリッド
 4      グリッド
 6      WF集中制御装置
 10     ウィンドファーム
 12     風力発電装置
 13     ロータ
 14     ドライブトレイン
 14A    油圧ポンプ
 14B    油圧モータ
 14C    高圧油ライン
 14D    低圧油ライン
 14E    アキュムレータ
 15     同期発電機
 16     励磁機
 17A    ポンプ制御部
 17B    モータ制御部
 18     ピッチ制御部
 19     励磁機制御部
 20     HVDC(高圧直流システム)
 22     SEC(送り出し変換器)
 24     REC(受け取り変換器)
 26     直流送電路
 27     検出器
 28     異常検出部
 30     第1WFコントローラ
 32     負荷角算出部
 34     目標位相決定部
 36     指令値出力部
 40     第2WFコントローラ
 42     負荷角算出部
 44     目標負荷角決定部
 46     指令値出力部
 

Claims (15)

  1.  同期発電機をそれぞれ有する複数の風力発電装置を含むウィンドファームと、
     前記ウィンドファームが接続されるローカルグリッドと、
     前記ローカルグリッドとグリッドとの間に設けられる直流送電路と、
     前記ローカルグリッドからの交流電力を直流電力に変換して前記直流送電路に供給するための送り出し変換器と、
     前記直流送電路からの前記直流電力を交流電力に変換して前記グリッドに供給するための受け取り変換器と、
     前記グリッドの異常事象を検出するための異常検出部と、
     前記異常検出部によって前記グリッドの異常事象が検出されたとき、前記ローカルグリッドにおけるローカルグリッド電圧位相に対する、各風力発電装置の前記同期発電機の発電機電圧位相の差を示す負荷角が小さくなるように前記送り出し変換器を制御して前記ローカルグリッド電圧位相を調節するための第1WFコントローラとを備えることを特徴とする風力発電施設。
  2.  前記第1WFコントローラは、各風力発電装置についての前記発電機電圧位相との偏差の二乗の総和が最小になるような目標ローカルグリッド電圧位相を求め、前記ローカルグリッド電圧位相が前記目標ローカルグリッド電圧位相になるように前記送り出し変換器を制御するように構成されたことを特徴とする請求項1に記載の風力発電施設。
  3.  前記第1WFコントローラは、各風力発電装置についての前記発電機電圧位相のうち最小の位相を目標ローカルグリッド電圧位相として選択し、前記ローカルグリッド電圧位相が前記目標ローカルグリッド電圧位相になるように前記送り出し変換器を制御するように構成されたことを特徴とする請求項1に記載の風力発電施設。
  4.  各風力発電装置は、風力エネルギーによって駆動されて圧油を生成するための油圧ポンプと、前記圧油によって駆動されて前記同期発電機に機械的エネルギーを入力するための油圧モータと、各風力発電装置の前記油圧モータの押しのけ容積を制御するモータ制御部とを有し、
     前記異常検出部によって前記グリッドの異常事象が検出されたとき、各風力発電装置の前記油圧モータの前記機械的エネルギーが低減されるように前記押しのけ容積の指令値を前記モータ制御部に送るように構成された第2WFコントローラをさらに備えることを特徴とする請求項1乃至3の何れか一項に記載の風力発電施設。
  5.  前記第2WFコントローラは、各風力発電装置の個別情報に基づき前記機械的エネルギーの低減量を各風力発電装置について決定し、該低減量に基づいて各風力発電装置の前記油圧モータへの前記指令値を送るように構成されたことを特徴とする請求項4に記載の風力発電施設。
  6.  前記第2WFコントローラは、前記複数の風力発電装置のうちロータ回転数が定格回転数に達した風力発電装置について前記負荷角を0rad以上の範囲に制限し、他の風力発電装置に関する前記負荷角については0rad未満の範囲を許容するように構成されたことを特徴とする請求項5に記載の風力発電施設。
  7.  前記ウィンドファームの各風力発電装置は、前記同期発電機の界磁巻線に界磁電流を供給するための励磁機と、前記異常検出部によって前記グリッドの異常事象が検出された直後、前記界磁電流が増加するように各風力発電装置の前記励磁機を制御するための励磁機制御部とをさらに有することを特徴とする請求項1乃至6の何れか一項に記載の風力発電施設。
  8.  同期発電機をそれぞれ有する複数の風力発電装置を含むウィンドファームと、前記ウィンドファームが接続されるローカルグリッドと、前記ローカルグリッドとグリッドとの間に設けられる直流送電路と、前記ローカルグリッドからの交流電力を直流電力に変換して前記直流送電路に供給するための送り出し変換器と、前記直流送電路からの前記直流電力を交流電力に変換して前記グリッドに供給するための受け取り変換器とを備える風力発電施設の運転方法であって、
     前記グリッドの異常事象を検出する検出ステップと、
     前記検出ステップによって前記異常事象が検出されたとき、前記ローカルグリッドにおけるローカルグリッド電圧位相に対する、各風力発電装置の前記同期発電機の発電機電圧位相の差を示す負荷角が小さくなるように前記送り出し変換器を制御する変換器制御ステップとを備えることを特徴とする風力発電施設の運転方法。
  9.  前記変換器制御ステップは、
     各風力発電装置についての前記発電機電圧位相との偏差の二乗の総和が最小になるような目標ローカルグリッド電圧位相を求め、
     前記ローカルグリッド電圧位相が前記目標ローカルグリッド電圧位相になるように前記送り出し変換器を制御することを特徴とする請求項8に記載の風力発電施設の運転方法。
  10.  前記変換器制御ステップは、
     各風力発電装置についての前記発電機電圧位相のうち最小の位相を目標ローカルグリッド電圧位相として選択し、
     前記ローカルグリッド電圧位相が前記目標ローカルグリッド電圧位相になるように前記送り出し変換器を制御することを特徴とする請求項8に記載の風力発電施設の運転方法。
  11.  各風力発電装置は、風力エネルギーによって駆動されて圧油を生成するための油圧ポンプと、前記圧油によって駆動されて前記同期発電機に機械的エネルギーを入力するための油圧モータと、各風力発電装置の前記油圧モータの押しのけ容積を制御するモータ制御部とを有し、
     前記検出ステップによって前記異常事象が検出されたとき、各風力発電装置の前記油圧モータの前記機械的エネルギーが低減されるように前記押しのけ容積の指令値を前記モータ制御部に送るモータ指令ステップをさらに備えることを特徴とする請求項8乃至10の何れか一項に記載の風力発電施設の運転方法。
  12.  前記モータ指令ステップは、
     各風力発電装置の個別情報に基づき前記機械的エネルギーの低減量を各風力発電装置について決定し、
     前記低減量に基づいて各風力発電装置の前記油圧モータへの前記指令値を送ることを特徴とする請求項11に記載の風力発電施設の運転方法。
  13.  前記モータ指令ステップでは、前記複数の風力発電装置のうちロータ回転数が定格回転数に達した風力発電装置について前記負荷角を0rad以上の範囲に制限し、他の風力発電装置に関する前記負荷角については0rad未満の範囲を許容することを特徴とする請求項12に記載の風力発電施設の運転方法。
  14.  前記ウィンドファームの各風力発電装置は、前記同期発電機の界磁巻線に界磁電流を供給するための励磁機をさらに有し、
     前記検出ステップによって前記異常事象が検出された直後、前記界磁電流が増加するように各風力発電装置の前記励磁機を制御する励磁機制御ステップをさらに備えることを特徴とする請求項8乃至13の何れか一項に記載の風力発電施設の運転方法。
  15.  送り出し変換器、直流送電路及び受け取り変換器を介してグリッドに連系されるローカルグリッドに接続され、同期発電機をそれぞれ有する複数の風力発電装置を含むウィンドファームの制御装置であって、
     前記グリッドの異常事象が検出されたとき、前記ローカルグリッドにおけるローカルグリッド電圧位相に対する、各風力発電装置の前記同期発電機の発電機電圧位相の差を示す負荷角が小さくなるように前記送り出し変換器を制御して前記ローカルグリッド電圧位相を調節するための第1WFコントローラを備えることを特徴とするウィンドファームの制御装置。
     
     
PCT/JP2013/050523 2013-01-15 2013-01-15 風力発電施設及びその運転方法、並びにウィンドファームの制御装置 WO2014112033A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014557209A JP5960291B2 (ja) 2013-01-15 2013-01-15 風力発電施設及びその運転方法、並びにウィンドファームの制御装置
PCT/JP2013/050523 WO2014112033A1 (ja) 2013-01-15 2013-01-15 風力発電施設及びその運転方法、並びにウィンドファームの制御装置
EP13871350.8A EP2908004B1 (en) 2013-01-15 2013-01-15 Wind power generation facility, method for operating same, and wind farm control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050523 WO2014112033A1 (ja) 2013-01-15 2013-01-15 風力発電施設及びその運転方法、並びにウィンドファームの制御装置

Publications (1)

Publication Number Publication Date
WO2014112033A1 true WO2014112033A1 (ja) 2014-07-24

Family

ID=51209159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050523 WO2014112033A1 (ja) 2013-01-15 2013-01-15 風力発電施設及びその運転方法、並びにウィンドファームの制御装置

Country Status (3)

Country Link
EP (1) EP2908004B1 (ja)
JP (1) JP5960291B2 (ja)
WO (1) WO2014112033A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144348A (ja) * 2015-02-03 2016-08-08 三菱重工業株式会社 発電制御装置、電力変換器制御装置、発電制御方法およびプログラム
JP2019534670A (ja) * 2016-10-26 2019-11-28 エムエイチアイ ヴェスタス オフショア ウィンド エー/エス 高圧リンクが機能していない場合における補助電力の提供
CN116338365A (zh) * 2023-05-26 2023-06-27 南方电网数字电网研究院有限公司 适用于直流海上风电机组的并网性能测试方法
WO2024176505A1 (ja) * 2023-02-22 2024-08-29 三菱重工業株式会社 電源制御システムおよび電源制御方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107909222B (zh) * 2017-12-11 2021-02-19 北京天润新能投资有限公司 一种基于风机智能分组的风电场集电线路三维路径规划方法及系统
CN110233489B (zh) * 2019-04-26 2020-12-18 国网浙江省电力有限公司电力科学研究院 一种直流系统换相失败恢复控制方法及控制系统
CN110676876B (zh) * 2019-10-11 2021-03-23 国网山东省电力公司经济技术研究院 计及送端和受端电网的特高压直流修正方法
CN114447979A (zh) * 2021-12-29 2022-05-06 华为数字能源技术有限公司 一种功率变换装置和功率变换装置的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125155A (ja) * 2006-11-08 2008-05-29 Technova:Kk 超電導回転電機駆動制御システム
JP2008161046A (ja) * 2006-12-20 2008-07-10 Nordex Energy Gmbh グリッド内の突然の電圧変化における風力発電プラントの運転方法
WO2009078076A1 (ja) * 2007-12-14 2009-06-25 Mitsubishi Heavy Industries, Ltd. 風力発電システム及びその運転制御方法
WO2009082326A1 (en) 2007-12-21 2009-07-02 2-B Energy Holding B.V. Method, system and device for controlling wind power plants
JP2010187482A (ja) * 2009-02-13 2010-08-26 Hitachi Ltd 風力発電装置および風力発電装置の制御方法
EP2270331A2 (en) 2009-06-30 2011-01-05 Vestas Wind Systems A/S Wind turbine with control means to manage power during grid faults
JP2011217574A (ja) * 2010-04-02 2011-10-27 Meidensha Corp 風力発電システム、回転機の制御装置および制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3187257B2 (ja) * 1994-09-30 2001-07-11 三菱電機株式会社 交流励磁同期機の運転制御装置
DK199901436A (da) * 1999-10-07 2001-04-08 Vestas Wind System As Vindenergianlæg
JP4307692B2 (ja) * 2000-05-26 2009-08-05 株式会社MERSTech 風力発電設備の出力制御装置および出力制御方法
US6583995B2 (en) * 2000-12-21 2003-06-24 Honeywell International Inc. Permanent magnet generator and generator control
US7425771B2 (en) * 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
CN101682192B (zh) * 2007-04-27 2013-03-13 Abb技术有限公司 影响调速发电机发电的方法和系统
EP2159910A1 (en) * 2008-08-29 2010-03-03 Vestas Wind Systems A/S Direct power and stator flux vector control of a generator for wind energy conversion system
JP2010074920A (ja) * 2008-09-17 2010-04-02 Toshiba Corp 風力発電システムの制御装置
DK2528184T3 (da) * 2011-05-25 2014-10-20 Siemens Ag Fremgangsmåde og indretning til styring af en jævnstrømstransmissionsforbindelse

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125155A (ja) * 2006-11-08 2008-05-29 Technova:Kk 超電導回転電機駆動制御システム
JP2008161046A (ja) * 2006-12-20 2008-07-10 Nordex Energy Gmbh グリッド内の突然の電圧変化における風力発電プラントの運転方法
WO2009078076A1 (ja) * 2007-12-14 2009-06-25 Mitsubishi Heavy Industries, Ltd. 風力発電システム及びその運転制御方法
WO2009082326A1 (en) 2007-12-21 2009-07-02 2-B Energy Holding B.V. Method, system and device for controlling wind power plants
JP2010187482A (ja) * 2009-02-13 2010-08-26 Hitachi Ltd 風力発電装置および風力発電装置の制御方法
EP2270331A2 (en) 2009-06-30 2011-01-05 Vestas Wind Systems A/S Wind turbine with control means to manage power during grid faults
JP2011217574A (ja) * 2010-04-02 2011-10-27 Meidensha Corp 風力発電システム、回転機の制御装置および制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHRISTIAN FELTES ET AL.: "Enhanced Fault Ride-Through Method for Wind Farms Connected to the Grid Through VSC-Based HVDC Transmission", IEEE TRANSACTIONS ON POWER SYSTEMS, vol. 24, no. 3, 2009, pages 1537 - 1546, XP011264397
See also references of EP2908004A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144348A (ja) * 2015-02-03 2016-08-08 三菱重工業株式会社 発電制御装置、電力変換器制御装置、発電制御方法およびプログラム
WO2016125376A1 (ja) * 2015-02-03 2016-08-11 三菱重工業株式会社 発電制御装置、電力変換器制御装置、発電制御方法およびプログラム
EP3255777A4 (en) * 2015-02-03 2018-08-22 Mitsubishi Heavy Industries, Ltd. Electric power generation control device, electric power converter control device, electric power generation control method and program
US10707790B2 (en) 2015-02-03 2020-07-07 Mitsubishi Heavy Industries, Ltd. Electric power generation control device for causing a reduction in a torque command, electric power generation control method and program
JP2019534670A (ja) * 2016-10-26 2019-11-28 エムエイチアイ ヴェスタス オフショア ウィンド エー/エス 高圧リンクが機能していない場合における補助電力の提供
WO2024176505A1 (ja) * 2023-02-22 2024-08-29 三菱重工業株式会社 電源制御システムおよび電源制御方法
CN116338365A (zh) * 2023-05-26 2023-06-27 南方电网数字电网研究院有限公司 适用于直流海上风电机组的并网性能测试方法
CN116338365B (zh) * 2023-05-26 2023-09-01 南方电网数字电网研究院有限公司 适用于直流海上风电机组的并网性能测试方法

Also Published As

Publication number Publication date
JP5960291B2 (ja) 2016-08-02
EP2908004A4 (en) 2015-09-30
EP2908004B1 (en) 2016-10-12
EP2908004A1 (en) 2015-08-19
JPWO2014112033A1 (ja) 2017-01-19

Similar Documents

Publication Publication Date Title
JP5960291B2 (ja) 風力発電施設及びその運転方法、並びにウィンドファームの制御装置
CN100400862C (zh) 支持电网的、具有无功功率模块的风力发电设备及其方法
US9178456B2 (en) Power transmission systems
JP5308511B2 (ja) 風力発電設備の出力制御方法及び出力制御装置
JP6240070B2 (ja) 水力発電タービンを制御する方法及びシステム
EP2866323B1 (en) Auxiliary electric power system and method of regulating voltages of the same
JP2008283747A (ja) 風力発電システムおよびその制御方法
KR20130031303A (ko) 재생 에너지형 발전 장치 및 그 운전 방법
WO2012175110A1 (en) A method for controlling power flow within a wind park system, controller, computer program and computer program products
AU2011238163B2 (en) Power transmissions systems
EP2902624A1 (en) Method for operating a wind farm and wind farm
EP2492504A1 (en) Wind turbine
JP5946810B2 (ja) 電力システム及びその運転方法、並びに電力システムの制御装置
WO2012137356A1 (ja) 風力発電装置の制御装置、風力発電装置、ウインドファーム、及び風力発電装置の制御方法
Benbouzid et al. An up-to-date review of low-voltage ride-through techniques for doubly-fed induction generator-based wind turbines
EP3533128B1 (en) Controlling power exchange from self-commutated converters
CN110226274B (zh) 在高压链路不起作用时提供辅助电力
JP2013520596A (ja) 再生エネルギー型発電装置及びその運転方法
JP2010035418A (ja) 風力発電システムの制御方法
US20110210550A1 (en) Power generation unit and a method generating electric energy
JP2014128159A (ja) 発電施設及びその運転方法、並びに発電施設の制御装置
US20240191375A1 (en) Control of a wind turbine having an electrolyzer
Chung Phan et al. Point of common coupling voltage recovery capability improvement of offshore wind farm connected to a weak grid through high voltage direct current link
JP2018121476A (ja) 風力発電施設、及び、風力発電施設の運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557209

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013871350

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013871350

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE