WO2014111998A1 - Method for producing polymer solution, and polymer solution - Google Patents

Method for producing polymer solution, and polymer solution Download PDF

Info

Publication number
WO2014111998A1
WO2014111998A1 PCT/JP2013/007127 JP2013007127W WO2014111998A1 WO 2014111998 A1 WO2014111998 A1 WO 2014111998A1 JP 2013007127 W JP2013007127 W JP 2013007127W WO 2014111998 A1 WO2014111998 A1 WO 2014111998A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer solution
solvent
polymer
boiling point
low boiling
Prior art date
Application number
PCT/JP2013/007127
Other languages
French (fr)
Japanese (ja)
Inventor
智子 河村
由香里 鯉渕
Original Assignee
日立化成デュポンマイクロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成デュポンマイクロシステムズ株式会社 filed Critical 日立化成デュポンマイクロシステムズ株式会社
Priority to JP2014557191A priority Critical patent/JPWO2014111998A1/en
Publication of WO2014111998A1 publication Critical patent/WO2014111998A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a method for producing a polymer solution and a polymer solution.
  • it is related with the polymer solution used as the material of the heat resistant resin composition used for an electronic component or a display element, and the photosensitive resin composition which has heat resistance.
  • a polyimide resin having excellent heat resistance, electrical characteristics, mechanical characteristics and the like is used.
  • semiconductor devices have become more highly integrated and larger, and the mechanical properties, heat resistance, etc. are better than ever due to the thinner and smaller sealing resin packages and the transition to surface mounting by solder reflow.
  • a polyimide resin is required.
  • polybenzoxazole has attracted attention from the viewpoint of lowering the dielectric constant.
  • the polyamic acid which is a precursor of a polyimide resin can be generally obtained by reacting a raw material tetracarboxylic dianhydride and a diamine in an organic solvent.
  • a polyamic acid ester is also used as a precursor of the polyimide resin.
  • the method for synthesizing the polyamic acid ester is roughly divided into the following three methods.
  • the first synthesis method is a method of reacting diester dicarboxylic acid dichloride and diamine (see Patent Documents 1 and 2). Since diester dicarboxylic acid dichloride has a higher reactivity with diamine than tetracarboxylic dianhydride, in this synthesis method, a high molecular weight polyamic acid ester can be obtained in a shorter time than polyamic acid. However, since diester dicarboxylic acid dichloride has high reactivity, it easily changes to diester dicarboxylic acid by hydrolysis. Therefore, when water is mixed in the polymerization system, the molecular weight of the resulting polyamic acid ester is lowered, and the reproducibility of the molecular weight becomes poor. There is also a problem that chloride ions remain in the polymer.
  • the second synthesis method is a method of converting a carboxyl group of a polyamic acid into an ester. After synthesizing polyamic acid from tetracarboxylic dianhydride and diamine, a polyamic acid ester is obtained by adding and reacting a desired esterifying agent (see Patent Document 3).
  • this method has a problem that there is no simple reaction tracking method for esterification, and it is difficult to quantitatively esterify all carboxyl groups.
  • the third synthesis method is a method in which diester dicarboxylic acid and diamine are polycondensed using a condensing agent.
  • Known condensing agents include carbonyldiimidazole and phosphorus condensing agents.
  • a high molecular weight polyamic acid ester can be obtained with good reproducibility.
  • the most commonly used method for producing alkali-soluble poly-o-hydroxyamide which is a polybenzoxazole precursor, is a method in which dicarboxylic acid dichloride is reacted with an appropriate bis-o-aminophenol.
  • a soluble base such as pyridine is usually added.
  • NMP N-methyl-2-pyrrolidone
  • the above polymer mixture contains a polyimide precursor or polybenzoxazole precursor and a solvent, and contains substantially no impurities such as by-products and chloride ions during synthesis (for example, about 5% by mass or less).
  • a method for obtaining a polymer solution water and / or alcohol is added to a polymer mixed solution, a polyimide precursor or a polybenzoxazole precursor is precipitated, filtered, impurities are removed, and the filtered polyimide precursor or polymer is filtered.
  • the polymer solution obtained by this method can be directly applied to a substrate and cured by heating to form a cured film. Also, a resin composition obtained by adding other components to a polymer solution is applied to a substrate and heated. It can also be cured to form a cured film.
  • the NMP content in the polymer solution or the resin composition is required to be 0.1% or less.
  • This invention is made in view of the above, Comprising: The manufacturing method of the polymer solution which can reduce content of a NMP content and the by-product generated at the time of a polyimide precursor or a polybenzoxazole precursor synthesis
  • combination The purpose is to provide.
  • Another object of the present invention is to provide a method for producing a polymer solution in which the change in viscosity of the resulting polymer solution is small.
  • a method for producing a polymer solution comprising the following steps (a) to (d): (A) A synthesis step in which an amine component and an acid component are reacted in a solvent containing N-methyl-2-pyrrolidone (NMP) to obtain a polymer mixture containing a polyimide precursor or a polybenzoxazole precursor. b) Separation step of adding water or an aqueous solution and a low boiling point solvent to the polymer mixed solution, and removing the aqueous layer by liquid separation operation to obtain a low boiling point solvent layer.
  • NMP N-methyl-2-pyrrolidone
  • Method. 4 4. The method for producing a polymer solution according to any one of 1 to 3, wherein the substitution solvent is one or more solvents selected from ⁇ -butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether. 5. 5. The method for producing a polymer solution according to any one of 1 to 4, wherein the polyimide precursor or polybenzoxazole precursor has a structure represented by the following general formula (I) or (II). (In the general formula (I), X represents a tetravalent organic group, p represents an integer of 0 to 2, and W represents a divalent to tetravalent organic group. R 1 and R 2 are each independently hydrogen.
  • R 3 represents a hydrogen atom or a methyl group, and a represents an integer of 1 to 6.
  • U is a tetravalent organic group
  • V is a divalent organic group.
  • 6 A polymer solution obtained by the method for producing a polymer solution described in any one of 1 to 5 above. 7). 7. The polymer solution according to 6, wherein the content of the polar solvent is 1 to 20% by mass of the whole. 8). 8. The polymer solution according to 6 or 7, wherein the content of nonvolatile components is 10 to 50% by mass of the whole. 9.
  • a method for producing a membrane comprising the steps of applying the polymer solution described in any one of 6 to 8 above or the resin composition described in 9 on a substrate and drying to obtain a resin film, and heating the resin film.
  • the manufacturing method of the polymer solution which can reduce content of NMP and content of the by-product generated at the time of a polyimide precursor or a polybenzoxazole precursor synthesis
  • process is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used if the intended action of the process is achieved. included.
  • the numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the method for producing a polymer solution of the present invention includes the following steps (a) to (d).
  • (A) A synthesis step in which an amine component and an acid component are reacted in a solvent containing N-methyl-2-pyrrolidone (NMP) to obtain a polymer mixture containing a polyimide precursor or a polybenzoxazole precursor.
  • NMP N-methyl-2-pyrrolidone
  • (c) A substitution solvent and a low boiling point solvent layer Step of adding polar solvent
  • (d) Concentration step of distilling off the low boiling point solvent under reduced pressure after step (c)
  • the solvent used in the synthesis of the polyimide precursor or the polybenzoxazole precursor is replaced with a solvent other than NMP, for example, ⁇ -butyrolactone (BLO).
  • BLO ⁇ -butyrolactone
  • the recovered precursor is an organic solvent different from the NMP solvent, for example, A method of dissolving in BLO to form a polymer solution is also conceivable. However, with this method, it is difficult to reduce NMP to 1% or less.
  • the present invention provides a polymer solution in which the content of NMP and the content of by-products generated during synthesis of the polyimide precursor or polybenzoxazole precursor are reduced by combining the steps (a) to (d). Has been found to be obtained. Moreover, it discovered that the time-dependent change of the viscosity of the polymer solution obtained became small. Hereinafter, it demonstrates along each process.
  • ⁇ (A) Synthesis process> In the synthesis step, an amine component and an acid component are reacted with N-methyl-2-pyrrolidone (NMP) as a solvent to obtain a polymer mixed solution containing a polyimide precursor or a polybenzoxazole precursor.
  • NMP N-methyl-2-pyrrolidone
  • the polyimide precursor include polyamic acid or polyamic acid ester.
  • the polybenzoxazole precursor include poly-o-hydroxyamide.
  • polyamic acid is obtained, for example, by reacting a tetracarboxylic dianhydride that is an acid component with a diamine compound that is an amine component.
  • polyamic acid can be synthesized according to the following method. First, a diamine compound is dissolved in an organic solvent. To this solution, a diamine compound and an equimolar amount of tetracarboxylic dianhydride are gradually added, and the reaction is carried out with stirring using a mechanical stirrer.
  • an end-capping agent after adding tetracarboxylic dianhydride, after stirring at the required temperature and the required time, the end-capping agent may be added gradually or added all at once to react. You may let them.
  • diamine compound examples include 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfide, benzidine, m-phenylenediamine, and p-phenylenediamine.
  • the diamine compound having the hydroxyl group is preferable, and 2,2-bis (3-amino-4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane is more preferable.
  • the diamine compound is not limited to these. These compounds can be used alone or in combination of two or more.
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenonetetra Carboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1-bis ( 3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphen
  • NMP alone or a mixed solvent of NMP and an organic solvent is used as the solvent.
  • organic solvent mixed with NMP include N, N-dimethylacetamide, N, N-dimethylformamide, N-acetyl-2-pyrrolidone, hexamethylphosphortriamide, dimethylimidazolidinone, N-acetyl- ⁇ - Caprolactam can be used.
  • the amine component and the acid component are preferably reacted at a molar ratio (amine component / acid component) of 0.5 to 1.5, more preferably 0.75 to 1.25.
  • the reaction temperature is preferably ⁇ 20 to 100 ° C., more preferably 10 to 50 ° C.
  • the reaction time is preferably 0.5 to 100 hours, more preferably 2 to 24 hours.
  • the polyamic acid ester is obtained, for example, by reacting a tetracarboxylic acid diester dichloride that is an acid component with a diamine that is an amine component.
  • a polyamic acid ester is prepared by mixing a tetracarboxylic dianhydride and a hydroxy group-containing compound and reacting to produce a tetracarboxylic acid half ester, then acidifying with a halogenating agent, and then reacting with a diamine.
  • the tetracarboxylic acid half ester can be synthesized by a method, a method in which a carbodiimide is used as a condensing agent, and a diamine.
  • the tetracarboxylic dianhydride that is the acid component of the polyamic acid ester the same ones as in the synthesis of the polyamic acid can be used.
  • the amine component of the polyamic acid ester a diamine compound similar to the synthesis of the polyamic acid can be used.
  • aliphatic alcohols such as methanol, ethanol, propanol, and butanol can be used as the hydroxy group-containing compound.
  • halogenating agent for halogenating the polyamic acid half ester thionyl chloride, phosphoryl chloride, phosphorous oxychloride, phosphorous pentachloride, etc., which are used in the usual acid chlorideation reaction of carboxylic acid, can be used.
  • Any carbodiimide condensing agent for reacting a polyamic acid half ester with a diamine can be used without particular limitation as long as it is used for ordinary active ester synthesis, but dicyclohexylcarbodiimide, diisopropylcarbodiimide, N- [3- (dimethylamino). ) Propyl] -N-ethylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and the like.
  • the solvent In the synthesis of the polyamic acid ester, NMP alone or a mixed solvent of NMP and the organic solvent described above is used as the solvent.
  • the amount of the solvent used is preferably 100 parts by weight or more and 1500 parts by weight or less with respect to 100 parts by weight of the obtained polymer.
  • the amine component and the acid component are preferably reacted at a molar ratio (amine component / acid component) of 0.5 to 1.5, more preferably 0.75 to 1.25. preferable.
  • the reaction temperature for the synthesis of the polyamic acid ester is preferably ⁇ 10 to 90 ° C., more preferably 0 to 70 ° C.
  • the reaction time is preferably 8 hours to 1 week, more preferably 10 hours to 42 hours.
  • the polybenzoxazole precursor is obtained, for example, by reacting a dicarboxylic acid dihalide that is an acid component with a dihydroxydiamine compound that is an amine component.
  • a dicarboxylic acid dihalide that is an acid component
  • a dihydroxydiamine compound that is an amine component
  • it can be synthesized by converting a dicarboxylic acid derivative into a dihalide derivative and then reacting with the diamine compound.
  • a dichloride derivative is preferable.
  • dicarboxylic acid examples include isophthalic acid, terephthalic acid, 2,2-bis (4-carboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, 4,4′-dicarboxybiphenyl, 4, 4′-dicarboxydiphenyl ether, 4,4′-dicarboxytetraphenylsilane, bis (4-carboxyphenyl) sulfone, 2,2-bis (p-carboxyphenyl) propane, 5-tert-butylisophthalic acid, 5- Aromatic dicarboxylic acids such as bromoisophthalic acid, 5-fluoroisophthalic acid, 5-chloroisophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3 -Aliphatic dicarboxylic acids such as cyclopentanedicarboxylic acid
  • 4,4′-dicarboxydiphenyl ether or aliphatic dicarboxylic acid is preferable, and 4,4′-dicarboxydiphenyl ether or dodecanedioic acid is more preferable.
  • 4,4′-dicarboxydiphenyl ether or dodecanedioic acid is more preferable.
  • it is not limited to these.
  • These compounds can be used alone or in combination of two or more.
  • the dihydroxydiamine compound a diamine having a hydroxyl group that can be used in the synthesis of the polyamic acid described above can be used.
  • the dihalide derivative can be synthesized by acting a halogenating agent on the dicarboxylic acid derivative.
  • a halogenating agent thionyl chloride, phosphoryl chloride, phosphorus oxychloride, phosphorus pentachloride, etc., which are used in the usual acid chlorideation reaction of carboxylic acid can be used.
  • the dihalide derivative As a method of synthesizing the dihalide derivative, it can be synthesized by reacting the dicarboxylic acid derivative and the halogenating agent in a solvent or by reacting in an excess halogenating agent and then distilling off the excess.
  • a reaction solvent N-methyl-2-pyrrolidone, N-methyl-2-pyridone, N, N-dimethylacetamide, N, N-dimethylformamide, toluene, benzene and the like can be used.
  • the amount of these halogenating agents used is preferably 1.5 to 3.0 mol, more preferably 1.7 to 2.5 mol, based on the dicarboxylic acid derivative when the reaction is carried out in a solvent.
  • a halogenating agent 4.0 to 50 mol is preferable, and 5.0 to 20 mol is more preferable.
  • the reaction temperature is preferably ⁇ 10 to 70 ° C., more preferably 0 to 20 ° C.
  • the reaction between the dihalide derivative and the diamine compound is performed in NMP or in a mixed solvent of NMP and the above-described organic solvent in the presence of a dehydrohalogenating agent.
  • a dehydrohalogenating agent organic bases such as pyridine and triethylamine are usually used.
  • the diamine compound and dihalide derivative are preferably reacted at a molar ratio (amine component / dihalide derivative) of 0.5 to 1.5, more preferably 0.75 to 1.25.
  • the reaction temperature is preferably ⁇ 10 to 30 ° C., more preferably 0 to 20 ° C.
  • the reaction time is preferably 3 to 24 hours, more preferably 6 to 12 hours.
  • the polybenzoxazole precursor can also be synthesized by a method via a dicarboxylic acid active ester. Specifically, the dicarboxylic acid is reacted in the presence of dicyclohexylcarbodiimide and 1-hydroxy-benzotriazole. In this reaction, a polybenzoxazole precursor can be obtained by once forming an active ester with an aromatic dicarboxylic acid and 1-hydroxy-benzotriazole and then reacting with a diamine having a hydroxyl group.
  • the dicarboxylic acid used in the above reaction the dicarboxylic acid described in the synthesis of the polybenzoxazole precursor can be used.
  • a diamine compound the diamine which has a hydroxyl group which can be used by the synthesis
  • the reaction between the dicarboxylic acid active ester and the diamine compound is performed in NMP or in a mixed solvent of NMP and the organic solvent described above.
  • the diamine compound and the dicarboxylic acid active ester are preferably reacted at a molar ratio (amine component / acid active ester) of 0.5 to 1.5, more preferably 0.75 to 1.25.
  • the reaction temperature is preferably 0 to 90 ° C, more preferably 20 to 75 ° C.
  • the reaction time is preferably 3 hours to 3 days, more preferably 6 hours to 24 hours.
  • Both ends of each polyimide precursor or polybenzoxazole precursor described above may be an acidic functional group or a derivative group thereof.
  • the above-described diamine component and acid component may be reacted at a molar ratio (amine component / acid component) of 1 to 1.5. More preferably, the ratio is from .05 to 1.25.
  • both terminal portions of the obtained precursor are carboxy groups.
  • the carboxy group can be further substituted with another acidic functional group or a derivative group thereof.
  • a specific method for introducing a functional group into a terminal carboxy group a method of adding a monoamino compound having a functional group or capable of introducing a functional group at the time of synthesizing a precursor may be mentioned.
  • Examples of the monoamino compound include ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, t-butylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, cyclohexylmethyl.
  • Examples thereof include aliphatic amines such as amines, and aromatic amines such as aniline, o-toluidine, m-toluidine, p-toluidine, o-aminophenol, m-aminophenol and p-aminophenol.
  • the monoamino compound is not necessarily limited to these. Among them, from the viewpoint of stability, a monoamino compound having an acidic functional group such as a phenolic hydroxyl group such as o-aminophenol, m-aminophenol, and p-aminophenol is added, and the terminal is an acidic functional group or a derivative group thereof. It is preferable to do.
  • a monoamino compound having an acidic functional group such as a phenolic hydroxyl group such as o-aminophenol, m-aminophenol, and p-aminophenol is added, and the terminal is an acidic functional group or a derivative group thereof. It is preferable to do.
  • the polyimide precursor or polybenzoxazole precursor is preferably a compound having a structure represented by the following general formula (I) or (II) from the viewpoint of solubility in a developer.
  • X represents a tetravalent organic group
  • p represents an integer of 0 to 2
  • W represents a divalent to tetravalent organic group.
  • R 1 and R 2 are each independently hydrogen. It is an atom, an aliphatic group having 1 to 6 carbon atoms, or a group represented by the following general formula (Ia).
  • R 3 represents a hydrogen atom or a methyl group, and a represents an integer of 1 to 6.
  • U is a tetravalent organic group
  • V is a divalent organic group.
  • the tetravalent organic group as X is a residue of tetracarboxylic dianhydride as a raw material. Specifically, a tetravalent aromatic group or a tetravalent aliphatic group is preferable.
  • the number of carbon atoms is preferably 4 to 40.
  • a tetravalent aromatic group having 4 to 40 carbon atoms or a tetravalent aliphatic group having 4 to 40 carbon atoms is more preferable.
  • p represents an integer of 0 to 2, and 0 to 2 hydroxy groups are bonded to W.
  • the divalent to tetravalent organic group that is W is a residue of a diamine that is a raw material, and is preferably a divalent to tetravalent aromatic group or a divalent to tetravalent aromatic group aliphatic group. Is more preferably a divalent to tetravalent aromatic group of 4 to 40.
  • R 1 and R 2 are preferably hydrogen, an alkyl group having 1 to 6 carbon atoms, or a group represented by the above general formula (Ia).
  • the content of the structural unit represented by the general formula (I) in the precursor is preferably 60 to 100 mol%, and more preferably 80 to 100 mol%.
  • the tetravalent organic group represented by U is a diamine residue which is a raw material and has a structure in which two hydroxy groups are located at the ortho positions of the amine.
  • U is preferably a tetravalent aromatic group and preferably has 6 to 40 carbon atoms.
  • a tetravalent aromatic group having 6 to 40 carbon atoms is preferable.
  • the tetravalent aromatic group those in which all four bonding sites are present on the aromatic ring are preferable.
  • the divalent organic group represented by V is a residue of a dicarboxylic acid that is a raw material, and is preferably a divalent aromatic group or a divalent aliphatic group, and has 6 to 40 carbon atoms. preferable. In particular, a divalent aromatic group having 6 to 40 carbon atoms or a divalent aliphatic group is more preferable.
  • the content of the structural unit represented by the general formula (II) in the precursor is preferably 60 to 100 mol%, and particularly preferably 80 to 100 mol%.
  • the polybenzoxazole precursor preferably has a structure represented by the general formula (II). However, since the solubility of the polybenzoxazole precursor in an alkaline aqueous solution is derived from a phenolic hydroxyl group, an amide containing a hydroxy group It is preferable that the unit is contained in a certain proportion or more. That is, a polybenzoxazole precursor represented by the following formula (III) is preferable.
  • U represents a tetravalent organic group
  • V and Y each represent a divalent organic group
  • j and k represent a mole fraction
  • the sum of j and k is 100 mol%; j is 60 to 100 mol%, and k is 40 to 0 mol%.
  • the divalent organic group represented by Y is a residue of a diamine that is a raw material, and is a residue other than the diamine that forms U.
  • Y is preferably a divalent aromatic group or a divalent aliphatic group, and preferably has 4 to 40 carbon atoms, more preferably a divalent aromatic group having 4 to 40 carbon atoms.
  • j is preferably 80 to 100 mol%
  • k is preferably 20 to 0 mol%.
  • the weight average molecular weight (Mw) of the polyimide precursor or polybenzoxazole precursor in the present invention is 5000 to 100,000 in terms of polystyrene. Preferably it is 7000 to 80,000, more preferably 10,000 to 60,000. In order to improve heat resistance, 5000 or more is preferable. On the other hand, 100,000 or less is preferable in terms of solubility in a solvent and handleability.
  • the polymer mixture of the polyimide precursor or polybenzoxazole precursor obtained in this step is composed of the polyimide precursor or polybenzoxazole precursor, NMP, by-products (hydrochloride, etc.) and impurities in the synthesis step. Including. At this stage, a large amount (for example, 50% by mass or more) of NMP is contained in the polymer mixed solution.
  • hydrochloride which is a by-product is generated from hydrochloric acid generated by the reaction of dicarboxylic acid dichloride and diamine, and a base such as pyridine added as a hydrochloric acid trapping agent.
  • ⁇ (B) Separation process In this step, water or an aqueous solution and a low boiling point solvent are added to the polymer mixture obtained in the above step (a), and the aqueous layer is removed by a liquid separation operation to obtain a low boiling point solvent layer.
  • impurities such as hydrochloride generated during synthesis of the polyimide precursor or polybenzoxazole precursor and NMP as a solvent can be removed.
  • a liquid separation process can be implemented with the following method, for example.
  • a low boiling point solvent is appropriately added so that the solid content (polyimide precursor or polybenzoxazole precursor) content is 3 to 30% by mass of the polymer mixture.
  • the low boiling point solvent can be separated into a layer containing NMP-containing solvent and water or an aqueous solution added in this step, dissolves the polyimide precursor or polybenzoxazole precursor, and is used as a substitution solvent and a polar solvent in the subsequent step.
  • Any organic solvent having a lower boiling point is not particularly limited.
  • the boiling point of the low boiling point solvent is not particularly limited, but is preferably 180 ° C. or lower.
  • low boiling point solvent examples include isobutanol, ethyl acetate, butyl acetate, diethyl ether, methyl-t-butyl ether, methyl ethyl ketone, methyl isobutyl ketone, hexane and benzene.
  • organic solvents other than the above and each may be used individually or may be used in mixture.
  • ethyl acetate, methyl isobutyl ketone, or methyl t-butyl ether is preferable from the viewpoints of volatility, solubility of the polyimide precursor or polybenzoxazole precursor, and layer separation from the aqueous layer.
  • water or an aqueous solution is added to the polymer mixed solution to which the low boiling point solvent is added.
  • the aqueous solution include an aqueous solution of an inorganic acid, an organic acid, or an inorganic salt, and specific examples include ion-exchanged water, hydrochloric acid aqueous solution, sulfuric acid aqueous solution, nitric acid aqueous solution, acetic acid aqueous solution, oxalic acid aqueous solution, and sodium chloride aqueous solution. .
  • An aqueous solution other than the above may be used. Of these, ion-exchanged water is preferred.
  • the addition amount of water or an aqueous solution is preferably 10 to 200% by mass with respect to the whole polymer mixed solution to which the low boiling point solvent is added.
  • the stirring time is preferably 5 to 60 minutes, more preferably 10 to 20 minutes.
  • the low boiling point solvent layer contains a polyimide precursor or polybenzoxazole precursor and a low boiling point solvent.
  • the water layer contains a water-soluble compound, for example, impurities such as chloride ions produced as a by-product during synthesis of the polyimide precursor or polybenzoxazole precursor, NMP, and water.
  • the standing time after stirring is the time until separation is completed, and is usually 10 minutes to 2 hours, but is not particularly limited. By this step, a low boiling point solvent layer containing a polyimide precursor or a polybenzoxazole precursor and a low boiling point solvent can be obtained.
  • a substitution solvent and a polar solvent are added to the low boiling point solvent layer obtained in the step (b) described above.
  • the substitution solvent used in this step is the main component of the solvent of the finally obtained polymer solution.
  • the substitution solvent is not particularly limited as long as it is an organic solvent that dissolves a polyimide precursor or a polybenzoxazole precursor and has a boiling point higher than that of the low boiling point solvent used in the previous step.
  • ⁇ -butyrolactone GBL
  • ethyl lactate propylene glycol monomethyl ether acetate
  • benzyl acetate n-butyl acetate
  • ethoxyethyl propionate 3-methylmethoxypropionate
  • N, N-dimethylformamide N, N-dimethylacetamide
  • hexamethylphosphorylamide tetramethylene sulfone
  • diethyl ketone diisobutyl ketone, methyl amyl ketone, cyclohexanone
  • propylene glycol monomethyl ether propylene glycol monopropyl ether
  • propylene glycol monobutyl ether dipropylene glycol monomethyl ether
  • solvents can be used alone or in combination of two or more.
  • the amount of the substitution solvent is not particularly limited, but it is preferably adjusted so that the proportion of the substitution solvent in the finally obtained polymer solution is 20 to 90% by mass.
  • the polar solvent used in this step has a role of preventing the viscosity of the polymer solution from changing with time.
  • the main component of the solvent in the polymer solution is NMP.
  • the polar solvent used in this step can prevent hydrogen bonding between the molecules of the polyimide precursor or polybenzoxazole precursor. As a result, it is considered that the change in the viscosity of the polymer solution with time can be prevented.
  • polar solvent examples include dimethyl sulfoxide (DMSO), N-ethylpyrrolidone (NEP), and dimethylformamide (DMF). Among these, it is preferable to use DMSO and NEP from the viewpoint that the change in viscosity with time can be prevented.
  • the blending amount of the polar solvent is not particularly limited. It is preferable to adjust the ratio of the polar solvent in the finally obtained polymer solution to be 1 to 20% by mass.
  • ⁇ (D) Concentration step> the low boiling point solvent is distilled off under reduced pressure from the low boiling point solvent layer to which the substitution solvent and the polar solvent are added in the step (c), and concentrated.
  • the concentration step the low boiling point solvent and residual moisture can be removed to obtain a polymer solution.
  • the method for the concentration step is not particularly limited.
  • the low-boiling solvent layer after step (c) may be decompressed using a vacuum pump and concentrated under reduced pressure at a temperature of 20 to 100 ° C. and a temperature of 30 to 60 ° C. for 12 hours to 1 week. About 3 days is more preferable.
  • concentration may be used.
  • the polymer solution of the present invention is obtained, for example, by the production method of the present invention described above.
  • the content of NMP in the polymer solution is as low as 0.1% by mass or less, and impurities (for example, chloride ions) produced as a by-product during the synthesis of the polyimide precursor or polybenzoxazole precursor are also present. Less (for example, 0.1% by mass or less).
  • the obtained polymer solution is a polymer solution in which the change in viscosity with time is small.
  • the volatile content is preferably 50 to 90% by mass.
  • the polymer solution or a resin composition obtained by adding other components to the polymer solution is applied to a substrate, and is cured to form a cured film by heating and curing. It is easy to form a film (0.1 ⁇ m to 50 ⁇ m).
  • the volatile matter concentration in the polymer solution can be determined by quantifying the volatile matter (the above-mentioned substitution solvent and polar solvent) by gas chromatography.
  • the resin composition of the present invention contains the polymer solution of the present invention.
  • the resin composition of the present invention may newly contain a solvent as necessary, and may contain a photosensitizer, an acid generator, a radical initiator, an adhesion assistant, a crosslinking agent, and the like. .
  • the manufacturing method of the cured film of this invention includes the process of apply
  • the technical scope of the present invention extends to a cured film obtained by the above production method.
  • a polymer solution or a resin composition is spin-coated using a spinner or the like on a substrate such as a glass substrate, a semiconductor, a metal oxide insulator (TiO 2 , SiO 2, or the like) or silicon nitride. Thereafter, a resin film is formed by drying using a hot plate, an oven, or the like.
  • the resin film may be a patterned resin film by a known exposure process and development process.
  • a cured film is obtained by heat-treating the resin film at 150 to 450 ° C.
  • a diffusion furnace, an oven, a hot plate, or the like can be used for the heat treatment.
  • the time for thermally curing the resin film is the time until the remaining solvent and volatile components are sufficiently scattered, but is approximately 5 hours or less in consideration of work efficiency.
  • the atmosphere for the heat treatment can be selected from the air or an inert atmosphere such as nitrogen.
  • the cured film thus obtained can be used as a surface protective layer, an interlayer insulating layer, a rewiring layer, or the like in a semiconductor device.
  • FIG. 1 is a manufacturing process diagram of a semiconductor device having a multilayer wiring structure.
  • a semiconductor substrate 1 such as a Si substrate having circuit elements is covered with a protective film 2 such as a silicon oxide film except for a predetermined portion of the circuit elements, and a first conductor layer 3 is formed on the exposed circuit elements.
  • a protective film 2 such as a silicon oxide film except for a predetermined portion of the circuit elements
  • a first conductor layer 3 is formed on the exposed circuit elements.
  • An interlayer insulating film layer 4 such as a polyimide resin as an interlayer insulating film is formed on the semiconductor substrate by a spin coat method or the like (step (a) in FIG. 1).
  • a chlorinated rubber-based or phenol novolak-based photosensitive resin layer 5 is formed on the interlayer insulating film layer 4 by spin coating, and a predetermined portion of the interlayer insulating film layer 4 is exposed by a known photolithography technique.
  • a window 6A is provided (step (b)).
  • the interlayer insulating film 4 exposed through the window 6A is selectively etched by dry etching means using a gas such as oxygen or carbon tetrafluoride to open the window 6B.
  • the photosensitive resin layer 5 is completely removed using an etching solution that corrodes only the photosensitive resin layer 5 without corroding the first conductor layer 3 exposed from the window 6B (step (c)). .
  • the second conductor layer 7 is formed by using a known photolithography technique, and the electrical connection with the first conductor layer 3 is completely performed (step (d)).
  • each layer can be formed by repeating the above steps.
  • the surface protective film layer 8 is formed.
  • this surface protective film layer was coated with the polymer solution or resin composition of the present invention by a spin coat method and dried, and light was irradiated from above a mask on which a pattern for forming a window 6C was formed at a predetermined portion. Thereafter, development is performed with an alkaline aqueous solution to form a pattern, followed by heating to obtain a heat resistant polymer film.
  • This heat-resistant polymer film protects the conductor layer from external stress, ⁇ rays, etc., and the obtained semiconductor device is excellent in reliability.
  • the interlayer insulating film layer can be formed using the polymer solution or the resin composition of the present invention.
  • the weight average molecular weights of the polyimide precursor and the polybenzoxazole precursor are determined by standard polystyrene conversion using a gel permeation chromatography method (GPC, apparatus is manufactured by Hitachi, Ltd., column is gel pack manufactured by Hitachi Chemical Co., Ltd.). It was. Specifically, the weight average molecular weight of each polymer was measured by GPC with the following apparatus and conditions.
  • ⁇ Measurement method of NMP content in polymer solution The polymer solution as a sample was diluted 10-fold with DMF (N, N-dimethylformamide), and then 1.0 ⁇ l was injected into a gas chromatography (GC) apparatus to analyze the NMP content.
  • GC gas chromatography
  • a calibration curve was created from the NMP peak areas of standard solutions with NMP concentrations of 0.02%, 0.2%, and 2% prepared by diluting NMP manufactured by Wako Pure Chemical Industries with DMF, and the content of NMP from the peak area of the sample. The amount was determined. Specifically, NMP content was measured by GC with the following apparatus and conditions.
  • ⁇ Measurement method of chloride ion content in polymer solution The polymer solution was diluted 1 to 1000 times with ion-exchanged water, and 2 ml was injected into ion chromatography (Dionex 2010I-6), and the content of chloride ions was analyzed. A calibration curve is prepared from the Cl peak height of a standard solution for chloride ion concentration 5 ppm and 50 ppm prepared by diluting a standard reagent for ion chromatography (1000 ppm, manufactured by Wako Pure Chemical Industries, Ltd.), and chloride is obtained from the peak height of the sample. The ion content was determined.
  • Viscosity change rate was calculated
  • Viscosity change rate (%) (viscosity after storage for 2 weeks ⁇ initial viscosity) ⁇ 100 The viscosity was measured with the following apparatus and conditions.
  • Measuring device E-type viscometer (VISIONIC EHD, Toki Sangyo Co., Ltd.) Measurement temperature: 25 ° C Rotation speed: 2.5-20rpm
  • carboxylic acid chloride solution A a catalytic amount of 1,8-diazabicycloundecene was added, followed by heating at 60 ° C. for 2 hours. Subsequently, the mixture was stirred at room temperature (25 ° C.) for 15 hours for esterification. Thereafter, 7.6 g (64 mmol) of thionyl chloride was added under ice-cooling, and the mixture was returned to room temperature and reacted for 2 hours to obtain a carboxylic acid chloride solution (hereinafter, this solution is referred to as carboxylic acid chloride solution A).
  • Synthesis Example 3 [Synthesis of Polybenzoxazole Precursor (Polymer Mixture C)] A polymer mixture C was obtained in the same manner as in Synthesis Example 2 except that dodecanedioic acid was used instead of diphenyl ether dicarboxylic acid.
  • Synthesis Example 4 [Synthesis of Polybenzoxazole Precursor Solution (Polymer Mixture D)] In a 0.2 liter flask equipped with a stirrer and a thermometer, 12.9 g (50 mmol) of 4,4′-diphenyl ether dicarboxylic acid and 13.5 g (100 mmol) of 1-hydroxybenzotriazole were added to N-methyl- Dissolved in 75 g of 2-pyrrolidone.
  • the expected amount of polymer precursor was calculated from the charged amount of raw materials such as polymer precursor monomers, and used as a non-volatile component (other than GBL and DMSO).
  • the concentration of volatile components in the polymer solution was determined by quantitatively determining the volatile components (GBL and DMSO) by gas chromatography.
  • the weight average molecular weight, NMP content, chloride ion content, and viscosity change rate of the polymer solution 1 were determined by the measurement method described above.
  • the weight average molecular weight of the polymer solution 1 was 12,760, the NMP content was 0.04%, the chloride ion content was 0.06%, and the viscosity change rate was 1.08%.
  • the results are shown in Table 1.
  • Example 2 Separation was carried out in the same manner as in Example 1, except that ion-exchanged water (120 g) and methyl isobutyl ketone (MIBK) (120 g) as a low boiling point solvent were added to the polymer mixture B (200 g) synthesized in Synthesis Example 2. A liquid process was performed. GBL (60 g) and DMSO (12 g) were added to and mixed with the low boiling point solvent layer obtained by the liquid separation step in the same manner as in Example 1.
  • MIBK methyl isobutyl ketone
  • Example 3 In the same manner as in Example 2, the polymer mixed solution B (200 g) was separated. GBL (60 g) and N-ethylpyrrolidone (NEP) (12 g) were added to and mixed with the low boiling point solvent layer obtained by the liquid separation step. Thereafter, MIBK was removed by concentrating the low boiling point solvent layer containing GBL and NEP under reduced pressure, and the polymer solution 3 was obtained by concentration or dilution with GBL so that the volatile content in the polymer solution was 65%. . The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 The liquid separation step was performed in the same manner as in Example 2 except that the polymer mixture C synthesized in Synthesis Example 3 was used instead of the polymer mixture B, and methyl-t-butyl ether was used instead of MIBK as the low boiling point solvent. went. GBL and N-ethylpyrrolidone (NEP) were added to and mixed with the low boiling point solvent layer obtained by the liquid separation step. Thereafter, the low boiling point solvent layer containing GBL and NEP is concentrated under reduced pressure to remove methyl-t-butyl ether and concentrated or diluted with GBL so that the volatile concentration in the polymer solution becomes 65%. 4 was obtained. The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 A polymer solution 5 was obtained in the same manner as in Example 1 except that the polymer mixture A was changed to the polymer mixture D synthesized in Synthesis Example 4. The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 1 The polymer mixture A synthesized in Synthesis Example 1 was added to ion exchange water, and the precipitate was collected.
  • the polyimide precursor (polyamic acid ester) was obtained by sufficiently washing with ion-exchanged water and drying under reduced pressure.
  • the recovered polyamic acid ester was dissolved in GBL so that the volatile concentration in the polymer solution was 65%, whereby a polymer solution 6 was obtained.
  • the obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Comparative Example 2 The polymer mixture B synthesized in Synthesis Example 2 was added to ion-exchanged water, and the precipitate was collected.
  • the polybenzoxazole precursor was obtained by thoroughly washing with ion-exchanged water and drying under reduced pressure.
  • the recovered polybenzoxazole precursor was dissolved in GBL so that the volatile concentration in the polymer solution was 65%, to obtain a polymer solution 7.
  • the obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Comparative Example 3 The polymer mixture C synthesized in Synthesis Example 3 was added to ion-exchanged water, and the precipitate was collected. After thoroughly washing with ion-exchanged water and drying under reduced pressure, a carboxyl group-terminated polybenzoxazole precursor was obtained. The recovered polybenzoxazole precursor was dissolved in GBL so that the volatile concentration in the polymer solution was 65%, and a polymer solution 8 was obtained. The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Comparative Example 5 In the same manner as in Example 1, the polymer mixture A was separated. GBL was added to the separated organic layer and concentrated under reduced pressure to remove ethyl acetate, and concentrated or diluted with GBL so that the volatile concentration in the polymer solution was 65%. Thus, a polymer solution 10 was obtained. The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Comparative Example 6 Polymer mixture B was separated in the same manner as in Example 2. GBL was added to the separated organic layer and concentrated under reduced pressure to remove MIBK, and concentrated or diluted with GBL so that the volatile concentration in the polymer solution was 65%, whereby a polymer solution 11 was obtained. The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Comparative Example 7 Polymer mixture C was separated in the same manner as in Example 4. GBL is added to the separated organic layer and concentrated under reduced pressure to remove methyl-t-butyl ether. The polymer solution 12 is concentrated or diluted with GBL so that the volatile concentration in the polymer solution is 65%. Obtained. The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Comparative Example 8 Polymer mixture D was separated in the same manner as in Example 5. GBL was added to the separated organic layer and concentrated under reduced pressure to remove ethyl acetate, and concentrated or diluted with GBL so that the volatile concentration in the polymer solution was 65%, to obtain a polymer solution 13. The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • the polymer solution obtained by using the method of the present invention has NMP content and chloride ion content as compared with the polymer solution obtained by the reprecipitation operation as in Comparative Examples 1 to 4. It can be confirmed that the amount is low. Moreover, it can confirm that the polymer solution excellent in viscosity stability is obtained by adding a polar solvent. As mentioned above, the utilization field of a polyimide precursor or a polybenzoxazole precursor solution can be expected by utilizing the present invention.
  • the polymer solution and the resin composition of the present invention are suitable for forming a cured film that becomes a surface protective film or an interlayer insulating film of an electronic component or the like.

Abstract

A method for producing a polymer solution, comprising the following steps (a) to (d): (a) a synthesis step of reacting an amine component with an acid component in a solvent containing N-methyl-2-pyrrolidone (NMP) to produce a polymer mixture containing a polyimide precursor or a polybenzoxazole precursor; (b) a liquid separation step of adding both water or an aqueous solution and a low-boiling-point solvent to the polymer mixture, and then removing an aqueous layer from the resultant mixture by carrying out a liquid separation procedure to produce a low-boiling-point solvent layer; (c) a step of adding both a displacing solvent and a polar solvent to the low-boiling-point solvent layer; and, subsequent to step (c), (d) a concentration step of distilling the low-boiling-point solvent under a reduced pressure.

Description

ポリマ溶液の製造方法及びポリマ溶液Method for producing polymer solution and polymer solution
 本発明は、ポリマ溶液の製造方法及びポリマ溶液に関する。詳しくは、電子部品や表示素子に用いられる耐熱性樹脂組成物及び耐熱性を有する感光性樹脂組成物の材料となるポリマ溶液に関する。 The present invention relates to a method for producing a polymer solution and a polymer solution. In detail, it is related with the polymer solution used as the material of the heat resistant resin composition used for an electronic component or a display element, and the photosensitive resin composition which has heat resistance.
 半導体素子の表面保護膜及び層間絶縁膜には、優れた耐熱性と電気特性、機械特性等を併せ持つポリイミド樹脂が用いられている。近年、半導体素子の高集積化、大型化が進む中、封止樹脂パッケージの薄型化や小型化、半田リフローによる表面実装への移行等により、これまで以上に機械特性、耐熱性等に優れたポリイミド樹脂が要求されている。また、低誘電率化が期待できる観点から、ポリベンゾオキサゾールが注目されている。 For the surface protective film and the interlayer insulating film of the semiconductor element, a polyimide resin having excellent heat resistance, electrical characteristics, mechanical characteristics and the like is used. In recent years, semiconductor devices have become more highly integrated and larger, and the mechanical properties, heat resistance, etc. are better than ever due to the thinner and smaller sealing resin packages and the transition to surface mounting by solder reflow. A polyimide resin is required. In addition, polybenzoxazole has attracted attention from the viewpoint of lowering the dielectric constant.
 ところで、ポリイミド樹脂の前駆体であるポリアミド酸は、一般的に有機溶媒中で、原料のテトラカルボン酸二無水物とジアミンを反応させることによって得ることができる。
 また、ポリイミド樹脂の前駆体としてポリアミド酸エステルも用いられる。ポリアミド酸エステルの合成法は、下記3種類の方法に大別される。
By the way, the polyamic acid which is a precursor of a polyimide resin can be generally obtained by reacting a raw material tetracarboxylic dianhydride and a diamine in an organic solvent.
A polyamic acid ester is also used as a precursor of the polyimide resin. The method for synthesizing the polyamic acid ester is roughly divided into the following three methods.
 1つ目の合成法は、ジエステルジカルボン酸ジクロリドとジアミンとを反応させる方法である(特許文献1、2参照)。ジエステルジカルボン酸ジクロリドは、テトラカルボン酸二無水物よりもジアミンとの反応性が高いことから、本合成法ではポリアミド酸よりもさらに短時間で高分子量のポリアミド酸エステルが得られる。しかし、ジエステルジカルボン酸ジクロリドは反応性が高いため、加水分解によってジエステルジカルボン酸へと容易に変化してしまう。そのため、重合系中に水分が混入すると、得られるポリアミド酸エステルの分子量が低下し、分子量の再現性が乏しくなる。また、塩化物イオンがポリマ中に残留する問題がある。 The first synthesis method is a method of reacting diester dicarboxylic acid dichloride and diamine (see Patent Documents 1 and 2). Since diester dicarboxylic acid dichloride has a higher reactivity with diamine than tetracarboxylic dianhydride, in this synthesis method, a high molecular weight polyamic acid ester can be obtained in a shorter time than polyamic acid. However, since diester dicarboxylic acid dichloride has high reactivity, it easily changes to diester dicarboxylic acid by hydrolysis. Therefore, when water is mixed in the polymerization system, the molecular weight of the resulting polyamic acid ester is lowered, and the reproducibility of the molecular weight becomes poor. There is also a problem that chloride ions remain in the polymer.
 2つ目の合成法は、ポリアミド酸のカルボキシル基をエステルに変換する方法である。テトラカルボン酸二無水物とジアミンからポリアミド酸を合成した後に、所望のエステル化剤を加えて反応させることで、ポリアミド酸エステルが得られる(特許文献3参照)。
 しかし、本手法では、エステル化の簡便な反応追跡方法が無く、全てのカルボキシル基を定量的にエステル化させることが困難であるという問題がある。
The second synthesis method is a method of converting a carboxyl group of a polyamic acid into an ester. After synthesizing polyamic acid from tetracarboxylic dianhydride and diamine, a polyamic acid ester is obtained by adding and reacting a desired esterifying agent (see Patent Document 3).
However, this method has a problem that there is no simple reaction tracking method for esterification, and it is difficult to quantitatively esterify all carboxyl groups.
 3つ目の合成法は、ジエステルジカルボン酸とジアミンとを、縮合剤を用いて重縮合させる方法である。縮合剤としては、カルボニルジイミダゾールやリン系縮合剤等が知られている。この方法では、再現性良く高分子量のポリアミド酸エステルが得られる。しかしながら、縮合剤由来の不純物を除去する必要があり、高純度のポリアミド酸エステルを得るのが困難であるという問題がある。 The third synthesis method is a method in which diester dicarboxylic acid and diamine are polycondensed using a condensing agent. Known condensing agents include carbonyldiimidazole and phosphorus condensing agents. In this method, a high molecular weight polyamic acid ester can be obtained with good reproducibility. However, there is a problem that it is necessary to remove impurities derived from the condensing agent, and it is difficult to obtain a high-purity polyamic acid ester.
 一方、ポリベンゾオキサゾール前駆体であるアルカリ可溶性のポリ-o-ヒドロキシアミドの製造に最もよく行われている方法は、ジカルボン酸ジクロリドを適当なビス-o-アミノフェノールと反応させる方法である。
 上記反応の際に生じる塩化水素を補足するために、通常ピリジンのような可溶性塩基を添加する。
On the other hand, the most commonly used method for producing alkali-soluble poly-o-hydroxyamide, which is a polybenzoxazole precursor, is a method in which dicarboxylic acid dichloride is reacted with an appropriate bis-o-aminophenol.
In order to supplement hydrogen chloride generated during the above reaction, a soluble base such as pyridine is usually added.
 ところで、上述したポリイミド前駆体又はポリベンゾオキサゾール前駆体を合成する方法において、いずれの方法でも原材料及び生成物の溶解性と反応性の観点からN-メチル-2-ピロリドン(NMP)を溶媒として用いることが多い。NMP中で合成したポリイミド前駆体又はポリベンゾオキサゾール前駆体は、合成時に副生する塩化物イオンや縮合剤由来の不純物や活性エステル部の残基を含有する状態となっている(ポリマ混合液)。 By the way, in the method for synthesizing the polyimide precursor or polybenzoxazole precursor described above, N-methyl-2-pyrrolidone (NMP) is used as a solvent from the viewpoints of solubility and reactivity of raw materials and products in any method. There are many cases. The polyimide precursor or polybenzoxazole precursor synthesized in NMP is in a state containing chloride ions, condensing agent-derived impurities and residues of active ester part produced during synthesis (polymer mixture) .
 上記のポリマ混合液から、ポリイミド前駆体又はポリベンゾオキサゾール前駆体と溶媒を含有し、合成時の副生成物及び塩化物イオン等の不純物を実質的に含有しない(例えば、約5質量%以下)ポリマ溶液を得る方法としては、ポリマ混合液中に水及び/又はアルコールを加え、ポリイミド前駆体又はポリベンゾオキサゾール前駆体を析出させ、濾過し、不純物を除去し、濾取したポリイミド前駆体又はポリベンゾオキサゾール前駆体を乾燥し、これを合成溶媒(NMP)とは別の有機溶媒に溶解する方法がある。この方法で得られるポリマ溶液は、そのまま基板に塗布し、加熱硬化して硬化膜を形成することもでき、また、ポリマ溶液に他の成分を加えた樹脂組成物を基材に塗布し、加熱硬化して硬化膜を形成することもできる。 From the above polymer mixture, it contains a polyimide precursor or polybenzoxazole precursor and a solvent, and contains substantially no impurities such as by-products and chloride ions during synthesis (for example, about 5% by mass or less). As a method for obtaining a polymer solution, water and / or alcohol is added to a polymer mixed solution, a polyimide precursor or a polybenzoxazole precursor is precipitated, filtered, impurities are removed, and the filtered polyimide precursor or polymer is filtered. There is a method of drying the benzoxazole precursor and dissolving it in an organic solvent different from the synthesis solvent (NMP). The polymer solution obtained by this method can be directly applied to a substrate and cured by heating to form a cured film. Also, a resin composition obtained by adding other components to a polymer solution is applied to a substrate and heated. It can also be cured to form a cured film.
 一方、安全性の観点から、ポリマ溶液又は樹脂組成物中のNMPを低減することが望まれている。具体的には例えば、ポリマ溶液又は樹脂組成物中のNMPの含有量が0.1%以下であることが求められている。 On the other hand, from the viewpoint of safety, it is desired to reduce NMP in the polymer solution or the resin composition. Specifically, for example, the NMP content in the polymer solution or the resin composition is required to be 0.1% or less.
特開平11-315140号公報JP 11-315140 A 特開2000-273172号公報JP 2000-273172 A 特開平10-60109号公報Japanese Patent Laid-Open No. 10-60109
 本発明は、上記に鑑みてなされたものであって、NMPの含有量、及び、ポリイミド前駆体又はポリベンゾオキサゾール前駆体合成時に発生する副生成物の含有量を低減できるポリマ溶液の製造方法を提供することを目的とする。
 また、得られるポリマ溶液の粘度の経時変化が小さくなるポリマ溶液の製造方法を提供することを目的とする。
This invention is made in view of the above, Comprising: The manufacturing method of the polymer solution which can reduce content of a NMP content and the by-product generated at the time of a polyimide precursor or a polybenzoxazole precursor synthesis | combination The purpose is to provide.
Another object of the present invention is to provide a method for producing a polymer solution in which the change in viscosity of the resulting polymer solution is small.
 本発明によれば、以下のポリマ溶液の製造方法等が提供される。
1.下記の工程(a)~(d)を含む、ポリマ溶液の製造方法。
 (a)アミン成分と酸成分とを、N-メチル-2-ピロリドン(NMP)を含む溶媒中で反応させて、ポリイミド前駆体又はポリベンゾオキサゾール前駆体を含有するポリマ混合液を得る合成工程
 (b)前記ポリマ混合液に、水又は水溶液と、低沸点溶媒とを加え、分液操作により水層を除去して低沸点溶媒層を得る分液工程
 (c)前記低沸点溶媒層に置換溶媒及び極性溶媒を加える工程
 (d)前記工程(c)の後に、前記低沸点溶媒を減圧留去する濃縮工程
2.前記極性溶媒が、ジメチルスルホキシド、N-エチルピロリドン及びジメチルホルムアミドから選択される1以上の溶媒である、1に記載のポリマ溶液の製造方法。
3.前記低沸点溶媒が、イソブタノール、酢酸エチル、酢酸ブチル、ジエチルエーテル、メチル-t-ブチルエーテル、メチルエチルケトン及びメチルイソブチルケトンから選択される1以上の溶媒である、1又は2に記載のポリマ溶液の製造方法。
4.前記置換溶媒が、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート及びプロピレングリコールモノメチルエーテルから選択される1以上の溶媒である、1~3のいずれかに記載のポリマ溶液の製造方法。
5.前記ポリイミド前駆体又はポリベンゾオキサゾール前駆体が、下記一般式(I)又は(II)で表される構造を有する、1~4のいずれかに記載のポリマ溶液の製造方法。
Figure JPOXMLDOC01-appb-C000001
(一般式(I)中、Xは4価の有機基、pは0~2の整数を示し、Wは2価~4価の有機基である。R及びRは各々独立に、水素原子、炭素数が1~6の脂肪族基又は下記一般式(Ia)で表される基である。
Figure JPOXMLDOC01-appb-C000002
(一般式(Ia)中、Rは水素原子又はメチル基あり、aは1~6の整数を示す。)
Figure JPOXMLDOC01-appb-C000003
(一般式(II)中、Uは4価の有機基、Vは2価の有機基である。)
6.上記1~5のいずれかに記載のポリマ溶液の製造方法によって得られるポリマ溶液。
7.極性溶媒の含有量が全体の1~20質量%である、6に記載のポリマ溶液。
8.不揮発成分の含有量が全体の10~50質量%である、6又は7に記載のポリマ溶液。
9.上記6~8のいずれかに記載のポリマ溶液を含有する樹脂組成物。
10.上記6~8のいずれかに記載のポリマ溶液又は9に記載の樹脂組成物を、基材上に塗布及び乾燥し樹脂膜を得る工程と、前記樹脂膜を加熱する工程と、を含む、硬化膜の製造方法。
According to the present invention, the following polymer solution production method and the like are provided.
1. A method for producing a polymer solution, comprising the following steps (a) to (d):
(A) A synthesis step in which an amine component and an acid component are reacted in a solvent containing N-methyl-2-pyrrolidone (NMP) to obtain a polymer mixture containing a polyimide precursor or a polybenzoxazole precursor. b) Separation step of adding water or an aqueous solution and a low boiling point solvent to the polymer mixed solution, and removing the aqueous layer by liquid separation operation to obtain a low boiling point solvent layer. (c) Substitution solvent in the low boiling point solvent layer And a step of adding a polar solvent (d) A concentration step of distilling off the low boiling point solvent under reduced pressure after the step (c). 2. The method for producing a polymer solution according to 1, wherein the polar solvent is one or more solvents selected from dimethyl sulfoxide, N-ethylpyrrolidone and dimethylformamide.
3. 3. The production of the polymer solution according to 1 or 2, wherein the low boiling point solvent is one or more solvents selected from isobutanol, ethyl acetate, butyl acetate, diethyl ether, methyl-t-butyl ether, methyl ethyl ketone and methyl isobutyl ketone. Method.
4). 4. The method for producing a polymer solution according to any one of 1 to 3, wherein the substitution solvent is one or more solvents selected from γ-butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether.
5. 5. The method for producing a polymer solution according to any one of 1 to 4, wherein the polyimide precursor or polybenzoxazole precursor has a structure represented by the following general formula (I) or (II).
Figure JPOXMLDOC01-appb-C000001
(In the general formula (I), X represents a tetravalent organic group, p represents an integer of 0 to 2, and W represents a divalent to tetravalent organic group. R 1 and R 2 are each independently hydrogen. An atom, an aliphatic group having 1 to 6 carbon atoms, or a group represented by the following general formula (Ia).
Figure JPOXMLDOC01-appb-C000002
(In general formula (Ia), R 3 represents a hydrogen atom or a methyl group, and a represents an integer of 1 to 6.)
Figure JPOXMLDOC01-appb-C000003
(In general formula (II), U is a tetravalent organic group, and V is a divalent organic group.)
6). 6. A polymer solution obtained by the method for producing a polymer solution described in any one of 1 to 5 above.
7). 7. The polymer solution according to 6, wherein the content of the polar solvent is 1 to 20% by mass of the whole.
8). 8. The polymer solution according to 6 or 7, wherein the content of nonvolatile components is 10 to 50% by mass of the whole.
9. 9. A resin composition containing the polymer solution described in any one of 6 to 8 above.
10. Curing comprising the steps of applying the polymer solution described in any one of 6 to 8 above or the resin composition described in 9 on a substrate and drying to obtain a resin film, and heating the resin film. A method for producing a membrane.
 本発明によれば、NMPの含有量、及び、ポリイミド前駆体又はポリベンゾオキサゾール前駆体合成時に発生する副生成物の含有量を低減できるポリマ溶液の製造方法が提供できる。
 また、得られるポリマ溶液の粘度の経時変化が小さくなる製造方法が提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the polymer solution which can reduce content of NMP and content of the by-product generated at the time of a polyimide precursor or a polybenzoxazole precursor synthesis | combination can be provided.
Moreover, the manufacturing method with which the change with time of the viscosity of the polymer solution obtained becomes small can be provided.
本発明の一実施形態における多層配線構造を有する半導体装置の製造工程を説明する概略断面図である。It is a schematic sectional drawing explaining the manufacturing process of the semiconductor device which has a multilayer wiring structure in one Embodiment of this invention.
 以下、本発明について詳細に説明する。尚、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
Hereinafter, the present invention will be described in detail. In this specification, the term “process” is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used if the intended action of the process is achieved. included.
The numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
<ポリマ溶液の製造方法>
 本発明のポリマ溶液の製造方法は、下記の工程(a)~(d)を含む。
 (a)アミン成分と酸成分とを、N-メチル-2-ピロリドン(NMP)を含む溶媒中で反応させて、ポリイミド前駆体又はポリベンゾオキサゾール前駆体を含有するポリマ混合液を得る合成工程
 (b)前記ポリマ混合液に、水又は水溶液と、低沸点溶媒を加え、分液操作により水層を除去して低沸点溶媒層を得る分液工程
 (c)前記低沸点溶媒層に置換溶媒及び極性溶媒を加える工程
 (d)前記工程(c)の後に、前記低沸点溶媒を減圧留去する濃縮工程
<Method for producing polymer solution>
The method for producing a polymer solution of the present invention includes the following steps (a) to (d).
(A) A synthesis step in which an amine component and an acid component are reacted in a solvent containing N-methyl-2-pyrrolidone (NMP) to obtain a polymer mixture containing a polyimide precursor or a polybenzoxazole precursor. b) Separation step of adding water or an aqueous solution and a low boiling point solvent to the polymer mixed solution, and removing the aqueous layer by a liquid separation operation to obtain a low boiling point solvent layer. (c) A substitution solvent and a low boiling point solvent layer Step of adding polar solvent (d) Concentration step of distilling off the low boiling point solvent under reduced pressure after step (c)
 ポリマ溶液のNMPの含有量を低減するためには、ポリイミド前駆体又はポリベンゾオキサゾール前駆体を合成する場合に用いる溶媒をNMP以外の溶媒、例えば、γ-ブチロラクトン(BLO)に置き換えることが考えられる。しかしながら、原料のモノマが溶解しない場合があったり、合成反応が進行しない場合があったりと問題がある。また、反応促進剤を添加しても促進剤が溶解せずに残留するという問題がある。 In order to reduce the content of NMP in the polymer solution, it is considered that the solvent used in the synthesis of the polyimide precursor or the polybenzoxazole precursor is replaced with a solvent other than NMP, for example, γ-butyrolactone (BLO). . However, there is a problem that the monomer of the raw material may not dissolve or the synthesis reaction may not proceed. Further, there is a problem that even if a reaction accelerator is added, the accelerator remains without being dissolved.
 また、ポリマ混合液中に水及び/又はアルコールを加え、ポリイミド前駆体又はポリベンゾオキサゾール前駆体を析出させた後に濾過及び乾燥して回収した前駆体を、NMP溶媒とは別の有機溶媒、例えば、BLOに溶解しポリマ溶液とする方法も考えられる。しかしながら、この方法では、NMPを1%以下にすることは困難である。 Moreover, after adding water and / or alcohol in a polymer liquid mixture, depositing a polyimide precursor or a polybenzoxazole precursor, and filtering and drying, the recovered precursor is an organic solvent different from the NMP solvent, for example, A method of dissolving in BLO to form a polymer solution is also conceivable. However, with this method, it is difficult to reduce NMP to 1% or less.
 本発明は、上記(a)~(d)の工程を組み合わせることにより、NMPの含有量、及び、ポリイミド前駆体又はポリベンゾオキサゾール前駆体合成時に発生する副生成物の含有量を低減したポリマ溶液が得られることを見出したものである。また、得られるポリマ溶液の粘度の経時変化が小さくなることを見出したものである。
 以下、各工程に沿って説明する。
The present invention provides a polymer solution in which the content of NMP and the content of by-products generated during synthesis of the polyimide precursor or polybenzoxazole precursor are reduced by combining the steps (a) to (d). Has been found to be obtained. Moreover, it discovered that the time-dependent change of the viscosity of the polymer solution obtained became small.
Hereinafter, it demonstrates along each process.
<(a)合成工程>
 合成工程では、アミン成分と酸成分とを、N-メチル-2-ピロリドン(NMP)を溶媒として反応させて、ポリイミド前駆体又はポリベンゾオキサゾール前駆体を含有するポリマ混合液を得る。
 ポリイミド前駆体としては、ポリアミド酸又はポリアミド酸エステルが挙げられる。ポリベンゾオキサゾール前駆体としては、例えば、ポリ-o-ヒドロキシアミドが挙げられる。
<(A) Synthesis process>
In the synthesis step, an amine component and an acid component are reacted with N-methyl-2-pyrrolidone (NMP) as a solvent to obtain a polymer mixed solution containing a polyimide precursor or a polybenzoxazole precursor.
Examples of the polyimide precursor include polyamic acid or polyamic acid ester. Examples of the polybenzoxazole precursor include poly-o-hydroxyamide.
(ポリアミド酸)
 ポリアミド酸は、例えば、酸成分であるテトラカルボン酸二無水物と、アミン成分であるジアミン化合物とを反応させることにより得られる。例えば、下記の方法に従ってポリアミド酸を合成することができる。
 まず、ジアミン化合物を有機溶媒中に溶解する。この溶液に、実質的にジアミン化合物と等モル量のテトラカルボン酸二無水物を徐々に添加し、メカニカルスターラーを用い撹拌しながら反応を行なう。末端封止剤を用いる場合には、テトラカルボン酸二無水物を添加後、所用温度、所要時間で撹拌した後、末端封止剤を徐々に添加してもよいし、一度に加えて、反応させてもよい。
(Polyamide acid)
The polyamic acid is obtained, for example, by reacting a tetracarboxylic dianhydride that is an acid component with a diamine compound that is an amine component. For example, polyamic acid can be synthesized according to the following method.
First, a diamine compound is dissolved in an organic solvent. To this solution, a diamine compound and an equimolar amount of tetracarboxylic dianhydride are gradually added, and the reaction is carried out with stirring using a mechanical stirrer. When using an end-capping agent, after adding tetracarboxylic dianhydride, after stirring at the required temperature and the required time, the end-capping agent may be added gradually or added all at once to react. You may let them.
 ジアミン化合物としては、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、ベンジシン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン等の芳香族ジアミン化合物、
 LP-7100、X-22-161AS、X-22-161A、X-22-161B、X-22-161C及びX-22-161E(いずれも信越化学工業株式会社製、商品名)等のシリコーン基含有ジアミン化合物、
 3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(4-アミノ-3-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノ-3-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン等のヒドロキシル基を有するジアミン化合物などが挙げられる。
 これらの中でも、前記ヒドロキシル基を有するジアミン化合物が好ましく、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンがより好ましい。尚、ジアミン化合物はこれらに限定されるものではない。これらの化合物は、単独で又は2種以上を組み合わせて用いることができる。
Examples of the diamine compound include 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfide, benzidine, m-phenylenediamine, and p-phenylenediamine. 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis (4-aminophenoxyphenyl) sulfone, bis (3-aminophenoxyphenyl) sulfone, bis (4-aminophenoxy) biphenyl, bis [4- (4 -Aminophenoxy) phenyl] ether, aromatic diamine compounds such as 1,4-bis (4-aminophenoxy) benzene,
Silicone groups such as LP-7100, X-22-161AS, X-22-161A, X-22-161B, X-22-161C and X-22-161E (all trade names manufactured by Shin-Etsu Chemical Co., Ltd.) Containing diamine compounds,
3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, bis (3-amino-4-hydroxyphenyl) propane, bis (4-amino-3 -Hydroxyphenyl) propane, bis (3-amino-4-hydroxyphenyl) sulfone, bis (4-amino-3-hydroxyphenyl) sulfone, 2,2-bis (3-amino-4-hydroxyphenyl) -1, Hydroxyl groups such as 1,1,3,3,3-hexafluoropropane, 2,2-bis (4-amino-3-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane And diamine compounds.
Among these, the diamine compound having the hydroxyl group is preferable, and 2,2-bis (3-amino-4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane is more preferable. The diamine compound is not limited to these. These compounds can be used alone or in combination of two or more.
 テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物等を挙げることができる。これらは単独で又は2種以上を組み合わせて使用される。尚、テトラカルボン酸二無水物はこれらに限定されるものではない。 Examples of tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenonetetra Carboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1-bis ( 3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2 , 3-Dicarbo Ciphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid Dianhydride, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic acid Dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 3,3 ′, 4,4′-tetraphenylsilanetetra Examples thereof include carboxylic dianhydride and 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride. These are used alone or in combination of two or more. The tetracarboxylic dianhydride is not limited to these.
 上記のテトラカルボン酸二無水物のうち、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、N-(トリメリット酸二無水物)-2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンが、耐熱性の高い良好な膜物性を得る上で好ましく、ビス(3,4-ジカルボキシフェニル)エーテル二無水物がより好ましい。 Among the above tetracarboxylic dianhydrides, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic acid Dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3,3′- Benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, N- (trimellitic acid The dianhydride) -2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane is preferred for obtaining good film properties with high heat resistance, and bis (3,4-dicarboxyphene). Le) ether dianhydride is more preferred.
 ポリアミド酸の合成において、溶媒はNMP単独、又はNMPと有機溶媒との混合溶媒を使用する。
 尚、NMPと混合する有機溶媒としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-アセチル-2-ピロリドン、ヘキサメチルホスホルトリアミド、ジメチルイミダゾリジノン、N-アセチル-ε-カプロラクタム等が使用できる。
In the synthesis of polyamic acid, NMP alone or a mixed solvent of NMP and an organic solvent is used as the solvent.
Examples of the organic solvent mixed with NMP include N, N-dimethylacetamide, N, N-dimethylformamide, N-acetyl-2-pyrrolidone, hexamethylphosphortriamide, dimethylimidazolidinone, N-acetyl-ε- Caprolactam can be used.
 ポリアミド酸の合成において、アミン成分と酸成分は、モル比(アミン成分/酸成分)が0.5~1.5で反応させることが好ましく、0.75~1.25であることがより好ましい。
 反応温度は、-20~100℃が好ましく、10~50℃がより好ましい。反応時間は0.5~100時間が好ましく、2~24時間がより好ましい。
In the synthesis of the polyamic acid, the amine component and the acid component are preferably reacted at a molar ratio (amine component / acid component) of 0.5 to 1.5, more preferably 0.75 to 1.25. .
The reaction temperature is preferably −20 to 100 ° C., more preferably 10 to 50 ° C. The reaction time is preferably 0.5 to 100 hours, more preferably 2 to 24 hours.
(ポリアミド酸エステル)
 ポリアミド酸エステルは、例えば、酸成分であるテトラカルボン酸ジエステルジクロリドと、アミン成分であるジアミンとを反応させることにより得られる。例えば、ポリアミド酸エステルは、テトラカルボン酸二無水物とヒドロキシ基含有化合物を混合して反応させ、テトラカルボン酸のハーフエステルを製造した後、ハロゲン化剤により酸クロリド化し、ついで、ジアミンと反応させる方法や、前記テトラカルボン酸ハーフエステルをカルボジイミド類を縮合剤としてジアミンと反応させる方法等により合成することができる。
(Polyamide ester)
The polyamic acid ester is obtained, for example, by reacting a tetracarboxylic acid diester dichloride that is an acid component with a diamine that is an amine component. For example, a polyamic acid ester is prepared by mixing a tetracarboxylic dianhydride and a hydroxy group-containing compound and reacting to produce a tetracarboxylic acid half ester, then acidifying with a halogenating agent, and then reacting with a diamine. The tetracarboxylic acid half ester can be synthesized by a method, a method in which a carbodiimide is used as a condensing agent, and a diamine.
 ポリアミド酸エステルの酸成分であるテトラカルボン酸二無水物としては、上記ポリアミド酸の合成と同様なものを用いることができる。
 ポリアミド酸エステルのアミン成分としては、上記ポリアミド酸の合成と同様なジアミン化合物を用いることができる。
As the tetracarboxylic dianhydride that is the acid component of the polyamic acid ester, the same ones as in the synthesis of the polyamic acid can be used.
As the amine component of the polyamic acid ester, a diamine compound similar to the synthesis of the polyamic acid can be used.
 ポリアミド酸のハーフエステルの形成において、ヒドロキシ基含有化合物としては、メタノール、エタノール、プロパノール、ブタノール等の脂肪族アルコールなどが使用できる。
 ポリアミド酸のハーフエステルをハロゲン化するハロゲン化剤としては、通常のカルボン酸の酸クロリド化反応に使用される、塩化チオニル、塩化ホスホリル、オキシ塩化リン、五塩化リン等が使用できる。
In the formation of the polyamic acid half ester, aliphatic alcohols such as methanol, ethanol, propanol, and butanol can be used as the hydroxy group-containing compound.
As the halogenating agent for halogenating the polyamic acid half ester, thionyl chloride, phosphoryl chloride, phosphorous oxychloride, phosphorous pentachloride, etc., which are used in the usual acid chlorideation reaction of carboxylic acid, can be used.
 ポリアミド酸のハーフエステルとジアミンを反応させるカルボジイミド縮合剤としては、通常の活性エステル合成に使用されるものであれば特に制限無く使用できるが、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、N-[3-(ジメチルアミノ)プロピル]-N-エチルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩等が挙げられる。 Any carbodiimide condensing agent for reacting a polyamic acid half ester with a diamine can be used without particular limitation as long as it is used for ordinary active ester synthesis, but dicyclohexylcarbodiimide, diisopropylcarbodiimide, N- [3- (dimethylamino). ) Propyl] -N-ethylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and the like.
 ポリアミド酸エステルの合成において、溶媒はNMP単独、又はNMPと上述した有機溶媒との混合溶媒を使用する。溶媒の使用量は、得られるポリマ100重量部に対して、100重量部以上1500重量部以下であることが好ましい。
 ポリアミド酸エステルの合成において、アミン成分と酸成分は、モル比(アミン成分/酸成分)が0.5~1.5で反応させることが好ましく、0.75~1.25であることがより好ましい。
 ポリアミド酸エステルの合成の反応温度は、-10~90℃が好ましく、0~70℃がより好ましい。反応時間は8時間~1週間が好ましく、10時間~42時間がより好ましい。
In the synthesis of the polyamic acid ester, NMP alone or a mixed solvent of NMP and the organic solvent described above is used as the solvent. The amount of the solvent used is preferably 100 parts by weight or more and 1500 parts by weight or less with respect to 100 parts by weight of the obtained polymer.
In the synthesis of the polyamic acid ester, the amine component and the acid component are preferably reacted at a molar ratio (amine component / acid component) of 0.5 to 1.5, more preferably 0.75 to 1.25. preferable.
The reaction temperature for the synthesis of the polyamic acid ester is preferably −10 to 90 ° C., more preferably 0 to 70 ° C. The reaction time is preferably 8 hours to 1 week, more preferably 10 hours to 42 hours.
(ポリベンゾオキサゾール前駆体)
 ポリベンゾオキサゾール前駆体は、例えば、酸成分であるジカルボン酸ジハライドと、アミン成分であるジヒドロキシジアミン化合物を反応させることにより得られる。例えば、ジカルボン酸誘導体をジハライド誘導体に変換後、上記ジアミン化合物との反応を行うことにより合成できる。ジハライド誘導体としては、ジクロリド誘導体が好ましい。
(Polybenzoxazole precursor)
The polybenzoxazole precursor is obtained, for example, by reacting a dicarboxylic acid dihalide that is an acid component with a dihydroxydiamine compound that is an amine component. For example, it can be synthesized by converting a dicarboxylic acid derivative into a dihalide derivative and then reacting with the diamine compound. As the dihalide derivative, a dichloride derivative is preferable.
 ジカルボン酸としては、イソフタル酸、テレフタル酸、2,2-ビス(4-カルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4’-ジカルボキシビフェニル、4,4’-ジカルボキシジフェニルエーテル、4,4’-ジカルボキシテトラフェニルシラン、ビス(4-カルボキシフェニル)スルホン、2,2-ビス(p-カルボキシフェニル)プロパン、5-tert-ブチルイソフタル酸、5-ブロモイソフタル酸、5-フルオロイソフタル酸、5-クロロイソフタル酸、2,6-ナフタレンジカルボン酸等の芳香族系ジカルボン酸、1,2-シクロブタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロペンタンジカルボン酸、シュウ酸、マロン酸、コハク酸、ドデカン二酸等の脂肪族ジカルボン酸などが挙げられる。
 これらの中でも、4,4’-ジカルボキシジフェニルエーテル又は脂肪族ジカルボン酸が好ましく、4,4’-ジカルボキシジフェニルエーテル又はドデカン2酸がより好ましい。
 尚、これらに限定されるものではない。これらの化合物を、単独で又は2種以上を組み合わせて使用することができる。
Examples of the dicarboxylic acid include isophthalic acid, terephthalic acid, 2,2-bis (4-carboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, 4,4′-dicarboxybiphenyl, 4, 4′-dicarboxydiphenyl ether, 4,4′-dicarboxytetraphenylsilane, bis (4-carboxyphenyl) sulfone, 2,2-bis (p-carboxyphenyl) propane, 5-tert-butylisophthalic acid, 5- Aromatic dicarboxylic acids such as bromoisophthalic acid, 5-fluoroisophthalic acid, 5-chloroisophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3 -Aliphatic dicarboxylic acids such as cyclopentanedicarboxylic acid, oxalic acid, malonic acid, succinic acid, dodecanedioic acid Such as carboxylic acid, and the like.
Among these, 4,4′-dicarboxydiphenyl ether or aliphatic dicarboxylic acid is preferable, and 4,4′-dicarboxydiphenyl ether or dodecanedioic acid is more preferable.
However, it is not limited to these. These compounds can be used alone or in combination of two or more.
 ジヒドロキシジアミン化合物としては、上述したポリアミド酸の合成で使用可能なヒドロキシル基を有するジアミンを用いることができる。
 ジハライド誘導体は、ジカルボン酸誘導体にハロゲン化剤を作用させて合成することができる。ハロゲン化剤としては通常のカルボン酸の酸クロリド化反応に使用される、塩化チオニル、塩化ホスホリル、オキシ塩化リン、五塩化リン等が使用できる。
As the dihydroxydiamine compound, a diamine having a hydroxyl group that can be used in the synthesis of the polyamic acid described above can be used.
The dihalide derivative can be synthesized by acting a halogenating agent on the dicarboxylic acid derivative. As the halogenating agent, thionyl chloride, phosphoryl chloride, phosphorus oxychloride, phosphorus pentachloride, etc., which are used in the usual acid chlorideation reaction of carboxylic acid can be used.
 ジハライド誘導体を合成する方法としては、ジカルボン酸誘導体と上記ハロゲン化剤を溶媒中で反応させるか、過剰のハロゲン化剤中で反応を行った後、過剰分を留去する方法で合成できる。反応溶媒としては、N-メチル-2-ピロリドン、N-メチル-2-ピリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、トルエン、ベンゼン等が使用できる。 As a method of synthesizing the dihalide derivative, it can be synthesized by reacting the dicarboxylic acid derivative and the halogenating agent in a solvent or by reacting in an excess halogenating agent and then distilling off the excess. As the reaction solvent, N-methyl-2-pyrrolidone, N-methyl-2-pyridone, N, N-dimethylacetamide, N, N-dimethylformamide, toluene, benzene and the like can be used.
 これらのハロゲン化剤の使用量は、溶媒中で反応させる場合は、ジカルボン酸誘導体に対して、1.5~3.0モルが好ましく、1.7~2.5モルがより好ましい。ハロゲン化剤中で反応させる場合は、4.0~50モルが好ましく、5.0~20モルがより好ましい。反応温度は、-10~70℃が好ましく、0~20℃がより好ましい。 The amount of these halogenating agents used is preferably 1.5 to 3.0 mol, more preferably 1.7 to 2.5 mol, based on the dicarboxylic acid derivative when the reaction is carried out in a solvent. When the reaction is carried out in a halogenating agent, 4.0 to 50 mol is preferable, and 5.0 to 20 mol is more preferable. The reaction temperature is preferably −10 to 70 ° C., more preferably 0 to 20 ° C.
 ジハライド誘導体とジアミン化合物との反応は、脱ハロゲン化水素剤の存在下に、NMP中、又はNMPと上述した有機溶媒との混合溶媒中で行う。脱ハロゲン化水素剤としては、通常、ピリジン、トリエチルアミン等の有機塩基が使用される。
 ジアミン化合物とジハライド誘導体は、モル比(アミン成分/ジハライド誘導体)は0.5~1.5で反応させることが好ましく、0.75~1.25であることがより好ましい。
 反応温度は、-10~30℃が好ましく、0~20℃がより好ましい。反応時間は3~24時間が好ましく、6~12時間がより好ましい。
The reaction between the dihalide derivative and the diamine compound is performed in NMP or in a mixed solvent of NMP and the above-described organic solvent in the presence of a dehydrohalogenating agent. As the dehydrohalogenating agent, organic bases such as pyridine and triethylamine are usually used.
The diamine compound and dihalide derivative are preferably reacted at a molar ratio (amine component / dihalide derivative) of 0.5 to 1.5, more preferably 0.75 to 1.25.
The reaction temperature is preferably −10 to 30 ° C., more preferably 0 to 20 ° C. The reaction time is preferably 3 to 24 hours, more preferably 6 to 12 hours.
 また、ポリベンゾオキサゾール前駆体は、ジカルボン酸活性エステルを経由する方法でも合成できる。具体的に、ジカルボン酸をジシクロヘキシルカルボジイミド及び1-ヒドロキシ-ベンゾトリアゾールの存在下で反応させる。この反応では、一旦、芳香族ジカルボン酸と1-ヒドロキシ-ベンゾトリアゾールで活性エステルを形成し、その後、ヒドロキシル基を有するジアミンと反応させることによりポリベンゾオキサゾール前駆体を得ることができる。 The polybenzoxazole precursor can also be synthesized by a method via a dicarboxylic acid active ester. Specifically, the dicarboxylic acid is reacted in the presence of dicyclohexylcarbodiimide and 1-hydroxy-benzotriazole. In this reaction, a polybenzoxazole precursor can be obtained by once forming an active ester with an aromatic dicarboxylic acid and 1-hydroxy-benzotriazole and then reacting with a diamine having a hydroxyl group.
 上記反応で使用するジカルボン酸としては、上記ポリベンゾオキサゾール前駆体の合成において記載したジカルボン酸を用いることができる。
 ジアミン化合物としては、上述したポリアミド酸の合成で使用可能なヒドロキシル基を有するジアミンを用いることができる。
As the dicarboxylic acid used in the above reaction, the dicarboxylic acid described in the synthesis of the polybenzoxazole precursor can be used.
As a diamine compound, the diamine which has a hydroxyl group which can be used by the synthesis | combination of the polyamic acid mentioned above can be used.
 ジカルボン酸活性エステルとジアミン化合物との反応は、NMP中、又はNMPと上述した有機溶媒との混合溶媒中で行う。
 ジアミン化合物とジカルボン酸活性エステルは、モル比(アミン成分/酸活性エステル)が0.5~1.5で反応させることが好ましく、0.75~1.25であることがより好ましい。
 反応温度は、0~90℃が好ましく、20~75℃がより好ましい。反応時間は3時間~3日が好ましく、6時間~24時間時間がより好ましい。
The reaction between the dicarboxylic acid active ester and the diamine compound is performed in NMP or in a mixed solvent of NMP and the organic solvent described above.
The diamine compound and the dicarboxylic acid active ester are preferably reacted at a molar ratio (amine component / acid active ester) of 0.5 to 1.5, more preferably 0.75 to 1.25.
The reaction temperature is preferably 0 to 90 ° C, more preferably 20 to 75 ° C. The reaction time is preferably 3 hours to 3 days, more preferably 6 hours to 24 hours.
 上述した各ポリイミド前駆体又はポリベンゾオキサゾール前駆体の両末端を、酸性官能基又はその誘導基としてもよい。両末端を酸性官能基又はその誘導基とするための手法として、上述したジアミン成分と酸成分を、モル比(アミン成分/酸成分)が1~1.5で反応させればよいが、1.05~1.25であることがより好ましい。この場合、得られる前駆体の両末端部がカルボキシ基となる。 Both ends of each polyimide precursor or polybenzoxazole precursor described above may be an acidic functional group or a derivative group thereof. As a method for making both ends into acidic functional groups or derivatives thereof, the above-described diamine component and acid component may be reacted at a molar ratio (amine component / acid component) of 1 to 1.5. More preferably, the ratio is from .05 to 1.25. In this case, both terminal portions of the obtained precursor are carboxy groups.
 カルボキシ基に、さらに、他の酸性官能基又はその誘導基で置換することも可能である。
 末端部のカルボキシ基に官能基を導入する具体的な方法としては、前駆体合成時に官能基を有する又は官能基を導入できるモノアミノ化合物を加える方法が挙げられる。
The carboxy group can be further substituted with another acidic functional group or a derivative group thereof.
As a specific method for introducing a functional group into a terminal carboxy group, a method of adding a monoamino compound having a functional group or capable of introducing a functional group at the time of synthesizing a precursor may be mentioned.
 上記モノアミノ化合物としては、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン、t-ブチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン、シクロヘキシルアミン、シクロヘキシルメチルアミン等の脂肪族アミン、アニリン、o-トルイジン、m-トルイジン、p-トルイジン、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール等の芳香族アミンなどが挙げられる。尚、モノアミノ化合物は必ずしもこれらに限定されない。
 中でも、安定性の観点で、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール等のフェノール性水酸基等の酸性官能基を有するモノアミノ化合物を加えて、末端を酸性官能基又はその誘導基とすることが好ましい。
Examples of the monoamino compound include ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, t-butylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, cyclohexylmethyl. Examples thereof include aliphatic amines such as amines, and aromatic amines such as aniline, o-toluidine, m-toluidine, p-toluidine, o-aminophenol, m-aminophenol and p-aminophenol. The monoamino compound is not necessarily limited to these.
Among them, from the viewpoint of stability, a monoamino compound having an acidic functional group such as a phenolic hydroxyl group such as o-aminophenol, m-aminophenol, and p-aminophenol is added, and the terminal is an acidic functional group or a derivative group thereof. It is preferable to do.
 本発明において、ポリイミド前駆体又はポリベンゾオキサゾール前駆体としては、現像液への溶解性の観点から、下記一般式(I)又は(II)で表される構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
(一般式(I)中、Xは4価の有機基、pは0~2の整数を示し、Wは2価~4価の有機基である。R及びRは各々独立に、水素原子、又は炭素数が1~6の脂肪族基又は下記一般式(Ia)で表される基である。
Figure JPOXMLDOC01-appb-C000005
(一般式(Ia)中、Rは水素原子又はメチル基あり、aは1~6の整数を示す。)
Figure JPOXMLDOC01-appb-C000006
(一般式(II)中、Uは4価の有機基、Vは2価の有機基である。)
In the present invention, the polyimide precursor or polybenzoxazole precursor is preferably a compound having a structure represented by the following general formula (I) or (II) from the viewpoint of solubility in a developer.
Figure JPOXMLDOC01-appb-C000004
(In the general formula (I), X represents a tetravalent organic group, p represents an integer of 0 to 2, and W represents a divalent to tetravalent organic group. R 1 and R 2 are each independently hydrogen. It is an atom, an aliphatic group having 1 to 6 carbon atoms, or a group represented by the following general formula (Ia).
Figure JPOXMLDOC01-appb-C000005
(In general formula (Ia), R 3 represents a hydrogen atom or a methyl group, and a represents an integer of 1 to 6.)
Figure JPOXMLDOC01-appb-C000006
(In general formula (II), U is a tetravalent organic group, and V is a divalent organic group.)
 一般式(I)において、Xである4価の有機基は、原料であるテトラカルボン酸二無水物の残基である。具体的には、4価の芳香族基又は4価の脂肪族基が好ましい。炭素数は4~40のものが好ましい。炭素数が4~40である4価の芳香族基又は炭素数が4~40である4価の脂肪族基がより好ましい。 In the general formula (I), the tetravalent organic group as X is a residue of tetracarboxylic dianhydride as a raw material. Specifically, a tetravalent aromatic group or a tetravalent aliphatic group is preferable. The number of carbon atoms is preferably 4 to 40. A tetravalent aromatic group having 4 to 40 carbon atoms or a tetravalent aliphatic group having 4 to 40 carbon atoms is more preferable.
 pは0~2の整数を示し、0~2つのヒドロキシ基がWに結合していることを示す。
 Wである2価~4価の有機基は、原料であるジアミンの残基であり、2価~4価の芳香族基又は2価~4価の芳香族基脂肪族基が好ましく、炭素数が4~40の2価~4価の芳香族基がより好ましい。
 R及びRとしては、水素、炭素数が1~6のアルキル基又は上記一般式(Ia)で表される基が好ましい。
p represents an integer of 0 to 2, and 0 to 2 hydroxy groups are bonded to W.
The divalent to tetravalent organic group that is W is a residue of a diamine that is a raw material, and is preferably a divalent to tetravalent aromatic group or a divalent to tetravalent aromatic group aliphatic group. Is more preferably a divalent to tetravalent aromatic group of 4 to 40.
R 1 and R 2 are preferably hydrogen, an alkyl group having 1 to 6 carbon atoms, or a group represented by the above general formula (Ia).
 前駆体に占める一般式(I)で表される構造単位の含有率は、60~100モル%であることが好ましく80~100モル%であることがより好ましい。 The content of the structural unit represented by the general formula (I) in the precursor is preferably 60 to 100 mol%, and more preferably 80 to 100 mol%.
 一般式(II)において、Uで表される4価の有機基は、原料である、2個のヒドロキシ基がそれぞれアミンのオルト位に位置した構造を有するジアミンの残基である。Uとしては、4価の芳香族基が好ましく、また、炭素数が6~40のものが好ましい。特に、炭素原子数6~40の4価の芳香族基が好ましい。4価の芳香族基としては、4個の結合部位がいずれも芳香環上に存在するものが好ましい。 In the general formula (II), the tetravalent organic group represented by U is a diamine residue which is a raw material and has a structure in which two hydroxy groups are located at the ortho positions of the amine. U is preferably a tetravalent aromatic group and preferably has 6 to 40 carbon atoms. In particular, a tetravalent aromatic group having 6 to 40 carbon atoms is preferable. As the tetravalent aromatic group, those in which all four bonding sites are present on the aromatic ring are preferable.
 Vで表される2価の有機基は、原料であるジカルボン酸の残基であり、2価の芳香族基又は2価の脂肪族基が好ましく、また、炭素数は6~40のものが好ましい。特に、炭素原子数6~40の2価の芳香族基又は2価の脂肪族基がより好ましい。 The divalent organic group represented by V is a residue of a dicarboxylic acid that is a raw material, and is preferably a divalent aromatic group or a divalent aliphatic group, and has 6 to 40 carbon atoms. preferable. In particular, a divalent aromatic group having 6 to 40 carbon atoms or a divalent aliphatic group is more preferable.
 前駆体に占める一般式(II)で表される構造単位の含有率は、60~100モル%であることが好ましく、特に、80~100モル%であることが好ましい。 The content of the structural unit represented by the general formula (II) in the precursor is preferably 60 to 100 mol%, and particularly preferably 80 to 100 mol%.
 ポリベンゾオキサゾール前駆体は、一般式(II)で表される構造を有することが好ましいが、ポリベンゾオキサゾール前駆体のアルカリ水溶液に対する可溶性は、フェノール性水酸基に由来するため、ヒドロキシ基を含有するアミドユニットが、ある割合以上含まれていることが好ましい。即ち、次式(III)で表されるポリベンゾオキサゾール前駆体であることが好ましい。 The polybenzoxazole precursor preferably has a structure represented by the general formula (II). However, since the solubility of the polybenzoxazole precursor in an alkaline aqueous solution is derived from a phenolic hydroxyl group, an amide containing a hydroxy group It is preferable that the unit is contained in a certain proportion or more. That is, a polybenzoxazole precursor represented by the following formula (III) is preferable.
Figure JPOXMLDOC01-appb-C000007
(式中、Uは4価の有機基を示し、V及びYはそれぞれ2価の有機基を示す。jとkは、モル分率を示し、jとkの和は100モル%であり、jが60~100モル%、kが40~0モル%である。)
Figure JPOXMLDOC01-appb-C000007
(In the formula, U represents a tetravalent organic group, V and Y each represent a divalent organic group, j and k represent a mole fraction, and the sum of j and k is 100 mol%; j is 60 to 100 mol%, and k is 40 to 0 mol%.)
 一般式(III)において、U及びVは上記一般式(II)と同様である。
 Yで表される2価の有機基は、原料であるジアミンの残基であり、上記Uを形成するジアミン以外の残基である。Yとしては、2価の芳香族基又は2価の脂肪族基が好ましく、また、炭素数としては4~40のものが好ましく、炭素数が4~40の2価の芳香族基がより好ましい。また、jは80~100モル%であり、kは20~0モル%であることが好ましい。
In the general formula (III), U and V are the same as those in the general formula (II).
The divalent organic group represented by Y is a residue of a diamine that is a raw material, and is a residue other than the diamine that forms U. Y is preferably a divalent aromatic group or a divalent aliphatic group, and preferably has 4 to 40 carbon atoms, more preferably a divalent aromatic group having 4 to 40 carbon atoms. . Further, j is preferably 80 to 100 mol%, and k is preferably 20 to 0 mol%.
 本発明におけるポリイミド前駆体又はポリベンゾオキサゾール前駆体の重量平均分子量(Mw)は、ポリスチレン換算で5000~100000である。好ましくは7000~80000、より好ましくは10000~60000である。耐熱性を向上する上では5000以上が好ましい。一方、溶媒への溶解性や扱い性の上では100000以下が好ましい。 The weight average molecular weight (Mw) of the polyimide precursor or polybenzoxazole precursor in the present invention is 5000 to 100,000 in terms of polystyrene. Preferably it is 7000 to 80,000, more preferably 10,000 to 60,000. In order to improve heat resistance, 5000 or more is preferable. On the other hand, 100,000 or less is preferable in terms of solubility in a solvent and handleability.
 本工程により得られる、ポリイミド前駆体又はポリベンゾオキサゾール前駆体のポリマ混合液は、ポリイミド前駆体又はポリベンゾオキサゾール前駆体と、NMPと、合成工程における副生成分(塩酸塩等)、不純物とを含む。この段階ではポリマ混合液中にNMPが多く(例えば、50質量%以上)含まれている。
 尚、例えば、副生成分である塩酸塩は、ジカルボン酸ジクロリドとジアミンとの反応で生じる塩酸と、塩酸のトラップ剤として添加するピリジン等の塩基から生成する。
The polymer mixture of the polyimide precursor or polybenzoxazole precursor obtained in this step is composed of the polyimide precursor or polybenzoxazole precursor, NMP, by-products (hydrochloride, etc.) and impurities in the synthesis step. Including. At this stage, a large amount (for example, 50% by mass or more) of NMP is contained in the polymer mixed solution.
In addition, for example, hydrochloride which is a by-product is generated from hydrochloric acid generated by the reaction of dicarboxylic acid dichloride and diamine, and a base such as pyridine added as a hydrochloric acid trapping agent.
<(b)分液工程>
 本工程では、上記工程(a)で得たポリマ混合液に、水又は水溶液と、低沸点溶媒を加え、分液操作により水層を除去して低沸点溶媒層を得る。この工程により、ポリイミド前駆体又はポリベンゾオキサゾール前駆体の合成時に副生した塩酸塩等の不純物と溶媒であるNMPを除去することができる。
<(B) Separation process>
In this step, water or an aqueous solution and a low boiling point solvent are added to the polymer mixture obtained in the above step (a), and the aqueous layer is removed by a liquid separation operation to obtain a low boiling point solvent layer. By this step, impurities such as hydrochloride generated during synthesis of the polyimide precursor or polybenzoxazole precursor and NMP as a solvent can be removed.
 分液工程は、例えば、以下の方法で実施できる。
 まず、ポリマ混合液に固形分(ポリイミド前駆体又はポリベンゾオキサゾール前駆体)の含有量が全体の3~30質量%となるように、低沸点溶媒を適宜追加する。
 低沸点溶媒は、NMPを含有する溶媒及び本工程において加える水又は水溶液と層分離可能であって、ポリイミド前駆体又はポリベンゾオキサゾール前駆体を溶解し、後の工程で使用する置換溶媒及び極性溶媒より低い沸点を持つ有機溶媒であれば特に制限はされない。低沸点溶媒の沸点は特に制限はないが、180℃以下であることが好ましい。
A liquid separation process can be implemented with the following method, for example.
First, a low boiling point solvent is appropriately added so that the solid content (polyimide precursor or polybenzoxazole precursor) content is 3 to 30% by mass of the polymer mixture.
The low boiling point solvent can be separated into a layer containing NMP-containing solvent and water or an aqueous solution added in this step, dissolves the polyimide precursor or polybenzoxazole precursor, and is used as a substitution solvent and a polar solvent in the subsequent step. Any organic solvent having a lower boiling point is not particularly limited. The boiling point of the low boiling point solvent is not particularly limited, but is preferably 180 ° C. or lower.
 低沸点溶媒としては、例えば、イソブタノール、酢酸エチル、酢酸ブチル、ジエチルエーテル、メチル-t-ブチルエーテル、メチルエチルケトン、メチルイソブチルケトン、ヘキサン及びベンゼンが挙げられる。尚、上記以外の有機溶媒を使用してもよく、また、それぞれ単独で使用しても混合して使用してもよい。
 これらの中でも、揮発性、ポリイミド前駆体又はポリベンゾオキサゾール前駆体の溶解性、及び、水層との層分離性の観点から、酢酸エチル、メチルイソブチルケトン又はメチル-t-ブチルエーテルが好ましい。
Examples of the low boiling point solvent include isobutanol, ethyl acetate, butyl acetate, diethyl ether, methyl-t-butyl ether, methyl ethyl ketone, methyl isobutyl ketone, hexane and benzene. In addition, you may use organic solvents other than the above, and each may be used individually or may be used in mixture.
Among these, ethyl acetate, methyl isobutyl ketone, or methyl t-butyl ether is preferable from the viewpoints of volatility, solubility of the polyimide precursor or polybenzoxazole precursor, and layer separation from the aqueous layer.
 次に、低沸点溶媒を添加したポリマ混合液中に水又は水溶液を添加する。
 水溶液としては、無機酸、有機酸又は無機塩の水溶液が挙げられ、具体的には、イオン交換水、塩酸水溶液、硫酸水溶液、硝酸水溶液、酢酸水溶液、シュウ酸水溶液、塩化ナトリウム水溶液等が挙げられる。尚、上記以外の水溶液を使用してもよい。中でもイオン交換水が好ましい。
 水又は水溶液の添加量は、低沸点溶媒を添加したポリマ混合液全体に対し、10~200質量%であることが好ましい。
Next, water or an aqueous solution is added to the polymer mixed solution to which the low boiling point solvent is added.
Examples of the aqueous solution include an aqueous solution of an inorganic acid, an organic acid, or an inorganic salt, and specific examples include ion-exchanged water, hydrochloric acid aqueous solution, sulfuric acid aqueous solution, nitric acid aqueous solution, acetic acid aqueous solution, oxalic acid aqueous solution, and sodium chloride aqueous solution. . An aqueous solution other than the above may be used. Of these, ion-exchanged water is preferred.
The addition amount of water or an aqueous solution is preferably 10 to 200% by mass with respect to the whole polymer mixed solution to which the low boiling point solvent is added.
 水又は水溶液を添加後、撹拌を行なう。撹拌時間は5~60分間が好ましく、10~20分間がより好ましい。 ・ Stir after adding water or aqueous solution. The stirring time is preferably 5 to 60 minutes, more preferably 10 to 20 minutes.
 撹拌後、静置すると低沸点溶媒層(上層)と、水層(下層)の2層に分離する。この分離した2層のうち、水層を分液操作により除去する。
 低沸点溶媒層にはポリイミド前駆体又はポリベンゾオキサゾール前駆体及び低沸点溶媒が含まれている。水層には水溶性化合物、例えば、ポリイミド前駆体又はポリベンゾオキサゾール前駆体の合成時に副生した塩化物イオン等の不純物、NMP及び水が含まれている。
 撹拌後の静置時間は分離が完了するまでの時間であり、通常10分~2時間であるが特に制限はない。本工程により、ポリイミド前駆体又はポリベンゾオキサゾール前駆体と、低沸点溶媒とを含む低沸点溶媒層を得ることができる。
After stirring, the mixture is allowed to stand to separate into two layers of a low boiling point solvent layer (upper layer) and an aqueous layer (lower layer). Of these two separated layers, the aqueous layer is removed by a liquid separation operation.
The low boiling point solvent layer contains a polyimide precursor or polybenzoxazole precursor and a low boiling point solvent. The water layer contains a water-soluble compound, for example, impurities such as chloride ions produced as a by-product during synthesis of the polyimide precursor or polybenzoxazole precursor, NMP, and water.
The standing time after stirring is the time until separation is completed, and is usually 10 minutes to 2 hours, but is not particularly limited. By this step, a low boiling point solvent layer containing a polyimide precursor or a polybenzoxazole precursor and a low boiling point solvent can be obtained.
 尚、分液工程は、必要に応じて複数回行なってもよい。複数回行なうことで、より、NMP等を除去することができ、最終的に得られるポリマ溶液中のNMPや不純物の含有量を低減することができる。
 また、水又は水溶液、及び低沸点溶媒を加えて分液した後に、水又は水溶液のみで分液する工程を複数回行ってもよい。
 さらに、上記の説明では低沸点溶媒を添加した後に、水又は水溶液を添加したが、水又は水溶液を添加した後に低沸点溶媒を添加してもよい。
In addition, you may perform a liquid separation process in multiple times as needed. By performing the treatment a plurality of times, NMP and the like can be further removed, and the content of NMP and impurities in the finally obtained polymer solution can be reduced.
Moreover, after adding water or aqueous solution and a low boiling-point solvent and liquid-separating, you may perform the process of liquid-separating only with water or aqueous solution in multiple times.
Furthermore, in the above description, water or an aqueous solution is added after adding a low-boiling point solvent. However, a low-boiling point solvent may be added after adding water or an aqueous solution.
<(c)低沸点溶媒層に置換溶媒及び極性溶媒を加える工程>
 本工程では、上述した工程(b)により得た低沸点溶媒層に、置換溶媒及び極性溶媒を加える。尚、置換溶媒及び極性溶媒を加える順序に制限はなく、どちらが先であってもよく、また、同時でもよい。
<(C) Step of adding a substitution solvent and a polar solvent to the low boiling point solvent layer>
In this step, a substitution solvent and a polar solvent are added to the low boiling point solvent layer obtained in the step (b) described above. In addition, there is no restriction | limiting in the order which adds a substituted solvent and a polar solvent, which may be first and may be simultaneous.
 本工程で使用する置換溶媒は、最終的に得られるポリマ溶液の溶媒の主成分となる。置換溶媒としては、ポリイミド前駆体又はポリベンゾオキサゾール前駆体を溶解し、先の工程で使用した低沸点溶媒より高い沸点を持つ有機溶媒であれば特に制限はされない。
 具体的には、γ-ブチロラクトン(GBL)、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、酢酸ベンジル、n-ブチルアセテート、エトキシエチルプロピオネート、3-メチルメトキシプロピオネート、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルホスホリルアミド、テトラメチレンスルホン、ジエチルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル等が挙げられる。これらの溶媒は、単独で又は2種以上併用して用いることができる。
The substitution solvent used in this step is the main component of the solvent of the finally obtained polymer solution. The substitution solvent is not particularly limited as long as it is an organic solvent that dissolves a polyimide precursor or a polybenzoxazole precursor and has a boiling point higher than that of the low boiling point solvent used in the previous step.
Specifically, γ-butyrolactone (GBL), ethyl lactate, propylene glycol monomethyl ether acetate, benzyl acetate, n-butyl acetate, ethoxyethyl propionate, 3-methylmethoxypropionate, N, N-dimethylformamide, N, N-dimethylacetamide, hexamethylphosphorylamide, tetramethylene sulfone, diethyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, etc. Is mentioned. These solvents can be used alone or in combination of two or more.
 これらの中でも、ポリイミド前駆体又はポリベンゾオキサゾール前駆体の溶解性の観点から、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルを用いることが好ましい。
 また、置換溶媒の配合量は特に制限はないが、最終的に得られるポリマ溶液中の置換溶媒の割合が20~90質量%となるように調整されることが好ましい。
Among these, from the viewpoint of solubility of the polyimide precursor or polybenzoxazole precursor, it is preferable to use γ-butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, or propylene glycol monomethyl ether.
The amount of the substitution solvent is not particularly limited, but it is preferably adjusted so that the proportion of the substitution solvent in the finally obtained polymer solution is 20 to 90% by mass.
 本工程で用いる極性溶媒は、ポリマ溶液の粘度の経時変化を防ぐ役割を有する。従来、ポリマ溶液中の溶媒の主成分はNMPであったが、安全性の観点からNMPの含有量を減らすと、ポリマ溶液の粘度が時間の経過と共に変化してしまう問題がある。本工程において用いる極性溶媒は、ポリイミド前駆体又はポリベンゾオキサゾール前駆体の、各分子間に生じる水素結合を防ぐことができる。その結果、ポリマ溶液の粘度の経時変化を防ぐことができると考える。 The polar solvent used in this step has a role of preventing the viscosity of the polymer solution from changing with time. Conventionally, the main component of the solvent in the polymer solution is NMP. However, when the content of NMP is reduced from the viewpoint of safety, there is a problem that the viscosity of the polymer solution changes with time. The polar solvent used in this step can prevent hydrogen bonding between the molecules of the polyimide precursor or polybenzoxazole precursor. As a result, it is considered that the change in the viscosity of the polymer solution with time can be prevented.
 極性溶媒として、例えば、ジメチルスルホキシド(DMSO)、N-エチルピロリドン(NEP)、又はジメチルホルムアミド(DMF)が挙げられる。これらの中でも、粘度の経時変化を防ぐことができる点から、DMSO、NEPを用いることが好ましい。
 極性溶媒の配合量は、特に制限はない。最終的に得られるポリマ溶液中の極性溶媒の割合が1~20質量%となるように調整することが好ましい。
Examples of the polar solvent include dimethyl sulfoxide (DMSO), N-ethylpyrrolidone (NEP), and dimethylformamide (DMF). Among these, it is preferable to use DMSO and NEP from the viewpoint that the change in viscosity with time can be prevented.
The blending amount of the polar solvent is not particularly limited. It is preferable to adjust the ratio of the polar solvent in the finally obtained polymer solution to be 1 to 20% by mass.
<(d)濃縮工程>
 本工程では、上記工程(c)で置換溶媒及び極性溶媒を加えた低沸点溶媒層から、低沸点溶媒を減圧留去し、濃縮する。濃縮工程で、低沸点溶媒及び残留水分を除去し、ポリマ溶液を得ることができる。
<(D) Concentration step>
In this step, the low boiling point solvent is distilled off under reduced pressure from the low boiling point solvent layer to which the substitution solvent and the polar solvent are added in the step (c), and concentrated. In the concentration step, the low boiling point solvent and residual moisture can be removed to obtain a polymer solution.
 濃縮工程の方法は、特に制限はない。例えば、減圧ポンプを用いて、工程(c)後の低沸点溶媒層を減圧し、20~100℃の温度、30~60℃の温度で、12時間~1週間減圧濃縮すればよく、1~3日間程度がより好ましい。
 尚、濃縮工程後、必要な場合は低沸点溶媒及び/又は置換溶媒で希釈し、揮発分濃度を調整してもよい。
The method for the concentration step is not particularly limited. For example, the low-boiling solvent layer after step (c) may be decompressed using a vacuum pump and concentrated under reduced pressure at a temperature of 20 to 100 ° C. and a temperature of 30 to 60 ° C. for 12 hours to 1 week. About 3 days is more preferable.
In addition, after a concentration process, you may dilute with a low boiling-point solvent and / or a substitution solvent, if necessary, and may adjust a volatile matter density | concentration.
 上記工程(a)~(d)により、NMPの含有量がきわめて少なく、ポリイミド前駆体又はポリベンゾオキサゾール前駆体合成時に発生する副生成物を高度に除去したポリマ溶液を得ることができる。また、粘度の経時変化が小さいポリマ溶液が得られる。 By the above steps (a) to (d), it is possible to obtain a polymer solution in which the content of NMP is extremely small and by-products generated during synthesis of the polyimide precursor or polybenzoxazole precursor are highly removed. In addition, a polymer solution having a small change in viscosity with time can be obtained.
<ポリマ溶液及び樹脂組成物>
 本発明のポリマ溶液は、例えば、上述した本発明の製造方法により得られる。
 本発明のポリマ溶液は、例えば、ポリマ溶液中のNMPの含有量が0.1質量%以下と少なく、ポリイミド前駆体又はポリベンゾオキサゾール前駆体合成時に副生した不純物(例えば塩化物イオン等)も少ない(例えば、0.1質量%以下)。さらに、得られるポリマ溶液の粘度の経時変化が小さいポリマ溶液である。
<Polymer solution and resin composition>
The polymer solution of the present invention is obtained, for example, by the production method of the present invention described above.
In the polymer solution of the present invention, for example, the content of NMP in the polymer solution is as low as 0.1% by mass or less, and impurities (for example, chloride ions) produced as a by-product during the synthesis of the polyimide precursor or polybenzoxazole precursor are also present. Less (for example, 0.1% by mass or less). Further, the obtained polymer solution is a polymer solution in which the change in viscosity with time is small.
 本発明のポリマ溶液中、揮発分濃度は50~90質量%であることが好ましい。揮発成分がこの範囲であることにより、このポリマ溶液、又は、ポリマ溶液に他の成分を加えた樹脂組成物を基材に塗布し、加熱硬化して硬化膜を形成する際に適度な厚さ(0.1μm~50μm)の膜を形成することが容易となる。尚、ポリマ溶液中の揮発分濃度は、ガスクロマトグラフィーにより揮発分(上述した置換溶媒や極性溶媒)を定量することにより求めることができる。 In the polymer solution of the present invention, the volatile content is preferably 50 to 90% by mass. When the volatile component is within this range, the polymer solution or a resin composition obtained by adding other components to the polymer solution is applied to a substrate, and is cured to form a cured film by heating and curing. It is easy to form a film (0.1 μm to 50 μm). In addition, the volatile matter concentration in the polymer solution can be determined by quantifying the volatile matter (the above-mentioned substitution solvent and polar solvent) by gas chromatography.
 本発明の樹脂組成物は、本発明のポリマ溶液を含有する。本発明の樹脂組成物は、必要に応じて、新たに溶媒を添加してもよく、また、感光剤、酸発生剤、ラジカル開始剤、密着助剤、架橋剤等を含有していてもよい。 The resin composition of the present invention contains the polymer solution of the present invention. The resin composition of the present invention may newly contain a solvent as necessary, and may contain a photosensitizer, an acid generator, a radical initiator, an adhesion assistant, a crosslinking agent, and the like. .
<硬化膜の製造方法>
 本発明の硬化膜の製造方法は、上述した本発明のポリマ溶液又は樹脂組成物を基材上に塗布及び乾燥し樹脂膜を得る工程と、樹脂膜を加熱する工程とを含む。尚、本発明の技術的範囲は、上記製造方法により得られる硬化膜にも及ぶ。
 樹脂膜を得る工程では、ガラス基板、半導体、金属酸化物絶縁体(TiO、SiO等)、窒化ケイ素等の基材上に、ポリマ溶液又は樹脂組成物を、スピンナー等を用いて回転塗布後、ホットプレート、オーブン等を用いて乾燥することで、樹脂膜を形成する。
 尚、樹脂膜は公知の露光工程及び現像工程等により、パターン樹脂膜としてもよい。
<Method for producing cured film>
The manufacturing method of the cured film of this invention includes the process of apply | coating and drying the polymer solution or resin composition of this invention mentioned above on a base material, and obtaining a resin film, and the process of heating a resin film. The technical scope of the present invention extends to a cured film obtained by the above production method.
In the step of obtaining a resin film, a polymer solution or a resin composition is spin-coated using a spinner or the like on a substrate such as a glass substrate, a semiconductor, a metal oxide insulator (TiO 2 , SiO 2, or the like) or silicon nitride. Thereafter, a resin film is formed by drying using a hot plate, an oven, or the like.
The resin film may be a patterned resin film by a known exposure process and development process.
 樹脂膜を加熱する工程では、上記樹脂膜に、150~450℃の加熱処理をすることにより、硬化膜を得る。加熱処理には、拡散炉、オーブン、ホットプレート等が使用できる。
 樹脂膜を熱硬化させる時間は、残存溶剤や揮発成分の飛散が十分進行するまでの時間であるが、作業効率との兼ね合いから概ね5時間以下である。また、熱処理の雰囲気は大気中、又は窒素等の不活性雰囲気中いずれを選択することができる。
 このようにして得られた硬化膜は、半導体装置において、表面保護層、層間絶縁層、再配線層等として用いることができる。
In the step of heating the resin film, a cured film is obtained by heat-treating the resin film at 150 to 450 ° C. A diffusion furnace, an oven, a hot plate, or the like can be used for the heat treatment.
The time for thermally curing the resin film is the time until the remaining solvent and volatile components are sufficiently scattered, but is approximately 5 hours or less in consideration of work efficiency. The atmosphere for the heat treatment can be selected from the air or an inert atmosphere such as nitrogen.
The cured film thus obtained can be used as a surface protective layer, an interlayer insulating layer, a rewiring layer, or the like in a semiconductor device.
 本発明のポリマ溶液又は樹脂組成物を用いた半導体装置(電子部品)の製造工程の一例を以下に説明する。図1は、多層配線構造を有する半導体装置の製造工程図である。
 図1において、回路素子を有するSi基板等の半導体基板1は、回路素子の所定部分を除いてシリコン酸化膜等の保護膜2で被覆され、露出した回路素子上に第1導体層3が形成されている。前記半導体基板上にスピンコート法等で層間絶縁膜としてのポリイミド樹脂等の層間絶縁膜層4が形成される(図1中、工程(a))。
An example of a manufacturing process of a semiconductor device (electronic component) using the polymer solution or resin composition of the present invention will be described below. FIG. 1 is a manufacturing process diagram of a semiconductor device having a multilayer wiring structure.
In FIG. 1, a semiconductor substrate 1 such as a Si substrate having circuit elements is covered with a protective film 2 such as a silicon oxide film except for a predetermined portion of the circuit elements, and a first conductor layer 3 is formed on the exposed circuit elements. Has been. An interlayer insulating film layer 4 such as a polyimide resin as an interlayer insulating film is formed on the semiconductor substrate by a spin coat method or the like (step (a) in FIG. 1).
 次に、塩化ゴム系又はフェノールノボラック系の感光性樹脂層5が前記層間絶縁膜層4上にスピンコート法で形成され、公知の写真食刻技術によって所定部分の層間絶縁膜層4が露出するように窓6Aが設けられている(工程(b))。前記窓6Aにより露出した層間絶縁膜4は、酸素、四フッ化炭素等のガスを用いるドライエッチング手段によって選択的にエッチングされ、窓6Bがあけられている。ついで窓6Bから露出した第1導体層3を腐食することなく、感光性樹脂層5のみを腐食するようなエッチング溶液を用いて感光性樹脂層5が完全に除去される(工程(c))。
 さらに、公知の写真食刻技術を用いて、第2導体層7を形成させ、第1導体層3との電気的接続が完全に行われる(工程(d))。3層以上の多層配線構造を形成する場合は、上記の工程を繰り返して行い各層を形成することができる。
Next, a chlorinated rubber-based or phenol novolak-based photosensitive resin layer 5 is formed on the interlayer insulating film layer 4 by spin coating, and a predetermined portion of the interlayer insulating film layer 4 is exposed by a known photolithography technique. A window 6A is provided (step (b)). The interlayer insulating film 4 exposed through the window 6A is selectively etched by dry etching means using a gas such as oxygen or carbon tetrafluoride to open the window 6B. Next, the photosensitive resin layer 5 is completely removed using an etching solution that corrodes only the photosensitive resin layer 5 without corroding the first conductor layer 3 exposed from the window 6B (step (c)). .
Further, the second conductor layer 7 is formed by using a known photolithography technique, and the electrical connection with the first conductor layer 3 is completely performed (step (d)). When a multilayer wiring structure having three or more layers is formed, each layer can be formed by repeating the above steps.
 次に表面保護膜層8が形成される。本例では、この表面保護膜層を、本発明のポリマ溶液又は樹脂組成物をスピンコート法にて塗布、乾燥し、所定部分に窓6Cを形成するパターンを描いたマスク上から光を照射した後アルカリ水溶液にて現像してパターンを形成し、加熱して耐熱性高分子膜とする。この耐熱性高分子膜は、導体層を外部からの応力、α線等から保護するものであり、得られる半導体装置は信頼性に優れる。尚、上記例において、層間絶縁膜層を本発明のポリマ溶液又は樹脂組成物を用いて形成することも可能である。 Next, the surface protective film layer 8 is formed. In this example, this surface protective film layer was coated with the polymer solution or resin composition of the present invention by a spin coat method and dried, and light was irradiated from above a mask on which a pattern for forming a window 6C was formed at a predetermined portion. Thereafter, development is performed with an alkaline aqueous solution to form a pattern, followed by heating to obtain a heat resistant polymer film. This heat-resistant polymer film protects the conductor layer from external stress, α rays, etc., and the obtained semiconductor device is excellent in reliability. In the above example, the interlayer insulating film layer can be formed using the polymer solution or the resin composition of the present invention.
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は実施例に限定されるものではない。尚、特に記述が無い限り、薬品は全て試薬を使用した。また「%」は断りがない限り「質量%」を意味する。また、実施例及び比較例中の化合物の物性等は以下の方法により測定した。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the examples. Unless otherwise stated, all chemicals used were reagents. “%” Means “% by mass” unless otherwise specified. Moreover, the physical property etc. of the compound in an Example and a comparative example were measured with the following method.
<重量平均分子量(Mw)の測定方法>
 ポリイミド前駆体及びポリベンゾオキサゾール前駆体の重量平均分子量は、ゲル浸透クロマトグラフィー法(GPC、装置は、株式会社日立製作所製、カラムは日立化成株式会社製ゲルパック)を用いて、標準ポリスチレン換算により求めた。具体的には、以下の装置及び条件にて、GPCにより各ポリマの重量平均分子量を測定した。
<Measurement method of weight average molecular weight (Mw)>
The weight average molecular weights of the polyimide precursor and the polybenzoxazole precursor are determined by standard polystyrene conversion using a gel permeation chromatography method (GPC, apparatus is manufactured by Hitachi, Ltd., column is gel pack manufactured by Hitachi Chemical Co., Ltd.). It was. Specifically, the weight average molecular weight of each polymer was measured by GPC with the following apparatus and conditions.
 測定装置:検出器 株式会社日立製作所社製L4000UV
 ポンプ:株式会社日立製作所社製L6000
     株式会社島津製作所社製C-R4A Chromatopac
 測定条件:カラム Gelpack GL-S300MDT-5×2本
 溶離液:THF/DMF=1/1(容積比)
 LiBr(0.03mol/l)、HPO(0.06mol/l)
 流速:1.0ml/分、検出器:UV270nm
 ポリマ0.5mgに対して溶媒[THF/DMF=1/1(容積比)]1mlの溶液を用いて測定した。
Measuring device: Detector L4000UV manufactured by Hitachi, Ltd.
Pump: Hitachi Ltd. L6000
C-R4A Chromatopac manufactured by Shimadzu Corporation
Measurement conditions: Column Gelpack GL-S300MDT-5 × 2 eluent: THF / DMF = 1/1 (volume ratio)
LiBr (0.03 mol / l), H 3 PO 4 (0.06 mol / l)
Flow rate: 1.0 ml / min, detector: UV 270 nm
It measured using 1 ml of solvent [THF / DMF = 1/1 (volume ratio)] with respect to 0.5 mg of polymers.
<ポリマ溶液中のNMPの含有量の測定方法>
 試料であるポリマ溶液をDMF(N,N-ジメチルホルムアミド)で10倍に希釈後、ガスクロマトグラフィー(GC)装置に1.0μl注入してNMP含有量を分析した。
 和光純薬社製NMPをDMFで希釈して作製したNMP濃度0.02%、0.2%、2%の標準液のNMPピーク面積から検量線を作成し、試料のピーク面積からNMPの含有量を求めた。
 具体的には、以下の装置及び条件にて、GCによりNMP含有量を測定した。
<Measurement method of NMP content in polymer solution>
The polymer solution as a sample was diluted 10-fold with DMF (N, N-dimethylformamide), and then 1.0 μl was injected into a gas chromatography (GC) apparatus to analyze the NMP content.
A calibration curve was created from the NMP peak areas of standard solutions with NMP concentrations of 0.02%, 0.2%, and 2% prepared by diluting NMP manufactured by Wako Pure Chemical Industries with DMF, and the content of NMP from the peak area of the sample. The amount was determined.
Specifically, NMP content was measured by GC with the following apparatus and conditions.
 装置:GLサイエンスGC-4000
 キャリアガス:5.0ml/min
 カラム:TC-5
 Injection温度:250℃
 Detector温度:250℃
 Oven温度:100℃(3min)→10℃/min→250℃
Device: GL Science GC-4000
Carrier gas: 5.0ml / min
Column: TC-5
Injection temperature: 250 ° C
Detector temperature: 250 ° C
Oven temperature: 100 ° C. (3 min) → 10 ° C./min→250° C.
<ポリマ溶液中の塩化物イオンの含有量の測定方法>
 ポリマ溶液をイオン交換水で、1~1000倍に希釈し、イオンクロマトグラフィー(Dionex社製2010I-6)に2ml注入し、塩化物イオンの含有量を分析した。イオンクロマトグラフィー用標準試薬(1000ppm、和光純薬社製)を希釈して作製した塩化物イオン濃度5ppm、50ppm標準液のClピーク高さから検量線を作成し、試料のピーク高さから塩化物イオンの含有量を求めた。
<Measurement method of chloride ion content in polymer solution>
The polymer solution was diluted 1 to 1000 times with ion-exchanged water, and 2 ml was injected into ion chromatography (Dionex 2010I-6), and the content of chloride ions was analyzed. A calibration curve is prepared from the Cl peak height of a standard solution for chloride ion concentration 5 ppm and 50 ppm prepared by diluting a standard reagent for ion chromatography (1000 ppm, manufactured by Wako Pure Chemical Industries, Ltd.), and chloride is obtained from the peak height of the sample. The ion content was determined.
<粘度変化率の測定方法>
 粘度変化率は、製造直後の粘度(初期粘度)と、恒温槽(23℃)で2週間保管した後の粘度から、下記計算式から求めた。
 粘度変化率(%)=(2週間保管後粘度÷初期粘度)×100
 粘度の測定は、以下の装置及び条件にて実施した。
<Measurement method of viscosity change rate>
Viscosity change rate was calculated | required from the following formula from the viscosity immediately after manufacture (initial viscosity) and the viscosity after storing for 2 weeks in a thermostat (23 degreeC).
Viscosity change rate (%) = (viscosity after storage for 2 weeks ÷ initial viscosity) × 100
The viscosity was measured with the following apparatus and conditions.
 測定装置:E型粘度計(東機産業株式会社VISCONIC EHD)
 測定温度:25℃
 回転速度:2.5~20rpm
Measuring device: E-type viscometer (VISIONIC EHD, Toki Sangyo Co., Ltd.)
Measurement temperature: 25 ° C
Rotation speed: 2.5-20rpm
<ポリマ混合液の合成>
 本発明の工程(a)であるポリマ混合液を得る合成工程を以下の通り実施した。
合成例1[ポリイミド前駆体溶液(ポリマ混合液A)の合成)]
 撹拌機及び温度計を備えた0.2リットルのフラスコ中に、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物(ビス(3,4-ジカルボキシフェニル)エーテル二無水物:ODPA))9.9g(32mmol)とイソプロピルアルコール3.9g(65mmol)とを、N-メチルピロリドン45gに溶解した。その後、1,8-ジアザビシクロウンデセンを触媒量添加した後に、60℃にて2時間加熱した。つづいて、室温下(25℃)で15時間撹拌し、エステル化を行った。その後、氷冷下で塩化チオニルを7.6g(64mmol)加え、室温に戻し2時間反応を行い、カルボン酸クロリドの溶液(以下、本溶液をカルボン酸クロリド溶液Aという。)を得た。
<Synthesis of polymer mixture>
The synthesis step for obtaining the polymer mixture which is the step (a) of the present invention was performed as follows.
Synthesis Example 1 [Synthesis of polyimide precursor solution (polymer mixed solution A)]
In a 0.2 liter flask equipped with a stirrer and a thermometer, 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride (bis (3,4-dicarboxyphenyl) ether dianhydride: ODPA)) 9.9 g (32 mmol) and isopropyl alcohol 3.9 g (65 mmol) were dissolved in 45 g of N-methylpyrrolidone. Thereafter, a catalytic amount of 1,8-diazabicycloundecene was added, followed by heating at 60 ° C. for 2 hours. Subsequently, the mixture was stirred at room temperature (25 ° C.) for 15 hours for esterification. Thereafter, 7.6 g (64 mmol) of thionyl chloride was added under ice-cooling, and the mixture was returned to room temperature and reacted for 2 hours to obtain a carboxylic acid chloride solution (hereinafter, this solution is referred to as carboxylic acid chloride solution A).
 次に、撹拌機及び温度計を備えた0.5リットルのフラスコ中に、N-メチルピロリドン40gを仕込み、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン 10.3g(28mmol)、p-アミノフェノール0.4g(4mmol)を添加し、撹拌溶解した後、温度を0~5℃に保ちながら、先に調製したカルボン酸クロリド溶液Aを30分間で滴下した後、3時間撹拌し、ポリマ混合液Aを得た。 Next, 40 g of N-methylpyrrolidone was charged into a 0.5 liter flask equipped with a stirrer and a thermometer, and 2,2-bis (3-amino-4-hydroxyphenyl) -1,1,1, After adding 3.3 g (28 mmol) of 3,3,3-hexafluoropropane and 0.4 g (4 mmol) of p-aminophenol and stirring and dissolving, the previously prepared carvone was maintained while maintaining the temperature at 0 to 5 ° C. The acid chloride solution A was added dropwise over 30 minutes, followed by stirring for 3 hours to obtain a polymer mixture A.
合成例2[ポリベンゾオキサゾール前駆体溶液(ポリマ混合液B)の合成]
 撹拌機及び温度計を備えた0.5リットルのフラスコ中に、4,4’-ジフェニルエーテルジカルボン酸15.5g(60mmol)、N-メチルピロリドン90gを仕込み、フラスコを5℃に冷却した。その後、塩化チオニル14.3g(120mmol)を滴下し、30分間反応させて、4,4’-ジフェニルエーテルジカルボン酸ジクロリドの溶液を得た。
Synthesis Example 2 [Synthesis of polybenzoxazole precursor solution (polymer mixed solution B)]
In a 0.5 liter flask equipped with a stirrer and a thermometer, 15.5 g (60 mmol) of 4,4′-diphenyl ether dicarboxylic acid and 90 g of N-methylpyrrolidone were charged, and the flask was cooled to 5 ° C. Thereafter, 14.3 g (120 mmol) of thionyl chloride was added dropwise and reacted for 30 minutes to obtain a solution of 4,4′-diphenyl ether dicarboxylic acid dichloride.
 次いで、撹拌機及び温度計を備えた1リットルのフラスコ中に、N-メチルピロリドン88gを仕込み、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン18.3g(50mmol)、p-アミノフェノール2.2g(20mmol)を投入し、撹拌し、溶解させた。その後、温度を0~5℃に保ちながら、4,4’-ジフェニルエーテルジカルボン酸ジクロリドの溶液を30分間で滴下し、3時間撹拌し、ポリマ混合液Bを得た。 Next, 88 g of N-methylpyrrolidone was charged into a 1 liter flask equipped with a stirrer and a thermometer, and 2,2-bis (3-amino-4-hydroxyphenyl) -1,1,1,3,3 was charged. , 3-hexafluoropropane (18.3 g, 50 mmol) and p-aminophenol (2.2 g, 20 mmol) were added, and the mixture was stirred and dissolved. Thereafter, while maintaining the temperature at 0 to 5 ° C., a solution of 4,4′-diphenyl ether dicarboxylic acid dichloride was added dropwise over 30 minutes and stirred for 3 hours to obtain a polymer mixture B.
合成例3[ポリベンゾオキサゾール前駆体(ポリマ混合液C)の合成]
 ジフェニルエーテルジカルボン酸に代えて、ドデカン二酸を使用した他は、合成例2と同様にして合成を行い、ポリマ混合液Cを得た。
Synthesis Example 3 [Synthesis of Polybenzoxazole Precursor (Polymer Mixture C)]
A polymer mixture C was obtained in the same manner as in Synthesis Example 2 except that dodecanedioic acid was used instead of diphenyl ether dicarboxylic acid.
合成例4[ポリベンゾオキサゾール前駆体溶液(ポリマ混合液D)の合成]
 撹拌機及び温度計を備えた0.2リットルのフラスコ中で、4,4’-ジフェニルエーテルジカルボン酸12.9g(50mmol)と1-ヒドロキシベンゾトリアゾール13.5g(100mmol)とを、N-メチル-2-ピロリドン75gに溶解した。これに、N-メチル-2-ピロリドン25gに溶解した1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩20.6g(100mmol)を、反応系の温度を0~5℃に冷却し滴下した。滴下終了後、反応系の温度を室温に戻し、そのまま24時間撹拌した。反応終了後、析出したジシクロヘキシルカルボジウレアをろ過によって除去し、濾液にイオン交換水100gを滴下し、沈殿物を濾取して、真空乾燥した。これをカルボン酸誘導体Aと呼ぶ。
Synthesis Example 4 [Synthesis of Polybenzoxazole Precursor Solution (Polymer Mixture D)]
In a 0.2 liter flask equipped with a stirrer and a thermometer, 12.9 g (50 mmol) of 4,4′-diphenyl ether dicarboxylic acid and 13.5 g (100 mmol) of 1-hydroxybenzotriazole were added to N-methyl- Dissolved in 75 g of 2-pyrrolidone. To this, 20.6 g (100 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride dissolved in 25 g of N-methyl-2-pyrrolidone was cooled to a temperature of 0 to 5 ° C. It was dripped. After completion of the dropwise addition, the temperature of the reaction system was returned to room temperature and stirred as it was for 24 hours. After completion of the reaction, the precipitated dicyclohexylcarbodiurea was removed by filtration, 100 g of ion-exchanged water was added dropwise to the filtrate, and the precipitate was collected by filtration and dried in vacuo. This is called carboxylic acid derivative A.
 N-メチル-2-ピロリドン90gに、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン12.8g(35mmol)とp-アミノフェノール1.5g(14mmol)を溶解し、さらに、ジカルボン酸誘導体A20.7g(42mmol)を投入し、撹拌溶解させた。その後、反応系を75℃にして12時間撹拌し、ポリマ混合液Dを得た。 To 90 g of N-methyl-2-pyrrolidone, 12.8 g (35 mmol) of 2,2-bis (3-amino-4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane and p- 1.5 g (14 mmol) of aminophenol was dissolved, and further 20.7 g (42 mmol) of the dicarboxylic acid derivative A was added and dissolved by stirring. Thereafter, the reaction system was brought to 75 ° C. and stirred for 12 hours to obtain a polymer mixture D.
<ポリマ溶液の製造>
実施例1
(1)工程(b):分液工程
 合成例1で合成したポリマ混合液A 100gに、低沸点溶媒として酢酸エチル100gと、イオン交換水100gを添加し、分液ロートを用いて分液を行った。分液ロートを数回振った後、静かに置き、低沸点溶媒層と水層に分かれたところで、水層を除去した。
 低沸点溶媒層が残った分液ロート内にさらにイオン交換水を加えて分液操作を行い、水層を除去した。このイオン交換水を加えて水層を除去する分液操作は5回行った。
(2)工程(c)及び(d)
 得られた低沸点溶媒層に、γ―ブチロラクトン(GBL)40gとジメチルスルホキシド(DMSO)10gを加えて混合した。その後、GBL及びDMSOを含む低沸点溶媒層を減圧濃縮することで、酢酸エチルを除去し、ポリマ溶液中の揮発分濃度が約65%になるように濃縮又はGBLで希釈し、ポリマ溶液1を得た。
 尚、ポリマ前駆体のモノマ等、原料の仕込み量から、予想されるポリマ前駆体量を計算し、不揮発成分(GBL及びDMSO以外)とした。ポリマ溶液中の揮発分濃度はガスクロマトグラフィーにより揮発分(GBLとDMSO)を定量して求めた。
<Manufacture of polymer solution>
Example 1
(1) Step (b): Separation step To 100 g of the polymer mixture A synthesized in Synthesis Example 1, 100 g of ethyl acetate and 100 g of ion-exchanged water are added as a low boiling point solvent, and the separation is performed using a separatory funnel. went. After shaking the separating funnel several times, it was placed gently, and the aqueous layer was removed when it was divided into a low boiling point solvent layer and an aqueous layer.
Ion exchange water was further added to the separating funnel in which the low boiling point solvent layer remained, and a liquid separation operation was performed to remove the aqueous layer. The liquid separation operation for adding the ion-exchanged water and removing the aqueous layer was performed 5 times.
(2) Steps (c) and (d)
To the obtained low boiling point solvent layer, 40 g of γ-butyrolactone (GBL) and 10 g of dimethyl sulfoxide (DMSO) were added and mixed. Thereafter, the low boiling point solvent layer containing GBL and DMSO is concentrated under reduced pressure to remove ethyl acetate, and the polymer solution 1 is concentrated or diluted with GBL so that the volatile concentration in the polymer solution is about 65%. Obtained.
The expected amount of polymer precursor was calculated from the charged amount of raw materials such as polymer precursor monomers, and used as a non-volatile component (other than GBL and DMSO). The concentration of volatile components in the polymer solution was determined by quantitatively determining the volatile components (GBL and DMSO) by gas chromatography.
 ポリマ溶液1の重量平均分子量、NMPの含有量、塩化物イオンの含有量、粘度変化率を前述の測定方法により求めた。ポリマ溶液1の重量平均分子量は12,760、NMP含有量は0.04%、塩化物イオン含有量は0.06%、粘度変化率は1.08%であった。結果を表1に示す。 The weight average molecular weight, NMP content, chloride ion content, and viscosity change rate of the polymer solution 1 were determined by the measurement method described above. The weight average molecular weight of the polymer solution 1 was 12,760, the NMP content was 0.04%, the chloride ion content was 0.06%, and the viscosity change rate was 1.08%. The results are shown in Table 1.
実施例2
 合成例2で合成したポリマ混合液B(200g)にイオン交換水(120g)と、低沸点溶媒としてメチルイソブチルケトン(MIBK)(120g)を投入した以外は、実施例1と同様の方法で分液工程を行った。
 分液工程により得られた低沸点溶媒層に、実施例1と同様にGBL(60g)とDMSO(12g)を加えて混合した。その後、GBL及びDMSOを含む低沸点溶媒層を減圧濃縮することで、MIBKを除去し、ポリマ溶液中の揮発分濃度が65%になるように濃縮又はGBLで希釈し、ポリマ溶液2を得た。
 得られたポリマ溶液について実施例1と同様に評価を行った。結果を表1に示す。
Example 2
Separation was carried out in the same manner as in Example 1, except that ion-exchanged water (120 g) and methyl isobutyl ketone (MIBK) (120 g) as a low boiling point solvent were added to the polymer mixture B (200 g) synthesized in Synthesis Example 2. A liquid process was performed.
GBL (60 g) and DMSO (12 g) were added to and mixed with the low boiling point solvent layer obtained by the liquid separation step in the same manner as in Example 1. Thereafter, MIBK was removed by concentrating the low-boiling solvent layer containing GBL and DMSO under reduced pressure, and the polymer solution 2 was obtained by concentrating or diluting with a GBL so that the volatile concentration in the polymer solution was 65%. .
The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 1.
実施例3
 実施例2と同様の方法で、ポリマ混合液B(200g)分液した。
 分液工程により得られた低沸点溶媒層にGBL(60g)とN-エチルピロリドン(NEP)(12g)を加えて混合した。その後、GBL及びNEPを含む低沸点溶媒層を減圧濃縮することで、MIBKを除去し、ポリマ溶液中の揮発分濃度が65%になるように濃縮又はGBLで希釈し、ポリマ溶液3を得た。
 得られたポリマ溶液について実施例1と同様に評価を行った。結果を表1に示す。
Example 3
In the same manner as in Example 2, the polymer mixed solution B (200 g) was separated.
GBL (60 g) and N-ethylpyrrolidone (NEP) (12 g) were added to and mixed with the low boiling point solvent layer obtained by the liquid separation step. Thereafter, MIBK was removed by concentrating the low boiling point solvent layer containing GBL and NEP under reduced pressure, and the polymer solution 3 was obtained by concentration or dilution with GBL so that the volatile content in the polymer solution was 65%. .
The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 1.
実施例4
 ポリマ混合液Bの代わりに合成例3で合成したポリマ混合液Cを、低沸点溶媒としてMIBKの代わりにメチル-t-ブチルエーテルを使用した他は、実施例2と同様の方法で分液工程を行った。
 分液工程により得られた低沸点溶媒層に、GBLとN-エチルピロリドン(NEP)を加えて混合した。その後、GBL及びNEPを含む低沸点溶媒層を減圧濃縮することで、メチル-t-ブチルエーテルを除去し、ポリマ溶液中の揮発分濃度が65%になるように濃縮又はGBLで希釈し、ポリマ溶液4を得た。
 得られたポリマ溶液について実施例1と同様に評価を行った。結果を表1に示す。
Example 4
The liquid separation step was performed in the same manner as in Example 2 except that the polymer mixture C synthesized in Synthesis Example 3 was used instead of the polymer mixture B, and methyl-t-butyl ether was used instead of MIBK as the low boiling point solvent. went.
GBL and N-ethylpyrrolidone (NEP) were added to and mixed with the low boiling point solvent layer obtained by the liquid separation step. Thereafter, the low boiling point solvent layer containing GBL and NEP is concentrated under reduced pressure to remove methyl-t-butyl ether and concentrated or diluted with GBL so that the volatile concentration in the polymer solution becomes 65%. 4 was obtained.
The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 1.
実施例5
 ポリマ混合液Aを合成例4で合成したポリマ混合液Dにした他は、実施例1と同様の方法で分液工程等を行い、ポリマ溶液5を得た。
 得られたポリマ溶液について実施例1と同様に評価を行った。結果を表1に示す。
Example 5
A polymer solution 5 was obtained in the same manner as in Example 1 except that the polymer mixture A was changed to the polymer mixture D synthesized in Synthesis Example 4.
The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 1.
比較例1
 合成例1で合成したポリマ混合液Aをイオン交換水に投入し、沈殿物を回収した。イオン交換水で充分に洗浄し、減圧乾燥することによってポリイミド前駆体(ポリアミド酸エステル)を得た。
 回収したポリアミド酸エステルをポリマ溶液中の揮発分濃度が65%になるようにGBLに溶解して、ポリマ溶液6を得た。
 得られたポリマ溶液を実施例1と同様に評価した。結果を表2に示す。
Comparative Example 1
The polymer mixture A synthesized in Synthesis Example 1 was added to ion exchange water, and the precipitate was collected. The polyimide precursor (polyamic acid ester) was obtained by sufficiently washing with ion-exchanged water and drying under reduced pressure.
The recovered polyamic acid ester was dissolved in GBL so that the volatile concentration in the polymer solution was 65%, whereby a polymer solution 6 was obtained.
The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
比較例2
 合成例2で合成したポリマ混合液Bをイオン交換水に投入し、沈殿物を回収した。イオン交換水で充分に洗浄し、減圧乾燥してポリベンゾオキサゾール前駆体を得た。
 回収したポリベンゾオキサゾール前駆体を、ポリマ溶液中の揮発分濃度が65%になるようにGBLに溶解して、ポリマ溶液7を得た。
 得られたポリマ溶液を実施例1と同様に評価した。結果を表2に示す。
Comparative Example 2
The polymer mixture B synthesized in Synthesis Example 2 was added to ion-exchanged water, and the precipitate was collected. The polybenzoxazole precursor was obtained by thoroughly washing with ion-exchanged water and drying under reduced pressure.
The recovered polybenzoxazole precursor was dissolved in GBL so that the volatile concentration in the polymer solution was 65%, to obtain a polymer solution 7.
The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
比較例3
 合成例3で合成したポリマ混合液Cをイオン交換水に投入し、沈殿物を回収した。イオン交換水で充分に洗浄し、減圧乾燥して、カルボキシル基末端のポリベンゾオキサゾール前駆体を得た。
 回収したポリベンゾオキサゾール前駆体を、ポリマ溶液中の揮発分濃度が65%になるようにGBLに溶解し、ポリマ溶液8を得た。
 得られたポリマ溶液を実施例1と同様に評価した。結果を表2に示す。
Comparative Example 3
The polymer mixture C synthesized in Synthesis Example 3 was added to ion-exchanged water, and the precipitate was collected. After thoroughly washing with ion-exchanged water and drying under reduced pressure, a carboxyl group-terminated polybenzoxazole precursor was obtained.
The recovered polybenzoxazole precursor was dissolved in GBL so that the volatile concentration in the polymer solution was 65%, and a polymer solution 8 was obtained.
The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
比較例4
 合成例4で合成したポリマ混合液Dを、イオン交換水及びイソプロパノールの混合液(イオン交換水/イソプロパノール=3/1)の溶液に投入した。沈殿物を回収し、イオン交換水で充分に洗浄した後、減圧乾燥することによってポリベンゾオキサゾール前駆体を得た。
 回収したポリベンゾオキサゾール前駆体を、ポリマ溶液中の揮発分濃度が65%になるようにGBLに溶解し、ポリマ溶液9を得た。
 得られたポリマ溶液を実施例1と同様に評価した。結果を表2に示す。
Comparative Example 4
The polymer mixture D synthesized in Synthesis Example 4 was added to a solution of ion exchange water and isopropanol (ion exchange water / isopropanol = 3/1). The precipitate was collected, washed thoroughly with ion exchange water, and then dried under reduced pressure to obtain a polybenzoxazole precursor.
The recovered polybenzoxazole precursor was dissolved in GBL so that the volatile concentration in the polymer solution was 65%, and a polymer solution 9 was obtained.
The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
比較例5
 実施例1と同様の方法で、ポリマ混合液Aを分液した。
 分取した有機層にGBLを加え、減圧濃縮することで、酢酸エチルを除去し、ポリマ溶液中の揮発分濃度が65%になるように濃縮又はGBLで希釈し、ポリマ溶液10を得た。
 得られたポリマ溶液を実施例1と同様に評価した。結果を表2に示す。
Comparative Example 5
In the same manner as in Example 1, the polymer mixture A was separated.
GBL was added to the separated organic layer and concentrated under reduced pressure to remove ethyl acetate, and concentrated or diluted with GBL so that the volatile concentration in the polymer solution was 65%. Thus, a polymer solution 10 was obtained.
The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
比較例6
 実施例2と同様の方法で、ポリマ混合液Bを分液した。
 分取した有機層にGBLを加え、減圧濃縮することで、MIBKを除去し、ポリマ溶液中の揮発分濃度が65%になるように濃縮又はGBLで希釈し、ポリマ溶液11を得た。
 得られたポリマ溶液を実施例1と同様に評価した。結果を表2に示す。
Comparative Example 6
Polymer mixture B was separated in the same manner as in Example 2.
GBL was added to the separated organic layer and concentrated under reduced pressure to remove MIBK, and concentrated or diluted with GBL so that the volatile concentration in the polymer solution was 65%, whereby a polymer solution 11 was obtained.
The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
比較例7
 実施例4と同様の方法で、ポリマ混合液Cを分液した。
 分取した有機層にGBLを加え、減圧濃縮することで、メチル-t-ブチルエーテルを除去し、ポリマ溶液中の揮発分濃度が65%になるように濃縮又はGBLで希釈し、ポリマ溶液12を得た。
 得られたポリマ溶液を実施例1と同様に評価した。結果を表2に示す。
Comparative Example 7
Polymer mixture C was separated in the same manner as in Example 4.
GBL is added to the separated organic layer and concentrated under reduced pressure to remove methyl-t-butyl ether. The polymer solution 12 is concentrated or diluted with GBL so that the volatile concentration in the polymer solution is 65%. Obtained.
The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
比較例8
 実施例5と同様の方法で、ポリマ混合液Dを分液した。
 分取した有機層にGBLを加え、減圧濃縮することで、酢酸エチルを除去し、ポリマ溶液中の揮発分濃度が65%になるように濃縮又はGBLで希釈し、ポリマ溶液13を得た。得られたポリマ溶液について実施例1と同様の方法で評価を行った。結果を表2に示す。
Comparative Example 8
Polymer mixture D was separated in the same manner as in Example 5.
GBL was added to the separated organic layer and concentrated under reduced pressure to remove ethyl acetate, and concentrated or diluted with GBL so that the volatile concentration in the polymer solution was 65%, to obtain a polymer solution 13. The obtained polymer solution was evaluated in the same manner as in Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記の結果から、本発明の方法を用いて得られたポリマ溶液は、比較例1~4のような再沈操作により得られたポリマ溶液と比較して、NMP含有量、及び塩化物イオン含有量が低いことが確認できる。
 また、極性溶媒を添加することで粘度安定性に優れたポリマ溶液が得られることが確認できる。
 以上より、本発明を利用することにより、ポリイミド前駆体又はポリベンゾオキサゾール前駆体溶液の利用分野の拡大が期待できる。
From the above results, the polymer solution obtained by using the method of the present invention has NMP content and chloride ion content as compared with the polymer solution obtained by the reprecipitation operation as in Comparative Examples 1 to 4. It can be confirmed that the amount is low.
Moreover, it can confirm that the polymer solution excellent in viscosity stability is obtained by adding a polar solvent.
As mentioned above, the utilization field of a polyimide precursor or a polybenzoxazole precursor solution can be expected by utilizing the present invention.
 本発明のポリマ溶液及び樹脂組成物は、電子部品等の表面保護膜や層間絶縁膜となる硬化膜の形成に好適である。 The polymer solution and the resin composition of the present invention are suitable for forming a cured film that becomes a surface protective film or an interlayer insulating film of an electronic component or the like.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
All the contents of the Japanese application specification that is the basis of the priority of Paris in this application are incorporated herein.

Claims (10)

  1.  下記の工程(a)~(d)を含む、ポリマ溶液の製造方法。
     (a)アミン成分と酸成分とを、N-メチル-2-ピロリドン(NMP)を含む溶媒中で反応させて、ポリイミド前駆体又はポリベンゾオキサゾール前駆体を含有するポリマ混合液を得る合成工程
     (b)前記ポリマ混合液に、水又は水溶液と、低沸点溶媒とを加え、分液操作により水層を除去して低沸点溶媒層を得る分液工程
     (c)前記低沸点溶媒層に置換溶媒及び極性溶媒を加える工程
     (d)前記工程(c)の後に、前記低沸点溶媒を減圧留去する濃縮工程
    A method for producing a polymer solution, comprising the following steps (a) to (d):
    (A) A synthesis step in which an amine component and an acid component are reacted in a solvent containing N-methyl-2-pyrrolidone (NMP) to obtain a polymer mixture containing a polyimide precursor or a polybenzoxazole precursor. b) Separation step of adding water or an aqueous solution and a low boiling point solvent to the polymer mixed solution, and removing the aqueous layer by liquid separation operation to obtain a low boiling point solvent layer. (c) Substitution solvent in the low boiling point solvent layer And a step of adding a polar solvent (d) A concentration step of distilling off the low-boiling solvent under reduced pressure after the step (c)
  2.  前記極性溶媒が、ジメチルスルホキシド、N-エチルピロリドン及びジメチルホルムアミドから選択される1以上の溶媒である、請求項1に記載のポリマ溶液の製造方法。 The method for producing a polymer solution according to claim 1, wherein the polar solvent is one or more solvents selected from dimethyl sulfoxide, N-ethylpyrrolidone and dimethylformamide.
  3.  前記低沸点溶媒が、イソブタノール、酢酸エチル、酢酸ブチル、ジエチルエーテル、メチル-t-ブチルエーテル、メチルエチルケトン及びメチルイソブチルケトンから選択される1以上の溶媒である、請求項1又は2に記載のポリマ溶液の製造方法。 The polymer solution according to claim 1 or 2, wherein the low boiling point solvent is one or more solvents selected from isobutanol, ethyl acetate, butyl acetate, diethyl ether, methyl-t-butyl ether, methyl ethyl ketone, and methyl isobutyl ketone. Manufacturing method.
  4.  前記置換溶媒が、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート及びプロピレングリコールモノメチルエーテルから選択される1以上の溶媒である、請求項1~3のいずれかに記載のポリマ溶液の製造方法。 The method for producing a polymer solution according to any one of claims 1 to 3, wherein the substitution solvent is one or more solvents selected from γ-butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate and propylene glycol monomethyl ether.
  5.  前記ポリイミド前駆体又はポリベンゾオキサゾール前駆体が、下記一般式(I)又は(II)で表される構造を有する、請求項1~4のいずれかに記載のポリマ溶液の製造方法。
    Figure JPOXMLDOC01-appb-C000008
    (一般式(I)中、Xは4価の有機基、pは0~2の整数を示し、Wは2価~4価の有機基である。R及びRは各々独立に、水素原子、炭素数が1~6の脂肪族基又は下記一般式(Ia)で表される基である。
    Figure JPOXMLDOC01-appb-C000009
    (一般式(Ia)中、Rは水素原子又はメチル基あり、aは1~6の整数を示す。)
    Figure JPOXMLDOC01-appb-C000010
    (一般式(II)中、Uは4価の有機基、Vは2価の有機基である。)
    The method for producing a polymer solution according to any one of claims 1 to 4, wherein the polyimide precursor or the polybenzoxazole precursor has a structure represented by the following general formula (I) or (II).
    Figure JPOXMLDOC01-appb-C000008
    (In the general formula (I), X represents a tetravalent organic group, p represents an integer of 0 to 2, and W represents a divalent to tetravalent organic group. R 1 and R 2 are each independently hydrogen. An atom, an aliphatic group having 1 to 6 carbon atoms, or a group represented by the following general formula (Ia).
    Figure JPOXMLDOC01-appb-C000009
    (In general formula (Ia), R 3 represents a hydrogen atom or a methyl group, and a represents an integer of 1 to 6.)
    Figure JPOXMLDOC01-appb-C000010
    (In general formula (II), U is a tetravalent organic group, and V is a divalent organic group.)
  6.  請求項1~5のいずれかに記載のポリマ溶液の製造方法によって得られるポリマ溶液。 A polymer solution obtained by the method for producing a polymer solution according to any one of claims 1 to 5.
  7.  極性溶媒の含有量が全体の1~20質量%である、請求項6に記載のポリマ溶液。 The polymer solution according to claim 6, wherein the content of the polar solvent is 1 to 20% by mass of the whole.
  8.  不揮発成分の含有量が全体の10~50質量%である、請求項6又は7に記載のポリマ溶液。 The polymer solution according to claim 6 or 7, wherein the content of nonvolatile components is 10 to 50% by mass of the whole.
  9.  請求項6~8のいずれかに記載のポリマ溶液を含有する樹脂組成物。 A resin composition containing the polymer solution according to any one of claims 6 to 8.
  10.  請求項6~8のいずれかに記載のポリマ溶液又は請求項9に記載の樹脂組成物を、基材上に塗布及び乾燥し樹脂膜を得る工程と、
     前記樹脂膜を加熱する工程と、を含む、硬化膜の製造方法。
    Applying the polymer solution according to any one of claims 6 to 8 or the resin composition according to claim 9 on a substrate and drying to obtain a resin film;
    And a step of heating the resin film.
PCT/JP2013/007127 2013-01-18 2013-12-04 Method for producing polymer solution, and polymer solution WO2014111998A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014557191A JPWO2014111998A1 (en) 2013-01-18 2013-12-04 Method for producing polymer solution and polymer solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-006958 2013-01-18
JP2013006958 2013-01-18

Publications (1)

Publication Number Publication Date
WO2014111998A1 true WO2014111998A1 (en) 2014-07-24

Family

ID=51209127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007127 WO2014111998A1 (en) 2013-01-18 2013-12-04 Method for producing polymer solution, and polymer solution

Country Status (3)

Country Link
JP (1) JPWO2014111998A1 (en)
TW (1) TW201430059A (en)
WO (1) WO2014111998A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518511A (en) * 2013-05-17 2016-06-23 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド Improved process for producing polyimide and polyamic acid ester polymers
JP2016531997A (en) * 2014-05-30 2016-10-13 エルジー・ケム・リミテッド Polyimide-based solution and polyimide-based film manufactured using the same
KR20190103584A (en) * 2018-02-28 2019-09-05 주식회사 이노켐텍 Sulfonated polymers and methods for manufacturing the same
JP2020164657A (en) * 2019-03-29 2020-10-08 住友ベークライト株式会社 Production method of polybenzoxazole and photosensitive resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212435A (en) * 1986-03-12 1987-09-18 Asahi Chem Ind Co Ltd Production of heat-resistant coating material
JPH03259923A (en) * 1990-03-09 1991-11-20 Toray Ind Inc Production of polyimide precursor containing ester bond
JP2002167434A (en) * 2000-11-30 2002-06-11 Nitto Denko Corp Method for removing low molecular weight substance from polyimide precursor or polyimide containing the substance
JP2013064130A (en) * 2011-08-31 2013-04-11 Toho Chem Ind Co Ltd Method of producing polybenzoxazole precursor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212435A (en) * 1986-03-12 1987-09-18 Asahi Chem Ind Co Ltd Production of heat-resistant coating material
JPH03259923A (en) * 1990-03-09 1991-11-20 Toray Ind Inc Production of polyimide precursor containing ester bond
JP2002167434A (en) * 2000-11-30 2002-06-11 Nitto Denko Corp Method for removing low molecular weight substance from polyimide precursor or polyimide containing the substance
JP2013064130A (en) * 2011-08-31 2013-04-11 Toho Chem Ind Co Ltd Method of producing polybenzoxazole precursor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518511A (en) * 2013-05-17 2016-06-23 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド Improved process for producing polyimide and polyamic acid ester polymers
US10604628B2 (en) 2013-05-17 2020-03-31 Fujifilm Electronic Materials U.S.A., Inc. Polymer and thermosetting composition containing same
JP2016531997A (en) * 2014-05-30 2016-10-13 エルジー・ケム・リミテッド Polyimide-based solution and polyimide-based film manufactured using the same
US10144847B2 (en) 2014-05-30 2018-12-04 Lg Chem, Ltd. Polyimide-based solution and polyimide-based film produced using same
US10647883B2 (en) 2014-05-30 2020-05-12 Lg Chem. Ltd. Polyimide-based solution and polyimide-based film produced using same
KR20190103584A (en) * 2018-02-28 2019-09-05 주식회사 이노켐텍 Sulfonated polymers and methods for manufacturing the same
KR102040158B1 (en) 2018-02-28 2019-11-27 주식회사 이노켐텍 Sulfonated polymers and methods for manufacturing the same
JP2020164657A (en) * 2019-03-29 2020-10-08 住友ベークライト株式会社 Production method of polybenzoxazole and photosensitive resin composition

Also Published As

Publication number Publication date
TW201430059A (en) 2014-08-01
JPWO2014111998A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
WO2014115233A1 (en) Resin composition, method for manufacturing pattern cured film, and semiconductor element
JP5434588B2 (en) Photosensitive resin composition, method for producing patterned cured film using the resin composition, and electronic component
TWI631183B (en) Resin composition, method for producing resin, method for producing resin film, and method for producing electronic device
US8758977B2 (en) Negative-type photosensitive resin composition, pattern forming method and electronic parts
JP5920345B2 (en) Photosensitive resin composition, method for producing patterned cured film using the resin composition, and electronic component
JP5477527B2 (en) Positive photosensitive resin composition containing terminal functional group-containing polyimide
JP4618075B2 (en) Negative photosensitive resin composition and pattern forming method
TWI714570B (en) Heat-resistant resin composition, heat-resistant resin film manufacturing method, interlayer insulating film or surface protection film manufacturing method, and electronic component or semiconductor component manufacturing method
WO2014111998A1 (en) Method for producing polymer solution, and polymer solution
TW201135359A (en) Photosensitive organic insulator composition for OLED device
JP5109471B2 (en) Negative photosensitive resin composition, pattern manufacturing method, and electronic component
JP5651917B2 (en) Positive photosensitive resin composition, method for producing patterned cured film using the resin composition, and electronic component
JP5136079B2 (en) Positive photosensitive resin composition for low-temperature curing, method for producing pattern cured film, and electronic component
JP5953796B2 (en) Photosensitive resin composition, method for producing patterned cured film, and electronic component
JP2003005369A (en) Positive type photosensitive resin precursor composition
JP2017125210A (en) Polyamide resin, positive photosensitive resin composition, cured film, protective film, insulation film, semiconductor device and display device
JP5636680B2 (en) Positive photosensitive resin composition, pattern cured film manufacturing method, and electronic component
JP5387750B2 (en) Photosensitive resin composition, method for producing patterned cured film using the resin composition, and electronic component
JP2011053679A (en) Positive photosensitive composition
JP2014084347A (en) Polyamide resin, positive type photosensitive resin composition, cured film, protection film, insulating film, semiconductor device, and display device
JP5577624B2 (en) Process for producing poly-o-hydroxyamide
JP5732722B2 (en) Positive photosensitive resin composition, pattern cured film manufacturing method, and electronic component
JP5741641B2 (en) Photosensitive resin composition, method for producing patterned cured film using the resin composition, and electronic component
JPH04170431A (en) Fluorinated aromatic polyamide, derivative thereof, and use and production thereof
JP2018151527A (en) Photosensitive resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871685

Country of ref document: EP

Kind code of ref document: A1