WO2014111972A1 - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
WO2014111972A1
WO2014111972A1 PCT/JP2013/000171 JP2013000171W WO2014111972A1 WO 2014111972 A1 WO2014111972 A1 WO 2014111972A1 JP 2013000171 W JP2013000171 W JP 2013000171W WO 2014111972 A1 WO2014111972 A1 WO 2014111972A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
main body
signal
power
body side
Prior art date
Application number
PCT/JP2013/000171
Other languages
French (fr)
Japanese (ja)
Inventor
修平 ▲高▼櫻
俊和 向井
昇 奥山
Original Assignee
三重電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三重電子株式会社 filed Critical 三重電子株式会社
Priority to JP2014557177A priority Critical patent/JPWO2014111972A1/en
Priority to PCT/JP2013/000171 priority patent/WO2014111972A1/en
Publication of WO2014111972A1 publication Critical patent/WO2014111972A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/02Driving main working members
    • B23Q5/04Driving main working members rotary shafts, e.g. working-spindles
    • B23Q5/10Driving main working members rotary shafts, e.g. working-spindles driven essentially by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B37/00Boring by making use of ultrasonic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/0009Energy-transferring means or control lines for movable machine parts; Control panels or boxes; Control parts
    • B23Q1/0018Energy-transferring means or control lines for movable machine parts; Control panels or boxes; Control parts comprising hydraulic means
    • B23Q1/0027Energy-transferring means or control lines for movable machine parts; Control panels or boxes; Control parts comprising hydraulic means between moving parts between which an uninterrupted energy-transfer connection is maintained

Definitions

  • the present invention relates to a contactless power supply device for supplying power using mutual induction between coil members between a relatively displaceable main body side and a load side, and in particular, provided on the load side.
  • the present invention relates to a contactless power supply device used to supply drive power to a resonant circuit from the main body side.
  • a main body side provided with a power feeding device and a main body side such as machine tools described in, for example, Japanese Patent Application Laid-Open Nos. 2002-346817 (Patent Document 1) and 2010-207971 (Patent Document 2)
  • the rotational movement and the vibration by the ultrasonic transducer are superimposed on the tool by providing an ultrasonic transducer on the load side and connecting it with the tool.
  • a slip ring is used as one of means for supplying power from the power supply device on the main body side to the ultrasonic transducer as the load on the load side.
  • the slip ring has a structure in which a brush provided on the main body side is brought into contact with an electrode plate provided on the load side, and is widely used to electrically connect members which are relatively rotated.
  • a non-contact type power supply device may be used.
  • this non-contact type power supply device coil members to which a core member made of a magnetically permeable material is assembled are disposed on the main body side and the load side, and a magnetic path is formed by the core members to mutually induction between both coil members.
  • a non-contact type power supply device it becomes possible to transmit electric power in a non-contact state between the main body side and the load side, and the problem of mechanical wear can be eliminated and the rotation speed is higher. It can also respond to
  • an ultrasonic transducer as a load provided in a machine tool described in Patent Documents 1 to 4 can be considered equivalent to an electrical resonant circuit having a resonant frequency. Therefore, in order to drive the ultrasonic transducer effectively, application of a drive voltage of the resonance frequency of the ultrasonic transducer or a frequency near that is performed.
  • JP 2002-346817 A Unexamined-Japanese-Patent No. 2010-207971 Japanese Patent Application Publication No. 2002-28808 Japanese Patent Application Publication No. 2008-504138
  • the present invention has been made against the background described above, and the problem to be solved is that the power is contactless from the main body side to the load side provided with a resonant circuit such as an ultrasonic transducer or the like. It is an object of the present invention to provide a contactless power supply having a novel structure capable of driving the resonant circuit on the load side more effectively in the supply of the contactless power supply.
  • the inventors of the present invention have intensively studied the problem, and in the non-contact type power supply device, the core member assembled to the coil member used for power transmission on the load side reduces the driving efficiency of the resonant circuit on the load side. Discovered that it could be a cause.
  • an ultrasonic transducer is considered to be equivalent to the resonant circuit shown in FIG. 24 in the vicinity of the resonant frequency.
  • the equivalent circuit shown in FIG. 24 is an LCR circuit in which a coil component (L) and a capacitor (C) representing mechanical vibration characteristics (series resonance characteristics) and a resistance component (R) representing a mechanical load are connected in series.
  • a braking capacitance (Cd) is connected in parallel by the piezoelectric elements constituting the ultrasonic transducer acting as a capacitor.
  • the noncontact power supply device as described in Patent Document 3 and Patent Document 4 is applied to such a resonant circuit, and a core member is used as a coil member for power transmission on the load side (resonant circuit side).
  • a core member is used as a coil member for power transmission on the load side (resonant circuit side).
  • the high permeability of the core member increases the inductance (L) of the resonant circuit, which causes the resonant frequency fr to be largely changed.
  • An increase in inductance (L) generally manifests as a decrease in resonant frequency. Therefore, for example, in the case of an ultrasonic transducer, a decrease in resonance frequency may appear as a decrease in drive frequency.
  • the resonance frequency of the ultrasonic transducer is included in the tool in order to effectively express the vibration of the ultrasonic transducer as the stroke of the tool. Tuning is performed near the mechanical natural frequency on the load side.
  • the resonance frequency of the ultrasonic transducer (resonance circuit) is largely changed by assembling the core member to the coil member for power transmission on the load side, the driving frequency of the ultrasonic transducer becomes mechanical on the load side. It has been difficult to make the natural frequency close to the natural frequency, and the vibration of the ultrasonic transducer may not be effectively expressed as the vibration of the tool without being coordinated with the vibration of the tool.
  • the core member is provided on both the power coil on the main body side and the power coil on the load side, and the magnetic flux from the coil member is provided between the opposed end faces of both core members.
  • the coupling coefficient between the coil members is increased by concentrating the However, for example, as shown in FIG. 25, when power is transmitted as a square wave from the main body side to the load side, the square wave is applied almost as it is to the ultrasonic transducer on the load side. On the other hand, as also shown in FIG. 25, the mechanical vibration of the ultrasonic transducer draws a sine wave.
  • the ultrasonic transducer does not follow the steep voltage increase and decrease of the square wave and may cause waviness, and the surplus energy shown by oblique lines in the figure is The inventor has discovered that the heat may cause the generation of heat.
  • the present invention has been completed based on such findings.
  • the primary side power coil and the secondary side power coil are provided to make it possible to supply driving power from the power feeding device on the main body side to the resonant circuit on the load side through these power coils.
  • a core member made of a magnetically permeable material is provided on the main body side so as to surround the primary power coil, while the secondary power coil is provided on the load side. Is characterized in that the core member surrounding the is not provided.
  • the core member is provided around the primary-side power coil on the main body side, but the core member is not provided around the secondary-side power coil on the load side.
  • the resonant frequency of the resonant circuit can be set higher, and for example, when the resonant circuit is an ultrasonic transducer, it can be driven at a higher driving frequency.
  • the resonance frequency of the ultrasonic transducer can be easily set in the vicinity of the mechanical natural frequency on the load side, and the stroke of the tool connected to the ultrasonic transducer can be effectively obtained. Thereby, more excellent processing accuracy can be obtained.
  • the coupling coefficient between the primary power coil and the secondary power coil can be positively reduced.
  • the mechanical vibration of the ultrasonic transducer whose power waveform input to the resonant circuit on the load side is also shown in FIG. It can be brought close to a sine wave.
  • the resonance circuit is an ultrasonic transducer
  • the vibration of the ultrasonic transducer that becomes a sine wave can be easily tuned to the change of the applied voltage, and the undulation of the ultrasonic transducer can be reduced.
  • the ultrasonic transducer can be stably vibrated. At the same time, it is possible to suppress the generation of surplus energy and to suppress heat generation.
  • the coupling coefficient drops sharply with only a slight displacement of the load side relative to the main body side. It is possible to prevent the transmission efficiency from being sharply reduced, and power transmission can be performed more stably.
  • the weight on the load side can be reduced, and, for example, when the load side is rotationally driven relative to the main body side, it can be rotated at higher speed.
  • a coil member other than the secondary power coil on the load side such as a signal coil to be described later
  • assemble the core member to the other coil member. is there.
  • an aspect in which no core member is provided on the load side may be employed. That is, in the case where the core member is formed by sintering fine particles of iron or the like, there is a high risk of cracking or breakage if the core member is rotated at a high speed of several tens of thousands per minute, but on the load side By not providing the core member, the problem of damage to the core member on the load side can be eliminated.
  • the resonant circuit in the present invention is not limited as long as it has an electrical resonant frequency.
  • the resonant circuit composed of a coil and a capacitor but also the above-mentioned ultrasonic transducer
  • it also includes those which are considered to be equivalent to the physical resonance characteristics of the electrical resonance circuit.
  • various electrical components are appropriately connected to the resonant circuit, and for example, a servo motor, a stepping motor, a solenoid, a valve, various sensors, various types of electric A circuit or the like may be connected.
  • the relative displacement direction of the main body side on which the primary power coil and the secondary power coil are provided and the relative displacement direction on the load side is not limited at all, and the noncontact transmission device of the present invention is widely used in various machines. It is applicable. Furthermore, as the specific shape of the core member, various shapes can be appropriately adopted in consideration of the relative displacement direction between the main body side and the load side, the required number of transmission lines of electric power and electric signals, etc. .
  • a signal coil forming a pair is provided between the main body side and the load side, and the load side includes: A detection means for detecting the vibration state of the resonance circuit is provided, and a detection signal by the detection means can be transmitted from the load side to the main body side using the signal coil, while the main body side Is provided with a feeding frequency adjustment mechanism for the primary side power coil, and the feeding frequency to the primary side power coil corresponds to the signal in response to changes in the resonant frequency of the resonant circuit. It controls based on the said detection signal transmitted to the said main body side from the said load side through the coil for coils.
  • the vibration state of the resonance circuit can be detected by the detection means on the load side, and can be transmitted as a detection signal to the main body side via the pair of signal coils.
  • the vibration state of the resonant circuit on the load side which is relatively displaced, can be detected on the main body side, and power can be supplied at an optimal frequency based on the received detection signal by the feed frequency adjustment mechanism.
  • the resonant frequency of the ultrasonic transducer on the main body side It is possible to detect a change in V. and to change the frequency of the applied voltage following the change, so that a suitable drive state can be stably maintained.
  • phase locked circuit PLL: Phase Locked Loop
  • the power supply frequency to the primary side power coil may be controlled according to a predetermined program based on the above.
  • the resonance circuit in the present invention includes an ultrasonic transducer or the like that expresses mechanical vibration
  • the detection means for detecting the vibration state of the resonance circuit includes electricity of the resonance circuit. It may be one that detects mechanical vibration generated by dynamic vibration. Therefore, the detection means may be, for example, an acceleration sensor or the like which detects a physical drive state of an actuator driven by a resonant circuit.
  • the detection means provided on the load side is not limited to one having a special sensing function such as an acceleration sensor or a Hall element for detecting the current flowing in the resonance circuit, for example, to pick up the current flowing in the resonance circuit. It may be a wire or the like.
  • an electrical signal may be transmitted from the main body side to the load side.
  • a pair of signal coils may be separately provided on the main body side and the load side as such an electric signal transmission path, or the signal coil for transmitting the electric signal from the load side to the main body side may be provided from the main body side It can also be used as a transmission line of the electrical signal to the load side.
  • the relative positions of the primary side power coil and the signal coil provided on the main body side, and the relative positions of the secondary side power coil and the signal coil provided on the load side are not limited.
  • the primary side power coil and the signal coil may be arranged concentrically or eccentrically.
  • the number of core members is not limited.
  • the primary power coil and the signal coil may be assembled to the common core member on the main body side, or the primary power coil and the signal coil May be assembled to each different core member and provided on the main body side.
  • the core member is used for the signal coil for the load side. It may be assembled.
  • the signal coil is affected by the magnetic flux generated by the power coil.
  • the first winding portion and the second winding portion are formed in opposite directions so as to offset the electromotive force generated in the signal coil.
  • At least one of the signal coils on the main body side and the load side is formed with a first winding portion and a second winding portion wound in opposite directions to each other.
  • the directions opposite to each other refer to the center of the power coil (the primary side power coil for the signal coil on the main body side and the secondary side power coil for the signal coil on the load side).
  • the second winding portion and the second winding portion are oppositely wound.
  • the noise electromotive force due to the influence of the power coil is reduced using the specific shape of the signal coil without separately providing a coil member for noise suppression or providing a feed control device for canceling the noise electromotive force. I can do it. As a result, the transmission of the electrical signal by the pair of signal coils can be performed more accurately.
  • the first winding portion and the second winding portion formed in the signal coil generate induced electromotive forces opposite to each other with respect to the common magnetic field, they are generated from the power coil. Even when the amount of magnetic flux changes, an induced electromotive force is generated in each of the first winding portion and the second winding portion according to the change in the amount of magnetic flux.
  • the power supply control device monitors a change in noise electromotive force generated in the signal coil, and changes the voltage applied to the signal coil for noise reduction according to the change in noise electromotive force. An excellent noise suppression effect can be obtained with an extremely simple structure without requiring control.
  • the electrical signal can be transmitted more quickly. That is, for example, in the case of wireless communication, in general, multistage processing is required, in which a received electric signal is detected and then amplified and noise is removed to reproduce the signal, which takes time.
  • the feedback control as in the second aspect, when it takes time from the generation of the detection signal on the load side to the reproduction on the main body side, it is necessary to consider the time delay of the detection signal. , Complicate control.
  • by providing the noise reduction effect to the structure of the signal coil itself it becomes possible to transmit the electric signal more quickly, and the real time property of signal transmission can be improved. .
  • the coils can be disposed space-efficiently, and the contactless power supply device can be made compact.
  • the number of turns of the first winding portion and the second winding portion is arbitrarily set in consideration of the electromotive force generated in the first winding portion and the electromotive force generated in the second winding portion. Are set so that electromotive forces of equal magnitude in opposite directions are generated in the first winding portion and the second winding portion with respect to the common magnetic field. Therefore, the number of turns of the first winding portion and the number of turns of the second winding portion may be different from each other.
  • a coil winding of the power coil and a coil winding of the signal coil are disposed in an overlapping manner.
  • the first coil portion and the second coil portion generate electromotive forces opposite to each other with respect to the common magnetic field in the signal coil. Is provided. Therefore, even if the signal coil is disposed at a close position affected by the magnetic flux from the power coil, the noise electromotive force due to the magnetic flux from the power coil can be reduced. As a result, as in the present embodiment, it is possible to arrange the signal coil and the power coil in an overlapping manner, so that the contactless power supply device can be further miniaturized. Note that "overlap" in this aspect means that the coil winding of the power coil and the coil winding of the signal coil are disposed at a position where they overlap with each other in a projection view in the axial direction of these coils.
  • the coil windings of both coils are not in contact with each other, and it does not mean that the coil windings of both coils are in contact.
  • the coil winding of the power coil and the coil winding of the signal coil may be overlapped over substantially the entire circumference, or may be overlapped so as to partially cross.
  • the power coil and the signal coil are coaxially disposed.
  • the contactless power supply device structured according to this aspect can be suitably applied to, for example, an ultrasonic milling device or the like in which the load side provided with a tool and an ultrasonic transducer is rotated with respect to the main body side, Power and electrical signals can be transmitted at the rotating parts of the main body side and the load side. And since it does not have a physical contact part like a slip ring, while being able to respond to high-speed rotation, excellent durability and maintainability can be obtained.
  • the signal coil is coaxial with the power coil. It is also possible to arrange the coil windings of each other completely on top of each other, and further downsizing can be achieved.
  • any of the second to fifth aspects only the secondary power coil on the load side or the secondary power coil and the signal Coils are prepared for the primary side power coil and the signal coil on the main body side, and it is possible to selectively combine the primary side power coil and the signal coil on the main body side It is supposed to be.
  • a plurality of load sides are provided to the main body side, and it is possible to selectively combine the plurality of load sides with the main body side.
  • a plurality of load sides provided with various tools can be prepared, and can be selectively assembled to the main body side.
  • the load side in this aspect may be provided with only the secondary side power coil, or may be provided with the secondary side power coil and the signal coil.
  • a seventh aspect of the present invention according to any one of the first to sixth aspects is that the resonance circuit on the load side is configured to include an ultrasonic transducer. .
  • the ultrasonic transducer can be treated equivalently to an electrical resonant circuit.
  • the non-contact type power supply device of the present invention between the load side and the main body side provided with the ultrasonic transducer as the resonant circuit, the increase of the inductance of the resonant circuit is suppressed, and the ultrasonic transducer is Can be made close to the mechanical natural frequency on the load side to improve the ease of tuning.
  • the voltage applied to the ultrasonic transducer is brought close to a sine wave by lowering the coupling coefficient between the primary-side power coil on the main body side and the secondary-side power coil on the load side. While being able to suppress a swell and to drive more stably, heat generation can be suppressed.
  • the present aspect can be suitably used in combination with the second aspect, wherein the vibration state of the ultrasonic transducer is detected by the detection means provided on the load side, and the feeding frequency of the main body side as an electric signal It can be transmitted to the adjustment mechanism.
  • the vibration state of the ultrasonic transducer is detected by the detection means provided on the load side, and the feeding frequency of the main body side as an electric signal It can be transmitted to the adjustment mechanism.
  • An eighth aspect of the present invention is the one described in the seventh aspect, wherein the ultrasonic transducer is a Langevin type transducer in which a plurality of piezoelectric elements are stacked, and is stacked together with the plurality of piezoelectric elements.
  • the detecting means is constituted by the piezoelectric element.
  • the vibration of the ultrasonic transducer can be detected as a voltage using the piezoelectric effect of the piezoelectric element as the detection means.
  • the detection means can be realized with a simple structure.
  • the piezoelectric element as the detection means can be coaxially arranged with the plurality of piezoelectric elements constituting the Langevin type vibrator, the detection means can be provided with space efficiency, and the weight balance on the load side is unbalanced. Can also be reduced.
  • the core member is provided to surround the primary power coil on the main body side on the relatively displaced main body side and the load side, while the core member is provided on the load side to surround the secondary power coil. I did not.
  • This can suppress an increase in the inductance of the resonant circuit. As a result, it is possible to maintain a high resonant frequency while avoiding a large decrease in the resonant frequency of the resonant circuit.
  • the resonance frequency of the ultrasonic transducer is set to the mechanical natural frequency on the load side by suppressing a large change in the resonant frequency of the ultrasonic transducer. It can be made easy to tune.
  • by lowering the coupling coefficient between the primary side power coil and the secondary side power coil it is possible to prevent the transmission efficiency from being sharply reduced even when the load side is displaced with respect to the main body side. It is possible to improve the stability of power transmission.
  • FIG. 2 is an explanatory view of a vertical cross section of an essential part of the machine tool shown in FIG. 1; Explanatory drawing of an ultrasonic transducer. The disassembled perspective view of the coil for primary side electric power, the coil for secondary side electric power, the coil for signals, and a core member.
  • FIG. 5 is an explanatory view schematically showing the signal coil shown in FIG. 4; The front view of the main body side coil head. Explanatory drawing for demonstrating the relative displacement direction of a main body side coil head and a load side coil head.
  • the block diagram which illustrates roughly the non-contact-type power supply apparatus as 1st embodiment of this invention.
  • the graph which shows the impedance characteristic of a resonance circuit.
  • the graph which shows the measurement result of the electric current which flows into a resonance circuit.
  • the graph which shows the measurement result of the voltage and electric current in the resonance frequency vicinity of a resonance circuit.
  • the graph at the time of applying the voltage of a square wave in the graph which shows the measurement result of the voltage and the current in the frequency domain which deviated from near the resonant frequency of a resonant circuit.
  • the graph at the time of applying the voltage of a sine wave in the graph which shows the measurement result of the voltage and the current in the frequency domain which deviated from near the resonant frequency of a resonant circuit. It is an explanatory view for explaining a situation of change of voltage and current when resonance frequency of a resonance circuit changes, (a) is a case where amplitude of current changes, (b) is a case where phase of current changes.
  • FIG. It is explanatory drawing for demonstrating the direction of the induced current which arises in the coil for signals, (a) shows at the time of transmission of an electric signal, (b) shows the time of noise generation.
  • the disassembled perspective view which shows the coil for primary side electric power which comprises the non-contact-type electric power supply as 3rd embodiment of this invention, the coil for signals, and a core member.
  • the longitudinal cross-sectional view of the coil for primary side electric power which comprises the non-contact-type power supply apparatus as 4th embodiment of this invention, the coil for secondary side electric power, the coil for signals, and a core member.
  • the front view which shows the coil for signals which comprises the non-contact-type power supply apparatus as 5th embodiment of this invention in model.
  • Explanatory drawing for demonstrating the resonance circuit provided in the load side.
  • Explanatory drawing for demonstrating the voltage applied to the ultrasonic transducer as an example of a resonance circuit, and the vibration state of an ultrasonic transducer.
  • FIG. 1 schematically shows a machine tool 12 provided with a noncontact power supply 10 according to a first embodiment of the present invention.
  • the machine tool 12 has a structure in which a tool unit 22 as a load side provided with a tool 20 is attached to a spindle 18 of a spindle head 16 provided on a machine main body 14 as a main body side.
  • the tool unit 22 is rotatable relative to the spindle head 16 by rotating the spindle 18.
  • the machine body 14 is supported by a base 24.
  • a table 28 is provided on the front side (the lower side in FIG. 1) of the tool 20 for detachably holding a work 26 which is an object to be processed.
  • the table 28 is supported by a drive mechanism 30 provided on the base 24, and a guide rail (not shown) provided in the drive mechanism 30, a servomotor, etc.
  • drive mechanism 30 provided on the base 24, and a guide rail (not shown) provided in the drive mechanism 30, a servomotor, etc.
  • relative displacement is possible in X axis direction and Y axis direction orthogonal to the vertical direction), and orthogonal three axis directions of Z axis direction which is the front-rear direction with respect to the tool 20.
  • the tool 20 can be displaced relative to the workpiece 26 in the directions of three orthogonal axes.
  • the machine tool 12 may be, for example, one in which the table 28 can be moved in the directions of two orthogonal axes in the X-axis direction and the Y-axis direction, and the spindle head 16 can be moved in the Z-axis direction.
  • the longitudinal cross section of the spindle head 16 and the tool unit 22 is shown in model in FIG.
  • the spindle head 16 is provided with a motor 34 as a rotational driving means in a casing 32.
  • the main shaft 18 is rotatable about the central axis O by fixing the main shaft 18 to the output shaft of the motor 34.
  • the main shaft 18 is supported by the casing 32 via bearings 36 and 36, and its tip end projects from the casing 32.
  • a labyrinth seal 38 is provided between the main shaft 18 and the casing 32 on the tip end side of the main shaft 18 to prevent foreign matter such as dust from entering the casing 32 from the outside.
  • a holder mounting hole 40 having a tapered inner peripheral surface expanded in diameter toward the tip end of the main spindle 18 is formed at the tip of the main spindle 18.
  • a pull chuck 42 for holding a pull stud 48 formed at the tip of a tool holder 44 described later is provided inside the main shaft 18.
  • the tool unit 22 has a tool holder 44.
  • a shank portion 46 having a tapered outer peripheral surface is formed on the central axis in close contact with the inner peripheral surface of the tapered holder mounting hole 40 formed in the main shaft 18.
  • a rod-like pull stud 48 is formed at the tip end of the shank portion 46.
  • the tool holder 44 is formed with a coil receiving groove 49 which is open on the side of the spindle head 16 (upper side in FIG. 2) and extends around the central axis of the tool holder 44.
  • the ultrasonic transducer 50 is provided in the tool unit 22.
  • the ultrasonic transducer 50 is a so-called bolt-clamped Langevin type transducer, and has a plurality of annular piezoelectric elements 52 formed of, for example, a ceramic thin plate or the like having a piezoelectric effect;
  • the annular electrodes 54 and 56 are extrapolated to the bolts 57 and alternately stacked, and are tightened by the metal block 58 screwed to the bolts 57 from both sides and the horn 60.
  • the electrodes 54 and 56 disposed at every other interval are connected to a secondary power coil 66b described later.
  • the number of stacked piezoelectric elements 52 is set to an arbitrary number in consideration of the required stroke of the tool 20 and the like.
  • Insulating layers 61, 61 are provided respectively. These insulating layers 61 are formed of a non-conductive material which is difficult to elastically deform, and are formed of, for example, ceramics of a brittle material. Thereby, while effectively transmitting the vibration of the ultrasonic transducer 50 to the horn 60, it is possible to avoid the possibility of an electric shock or the like.
  • the tool 20 is attached to the tip of the horn 60 via a chuck mechanism 63 such as a collet or a shrink fit.
  • the vibration of the ultrasonic transducer 50 is amplified by the horn 60 and transmitted to the tool 20.
  • the tool 20 various kinds of tools such as an end mill and a drill can be adopted.
  • the specific shape and the forming material of the horn 60 may be appropriately set in consideration of, for example, the material of the work 26, the vibration condition of the tool 20, and the like.
  • the horn 60 may be configured from a plurality of stages, or may be configured alone.
  • the shape of the horn 60 may be any of various shapes, such as a step type, an exponential type, a catenoid type, a conical type, etc.
  • the material of the horn 60 for example, titanium, aluminum alloy, steel Various materials such as nonmetals such as copper alloy and synthetic resin can be adopted.
  • such an ultrasonic transducer 50 is attached to the tool holder 44 so that the stacking direction of the piezoelectric elements 52 is in the axial direction of the main shaft 18 on the same axis as the main shaft 18.
  • the ultrasonic transducer 50 can be considered equivalent to the resonant circuit shown in FIG. 24.
  • the ultrasonic transducer 50 is included to form a resonant circuit on the load side. ing.
  • FIG. 4 shows the main body side coil head 62 and the load side coil head 64 which constitute the non-contact type power supply device 10.
  • the body side coil head 62 has a structure in which a primary side power coil 66a and a body side signal coil 68a as a signal coil are accommodated in a pot-shaped core 70 as a core member.
  • the primary side power coil 66a is formed by winding a lead wire 72 as a coil winding made of copper or the like in a circle a predetermined number of times.
  • the size and the number of turns of the primary power coil 66a may be arbitrarily set in consideration of the magnitude of the power to be transmitted, the relative position with the secondary power coil 66b described later, and the like.
  • the primary power coil 66a in the present embodiment is formed by winding the lead wire 72 around a substantially cylindrical bobbin 74 formed of synthetic resin or the like, the bobbin 74 is not necessarily required.
  • the main body signal coil 68a is formed of a lead wire 76 as a coil winding formed of copper or the like.
  • the body side signal coil 68a is formed in a circular shape as a whole, and the first winding portion 78 wound on the outside in the radial direction and the first winding portion 78 on the inside in the radial direction
  • One winding portion 78 and a second winding portion 80 wound in the opposite direction are formed by a single lead wire 76.
  • the outer wound portion 82a is formed by the lead wire 76 being approximately half-turned from point A in FIG. 5, and then it is bent inward in the radial direction, and The inner winding portion 84a is formed by being rotated approximately in a direction opposite to the outer winding portion 82a (counterclockwise in FIG. 5). Then, the lead wire 76 is further bent outward in the radial direction from the inner winding portion 84a, and is semicircularly rotated in the opposite radial direction to the inner winding portion 84a (clockwise in FIG. 5) to point A By returning, the outer winding portion 82b is formed.
  • the outer winding portion 82c, the inner winding portion 84b, and the outer winding portion 82d are sequentially formed.
  • the first winding portion 78 is formed by the outer winding portions 82a to 82d
  • the second winding portion 80 is formed by the inner winding portions 84a and 84b.
  • the lead wire 76 is turned around in a half turn around the outside and then turned back inside, and is turned around in a reverse direction on the inside.
  • the first winding portion 78 is further wound outward in one direction (clockwise in FIG. 5) to the outside of the body signal coil 68a by being folded back and being semi-circled on the remaining outside.
  • FIG. 5 illustrates that the lead wire 76 does not overlap for the sake of easy understanding, the lead wire 76 is formed of the first winding portion 78 and the second winding portion 80. Each of them may be overlapped.
  • the main side signal coil 68a of the present embodiment is formed in a circular shape having substantially the same size as the primary side power coil 66a. Further, the first winding portion 78 and the second winding portion 80 are respectively wound in a substantially circular shape, and are formed on the same plane and concentric axes.
  • the main body side signal coil 68a has a winding shape by fixing the lead wire 76 to the holding plate 86 made of synthetic resin etc. in a thin, annular plate shape by adhesion or the like. Is supposed to be maintained. However, the holding plate 86 is not necessarily required.
  • the primary power coil 66 a and the main signal coil 68 a are accommodated in the pot core 70.
  • the pot core 70 is made of, for example, a magnetically permeable material such as iron, silicon steel, permalloy, or ferrite.
  • the pot core 70 has a cylindrical shape in which a central hole 88 extending on the central axis is provided, and a circumferential groove 90 is formed open in one of the axial directions and extending around the central axis.
  • the circumferential groove 90 is a receiving recess for receiving the primary power coil 66a and the main signal coil 68a.
  • the pot-shaped core 70 may be an integrally molded product, for example, the outer wall 92 of the circumferential groove 90, the inner wall 94, and the three parts of the bottom wall May be made of a plurality of parts formed by bonding or the like. Furthermore, for example, the outer wall 92 may be divided into a plurality of parts in the circumferential direction, or the forming member of the pot core 70 may be disposed close to the primary power coil 66a or the main signal coil 68a.
  • the primary side power coil 66a and the main body side signal coil 68a are accommodated in the circumferential groove 90, whereby the main body side coil head 62 is formed.
  • the primary power coil 66a and the main signal coil 68a are accommodated in the pot core 70 in this order, but the order of accommodation in the pot core 70 may be reversed.
  • the primary power coil 66a is surrounded by the pot core 70, and the primary power coil 66a and the main signal coil 68a are arranged on a substantially concentric axis with each other.
  • the lead wires 72 and 76 are accommodated in the circumferential groove 90 in a state of being overlapped in the axial direction (vertical direction in FIG. 2).
  • the primary side power coil 66a and the body side signal coil 68a are arranged on substantially concentric axes, the first winding portion 78 and the second winding of the body side signal coil 68a are provided.
  • the portions 80 are wound in opposite directions with respect to the center of the primary power coil 66a.
  • a bobbin 74 is interposed between the primary power coil 66a and the main signal coil 68a, whereby the primary power coil 66a and the main signal coil 68a are disposed with a gap therebetween. At the same time, contact between the lead wires 72 and 76 is prevented.
  • the main side signal coil 68 a is accommodated in the circumferential groove 90 so that the first winding portion 78 of the body side signal coil 68 a is on the outer wall 92 side of the circumferential groove 90.
  • the second winding portion 80 is disposed on the inner wall 94 side of the circumferential groove 90.
  • the first winding portion 78 and the second winding portion 80 are spaced apart and the first winding portion 78 and the second winding portion 80 in the radial direction of the pot core 70.
  • Separation distance D the separation distance between the first winding portion 78 and the outer wall 92 outside the body signal coil 68a: d1, the second winding portion 80 inside the body signal coil 68a
  • the separation distance with the inner wall 94 is larger than any of d2. That is, the first winding portion 78 is closer to the outer wall 92 side than the second winding portion 80 side, and the second winding portion 80 is closer to the inner wall 94 side than the first winding portion 78 side. Is located in
  • the load side coil head 64 is configured to include a secondary side power coil 66b and a load side signal coil 68b as a signal coil.
  • the secondary power coil 66b and the load signal coil 68b have the same structure as the primary power coil 66a and the main signal coil 68a provided in the main coil head 62, respectively. Therefore, the explanation is omitted by attaching the corresponding reference numerals in the figure. That is, the load side coil head 64 does not have the pot type core 70 of the main body side coil head 62 and has the same structure as the main body side coil head 62 except for the pot type core 70.
  • the main body side coil head 62 is provided on the spindle head 16, and the load side coil head 64 is provided on the tool unit 22.
  • the main body side coil head 62 is assembled to the casing 32 of the spindle head 16 via the shield member 96.
  • the shield member 96 is formed of a nonmagnetic material such as, for example, aluminum alloy, copper alloy, titanium alloy, nickel alloy, ceramics, synthetic resin material, and has a substantially bottomed cylindrical shape in which a through hole is formed at the center There is.
  • the main body side coil head 62 is inserted into such a shield member 96 and fixed by bonding, press-fitting or the like.
  • the main body side coil head 62 is attached to the spindle head 16 by overlapping the flange portions 97 formed on the shield member 96 with the casing 32 and fixing the flange portions 97 with bolts 98 at a plurality of locations. Thereby, the outside of the main body side coil head 62 is covered with the shield member 96, and the leakage magnetic flux from the pot core 70 is reduced, and the external motor 34 etc. is particularly reduced in the main body side signal coil 68a. Protected from magnetic disturbances.
  • the main spindle 18 of the main spindle head 16 is inserted through the through hole formed in the center of the shield member 96 and the central hole 88 of the pot core 70.
  • the main body side coil head 62 is disposed at the end of the spindle head 16 on the tool unit 22 side, and the circumferential groove 90 of the pot core 70 is on the tool unit 22 side. It is disposed in the opening direction.
  • the load side coil head 64 is accommodated in the coil accommodation groove 49 of the tool holder 44 and fixed by bonding, press fitting or the like, and is disposed at the end of the tool unit 22 on the spindle head 16 side.
  • the main body side coil head 62 and the load side coil head 64 are arranged coaxially with each other on the central axis O of the main shaft 18 and in the axial direction of the main shaft 18 (vertical direction in FIG. 2) They are arranged opposite to each other with a gap. Then, by rotating the main shaft 18, the load-side coil head 64 can be relatively rotated around the central axis: O of the main shaft 18 with respect to the main body-side coil head 62.
  • the main body side coil head 62 and the load side coil head 64 of this embodiment are X, Y, Z in a state before being assembled to the spindle head 16 and the tool unit 22 as shown in FIG. 7 as a model.
  • displacement is permitted, tilting or turning is permitted in three directions of roll around the X axis, pitch around the Y axis, and yaw around the Z axis.
  • the load side coil head 64 is mounted to the main body side coil head 62 by assembling the main body side coil head 62 and the load side coil head 64 to the spindle head 16 and the tool unit 22 of the machine tool 12. It is disposed opposite to each other with a gap in a state where the roll around the X axis is allowed.
  • the main body side coil head 62 and the load side coil head 64 have the pot type core 70 only in the main body side coil head 62, and the load side coil head 64 does not have the pot type core 70. That is, while the spindle head 16 is provided with the pot type core 70 as a core member surrounding the primary side power coil 66a, the tool unit 20 is provided with a core member surrounding the secondary side power coil 66b. It is not done.
  • the main body side coil head 62 and the load side coil head 64 are power supplies for supplying DC power to the primary side power coil 66a on the machine main body 14 side provided with the spindle head 16 Circuit 100 is connected via inverter 102.
  • the power supply circuit 100 and the inverter 102 are provided on the machine body 14 side.
  • the control device 106 is connected to the main body signal coil 68 a via the communication circuit 104 having a demodulation circuit.
  • the communication circuit 104 and the control device 106 are provided on the machine body 14 side.
  • the control device 106 includes a CPU, a ROM, a RAM, and the like, and adjusts the drive frequency of the inverter 102 in accordance with the electric signal received from the communication circuit 104 and a predetermined program determined in advance.
  • the ultrasonic transducer 50 is connected to the secondary power coil 66b.
  • the correction capacitor 107 is provided in parallel with the ultrasonic transducer 50 as necessary to cancel the current flowing to the braking capacitance (Cd) of the ultrasonic transducer 50. It is good.
  • a detection circuit 108 as a detection means is connected to the ultrasonic transducer 50, and the detection circuit 108 is connected to the load signal coil 68b via the amplification circuit 110.
  • the detection circuit 108 is configured to include, for example, a Hall element, and detects a voltage applied to the ultrasonic transducer 50 and a current flowing through the ultrasonic transducer 50 as a vibration state of the ultrasonic transducer 50.
  • the detection circuit 108 and the amplification circuit 110 are provided on the tool unit 22 side.
  • the non-contact type power supply device 10 of this embodiment includes the main body side coil head 62, the load side coil head 64, the power supply circuit 100, the inverter 102, the communication circuit 104, the control device 106, the detection circuit 108, and the amplification circuit 110.
  • the power supply device is configured to output an AC voltage to the primary side power coil 66 a including the power supply circuit 100 and the inverter 102.
  • driving power is supplied from the machine main body 14 as the main body side to the ultrasonic vibrator 50 as the resonant circuit provided in the tool unit 22 as the load side. You can do it. Then, when the resonance frequency of the ultrasonic transducer 50 changes due to a change in mechanical load or temperature condition applied to the ultrasonic transducer 50 by detecting the vibration state of the ultrasonic transducer 50, ultrasonic vibration is generated. By performing feedback control to change the frequency of the voltage applied to the transducer 50, the ultrasonic transducer 50 can be efficiently driven.
  • supply of drive power to the ultrasonic transducer 50 and an example of feedback control will be shown.
  • the ultrasonic transducer 50 composed of a plurality of piezoelectric elements 52 can be considered equivalent to the circuit shown in FIG. 8 in the vicinity of the resonance frequency.
  • the equivalent circuit is known to have an impedance characteristic shown in FIG. 9, the impedance (Z) is the smallest becomes the frequency, the resonance frequency f r of the ultrasonic transducer 50, the ultrasonic transducer 50 is When an alternating voltage of the resonance frequency f r is applied, it vibrates most efficiently, and a large amplitude can be obtained.
  • the phase difference between the voltage and the current flowing to the ultrasonic transducer 50 is zero, and the largest current flows to the ultrasonic transducer 50.
  • the frequency at which the impedance (Z) is the largest is the antiresonance frequency f n .
  • 0.1 kHz, 0.5 kHz, 1 kHz, etc. over a predetermined range sandwiching the resonance frequency which is estimated to some extent from the composition of the piezoelectric element 52 with respect to the ultrasonic transducer 50.
  • An alternating current voltage whose frequency is gradually changed at predetermined intervals is applied to measure the current flowing through the ultrasonic transducer 50.
  • the resonance frequency f r of the ultrasonic transducer 50 is around 20 kHz
  • the applied voltage is changed to 10 kHz to 40 kHz, and the current flowing through the ultrasonic transducer 50 is measured.
  • FIG. 10 shows an example of the result of measurement of the current flowing through the ultrasonic transducer 50.
  • the frequency of flow of greatest current in FIG. 10, about 23 kHz
  • the frequency of flow of greatest current in FIG. 10, about 23 kHz in the vicinity of, can be estimated as a resonance frequency f r of the ultrasonic transducer 50 resides.
  • the ultrasonic transducer 50 is driven most efficiently at the resonance frequency f r .
  • the change of the impedance (Z) is steep, and the vibration state of the ultrasonic transducer 50 is rapid only by slightly deviating from the resonance frequency f r Change to Therefore, in order to ensure the stability of the driving of the ultrasonic transducer 50, in the present embodiment, the resonance frequency f r slightly deviates from the resonance frequency f r from the resonance frequency f r to the anti-resonance frequency f n in FIG.
  • the position is set as the drive frequency f d .
  • FIG. 12 shows a square wave input as an AC voltage, and the amplitude of the current is small.
  • FIG. 13 shows a sine wave input as an AC voltage, and since the electrical vibration is unstable, it can be confirmed that it is in a non-resonance state.
  • the DC voltage of the power supply circuit 100 shown in FIG. It is converted into a high frequency voltage and supplied to the primary power coil 66a.
  • the driving frequency of the inverter 102 is controlled by the controller 106, the AC voltage of the drive frequency f d obtained above is adapted to be supplied to the coil 66a for the primary-side power.
  • the primary side power coil 66a is penetrated through the primary side power coil 66a, and the magnetic flux which changes according to the output frequency is generated.
  • the magnetic flux is focused by the pot core 70, and the magnetic flux from the pot core 70 is linked to the secondary power coil 66b.
  • the primary side power coil 66a and the secondary side power coil 66b are electromagnetically coupled, and an induced electromotive force is generated in the secondary side power coil 66b due to mutual induction.
  • transmission of power is possible in a non-contact state between the primary power coil 66a and the secondary power coil 66b, which are relatively rotated, and occurs in the secondary power coil 66b.
  • the squeezed high frequency voltage is supplied to the ultrasonic transducer 50 as driving power.
  • the ultrasonic transducer 50 is vibrated, and the rotation by the motor 34 and the vibration of the ultrasonic transducer 50 are superimposed on the tool 20, so that the processing of the work 26 (see FIG. 1) is more accurate. It is possible to do.
  • the resonance frequency f r of the ultrasonic transducer 50 changes due to a change in mechanical load applied via the tool 20, a change in temperature conditions, and the like.
  • the magnitude (amplitude) of the voltage applied to the ultrasound transducer 50, the magnitude (amplitude) of the current flowing through the ultrasound transducer 50, and the change of the resonance frequency fr of the ultrasound transducer 50 It appears as a change in phase difference between voltage and current.
  • the amplitude of the current decreases when the load increases, or when the load increases as indicated by I' in FIG. 14 (b).
  • the frequency of the AC voltage applied to the ultrasonic transducer 50 corresponding to the change of the resonant frequency fr of the ultrasonic transducer 50 Feedback control can be performed.
  • the vibration state of the ultrasonic transducer 50 is detected by the detection circuit 108 shown in FIG.
  • the detection circuit 108 is provided with, for example, a Hall element, and the vibration state of the ultrasonic transducer 50, for example, the amplitude of the voltage applied to the ultrasonic transducer 50, the amplitude of the current flowing through the ultrasonic transducer 50, The phase and the like of these voltage and current are detected.
  • the amplitude, phase, and the like of the voltage and current of the ultrasonic transducer 50 detected by the detection circuit 108 are amplified by the amplifier circuit 110 as a detection signal, and applied as an AC voltage to the load-side signal coil 68b.
  • the load-side signal coil 68b is penetrated to generate a magnetic flux that changes according to the output frequency, and the magnetic flux is linked to the main-body signal coil 68a.
  • an induced electromotive force occurs due to mutual induction with the load signal coil 68b in the main signal coil 68a, and the detection signal transmitted from the detection circuit 108 is transmitted to the main signal coil by the communication circuit 104. It is taken out from 68a. In this manner, transmission of an electrical signal is enabled in a non-contact state between the load-side signal coil 68b and the body-side signal coil 68a which are relatively rotated.
  • the detection signal extracted from the main body side signal coil 68 a is input to the control device 106.
  • the control device 106 compares the amplitude of the voltage and current of the ultrasonic transducer 50 obtained from the detection signal, the phase difference between the voltage and the current, etc. with the state before receiving the detection signal, and detects the detection signal.
  • the drive frequency of the inverter 102 is changed to change the power supply frequency to the primary side power coil 66a so as to return to the state before receiving the detection signal. .
  • the change amount of the drive frequency of the inverter 102 As the change amount of the drive frequency of the inverter 102, the change amount of the drive frequency corresponding to the change amount of the amplitude of the voltage or current or the change amount of the phase difference is stored in advance in the control device 106 as a table. For example, while receiving the amplitude of the voltage or the amplitude of the current in the ultrasonic transducer 50, the phase of the voltage and the current, etc. from the detection circuit 108, the drive frequency of the inverter 102 is 0.1 kHz or It may be adjusted by changing it little by little, such as 5 kHz.
  • the power supply frequency adjustment mechanism is configured including the control device 106 and the inverter 102.
  • the driving power to the ultrasonic vibrator 50 provided in the tool unit 22 from the spindle head 16 between the spindle head 16 and the tool unit 22 displaced relative to each other It becomes possible to supply Moreover, toward the tool unit 22 to the spindle head 16, which is possible to transmit the vibration state of the ultrasonic transducer 50 as an electrical signal, follow manner the change in the resonant frequency f r of the ultrasonic transducer 50
  • the stroke of the tool 20 can be secured more stably, and more excellent processing accuracy can be obtained.
  • the resonance condition in the ultrasonic transducer 50 changes and the applied voltage deviates from the resonance frequency, which is large on the tool unit 22 side. Energy can also be prevented from being supplied.
  • the pot core 70 is provided only on the spindle head 16 side, and on the tool unit 22 side where the ultrasonic transducer 50 is provided. Is not provided.
  • the ultrasonic transducer 50 can be driven at a high frequency, and more excellent processing accuracy can be obtained.
  • the resonant frequency of the ultrasonic transducer 50 is adjusted to the mechanical natural frequency of the tool unit 22 including the horn 60 and the tool 20 while avoiding a large change in the resonant frequency of the ultrasonic transducer 50. This can be facilitated, tuning is facilitated, and the stroke of the tool 20 can be effectively obtained.
  • a coil for primary side power is provided between opposing surfaces of the core members.
  • the interlinkage magnetic flux of the secondary side power coil 66b is rapidly reduced only when the tool unit 22 is slightly misaligned with respect to the spindle head 16, and stable power transmission is performed. I can do it.
  • a leakage current is positively generated between the primary side power coil 66a and the secondary side power coil 66b as a square wave from the primary side power coil 66a.
  • the AC voltage received on the secondary power coil 66 b side can be brought close to the sine wave of the mechanical vibration of the ultrasonic transducer 50.
  • the drive of the ultrasonic transducer 50 can be expressed more stably, and the undulation or the like of the ultrasonic transducer 50 can be reduced, and more excellent processing accuracy can be obtained. It is also possible to reduce the resulting heat generation and the like.
  • the weight of the tool unit 22 can be reduced to cope with higher speed rotation, and problems such as damage to the core member due to high speed rotation can be avoided. Can do.
  • the first winding portion 78 and the opposite winding are wound in the main signal coil 68a and the load signal coil 68b, respectively.
  • a second winding portion 80 is formed.
  • FIG. 15A and FIG. 16A as a model, when transmitting an electrical signal from the load signal coil 68b to the main signal coil 68a, first, for the load signal
  • the current iso flows through the first winding portion 78 of the load signal coil 68b
  • the current isi flows through the second winding portion 80.
  • FIG. 16 the current flowing to the front side of the drawing is indicated by an arrow extending obliquely downward
  • the current flowing to the back side of the drawing is indicated by an arrow extending obliquely upward.
  • the current iso and the current isi are the same current, and flow in the same direction in the lead wire 76 of the load-side signal coil 68b.
  • flux b c between the magnetic flux b o is caused outside the first winding portion 78.
  • the current iso and the current isi appear when the lead wire 76 is viewed from the outside. It flows in the opposite direction to each other.
  • magnetic lines of flux b i and the magnetic flux b o whereas towards the same direction, magnetic lines of flux b c is the direction opposite to the magnetic lines of flux b i and the magnetic flux b o.
  • the magnetic flux rb o in the opposite direction to the magnetic flux b o is generated outside the first winding portion 78 by the current i si flowing through the second winding portion 80, the second winding portion inside the 80, the current i so through the first winding portion 78, but the magnetic flux b i the opposite direction of the magnetic flux rb i is caused, the first winding portion 78 second winding portions 80 are spaced apart and there is a distance from the second winding portion 80 to the outside of the first winding portion 78 and from the first winding portion 78 to the inside of the second winding portion 80 from, these magnetic flux rb o, rb i is, the magnetic flux b o, small enough not to affect almost b i.
  • an induced current i ro is generated in the first winding portion 78 of the opposing main body signal coil 68a by the magnetic fluxes b i , b c and b o generated by the load side signal coil 68b.
  • the induced current iri is generated in the second winding portion 80.
  • the induced currents iro and iri flow in the same direction in the lead wire 76 of the main body signal coil 68a and are not canceled out. In this manner, it is possible to transmit an electrical signal from the load signal coil 68b to the main signal coil 68a.
  • the main side signal coil 68a is assembled to the pot core 70, and the first winding portion 78 is disposed close to the outer wall 92 of the pot core 70, and the second winding is performed. Since the wire portion 80 is disposed close to the inner wall 94, focusing the magnetic flux b i , b o on the outer wall 92 and the inner wall 94 respectively enables the first winding portion 78 and the second winding portion 80 to In each of them, induced currents i ro and i ri flowing in the same direction in the lead wire 76 can be effectively generated.
  • FIG. 15B and FIG. 16B as a model, when an AC voltage is applied to the primary power coil 66a, the magnetic flux B i inside and outside the primary power coil 66a.
  • the magnetic flux B o is generated at.
  • the direction of the magnetic field lines of the magnetic flux B i and the direction of the magnetic field lines of the magnetic flux B o are opposite to each other.
  • the magnetic fluxes B i and B o pass through the inside of the second winding portion 80 and the outside of the first winding portion 78 in each of the body side signal coil 68 a and the load side signal coil 68 b.
  • the induced current i no as a noise current in the first winding portion 78
  • the induced current i ni as a noise current to the second winding portions 80 It is born. Since the magnetic flux B i and the magnetic flux B o are directed in opposite directions on both sides of the first winding portion 78 and the second winding portion 80, the induced current ino and the induced current ini are on the main body side When the lead wires 76 of the signal coil 68a are viewed from the outside, they flow in the same direction.
  • first winding portion 78 and the second winding portion 80 are wound in opposite directions to each other, the induced current ino and the induced current ini are opposite to each other in the lead wire 76.
  • electromotive forces are generated in opposite directions with respect to the common magnetic field.
  • the induced current i no inductive current i ni becomes possible to cancel each other, so that the magnitude of the induced current i no inductive current i ni approaches as possible, the first winding portions 78 and
  • noise caused by the magnetic flux B i and B o generated by the primary power coil 66a is generated in the main signal coil 68a and causes noise. Power can be offset. In this manner, transmission of an electrical signal can be performed while reducing noise due to the influence of the primary power coil 66a.
  • the noise electromotive force can be similarly reduced also in the load side signal coil 68b, and in the present embodiment, the electricity is reduced. It is possible to reduce noise on both the transmitting side (load side signal coil 68b) and the receiving side (body side signal coil 68a) of the signal. Further, by adopting the specific coil winding path as described above for each of the main body side signal coil 68a and the load side signal coil 68b, a special control device and a coil member for noise suppression are separately provided. Therefore, the transmission quality of the electrical signal can be improved with an extremely simple configuration.
  • the body side signal coil 68a since the influence from the primary side power coil 66a can be offset, it becomes possible to arrange the body side signal coil 68a at a position extremely close to the primary side power coil 66a, and in the present embodiment, The main side signal coil 68a is accommodated in the same circumferential groove 90 of the pot core 70 together with the primary side power coil 66a. As described above, in the related art, it is also possible to dispose the lead wires 72 and 76 so as to overlap with each other, which is difficult because the magnetic paths interfere with each other. Space complexity can be avoided to obtain extremely excellent space efficiency. Further, by accommodating the body side signal coil 68a inside the pot core 70, for example, the body side signal coil 68a can be protected from disturbance due to magnetism from the motor 34 or the like.
  • the body side signal coil 68a and the load side signal coil 68b a specific coil winding path is adopted for the body side signal coil 68a and the load side signal coil 68b, and the noise electromotive force is reduced by the structure itself of the body side signal coil 68a and the load side signal coil 68b. Since it is possible, a special noise removal process is not required, and the detection signal transmitted from the tool unit 22 can be promptly reproduced on the machine body 14 side. Further, the timing at which the noise electromotive force is generated in the main side signal coil 68a and the load side signal coil 68b should be clearly controlled from the conduction timing to the primary side power coil 66a and the secondary side power coil 66b. Can do.
  • FIG. 17 shows the results of measuring the transmission timing of the detection signal on the tool unit 22 side (transmission signal in the figure) and the reception timing on the machine body 14 side (reception signal in the figure).
  • ⁇ X in the lower part of the graph in FIG. 17, the time required for signal transmission from the time when the detection signal was transmitted on the tool unit 22 side: X1 to the time when the detection signal was received on the machine body 14: X2
  • the time was 64.0 ns, and it was confirmed that extremely rapid signal transmission was possible.
  • the machine tool 12 of the present embodiment is provided with a plurality of (two in FIG. 18, two) tool units 22 and 120 as shown as a model in FIG. 18, and the plurality of tool units 22 and 120 are shown. It is also possible to selectively assemble the spindle head 16.
  • the tool unit 120 the same structure as that of the tool unit 22 will be omitted by assigning the same reference numerals in the drawings.
  • the tool unit 120 is obtained by removing the load signal coil 68 b from the load coil head 64 of the tool unit 22. That is, the load-side coil head 122 of the tool unit 120 includes only the secondary-side power coil 66 b, and the secondary-side power coil 66 b is connected to the ultrasonic transducer 50. Further, the tool unit 120 is not provided with the detection circuit 108 and the amplifier circuit 110 (see FIG. 8) in the tool unit 22. Therefore, when the tool unit 120 is attached to the spindle head 16, the main body signal coil 68a is not used, and for example, an AC voltage of a frequency set in advance in the control device 106 is transmitted to the tool unit 120 Thus, the ultrasonic transducer 50 is driven at a predetermined frequency.
  • the tool 20 of the tool unit 120 may be different from or the same as the tool 20 of the tool unit 22. Although not shown, these tool units 22 and 120 are provided with a so-called V flange gripped by an arm of an automatic tool changer (ATC: Automatic Tool Changer), and are automatically replaced with respect to the spindle head 16 It is good.
  • ATC Automatic Tool Changer
  • various kinds of processing can be performed by preparing a plurality of tool units provided with various tools.
  • the tool unit 22 when it is desired to detect the vibration state of the tool 20 and perform feedback control, the tool unit 22 may be used, while when the feedback control is not necessary, the tool unit 120 may be used.
  • the non-contact type power supply device 10 of the present embodiment even between the spindle head 16 and the tool unit 22, 120 which are separated from each other, the transmission of the electric power and the electric signal can be carried out without contact. .
  • the machine tool 12 of this embodiment can be remotely operated by being connected to a computer network 124 such as a LAN, a WAN, or the Internet.
  • a computer network 124 such as a LAN, a WAN, or the Internet.
  • the control device 106 can be connected to the computer network 124 via the network interface 126.
  • a client 128 composed of a computer and a server 130 are connected.
  • the client 128 is connected to the server 130 via a computer network 124, as indicated by the arrow R 2, machine tool 12 is connected to the server 130 as a client Ru.
  • the client 128 and the machine tool 12 are mutually connected through the server 130, and the server 130 provides a routing mechanism for buffering the data packets of both and transmitting them to the client 128 and the machine tool 12 mutually.
  • the machine tool 12 in a network environment isolated by a firewall can be remotely controlled from the client 128, and the vibration characteristic of the ultrasonic transducer 50 in the machine tool 12 can be remotely monitored by the client 128.
  • a database 132 storing the vibration characteristics of the ultrasonic transducer 50 in the machine tool 12 and the operating conditions of the machine tool 12 is provided in the server 130, and the database 132 of the server 130 is accessed from the machine tool 12 for driving.
  • the conditions may be determined, or the database 128 may be accessed from the client 128 to control the operation of the machine tool 12 according to the obtained vibration characteristics and the operating conditions.
  • the control program stored in the control device 106 of the machine tool 12 can be updated remotely from the client 128 or the server 130 via the computer network 124. Incidentally, as shown in an arrow R 3 in FIG. 19, for example, itself to the controller 106 of the machine tool 12 by providing a server function, without passing through the server 130, etc. that connect directly to the client 128 to the machine tool 12 You may.
  • FIG. 20 schematically shows detection means constituting the non-contact type power supply device according to the second embodiment of the present invention.
  • the resonance circuit of this embodiment is an ultrasonic transducer 50 substantially the same as that of the first embodiment.
  • a piezoelectric element 140 as a detection unit is provided together with the plurality of piezoelectric elements 52 constituting the ultrasonic transducer 50.
  • the piezoelectric element 140 as a detection means is sandwiched between the electrodes 142 and 144, and the electrodes 142 and 144 are connected to the amplifier circuit 110 (see FIG. 8).
  • the piezoelectric element 140 as such detecting means is externally inserted into the bolt 57, and a metal block 58 screwed to both ends of the bolt 57 By being tightened by the horn 60, they are laminated together with the piezoelectric element 52 constituting the ultrasonic transducer 50.
  • An insulating material 146 is interposed between the electrode 56 of the adjacent piezoelectric element 52 and the electrode 142 of the piezoelectric element 140 as a detection means, and they are mutually insulated.
  • the vibration of the ultrasonic transducer 50 is exerted on the piezoelectric element 140 as the detection means, and a voltage is generated in the piezoelectric element 140.
  • the voltage generated in the piezoelectric element 140 is supplied from the electrodes 142 and 144 to the load signal coil 68b through the amplifier circuit 110 and transmitted to the main signal coil 68a.
  • the vibration state of the sound transducer 50 can be detected as a change in voltage.
  • the detection means can be realized with a simple structure.
  • the detection means can be coaxially arranged in the ultrasonic transducer 50, the detection means can be arranged efficiently with space, and the balance of weight balance on the load side can be suppressed, and rotation on the load side can be achieved. Driving can be performed more stably.
  • the main body side coil head 152 provided with the primary side power coil 66a and the signal coil 150 which constitutes the non-contact type power supply device as the third embodiment of the present invention, is disassembled.
  • the signal coil 150 after the lead wire 76 is circularly wound to form the first winding portion 78, the lead wire 76 is extended from the first winding portion 78 to form the first winding.
  • the second winding portion 80 is formed by being wound around the wire portion 78 in the opposite direction.
  • the first winding portion 78 is accommodated in the circumferential groove 90 of the pot core 70, and then the primary power coil 66a and the second winding portion 80 are accommodated in order.
  • the first winding portion 78 and the second winding portion 80 are disposed on both sides sandwiching the primary power coil 66a in the axial direction.
  • the first winding portion 78 and the second winding portion 80 in the signal coil 150 are formed on different planes. In this way, the formation space of the first winding portion 78 and the formation space of the second winding portion 80 can be largely secured, respectively. Therefore, the first winding portion 78 and the second winding portion 80 can be provided. The degree of freedom in setting the number of turns can be improved.
  • the first winding portion 78 and the second winding portion 80 of the signal coil 150 may be disposed on both sides.
  • the signal coil 150 of the present embodiment may be used for both the main body side and the load side, or may be used for only one of them, and the other is different in the shape described in the first embodiment, etc. The shape may be adopted.
  • FIG. 22 shows a signal coil 160 that constitutes a non-contact power supply according to a fourth embodiment of the present invention.
  • the signal coil 160 is provided on the main body side coil head 62, and the lead wire 76 accommodated in the circumferential groove 90 of the pot core 70 is extended to the outside of the pot core 70, and the outer periphery of the pot core 70. It is wound around surface 162.
  • An outer peripheral winding portion 164 is formed by the lead wire 76 wound around the outer peripheral surface 162.
  • the winding direction of the outer peripheral winding portion 164 is set to be equal to one of the first winding portion 78 and the second winding portion 80.
  • the first winding portion 78, the second winding portion 80, and the outer peripheral winding portion 164 form coil winding paths that generate electromotive forces in opposite directions. In this way, the noise reduction effect can be adjusted more accurately.
  • the signal coil 166 of the load-side coil head 64 in the present embodiment is in the form of a ring which is wound widely only in one direction and which has been widely used conventionally.
  • the coil winding path that generates electromotive forces in opposite directions may be formed in at least one of the signal coil on the main body side and the load side.
  • FIG. 23 schematically shows a signal coil 170 which constitutes the non-contact type transmission apparatus as the fifth embodiment of the present invention.
  • the outer coil portion 172 is formed by the signal coil 170 being extended in the circumferential direction (approximately 1/6 in the present embodiment) in which the lead wire 76 does not reach one round on the outer side in the radial direction. It is folded back from the outer winding portion 172, and is extended in the radial inner direction by a circumferential direction (approximately 1/6 in this embodiment) substantially equal to the outer winding portion 172 in the opposite direction to the outer winding portion 172.
  • an inner winding portion 174 is formed, and a small loop portion 176 is formed by the outer winding portion 172 and the inner winding portion 174.
  • Such small loop portions 176 are continuously formed, and a plurality of small loop portions 176 are formed side by side in the circumferential direction.
  • the number of turns in each small loop portion 176 can be set arbitrarily.
  • the outer winding portions 172 of each small loop portion 176 are formed on substantially the same circumference, and the plurality of outer winding portions 172 form the first winding portion 178, and
  • An inner winding portion 174 of the small loop portion 176 is formed on substantially the same circumference inside the outer winding portion 172, and a plurality of inner winding portions 174 form a second winding portion 180. .
  • the outer winding portion 172 and the inner winding portion 174 are disposed on the main body side and the load side together with the signal coil 170, not shown for the primary side power coil and the secondary side power.
  • a plurality of outer winding portions 172 are wound in opposite directions to each other (o in FIG. 23, the outer winding portion 172 is clockwise and the inner winding portion 174 is counterclockwise) around the center of the coil: o
  • the plurality of inner winding portions 174 can form the first winding portion 178 and the second winding portion 180 which are wound in opposite directions to each other.
  • the noise electromotive force can be reduced according to, for example, the variation in the local magnetic flux change amount in the circumferential direction of the signal coil 170.
  • the effect can be adjusted more precisely.
  • the shape stability of the signal coil 170 can also be enhanced by forming a plurality of annular small loop portions 176 extending partially in the circumferential direction.
  • the resonant circuit in the above embodiment is configured to include an ultrasonic transducer that can be considered equivalent to an electric circuit including an LCR circuit
  • any resonant circuit may be used as long as it has an electrical resonant frequency.
  • the present invention is not limited to this, and may be, for example, a circuit in which electric components such as a motor or a sensor or various electric circuits are connected to a resonance circuit formed of a coil and a capacitor. Therefore, the non-contact type power supply device of the present invention is not limited to the machine tool as described in the above embodiment, and is capable of relative displacement on the main body side, including separation. Can be applied to various machines in which a resonant circuit is formed.
  • specific means for controlling the feeding frequency to the primary side power coil in response to changes in the resonant frequency of the resonant circuit are not limited to arithmetic processing by the CPU, for example, phase synchronization
  • Various aspects such as feedback means using a circuit (PLL: Phase Locked Loop) can be adopted appropriately.
  • the detection target for detecting the change of the resonance frequency of the resonance circuit is not limited to the voltage or current as in the above embodiment, and may be, for example, the ambient temperature of the environment. In the case of a vibrator or the like, mechanical amplitude or distortion of the ultrasonic vibrator may be employed. Therefore, it is also possible to use a temperature sensor, an acceleration sensor or the like as a detection means for detecting a change in the resonant frequency of the resonant circuit.
  • the core member is provided only on the main body side, but it is desirable to increase the gap between the main body side and the load side to increase the relative displacement amount.
  • the core member may be attached to the load-side signal coil.
  • the core member is disposed so as not to surround the secondary power coil on the load side, thereby avoiding an increase in the inductance of the secondary power coil, and a signal on the load side
  • the core coil is assembled to the core member.
  • the number of the primary side power coil, the secondary side power coil, and the number of the pair of signal coils are not limited to only one each, and a plurality of pairs may be provided, and transmission of a plurality of powers is possible.
  • a path and a transmission path of a plurality of electrical signals may be configured.
  • the arrangement position of the signal coil is not limited to the position where the power coil and the winding overlap, and for example, the proximity position which can be affected by the magnetic flux by the power coil.
  • the signal coil may be disposed adjacent to the power coil. Therefore, even when the power coil and the signal coil are arranged in an overlapping manner, they need not necessarily be arranged concentrically, and the signal coil may be eccentrically arranged with respect to the power coil. good.
  • the winding shape of the signal coil is not limited to a circular shape, and may be, for example, a rectangular shape or an elliptical shape. Furthermore, the specific shape of the coil winding path that generates electromotive forces in opposite directions in the signal coil is not limited to the shape of the above embodiment.
  • an electric signal is transmitted from the signal coil on the load side to the signal coil on the main body side, but using these signal coils, from the main body side
  • an electrical signal is transmitted to the load side.
  • a plurality of detection means for detecting the vibration state of the resonance circuit is provided on the load side, and an electric signal specifying which one of the plurality of detection means is used from the main body side is transmitted to the load side
  • the detection result of the means may be transmitted as an electrical signal from the load side to the main body side.
  • the switching timing of the inverter that transmits power from the primary power coil to the secondary power coil is detected, and the transmission timing of the electrical signal in accordance with the timing, ie, for signals
  • the application timing of the voltage to the coil may be controlled.
  • transmission of an electrical signal from the main body side to the load side, and an electrical signal from the load side to the main body side using a pair of signal coils on the main body side and the load side It is also possible to perform both of
  • the modulation method used to transmit an electrical signal using a pair of signal coils is not limited at all, and for example, amplitude modulation (AM), frequency modulation (FM), phase modulation (PM), etc.
  • Various modulation schemes may be adopted.

Abstract

Provided is non-contact power supply device that supplies power between a main body side and a load side capable of being displaced relative to the main body side, said power supply occurring from the main body side and without the device being in contact with a resonance circuit such as an ultrasonic oscillator provided on the load side. The non-contact power supply device has a novel construction and is capable of more effectively driving the load-side resonance circuit. A primary-side power coil (66a) is provided on the main body (16) side and a secondary power coil (66b) is provided on the load (22) side. The non-contact power supply device is configured such that: drive power is supplied to the load (22) resonance circuit (50) from power supply devices (100, 102) on the main body (16) side, via the primary-side power coil (66a) and the secondary power coil (66b); the primary-side power coil (66a) is enclosed by a core member (70); and the secondary power coil (66b) is not enclosed by a core member.

Description

無接触式電源供給装置Contactless power supply device
 本発明は、相対変位可能とされた本体側と負荷側との間で、コイル部材間の相互誘導を用いて電力を供給する無接触式電源供給装置に係り、特に、負荷側に設けられた共振回路に本体側から駆動電力を供給するために用いられる無接触式電源供給装置に関するものである。 The present invention relates to a contactless power supply device for supplying power using mutual induction between coil members between a relatively displaceable main body side and a load side, and in particular, provided on the load side. The present invention relates to a contactless power supply device used to supply drive power to a resonant circuit from the main body side.
 従来から、例えば特開2002-346817号公報(特許文献1)や特開2010-207971号公報(特許文献2)に記載の工作機械のように、給電装置が設けられた本体側と、本体側に対して回転可能とされた負荷側とを備え、負荷側に超音波振動子を設けて工具と連結することにより、工具に回転運動と超音波振動子による振動とを重畳することが行われている。このような工作機械において、本体側の給電装置から負荷側の負荷としての超音波振動子に電力を供給する手段の1つとして、スリップリングが用いられている。スリップリングは、負荷側に設けられる電極板に、本体側に設けられるブラシを接触させる構造とされており、相対回転される部材間を電気接続するために広く用いられている。 Conventionally, a main body side provided with a power feeding device and a main body side, such as machine tools described in, for example, Japanese Patent Application Laid-Open Nos. 2002-346817 (Patent Document 1) and 2010-207971 (Patent Document 2) The rotational movement and the vibration by the ultrasonic transducer are superimposed on the tool by providing an ultrasonic transducer on the load side and connecting it with the tool. ing. In such a machine tool, a slip ring is used as one of means for supplying power from the power supply device on the main body side to the ultrasonic transducer as the load on the load side. The slip ring has a structure in which a brush provided on the main body side is brought into contact with an electrode plate provided on the load side, and is widely used to electrically connect members which are relatively rotated.
 ところが、スリップリングは、電極板とブラシとの間で物理的な接触点を有することから、機械的摩耗による劣化の問題があった。また、毎分あたり数千程度の回転が限界で、毎分あたり数万の高速回転に対応することは困難であった。 However, since the slip ring has a physical contact point between the electrode plate and the brush, there is a problem of deterioration due to mechanical wear. In addition, it is difficult to cope with tens of thousands of high-speed rotations per minute because the number of rotations is several thousand per minute.
 そこで、特開2002-28808号公報(特許文献3)や特表2008-504138号公報(特許文献4)に記載のように、無接触式の電源供給装置が用いられることがある。この無接触式電源供給装置は、透磁性材からなるコア部材が組み付けられたコイル部材を本体側と負荷側に配設して、コア部材で磁路を形成して両コイル部材間で相互誘導作用を利用することにより、本体側から負荷側に電力を伝送することが可能とされている。このような無接触式電源供給装置によれば、本体側と負荷側との間で無接触の状態で電力を伝送することが可能となり、機械的摩耗の問題を解消できると共に、より高速な回転にも対応することが出来る。 Therefore, as described in Japanese Patent Application Laid-Open No. 2002-28808 (Patent Document 3) and Japanese Patent Application Publication No. 2008-504138 (Patent Document 4), a non-contact type power supply device may be used. In this non-contact type power supply device, coil members to which a core member made of a magnetically permeable material is assembled are disposed on the main body side and the load side, and a magnetic path is formed by the core members to mutually induction between both coil members. By utilizing the action, it is possible to transmit power from the main body side to the load side. According to such a non-contact type power supply device, it becomes possible to transmit electric power in a non-contact state between the main body side and the load side, and the problem of mechanical wear can be eliminated and the rotation speed is higher. It can also respond to
 ところで、特許文献1~4に記載の工作機械に設けられた、負荷としての超音波振動子は、共振周波数を有する電気的な共振回路と等価に考えられることが知られている。そこで、超音波振動子を効果的に駆動させるために、超音波振動子の共振周波数やその近傍の周波数の駆動電圧を印加することが行われている。 By the way, it is known that an ultrasonic transducer as a load provided in a machine tool described in Patent Documents 1 to 4 can be considered equivalent to an electrical resonant circuit having a resonant frequency. Therefore, in order to drive the ultrasonic transducer effectively, application of a drive voltage of the resonance frequency of the ultrasonic transducer or a frequency near that is performed.
 ところが、特許文献3や特許文献4に記載の如き、無接触式電源供給装置を用いた工作機械においては、超音波振動子の振動が工具に効果的に伝達されず、工具の振幅として効果的に発現されなかったり、超音波振動子にうねりや発熱を生じ、安定的な加工が行えない場合があった。 However, in a machine tool using a non-contact power supply device as described in Patent Document 3 and Patent Document 4, the vibration of the ultrasonic transducer is not effectively transmitted to the tool, and is effective as the tool amplitude. In some cases, stable processing can not be performed due to waviness or heat generation in the ultrasonic transducer.
特開2002-346817号公報JP 2002-346817 A 特開2010-207971号公報Unexamined-Japanese-Patent No. 2010-207971 特開2002-28808号公報Japanese Patent Application Publication No. 2002-28808 特表2008-504138号公報Japanese Patent Application Publication No. 2008-504138
 本発明は、上述の事情を背景に為されたものであって、その解決課題は、本体側から、超音波振動子等のような共振回路を備えた負荷側に対して無接触で電力を供給する無接触式電源供給装置において、負荷側の共振回路をより効果的に駆動させることの出来る、新規な構造の無接触式電源供給装置を提供することにある。 The present invention has been made against the background described above, and the problem to be solved is that the power is contactless from the main body side to the load side provided with a resonant circuit such as an ultrasonic transducer or the like. It is an object of the present invention to provide a contactless power supply having a novel structure capable of driving the resonant circuit on the load side more effectively in the supply of the contactless power supply.
 かかる問題に対して本発明者が鋭意検討したところ、無接触式電源供給装置においては、負荷側の電力伝送に用いるコイル部材に組み付けられたコア部材が、負荷側の共振回路の駆動効率を低下する原因となり得ることを発見した。 The inventors of the present invention have intensively studied the problem, and in the non-contact type power supply device, the core member assembled to the coil member used for power transmission on the load side reduces the driving efficiency of the resonant circuit on the load side. Discovered that it could be a cause.
 すなわち、前述のように、例えば超音波振動子は、共振周波数近傍において、図24に示す共振回路と等価に考えられることが知られている。図24に示す等価回路は、機械的振動特性(直列共振特性)を表すコイル分(L)およびコンデンサ(C)、および機械的負荷を表す抵抗分(R)が直列に接続されたLCR回路に、超音波振動子を構成する圧電素子がコンデンサとして働くことによる制動容量(Cd)が並列に接続されている。そこで、この等価回路に対して、LCR回路が直列共振する共振周波数f=1/(2π√(L・C))乃至はその近傍の周波数の電圧を印加することにより、超音波振動子を効率良く駆動させることが出来る。 That is, as described above, it is known that, for example, an ultrasonic transducer is considered to be equivalent to the resonant circuit shown in FIG. 24 in the vicinity of the resonant frequency. The equivalent circuit shown in FIG. 24 is an LCR circuit in which a coil component (L) and a capacitor (C) representing mechanical vibration characteristics (series resonance characteristics) and a resistance component (R) representing a mechanical load are connected in series. A braking capacitance (Cd) is connected in parallel by the piezoelectric elements constituting the ultrasonic transducer acting as a capacitor. Therefore, by applying a voltage with a resonance frequency f r = 1 / (2π√ (L · C)) at which the LCR circuit resonates in series to this equivalent circuit or a frequency near that frequency, an ultrasonic transducer is obtained. It can be driven efficiently.
 しかし、このような共振回路に対して、特許文献3や特許文献4に記載の如き無接触式電源供給装置を適用して、負荷側(共振回路側)の電力伝送用のコイル部材にコア部材を組み付けると、コア部材の高い透磁率により共振回路のインダクタンス(L)が増大して、共振周波数fを大きく変化させることとなる。インダクタンス(L)の増大は、一般に、共振周波数の低下として現れる。それ故、例えば超音波振動子の場合には、共振周波数の低下が駆動周波数の低下として発現することがあった。 However, the noncontact power supply device as described in Patent Document 3 and Patent Document 4 is applied to such a resonant circuit, and a core member is used as a coil member for power transmission on the load side (resonant circuit side). As a result, the high permeability of the core member increases the inductance (L) of the resonant circuit, which causes the resonant frequency fr to be largely changed. An increase in inductance (L) generally manifests as a decrease in resonant frequency. Therefore, for example, in the case of an ultrasonic transducer, a decrease in resonance frequency may appear as a decrease in drive frequency.
 さらに、例えば特許文献3や特許文献4等に記載の工作機械においては、超音波振動子の振動を工具のストロークとして有効に発現させるために、超音波振動子の共振周波数を、工具を含んだ負荷側の機械的な固有振動数の近傍にチューニングすることが行われている。ところが、負荷側の電力伝送用のコイル部材にコア部材を組み付けることで超音波振動子(共振回路)の共振周波数を大きく変化させてしまうと、超音波振動子の駆動周波数を負荷側の機械的な固有振動数に近づけることが困難となって、超音波振動子の振動が工具の振動と協調せずに、工具の振動として有効に発現されない場合があった。 Furthermore, for example, in the machine tools described in Patent Document 3 and Patent Document 4 and the like, the resonance frequency of the ultrasonic transducer is included in the tool in order to effectively express the vibration of the ultrasonic transducer as the stroke of the tool. Tuning is performed near the mechanical natural frequency on the load side. However, if the resonance frequency of the ultrasonic transducer (resonance circuit) is largely changed by assembling the core member to the coil member for power transmission on the load side, the driving frequency of the ultrasonic transducer becomes mechanical on the load side. It has been difficult to make the natural frequency close to the natural frequency, and the vibration of the ultrasonic transducer may not be effectively expressed as the vibration of the tool without being coordinated with the vibration of the tool.
 また、従来の無接触式電源供給装置においては、本体側の電力用コイルと負荷側の電力用コイルの両方にコア部材を設けて、両コア部材の対向された端面間にコイル部材からの磁束を集中させることで、コイル部材間の結合係数が高められている。しかし、例えば図25に示すように、本体側から負荷側に電力が方形波として伝送されると、方形波が殆どそのまま負荷側の超音波振動子に印加される。一方、図25に併せ示すように、超音波振動子の機械的振動は正弦波を描く。それ故、方形波がそのまま超音波振動子に印加されると、超音波振動子が方形波の急峻な電圧の増減に追従しきれずにうねりを生じたり、図中に斜線で示す余剰のエネルギーが熱となって発熱を生じる原因になり得ることを本発明者は発見した。本発明は、かくの如き知見に基づいて完成されたものである。 Further, in the conventional non-contact type power supply device, the core member is provided on both the power coil on the main body side and the power coil on the load side, and the magnetic flux from the coil member is provided between the opposed end faces of both core members. The coupling coefficient between the coil members is increased by concentrating the However, for example, as shown in FIG. 25, when power is transmitted as a square wave from the main body side to the load side, the square wave is applied almost as it is to the ultrasonic transducer on the load side. On the other hand, as also shown in FIG. 25, the mechanical vibration of the ultrasonic transducer draws a sine wave. Therefore, when a square wave is applied to the ultrasonic transducer as it is, the ultrasonic transducer does not follow the steep voltage increase and decrease of the square wave and may cause waviness, and the surplus energy shown by oblique lines in the figure is The inventor has discovered that the heat may cause the generation of heat. The present invention has been completed based on such findings.
 以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。 The following describes aspects of the present invention made to solve such problems. In addition, the component employ | adopted in each aspect described below can be employ | adopted as much as possible in arbitrary combination.
 本発明の第一の態様は、交流電圧を出力する給電装置を備えた本体側と、該本体側に対して相対変位可能とされていると共に共振回路を備えた負荷側との間において、対をなす一次側電力用コイル及び二次側電力用コイルが設けられており、これら電力用コイルを通じて前記本体側の前記給電装置から前記負荷側の前記共振回路へ駆動電力が供給可能とされている無接触式電源供給装置において、前記本体側には、透磁性材からなるコア部材が前記一次側電力用コイルを囲んで設けられている一方、前記負荷側には、前記二次側電力用コイルを囲む前記コア部材が設けられていないことを、特徴とする。 According to a first aspect of the present invention, there is provided a pair of a main body provided with a feeding device for outputting an alternating voltage and a load that is relatively displaceable with respect to the main body and is provided with a resonant circuit. The primary side power coil and the secondary side power coil are provided to make it possible to supply driving power from the power feeding device on the main body side to the resonant circuit on the load side through these power coils. In the non-contact type power supply device, a core member made of a magnetically permeable material is provided on the main body side so as to surround the primary power coil, while the secondary power coil is provided on the load side. Is characterized in that the core member surrounding the is not provided.
 本発明においては、本体側の一次側電力用コイルの周囲にコア部材が設けられている一方、負荷側の二次側電力用コイルの周囲には、コア部材が設けられていない。これにより、負荷側に設けられた共振回路のインダクタンスの増大を回避して、共振回路の共振周波数が大きく低下することを防止することが出来る。その結果、共振回路の共振周波数をより高く設定することが出来て、例えば共振回路が超音波振動子の場合には、より高い駆動周波数で駆動させることが出来る。それと共に、超音波振動子の共振周波数を負荷側の機械的な固有振動数の近傍に設定し易くすることが出来、超音波振動子に連結された工具のストロークを有効に得ることが出来る。これにより、より優れた加工精度を得ることが出来る。 In the present invention, the core member is provided around the primary-side power coil on the main body side, but the core member is not provided around the secondary-side power coil on the load side. As a result, it is possible to avoid an increase in the inductance of the resonant circuit provided on the load side, and to prevent a large decrease in the resonant frequency of the resonant circuit. As a result, the resonant frequency of the resonant circuit can be set higher, and for example, when the resonant circuit is an ultrasonic transducer, it can be driven at a higher driving frequency. At the same time, the resonance frequency of the ultrasonic transducer can be easily set in the vicinity of the mechanical natural frequency on the load side, and the stroke of the tool connected to the ultrasonic transducer can be effectively obtained. Thereby, more excellent processing accuracy can be obtained.
 さらに、二次側電力用コイルを囲むコア部材を設けないことにより、一次側電力用コイルと二次側電力用コイルとの結合係数を積極的に下げることが出来る。その結果、例えば前記図25のように、本体側から方形波が発振される場合には、負荷側において共振回路に入力される電力波形を図25に併せ示した超音波振動子の機械的振動である正弦波に近づけることが出来る。これにより、例えば共振回路が超音波振動子の場合には、正弦波となる超音波振動子の振動を印加電圧の変化に同調させ易くすることが出来、超音波振動子のうねりを低減して、超音波振動子を安定的に振動させることが出来る。それと共に、余剰エネルギーの発生を抑えることが出来て、発熱を抑えることも出来る。 Furthermore, by not providing the core member surrounding the secondary power coil, the coupling coefficient between the primary power coil and the secondary power coil can be positively reduced. As a result, for example, as shown in FIG. 25, when a square wave is oscillated from the main body side, the mechanical vibration of the ultrasonic transducer whose power waveform input to the resonant circuit on the load side is also shown in FIG. It can be brought close to a sine wave. Thereby, for example, when the resonance circuit is an ultrasonic transducer, the vibration of the ultrasonic transducer that becomes a sine wave can be easily tuned to the change of the applied voltage, and the undulation of the ultrasonic transducer can be reduced. The ultrasonic transducer can be stably vibrated. At the same time, it is possible to suppress the generation of surplus energy and to suppress heat generation.
 更にまた、本体側と負荷側の両方で磁束がコア部材に集中することを回避したことにより、負荷側が本体側に対して僅かに位置ずれしたのみで結合係数が急激に低下して、電力の伝送効率が急激に低下することを防止することが出来、電力伝送をより安定的に行うことが出来る。加えて、負荷側の重量を軽減することが出来て、例えば負荷側が本体側に対して回転駆動されるものの場合には、より高速で回転させることが出来る。 Furthermore, by avoiding the concentration of magnetic flux on the core member on both the main body side and the load side, the coupling coefficient drops sharply with only a slight displacement of the load side relative to the main body side. It is possible to prevent the transmission efficiency from being sharply reduced, and power transmission can be performed more stably. In addition, the weight on the load side can be reduced, and, for example, when the load side is rotationally driven relative to the main body side, it can be rotated at higher speed.
 なお、本発明において、例えば後述する信号用コイル等のように、負荷側に二次側電力用コイルと別のコイル部材を更に設けて、該別のコイル部材にコア部材を組み付けることは可能である。但し、好ましくは、負荷側にコア部材が一切設けられていない態様が採用され得る。即ち、コア部材が鉄などの微粒子を焼結して形成されたものである場合には、毎分あたり数万程に高速に回転されると亀裂や破損のおそれが高くなるが、負荷側にコア部材を設けなくすることによって、負荷側におけるコア部材の損傷の問題を解消することが出来る。 In the present invention, it is possible to further provide a coil member other than the secondary power coil on the load side, such as a signal coil to be described later, and assemble the core member to the other coil member. is there. However, preferably, an aspect in which no core member is provided on the load side may be employed. That is, in the case where the core member is formed by sintering fine particles of iron or the like, there is a high risk of cracking or breakage if the core member is rotated at a high speed of several tens of thousands per minute, but on the load side By not providing the core member, the problem of damage to the core member on the load side can be eliminated.
 また、本発明における共振回路は、電気的な共振周波数を有するものであれば何等限定されるものではなく、例えば、コイルとコンデンサで構成された共振回路のみならず、前述の超音波振動子のように、物理的な振動特性を電気的な共振回路と等価に考えられるもの等も含む。更に、共振回路には各種の電気部品が適宜に接続されることは勿論であり、例えばコイルとコンデンサで構成された共振回路に、サーボモータやステッピングモータ、ソレノイド、バルブ、各種センサや各種の電気回路等が接続され得る。また、一次側電力用コイルと二次側電力用コイルが設けられる本体側と負荷側の相対変位方向は何等限定されるものではなく、本発明の無接触式伝送装置は、各種の機械に広く適用可能である。更にまた、コア部材の具体的形状は、本体側と負荷側との相対変位方向や、要求される電力や電気信号の伝送路の数等を考慮して各種の形状が適宜に採用可能である。 The resonant circuit in the present invention is not limited as long as it has an electrical resonant frequency. For example, not only the resonant circuit composed of a coil and a capacitor but also the above-mentioned ultrasonic transducer Thus, it also includes those which are considered to be equivalent to the physical resonance characteristics of the electrical resonance circuit. Furthermore, it goes without saying that various electrical components are appropriately connected to the resonant circuit, and for example, a servo motor, a stepping motor, a solenoid, a valve, various sensors, various types of electric A circuit or the like may be connected. Further, the relative displacement direction of the main body side on which the primary power coil and the secondary power coil are provided and the relative displacement direction on the load side is not limited at all, and the noncontact transmission device of the present invention is widely used in various machines. It is applicable. Furthermore, as the specific shape of the core member, various shapes can be appropriately adopted in consideration of the relative displacement direction between the main body side and the load side, the required number of transmission lines of electric power and electric signals, etc. .
 本発明の第二の態様は、前記第一の態様に記載のものにおいて、前記本体側と前記負荷側との間に対をなす信号用コイルが設けられていると共に、前記負荷側には、前記共振回路の振動状態を検出する検出手段が設けられており、該検出手段による検出信号が前記信号用コイルを用いて前記負荷側から前記本体側へ送信可能とされている一方、前記本体側には前記一次側電力用コイルへの給電周波数調節機構が設けられており、前記共振回路における共振周波数の変化に追従的に対応して、前記一次側電力用コイルへの給電周波数が、前記信号用コイルを通じて前記負荷側から前記本体側に送信された前記検出信号に基づいて制御されるようになっているものである。 According to a second aspect of the present invention, in the first aspect, a signal coil forming a pair is provided between the main body side and the load side, and the load side includes: A detection means for detecting the vibration state of the resonance circuit is provided, and a detection signal by the detection means can be transmitted from the load side to the main body side using the signal coil, while the main body side Is provided with a feeding frequency adjustment mechanism for the primary side power coil, and the feeding frequency to the primary side power coil corresponds to the signal in response to changes in the resonant frequency of the resonant circuit. It controls based on the said detection signal transmitted to the said main body side from the said load side through the coil for coils.
 本態様においては、負荷側において検出手段によって共振回路の振動状態を検出して、一対の信号用コイルを介して本体側に検出信号として伝達することが出来る。これにより、本体側において、相対変位される負荷側の共振回路の振動状態を検出することが出来、給電周波数調節機構によって、受信した検出信号に基づいて最適な周波数で電力を供給することが出来る。その結果、例えば工具が連結された共振回路としての超音波振動子において、工具に加わる機械的負荷によって超音波振動子の共振周波数が変化した場合には、本体側で超音波振動子の共振周波数の変化を検出して、その変化に追従して印加電圧の周波数を変化させることが可能であり、好適な駆動状態を安定して維持することが出来る。 In this aspect, the vibration state of the resonance circuit can be detected by the detection means on the load side, and can be transmitted as a detection signal to the main body side via the pair of signal coils. Thereby, the vibration state of the resonant circuit on the load side, which is relatively displaced, can be detected on the main body side, and power can be supplied at an optimal frequency based on the received detection signal by the feed frequency adjustment mechanism. . As a result, for example, in an ultrasonic transducer as a resonant circuit to which a tool is connected, when the resonant frequency of the ultrasonic transducer changes due to a mechanical load applied to the tool, the resonant frequency of the ultrasonic transducer on the main body side It is possible to detect a change in V. and to change the frequency of the applied voltage following the change, so that a suitable drive state can be stably maintained.
 なお、給電周波数調節機構としては各種のものが採用可能であり、例えば位相同期回路(PLL:Phase Locked Loop)を用いても良いし、CPUを備えた演算装置を用いて、得られた検出信号に基づいて所定のプログラムに従って一次側電力用コイルへの給電周波数を制御する等しても良い。 In addition, various things can be employ | adopted as a feed frequency adjustment mechanism, for example, a phase locked circuit (PLL: Phase Locked Loop) may be used and the detection signal obtained using the arithmetic unit provided with CPU The power supply frequency to the primary side power coil may be controlled according to a predetermined program based on the above.
 また、前述のように、本発明における共振回路としては、機械的な振動を発現する超音波振動子等も含むものであり、共振回路の振動状態を検出する検出手段としては、共振回路の電気的振動によって発現された機械的振動を検出するものでも良い。従って、検出手段としては、例えば共振回路によって駆動されるアクチュエータの物理的な駆動状態を検出する加速度センサ等でも良い。更に、負荷側に設けられる検出手段は、加速度センサや、共振回路に流れる電流を検出するホール素子等の特別なセンシング機能を備えたものに限定されず、例えば共振回路に流れる電流をピックアップするための電線等でも良い。 In addition, as described above, the resonance circuit in the present invention includes an ultrasonic transducer or the like that expresses mechanical vibration, and the detection means for detecting the vibration state of the resonance circuit includes electricity of the resonance circuit. It may be one that detects mechanical vibration generated by dynamic vibration. Therefore, the detection means may be, for example, an acceleration sensor or the like which detects a physical drive state of an actuator driven by a resonant circuit. Furthermore, the detection means provided on the load side is not limited to one having a special sensing function such as an acceleration sensor or a Hall element for detecting the current flowing in the resonance circuit, for example, to pick up the current flowing in the resonance circuit. It may be a wire or the like.
 なお、本態様において、本体側から負荷側に電気信号を伝送するようにしても良い。そのような電気信号の伝送路として、別途に信号用コイルの対を本体側と負荷側に設けても良いし、前記負荷側から本体側へ電気信号を伝送する信号用コイルを、本体側から負荷側への電気信号の伝送路として兼用することも可能である。 In the present aspect, an electrical signal may be transmitted from the main body side to the load side. A pair of signal coils may be separately provided on the main body side and the load side as such an electric signal transmission path, or the signal coil for transmitting the electric signal from the load side to the main body side may be provided from the main body side It can also be used as a transmission line of the electrical signal to the load side.
 また、本体側に設けられる一次側電力用コイルと信号用コイルとの相対位置、および負荷側に設けられる二次側電力用コイルと信号用コイルとの相対位置は限定されない。例えば、本体側を例にすると、一次側電力用コイルと信号用コイルを同心軸上に配設しても良いし、偏心して配設しても良い。更にまた、コア部材の数は限定されるものではなく、例えば本体側において共通のコア部材に一次側電力用コイルと信号用コイルを組み付けても良いし、或いは一次側電力用コイルと信号用コイルを各別のコア部材にそれぞれ組み付けて本体側に設ける等しても良い。更に、前述のように、例えば本体側と負荷側の相対変位量を大きくしたい場合等に、負荷側の信号用コイルの鎖交磁束を調節するために、負荷側の信号用コイルにコア部材を組み付ける等しても良い。 Further, the relative positions of the primary side power coil and the signal coil provided on the main body side, and the relative positions of the secondary side power coil and the signal coil provided on the load side are not limited. For example, taking the main body side as an example, the primary side power coil and the signal coil may be arranged concentrically or eccentrically. Furthermore, the number of core members is not limited. For example, the primary power coil and the signal coil may be assembled to the common core member on the main body side, or the primary power coil and the signal coil May be assembled to each different core member and provided on the main body side. Furthermore, as described above, when it is desired to increase the relative displacement between the main body side and the load side, for example, in order to adjust the flux linkage of the signal coil for the load side, the core member is used for the signal coil for the load side. It may be assembled.
 本発明の第三の態様は、前記第二の態様に記載のものにおいて、前記本体側と前記負荷側の少なくとも一方において、前記信号用コイルには、前記電力用コイルによって生じた磁束の影響で該信号用コイルに生ぜしめられる起電力を相殺するように互いに逆向きに巻回された第一の巻線部分と第二の巻線部分が形成されているものである。 According to a third aspect of the present invention, in at least one of the main body side and the load side according to the second aspect, the signal coil is affected by the magnetic flux generated by the power coil. The first winding portion and the second winding portion are formed in opposite directions so as to offset the electromotive force generated in the signal coil.
 本態様においては、本体側と負荷側の少なくとも一方の信号用コイルに、互いに逆向きに巻回された第一の巻線部分と第二の巻線部分が形成されている。ここにおいて、互いに逆向きとは、電力用コイル(本体側の信号用コイルについては一次側電力用コイル、負荷側の信号用コイルについては二次側電力用コイル)の中心に対して、第一の巻線部分と第二の巻線部分が互いに逆回りに巻回されていることを言う。これにより、電力用コイルによって生ぜしめられた磁束が信号用コイルを通過した場合には、第一の巻線部分と第二の巻線部分において、通電方向が逆向きとなる誘導電流が生ぜしめられて、相互に相殺される。従って、別途にノイズ抑制用のコイル部材を設けたり、ノイズ起電力を打ち消すための給電制御装置を設けることなく、信号用コイルの特定形状を用いて電力用コイルの影響によるノイズ起電力を低減することが出来る。その結果、一対の信号用コイルによる電気信号の伝送をより精度良く行うことが出来る。 In this aspect, at least one of the signal coils on the main body side and the load side is formed with a first winding portion and a second winding portion wound in opposite directions to each other. Here, the directions opposite to each other refer to the center of the power coil (the primary side power coil for the signal coil on the main body side and the secondary side power coil for the signal coil on the load side). The second winding portion and the second winding portion are oppositely wound. As a result, when the magnetic flux generated by the power coil passes through the signal coil, an induced current is generated in which the current flow direction is opposite between the first winding portion and the second winding portion. And mutually offset. Therefore, the noise electromotive force due to the influence of the power coil is reduced using the specific shape of the signal coil without separately providing a coil member for noise suppression or providing a feed control device for canceling the noise electromotive force. I can do it. As a result, the transmission of the electrical signal by the pair of signal coils can be performed more accurately.
 さらに、信号用コイルに形成された第一の巻線部分と第二の巻線部分とで、共通磁界に対して互いに逆向きの誘導起電力を生ぜしめることから、電力用コイルから生ぜしめられる磁束の量が変化した場合でも、第一の巻線部分と第二の巻線部分のそれぞれに、磁束の量の変化に応じた誘導起電力が生ぜしめられる。これにより、例えば給電制御装置で信号用コイルに生じたノイズ起電力の変化を監視して、ノイズ起電力の変化に応じて信号用コイルへのノイズ低減用の印加電圧を変化させる等の高度な制御を要することなく、極めて簡易な構造で、優れたノイズ抑制効果を得ることが出来る。 Furthermore, since the first winding portion and the second winding portion formed in the signal coil generate induced electromotive forces opposite to each other with respect to the common magnetic field, they are generated from the power coil. Even when the amount of magnetic flux changes, an induced electromotive force is generated in each of the first winding portion and the second winding portion according to the change in the amount of magnetic flux. Thus, for example, the power supply control device monitors a change in noise electromotive force generated in the signal coil, and changes the voltage applied to the signal coil for noise reduction according to the change in noise electromotive force. An excellent noise suppression effect can be obtained with an extremely simple structure without requiring control.
 加えて、本態様によれば、電気信号をより速やかに伝送することが出来る。即ち、例えば無線通信の場合には、一般に、受信した電気信号を検波してから増幅し、ノイズを除去して信号を再生するという多段の処理が必要となって、時間を要する。特に、前記第二の態様のようなフィードバック制御において、負荷側で検出信号が発生してから本体側で再生されるまでに時間を要すると、検出信号の時間的な遅れを考慮する必要が生じ、制御の複雑化を招く。これに対し、本態様によれば、信号用コイルの構造そのものにノイズ低減効果を付与したことにより、より速やかに電気信号を伝送することが可能となり、信号伝達のリアルタイム性を向上することが出来る。 In addition, according to this aspect, the electrical signal can be transmitted more quickly. That is, for example, in the case of wireless communication, in general, multistage processing is required, in which a received electric signal is detected and then amplified and noise is removed to reproduce the signal, which takes time. In particular, in the feedback control as in the second aspect, when it takes time from the generation of the detection signal on the load side to the reproduction on the main body side, it is necessary to consider the time delay of the detection signal. , Complicate control. On the other hand, according to this aspect, by providing the noise reduction effect to the structure of the signal coil itself, it becomes possible to transmit the electric signal more quickly, and the real time property of signal transmission can be improved. .
 そして、電力用コイルによる磁束の影響を低減することが可能であることから、従来では電力用コイルによる磁束の影響から配設することが困難であった、電力用コイルに近接した位置に信号用コイルをスペース効率良く配設することが出来、無接触式電源供給装置のコンパクト化を図ることが出来る。 And, since it is possible to reduce the influence of the magnetic flux by the power coil, it has been difficult to arrange in the prior art due to the influence of the magnetic flux by the power coil. The coils can be disposed space-efficiently, and the contactless power supply device can be made compact.
 なお、第一の巻線部分と第二の巻線部分の巻数は、第一の巻線部分に生じる起電力と第二の巻線部分に生じる起電力を考慮して任意に設定され、好適には、共通磁界に対して第一の巻線部分と第二の巻線部分に、互いに逆方向で大きさの等しい起電力が生ぜしめられるように設定される。従って、第一の巻線部分の巻数と第二の巻線部分の巻数は、互いに異ならされていても良い。 The number of turns of the first winding portion and the second winding portion is arbitrarily set in consideration of the electromotive force generated in the first winding portion and the electromotive force generated in the second winding portion. Are set so that electromotive forces of equal magnitude in opposite directions are generated in the first winding portion and the second winding portion with respect to the common magnetic field. Therefore, the number of turns of the first winding portion and the number of turns of the second winding portion may be different from each other.
 本発明の第四の態様は、前記第三の態様に記載のものにおいて、前記電力用コイルのコイル巻線と前記信号用コイルのコイル巻線とが重ねて配設されているものである。 According to a fourth aspect of the present invention, in the one described in the third aspect, a coil winding of the power coil and a coil winding of the signal coil are disposed in an overlapping manner.
 前記第三の態様に記載のように、第三の態様によれば、信号用コイルに共通磁界に対して互いに逆向きの起電力を生ずる第一の巻線部分と第二の巻線部分とが設けられている。そこで、信号用コイルを電力用コイルからの磁束が影響する近接位置に配設しても、電力用コイルからの磁束によるノイズ起電力を低減することが出来る。その結果、本態様のように、信号用コイルと電力用コイルを重ねて配設することも可能となり、無接触式電源供給装置の更なるコンパクト化を図ることが出来る。なお、本態様における「重ねて」とは、電力用コイルのコイル巻線と、信号用コイルのコイル巻線が、これらコイルの軸方向の投影視で重なる位置に配設されていることを言うものであって、両コイルのコイル巻線が相互に非接触であることは勿論であり、両コイルのコイル巻線が接触状態にあることを言うものではない。また、電力用コイルのコイル巻線と信号用コイルのコイル巻線は、略全周に亘って重ねられていても良いし、部分的に交差するように重ねられていても良い。 As described in the third aspect, according to the third aspect, the first coil portion and the second coil portion generate electromotive forces opposite to each other with respect to the common magnetic field in the signal coil. Is provided. Therefore, even if the signal coil is disposed at a close position affected by the magnetic flux from the power coil, the noise electromotive force due to the magnetic flux from the power coil can be reduced. As a result, as in the present embodiment, it is possible to arrange the signal coil and the power coil in an overlapping manner, so that the contactless power supply device can be further miniaturized. Note that "overlap" in this aspect means that the coil winding of the power coil and the coil winding of the signal coil are disposed at a position where they overlap with each other in a projection view in the axial direction of these coils. Of course, the coil windings of both coils are not in contact with each other, and it does not mean that the coil windings of both coils are in contact. In addition, the coil winding of the power coil and the coil winding of the signal coil may be overlapped over substantially the entire circumference, or may be overlapped so as to partially cross.
 本発明の第五の態様は、前記第三又は第四の態様に記載のものにおいて、前記電力用コイルと前記信号用コイルが同軸上に配設されているものである。 According to a fifth aspect of the present invention, in the third or fourth aspect, the power coil and the signal coil are coaxially disposed.
 本態様に従う構造とされた無接触式電源供給装置は、例えば本体側に対して、工具と超音波振動子を備えた負荷側が回転される超音波ミリング装置等に好適に適用することが出来、本体側と負荷側との回転部分で、電力と電気信号の伝送を行うことが出来る。そして、スリップリングのような物理的な接触部分を持たないことから、より高速回転に対応することが出来ると共に、優れた耐久性とメンテナンス性を得ることが出来る。 The contactless power supply device structured according to this aspect can be suitably applied to, for example, an ultrasonic milling device or the like in which the load side provided with a tool and an ultrasonic transducer is rotated with respect to the main body side, Power and electrical signals can be transmitted at the rotating parts of the main body side and the load side. And since it does not have a physical contact part like a slip ring, while being able to respond to high-speed rotation, excellent durability and maintainability can be obtained.
 さらに、信号用コイルに、電力用コイルの影響によるノイズ起電力を低減する第一の巻線部分と第二の巻線部分が形成されていることから、信号用コイルを電力用コイルと同軸上で互いのコイル巻線を完全に重ねて配設することも可能であり、更なるコンパクト化を図ることが出来る。 Furthermore, since the first coil portion and the second coil portion for reducing noise electromotive force due to the influence of the power coil are formed in the signal coil, the signal coil is coaxial with the power coil. It is also possible to arrange the coil windings of each other completely on top of each other, and further downsizing can be achieved.
 本発明の第六の態様は、前記第二~第五の何れか1つの態様に記載のものにおいて、前記負荷側の前記二次側電力用コイルのみ又は前記二次側電力用コイルと前記信号用コイルが、前記本体側の前記一次側電力用コイルおよび前記信号用コイルに対して複数用意されており、前記本体側の前記一次側電力用コイルおよび信号用コイルに対して選択的に組み合わせ可能とされているものである。 According to a sixth aspect of the present invention, in any of the second to fifth aspects, only the secondary power coil on the load side or the secondary power coil and the signal Coils are prepared for the primary side power coil and the signal coil on the main body side, and it is possible to selectively combine the primary side power coil and the signal coil on the main body side It is supposed to be.
 本態様においては、本体側に対して負荷側が複数設けられており、複数の負荷側を選択的に本体側に組み合わせることが可能とされている。これにより、例えば工作機械などにおいて、各種の工具が設けられた負荷側を複数用意して、本体側に対して選択的に組み付け可能とすることが出来る。そして、本発明の無接触式電源供給装置によれば、本体側と負荷側との間で無接触で電力や電気信号を伝送可能であることから、本体側と負荷側との切り離しも容易に行うことが出来る。なお、本態様における負荷側は、二次側電力用コイルのみを備えたものでも良いし、二次側電力用コイルと信号用コイルを備えたものでも良い。 In this aspect, a plurality of load sides are provided to the main body side, and it is possible to selectively combine the plurality of load sides with the main body side. Thus, for example, in a machine tool or the like, a plurality of load sides provided with various tools can be prepared, and can be selectively assembled to the main body side. And, according to the non-contact type power supply device of the present invention, since power and electric signal can be transmitted without contact between the main body side and the load side, the main body side and the load side can be easily separated. It can be done. In addition, the load side in this aspect may be provided with only the secondary side power coil, or may be provided with the secondary side power coil and the signal coil.
 本発明の第七の態様は、前記第一~第六の何れか1つの態様に記載のものにおいて、前記負荷側の前記共振回路が、超音波振動子を含んで構成されているものである。 A seventh aspect of the present invention according to any one of the first to sixth aspects is that the resonance circuit on the load side is configured to include an ultrasonic transducer. .
 前述のように、超音波振動子は、電気的な共振回路と等価に扱うことが出来る。そして、共振回路として超音波振動子を備えた負荷側と本体側との間で本発明の無接触式電源供給装置を採用することによって、共振回路のインダクタンスの増大を抑えて、超音波振動子の共振周波数を負荷側の機械的な固有振動数に近づけ易くして、チューニングの容易性を向上することが出来る。それと共に、本体側の一次側電力用コイルと負荷側の二次側電力用コイルとの結合係数を下げることにより、超音波振動子への印加電圧を正弦波に近づけて、超音波振動子のうねりを抑えてより安定的に駆動させることが出来ると共に、発熱を抑えることが出来る。 As described above, the ultrasonic transducer can be treated equivalently to an electrical resonant circuit. And, by adopting the non-contact type power supply device of the present invention between the load side and the main body side provided with the ultrasonic transducer as the resonant circuit, the increase of the inductance of the resonant circuit is suppressed, and the ultrasonic transducer is Can be made close to the mechanical natural frequency on the load side to improve the ease of tuning. At the same time, the voltage applied to the ultrasonic transducer is brought close to a sine wave by lowering the coupling coefficient between the primary-side power coil on the main body side and the secondary-side power coil on the load side. While being able to suppress a swell and to drive more stably, heat generation can be suppressed.
 特に、本態様は、前記第二の態様と組み合わせて好適に用いることが出来、負荷側に設けられた検出手段で超音波振動子の振動状態を検出して、電気信号として本体側の給電周波数調節機構に伝送することが可能となる。これにより、超音波振動子を用いた工作機械や洗浄機等において、温度条件の変化、超音波振動子への機械的負荷の変化等に起因する超音波振動子の共振周波数の変化に追従して、適切な周波数の駆動電圧を供給することが出来る。 In particular, the present aspect can be suitably used in combination with the second aspect, wherein the vibration state of the ultrasonic transducer is detected by the detection means provided on the load side, and the feeding frequency of the main body side as an electric signal It can be transmitted to the adjustment mechanism. Thereby, in a machine tool or cleaning machine using an ultrasonic transducer, the change in the resonant frequency of the ultrasonic transducer caused by a change in temperature conditions, a change in mechanical load on the ultrasonic transducer, etc. Thus, it is possible to supply a drive voltage of an appropriate frequency.
 本発明の第八の態様は、前記第七の態様に記載のものにおいて、前記超音波振動子は、複数の圧電素子が積層されたランジュバン型振動子であり、それら複数の圧電素子と共に積層された圧電素子によって、前記検出手段が構成されているものである。 An eighth aspect of the present invention is the one described in the seventh aspect, wherein the ultrasonic transducer is a Langevin type transducer in which a plurality of piezoelectric elements are stacked, and is stacked together with the plurality of piezoelectric elements. The detecting means is constituted by the piezoelectric element.
 本態様によれば、超音波振動子の振動を、検出手段としての圧電素子の圧電効果を用いて電圧として検出することが出来る。これにより、簡易な構造で検出手段を実現することが出来る。更に、検出手段としての圧電素子を、ランジュバン型振動子を構成する複数の圧電素子と同軸上に配設出来ることから、検出手段をスペース効率良く設けることが出来ると共に、負荷側の重量バランスの偏りを抑えることも出来る。 According to this aspect, the vibration of the ultrasonic transducer can be detected as a voltage using the piezoelectric effect of the piezoelectric element as the detection means. Thereby, the detection means can be realized with a simple structure. Furthermore, since the piezoelectric element as the detection means can be coaxially arranged with the plurality of piezoelectric elements constituting the Langevin type vibrator, the detection means can be provided with space efficiency, and the weight balance on the load side is unbalanced. Can also be reduced.
 本発明においては、相対変位される本体側と負荷側において、本体側の一次側電力用コイルを囲んでコア部材を設ける一方、負荷側には、二次側電力用コイルを囲むコア部材を設けないようにした。これにより、共振回路のインダクタンスの増大を抑えることが出来る。その結果、共振回路の共振周波数が大きく低下することを回避して、高い共振周波数を維持することが出来る。更に、共振回路が超音波振動子である場合等には、超音波振動子の共振周波数の大きな変化を抑えることにより、負荷側における機械的な固有振動数に、超音波振動子の共振周波数をチューニングし易くすることが出来る。更にまた、一次側電力用コイルと二次側電力用コイルとの結合係数を下げることにより、本体側に対して負荷側が位置ずれした場合でも、伝送効率が急激に低下することを回避することが出来て、電力伝送の安定性を向上することが出来る。 In the present invention, the core member is provided to surround the primary power coil on the main body side on the relatively displaced main body side and the load side, while the core member is provided on the load side to surround the secondary power coil. I did not. This can suppress an increase in the inductance of the resonant circuit. As a result, it is possible to maintain a high resonant frequency while avoiding a large decrease in the resonant frequency of the resonant circuit. Furthermore, when the resonant circuit is an ultrasonic transducer, etc., the resonance frequency of the ultrasonic transducer is set to the mechanical natural frequency on the load side by suppressing a large change in the resonant frequency of the ultrasonic transducer. It can be made easy to tune. Furthermore, by lowering the coupling coefficient between the primary side power coil and the secondary side power coil, it is possible to prevent the transmission efficiency from being sharply reduced even when the load side is displaced with respect to the main body side. It is possible to improve the stability of power transmission.
本発明の第一の実施形態としての無接触式電源供給装置を備えた工作機械をモデル的に示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows in model the machine tool provided with the non-contact-type power supply apparatus as 1st embodiment of this invention. 図1に示した工作機械の要部の縦断面説明図。FIG. 2 is an explanatory view of a vertical cross section of an essential part of the machine tool shown in FIG. 1; 超音波振動子の説明図。Explanatory drawing of an ultrasonic transducer. 一次側電力用コイル、二次側電力用コイル、信号用コイル、コア部材の分解斜視図。The disassembled perspective view of the coil for primary side electric power, the coil for secondary side electric power, the coil for signals, and a core member. 図4に示した信号用コイルをモデル的に示す説明図。FIG. 5 is an explanatory view schematically showing the signal coil shown in FIG. 4; 本体側コイルヘッドの正面図。The front view of the main body side coil head. 本体側コイルヘッドと負荷側コイルヘッドの相対変位方向を説明するための説明図。Explanatory drawing for demonstrating the relative displacement direction of a main body side coil head and a load side coil head. 本発明の第一の実施形態としての無接触式電源供給装置を概略的に説明するブロック図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which illustrates roughly the non-contact-type power supply apparatus as 1st embodiment of this invention. 共振回路のインピーダンス特性を示すグラフ。The graph which shows the impedance characteristic of a resonance circuit. 共振回路に流れる電流の測定結果を示すグラフ。The graph which shows the measurement result of the electric current which flows into a resonance circuit. 共振回路の共振周波数近傍における電圧と電流の測定結果を示すグラフ。The graph which shows the measurement result of the voltage and electric current in the resonance frequency vicinity of a resonance circuit. 共振回路の共振周波数近傍から外れた周波数域における電圧と電流の測定結果を示すグラフで、方形波の電圧を印加した場合のグラフ。The graph at the time of applying the voltage of a square wave in the graph which shows the measurement result of the voltage and the current in the frequency domain which deviated from near the resonant frequency of a resonant circuit. 共振回路の共振周波数近傍から外れた周波数域における電圧と電流の測定結果を示すグラフで、正弦波の電圧を印加した場合のグラフ。The graph at the time of applying the voltage of a sine wave in the graph which shows the measurement result of the voltage and the current in the frequency domain which deviated from near the resonant frequency of a resonant circuit. 共振回路の共振周波数が変化した場合の電圧と電流の変化の様子を説明するための説明図で、(a)は電流の振幅が変化した場合、(b)は電流の位相が変化した場合を示す説明図。It is an explanatory view for explaining a situation of change of voltage and current when resonance frequency of a resonance circuit changes, (a) is a case where amplitude of current changes, (b) is a case where phase of current changes. FIG. 信号用コイルに生じる誘導電流の向きを説明するための説明図であり、(a)は電気信号の伝送時、(b)はノイズ発生時を示す。It is explanatory drawing for demonstrating the direction of the induced current which arises in the coil for signals, (a) shows at the time of transmission of an electric signal, (b) shows the time of noise generation. 信号用コイルに生じる誘導電流の向きを説明するための縦断面図であり、(a)は電気信号の伝送時、(b)はノイズ発生時を示す。It is a longitudinal cross-sectional view for demonstrating the direction of the induced current which arises in the coil for signals, (a) shows at the time of transmission of an electric signal, (b) shows the time of noise generation. 負荷側における検出信号の送信タイミングと、本体側における検出信号の受信タイミングを測定したグラフ。The graph which measured the transmission timing of the detection signal in the load side, and the reception timing of the detection signal in the main body side. 図1に示した工作機械に選択的に取り付けられる、複数の工具ユニットを示す説明図。Explanatory drawing which shows several tool units selectively attached to the machine tool shown in FIG. 図1に示した工作機械の、コンピュータネットワークへの接続態様を説明するための説明図。Explanatory drawing for demonstrating the connection aspect to the computer network of the machine tool shown in FIG. 本発明の第二の実施形態としての無接触式電源供給装置を構成する、検出手段を示す説明図。Explanatory drawing which shows the detection means which comprises the non-contact-type power supply apparatus as 2nd embodiment of this invention. 本発明の第三の実施形態としての無接触式電源供給装置を構成する一次側電力用コイル、信号用コイル、コア部材を示す分解斜視図。The disassembled perspective view which shows the coil for primary side electric power which comprises the non-contact-type electric power supply as 3rd embodiment of this invention, the coil for signals, and a core member. 本発明の第四の実施形態としての無接触式電源供給装置を構成する一次側電力用コイル、二次側電力用コイル、信号用コイル、コア部材の縦断面図。The longitudinal cross-sectional view of the coil for primary side electric power which comprises the non-contact-type power supply apparatus as 4th embodiment of this invention, the coil for secondary side electric power, the coil for signals, and a core member. 本発明の第五の実施形態としての無接触式電源供給装置を構成する、信号用コイルをモデル的に示す正面図。The front view which shows the coil for signals which comprises the non-contact-type power supply apparatus as 5th embodiment of this invention in model. 負荷側に設けられる共振回路を説明するための説明図。Explanatory drawing for demonstrating the resonance circuit provided in the load side. 共振回路の例としての超音波振動子に印加される電圧と、超音波振動子の振動状態を説明するための説明図。Explanatory drawing for demonstrating the voltage applied to the ultrasonic transducer as an example of a resonance circuit, and the vibration state of an ultrasonic transducer.
 以下、本発明の実施形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 先ず、図1に、本発明の第一の実施形態としての無接触式電源供給装置10を備えた工作機械12をモデル的に示す。工作機械12は、本体側としての機械本体14に設けられた主軸ヘッド16の主軸18に、工具20を備えた負荷側としての工具ユニット22が取り付けられた構造とされている。そして、主軸18が回転されることにより、主軸ヘッド16に対して工具ユニット22が回転可能とされている。 First, FIG. 1 schematically shows a machine tool 12 provided with a noncontact power supply 10 according to a first embodiment of the present invention. The machine tool 12 has a structure in which a tool unit 22 as a load side provided with a tool 20 is attached to a spindle 18 of a spindle head 16 provided on a machine main body 14 as a main body side. The tool unit 22 is rotatable relative to the spindle head 16 by rotating the spindle 18.
 機械本体14は、土台24に支持されている。土台24において、工具20の前方(図1中、下方)には、加工対象物であるワーク26を着脱可能に保持するテーブル28が設けられている。テーブル28は、土台24に設けられた駆動機構30に支持されており、駆動機構30内に設けられた図示しないガイドレールやサーボモータ等によって、工具20に対して、工具20に対する前後方向(図1中、上下方向)に直交するX軸方向およびY軸方向と、工具20に対する前後方向となるZ軸方向の直交3軸方向で相対変位可能とされている。これにより、工具20が、ワーク26に対して、直交3軸方向に相対変位可能とされている。なお、工作機械12は、例えばテーブル28がX軸方向およびY軸方向の直交2軸方向に移動可能にされると共に、主軸ヘッド16がZ軸方向に移動可能とされるもの等でも良い。 The machine body 14 is supported by a base 24. In the base 24, a table 28 is provided on the front side (the lower side in FIG. 1) of the tool 20 for detachably holding a work 26 which is an object to be processed. The table 28 is supported by a drive mechanism 30 provided on the base 24, and a guide rail (not shown) provided in the drive mechanism 30, a servomotor, etc. In (1), relative displacement is possible in X axis direction and Y axis direction orthogonal to the vertical direction), and orthogonal three axis directions of Z axis direction which is the front-rear direction with respect to the tool 20. Thus, the tool 20 can be displaced relative to the workpiece 26 in the directions of three orthogonal axes. The machine tool 12 may be, for example, one in which the table 28 can be moved in the directions of two orthogonal axes in the X-axis direction and the Y-axis direction, and the spindle head 16 can be moved in the Z-axis direction.
 図2に、主軸ヘッド16と工具ユニット22の縦断面をモデル的に示す。主軸ヘッド16には、ケーシング32内に回転駆動手段としてのモータ34が設けられている。そして、モータ34の出力軸に主軸18が固定されることにより、主軸18が、中心軸:O回りで回転可能とされている。主軸18は、ベアリング36,36を介してケーシング32に支持されていると共に、先端部がケーシング32から突出されている。また、主軸18の先端側において、主軸18とケーシング32の間にはラビリンスシール38が設けられており、ケーシング32内に外部から粉塵等の異物が侵入することが防止されている。 The longitudinal cross section of the spindle head 16 and the tool unit 22 is shown in model in FIG. The spindle head 16 is provided with a motor 34 as a rotational driving means in a casing 32. The main shaft 18 is rotatable about the central axis O by fixing the main shaft 18 to the output shaft of the motor 34. The main shaft 18 is supported by the casing 32 via bearings 36 and 36, and its tip end projects from the casing 32. A labyrinth seal 38 is provided between the main shaft 18 and the casing 32 on the tip end side of the main shaft 18 to prevent foreign matter such as dust from entering the casing 32 from the outside.
 主軸18の先端部には、主軸18の先端縁部に向けて拡径されたテーパ状の内周面を有するホルダ取付穴40が形成されている。主軸18の内部には、主軸18の軸方向でホルダ取付穴40の縮径された端部の内側に、後述する工具ホルダ44の先端部に形成されたプルスタッド48を把持するプルチャック42が設けられている。 A holder mounting hole 40 having a tapered inner peripheral surface expanded in diameter toward the tip end of the main spindle 18 is formed at the tip of the main spindle 18. Inside the main shaft 18, inside the reduced diameter end of the holder mounting hole 40 in the axial direction of the main shaft 18, a pull chuck 42 for holding a pull stud 48 formed at the tip of a tool holder 44 described later It is provided.
 一方、工具ユニット22は、工具ホルダ44を有している。工具ホルダ44には、主軸18に形成されたテーパ状のホルダ取付穴40の内周面に密着する、テーパ状の外周面を備えたシャンク部46が中心軸上に形成されている。シャンク部46の先端縁部には、ロッド状のプルスタッド48が形成されている。また、工具ホルダ44には、主軸ヘッド16側(図2中、上側)に開口して、工具ホルダ44の中心軸周りに延びるコイル収容溝49が形成されている。 On the other hand, the tool unit 22 has a tool holder 44. In the tool holder 44, a shank portion 46 having a tapered outer peripheral surface is formed on the central axis in close contact with the inner peripheral surface of the tapered holder mounting hole 40 formed in the main shaft 18. A rod-like pull stud 48 is formed at the tip end of the shank portion 46. Further, the tool holder 44 is formed with a coil receiving groove 49 which is open on the side of the spindle head 16 (upper side in FIG. 2) and extends around the central axis of the tool holder 44.
 さらに、工具ユニット22には、超音波振動子50が設けられている。図3にモデル的に示すように、超音波振動子50は、所謂ボルト締めランジュバン型振動子であり、圧電効果を有する例えばセラミックス薄板等から形成された円環形状の複数の圧電素子52と、円環形状の電極54,56がボルト57に外挿されて交互に積層されると共に、両側からボルト57に螺着された金属ブロック58とホーン60で締め付けられた構造とされている。1つおきに配設された各電極54,56群は、後述する二次側電力用コイル66bと接続されている。なお、圧電素子52の積層数は、要求される工具20のストローク等を考慮して、任意の数に設定される。 Furthermore, the ultrasonic transducer 50 is provided in the tool unit 22. As shown as a model in FIG. 3, the ultrasonic transducer 50 is a so-called bolt-clamped Langevin type transducer, and has a plurality of annular piezoelectric elements 52 formed of, for example, a ceramic thin plate or the like having a piezoelectric effect; The annular electrodes 54 and 56 are extrapolated to the bolts 57 and alternately stacked, and are tightened by the metal block 58 screwed to the bolts 57 from both sides and the horn 60. The electrodes 54 and 56 disposed at every other interval are connected to a secondary power coil 66b described later. The number of stacked piezoelectric elements 52 is set to an arbitrary number in consideration of the required stroke of the tool 20 and the like.
 また、特に本実施形態においては、積層された圧電素子52を挟む両側となる、金属ブロック58と圧電素子52の電極56との間、およびホーン60と圧電素子52の電極56との間に、絶縁層61,61がそれぞれ設けられている。これら絶縁層61は、弾性変形し難い非導電性材料から形成されており、例えば脆性材料のセラミックス等から形成されている。これにより、超音波振動子50の振動をホーン60に効果的に伝達しつつ、感電等のおそれを回避することが可能とされている。そして、ホーン60の先端に、コレットや焼きばめ等のチャック機構63を介して、工具20が取り付けられている。これにより、超音波振動子50の振動がホーン60で増幅されて工具20に伝達されるようになっている。工具20は、例えばエンドミルやドリル等、各種のものが採用可能である。また、ホーン60の具体的形状や形成材料についても、例えばワーク26の材質や工具20の振動条件等を考慮して、適宜に設定され得る。例えば、ホーン60を複数段から構成しても良いし、単独で構成しても良い。また、ホーン60の形状は、例えばステップ型、エキスポーネンシャル型、カテノイダル型、コニカル型等、各種の形状が採用可能であるし、ホーン60の形成材料についても、例えばチタン、アルミニウム合金、鉄鋼、銅合金、合成樹脂等の非金属等、各種の材料が採用可能である。 Further, particularly in the present embodiment, between the metal block 58 and the electrode 56 of the piezoelectric element 52 and between the horn 60 and the electrode 56 of the piezoelectric element 52 on both sides sandwiching the stacked piezoelectric element 52, Insulating layers 61, 61 are provided respectively. These insulating layers 61 are formed of a non-conductive material which is difficult to elastically deform, and are formed of, for example, ceramics of a brittle material. Thereby, while effectively transmitting the vibration of the ultrasonic transducer 50 to the horn 60, it is possible to avoid the possibility of an electric shock or the like. The tool 20 is attached to the tip of the horn 60 via a chuck mechanism 63 such as a collet or a shrink fit. Thus, the vibration of the ultrasonic transducer 50 is amplified by the horn 60 and transmitted to the tool 20. As the tool 20, various kinds of tools such as an end mill and a drill can be adopted. Further, the specific shape and the forming material of the horn 60 may be appropriately set in consideration of, for example, the material of the work 26, the vibration condition of the tool 20, and the like. For example, the horn 60 may be configured from a plurality of stages, or may be configured alone. The shape of the horn 60 may be any of various shapes, such as a step type, an exponential type, a catenoid type, a conical type, etc. For the material of the horn 60, for example, titanium, aluminum alloy, steel Various materials such as nonmetals such as copper alloy and synthetic resin can be adopted.
 このような超音波振動子50が、図2に示したように、主軸18と同心軸上で、圧電素子52の積層方向を主軸18の軸方向に向けて工具ホルダ44に取り付けられている。超音波振動子50は、前述のように、図24に示した共振回路と等価に考えることが出来、本実施形態においては、超音波振動子50を含んで、負荷側の共振回路が構成されている。 As shown in FIG. 2, such an ultrasonic transducer 50 is attached to the tool holder 44 so that the stacking direction of the piezoelectric elements 52 is in the axial direction of the main shaft 18 on the same axis as the main shaft 18. As described above, the ultrasonic transducer 50 can be considered equivalent to the resonant circuit shown in FIG. 24. In the present embodiment, the ultrasonic transducer 50 is included to form a resonant circuit on the load side. ing.
 このような工具ユニット22のシャンク部46が、主軸18のホルダ取付穴40に差し込まれて、シャンク部46のプルスタッド48がプルチャック42で把持されることにより、工具ユニット22が主軸18に固定される。そして、モータ34で主軸18が回転されることにより、工具ユニット22が主軸ヘッド16に対して回転されて、工具ユニット22に設けられた工具20が回転されるようになっている。 The shank portion 46 of such a tool unit 22 is inserted into the holder mounting hole 40 of the main shaft 18, and the pull stud 48 of the shank portion 46 is gripped by the pull chuck 42 to fix the tool unit 22 to the main shaft 18. Be done. Then, as the spindle 18 is rotated by the motor 34, the tool unit 22 is rotated with respect to the spindle head 16, and the tool 20 provided in the tool unit 22 is rotated.
 これら主軸ヘッド16と工具ユニット22の間に、無接触式電源供給装置10が設けられている。図4に、無接触式電源供給装置10を構成する、本体側コイルヘッド62および負荷側コイルヘッド64を示す。 A noncontact power supply 10 is provided between the spindle head 16 and the tool unit 22. FIG. 4 shows the main body side coil head 62 and the load side coil head 64 which constitute the non-contact type power supply device 10.
 本体側コイルヘッド62は、一次側電力用コイル66aと、信号用コイルとしての本体側信号用コイル68aが、コア部材としてのポット型コア70に収容された構造とされている。一次側電力用コイル66aは、銅などによって形成されたコイル巻線としてのリード線72が、所定回数だけ円形に巻回されて形成されている。一次側電力用コイル66aの大きさおよび巻数は、伝送される電力の大きさや、後述する二次側電力用コイル66bとの相対的な位置等を考慮して任意に設定され得る。また、本実施形態における一次側電力用コイル66aは、合成樹脂などによって形成された略円筒形状のボビン74にリード線72が巻回されて形成されているが、ボビン74は必ずしも必要ではない。 The body side coil head 62 has a structure in which a primary side power coil 66a and a body side signal coil 68a as a signal coil are accommodated in a pot-shaped core 70 as a core member. The primary side power coil 66a is formed by winding a lead wire 72 as a coil winding made of copper or the like in a circle a predetermined number of times. The size and the number of turns of the primary power coil 66a may be arbitrarily set in consideration of the magnitude of the power to be transmitted, the relative position with the secondary power coil 66b described later, and the like. Further, although the primary power coil 66a in the present embodiment is formed by winding the lead wire 72 around a substantially cylindrical bobbin 74 formed of synthetic resin or the like, the bobbin 74 is not necessarily required.
 一方、本体側信号用コイル68aは、銅などによって形成されたコイル巻線としてのリード線76から形成されている。図5にモデル的に示すように、本体側信号用コイル68aは全体として円形に形成されており、径方向の外側で巻回された第一の巻線部分78と、径方向の内側で第一の巻線部分78と反対方向に巻回された第二の巻線部分80とが、一本のリード線76によって形成されている。 On the other hand, the main body signal coil 68a is formed of a lead wire 76 as a coil winding formed of copper or the like. As shown as a model in FIG. 5, the body side signal coil 68a is formed in a circular shape as a whole, and the first winding portion 78 wound on the outside in the radial direction and the first winding portion 78 on the inside in the radial direction One winding portion 78 and a second winding portion 80 wound in the opposite direction are formed by a single lead wire 76.
 具体的には、先ず、図5中の点Aから、リード線76が略半周されることで外側巻回部82aが形成された後に、径方向の内側に折り曲げられて、径方向の内側で外側巻回部82aと反対回り(図5中、反時計回り)に略一周されることで、内側巻回部84aが形成される。そして、リード線76が内側巻回部84aから更に径方向の外側に折り曲げられて、径方向の外側で内側巻回部84aと反対回り(図5中、時計回り)に半周されて点Aに戻ることで外側巻回部82bが形成される。以降、これを繰り返すことにより、外側巻回部82c、内側巻回部84b、外側巻回部82dが順に形成される。このようにして、外側巻回部82a~82dによって第一の巻線部分78が形成されると共に、内側巻線部84a,84bによって第二の巻線部分80が形成されている。要するに、リード線76が外側で略半周された後に内側に折り返されて、内側で逆向きに略一周される。そして、更に外側に折り返されて残りの外側を半周されることにより、本体側信号用コイル68aの外側に、一方向(図5中、時計回り)に巻回された第一の巻線部分78が形成されると共に、本体側信号用コイル68aの内側に、第一の巻線部分78と反対方向(図5中、反時計回り)に巻回された第二の巻線部分80が形成される。これを繰り返すことにより、本体側信号用コイル68aの巻数を任意に設定することが出来る。なお、理解を容易とするために、図5においては、リード線76が重ならないように図示しているが、リード線76は、第一の巻線部分78と第二の巻線部分80のそれぞれにおいて重ねられていても良い。 Specifically, first, the outer wound portion 82a is formed by the lead wire 76 being approximately half-turned from point A in FIG. 5, and then it is bent inward in the radial direction, and The inner winding portion 84a is formed by being rotated approximately in a direction opposite to the outer winding portion 82a (counterclockwise in FIG. 5). Then, the lead wire 76 is further bent outward in the radial direction from the inner winding portion 84a, and is semicircularly rotated in the opposite radial direction to the inner winding portion 84a (clockwise in FIG. 5) to point A By returning, the outer winding portion 82b is formed. Thereafter, by repeating this, the outer winding portion 82c, the inner winding portion 84b, and the outer winding portion 82d are sequentially formed. Thus, the first winding portion 78 is formed by the outer winding portions 82a to 82d, and the second winding portion 80 is formed by the inner winding portions 84a and 84b. In short, the lead wire 76 is turned around in a half turn around the outside and then turned back inside, and is turned around in a reverse direction on the inside. Then, the first winding portion 78 is further wound outward in one direction (clockwise in FIG. 5) to the outside of the body signal coil 68a by being folded back and being semi-circled on the remaining outside. And a second winding portion 80 wound in the direction opposite to the first winding portion 78 (counterclockwise in FIG. 5) inside the body-side signal coil 68a. Ru. By repeating this, the number of turns of the main body signal coil 68a can be set arbitrarily. Although FIG. 5 illustrates that the lead wire 76 does not overlap for the sake of easy understanding, the lead wire 76 is formed of the first winding portion 78 and the second winding portion 80. Each of them may be overlapped.
 本実施形態の本体側信号用コイル68aは、一次側電力用コイル66aと略等しい大きさの円形状に形成されている。また、第一の巻線部分78と第二の巻線部分80は、それぞれ略円形に巻回されて、同一平面上で同心軸上に形成されている。なお、本体側信号用コイル68aは、図4に示したように、合成樹脂等からなる薄肉で円環板形状の保持板86にリード線76が接着等で固定されることにより、巻線形状が維持されるようになっている。但し、保持板86は必ずしも必要ではない。 The main side signal coil 68a of the present embodiment is formed in a circular shape having substantially the same size as the primary side power coil 66a. Further, the first winding portion 78 and the second winding portion 80 are respectively wound in a substantially circular shape, and are formed on the same plane and concentric axes. In addition, as shown in FIG. 4, the main body side signal coil 68a has a winding shape by fixing the lead wire 76 to the holding plate 86 made of synthetic resin etc. in a thin, annular plate shape by adhesion or the like. Is supposed to be maintained. However, the holding plate 86 is not necessarily required.
 これら一次側電力用コイル66aおよび本体側信号用コイル68aは、ポット型コア70に収容される。ポット型コア70は、例えば鉄やけい素鋼、パーマロイ、フェライト等の透磁性材から形成されている。ポット型コア70は、中心軸上を延びる中央孔88が貫設された円筒形状を有すると共に、軸方向の一方に開口して中心軸周りを延びる溝部としての周溝90が形成されており、周溝90が、一次側電力用コイル66aと本体側信号用コイル68aを収容する収容凹所とされている。なお、ポット型コア70の具体的形状としては各種のものが採用可能であり、ポット型コア70は、一体成形品でも良いし、例えば周溝90の外壁92、内壁94、底壁の3部品が接着等されて形成された複数部品からなるもの等でも良い。更に、例えば外壁92が周方向で複数に分割されていたり、ポット型コア70の形成部材が一次側電力用コイル66aや本体側信号用コイル68aに近接して配置されるもの等でも良い。 The primary power coil 66 a and the main signal coil 68 a are accommodated in the pot core 70. The pot core 70 is made of, for example, a magnetically permeable material such as iron, silicon steel, permalloy, or ferrite. The pot core 70 has a cylindrical shape in which a central hole 88 extending on the central axis is provided, and a circumferential groove 90 is formed open in one of the axial directions and extending around the central axis. The circumferential groove 90 is a receiving recess for receiving the primary power coil 66a and the main signal coil 68a. Note that various shapes can be adopted as the specific shape of the pot-shaped core 70, and the pot-shaped core 70 may be an integrally molded product, for example, the outer wall 92 of the circumferential groove 90, the inner wall 94, and the three parts of the bottom wall May be made of a plurality of parts formed by bonding or the like. Furthermore, for example, the outer wall 92 may be divided into a plurality of parts in the circumferential direction, or the forming member of the pot core 70 may be disposed close to the primary power coil 66a or the main signal coil 68a.
 そして、周溝90に、一次側電力用コイル66aと本体側信号用コイル68aが収容されることで、本体側コイルヘッド62が形成されている。本実施形態においては、一次側電力用コイル66a、本体側信号用コイル68aの順でポット型コア70に収容されているが、ポット型コア70への収容順序は逆でも良い。これにより、図2に示したように、一次側電力用コイル66aがポット型コア70で囲まれると共に、一次側電力用コイル66aと本体側信号用コイル68aが、略同心軸上で、互いのリード線72,76を軸方向(図2中、上下方向)で重ねた状態で周溝90に収容されている。このように、一次側電力用コイル66aと本体側信号用コイル68aが略同心軸上に配設されることにより、本体側信号用コイル68aの第一の巻線部分78と第二の巻線部分80が、一次側電力用コイル66aの中心に対して互いに逆回りで巻回されている。なお、一次側電力用コイル66aと本体側信号用コイル68aの間にボビン74が介在されることによって、一次側電力用コイル66aと本体側信号用コイル68aが隙間を隔てて配設されていると共に、互いのリード線72,76の接触が防止されている。 The primary side power coil 66a and the main body side signal coil 68a are accommodated in the circumferential groove 90, whereby the main body side coil head 62 is formed. In the present embodiment, the primary power coil 66a and the main signal coil 68a are accommodated in the pot core 70 in this order, but the order of accommodation in the pot core 70 may be reversed. As a result, as shown in FIG. 2, the primary power coil 66a is surrounded by the pot core 70, and the primary power coil 66a and the main signal coil 68a are arranged on a substantially concentric axis with each other. The lead wires 72 and 76 are accommodated in the circumferential groove 90 in a state of being overlapped in the axial direction (vertical direction in FIG. 2). Thus, by arranging the primary side power coil 66a and the body side signal coil 68a on substantially concentric axes, the first winding portion 78 and the second winding of the body side signal coil 68a are provided. The portions 80 are wound in opposite directions with respect to the center of the primary power coil 66a. A bobbin 74 is interposed between the primary power coil 66a and the main signal coil 68a, whereby the primary power coil 66a and the main signal coil 68a are disposed with a gap therebetween. At the same time, contact between the lead wires 72 and 76 is prevented.
 また、図6に示すように、本体側信号用コイル68aが周溝90に収容されることにより、本体側信号用コイル68aの第一の巻線部分78が周溝90の外壁92側に、第二の巻線部分80が周溝90の内壁94側に配設される。ここにおいて、第一の巻線部分78と第二の巻線部分80は離れて位置されており、ポット型コア70の径方向で、第一の巻線部分78と第二の巻線部分80の離隔距離:Dが、本体側信号用コイル68aの外側における第一の巻線部分78と外壁92との離隔距離:d1、本体側信号用コイル68aの内側における第二の巻線部分80と内壁94との離隔距離:d2の何れよりも大きくされている。即ち、第一の巻線部分78が、第二の巻線部分80側よりも外壁92側寄りに、第二の巻線部分80が、第一の巻線部分78側よりも内壁94側寄りに位置されている。 Further, as shown in FIG. 6, the main side signal coil 68 a is accommodated in the circumferential groove 90 so that the first winding portion 78 of the body side signal coil 68 a is on the outer wall 92 side of the circumferential groove 90. The second winding portion 80 is disposed on the inner wall 94 side of the circumferential groove 90. Here, the first winding portion 78 and the second winding portion 80 are spaced apart and the first winding portion 78 and the second winding portion 80 in the radial direction of the pot core 70. Separation distance D: the separation distance between the first winding portion 78 and the outer wall 92 outside the body signal coil 68a: d1, the second winding portion 80 inside the body signal coil 68a The separation distance with the inner wall 94 is larger than any of d2. That is, the first winding portion 78 is closer to the outer wall 92 side than the second winding portion 80 side, and the second winding portion 80 is closer to the inner wall 94 side than the first winding portion 78 side. Is located in
 一方、図4に示したように、負荷側コイルヘッド64は、二次側電力用コイル66bと、信号用コイルとしての負荷側信号用コイル68bとを含んで構成されている。これら二次側電力用コイル66bおよび負荷側信号用コイル68bは、それぞれ、本体側コイルヘッド62に設けられた一次側電力用コイル66aおよび本体側信号用コイル68aと同様の構造とされていることから、図中に対応する符号を付することにより、その説明を省略する。即ち、負荷側コイルヘッド64は、本体側コイルヘッド62のポット型コア70を有さないものであり、ポット型コア70を除いて、本体側コイルヘッド62と同様の構造とされている。 On the other hand, as shown in FIG. 4, the load side coil head 64 is configured to include a secondary side power coil 66b and a load side signal coil 68b as a signal coil. The secondary power coil 66b and the load signal coil 68b have the same structure as the primary power coil 66a and the main signal coil 68a provided in the main coil head 62, respectively. Therefore, the explanation is omitted by attaching the corresponding reference numerals in the figure. That is, the load side coil head 64 does not have the pot type core 70 of the main body side coil head 62 and has the same structure as the main body side coil head 62 except for the pot type core 70.
 そして、図2に示したように、本体側コイルヘッド62が主軸ヘッド16に設けられると共に、負荷側コイルヘッド64が、工具ユニット22に設けられる。本体側コイルヘッド62は、シールド部材96を介して主軸ヘッド16のケーシング32に組み付けられている。シールド部材96は、例えばアルミニウム合金、銅合金、チタン合金、ニッケル合金、セラミックス、合成樹脂材料等の非磁性体から形成されており、中央に貫通孔が形成された略有底円筒形状とされている。このようなシールド部材96に本体側コイルヘッド62が内挿されて、接着や圧入等で固定されている。そして、シールド部材96に形成されたフランジ部97がケーシング32に重ね合わされて、複数箇所においてボルト98で固定されることにより、本体側コイルヘッド62が、主軸ヘッド16に取り付けられている。これにより、本体側コイルヘッド62の外側がシールド部材96で覆われており、ポット型コア70からの漏れ磁束が低減されていると共に、特に本体側信号用コイル68aにおいて、外部のモータ34等の磁気による外乱から保護されている。 Then, as shown in FIG. 2, the main body side coil head 62 is provided on the spindle head 16, and the load side coil head 64 is provided on the tool unit 22. The main body side coil head 62 is assembled to the casing 32 of the spindle head 16 via the shield member 96. The shield member 96 is formed of a nonmagnetic material such as, for example, aluminum alloy, copper alloy, titanium alloy, nickel alloy, ceramics, synthetic resin material, and has a substantially bottomed cylindrical shape in which a through hole is formed at the center There is. The main body side coil head 62 is inserted into such a shield member 96 and fixed by bonding, press-fitting or the like. The main body side coil head 62 is attached to the spindle head 16 by overlapping the flange portions 97 formed on the shield member 96 with the casing 32 and fixing the flange portions 97 with bolts 98 at a plurality of locations. Thereby, the outside of the main body side coil head 62 is covered with the shield member 96, and the leakage magnetic flux from the pot core 70 is reduced, and the external motor 34 etc. is particularly reduced in the main body side signal coil 68a. Protected from magnetic disturbances.
 そして、主軸ヘッド16の主軸18が、シールド部材96の中央に貫設された貫通孔と、ポット型コア70の中央孔88に挿通されている。なお、主軸ヘッド16への組み付け状態において、本体側コイルヘッド62は、主軸ヘッド16における工具ユニット22側の端部に配設されており、ポット型コア70の周溝90が、工具ユニット22側に開口する向きに配設されている。 The main spindle 18 of the main spindle head 16 is inserted through the through hole formed in the center of the shield member 96 and the central hole 88 of the pot core 70. In the assembled state to the spindle head 16, the main body side coil head 62 is disposed at the end of the spindle head 16 on the tool unit 22 side, and the circumferential groove 90 of the pot core 70 is on the tool unit 22 side. It is disposed in the opening direction.
 一方、負荷側コイルヘッド64は、工具ホルダ44のコイル収容溝49に収容されて接着や圧入等で固定されており、工具ユニット22における主軸ヘッド16側の端部に配設されている。これにより、本体側コイルヘッド62と負荷側コイルヘッド64が、主軸18の中心軸:O上で、互いに同軸上に配設されると共に、主軸18の軸方向(図2中、上下方向)で隙間を隔てて対向配置されている。そして、主軸18が回転されることによって、負荷側コイルヘッド64が、本体側コイルヘッド62に対して、主軸18の中心軸:O回りで相対回転可能とされている。 On the other hand, the load side coil head 64 is accommodated in the coil accommodation groove 49 of the tool holder 44 and fixed by bonding, press fitting or the like, and is disposed at the end of the tool unit 22 on the spindle head 16 side. Thereby, the main body side coil head 62 and the load side coil head 64 are arranged coaxially with each other on the central axis O of the main shaft 18 and in the axial direction of the main shaft 18 (vertical direction in FIG. 2) They are arranged opposite to each other with a gap. Then, by rotating the main shaft 18, the load-side coil head 64 can be relatively rotated around the central axis: O of the main shaft 18 with respect to the main body-side coil head 62.
 即ち、本実施形態の本体側コイルヘッド62と負荷側コイルヘッド64は、図7にモデル的に示すように、主軸ヘッド16および工具ユニット22に組み付けられる前の状態で、X,Y,Zの直交3軸座標において、本体側コイルヘッド62の軸方向に延びる前後方向(X軸方向)、左右方向(Y軸方向)、上下方向(Z軸方向)の3方向で負荷側コイルヘッド64の相対変位が許容されると共に、X軸回りのロール、Y軸回りのピッチ、Z軸回りのヨーの3方向で傾動乃至は回動が許容されている。これにより、一次側電力用コイル66aと二次側電力用コイル66b、および本体側信号用コイル68aと負荷側信号用コイル68bが、それぞれ、6自由度をもって互いに相対変位可能とされている。そして、このような本体側コイルヘッド62と負荷側コイルヘッド64が工作機械12の主軸ヘッド16と工具ユニット22に組み付けられることによって、負荷側コイルヘッド64が、本体側コイルヘッド62に対して、X軸回りのロールが許容された状態で隙間を隔てて対向配置されている。 That is, the main body side coil head 62 and the load side coil head 64 of this embodiment are X, Y, Z in a state before being assembled to the spindle head 16 and the tool unit 22 as shown in FIG. 7 as a model. Relative to the load side coil head 64 in the three directions of the longitudinal direction (X axis direction), the left and right direction (Y axis direction), and the vertical direction (Z axis direction) extending in the axial direction of the main body side coil head 62 While displacement is permitted, tilting or turning is permitted in three directions of roll around the X axis, pitch around the Y axis, and yaw around the Z axis. As a result, the primary power coil 66a and the secondary power coil 66b, and the main signal coil 68a and the load signal coil 68b can be displaced relative to each other with six degrees of freedom. The load side coil head 64 is mounted to the main body side coil head 62 by assembling the main body side coil head 62 and the load side coil head 64 to the spindle head 16 and the tool unit 22 of the machine tool 12. It is disposed opposite to each other with a gap in a state where the roll around the X axis is allowed.
 ここにおいて、本体側コイルヘッド62と負荷側コイルヘッド64は、本体側コイルヘッド62のみポット型コア70を備えており、負荷側コイルヘッド64は、ポット型コア70を備えていない。即ち、主軸ヘッド16には、一次側電力用コイル66aを囲むコア部材としてのポット型コア70が設けられている一方、工具ユニット20には、二次側電力用コイル66bを囲むコア部材は設けられていない。 Here, the main body side coil head 62 and the load side coil head 64 have the pot type core 70 only in the main body side coil head 62, and the load side coil head 64 does not have the pot type core 70. That is, while the spindle head 16 is provided with the pot type core 70 as a core member surrounding the primary side power coil 66a, the tool unit 20 is provided with a core member surrounding the secondary side power coil 66b. It is not done.
 これら本体側コイルヘッド62と負荷側コイルヘッド64は、例えば、図8に示すように、主軸ヘッド16が設けられた機械本体14側において、一次側電力用コイル66aに、直流電源を供給する電源回路100がインバータ102を介して接続される。電源回路100およびインバータ102は、機械本体14側に設けられている。また、本体側信号用コイル68aに、復調回路を備えた通信用回路104を介して制御装置106が接続される。通信用回路104および制御装置106は、機械本体14側に設けられている。制御装置106はCPUやROM、RAM等を備えており、通信用回路104から受信した電気信号と、予め定められた所定のプログラムに従って、インバータ102の駆動周波数を調節する。 For example, as shown in FIG. 8, the main body side coil head 62 and the load side coil head 64 are power supplies for supplying DC power to the primary side power coil 66a on the machine main body 14 side provided with the spindle head 16 Circuit 100 is connected via inverter 102. The power supply circuit 100 and the inverter 102 are provided on the machine body 14 side. Further, the control device 106 is connected to the main body signal coil 68 a via the communication circuit 104 having a demodulation circuit. The communication circuit 104 and the control device 106 are provided on the machine body 14 side. The control device 106 includes a CPU, a ROM, a RAM, and the like, and adjusts the drive frequency of the inverter 102 in accordance with the electric signal received from the communication circuit 104 and a predetermined program determined in advance.
 一方、工具ユニット22側において、二次側電力用コイル66bに超音波振動子50が接続される。なお、図8に併せ示すように、必要に応じて、補正用コンデンサ107を超音波振動子50と並列に設けて、超音波振動子50の制動容量(Cd)に流れる電流を相殺するようにしても良い。更に、超音波振動子50には検出手段としての検出回路108が接続されており、検出回路108が、増幅回路110を介して負荷側信号用コイル68bと接続されている。検出回路108は例えばホール素子等を含んで構成されており、超音波振動子50の振動状態として、超音波振動子50に加わる電圧や、超音波振動子50を流れる電流を検出する。これら検出回路108および増幅回路110は、工具ユニット22側に設けられている。 On the other hand, on the tool unit 22 side, the ultrasonic transducer 50 is connected to the secondary power coil 66b. As shown in FIG. 8 as well, the correction capacitor 107 is provided in parallel with the ultrasonic transducer 50 as necessary to cancel the current flowing to the braking capacitance (Cd) of the ultrasonic transducer 50. It is good. Furthermore, a detection circuit 108 as a detection means is connected to the ultrasonic transducer 50, and the detection circuit 108 is connected to the load signal coil 68b via the amplification circuit 110. The detection circuit 108 is configured to include, for example, a Hall element, and detects a voltage applied to the ultrasonic transducer 50 and a current flowing through the ultrasonic transducer 50 as a vibration state of the ultrasonic transducer 50. The detection circuit 108 and the amplification circuit 110 are provided on the tool unit 22 side.
 そして、本実施形態の無接触式電源供給装置10は、本体側コイルヘッド62、負荷側コイルヘッド64、電源回路100、インバータ102、通信用回路104、制御装置106、検出回路108、増幅回路110を含んで構成されており、電源回路100とインバータ102を含んで、一次側電力用コイル66aに交流電圧を出力する給電装置が構成されている。 The non-contact type power supply device 10 of this embodiment includes the main body side coil head 62, the load side coil head 64, the power supply circuit 100, the inverter 102, the communication circuit 104, the control device 106, the detection circuit 108, and the amplification circuit 110. The power supply device is configured to output an AC voltage to the primary side power coil 66 a including the power supply circuit 100 and the inverter 102.
 このような無接触式電源供給装置10を用いることにより、本体側としての機械本体14から、負荷側としての工具ユニット22に設けられた共振回路としての超音波振動子50に、駆動電力を供給することが出来る。そして、超音波振動子50の振動状態を検出して、超音波振動子50に加わる機械的負荷や温度条件の変化により、超音波振動子50の共振周波数が変化した場合には、超音波振動子50への印加電圧の周波数を変化させるフィードバック制御を行なうことにより、超音波振動子50を効率的に駆動させることが出来る。以下、超音波振動子50への駆動電力の供給と、フィードバック制御の一例を示す。 By using such a non-contact type power supply device 10, driving power is supplied from the machine main body 14 as the main body side to the ultrasonic vibrator 50 as the resonant circuit provided in the tool unit 22 as the load side. You can do it. Then, when the resonance frequency of the ultrasonic transducer 50 changes due to a change in mechanical load or temperature condition applied to the ultrasonic transducer 50 by detecting the vibration state of the ultrasonic transducer 50, ultrasonic vibration is generated. By performing feedback control to change the frequency of the voltage applied to the transducer 50, the ultrasonic transducer 50 can be efficiently driven. Hereinafter, supply of drive power to the ultrasonic transducer 50 and an example of feedback control will be shown.
 先ず、前提として、複数の圧電素子52から構成された超音波振動子50は、共振周波数近傍において図8に示した回路と等価に考えることが出来る。該等価回路は、図9に示すインピーダンス特性を有することが知られており、インピーダンス(Z)が最も小さくなる周波数が、超音波振動子50の共振周波数fであり、超音波振動子50は、共振周波数fの交流電圧が印加された場合に、最も効率良く振動し、大きな振幅を得ることが出来る。なお、共振周波数fにおいて、超音波振動子50に流れる電圧と電流の位相差は0であり、超音波振動子50に最も大きな電流が流れる。また、インピーダンス(Z)が最も大きくなる周波数が反共振周波数fである。 First, as a premise, the ultrasonic transducer 50 composed of a plurality of piezoelectric elements 52 can be considered equivalent to the circuit shown in FIG. 8 in the vicinity of the resonance frequency. The equivalent circuit is known to have an impedance characteristic shown in FIG. 9, the impedance (Z) is the smallest becomes the frequency, the resonance frequency f r of the ultrasonic transducer 50, the ultrasonic transducer 50 is When an alternating voltage of the resonance frequency f r is applied, it vibrates most efficiently, and a large amplitude can be obtained. At the resonance frequency f r , the phase difference between the voltage and the current flowing to the ultrasonic transducer 50 is zero, and the largest current flows to the ultrasonic transducer 50. Also, the frequency at which the impedance (Z) is the largest is the antiresonance frequency f n .
 そこで、事前準備として、超音波振動子50に対して、圧電素子52の組成等から或る程度推定される共振周波数を挟む所定範囲に亘って、例えば0.1kHz、0.5kHz、1kHz等の所定間隔毎に周波数を少しずつ変化させた交流電圧を印加して、超音波振動子50に流れる電流を測定する。例えば、超音波振動子50の共振周波数fが20kHz近辺に存すると推定される場合には、10kHz~40kHzまで印加電圧を変化させて、超音波振動子50に流れる電流を測定する。図10に、超音波振動子50に流れる電流を測定した結果の一例を示す。得られた測定結果から、最も大きな電流の流れた周波数(図10においては、約23kHz)の近傍に、超音波振動子50の共振周波数fが存すると推定することが出来る。 Therefore, as a preliminary preparation, for example, 0.1 kHz, 0.5 kHz, 1 kHz, etc. over a predetermined range sandwiching the resonance frequency which is estimated to some extent from the composition of the piezoelectric element 52 with respect to the ultrasonic transducer 50. An alternating current voltage whose frequency is gradually changed at predetermined intervals is applied to measure the current flowing through the ultrasonic transducer 50. For example, when it is estimated that the resonance frequency f r of the ultrasonic transducer 50 is around 20 kHz, the applied voltage is changed to 10 kHz to 40 kHz, and the current flowing through the ultrasonic transducer 50 is measured. FIG. 10 shows an example of the result of measurement of the current flowing through the ultrasonic transducer 50. As shown in FIG. From the measurement results obtained, the frequency of flow of greatest current (in FIG. 10, about 23 kHz) in the vicinity of, can be estimated as a resonance frequency f r of the ultrasonic transducer 50 resides.
 なお、上述のように、超音波振動子50は、共振周波数fにおいて最も効率良く駆動する。しかし、図9から明らかなように、共振周波数f近傍では、インピーダンス(Z)の変化が急峻であり、共振周波数fから僅かに外れただけで、超音波振動子50の振動状態が急激に変化する。そこで、超音波振動子50の駆動の安定性を確保するために、本実施形態では、図9における共振周波数fから反共振周波数fまでの間で、共振周波数fから僅かにずれた位置が駆動周波数fとして設定されている。具体的には、電圧と電流の位相差が、(π/2)±(π/4)の範囲内の電圧が印加されるようになっており、本実施形態においては、図11に実測結果を示すように、位相差がπ/2となる駆動周波数fの交流電圧が印加されるようになっている。なお、図12および図13に、超音波振動子50に対して、共振周波数近傍から外れた周波数域の電圧を印加した場合の実測結果を示す。図12は、交流電圧として方形波を入力したものであり、電流の振幅が小さい。一方、図13は、交流電圧として正弦波を入力したものであり、電気的振動が不安定であることから、非共振状態であることが確認できる。 As described above, the ultrasonic transducer 50 is driven most efficiently at the resonance frequency f r . However, as apparent from FIG. 9, in the vicinity of the resonance frequency f r , the change of the impedance (Z) is steep, and the vibration state of the ultrasonic transducer 50 is rapid only by slightly deviating from the resonance frequency f r Change to Therefore, in order to ensure the stability of the driving of the ultrasonic transducer 50, in the present embodiment, the resonance frequency f r slightly deviates from the resonance frequency f r from the resonance frequency f r to the anti-resonance frequency f n in FIG. The position is set as the drive frequency f d . Specifically, a voltage in the range of (π / 2) ± (π / 4) is applied to the phase difference between the voltage and the current, and in the present embodiment, the measurement result is shown in FIG. As shown, an alternating voltage with a drive frequency f d with a phase difference of π / 2 is applied. FIGS. 12 and 13 show the measurement results in the case where a voltage in a frequency range deviated from the vicinity of the resonance frequency is applied to the ultrasonic transducer 50. FIG. 12 shows a square wave input as an AC voltage, and the amplitude of the current is small. On the other hand, FIG. 13 shows a sine wave input as an AC voltage, and since the electrical vibration is unstable, it can be confirmed that it is in a non-resonance state.
 そして、主軸ヘッド16のモータ34(図2参照)が駆動されて、工具ユニット22が主軸ヘッド16に対して回転された状態で、図8に示した電源回路100の直流電圧が、インバータ102によって高周波電圧に変換されて、一次側電力用コイル66aに供給される。ここにおいて、インバータ102の駆動周波数は、制御装置106によって制御されており、上記で得られた駆動周波数fの交流電圧が一次側電力用コイル66aに供給されるようになっている。 Then, with the motor 34 (see FIG. 2) of the spindle head 16 driven and the tool unit 22 rotated with respect to the spindle head 16, the DC voltage of the power supply circuit 100 shown in FIG. It is converted into a high frequency voltage and supplied to the primary power coil 66a. Here, the driving frequency of the inverter 102 is controlled by the controller 106, the AC voltage of the drive frequency f d obtained above is adapted to be supplied to the coil 66a for the primary-side power.
 これにより、一次側電力用コイル66aに、一次側電力用コイル66aを貫き、出力周波数に応じて変化する磁束が発生する。かかる磁束がポット型コア70で集束されて、ポット型コア70から出る磁束が二次側電力用コイル66bと鎖交される。その結果、一次側電力用コイル66aと二次側電力用コイル66bが電磁結合されて、二次側電力用コイル66bに、相互誘導による誘導起電力が発生する。このようにして、相対回転される一次側電力用コイル66aと二次側電力用コイル66bの間で、無接触状態で電力の伝送が可能とされており、二次側電力用コイル66bに生ぜしめられた高周波電圧が、超音波振動子50に駆動電力として供給される。これにより、超音波振動子50が振動されて、工具20に、モータ34による回転と超音波振動子50の振動が重畳されることとなり、ワーク26(図1参照)の加工をより高い精度で行なうことが可能とされている。 Thereby, the primary side power coil 66a is penetrated through the primary side power coil 66a, and the magnetic flux which changes according to the output frequency is generated. The magnetic flux is focused by the pot core 70, and the magnetic flux from the pot core 70 is linked to the secondary power coil 66b. As a result, the primary side power coil 66a and the secondary side power coil 66b are electromagnetically coupled, and an induced electromotive force is generated in the secondary side power coil 66b due to mutual induction. In this manner, transmission of power is possible in a non-contact state between the primary power coil 66a and the secondary power coil 66b, which are relatively rotated, and occurs in the secondary power coil 66b. The squeezed high frequency voltage is supplied to the ultrasonic transducer 50 as driving power. As a result, the ultrasonic transducer 50 is vibrated, and the rotation by the motor 34 and the vibration of the ultrasonic transducer 50 are superimposed on the tool 20, so that the processing of the work 26 (see FIG. 1) is more accurate. It is possible to do.
 ワーク26の加工時において、超音波振動子50の共振周波数fは、工具20を介して加わる機械的負荷の変化や温度条件の変化等によって変化する。超音波振動子50の共振周波数fの変化は、例えば、超音波振動子50に印加される電圧の大きさ(振幅)、超音波振動子50を流れる電流の大きさ(振幅)や、これら電圧と電流の位相差の変化として現れる。例えば、図14(a)にI’として示すように、負荷が増大した場合に電流の振幅が小さくなったり、図14(b)にI’として示すように、負荷が増大した場合にそれまでの位相差と異なる位相差を生ずる。そして、本実施形態の無接触式電源供給装置10を用いることにより、超音波振動子50の共振周波数fの変化に追従的に対応して、超音波振動子50に印加する交流電圧の周波数を変化させるフィードバック制御を行なうことが出来る。 At the time of processing of the workpiece 26, the resonance frequency f r of the ultrasonic transducer 50 changes due to a change in mechanical load applied via the tool 20, a change in temperature conditions, and the like. For example, the magnitude (amplitude) of the voltage applied to the ultrasound transducer 50, the magnitude (amplitude) of the current flowing through the ultrasound transducer 50, and the change of the resonance frequency fr of the ultrasound transducer 50 It appears as a change in phase difference between voltage and current. For example, as indicated by I 'in FIG. 14 (a), the amplitude of the current decreases when the load increases, or when the load increases as indicated by I' in FIG. 14 (b). Produces a phase difference different from that of Then, by using the non-contact type power supply device 10 of the present embodiment, the frequency of the AC voltage applied to the ultrasonic transducer 50 corresponding to the change of the resonant frequency fr of the ultrasonic transducer 50 Feedback control can be performed.
 先ず、超音波振動子50の振動状態が、図8に示した検出回路108で検出される。検出回路108には例えばホール素子等が設けられており、超音波振動子50の振動状態として、例えば超音波振動子50に印加される電圧の振幅、超音波振動子50を流れる電流の振幅、これら電圧と電流の位相等が検出される。 First, the vibration state of the ultrasonic transducer 50 is detected by the detection circuit 108 shown in FIG. The detection circuit 108 is provided with, for example, a Hall element, and the vibration state of the ultrasonic transducer 50, for example, the amplitude of the voltage applied to the ultrasonic transducer 50, the amplitude of the current flowing through the ultrasonic transducer 50, The phase and the like of these voltage and current are detected.
 検出回路108で検出された超音波振動子50の電圧や電流の振幅、位相等は、検出信号として増幅回路110で増幅されて、負荷側信号用コイル68bに交流電圧として印加される。これにより、負荷側信号用コイル68bを貫き、出力周波数に応じて変化する磁束が発生し、かかる磁束が本体側信号用コイル68aと鎖交される。その結果、本体側信号用コイル68aに、負荷側信号用コイル68bとの相互誘導による誘導起電力が発生し、検出回路108から発信された検出信号が、通信用回路104によって本体側信号用コイル68aから取り出される。このようにして、相対回転される負荷側信号用コイル68bと本体側信号用コイル68aとの間で、無接触状態で電気信号の伝送が可能とされている。 The amplitude, phase, and the like of the voltage and current of the ultrasonic transducer 50 detected by the detection circuit 108 are amplified by the amplifier circuit 110 as a detection signal, and applied as an AC voltage to the load-side signal coil 68b. As a result, the load-side signal coil 68b is penetrated to generate a magnetic flux that changes according to the output frequency, and the magnetic flux is linked to the main-body signal coil 68a. As a result, an induced electromotive force occurs due to mutual induction with the load signal coil 68b in the main signal coil 68a, and the detection signal transmitted from the detection circuit 108 is transmitted to the main signal coil by the communication circuit 104. It is taken out from 68a. In this manner, transmission of an electrical signal is enabled in a non-contact state between the load-side signal coil 68b and the body-side signal coil 68a which are relatively rotated.
 本体側信号用コイル68aから取り出された検出信号は、制御装置106に入力される。制御装置106は、検出信号から得られた超音波振動子50の電圧の振幅や電流の振幅、電圧と電流の位相差等を、検出信号を受信する前の状態と比較して、検出信号を受信する前の状態から変化している場合には、検出信号を受信する前の状態に戻るように、インバータ102の駆動周波数を変化させて、一次側電力用コイル66aへの給電周波数を変化させる。インバータ102の駆動周波数の変更量は、電圧や電流の振幅の変化量や、位相差の変化量に対応する駆動周波数の変更量を予め制御装置106にテーブルとして記憶しておいて、テーブルから検索して設定しても良いし、例えば検出回路108から超音波振動子50における電圧の振幅や電流の振幅、電圧と電流の位相等を受信しつつ、インバータ102の駆動周波数を0.1kHzや0.5kHz等、少しずつ変化させることで調節する等しても良い。これにより、超音波振動子50に、変化後の共振周波数fに対応する駆動周波数fの交流電圧を印加することが出来、図11に示した所期の振動状態に復帰させることが出来る。このように、本実施形態においては、制御装置106およびインバータ102を含んで、給電周波数調節機構が構成されている。 The detection signal extracted from the main body side signal coil 68 a is input to the control device 106. The control device 106 compares the amplitude of the voltage and current of the ultrasonic transducer 50 obtained from the detection signal, the phase difference between the voltage and the current, etc. with the state before receiving the detection signal, and detects the detection signal. When changing from the state before reception, the drive frequency of the inverter 102 is changed to change the power supply frequency to the primary side power coil 66a so as to return to the state before receiving the detection signal. . As the change amount of the drive frequency of the inverter 102, the change amount of the drive frequency corresponding to the change amount of the amplitude of the voltage or current or the change amount of the phase difference is stored in advance in the control device 106 as a table. For example, while receiving the amplitude of the voltage or the amplitude of the current in the ultrasonic transducer 50, the phase of the voltage and the current, etc. from the detection circuit 108, the drive frequency of the inverter 102 is 0.1 kHz or It may be adjusted by changing it little by little, such as 5 kHz. As a result, it is possible to apply to the ultrasonic transducer 50 an AC voltage of the drive frequency f d corresponding to the changed resonance frequency f r, and to restore the expected vibration state shown in FIG. . Thus, in the present embodiment, the power supply frequency adjustment mechanism is configured including the control device 106 and the inverter 102.
 本実施形態の無接触式電源供給装置10を用いれば、互いに相対変位される主軸ヘッド16と工具ユニット22の間で、主軸ヘッド16から工具ユニット22に設けられた超音波振動子50に駆動電力を供給することが可能になる。更に、工具ユニット22から主軸ヘッド16に向けて、超音波振動子50の振動状態を電気信号として伝送することが可能とされており、超音波振動子50の共振周波数fの変化に追従的に対応して、超音波振動子50に印加する交流電圧の周波数を変化させるフィードバック制御を実現することが出来る。その結果、工具20のストロークをより安定的に確保して、より優れた加工精度を得ることが出来る。また、何等かの原因で工具ユニット22側に短絡や断線が生じた場合には、超音波振動子50における共振条件が変化して印加電圧が共振周波数から外れることで、工具ユニット22側に大きなエネルギーが供給されることも防止され得る。 If the non-contact type power supply device 10 of this embodiment is used, the driving power to the ultrasonic vibrator 50 provided in the tool unit 22 from the spindle head 16 between the spindle head 16 and the tool unit 22 displaced relative to each other It becomes possible to supply Moreover, toward the tool unit 22 to the spindle head 16, which is possible to transmit the vibration state of the ultrasonic transducer 50 as an electrical signal, follow manner the change in the resonant frequency f r of the ultrasonic transducer 50 In response to the above, it is possible to realize feedback control that changes the frequency of the AC voltage applied to the ultrasonic transducer 50. As a result, the stroke of the tool 20 can be secured more stably, and more excellent processing accuracy can be obtained. In addition, when a short circuit or disconnection occurs on the tool unit 22 side due to any cause, the resonance condition in the ultrasonic transducer 50 changes and the applied voltage deviates from the resonance frequency, which is large on the tool unit 22 side. Energy can also be prevented from being supplied.
 そして、本実施形態に従う構造とされた無接触式電源供給装置10においては、ポット型コア70が主軸ヘッド16側のみに設けられており、超音波振動子50が設けられた工具ユニット22側には設けられていない。これにより、超音波振動子50の共振回路におけるインダクタンスが大きくなることを回避して、超音波振動子50の共振周波数が低下することを回避することが出来る。その結果、超音波振動子50を高い周波数で駆動させることが出来、より優れた加工精度を得ることが出来る。更に、超音波振動子50の共振周波数が大きく変化することを回避して、超音波振動子50の共振周波数を、ホーン60および工具20を含んだ工具ユニット22の機械的な固有振動数に合わせ易くすることが出来、チューニングが容易になると共に、工具20のストロークを有効に得ることが出来る。 And, in the non-contact type power supply device 10 having a structure according to the present embodiment, the pot core 70 is provided only on the spindle head 16 side, and on the tool unit 22 side where the ultrasonic transducer 50 is provided. Is not provided. As a result, it is possible to avoid an increase in the inductance in the resonant circuit of the ultrasonic transducer 50 and to avoid a decrease in the resonant frequency of the ultrasonic transducer 50. As a result, the ultrasonic transducer 50 can be driven at a high frequency, and more excellent processing accuracy can be obtained. Furthermore, the resonant frequency of the ultrasonic transducer 50 is adjusted to the mechanical natural frequency of the tool unit 22 including the horn 60 and the tool 20 while avoiding a large change in the resonant frequency of the ultrasonic transducer 50. This can be facilitated, tuning is facilitated, and the stroke of the tool 20 can be effectively obtained.
 さらに、工具ユニット22側にポット型コア70を設けないことによって、例えば主軸ヘッド16と工具ユニット22の両方にコア部材を設けた場合のように、コア部材の対向面間に一次側電力用コイル66aからの磁束が集中することが無い。これにより、工具ユニット22が主軸ヘッド16に対して僅かに位置ずれしたのみで二次側電力用コイル66bの鎖交磁束が急激に低下することが回避されており、安定的な電力伝送を行なうことが出来る。また、一次側電力用コイル66aと二次側電力用コイル66bとの間で漏れ磁束を積極的に生ぜしめることにより、例えば図25に示したように、一次側電力用コイル66aから方形波として交流電力が伝送される場合には、二次側電力用コイル66b側において受信する交流電圧を、超音波振動子50の機械的振動の正弦波に近づけることが出来る。その結果、超音波振動子50の駆動をより安定的に発現させることが出来て、超音波振動子50のうねり等を軽減して、より優れた加工精度を得ることが出来ると共に、余剰電力に起因する発熱等を低減することもできる。加えて、工具ユニット22側にコア部材を設けないことによって、工具ユニット22を軽量化してより高速な回転に対応することが出来ると共に、高速回転でコア部材が損傷する等の問題も回避することが出来る。 Furthermore, by not providing the pot type core 70 on the tool unit 22 side, for example, as in the case where core members are provided on both the spindle head 16 and the tool unit 22, a coil for primary side power is provided between opposing surfaces of the core members. There is no concentration of magnetic flux from 66a. Thereby, it is avoided that the interlinkage magnetic flux of the secondary side power coil 66b is rapidly reduced only when the tool unit 22 is slightly misaligned with respect to the spindle head 16, and stable power transmission is performed. I can do it. Further, as shown in FIG. 25, for example, as shown in FIG. 25, a leakage current is positively generated between the primary side power coil 66a and the secondary side power coil 66b as a square wave from the primary side power coil 66a. When AC power is transmitted, the AC voltage received on the secondary power coil 66 b side can be brought close to the sine wave of the mechanical vibration of the ultrasonic transducer 50. As a result, the drive of the ultrasonic transducer 50 can be expressed more stably, and the undulation or the like of the ultrasonic transducer 50 can be reduced, and more excellent processing accuracy can be obtained. It is also possible to reduce the resulting heat generation and the like. In addition, by not providing the core member on the tool unit 22 side, the weight of the tool unit 22 can be reduced to cope with higher speed rotation, and problems such as damage to the core member due to high speed rotation can be avoided. Can do.
 更にまた、本実施形態の無接触式電源供給装置10においては、本体側信号用コイル68aと負荷側信号用コイル68bのそれぞれにおいて、互いに逆向きに巻回された第一の巻線部分78と第二の巻線部分80が形成されている。これにより、一次側電力用コイル66aへの通電によって生ぜしめられる磁束で本体側信号用コイル68aや負荷側信号用コイル68bに誘起されるノイズ起電力を低減することが出来、電気信号の伝送をより精度良く行なうことが出来る。 Furthermore, in the non-contact type power supply device 10 according to the present embodiment, the first winding portion 78 and the opposite winding are wound in the main signal coil 68a and the load signal coil 68b, respectively. A second winding portion 80 is formed. As a result, the noise electromotive force induced in the main side signal coil 68a and the load side signal coil 68b by the magnetic flux generated by the energization of the primary side power coil 66a can be reduced, and the transmission of the electric signal is performed. It can be done more accurately.
 すなわち、図15(a)および図16(a)にモデル的に示すように、負荷側信号用コイル68bから本体側信号用コイル68aに電気信号を伝送する場合には、先ず、負荷側信号用コイル68bに交流電圧が印加されることにより、負荷側信号用コイル68bの第一の巻線部分78に電流isoが流されると共に、第二の巻線部分80に電流isiが流される。なお、図16においては、紙面の手前側に流れる電流を斜め下方に延びる矢印で、紙面の奥側に流れる電流を斜め上方に延びる矢印で示している。これら電流isoと電流isiは同一の電流であり、負荷側信号用コイル68bのリード線76内を互いに同方向に流れる。そして、負荷側信号用コイル68bに電流isoと電流isiが流れることによって、第二の巻線部分80の内側に磁束b、第二の巻線部分80と第一の巻線部分78の間に磁束b、第一の巻線部分78の外側に磁束bが生ぜしめられる。ここにおいて、第一の巻線部分78と第二の巻線部分80が互いに逆向きに巻回されていることから、電流isoと電流isiはリード線76を外から見た場合には互いに逆回りに流れている。その結果、磁束bと磁束bの磁力線は同一方向に向かう一方、磁束bの磁力線は磁束bおよび磁束bの磁力線と反対方向となる。 That is, as shown in FIG. 15A and FIG. 16A as a model, when transmitting an electrical signal from the load signal coil 68b to the main signal coil 68a, first, for the load signal By applying an alternating voltage to the coil 68b, the current iso flows through the first winding portion 78 of the load signal coil 68b, and the current isi flows through the second winding portion 80. In FIG. 16, the current flowing to the front side of the drawing is indicated by an arrow extending obliquely downward, and the current flowing to the back side of the drawing is indicated by an arrow extending obliquely upward. The current iso and the current isi are the same current, and flow in the same direction in the lead wire 76 of the load-side signal coil 68b. The current iso and the current isi flow through the load-side signal coil 68b, so that the magnetic flux b i inside the second winding portion 80, the second winding portion 80 and the first winding portion 78. flux b c between the magnetic flux b o is caused outside the first winding portion 78. Here, since the first winding portion 78 and the second winding portion 80 are wound in the opposite directions to each other, the current iso and the current isi appear when the lead wire 76 is viewed from the outside. It flows in the opposite direction to each other. As a result, magnetic lines of flux b i and the magnetic flux b o whereas towards the same direction, magnetic lines of flux b c is the direction opposite to the magnetic lines of flux b i and the magnetic flux b o.
 なお、第一の巻線部分78の外側には、第二の巻線部分80を流れる電流isiによって、磁束bと反対方向の磁束rbが生ぜしめられる一方、第二の巻線部分80の内側には、第一の巻線部分78を流れる電流isoによって、磁束bと反対方向の磁束rbが生ぜしめられるが、第一の巻線部分78と第二の巻線部分80が離れて位置されており、第二の巻線部分80から第一の巻線部分78の外側、第一の巻線部分78から第二の巻線部分80の内側までは距離があることから、これら磁束rb、rbは、磁束b、bに殆ど影響しない程度に小さい。 While the magnetic flux rb o in the opposite direction to the magnetic flux b o is generated outside the first winding portion 78 by the current i si flowing through the second winding portion 80, the second winding portion inside the 80, the current i so through the first winding portion 78, but the magnetic flux b i the opposite direction of the magnetic flux rb i is caused, the first winding portion 78 second winding portions 80 are spaced apart and there is a distance from the second winding portion 80 to the outside of the first winding portion 78 and from the first winding portion 78 to the inside of the second winding portion 80 from, these magnetic flux rb o, rb i is, the magnetic flux b o, small enough not to affect almost b i.
 そして、負荷側信号用コイル68bによって生ぜしめられた磁束b、b、bにより、対向する本体側信号用コイル68aの第一の巻線部分78に誘導電流iroが生ぜしめられると共に、第二の巻線部分80に誘導電流iriが生ぜしめられる。これらの誘導電流iro、iriは、本体側信号用コイル68aのリード線76内を互いに同方向に流れ、相殺されることは無い。このようにして、負荷側信号用コイル68bから、本体側信号用コイル68aに電気信号を伝送することが可能とされている。特に本実施形態においては、本体側信号用コイル68aがポット型コア70に組み付けられて、第一の巻線部分78がポット型コア70の外壁92に近接配置されていると共に、第二の巻線部分80が内壁94に近接配置されていることから、磁束b、bを外壁92と内壁94にそれぞれ集束させることにより、第一の巻線部分78と第二の巻線部分80のそれぞれに、リード線76内で互いに同方向に流れる誘導電流iro、iriを効果的に生ぜしめることが出来る。 Then, an induced current i ro is generated in the first winding portion 78 of the opposing main body signal coil 68a by the magnetic fluxes b i , b c and b o generated by the load side signal coil 68b. The induced current iri is generated in the second winding portion 80. The induced currents iro and iri flow in the same direction in the lead wire 76 of the main body signal coil 68a and are not canceled out. In this manner, it is possible to transmit an electrical signal from the load signal coil 68b to the main signal coil 68a. In particular, in the present embodiment, the main side signal coil 68a is assembled to the pot core 70, and the first winding portion 78 is disposed close to the outer wall 92 of the pot core 70, and the second winding is performed. Since the wire portion 80 is disposed close to the inner wall 94, focusing the magnetic flux b i , b o on the outer wall 92 and the inner wall 94 respectively enables the first winding portion 78 and the second winding portion 80 to In each of them, induced currents i ro and i ri flowing in the same direction in the lead wire 76 can be effectively generated.
 一方、図15(b)および図16(b)にモデル的に示すように、一次側電力用コイル66aに交流電圧が印加されると、一次側電力用コイル66aの内側に磁束B、外側に磁束Bが生ぜしめられる。磁束Bの磁力線の向きと、磁束Bの磁力線の向きは互いに反対方向となる。これら磁束B、Bが、本体側信号用コイル68aと負荷側信号用コイル68bのそれぞれにおいて、第二の巻線部分80の内側と第一の巻線部分78の外側を通過する。これにより、本体側信号用コイル68aを例に説明すると、第一の巻線部分78にノイズ電流となる誘導電流inoが、第二の巻線部分80にノイズ電流となる誘導電流iniが生ぜしめられる。磁束Bと磁束Bが、第一の巻線部分78と第二の巻線部分80を挟む両側で互いに反対方向に向かうことから、誘導電流inoと、誘導電流iniは、本体側信号用コイル68aのリード線76を外から見た場合には互いに同方向に流れている。そして、第一の巻線部分78と第二の巻線部分80は互いに逆方向に巻回されていることから、誘導電流inoと誘導電流iniは、リード線76内では互いに逆方向の電流であり、第一の巻線部分78と第二の巻線部分80に、共通磁界に対して互いに逆向きの起電力が生ぜしめられる。その結果、誘導電流inoと誘導電流iniは相互に打ち消し合うこととなり、誘導電流inoと誘導電流iniの大きさが可及的に接近するように、第一の巻線部分78および第二の巻線部分80の大きさや巻数を調節することによって、一次側電力用コイル66aによって生じた磁束B,Bの影響で本体側信号用コイル68aに生ぜしめられる、ノイズとなる起電力を相殺することが出来る。このようにして、一次側電力用コイル66aの影響によるノイズを軽減しつつ、電気信号の伝送を行なうことが出来る。 On the other hand, as shown in FIG. 15B and FIG. 16B as a model, when an AC voltage is applied to the primary power coil 66a, the magnetic flux B i inside and outside the primary power coil 66a. The magnetic flux B o is generated at. The direction of the magnetic field lines of the magnetic flux B i and the direction of the magnetic field lines of the magnetic flux B o are opposite to each other. The magnetic fluxes B i and B o pass through the inside of the second winding portion 80 and the outside of the first winding portion 78 in each of the body side signal coil 68 a and the load side signal coil 68 b. Thus, when describing a coil 68a for main unit signal as an example, the induced current i no as a noise current in the first winding portion 78, the induced current i ni as a noise current to the second winding portions 80 It is born. Since the magnetic flux B i and the magnetic flux B o are directed in opposite directions on both sides of the first winding portion 78 and the second winding portion 80, the induced current ino and the induced current ini are on the main body side When the lead wires 76 of the signal coil 68a are viewed from the outside, they flow in the same direction. And, since the first winding portion 78 and the second winding portion 80 are wound in opposite directions to each other, the induced current ino and the induced current ini are opposite to each other in the lead wire 76. In the first winding portion 78 and the second winding portion 80, electromotive forces are generated in opposite directions with respect to the common magnetic field. As a result, the induced current i no inductive current i ni becomes possible to cancel each other, so that the magnitude of the induced current i no inductive current i ni approaches as possible, the first winding portions 78 and By adjusting the size and the number of turns of the second winding portion 80, noise caused by the magnetic flux B i and B o generated by the primary power coil 66a is generated in the main signal coil 68a and causes noise. Power can be offset. In this manner, transmission of an electrical signal can be performed while reducing noise due to the influence of the primary power coil 66a.
 なお、図15(b)および図16(b)に併せ示すように、負荷側信号用コイル68bにおいても、同様にしてノイズ起電力を低減することが可能であり、本実施形態においては、電気信号の送信側(負荷側信号用コイル68b)および受信側(本体側信号用コイル68a)の両方においてノイズを軽減することが可能とされている。そして、本体側信号用コイル68aと負荷側信号用コイル68bのそれぞれに上述の如き特定のコイル巻線経路を採用したことにより、何ら特別な制御装置や、ノイズ抑制用のコイル部材を別途に設けることなく、極めて簡易な構成で、電気信号の伝送品質を向上することが出来る。更に、特定形状のコイル巻線経路を用いて逆方向の起電力を発生させて相殺することから、本体側信号用コイル68aと負荷側信号用コイル68bに影響する磁束の量が変化した場合でも、再チューニング等を要することなく、磁束の量の変化に自動的に対応することが出来、優れたノイズ抑制効果を得ることが出来る。 As shown in FIG. 15 (b) and FIG. 16 (b), the noise electromotive force can be similarly reduced also in the load side signal coil 68b, and in the present embodiment, the electricity is reduced. It is possible to reduce noise on both the transmitting side (load side signal coil 68b) and the receiving side (body side signal coil 68a) of the signal. Further, by adopting the specific coil winding path as described above for each of the main body side signal coil 68a and the load side signal coil 68b, a special control device and a coil member for noise suppression are separately provided. Therefore, the transmission quality of the electrical signal can be improved with an extremely simple configuration. Furthermore, since the electromotive force in the reverse direction is generated and canceled using a coil winding path of a specific shape, even if the amount of magnetic flux affecting the main side signal coil 68a and the load side signal coil 68b changes. It is possible to automatically cope with changes in the amount of magnetic flux without requiring retuning etc., and to obtain an excellent noise suppression effect.
 そして、一次側電力用コイル66aからの影響を相殺できることから、本体側信号用コイル68aを一次側電力用コイル66aに極めて近接した位置に配設することが可能となるのであり、本実施形態においては、本体側信号用コイル68aが、一次側電力用コイル66aと共にポット型コア70の同一の周溝90に収容されている。このように、従来では、互いの磁路が干渉することから困難であった、互いのリード線72,76が重なるように配設することも可能となるのであり、コア部材の大型化や形状の複雑化を回避して、極めて優れたスペース効率を得ることが出来る。また、本体側信号用コイル68aをポット型コア70の内部に収容したことにより、例えばモータ34等からの磁気による外乱から本体側信号用コイル68aを保護することも出来る。 And since the influence from the primary side power coil 66a can be offset, it becomes possible to arrange the body side signal coil 68a at a position extremely close to the primary side power coil 66a, and in the present embodiment, The main side signal coil 68a is accommodated in the same circumferential groove 90 of the pot core 70 together with the primary side power coil 66a. As described above, in the related art, it is also possible to dispose the lead wires 72 and 76 so as to overlap with each other, which is difficult because the magnetic paths interfere with each other. Space complexity can be avoided to obtain extremely excellent space efficiency. Further, by accommodating the body side signal coil 68a inside the pot core 70, for example, the body side signal coil 68a can be protected from disturbance due to magnetism from the motor 34 or the like.
 加えて、本体側信号用コイル68aと負荷側信号用コイル68bに特定のコイル巻線経路を採用して、本体側信号用コイル68aと負荷側信号用コイル68bの構造そのものでノイズ起電力を低減出来ることから、特別なノイズ除去処理を要することがなく、工具ユニット22側から発信された検出信号を機械本体14側で速やかに再生することが出来る。また、本体側信号用コイル68aと負荷側信号用コイル68bにノイズ起電力が発生するタイミングは、一次側電力用コイル66aおよび二次側電力用コイル66bへの通電タイミング等から明確に制御することが出来る。これにより、工具ユニット22から機械本体14への信号伝達のリアルタイム性を向上することが出来て、より応答性に優れたフィードバック制御を行なうことが出来る。なお、図17に、工具ユニット22側における検出信号の発信タイミング(図中、送信信号)と、機械本体14側における受信タイミング(図中、受信信号)を測定した結果を示す。図17のグラフ下部にΔXとして表示されているように、工具ユニット22側で検出信号が発信された時刻:X1から、機械本体14側で検出信号を受信した時刻:X2までの信号伝達の所要時間は64.0nsであり、極めて速やかな信号伝達が可能であることが確認された。 In addition, a specific coil winding path is adopted for the body side signal coil 68a and the load side signal coil 68b, and the noise electromotive force is reduced by the structure itself of the body side signal coil 68a and the load side signal coil 68b. Since it is possible, a special noise removal process is not required, and the detection signal transmitted from the tool unit 22 can be promptly reproduced on the machine body 14 side. Further, the timing at which the noise electromotive force is generated in the main side signal coil 68a and the load side signal coil 68b should be clearly controlled from the conduction timing to the primary side power coil 66a and the secondary side power coil 66b. Can do. As a result, it is possible to improve the real-time property of signal transmission from the tool unit 22 to the machine main body 14, and to perform feedback control with higher responsiveness. FIG. 17 shows the results of measuring the transmission timing of the detection signal on the tool unit 22 side (transmission signal in the figure) and the reception timing on the machine body 14 side (reception signal in the figure). As indicated by ΔX in the lower part of the graph in FIG. 17, the time required for signal transmission from the time when the detection signal was transmitted on the tool unit 22 side: X1 to the time when the detection signal was received on the machine body 14: X2 The time was 64.0 ns, and it was confirmed that extremely rapid signal transmission was possible.
 なお、本実施形態の工作機械12は、図18にモデル的に示すように、複数(図18においては、2つ図示)の工具ユニット22,120を備え、それら複数の工具ユニット22,120を選択的に主軸ヘッド16に組み付けることも可能である。以下、工具ユニット120において、工具ユニット22と同様の構造については、図中に同一の符号を付することにより、説明を省略する。 The machine tool 12 of the present embodiment is provided with a plurality of (two in FIG. 18, two) tool units 22 and 120 as shown as a model in FIG. 18, and the plurality of tool units 22 and 120 are shown. It is also possible to selectively assemble the spindle head 16. Hereinafter, in the tool unit 120, the same structure as that of the tool unit 22 will be omitted by assigning the same reference numerals in the drawings.
 工具ユニット120は、工具ユニット22の負荷側コイルヘッド64から、負荷側信号用コイル68bが取り除かれたものである。即ち、工具ユニット120の負荷側コイルヘッド122は、二次側電力用コイル66bのみを備えており、二次側電力用コイル66bが、超音波振動子50に接続されている。また、工具ユニット120には、工具ユニット22における検出回路108や増幅回路110(図8参照)も設けられていない。従って、主軸ヘッド16において、工具ユニット120が取り付けられた場合には、本体側信号用コイル68aは未使用となり、例えば制御装置106に予め設定された周波数の交流電圧が工具ユニット120に伝送されることにより、超音波振動子50が所定の周波数で駆動される。なお、工具ユニット120の工具20は、工具ユニット22の工具20と異なるものであっても良いし、同一のものでも良い。また、図示は省略するが、これら工具ユニット22,120は、自動工具交換装置(ATC:Automatic Tool Changer)のアームに把持される所謂Vフランジを備え、主軸ヘッド16に対して自動で交換されるものでも良い。 The tool unit 120 is obtained by removing the load signal coil 68 b from the load coil head 64 of the tool unit 22. That is, the load-side coil head 122 of the tool unit 120 includes only the secondary-side power coil 66 b, and the secondary-side power coil 66 b is connected to the ultrasonic transducer 50. Further, the tool unit 120 is not provided with the detection circuit 108 and the amplifier circuit 110 (see FIG. 8) in the tool unit 22. Therefore, when the tool unit 120 is attached to the spindle head 16, the main body signal coil 68a is not used, and for example, an AC voltage of a frequency set in advance in the control device 106 is transmitted to the tool unit 120 Thus, the ultrasonic transducer 50 is driven at a predetermined frequency. The tool 20 of the tool unit 120 may be different from or the same as the tool 20 of the tool unit 22. Although not shown, these tool units 22 and 120 are provided with a so-called V flange gripped by an arm of an automatic tool changer (ATC: Automatic Tool Changer), and are automatically replaced with respect to the spindle head 16 It is good.
 このようにすれば、各種の工具を備えた複数の工具ユニットを用意することによって、各種の加工を行なうことが出来る。例えば、工具20の振動状態を検出してフィードバック制御を行ないたい場合には工具ユニット22を用いる一方、フィードバック制御が不要である場合には、工具ユニット120を用いることが出来る。そして、本実施形態の無接触式電源供給装置10を用いることにより、相互に分離される主軸ヘッド16と工具ユニット22,120の間でも、無接触で電力や電気信号の伝送を行なうことが出来る。 In this way, various kinds of processing can be performed by preparing a plurality of tool units provided with various tools. For example, when it is desired to detect the vibration state of the tool 20 and perform feedback control, the tool unit 22 may be used, while when the feedback control is not necessary, the tool unit 120 may be used. And, by using the non-contact type power supply device 10 of the present embodiment, even between the spindle head 16 and the tool unit 22, 120 which are separated from each other, the transmission of the electric power and the electric signal can be carried out without contact. .
 さらに、図19にモデル的に示すように、本実施形態の工作機械12は、LANやWAN、インターネットなどのコンピュータネットワーク124と接続されることにより、遠隔から操作可能とすることも出来る。例えば、機械本体14に設けられた制御装置106にネットワークインタフェース126を接続することにより、制御装置106を、ネットワークインタフェース126を介してコンピュータネットワーク124と接続することが出来る。また、コンピュータネットワーク124には、コンピュータからなるクライアント128とサーバ130が接続されている。 Furthermore, as shown in FIG. 19 as a model, the machine tool 12 of this embodiment can be remotely operated by being connected to a computer network 124 such as a LAN, a WAN, or the Internet. For example, by connecting the network interface 126 to the control device 106 provided in the machine main body 14, the control device 106 can be connected to the computer network 124 via the network interface 126. Further, to the computer network 124, a client 128 composed of a computer and a server 130 are connected.
 そして、図19中の矢印Rに示すように、クライアント128がコンピュータネットワーク124を介してサーバ130に接続されると共に、矢印Rに示すように、工作機械12がクライアントとしてサーバ130に接続される。これにより、サーバ130を介してクライアント128と工作機械12が相互に接続されて、サーバ130で双方のデータパケットをバッファリングしてクライアント128と工作機械12に相互に送信するルーティング機構を設けることにより、ファイヤウォールで隔離されたネットワーク環境にある工作機械12をクライアント128から遠隔操作したり、工作機械12における超音波振動子50の振動特性等をクライアント128で遠隔からモニタリングすることが出来る。また、サーバ130内に、工作機械12における超音波振動子50の振動特性や、工作機械12の運転条件を記憶したデータベース132を設けて、工作機械12からサーバ130のデータベース132にアクセスして運転条件を決定したり、クライアント128からデータベース132にアクセスして、得られた振動特性や運転条件に応じて工作機械12の作動を制御する等しても良い。更にまた、コンピュータネットワーク124を介して、工作機械12の制御装置106に記憶された制御プログラムをクライアント128やサーバ130から遠隔にて更新することも出来る。なお、図19中の矢印Rに示すように、例えば工作機械12の制御装置106自体にサーバ機能を設けることによって、サーバ130を介することなく、クライアント128を工作機械12に直接に接続する等しても良い。 Then, as indicated by an arrow R 1 in FIG. 19, the client 128 is connected to the server 130 via a computer network 124, as indicated by the arrow R 2, machine tool 12 is connected to the server 130 as a client Ru. Thereby, the client 128 and the machine tool 12 are mutually connected through the server 130, and the server 130 provides a routing mechanism for buffering the data packets of both and transmitting them to the client 128 and the machine tool 12 mutually. The machine tool 12 in a network environment isolated by a firewall can be remotely controlled from the client 128, and the vibration characteristic of the ultrasonic transducer 50 in the machine tool 12 can be remotely monitored by the client 128. In addition, a database 132 storing the vibration characteristics of the ultrasonic transducer 50 in the machine tool 12 and the operating conditions of the machine tool 12 is provided in the server 130, and the database 132 of the server 130 is accessed from the machine tool 12 for driving. The conditions may be determined, or the database 128 may be accessed from the client 128 to control the operation of the machine tool 12 according to the obtained vibration characteristics and the operating conditions. Furthermore, the control program stored in the control device 106 of the machine tool 12 can be updated remotely from the client 128 or the server 130 via the computer network 124. Incidentally, as shown in an arrow R 3 in FIG. 19, for example, itself to the controller 106 of the machine tool 12 by providing a server function, without passing through the server 130, etc. that connect directly to the client 128 to the machine tool 12 You may.
 以上、本発明の一実施形態について詳述してきたが、本発明の具体的な実施形態は、上記実施形態に限定されるものでは無い。以下、本発明の異なる実施形態を幾つか示すが、これらはあくまでも例示であり、本発明が以下の具体的態様に限定されることを示すものでは無い。また、以下の実施形態において、前記第一の実施形態に相当する部材および部位には、図中に前記第一の実施形態と同一の符号を付することによって、その説明を省略する。 As mentioned above, although one embodiment of the present invention was explained in full detail, a specific embodiment of the present invention is not limited to the above-mentioned embodiment. Hereinafter, although several different embodiments of the present invention are shown, these are merely illustrations and do not show that the present invention is limited to the following specific embodiments. Moreover, in the following embodiment, the description is abbreviate | omitted by attaching the code | symbol same as said 1st embodiment to the member and site | part corresponded to said 1st embodiment by the figure.
 先ず、図20に、本発明の第二の実施形態としての無接触式電源供給装置を構成する検出手段をモデル的に示す。本実施形態の共振回路は、前記第一の実施形態と略同様の超音波振動子50である。そして、本実施形態においては、超音波振動子50を構成する複数の圧電素子52と共に、検出手段としての圧電素子140が設けられている。検出手段としての圧電素子140は、電極142,144で挟まれており、これら電極142,144が増幅回路110(図8参照)に接続されている。このような検出手段としての圧電素子140が、超音波振動子50を構成する複数の圧電素子52と同様に、ボルト57に外挿されて、ボルト57の両端に螺着された金属ブロック58とホーン60で締め付けられることによって、超音波振動子50を構成する圧電素子52と共に積層されている。なお、隣接する圧電素子52の電極56と検出手段としての圧電素子140の電極142の間には絶縁材146が介在されて、相互に絶縁されている。 First, FIG. 20 schematically shows detection means constituting the non-contact type power supply device according to the second embodiment of the present invention. The resonance circuit of this embodiment is an ultrasonic transducer 50 substantially the same as that of the first embodiment. Further, in the present embodiment, a piezoelectric element 140 as a detection unit is provided together with the plurality of piezoelectric elements 52 constituting the ultrasonic transducer 50. The piezoelectric element 140 as a detection means is sandwiched between the electrodes 142 and 144, and the electrodes 142 and 144 are connected to the amplifier circuit 110 (see FIG. 8). Similar to the plurality of piezoelectric elements 52 constituting the ultrasonic transducer 50, the piezoelectric element 140 as such detecting means is externally inserted into the bolt 57, and a metal block 58 screwed to both ends of the bolt 57 By being tightened by the horn 60, they are laminated together with the piezoelectric element 52 constituting the ultrasonic transducer 50. An insulating material 146 is interposed between the electrode 56 of the adjacent piezoelectric element 52 and the electrode 142 of the piezoelectric element 140 as a detection means, and they are mutually insulated.
 このような構造によれば、超音波振動子50が駆動された場合には、超音波振動子50の振動が検出手段としての圧電素子140に及ぼされて、圧電素子140に電圧が発生する。この圧電素子140に発生した電圧を電極142,144から増幅回路110を通じて負荷側信号用コイル68bに供給して、本体側信号用コイル68aに伝送することにより、本体側の制御装置106において、超音波振動子50の振動状態を電圧の変化として検出することが出来る。そして、本実施形態によれば、簡易な構造で検出手段を実現することが出来る。それと共に、検出手段を超音波振動子50内で同軸上に配設できることから、検出手段をスペース効率良く配設することが出来ると共に、負荷側の重量バランスの偏りを抑えて、負荷側の回転駆動をより安定的に行うことも出来る。 According to such a structure, when the ultrasonic transducer 50 is driven, the vibration of the ultrasonic transducer 50 is exerted on the piezoelectric element 140 as the detection means, and a voltage is generated in the piezoelectric element 140. The voltage generated in the piezoelectric element 140 is supplied from the electrodes 142 and 144 to the load signal coil 68b through the amplifier circuit 110 and transmitted to the main signal coil 68a. The vibration state of the sound transducer 50 can be detected as a change in voltage. And according to this embodiment, the detection means can be realized with a simple structure. At the same time, since the detection means can be coaxially arranged in the ultrasonic transducer 50, the detection means can be arranged efficiently with space, and the balance of weight balance on the load side can be suppressed, and rotation on the load side can be achieved. Driving can be performed more stably.
 次に、図21に、本発明の第三の実施形態としての無接触式電源供給装置を構成する、一次側電力用コイル66aと信号用コイル150を備えた本体側コイルヘッド152を分解状態で示す。信号用コイル150は、リード線76が円形に巻回されて第一の巻線部分78が形成された後に、第一の巻線部分78からリード線76が延び出されて、第一の巻線部分78と反対回りに巻回されることによって、第二の巻線部分80が形成されている。そして、ポット型コア70の周溝90に、先ず第一の巻線部分78が収容されて、その後に一次側電力用コイル66a,第二の巻線部分80が順に収容されている。これにより、第一の巻線部分78と第二の巻線部分80が、一次側電力用コイル66aを軸方向で挟む両側に配設されるようになっている。 Next, in FIG. 21, the main body side coil head 152 provided with the primary side power coil 66a and the signal coil 150, which constitutes the non-contact type power supply device as the third embodiment of the present invention, is disassembled. Show. In the signal coil 150, after the lead wire 76 is circularly wound to form the first winding portion 78, the lead wire 76 is extended from the first winding portion 78 to form the first winding. The second winding portion 80 is formed by being wound around the wire portion 78 in the opposite direction. Then, the first winding portion 78 is accommodated in the circumferential groove 90 of the pot core 70, and then the primary power coil 66a and the second winding portion 80 are accommodated in order. As a result, the first winding portion 78 and the second winding portion 80 are disposed on both sides sandwiching the primary power coil 66a in the axial direction.
 本実施形態のように、信号用コイル150における第一の巻線部分78と第二の巻線部分80を、異なる平面上に形成することも可能である。このようにすれば、第一の巻線部分78の形成スペースと第二の巻線部分80の形成スペースを各別に大きく確保できることから、第一の巻線部分78および第二の巻線部分80の巻数の設定自由度を向上することが出来る。なお、負荷側コイルヘッド64(図4等参照)に本構造を適用することも可能であり、そのような場合には、ポット型コア70を用いることなく、二次側電力用コイル66bを挟む両側に、信号用コイル150の第一の巻線部分78と第二の巻線部分80を配設しても良い。また、本実施形態の信号用コイル150は、本体側と負荷側の両方に用いても良いし、何れか一方にのみ用いて、他方については前記第一の実施形態に記載の形状等、異なる形状のものを採用する等しても良い。 As in the present embodiment, it is also possible to form the first winding portion 78 and the second winding portion 80 in the signal coil 150 on different planes. In this way, the formation space of the first winding portion 78 and the formation space of the second winding portion 80 can be largely secured, respectively. Therefore, the first winding portion 78 and the second winding portion 80 can be provided. The degree of freedom in setting the number of turns can be improved. In addition, it is also possible to apply this structure to the load side coil head 64 (refer FIG. 4 etc.), and in such a case, the secondary side electric power coil 66b is sandwiched without using the pot type core 70. The first winding portion 78 and the second winding portion 80 of the signal coil 150 may be disposed on both sides. In addition, the signal coil 150 of the present embodiment may be used for both the main body side and the load side, or may be used for only one of them, and the other is different in the shape described in the first embodiment, etc. The shape may be adopted.
 次に、図22に、本発明の第四の実施形態としての無接触式電源供給装置を構成する信号用コイル160を示す。信号用コイル160は本体側コイルヘッド62に設けられており、ポット型コア70の周溝90に収容されたリード線76がポット型コア70の外部に延び出されて、ポット型コア70の外周面162に巻回されている。そして、外周面162に巻回されたリード線76によって、外周巻線部分164が形成されている。外周巻線部分164の巻線方向は、第一の巻線部分78と第二の巻線部分80の何れか一方と等しい方向に設定されている。 Next, FIG. 22 shows a signal coil 160 that constitutes a non-contact power supply according to a fourth embodiment of the present invention. The signal coil 160 is provided on the main body side coil head 62, and the lead wire 76 accommodated in the circumferential groove 90 of the pot core 70 is extended to the outside of the pot core 70, and the outer periphery of the pot core 70. It is wound around surface 162. An outer peripheral winding portion 164 is formed by the lead wire 76 wound around the outer peripheral surface 162. The winding direction of the outer peripheral winding portion 164 is set to be equal to one of the first winding portion 78 and the second winding portion 80.
 本実施形態においては、第一の巻線部分78、第二の巻線部分80、および外周巻線部分164によって、互いに逆向きの起電力を生じるコイル巻線経路が形成されている。このようにすれば、ノイズ低減効果をより精度良く調節することが出来る。なお、第一の巻線部分78および第二の巻線部分80の何れか一方のみと、外周巻線部分164とによって、互いに逆向きの起電力を生じるコイル巻線経路を形成することも可能である。また、本実施形態における負荷側コイルヘッド64の信号用コイル166は、一方向のみに巻回された、従来から広く用いられている円環形状とされている。このように、互いに逆向きの起電力を生ぜしめるコイル巻線経路は、本体側と負荷側の信号用コイルの少なくとも一方に形成されておれば良い。 In the present embodiment, the first winding portion 78, the second winding portion 80, and the outer peripheral winding portion 164 form coil winding paths that generate electromotive forces in opposite directions. In this way, the noise reduction effect can be adjusted more accurately. In addition, it is also possible to form a coil winding path which generates electromotive force opposite to each other by only one of the first winding portion 78 and the second winding portion 80 and the outer peripheral winding portion 164. It is. Further, the signal coil 166 of the load-side coil head 64 in the present embodiment is in the form of a ring which is wound widely only in one direction and which has been widely used conventionally. As described above, the coil winding path that generates electromotive forces in opposite directions may be formed in at least one of the signal coil on the main body side and the load side.
 また、図23に、本発明の第五の実施形態としての無接触式伝送装置を構成する信号用コイル170をモデル的に示す。信号用コイル170は、リード線76が径方向の外側において一周に満たない周方向(本実施形態においては、略1/6周)に延ばされることで外側巻線部分172が形成されると共に、外側巻線部分172から折り返されて、径方向の内側において外側巻線部分172と逆方向で外側巻線部分172と略等しい周方向(本実施形態においては、略1/6周)だけ延ばされることで内側巻線部分174が形成されており、これら外側巻線部分172と内側巻線部分174によって、小ループ部176が形成されている。このような小ループ部176が連続して形成されて、複数の小ループ部176が周方向に並んで形成されている。なお、各小ループ部176における巻数は任意に設定され得る。これにより、各小ループ部176の外側巻線部分172が略同一円周上に形成されて、これら複数の外側巻線部分172によって、第一の巻線部分178が形成されていると共に、各小ループ部176の内側巻線部分174が外側巻線部分172の内側で略同一円周上に形成されて、複数の内側巻線部分174によって、第二の巻線部分180が形成されている。 Further, FIG. 23 schematically shows a signal coil 170 which constitutes the non-contact type transmission apparatus as the fifth embodiment of the present invention. The outer coil portion 172 is formed by the signal coil 170 being extended in the circumferential direction (approximately 1/6 in the present embodiment) in which the lead wire 76 does not reach one round on the outer side in the radial direction. It is folded back from the outer winding portion 172, and is extended in the radial inner direction by a circumferential direction (approximately 1/6 in this embodiment) substantially equal to the outer winding portion 172 in the opposite direction to the outer winding portion 172. Thus, an inner winding portion 174 is formed, and a small loop portion 176 is formed by the outer winding portion 172 and the inner winding portion 174. Such small loop portions 176 are continuously formed, and a plurality of small loop portions 176 are formed side by side in the circumferential direction. The number of turns in each small loop portion 176 can be set arbitrarily. Thus, the outer winding portions 172 of each small loop portion 176 are formed on substantially the same circumference, and the plurality of outer winding portions 172 form the first winding portion 178, and An inner winding portion 174 of the small loop portion 176 is formed on substantially the same circumference inside the outer winding portion 172, and a plurality of inner winding portions 174 form a second winding portion 180. .
 このような巻線経路によっても、外側巻線部分172と内側巻線部分174が、信号用コイル170と共に本体側や負荷側に配設される図示しない一次側電力用コイルや二次側電力用コイルの中心:o回りで、互いに逆向き(図23においては、外側巻線部分172が時計回り、内側巻線部分174が反時計回り)に巻回されており、複数の外側巻線部分172と、複数の内側巻線部分174によって、互いに逆向きに巻回された第一の巻線部分178と第二の巻線部分180を形成することが出来る。そして、本実施形態によれば、各小ループ部176毎に巻数を調節出来ることから、例えば信号用コイル170の周方向における局所的な磁束変化量のばらつき等に応じて、ノイズ起電力の低減効果をより精度良く調節することが出来る。また、周方向に部分的に延びる環形状の小ループ部176を複数形成することによって、信号用コイル170の形状安定性を高めることも出来る。 Also by such winding path, the outer winding portion 172 and the inner winding portion 174 are disposed on the main body side and the load side together with the signal coil 170, not shown for the primary side power coil and the secondary side power. A plurality of outer winding portions 172 are wound in opposite directions to each other (o in FIG. 23, the outer winding portion 172 is clockwise and the inner winding portion 174 is counterclockwise) around the center of the coil: o The plurality of inner winding portions 174 can form the first winding portion 178 and the second winding portion 180 which are wound in opposite directions to each other. Further, according to the present embodiment, since the number of turns can be adjusted for each small loop portion 176, the noise electromotive force can be reduced according to, for example, the variation in the local magnetic flux change amount in the circumferential direction of the signal coil 170. The effect can be adjusted more precisely. The shape stability of the signal coil 170 can also be enhanced by forming a plurality of annular small loop portions 176 extending partially in the circumferential direction.
 以上、本発明の実施形態について詳述してきたが、これらはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものではない。 As mentioned above, although the embodiment of the present invention has been described in detail, these are merely examples, and the present invention is not construed as being limited in any way by the specific description in the embodiment.
 例えば、前記実施形態における共振回路は、LCR回路を含む電気回路と等価に考え得る超音波振動子を含んで構成されていたが、共振回路は、電気的な共振周波数を有するものであれば何等限定されるものではなく、例えばコイルとコンデンサで構成された共振回路にモータやセンサ等の電気部品や、各種の電気回路が接続されて構成された回路等でも良い。従って、本発明の無接触式電源供給装置は、前記実施形態に記載の如き工作機械に限定して適用されるものではなく、本体側に対して分離も含む相対変位可能とされた負荷側との間で共振回路が形成された各種の機械に適用することが出来る。 For example, although the resonant circuit in the above embodiment is configured to include an ultrasonic transducer that can be considered equivalent to an electric circuit including an LCR circuit, any resonant circuit may be used as long as it has an electrical resonant frequency. For example, the present invention is not limited to this, and may be, for example, a circuit in which electric components such as a motor or a sensor or various electric circuits are connected to a resonance circuit formed of a coil and a capacitor. Therefore, the non-contact type power supply device of the present invention is not limited to the machine tool as described in the above embodiment, and is capable of relative displacement on the main body side, including separation. Can be applied to various machines in which a resonant circuit is formed.
 更にまた、共振回路の共振周波数の変化に追従的に対応して一次側電力用コイルへの給電周波数を制御する具体的手段としては、CPUによる演算処理に限定されることはなく、例えば位相同期回路(PLL:Phase Locked Loop)を用いたフィードバック手段等、各種の態様が適宜に採用可能である。また、共振回路の共振周波数の変化を検出するための検出対象は、前記実施形態の如き電圧や電流等に限定されることはなく、例えば周囲の環境温度等でも良いし、共振回路が超音波振動子等の場合には、超音波振動子の機械的な振幅や歪等を採用しても良い。従って、共振回路の共振周波数の変化を検出する検出手段として、温度センサや加速度センサ等を用いることも可能である。 Furthermore, specific means for controlling the feeding frequency to the primary side power coil in response to changes in the resonant frequency of the resonant circuit are not limited to arithmetic processing by the CPU, for example, phase synchronization Various aspects such as feedback means using a circuit (PLL: Phase Locked Loop) can be adopted appropriately. Further, the detection target for detecting the change of the resonance frequency of the resonance circuit is not limited to the voltage or current as in the above embodiment, and may be, for example, the ambient temperature of the environment. In the case of a vibrator or the like, mechanical amplitude or distortion of the ultrasonic vibrator may be employed. Therefore, it is also possible to use a temperature sensor, an acceleration sensor or the like as a detection means for detecting a change in the resonant frequency of the resonant circuit.
 更に、前記各実施形態においては、本体側のみにコア部材が設けられていたが、本体側と負荷側との隙間を大きくして相対変位量を大きくしたい等、信号用コイルの鎖交磁束を調節したい場合には、負荷側の信号用コイルにコア部材を組み付ける等しても良い。そのような場合には、負荷側の二次側電力用コイルを囲むことのないようにコア部材を配設して、二次側電力用コイルのインダクタンスの増大を回避しつつ、負荷側の信号用コイルがコア部材に組み付けられることが好ましい。 Furthermore, in each of the above embodiments, the core member is provided only on the main body side, but it is desirable to increase the gap between the main body side and the load side to increase the relative displacement amount. When adjustment is desired, the core member may be attached to the load-side signal coil. In such a case, the core member is disposed so as not to surround the secondary power coil on the load side, thereby avoiding an increase in the inductance of the secondary power coil, and a signal on the load side Preferably, the core coil is assembled to the core member.
 また、一次側電力用コイルと二次側電力用コイル、一対の信号用コイルの数はそれぞれ一対のみに限定されることはなく、複数の対が設けられていても良く、複数の電力の伝送路と、複数の電気信号の伝送路を構成しても良い。更にまた、信号用コイルを設ける場合には、信号用コイルの配設位置は、電力用コイルと巻線が重なる位置に限定されないのであって、例えば電力用コイルによる磁束の影響を受け得る近接位置で、電力用コイルと隣接して信号用コイルを配設する等しても良い。従って、電力用コイルと信号用コイルとを重ねて配設する場合でも、必ずしも同心軸上に配設されている必要はなく、信号用コイルを電力用コイルに対して偏心して配設しても良い。 Further, the number of the primary side power coil, the secondary side power coil, and the number of the pair of signal coils are not limited to only one each, and a plurality of pairs may be provided, and transmission of a plurality of powers is possible. A path and a transmission path of a plurality of electrical signals may be configured. Furthermore, in the case of providing the signal coil, the arrangement position of the signal coil is not limited to the position where the power coil and the winding overlap, and for example, the proximity position which can be affected by the magnetic flux by the power coil. The signal coil may be disposed adjacent to the power coil. Therefore, even when the power coil and the signal coil are arranged in an overlapping manner, they need not necessarily be arranged concentrically, and the signal coil may be eccentrically arranged with respect to the power coil. good.
 また、信号用コイルの巻線形状は円形に限定されるものではなく、例えば矩形状や楕円形状等とされていても良い。更に、信号用コイルにおける、互いに逆向きの起電力を生じるコイル巻線経路の具体的形状は、前記実施形態の形状に限定されるものではない。 Further, the winding shape of the signal coil is not limited to a circular shape, and may be, for example, a rectangular shape or an elliptical shape. Furthermore, the specific shape of the coil winding path that generates electromotive forces in opposite directions in the signal coil is not limited to the shape of the above embodiment.
 更にまた、前記第一の実施形態においては、負荷側の信号用コイルから本体側の信号用コイルに電気信号が送信されるようになっていたが、これら信号用コイルを用いて、本体側から負荷側に電気信号を伝送することも勿論可能である。例えば、負荷側に共振回路の振動状態を検出する検出手段を複数設けて、本体側からそれら複数の検出手段の何れを用いるかを指定する電気信号を負荷側に伝送すると共に、指定された検出手段の検出結果を、電気信号として負荷側から本体側に伝送する等しても良い。そのような場合には、例えば、一次側電力用コイルから二次側電力用コイルに電力を送信するインバータのスイッチングタイミングを検出して、かかるタイミングに合わせて電気信号の伝達タイミング、即ち、信号用コイルへの電圧の印加タイミングを制御するようにしても良い。また、半二重のシリアル通信を用いることにより、本体側と負荷側の一対の信号用コイルを用いて、本体側から負荷側への電気信号の伝送と、負荷側から本体側への電気信号の伝送の両方を行なうようにしても良い。 Furthermore, in the first embodiment, an electric signal is transmitted from the signal coil on the load side to the signal coil on the main body side, but using these signal coils, from the main body side Of course, it is also possible to transmit an electrical signal to the load side. For example, a plurality of detection means for detecting the vibration state of the resonance circuit is provided on the load side, and an electric signal specifying which one of the plurality of detection means is used from the main body side is transmitted to the load side The detection result of the means may be transmitted as an electrical signal from the load side to the main body side. In such a case, for example, the switching timing of the inverter that transmits power from the primary power coil to the secondary power coil is detected, and the transmission timing of the electrical signal in accordance with the timing, ie, for signals The application timing of the voltage to the coil may be controlled. Also, by using half duplex serial communication, transmission of an electrical signal from the main body side to the load side, and an electrical signal from the load side to the main body side, using a pair of signal coils on the main body side and the load side It is also possible to perform both of
 加えて、一対の信号用コイルを用いて電気信号を伝送するために用いられる変調方式は何等限定されるものではなく、例えば振幅変調(AM)、周波数変調(FM)、位相変調(PM)等のアナログ変調、位相偏移変調(PSK)、2相位相偏移変調(マンチェスタ符号化方式、BPSK)、周波数偏移変調(FSK)等のデジタル変調、パルス幅変調(PWM)等のパルス変調など、各種の変調方式が採用され得る。 In addition, the modulation method used to transmit an electrical signal using a pair of signal coils is not limited at all, and for example, amplitude modulation (AM), frequency modulation (FM), phase modulation (PM), etc. Analog modulation, phase shift keying (PSK), binary phase shift keying (Manchester coding, BPSK), digital modulation such as frequency shift keying (FSK), pulse modulation such as pulse width modulation (PWM), etc. Various modulation schemes may be adopted.
 その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。 In addition, although not listed one by one, the present invention can be implemented in an embodiment to which various changes, modifications, improvements, etc. are added based on the knowledge of those skilled in the art, and such embodiments are the present invention. It is needless to say that all are included within the scope of the present invention unless they depart from the spirit of the present invention.
10:無接触式電源供給装置、12:工作機械、14:機械本体、16:主軸ヘッド(本体側)、22:工具ユニット(負荷側)、26:ワーク、38:ラビリンスシール、42:プルチャック、44:工具ホルダ、48:プルスタッド、50:超音波振動子(共振回路)、52:圧電素子、57:ボルト、58:金属ブロック、60:ホーン、61:絶縁層、62:本体側コイルヘッド、64:負荷側コイルヘッド、66a:一次側電力用コイル、66b:二次側電力用コイル、68a:本体側信号用コイル(信号用コイル)、68b:負荷側信号用コイル(信号用コイル)、70:ポット型コア(コア部材)、72:リード線(電力用コイル)、74:ボビン、76:リード線(信号用コイル)、78:第一の巻線部分、80:第二の巻線部分、86:保持板、96:シールド部材、126:ネットワークインタフェース、128:クライアント、130:サーバ、140:圧電素子(検出手段)、142:電極、144:電極、164:外周巻線部分、176:小ループ部 10: non-contact type power supply device, 12: machine tool, 14: machine body, 16: spindle head (body side), 22: tool unit (load side), 26: work, 38: labyrinth seal, 42: pull chuck , 44: tool holder, 48: pull stud, 50: ultrasonic transducer (resonance circuit), 52: piezoelectric element, 57: bolt, 58: metal block, 60: horn, 61: insulating layer, 62: body side coil Head, 64: Load side coil head, 66a: Primary side power coil, 66b: Secondary side power coil, 68a: Body side signal coil (signal coil), 68b: Load side signal coil (signal coil ), 70: pot type core (core member), 72: lead wire (power coil), 74: bobbin, 76: lead wire (signal coil), 78: first winding portion, 80: second roll Part 86: Holding plate 96: Shield member 126: Network interface 128: Client 130: Server 140: Piezoelectric element (detection means) 142: Electrode 144: Electrode 164: Outer peripheral winding portion 176 : Small loop part

Claims (8)

  1.  交流電圧を出力する給電装置を備えた本体側と、該本体側に対して相対変位可能とされていると共に共振回路を備えた負荷側との間において、対をなす一次側電力用コイル及び二次側電力用コイルが設けられており、これら電力用コイルを通じて前記本体側の前記給電装置から前記負荷側の前記共振回路へ駆動電力が供給可能とされている無接触式電源供給装置において、
     前記本体側には、透磁性材からなるコア部材が前記一次側電力用コイルを囲んで設けられている一方、前記負荷側には、前記二次側電力用コイルを囲む前記コア部材が設けられていないことを特徴とする無接触式電源供給装置。
    A pair of primary side power coils and two that make up a pair between a main body side provided with a feeding device that outputs an alternating voltage and a load side that is relatively displaceable with respect to the main body side and provided with a resonant circuit In a non-contact type power supply device provided with a secondary power coil, wherein drive power can be supplied from the power feeding device on the main body side to the resonant circuit on the load side through the power coils.
    On the main body side, a core member made of a magnetically permeable material is provided so as to surround the primary side power coil, and on the load side, the core member is provided so as to surround the secondary side power coil. The contactless power supply device characterized by not being.
  2.  前記本体側と前記負荷側との間に対をなす信号用コイルが設けられていると共に、前記負荷側には、前記共振回路の振動状態を検出する検出手段が設けられており、該検出手段による検出信号が前記信号用コイルを用いて前記負荷側から前記本体側へ送信可能とされている一方、前記本体側には前記一次側電力用コイルへの給電周波数調節機構が設けられており、前記共振回路における共振周波数の変化に追従的に対応して、前記一次側電力用コイルへの給電周波数が、前記信号用コイルを通じて前記負荷側から前記本体側に送信された前記検出信号に基づいて制御されるようになっている請求項1に記載の無接触式電源供給装置。 A pair of signal coils are provided between the main body side and the load side, and the load side includes detection means for detecting the vibration state of the resonant circuit, and the detection means Detection signals from the load side can be transmitted from the load side to the main body side using the signal coil, and a feed frequency adjustment mechanism for the primary side power coil is provided on the main body side, Based on the detection signal transmitted from the load side to the main body side through the signal coil, the feeding frequency to the primary side power coil corresponds to the change of the resonance frequency in the resonance circuit in accordance with the change of the resonance frequency. 2. A contactless power supply as claimed in claim 1 which is adapted to be controlled.
  3.  前記本体側と前記負荷側の少なくとも一方において、前記信号用コイルには、前記電力用コイルによって生じた磁束の影響で該信号用コイルに生ぜしめられる起電力を相殺するように互いに逆向きに巻回された第一の巻線部分と第二の巻線部分が形成されている請求項2に記載の無接触式電源供給装置。 In at least one of the main body side and the load side, the signal coils are wound in opposite directions so as to cancel the electromotive force generated in the signal coils under the influence of the magnetic flux generated by the power coils. 3. A contactless power supply according to claim 2, wherein the first and second winding sections are formed.
  4.  前記電力用コイルのコイル巻線と前記信号用コイルのコイル巻線とが重ねて配設されている請求項3に記載の無接触式電源供給装置。 The non-contact type power supply device according to claim 3, wherein a coil winding of the power coil and a coil winding of the signal coil are disposed in an overlapping manner.
  5.  前記電力用コイルと前記信号用コイルが同軸上に配設されている請求項3又は4に記載の無接触式電源供給装置。 The contactless power supply device according to claim 3 or 4, wherein the power coil and the signal coil are coaxially disposed.
  6.  前記負荷側の前記二次側電力用コイルのみ又は前記二次側電力用コイルと前記信号用コイルが、前記本体側の前記一次側電力用コイルおよび前記信号用コイルに対して複数用意されており、前記本体側の前記一次側電力用コイルおよび前記信号用コイルに対して選択的に組み合わせ可能とされている請求項2~5の何れか1項に記載の無接触式電源供給装置。 A plurality of the secondary power coil or the secondary power coil and the signal coil on the load side are prepared for the primary power coil on the main body side and the signal coil. The contactless power supply device according to any one of claims 2 to 5, wherein the primary side power coil and the signal coil on the main body side can be selectively combined.
  7.  前記負荷側の前記共振回路が、超音波振動子を含んで構成されている請求項1~6の何れか1項に記載の無接触式電源供給装置。 The contactless power supply device according to any one of claims 1 to 6, wherein the resonance circuit on the load side includes an ultrasonic transducer.
  8.  前記超音波振動子は、複数の圧電素子が積層されたランジュバン型振動子であり、それら複数の圧電素子と共に積層された圧電素子によって、前記検出手段が構成されている請求項7に記載の無接触式電源供給装置。 The ultrasonic transducer is a Langevin-type transducer in which a plurality of piezoelectric elements are stacked, and the detection means is configured by the piezoelectric elements stacked together with the plurality of piezoelectric elements. Contact-type power supply device.
PCT/JP2013/000171 2013-01-16 2013-01-16 Non-contact power supply device WO2014111972A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014557177A JPWO2014111972A1 (en) 2013-01-16 2013-01-16 Contactless power supply
PCT/JP2013/000171 WO2014111972A1 (en) 2013-01-16 2013-01-16 Non-contact power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/000171 WO2014111972A1 (en) 2013-01-16 2013-01-16 Non-contact power supply device

Publications (1)

Publication Number Publication Date
WO2014111972A1 true WO2014111972A1 (en) 2014-07-24

Family

ID=51209107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000171 WO2014111972A1 (en) 2013-01-16 2013-01-16 Non-contact power supply device

Country Status (2)

Country Link
JP (1) JPWO2014111972A1 (en)
WO (1) WO2014111972A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104842203A (en) * 2015-05-28 2015-08-19 天津大学 Locally induced attached rotary ultrasonic head based on machine tool
CN106425705A (en) * 2016-12-14 2017-02-22 河南理工大学 Ultrasonic vibration grinding device
CN106694932A (en) * 2017-03-11 2017-05-24 河南理工大学 General frequency matching longitudinal-torsional compound ultrasonic vibration milling and drilling device
EP3292946A1 (en) * 2016-09-09 2018-03-14 Sauer GmbH Method for machining a workpiece made of hard metal for the preparation of a basic tool component on a numerically controlled machine tool with tool-carrying work spindle
JP2018064332A (en) * 2016-10-11 2018-04-19 Tdk株式会社 Rotary magnetic coupling device
CN108080240A (en) * 2017-12-12 2018-05-29 唐德祥 A kind of rotary ultrasonic auxiliary machining device
JP2018518671A (en) * 2015-06-22 2018-07-12 ザ ユニバーシティ オブ ブリストル Wireless sensor
CN108500723A (en) * 2018-05-21 2018-09-07 广州汇专工具有限公司 Integrated electromagnetic emits holder and integrated electromagnetic emitter
CN108735489A (en) * 2018-05-21 2018-11-02 广州汇专工具有限公司 The encapsulating method of electromagnetic transmission component
CN109551026A (en) * 2018-11-30 2019-04-02 沈阳工业大学 Cyclone milling machine motor-direct-drive type magnetic suspension facing cutter
TWI685398B (en) * 2019-04-26 2020-02-21 旭泰精密機械股份有限公司 Ultrasonic tool holder
CN112620747A (en) * 2021-01-29 2021-04-09 南京晓庄学院 Auxiliary chip breaking device for drilling high-toughness material by robot spiral milling
JP6933868B1 (en) * 2021-03-11 2021-09-08 株式会社レーザーシステム Coupling resonance type wireless power transmission system
CN113809832A (en) * 2021-09-18 2021-12-17 肇庆市衡艺实业有限公司 Wireless transmission coil and application thereof
KR20220128110A (en) * 2021-03-12 2022-09-20 영남대학교 산학협력단 Built-in motor ultrasonic vibration spindle apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112317779B (en) * 2020-10-26 2022-05-13 汇专机床有限公司 Ultrasonic spindle, ultrasonic tool shank and ultrasonic machining equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028808A (en) * 2000-05-23 2002-01-29 Hilti Ag Tool device having ultrasonic adapter
JP2011160501A (en) * 2010-01-29 2011-08-18 Casio Computer Co Ltd Electronic equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028808A (en) * 2000-05-23 2002-01-29 Hilti Ag Tool device having ultrasonic adapter
JP2011160501A (en) * 2010-01-29 2011-08-18 Casio Computer Co Ltd Electronic equipment

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104842203A (en) * 2015-05-28 2015-08-19 天津大学 Locally induced attached rotary ultrasonic head based on machine tool
JP2018518671A (en) * 2015-06-22 2018-07-12 ザ ユニバーシティ オブ ブリストル Wireless sensor
EP3292946A1 (en) * 2016-09-09 2018-03-14 Sauer GmbH Method for machining a workpiece made of hard metal for the preparation of a basic tool component on a numerically controlled machine tool with tool-carrying work spindle
JP2018064332A (en) * 2016-10-11 2018-04-19 Tdk株式会社 Rotary magnetic coupling device
CN106425705A (en) * 2016-12-14 2017-02-22 河南理工大学 Ultrasonic vibration grinding device
CN106694932A (en) * 2017-03-11 2017-05-24 河南理工大学 General frequency matching longitudinal-torsional compound ultrasonic vibration milling and drilling device
CN108080240A (en) * 2017-12-12 2018-05-29 唐德祥 A kind of rotary ultrasonic auxiliary machining device
CN108500723B (en) * 2018-05-21 2024-03-22 汇专科技集团股份有限公司 Integrated electromagnetic emission bracket and integrated electromagnetic emission device
CN108500723A (en) * 2018-05-21 2018-09-07 广州汇专工具有限公司 Integrated electromagnetic emits holder and integrated electromagnetic emitter
CN108735489A (en) * 2018-05-21 2018-11-02 广州汇专工具有限公司 The encapsulating method of electromagnetic transmission component
CN108735489B (en) * 2018-05-21 2020-08-25 汇专科技集团股份有限公司 Sealing method of electromagnetic transmission assembly
CN109551026A (en) * 2018-11-30 2019-04-02 沈阳工业大学 Cyclone milling machine motor-direct-drive type magnetic suspension facing cutter
TWI685398B (en) * 2019-04-26 2020-02-21 旭泰精密機械股份有限公司 Ultrasonic tool holder
CN112620747A (en) * 2021-01-29 2021-04-09 南京晓庄学院 Auxiliary chip breaking device for drilling high-toughness material by robot spiral milling
JP6933868B1 (en) * 2021-03-11 2021-09-08 株式会社レーザーシステム Coupling resonance type wireless power transmission system
JP2022139153A (en) * 2021-03-11 2022-09-26 株式会社レーザーシステム Coupled-resonant wireless power transmission system
KR20220128110A (en) * 2021-03-12 2022-09-20 영남대학교 산학협력단 Built-in motor ultrasonic vibration spindle apparatus
KR102482384B1 (en) * 2021-03-12 2022-12-27 영남대학교 산학협력단 Built-in motor ultrasonic vibration spindle apparatus
CN113809832A (en) * 2021-09-18 2021-12-17 肇庆市衡艺实业有限公司 Wireless transmission coil and application thereof
WO2023040207A1 (en) * 2021-09-18 2023-03-23 王晓冰 Wireless transmission coil and application thereof

Also Published As

Publication number Publication date
JPWO2014111972A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
WO2014111972A1 (en) Non-contact power supply device
JP5308599B1 (en) Processing equipment
US10809123B2 (en) Device for generating an ultrasonic vibration of a tool and for measuring vibration parameters
US10710176B2 (en) Elliptical ultrasonic machining device powered by non-contact induction
US9908209B2 (en) Method for machining a workpiece, supply circuit, supply system, tool actuator, tool setup
CN107850484B (en) Method and device for measuring the resonant frequency of a tool for ultrasonic vibration machining
CN1307509A (en) Trajectory controller
JP5335226B2 (en) Movable transmission device
JP2008504138A (en) Tool with vibrating head
JP2009231803A (en) Rotating device and robot arm device
US8955574B2 (en) Ultrasonic welding device with rotary coupler
JP2017519482A (en) Processing unit provided with non-contact power supply device and non-contact power supply method in processing unit
WO2014111971A1 (en) Non-contact transmission device
KR101990221B1 (en) Rotation detector
Bortis et al. Optimization of rotary transformer for high-speed applications
AU2019229276B2 (en) Centrifugal separator and method of operating a centrifugal separator
JP4999176B2 (en) Drive device
Imaoka et al. A leakage flux cancellation technique for series-parallel combined resonant circuits with asymmetric rotary transformers used for ultrasonic spindle drive
WO2019191848A1 (en) Methods and apparatuses for causing vibration of at least one tool
JP5303759B2 (en) Drive unit for piezoelectric vibrator
JP2015053380A (en) Component holding head of surface mounting machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014557177

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13871313

Country of ref document: EP

Kind code of ref document: A1