WO2014110812A1 - 信息传输方法和设备 - Google Patents

信息传输方法和设备 Download PDF

Info

Publication number
WO2014110812A1
WO2014110812A1 PCT/CN2013/070721 CN2013070721W WO2014110812A1 WO 2014110812 A1 WO2014110812 A1 WO 2014110812A1 CN 2013070721 W CN2013070721 W CN 2013070721W WO 2014110812 A1 WO2014110812 A1 WO 2014110812A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
group
stream
streams
length
Prior art date
Application number
PCT/CN2013/070721
Other languages
English (en)
French (fr)
Inventor
吕永霞
张雯
汲桐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/070721 priority Critical patent/WO2014110812A1/zh
Priority to EP13871836.6A priority patent/EP2938147A4/en
Priority to CN201380000739.6A priority patent/CN104137638A/zh
Publication of WO2014110812A1 publication Critical patent/WO2014110812A1/zh
Priority to US14/800,373 priority patent/US20150318967A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • Embodiments of the present invention relate to the field of communication technologies, and, more particularly, to an information transmission method and apparatus. Background technique
  • the Internet of Things ( ⁇ ) refers to the acquisition of information in the physical world through the deployment of various devices with certain sensing, computing, execution and communication capabilities. Collaboration and processing to achieve a network of people, things, and things. It is generally believed that the first phase of the Internet of Things is called Machine to Machine (M2M), which is to achieve free communication between machines.
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • Long Term Evolution Long Term Evolution (Long Term Evolution, LTE) project in recent years is the third Generation Partnership Project (The 3 rf Generation Partnership Project, 3GPP) launched the largest new technology research and development projects, such orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing (OFDM)/Multi-Input Multi-Output ( ⁇ ) is a core technology that provides downlink 100Mbps, 50Mbps uplink peak rate over 20MHz spectrum bandwidth, and improves cell edge user performance. Increase cell capacity and reduce system latency.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Multi-Input Multi-Output
  • the performance advantages of LTE systems bring many benefits. With the development, M2M devices will be closely integrated with LTE, and the number of M2M devices will become very large. At that time, a large number of random or periodic reporting data will be generated, possibly from Various specific applications of MTC, such as wireless water meter, vending machine, pos machine and so on.
  • 3GPP has specially set up a project team to study the enhancement or optimization of mobile communication networks for the introduction of MTC devices, which is one of the key issues that operators care about.
  • MTC user equipment an important application of MTC user equipment is smart meters.
  • smart meters are usually installed in the basement of a home or are isolated by a metal enclosure.
  • the MTC device experiences a more serious path loss than the normal user equipment, such as an additional 20 dB of path loss, that is, an increase of at least 20 dB is required to meet the requirement, according to the minimum coupling loss in 3GPP (Minimum coupling) Loss, MCL) table can know, physical uplink shared channel
  • the Physical Uplink Share Channel (PUSCH) and the Physical Downlink Share Channel (PDSCH) are both at a rate of 20 kbps, that is, each lms subframe transmits only 20 bits.
  • the 3GPP Minimum Modulation and Coding Scheme (MCS) table and Transport Block Size (TBS) table can be used to know that the minimum TBS size is 16 bits, that is, for devices that need coverage compensation. In this case, the number of transmission bits per ⁇ is very likely to be less than 16 bits, and in addition to the check code, the code rate is further increased, resulting in a decrease in transmission efficiency.
  • MCS Minimum Modulation and Coding Scheme
  • TBS Transport Block Size
  • Embodiments of the present invention provide a method and a device for information transmission, which can ensure transmission efficiency in a low bit rate.
  • a method for transmitting information including: determining a group number M and/or a group length N, wherein the M is an integer greater than 1, and the N is an integer greater than 1 or equal to 1;
  • the M and/or the N treat the packet information stream to obtain an M group of information streams to be transmitted; the number of symbols in each time-frequency resource in the time-frequency resource is greater than 4.
  • the processing, according to the M and/or the N, the information flow to be processed, to obtain the M group of information to be sent includes: the information to be grouped Adding a cyclic redundancy check code to the stream; encoding the to-be-packetized information stream after adding the cyclic redundancy check code to obtain a bit stream, where the code includes Turbo code coding or convolutional code coding; It is divided into M groups of to-be-modulated bit streams, wherein the length of the bit stream is C, and the length of each group of to-be-modulated bit streams is N; respectively, the M groups of to-be-modulated bit streams are modulated to obtain M groups of to-be-transmitted information streams.
  • the processing, according to the M and/or the N, the information flow to be processed, to obtain the M group of information to be sent includes: the information to be grouped Adding a cyclic redundancy check code to the stream; encoding the to-be-packetized information stream after adding the cyclic redundancy check code to obtain a bit stream, where the coding includes Turbo code coding or convolutional code coding; and modulating the bit stream Obtaining a symbol stream; dividing the symbol stream into M groups of information streams to be sent, wherein the length of the symbol stream is C, and the length of each group of information streams to be sent is N.
  • the processing, according to the M and/or the N, the grouping information flow, to obtain the M group to be sent information stream includes:
  • the packet information stream is divided into M groups of to-be-encoded information streams, where the length of the to-be-packetized information stream is C, and the length of each group of to-be-coded information streams is N;
  • the processing, according to the M and/or the N, the grouping information flow, to obtain the M group to be sent information includes: the information to be grouped
  • the flow is divided into M groups of information streams to be encoded, wherein the length of the information stream to be grouped is C, the length of each group of information to be encoded is N, and the information stream to be grouped includes high layer check information;
  • the information stream to be encoded is obtained by obtaining a bit stream of M, wherein the encoding comprises Turbo coding, convolutional code coding or linear block code coding; and the M group of bit streams are modulated to obtain M sets of to-be-transmitted information streams.
  • the processing, according to the M and/or the N, the packet information flow, to obtain the M group to be sent information includes: encoding the to-be-packet information Streaming, obtaining a bit stream, wherein the encoding comprises Turbo coding, convolutional code coding or linear block code coding, the to-be-packetized information stream includes upper layer check information; and the bit stream is divided into M groups of to-be-modulated bit streams, The length of the bit stream is C, and the length of each group of to-be-modulated bit streams is N.
  • the M groups of to-be-modulated bit streams are modulated to obtain M groups of information streams to be transmitted.
  • the processing, according to the M and/or the N, the packet information flow, to obtain the M group to be sent information includes: encoding the to-be-packet information Streaming, obtaining a bitstream, wherein the encoding comprises Turbo coding, convolutional code coding or linear block code coding, the to-be-packetized information stream includes higher layer check information; modulating the bitstream to obtain a symbol stream;
  • the flow is divided into M groups of information streams to be sent, where the length of the symbol stream is C, and the length of each group of information streams to be sent is N.
  • the determining the group number M and/or the group length N includes: obtaining the preset number of the group M from the local and / or the group length N; or receive the group number M and / or the group length N from the outside.
  • the determining the group number M and/or the group length N includes: determining the M according to the N and C, Or determining the N according to the M and C:
  • the receiving the group number M and/or the group length N from the outside comprises: receiving from the outside And a resource allocation message, where the resource allocation message is used to configure a time-frequency resource occupied by each group in the M group to be sent information stream.
  • the resource allocation message includes at least one of the following: the group number M; the group length N; The time domain length of each set of time-frequency resources; the number of resource block RBs and the modulation and coding mode MCS; the number of RBs and the transport block size TBS.
  • the sending, by the M groups, the to-be-sent information flows on the M different time-frequency resources includes: in the M group to be sent information flows After the first group is successfully sent, the acknowledgment information sent by the base station is received, and the acknowledgment information is used to indicate that the subsequent transmission continues to occupy the current channel.
  • the method further includes: receiving
  • the second aspect provides a method for receiving information, including: receiving M sets of symbol streams respectively on M different time-frequency resources, where each of the M different time-frequency resources is in a time-frequency resource
  • the number of symbols is greater than 4, and the M is an integer greater than 1; the M sets of symbol streams are processed to obtain an original information stream.
  • the processing, by the M group of symbol streams, obtaining the original information stream includes: separately demodulating the M sets of symbol streams to obtain a M group of bit streams, The length of the bit stream is C, and the length of each group of bit streams is N; synthesizing the M group of bit streams into a bit stream to be decoded; decoding the bit stream to be decoded to obtain an original information stream, where the decoding Including Turbo code decoding or convolutional code decoding; verifying the original information stream.
  • the processing, by the M group of symbol streams, to obtain the original information stream includes: synthesizing the M group symbol streams into a symbol stream to be demodulated, where The length of the demodulated symbol stream is C, and the length of each group of symbol streams is N; demodulating the to-be-demodulated symbol stream to obtain a bit stream to be decoded; decoding the bit stream to be decoded to obtain an original information stream, where The decoding includes Turbo code decoding or convolutional code decoding; verifying the original information stream.
  • the processing, by the M group of symbol streams, obtaining the original information stream includes: separately demodulating the M sets of symbol streams, and obtaining M sets of to-be-decoded bit streams Performing linear block code decoding on the M groups of to-be-decoded bitstreams to obtain M groups of bitstreams; synthesizing the M sets of bitstreams into original information streams, where the length of the original information streams is C, each group of bits The length of the stream is N; the original information stream is verified.
  • the verifying the original information flow includes: a cyclic redundancy check or a high-level school Verifying the information check; the decoding further comprises: linear block code decoding.
  • the method further includes determining the group number M and/or the group length N, including: determining the M according to the N and C, Or determining the N according to the M and C:
  • C and N are in units of bits, or C and N are in units of symbols, and said N is an integer greater than 1 or equal to 1, ", is an up-rounding operation.
  • the method further includes: determining and sending a resource allocation message, where the resource allocation message is used to configure the M group symbol Time-frequency resources occupied by each group in the stream.
  • the resource allocation message includes at least one of: the group number M; the group length N; The time domain length of each set of time-frequency resources; the number of resource block RBs and the modulation and coding mode MCS; the number of RBs and the transport block size TBS.
  • the receiving the M sets of symbol streams on the M different time-frequency resources separately includes: successfully receiving the first group of the M sets of symbol streams Then, the user equipment sends an acknowledgement message, where the acknowledgement information is used to indicate that the subsequent transmission continues to occupy the current channel.
  • the method further includes: sending feedback information for the M group symbol stream; or sending feedback information for each group of symbol streams.
  • an information sending device including: a determining unit, configured to determine a group number M and/or a group length N, where the M is an integer greater than 1, and the N is greater than 1 or equal to 1. Obtaining a group of to-be-sent information streams, and sending, by the sending unit, the M groups of to-be-sent information streams, respectively, on the M different time-frequency resources, where each of the M different time-frequency resources is in the time-frequency resource The number of symbols is greater than 4.
  • the information sending device further includes a coding unit and a modulation unit, where the processing unit is specifically configured to: add a cyclic redundancy check after the information flow to be grouped Transmitting, by the coding unit, the information stream to be grouped after adding a cyclic redundancy check code to obtain a bit stream, where the coding unit includes Turbo code coding or convolutional code coding; And is a group of to-be-modulated bitstreams, wherein the length of the bitstream is C, and the length of each group of to-be-modulated bitstreams is N; Send a stream of information.
  • the processing unit is specifically configured to: add a cyclic redundancy check after the information flow to be grouped Transmitting, by the coding unit, the information stream to be grouped after adding a cyclic redundancy check code to obtain a bit stream, where the coding unit includes Turbo code coding or convolutional code coding; And is a group of to-be-modulated bitstreams, wherein the length
  • the information sending device further includes a coding unit and a modulation unit, where the processing unit is specifically configured to: add a cyclic redundancy check after the information flow to be grouped Transmitting, by the coding unit, the information stream to be grouped after adding a cyclic redundancy check code to obtain a bit stream, wherein the coding includes Turbo code coding or convolutional code coding; modulation by the modulation unit And the symbol stream is divided into M groups of to-be-transmitted information streams, where the length of the symbol stream is C, and the length of each group of to-be-sent information streams is N.
  • the information sending device further includes an encoding unit and a modulating unit, where the processing unit is specifically configured to: divide the to-be-packetized information stream into M group to be encoded information a stream, where the length of the to-be-packetized information stream is C, and the length of each group of to-be-coded information streams is N; and the M-group to-be-encoded information streams are respectively coded by the coding unit to obtain the M group. a bit stream; respectively, modulating the bit streams of the M groups by the modulation unit to obtain M groups of information streams to be transmitted.
  • the information sending device further includes an encoding unit and a modulating unit, where the processing unit is specifically configured to: divide the to-be-packetized information stream into M group to be encoded information a stream, where the length of the information stream to be grouped is C, the length of each group of information to be encoded is N, and the information stream to be grouped includes high layer check information; and the coding unit is used to encode the M group to be encoded.
  • the information stream obtains a bit stream of M, wherein the encoding comprises Turbo coding, convolutional code coding or linear block code coding; and the M-bit bit stream is modulated by the modulation unit to obtain M sets of to-be-transmitted information streams.
  • the information sending device further includes a coding unit and a modulation unit, where the processing unit is specifically configured to: obtain, by the coding unit, the information stream to be grouped, to obtain a bit stream, where the code includes Turbo coding, convolutional code coding or linear block code coding,
  • the to-be-packetized information stream includes high-level parity information;
  • the bitstream is divided into M groups of to-be-modulated bitstreams, where the length of the bitstream is C, and the length of each group of to-be-modulated bitstreams is N;
  • the modulating unit modulates the M groups of to-be-modulated bit streams to obtain M groups of information streams to be transmitted.
  • the information sending device further includes an encoding unit and a modulating unit, where the processing unit is specifically configured to: by using the encoding unit, encode the information stream to be grouped, Obtaining a bit stream, where the encoding includes Turbo coding, convolutional code coding or linear block code coding, the to-be-packetized information stream includes high-layer check information; and the modulation unit is configured to modulate the bit stream to obtain a symbol stream;
  • the symbol stream is divided into M groups of to-be-sent information streams, where the length of the symbol stream is C, and the length of each group of information streams to be sent is N.
  • the information sending device further includes a receiving unit, where the determining unit is specifically configured to: obtain the preset according to the local The group number M and/or the group length N; or the group number M and/or the group length N are externally received by the receiving unit.
  • the determining unit is specifically configured to: determine the M according to the N and C, or according to the M and C Determine the N:
  • the receiving unit is specifically configured to: receive a resource allocation message from an external, where the resource allocation message is used for configuration The time-frequency resources occupied by each of the M groups of information streams to be transmitted.
  • the resource allocation message includes at least one of the following: the group number M; the group length N; The time domain length of each set of time-frequency resources; the number of resource block RBs and the modulation and coding mode MCS; the number of RBs and the transport block size TBS.
  • the receiving unit is specifically configured to: After the first group of the M packets to be sent is successfully sent, the acknowledgment information sent by the eNB is received, where the acknowledgment information is used to indicate that the subsequent transmission continues to occupy the current channel.
  • the receiving unit is further configured to: receive feedback information for the M group to be sent information flow; or
  • an information receiving device including: a receiving unit, configured to separately receive M sets of symbol streams on M different time-frequency resources, where each of the M different time-frequency resources is The number of symbols in the frequency resource is greater than 4, and the M is an integer greater than 1.
  • the processing unit is configured to process the M group of symbol streams to obtain an original information stream.
  • the information receiving device further includes a demodulation unit and a decoding unit, where the processing unit is specifically configured to: separately demodulate the M by using the demodulation unit a group symbol stream, the bit stream of the M group is obtained, wherein the bit stream has a length C, each group of bit streams has a length of N; the M group of bit streams is synthesized into a bit stream to be decoded; Decoding the bitstream to be decoded to obtain an original information stream, wherein the decoding comprises Turbo code decoding or convolutional code decoding; and verifying the original information stream.
  • the processing unit is specifically configured to: separately demodulate the M by using the demodulation unit a group symbol stream, the bit stream of the M group is obtained, wherein the bit stream has a length C, each group of bit streams has a length of N; the M group of bit streams is synthesized into a bit stream to be decoded; Decoding the bitstream to be decoded to obtain an original information stream, wherein the decoding comprises Turbo code decoding
  • the information receiving device further includes a demodulation unit and a decoding unit, where the processing unit is specifically configured to: synthesize the M group of symbol streams into a symbol to be demodulated a stream, wherein the length of the to-be-demodulated symbol stream is C, and the length of each group of symbol streams is N; and the demodulated symbol stream is demodulated by the demodulation unit to obtain a bit stream to be decoded; And a decoding unit that decodes the bitstream to be decoded to obtain an original information stream, where the decoding includes Turbo code decoding or convolutional code decoding; and the original information stream is verified.
  • the processing unit is specifically configured to: synthesize the M group of symbol streams into a symbol to be demodulated a stream, wherein the length of the to-be-demodulated symbol stream is C, and the length of each group of symbol streams is N; and the demodulated symbol stream is demodulated by the demodulation unit to obtain a bit stream to be decoded; And a de
  • the information receiving device further includes a demodulation unit and a decoding unit, where the processing unit is specifically configured to: separately demodulate the M group by using the demodulation unit a symbol stream, obtaining M groups of to-be-decoded bitstreams; performing linear packet code decoding on the M groups of to-be-decoded bitstreams by the decoding unit to obtain M sets of bitstreams; synthesizing the M sets of bitstreams into original information streams
  • the length of the original information stream is C, and the length of each group of bit streams is N; and the original information stream is verified.
  • the verifying the original information flow includes: a cyclic redundancy check or a high-level school Verifying the information check; the decoding further comprises: linear block code decoding.
  • the information receiving device further includes a determining unit, where the determining unit is specifically configured to: determine the M according to the N and C, or determine the N according to the M and C:
  • C and N are in units of bits, or C and N are in units of symbols, and said N is an integer greater than 1 or equal to 1, ", is an up-rounding operation.
  • the information receiving device further includes: a sending unit, configured to: determine, and send, by using the determining unit, the resource And allocating a message, where the resource allocation message is used to configure a time-frequency resource occupied by each group in the M group of symbol streams.
  • the resource allocation message includes at least one of: the group number M; the group length N; The time domain length of each set of time-frequency resources; the number of resource block RBs and the modulation and coding mode MCS; the number of RBs and the transport block size TBS.
  • the sending unit is further configured to: after successfully receiving the first group of the M group symbol streams, send an acknowledgement message to the user equipment, where the acknowledgement The information is used to indicate that subsequent transmissions continue to occupy the current channel.
  • the sending unit is further configured to: send feedback information for the M group symbol stream; or send feedback information for each group of symbol streams.
  • the embodiment of the present invention can ensure transmission efficiency and transmission quality by grouping information to be transmitted.
  • FIG. 1 is a flow chart of a method of transmitting information according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method of transmitting information according to another embodiment of the present invention.
  • FIG. 3 is a flow chart of a method of transmitting information according to another embodiment of the present invention.
  • FIG. 4 is a flow chart of a method of transmitting information according to another embodiment of the present invention.
  • FIG. 5 is a flow chart of a method of receiving information according to an embodiment of the present invention.
  • Figure 6 is a schematic block diagram of an information transmitting apparatus according to an embodiment of the present invention.
  • Figure 7 is a schematic block diagram of an information receiving apparatus according to an embodiment of the present invention.
  • Figure 8 is a schematic block diagram of an information transmitting apparatus according to another embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of an information receiving apparatus according to another embodiment of the present invention. detailed description
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UE User Equipment
  • RAN Radio Access Network
  • the user equipment may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a mobile device that can be portable, pocket, handheld, computer built, or in-vehicle,
  • the wireless access network exchanges languages and/or data.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or evolutional Node B, e-NodeB) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional Node B
  • the UE is used as the information transmitting device, and the base station is used as the information receiving device.
  • the information sending device and the information receiving device may be any two machine-to-machine (M2M) devices that perform Machine Type Communication (MTC), and may also be a base station and a user equipment, where the user equipment It may be a terminal, and the invention is not limited.
  • M2M machine-to-machine
  • MTC Machine Type Communication
  • 1 is a flow chart of a method of transmitting information according to an embodiment of the present invention.
  • 101. Determine a group number M and/or a group length N, where M is an integer greater than 1, and N is an integer greater than 1 or equal to 1.
  • the station receives the number of groups M and/or the group length N, and the length of the information to be transmitted is C.
  • M can be determined according to N and C, or N can be determined according to M and C:
  • Processing may include the addition of insurance codes, encoding, modulation and grouping, the specific order and combination of which will be illustrated in the embodiments.
  • grouping process according to the relationship of M, N and C in step 101, it can be grouped according to M alone or according to N or according to M and N.
  • the transmission of the M group to be sent information stream may be based on scheduling or based on contention.
  • the base station sends configuration information to configure time-frequency resources.
  • the number of OFDM symbols in each time-frequency resource is greater than 4, and the more the number of OFDM symbols included in a unit time domain resource, the wider the coverage.
  • the embodiment of the present invention can ensure transmission efficiency by grouping information to be transmitted.
  • processing the grouping information stream may include: adding a cyclic redundancy check code after the information stream to be grouped; and encoding the to-be-grouped information after adding the cyclic redundancy check code.
  • Streaming obtaining a bit stream, wherein the encoding comprises Turbo code encoding or convolutional code encoding; dividing the bit stream into M groups of to-be-modulated bit streams, wherein the length of the bit stream is C, and the length of each group of to-be-modulated bit streams is N;
  • the M sets of to-be-modulated bit streams are modulated to obtain M sets of information streams to be transmitted.
  • processing the grouping information stream may include: adding a cyclic redundancy check code after the information stream to be grouped; and coding to be grouped after adding the cyclic redundancy check code Information stream, obtaining a bit stream, where the encoding includes Turbo code encoding or convolutional code Encoding: modulating the bit stream to obtain a symbol stream; dividing the symbol stream into M groups of information streams to be transmitted, wherein the length of the symbol stream is C, and the length of each group of information streams to be sent is N.
  • processing the grouping information stream may include: dividing the to-be-packetized information stream into M groups of to-be-encoded information streams, where the length of the to-be-packetized information stream is C, each group The length of the information stream to be encoded is N; the M-group to-be-encoded information streams are respectively subjected to linear block code encoding to obtain the M-group bit streams; the M-group bit streams are respectively modulated to obtain M-group to-be-sent information streams.
  • processing the grouping information stream may include: dividing the to-be-packetized information stream into M groups of to-be-encoded information streams, where the length of the to-be-packetized information stream is C, each group The length of the information stream to be encoded is N, and the information stream to be packetized includes high layer check information; the M group of information streams to be encoded is encoded to obtain a bit stream of M, wherein the code includes Turbo coding, convolutional code coding or linear block code coding; The bit stream of the M group obtains the M group of information streams to be transmitted.
  • processing the grouping information stream may include: encoding a stream to be grouped to obtain a bit stream, where the encoding includes Turbo coding, convolutional code coding, or linear block code coding,
  • the to-be-packet information stream includes upper layer verification information; the bit stream is divided into M groups of to-be-modulated bit streams, wherein the length of the bit stream is C, and the length of each group of to-be-modulated bit streams is N; modulating M groups of to-be-modulated bit streams, obtaining Group M to send information stream.
  • processing the grouping information stream may include: encoding a stream to be grouped to obtain a bit stream, where the encoding includes Turbo coding, convolutional code coding, or linear block code coding,
  • the to-be-packet information stream includes high-level check information; the bit stream is modulated to obtain a symbol stream; and the symbol stream is divided into M groups of to-be-sent information streams, wherein the length of the symbol stream is C, and the length of each group of to-be-sent information streams is N.
  • a resource allocation message may be externally received, where the resource allocation message is used to configure a time-frequency resource occupied by each group in the M group to be sent information stream.
  • the resource allocation message includes at least one of the following: group number M; group length N; time domain length of each group of time-frequency resources; resource block RB number and modulation coding mode MCS; RB number and transmission block size TBS.
  • the acknowledgement information sent by the base station is sent, and the acknowledgement information is used to indicate that the subsequent transmission continues to occupy the current channel.
  • the UE may receive feedback information for the M group of information to be sent; or receive feedback information for each group of information to be sent.
  • the information to be transmitted is grouped, and in the case of a low code rate, the transmission efficiency is ensured. And by sharing the check code or using linear block code encoding, the overhead is saved and the coverage is improved.
  • FIG. 2 is a flow chart of a method of transmitting information according to another embodiment of the present invention.
  • Figure 2 is a specific embodiment of Figure 1.
  • the sender needs to send a stream of information ⁇ « , A, i at the physical layer.
  • the length of the stream is ⁇ .
  • the CRC is generated by the following polynomial, D is a symbol, and D 3 is a 3 term:
  • the encoder can be a Turbo encoder, such as a l/3 Turbo encoder, or a convolutional code encoder, such as a 1/3 convolutional code encoder.
  • M and N may be preset values, and the UE may directly acquire from the local, or may be notified by the base station to the UE by signaling.
  • the bit stream length encoded by step 202 is C.
  • Group number M, group length N and C satisfy the following relationship:
  • the information stream to be grouped is the encoded bit stream, so C and
  • N is in bits, ", is rounding up.
  • N can be determined by M and C
  • M can be determined by N and C.
  • C is known, that is, by acquiring M
  • any of N can group the bitstreams, each group contains a number of bits of N, where N can be divisible by the modulation order to facilitate the next modulation.
  • the modulation mode may be predefined, or the base station may notify the UE by signaling.
  • Table 1 shows the correspondence between the modulation and coding mode index I MCS of the data channel and the modulation order Q m and the transport block index I TBS .
  • the UE can learn the modulation through the downlink control information (Downlink Control Information, DCI) sent by the base station.
  • the coding mode index I MCS can determine the modulation mode, the modulation order 3 ⁇ 4 Q m and the transport block index I TBS by looking up the table.
  • the base station informs that the coding mode index I MCS is 4.
  • the coding mode index I MCS is 4.
  • QPSK2 order modulation is adopted, and the transport block index I TBS is 4, which can be used to further query the TBS table to obtain the transport block size.
  • the corresponding transport block size TBS can be known from the transport block index I TBS checked in Table 1 above and the number of physical layer resource blocks N PRB obtained through DCI.
  • step 201 to step 204 it is assumed that the original stream length is 136 bits, and a 24-bit CRC is added after the stream to form a bit stream of 160 bits long, and then the bit stream is encoded, for example, Encoded with convolutional code 1/3, the encoded bit stream is long
  • the number of bits per copy is:
  • the UE determines the modulation mode and the modulation order according to the DCI notification or the preset value, for example, the 2nd order QPSK, and after modulation, obtains M sets of symbol streams (to be transmitted information streams), wherein each group contains 12 QPSK symbols.
  • the UE since only one CRC is added to the original stream, it is equivalent to 20 sets of coded modulated streams sharing a CRC, which saves overhead in the case of low coding rate.
  • the transmission frequency resource includes a time resource (that is, M) is at least greater than 1, and may be equal to 1 compatible with the prior art (not grouped), may be a multiple of 4ms, 8ms, etc. 4, in order to reuse the Qbundling HARQ process relationship.
  • M a time resource
  • M is at least greater than 1
  • the length of the time resource can be signaled or predefined, for example, the predefined time domain length is 16.
  • the allocation of time-frequency resources can be determined by the base station and sent to the UE through signaling.
  • the base station may allocate the transmission resources of the M group through the DCI, and may include the number of RBs (PRBs) and the new MCS or the original MCS (or the new TBS), and the M value or The value of N, and possibly the length of the time domain of a transmission resource.
  • the UE may first send a code, such as an access code, which may carry some information.
  • a code such as an access code
  • the user needs to occupy multiple time-frequency resources, such as M.
  • a confirmation message is sent, and then the user continues to occupy a certain channel until the transmission is completed; the occupied channel can be allocated by the base station, and the information of the channel is carried in the acknowledgement information, or the access code and/or the access code is located.
  • the channel corresponding to the channel.
  • some features may be added to indicate to the receiver that the transmission is complete, such as using a spreading factor on the pilot, such as (1, -1), or adding the last side of the encoded data.
  • a string of all special symbols, such as LTE usually ⁇ NULL>.
  • the information to be transmitted is grouped, and in the case of a low code rate, the transmission efficiency is ensured. And by sharing the CRC method, the overhead is saved, the coding performance is improved, and the coverage is improved.
  • FIG. 3 is a flow chart of a method of transmitting information according to another embodiment of the present invention.
  • the sender needs to send a stream of information at the physical layer, ⁇ , , i , and the length of the stream is ⁇ .
  • the specific generation method of the CRC reference may be made to step 201 in FIG. 2 above, and details are not described herein again.
  • the information stream after the addition of the CRC is encoded by an encoder, which may be a turbo encoder such as an l/3 Turbo encoder or a convolutional code encoder such as a 1/3 convolutional encoder.
  • an encoder which may be a turbo encoder such as an l/3 Turbo encoder or a convolutional code encoder such as a 1/3 convolutional encoder.
  • the modulation mode may be predefined, or the base station may notify the UE by signaling.
  • Table 1 in the above step 204 shows the correspondence between the modulation and coding mode index I MCS of the data channel and the modulation order Q m and the transport block index I TBS , and the downlink control information ( Downlink Control Information ) sent by the UE through the base station.
  • the DCI is known as the modulation coding mode index I MCS , and the modulation mode, the modulation order 3 ⁇ 4Q m and the transport block index I TBS can be determined by looking up the table.
  • M and N may be preset values, and the UE may directly obtain the UE, or may notify the UE by signaling by the base station.
  • the symbol stream length modulated by step 303 is C.
  • the number of groups M, the relationship between the group lengths N and C satisfies the following relationship: C
  • the information stream to be grouped is a modulated symbol stream, so C and N are in units of symbols, and "is rounded up.
  • N can be determined by M and C. It is also possible to determine M by N and C.
  • C is known, that is, the symbol streams can be grouped by acquiring either M or N, each group containing N, and N is greater than 4 .
  • step 301 to step 304 it is assumed that the original stream length is 136 bits, and a 24-bit CRC is added after the stream to form a bit stream of 160 bits long, and then the bit stream is encoded, for example, When the convolutional code is encoded by 1/3, the length of the encoded bit stream becomes 480 bits.
  • the UE determines the modulation mode and the modulation order according to the DCI notification or the preset value, for example, the second-order QPSK, and after modulation, the length is 240.
  • the number of groups M is 20, that is, the symbol stream C is equally divided into 20 copies, and the number of symbols per copy is:
  • each group contains 12 QPSK symbols.
  • the equivalent of 20 sets of coded modulated streams sharing a CRC saves overhead at low coding rates.
  • the frequency resource includes a time resource (that is, M) that is at least greater than 1, and may be equal to 1 compatible with the prior art (not grouped), and may be a multiple of 4 ms, 8 ms, etc., in order to reuse the HARQ process relationship of the ⁇ bundling.
  • M a time resource
  • the length of the time resource can be signaled or predefined, for example, the predefined time domain length is 16.
  • the allocation of time-frequency resources can be determined by the base station and sent to the UE through signaling.
  • the base station may allocate the transmission resources of the M group through the DCI, and may include the number of RBs (PRBs) and the new MCS or the original MCS (or the new TBS), and the M value or The value of N, and possibly the length of the time domain of a transmission resource.
  • the UE may first send a code, such as an access code, which may be To carry some information, for example, the user needs to occupy multiple time-frequency resources, for example, M.
  • a code such as an access code
  • the base station After successfully receiving the codeword, the base station sends an acknowledgement message, and then the user continues to occupy a certain channel until the transmission is completed; the occupied channel can It is allocated by the base station, and the information of the channel is carried in the acknowledgment information, and may also be a channel corresponding to the channel where the access code and/or the access code are located.
  • some features may be added to indicate to the receiver that the transmission is complete, such as using a spreading factor on the pilot, such as (1, -1), or adding the last side of the encoded data.
  • a string of all special symbols, such as LTE usually ⁇ NULL>.
  • the received information can be completely verified according to the CRC before being fed back. That is to say, for the information flow of the M group, an ACK/NACK is fed back after all the reception, and it should be understood that the feedback information is not limited to the ACK/NACK, which is not limited by the present invention.
  • the information to be transmitted is grouped, and in the case of a low code rate, the transmission efficiency is ensured.
  • the shared CRC method saves overhead and improves coding performance.
  • FIG. 4 is a flow chart of a method of transmitting information according to another embodiment of the present invention.
  • the sender needs to send a stream of information C at the physical layer to group the streams before encoding.
  • M and N may be preset values, and the UE may directly acquire from the local, or may be notified by the base station to the UE by signaling.
  • Number of groups M, group length N and C satisfy the following relationship:
  • the information stream to be grouped is an uncoded bit stream, so C and N are in units of bits, ", which is an round-up operation.
  • N can be determined by M and C. It is also possible to determine M by N and C.
  • C is known, that is, the bit stream can be grouped by acquiring either M or N, and each group contains N bits.
  • each group of information streams is separately subjected to linear block code encoding, for example, RM (Reed-Muller) encoding, and the corresponding matrix of the RM encoding may be Table 3, where A is the number of original information bits.
  • the original information bit stream is . . , ⁇ ,. 2,. 3 ⁇ ⁇ _ ⁇ , after coding b 0 , b 1 , b 2 , b 3 , ..., b B _ 1 , wherein
  • the modulation mode may be predefined, or the base station may notify the UE by signaling.
  • Table 1 in the above step 204 shows the correspondence between the modulation and coding mode index of the data channel and the modulation order and the transport block index.
  • the UE can learn the modulation and coding mode by using the downlink control information (Downlink Control Information, DCI) sent by the base station. Index, can be determined by looking up the table Modulation order and transport block index.
  • DCI Downlink Control Information
  • the M group symbol streams need to be separately sent on M different time-frequency resources.
  • the time-frequency resources include time resources (that is, M) that are at least greater than 1, and may be equal to 1 compatible with the prior art (not grouped), and may be multiples of 4ms, 8ms, etc. 4, in order to reuse the HARQ process relationship of ⁇ bundling.
  • the length of the time resource can be either signaled or predefined, such as a predefined time domain length of 16.
  • the allocation of time-frequency resources can be determined by the base station and sent to the UE through signaling.
  • the base station may allocate the transmission resources of the M group through the DCI, and may include the number of RBs (PRBs) and the new MCS or the original MCS (or the new TBS), and the M value or The value of N, and possibly the length of the time domain of a transmission resource.
  • the UE may first send a code, such as an access code, which may carry some information.
  • a code such as an access code
  • the user needs to occupy multiple time-frequency resources, such as M.
  • An acknowledgement message is sent, and then the user continues to occupy a certain channel until the transmission is completed; the occupied channel can be allocated by the base station, and the information of the channel is carried in the acknowledgement information, or the access code and/or the access code is located.
  • the channel corresponding to the channel.
  • some features may be added to indicate to the receiver that the transmission is complete, such as using a spreading factor on the pilot, such as (1, -1), or adding the last side of the encoded data.
  • a string of all special symbols, such as LTE usually ⁇ NULL>.
  • the grouped symbol stream can be independently demodulated and decoded at the receiving end, so the receiver can perform each group in the received M group symbol stream.
  • Feedback ACK/NACK Of course, it is also possible to feed back an ACK/NACK after receiving all M sets of symbol streams. If the feedback is NACK, it is also necessary to simultaneously report which information on the time-frequency resource is in error. For example, a total of 4 groups of information are sent, the first and third errors occur, and the receiver feeds back a bitmap in addition to the NACK feedback. : 1010 to indicate which group is wrong. For example, 0001 indicates the first group error, and 0011 indicates the third group error.
  • the information to be transmitted is grouped, and in the case of a low code rate, the transmission efficiency is ensured.
  • the RM coding method saves overhead and improves coding performance.
  • the check information may be added to the upper layer by the information stream to be transmitted, so that the physical layer does not need to add the CRC, and then encodes and modulates.
  • the coded Turbo code is encoded or convolutional coded or RM coded. The grouping process can be done before encoding, after encoding (before modulation), or after modulation. For specific steps, refer to the corresponding steps in FIG. 2 to FIG. 4 above, and details are not described herein again.
  • Figure 5 is a flow chart of a method of information reception in accordance with one embodiment of the present invention.
  • the embodiment of the present invention can ensure transmission efficiency by grouping information to be transmitted.
  • processing the received M sets of symbol streams may include: separately demodulating the M sets of symbol streams to obtain M sets of bit streams, where the length of the bit stream is C, The length of each group of bitstreams is N; the M sets of bitstreams are synthesized into a bitstream to be decoded; the bitstream to be decoded is decoded to obtain an original stream of information, wherein the decoding comprises Turbo code decoding or convolutional code decoding; and the original information stream is verified.
  • processing the received M sets of symbol streams may include: synthesizing the M sets of symbol streams into a to-be-demodulated symbol stream, where the length of the to-be-demodulated symbol stream is C The length of each set of symbol streams is N; demodulating the demodulated symbol stream to obtain a bit stream to be decoded; decoding the bit stream to be decoded to obtain an original information stream, where decoding includes Turbo code decoding or convolutional code decoding; Information Flow.
  • processing the received M group of symbol streams may include: separately demodulating M sets of symbol streams to obtain M sets of to-be-decoded bitstreams; and performing M sets of to-be-decoded bitstreams Perform linear block code decoding separately to obtain M sets of bit streams; M sets of bit streams
  • the original information stream is synthesized, wherein the length of the original information stream is C, and the length of each group of bit streams is N; the original information stream is verified.
  • the verifying the original information stream may include: a cyclic redundancy check or a high layer check information check; the decoding may further include: linear block code decoding.
  • M may be determined according to N and C, or N may be determined according to M and C:
  • C and N are in bits, or C and N are in units of symbols, and N is an integer greater than 1 or equal to 1, ", is an round-up operation.
  • the receiving end may determine and send a resource allocation message, where the resource allocation message is used to configure a time-frequency resource occupied by each group in the M group symbol stream.
  • the resource allocation message includes at least one of the following: group number M; group length N; time domain length of each group of time-frequency resources; resource block RB number and modulation and coding mode MCS; RB number and transport block size TBS.
  • the M group symbol streams are respectively received on the M different time-frequency resources, including: after successfully receiving the first group in the M group symbol streams, sending a confirmation message to the user equipment, confirming The information is used to indicate that subsequent transmissions continue to occupy the current channel.
  • feedback information for the M group symbol stream may be sent; or feedback information for each group of symbol streams may be sent.
  • the information to be transmitted is grouped, and in the case of a low code rate, the transmission efficiency is ensured. And the overhead is saved by sharing the check code or using linear block code coding.
  • FIG. 6 is a schematic block diagram of an information transmitting apparatus according to an embodiment of the present invention.
  • the information transmitting apparatus 600 includes a determining unit 601, a processing unit 602, and a transmitting unit 603.
  • the determining unit 601 determines the number of groups M and/or the group length N, where M is an integer greater than 1, and N is an integer greater than 1 or equal to 1.
  • the processing unit 602 processes the packet information stream according to M and/or the N to obtain the M group to be sent information stream.
  • the sending unit 603 separately sends M groups of to-be-sent information streams on M different time-frequency resources, and the number of symbols in each of the M different time-frequency resources is greater than 4.
  • the information to be sent is grouped, and in the case of a low code rate, the transmission efficiency is ensured. And by sharing the check code or using linear block code encoding Sales.
  • the information transmitting device 600 can perform the various steps of the method embodiment of FIG. 1 to FIG. 4, and details are not described herein to avoid redundancy.
  • the information sending device 600 may further include an encoding unit 604 and a modulating unit 605, where the processing unit 601 is specifically configured to: add a cyclic redundancy check code after the information stream to be grouped; Encoding the information stream to be grouped after adding the cyclic redundancy check code to obtain a bit stream, wherein the coding unit 604 includes Turbo code coding or convolutional code coding; and dividing the bit stream into M groups of to-be-modulated bit streams, wherein the length of the bit stream For C, the length of each group of to-be-modulated bit streams is N; M groups of to-be-modulated bit streams are separately modulated by the modulating unit 605 to obtain M groups of information streams to be transmitted.
  • the processing flow in FIG. 3 and FIG. 4 above may also be performed by the information transmitting device 600, and details are not described herein again.
  • the information sending device 600 further includes a receiving unit 606, where the determining unit 601 is specifically configured to: obtain a preset number of groups M and/or a group length N from the local; or receive from the outside through the receiving unit 606. Group number M and / or group length N.
  • the determining unit 601 is specifically configured to: determine M according to N and C, or determine N according to M and C:
  • the receiving unit 606 is specifically configured to: receive a resource allocation message from the outside, where the resource allocation message is used to configure a time-frequency resource occupied by each group in the M group to be sent.
  • the resource allocation message includes at least one of the following: group number M; group length N; time domain length of each group of time-frequency resources; resource block RB number and modulation and coding mode MCS; RB number and transmission block size TBS.
  • the receiving unit 606 is specifically configured to: after the first group of the M packets to be sent is successfully sent, receive the acknowledgement information sent by the base station, where the acknowledgement information is used to indicate that the subsequent transmission continues to occupy the current channel. .
  • the receiving unit 606 is further configured to: receive feedback information for the M group to be sent information stream; or receive feedback information for each group of information to be sent.
  • Fig. 7 is a schematic block diagram of an information receiving apparatus according to an embodiment of the present invention.
  • the information accepting apparatus 700 includes a receiving unit 701 and a processing unit 702.
  • the receiving unit 701 respectively receives M sets of symbol streams on M different time-frequency resources, wherein the number of symbols in each of the M different time-frequency resources is greater than 4, and M is an integer greater than 1.
  • Processing unit 702 processes the M sets of symbol streams to obtain an original stream of information.
  • packets are to be sent by the flow of information to be transmitted, and in the case of a low code rate, the pin is guaranteed.
  • - 'One-' ' ' information accepting device 700 may perform the various steps of the method embodiment of FIG. 5, and to avoid repetition, no further details are provided.
  • the information receiving device 700 further includes a demodulation unit 703 and a decoding unit 704.
  • the processing unit 702 is specifically configured to: separately demodulate the M groups of symbol streams by using the demodulation unit 704, and obtain the M groups of bits. a stream, wherein the length of the bit stream is C, the length of each group of bit streams is N; the M sets of bit streams are synthesized into a bit stream to be decoded; and the bit stream to be decoded is decoded by the decoding unit 703 to obtain an original information stream, wherein the decoding includes Turbo code decoding or convolutional code decoding; verify the original information stream.
  • FIG. 8 is a schematic block diagram of an information transmitting apparatus according to another embodiment of the present invention.
  • the information transmitting device 800 of FIG. 8 includes a processor 801 and a memory 802.
  • the processor 801 and the memory 802 are connected by a bus system 803.
  • the memory 802 is configured to store instructions that cause the processor 801 to: determine the number of groups M and/or the group length N, where M is an integer greater than 1, and N is an integer greater than 1 or equal to 1; according to M and/or The N treats the packet information stream to obtain the M group to be sent information stream; and sends M groups of to-be-sent information streams to the M different time-frequency resources, and each of the M different time-frequency resources The number of symbols is greater than 4.
  • packets are to be sent by the flow of information to be transmitted, and in the case of a low code rate, the pin is guaranteed.
  • the information transmitting device 800 may further include a transmitting circuit 804, a receiving circuit 805, an antenna 806, and the like.
  • the processor 801 controls the operation of the information transmitting device 800, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 802 can include read only memory and random access memory and provides instructions and data to processor 801. A portion of memory 802 may also include non-volatile random access memory (NVRAM).
  • transmit circuitry 804 and receive circuitry 805 can be coupled to antenna 806.
  • Each of the information transmitting devices 800 The components are coupled together by a bus system 803, which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 803 in the figure.
  • Processor 801 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 801 or an instruction in the form of software.
  • the processor 801 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present invention may be directly implemented by the hardware decoding processor, or by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 802.
  • the processor 801 reads the information in the memory 802 and combines the hardware to perform the steps of the above method.
  • the processor 801 may add a cyclic redundancy check code after the information stream to be grouped; and encode the information stream to be grouped after adding the cyclic redundancy check code to obtain a bit stream, where the code includes Turbo.
  • Code coding or convolutional code coding dividing the bit stream into M groups of to-be-modulated bit streams, wherein the length of the bit stream is C, and the length of each group of to-be-modulated bit streams is N; respectively modulating M sets of to-be-modulated bit streams to obtain M
  • the group is to be sent a stream of information.
  • the processor 801 may add a cyclic redundancy check code after the information stream to be grouped; and encode the information stream to be grouped after adding the cyclic redundancy check code to obtain a bit stream, where the code includes Turbo code coding or convolutional code coding; modulating the bit stream to obtain a symbol stream; dividing the symbol stream into M groups of information streams to be transmitted, wherein the length of the symbol stream is C, and the length of each group of information streams to be transmitted is N.
  • the processor 801 may divide the to-be-packetized information stream into M groups of to-be-encoded information streams, where the length of the to-be-packetized information stream is C, and the length of each group of to-be-coded information streams is N;
  • the M group to be encoded information stream is respectively subjected to linear block code encoding to obtain the M group bit stream; respectively, the M group bit streams are modulated to obtain M groups of to-be-sent information streams.
  • the processor 801 may divide the information to be grouped into M groups.
  • the information stream to be encoded where the length of the information stream to be packetized is C, and the length of each group of information streams to be encoded is
  • the to-be-packet information stream includes high-level parity information; encodes M groups of to-be-encoded information streams, and obtains a bit stream of M, where the encoding includes Turbo coding, convolutional code coding, or linear block code coding; and modulates the M-group bitstream to obtain Group M to send information stream.
  • the processor 801 may encode the information stream to be grouped to obtain a bit stream, where the encoding includes Turbo coding, convolutional code coding, or linear block code coding, and the to-be-packet information flow includes upper layer verification information;
  • the bit stream is divided into M groups of to-be-modulated bit streams, wherein the length of the bit stream is C, and the length of each group of to-be-modulated bit streams is N; and M groups of to-be-modulated bit streams are modulated to obtain M groups of information streams to be transmitted.
  • the processor 801 may encode the information stream to be grouped to obtain a bit stream, where the encoding includes Turbo coding, convolutional code coding, or linear block code coding, and the to-be-packet information flow includes upper layer verification information;
  • the bit stream is modulated to obtain a symbol stream;
  • the symbol stream is divided into M groups of information streams to be transmitted, wherein the length of the symbol stream is C, and the length of each group of information streams to be sent is N.
  • the receiving circuit 805 may receive a resource allocation message from the outside through the antenna 806, where the resource allocation message is used to configure each group in the M group to be sent information stream.
  • Time-frequency resources The resource allocation message includes at least one of the following: group number M; group length N; time domain length of each group of time-frequency resources; resource block RB number and modulation coding mode MCS; RB number and transport block size TBS.
  • the receiving circuit 805 may receive the acknowledgement information sent by the base station through the antenna 806, and confirm the information. Indicates that subsequent transmissions continue to occupy the current channel.
  • the receiving circuit 805 may receive feedback information for the M group of information streams to be transmitted through the antenna 806; or receive feedback information for each group of information streams to be transmitted.
  • FIG. 9 is a schematic block diagram of an information receiving apparatus according to another embodiment of the present invention.
  • the information receiving device 900 of FIG. 9 includes a memory 901, a processor 902, a transmitting circuit 903, and an antenna 904.
  • the memory 901 is configured to store an instruction that causes the processor 902 to: respectively receive M sets of symbol streams on M different time-frequency resources, where the number of symbols in each of the M different time-frequency resources Greater than 4, M is an integer greater than 1; the M sets of symbol streams are processed to obtain the original information stream.
  • the information flow to be sent is grouped, and in the case of a low code rate, the guarantee is ensured. Sales. - 'One-''' Further, the information receiving device 900 may further include a receiving circuit 905 and the like.
  • the processor 902 controls the operation of the base station 900, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 901 can include read only memory and random access memory and provides instructions and data to processor 902. A portion of the memory 901 may also include a non-volatile random access memory (NVRAM).
  • transmit circuitry 903 and receive circuitry 905 can be coupled to antenna 904.
  • bus system 906 which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 906 in the figure.
  • Processor 902 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the above method may be completed by an integrated logic circuit of the hardware in the processor 902 or an instruction in the form of software.
  • the processor 902 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present invention may be directly implemented by the hardware decoding processor, or by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 901, and the processor 902 reads the information in the memory 901 and completes the steps of the above method in combination with the hardware.
  • the processor 902 demodulates the M sets of symbol streams respectively, and obtains the M group of bit streams, wherein the bit stream has a length of C, each group of bit streams has a length of N; and the M sets of bit streams are synthesized.
  • the decoding comprises Turbo code decoding or convolutional code decoding; verifying the original information stream.
  • the processor 902 synthesizes the M sets of symbol streams into a symbol stream to be demodulated, where the length of the symbol stream to be demodulated is C, and the length of each group of symbol streams is N; a symbol stream, obtaining a bit stream to be decoded; decoding a bit stream to be decoded, obtaining an original information stream, wherein the solution
  • the code includes Turbo code decoding or convolutional code decoding; the original information stream is verified.
  • the processor 902 respectively demodulates the M sets of symbol streams to obtain M sets of to-be-decoded bitstreams; and performs linear block code decoding on the M sets of to-be-decoded bitstreams respectively to obtain M sets of bitstreams;
  • the group bit stream is synthesized into an original information stream, wherein the length of the original information stream is C, and the length of each group of bit streams is N; the original information stream is verified.
  • RAM random access memory
  • ROM read only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.
  • the invention is not limited to this.
  • Various equivalent modifications and alterations to the embodiments of the present invention can be made by those skilled in the art without departing from the spirit and scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)

Abstract

本发明实施例提供一种信息传输的方法和设备,能够保证低编码率情况下的传输效率。该方法包括:确定组数 M和/或组长 N,其中 M为大于1的整数,N为大于1或等于1的整数;根据 M和/或 N对待分组信息流进行处理,获得 M组待发送信息流;在 M个不同的时频资源上分别发送 M组待发送信息流,M个不同的时频资源中的每一个时频资源中的符号数大于4。本发明实施例通过对待发送信息流进行分组,在低码率的情况下,保证传输效率。并且通过共享校验码的或者使用线性分组码编码的方式节省了开销。

Description

信息传输方法和设备 技术领域
本发明实施例涉及通信技术领域, 并且更具体地, 涉及信息传输方法和 设备。 背景技术
物联网( Internet of Things , ΙΟΤ )作为新一代信息技术的重要组成部分, 是指通过部署具有一定感知、 计算、 执行和通信能力的各种设备, 获取物理 世界的信息, 通过网络实现信息传输、 协同和处理, 从而实现人与物、 物与 物互联的网络。一般认为,物联网的第一个阶段称为机器到机器(Machine to Machine, M2M ), 即实现机器之间的自由通信。 对于通信网络(比如, 移动 蜂窝网络)而言,它所承担的这种通信业务称为机器类型通信( Machine Type Communication, MTC )。
长期演进(Long Term Evolution, LTE )项目是近年来第三代合作伙伴 计划 ( The 3rf Generation Partnership Project, 3GPP )启动的最大的新技术研 发项目 , 这种以正交频分复用技术 ( Orthogonal Frequency Division Multiplexing , OFDM )/多输入多输出技术( Multi-Input Multi-Output , ΜΙΜΟ ) 为核心的技术在 20MHz频谱带宽上能够提供下行 100Mbps、 上行 50Mbps 的峰值速率, 并且能够改善小区边缘用户的性能、 提高小区容量、 降低系统 延迟。 LTE系统的性能优势带来很多好处, 随着发展, M2M设备会合 LTE 紧密结合, 并且 M2M设备的数量会变得十分巨大, 到那时, 大量的随机或 周期的上报数据会被产生, 可能来自于 MTC的各种具体应用, 如无线水表 电表、 自动售货机、 pos机等等。
3GPP专门成立项目组来研究针对 MTC设备的引入而需要对移动通信 网络进行的增强或优化,其中覆盖问题是运营商关心的关键问题之一。例如, MTC 用户设备的一个重要应用是智能仪表, 一般来说, 智能仪表通常被安 装在住房的地下室中, 或是被金属外壳隔离。 在这种情况下, MTC设备会 比普通用户设备经历更加严重的路径损耗, 比如路径损耗额外增加 20dB , 也就是说, 要求覆盖至少增加 20dB才能满足要求, 根据 3GPP中的最小耦 合损耗(Minimum coupling loss, MCL )表格可以知道, 物理上行共享信道 ( Physical Uplink Share Channel, PUSCH )和物理下行共享信道 ( Physical Downlink Share Channel, PDSCH )的速率都是 20kbps, 也就是说, 每个 lms 的子帧都只传输 20个比特。 而通过 3GPP中调制编码方式( Modulation and Coding Scheme, MCS )表格和传输块大小 ( Transport Block Size , TBS )表 格可以得知最小的 TBS大小为 16个比特, 也就是说, 对于需要覆盖补偿的 设备而言, 每个 ΤΉ的传输比特数非常有可能小于 16个比特, 此外再加上 校验码, 进一步地提高了码率, 从而导致传输效率的下降。 发明内容
本发明实施例提供一种信息传输的方法和设备, 能够保证低码率情况下 的传输效率。
第一方面, 提供了一种信息发送的方法, 包括: 确定组数 M和 /或组长 N, 其中所述 M为大于 1的整数, 所述 N为大于 1或等于 1的整数; 根据 所述 M和 /或所述 N对待分组信息流进行处理,获得 M组待发送信息流;在 时频资源中的每一个时频资源中符号数大于 4。
结合第一方面, 在第一种可能的实现方式中, 所述根据所述 M和 /或所 述 N对待分组信息流进行处理, 获得 M组待发送信息流, 包括: 在所述待 分组信息流后面加入循环冗余校验码; 编码加入循环冗余校验码后的所述待 分组信息流, 获得比特流, 其中所述编码包括 Turbo码编码或卷积码编码; 将所述比特流分为 M组待调制比特流, 其中所述比特流的长度为 C, 每组 待调制比特流的长度为 N; 分别调制所述 M组待调制比特流, 获得 M组待 发送信息流。
结合第一方面, 在第二种可能的实现方式中, 所述根据所述 M和 /或所 述 N对待分组信息流进行处理, 获得 M组待发送信息流, 包括: 在所述待 分组信息流后面加入循环冗余校验码; 编码加入循环冗余校验码后的所述待 分组信息流, 获得比特流, 其中所述编码包括 Turbo码编码或卷积码编码; 调制所述比特流, 获得符号流; 将所述符号流分为 M组待发送信息流, 其 中所述符号流的长度为 C, 每组待发送信息流的长度为 N。
结合第一方面, 在第三种可能的实现方式中, 所述根据所述 M和 /或所 述 N对待分组信息流进行处理, 获得 M组待发送信息流, 包括: 将所述待 分组信息流分为 M组待编码信息流, 其中所述待分组信息流的长度为 C, 每组待编码信息流的长度为 N; 对所述 M组待编码信息流分别进行线性分 组码编码, 获得 M组的比特流; 分别调制所述 M组的比特流, 获得 M组待 发送信息流。
结合第一方面, 在第四种可能的实现方式中, 所述根据所述 M和 /或所 述 N对待分组信息流进行处理, 获得 M组待发送信息流, 包括: 将所述待 分组信息流分为 M组待编码信息流, 其中所述待分组信息流的长度为 C, 每组待编码信息流的长度为 N, 所述待分组信息流包含高层校验信息; 编码 所述 M组待编码信息流, 获得 M的比特流, 其中所述编码包括 Turbo编码, 卷积码编码或者线性分组码编码; 调制所述 M组的比特流, 获得 M组待发 送信息流。
结合第一方面, 在第五种可能的实现方式中, 所述根据所述 M和 /或所 述 N对待分组信息流进行处理, 获得 M组待发送信息流, 包括: 编码所述 待分组信息流, 获得比特流, 其中所述编码包括 Turbo编码, 卷积码编码或 者线性分组码编码, 所述待分组信息流包含高层校验信息; 将所述比特流分 为 M组待调制比特流, 其中所述比特流的长度为 C, 每组待调制比特流的 长度为 N; 调制所述 M组待调制比特流, 获得 M组待发送信息流。
结合第一方面, 在第六种可能的实现方式中, 所述根据所述 M和 /或所 述 N对待分组信息流进行处理, 获得 M组待发送信息流, 包括: 编码所述 待分组信息流, 获得比特流, 其中所述编码包括 Turbo编码, 卷积码编码或 者线性分组码编码,所述待分组信息流包含高层校验信息;调制所述比特流, 获得符号流; 将所述符号流分为 M组待发送信息流, 其中所述符号流的长 度为 C, 每组待发送信息流的长度为 N。
结合第一方面或上述任意一种可能的实现方式,在第七种可能的实现方 式中,所述确定组数 M和 /或组长 N包括:从本地获取预设的所述组数 M和 /或所述组长 N; 或者从外部接收所述组数 M和 /或所述组长 N。
结合第一方面或上述任意一种可能的实现方式,在第八种可能的实现方 式中, 所述确定组数 M和 /或组长 N, 包括: 根据所述 N和 C确定所述 M, 或者根据所述 M和 C确定所述 N:
M =「 ]或者 N =「
N M 其中, C和 N以比特为单位, 或者 C和 N以符号为单位, 「,为向上取 整运算。
结合第一方面或第一方面的第七种可能的实现方式,在第九种可能的实 现方式中, 所述从外部接收所述组数 M和 /或所述组长 N包括: 从外部接收 资源分配消息, 所述资源分配消息用于配置所述 M组待发送信息流中的每 一组所占用的时频资源。
结合第一方面或第一方面的第九种可能的实现方式,在第十种可能的实 现方式中,所述资源分配消息包括以下至少一项:所述组数 M;所述组长 N; 每一组时频资源的时域长度; 资源块 RB个数和调制编码方式 MCS; RB个 数和传输块大小 TBS。
结合第一方面, 在第十一种可能得实现方式中, 所述在 M个不同的时 频资源上分别发送所述 M组待发送信息流, 包括: 在所述 M组待发送信息 流中的第一组发送成功后, 接收基站发送的确认信息, 所述确认信息用于指 示后续传输继续占用当前信道。
结合第一方面, 在第十二种可能得实现方式中, 还包括: 接收针对所述
M 组待发送信息流的反馈信息; 或者接收针对每组待发送信息流的反馈信 息。
第二方面, 提供了一种信息接收的方法, 包括: 在 M个不同的时频资 源上分别接收 M组符号流, 其中所述 M个不同的时频资源中的每一个时频 资源中的符号数大于 4, 所述 M为大于 1的整数; 对所述 M组符号流进行 处理, 获得原始信息流。
结合第二方面, 在第一种可能的实现方式中, 所述对所述 M组符号流 进行处理, 获得原始信息流包括: 分别解调所述 M组符号流, 获得 M组的 比特流, 其中所述比特流的长度为 C, 每组比特流的长度为 N; 将所述 M组 比特流合成为待解码比特流; 解码所述待解码比特流, 获得原始信息流, 其 中所述解码包括 Turbo码解码或卷积码解码; 校验所述原始信息流。
结合第二方面, 在第二种可能的实现方式中, 所述对所述 M组符号流 进行处理, 获得原始信息流包括: 将所述 M组符号流合成为待解调符号流, 其中所述待解调符号流的长度为 C, 每组符号流的长度为 N; 解调所述待解 调符号流, 获得待解码比特流; 解码所述待解码比特流, 获得原始信息流, 其中所述解码包括 Turbo码解码或卷积码解码; 校验所述原始信息流。 结合第二方面, 在第三种可能的实现方式中, 所述对所述 M组符号流 进行处理, 获得原始信息流包括: 分别解调所述 M组符号流, 获得 M组待 解码比特流; 对所述 M组待解码比特流分别进行线性分组码解码, 获得 M 组比特流; 将所述 M组比特流合成为原始信息流, 其中所述原始信息流的 长度为 C, 每组比特流的长度为 N; 校验所述原始信息流。
结合第二方面或第二方面的第一种和第二种可能的实现方式,在第四种 可能的实现方式中, 所述校验所述原始信息流包括: 循环冗余校验或者高层 校验信息校验; 所述解码还包括: 线性分组码解码。
结合第二方面或上述任意一项可能的实现方式,在第五种可能的实现方 式中, 还包括确定组数 M和 /或组长 N, 包括: 根据所述 N和 C确定所述 M, 或者根据所述 M和 C确定所述 N:
M
Figure imgf000006_0001
其中, C和 N以比特为单位, 或者 C和 N以符号为单位, 所述 N为大 于 1或等于 1的整数, 「,为向上取整运算。
结合第二方面或第二方面的第五种可能的实现方式,在第六种可能的实 现方式中, 还包括: 确定并发送资源分配消息, 所述资源分配消息用于配置 所述 M组符号流中的每一组所占用的时频资源。
结合第二方面或第二方面的第六种可能的实现方式,在第七种可能的实 现方式中,所述资源分配消息包括以下至少一项:所述组数 M;所述组长 N; 每一组时频资源的时域长度; 资源块 RB个数和调制编码方式 MCS; RB个 数和传输块大小 TBS。
结合第二方面, 在第八种可能的实现方式中, 所述在 M个不同的时频 资源上分别接收 M组符号流, 包括: 在成功接收到所述 M组符号流中的第 一组后, 向用户设备发送确认信息, 所述确认信息用于指示后续传输继续占 用当前信道。
结合第二方面, 在第九种可能的实现方式中, 还包括: 发送针对所述 M 组符号流的反馈信息; 或者发送针对每组符号流的反馈信息。
第三方面, 提供了一种信息发送设备, 包括: 确定单元, 用于确定组数 M和 /或组长 N, 其中所述 M为大于 1的整数, 所述 N为大于 1或等于 1的 获得 M组待发送信息流; 发送单元, 用于在 M个不同的时频资源上分别发 送所述 M组待发送信息流, 所述 M个不同的时频资源中的每一个时频资源 中符号数大于 4。
结合第三方面, 在第一种可能的实现方式中, 所述信息发送设备还包括 编码单元和调制单元, 所述处理单元具体用于: 在所述待分组信息流后面加 入循环冗余校验码; 通过所述编码单元, 编码加入循环冗余校验码后的所述 待分组信息流, 获得比特流, 其中所述编码单元包括 Turbo码编码或卷积码 编码; 将所述比特流分为 M组待调制比特流, 其中所述比特流的长度为 C, 每组待调制比特流的长度为 N; 通过所述调制单元, 分别调制所述 M组待 调制比特流, 获得 M组待发送信息流。
结合第三方面, 在第二种可能的实现方式中, 所述信息发送设备还包括 编码单元和调制单元, 所述处理单元具体用于: 在所述待分组信息流后面加 入循环冗余校验码; 通过所述编码单元, 编码加入循环冗余校验码后的所述 待分组信息流,获得比特流,其中所述编码包括 Turbo码编码或卷积码编码; 通过所述调制单元, 调制所述比特流, 获得符号流; 将所述符号流分为 M 组待发送信息流, 其中所述符号流的长度为 C, 每组待发送信息流的长度为 N。
结合第三方面, 在第三种可能的实现方式中, 所述信息发送设备还包括 编码单元和调制单元, 所述处理单元具体用于: 将所述待分组信息流分为 M 组待编码信息流, 其中所述待分组信息流的长度为 C, 每组待编码信息流的 长度为 N; 通过所述编码单元, 对所述 M组待编码信息流分别进行线性分 组码编码, 获得 M组的比特流; 通过所述调制单元, 分别调制所述 M组的 比特流, 获得 M组待发送信息流。
结合第三方面, 在第四种可能的实现方式中, 所述信息发送设备还包括 编码单元和调制单元, 所述处理单元具体用于: 将所述待分组信息流分为 M 组待编码信息流, 其中所述待分组信息流的长度为 C, 每组待编码信息流的 长度为 N, 所述待分组信息流包含高层校验信息; 通过所述编码单元, 编码 所述 M组待编码信息流, 获得 M的比特流, 其中所述编码包括 Turbo编码, 卷积码编码或者线性分组码编码; 通过所述调制单元, 调制所述 M组的比 特流, 获得 M组待发送信息流。
结合第三方面, 在第五种可能的实现方式中, 所述信息发送设备还包括 编码单元和调制单元, 所述处理单元具体用于: 通过所述编码单元, 编码所 述待分组信息流, 获得比特流, 其中所述编码包括 Turbo编码, 卷积码编码 或者线性分组码编码, 所述待分组信息流包含高层校验信息; 将所述比特流 分为 M组待调制比特流, 其中所述比特流的长度为 C, 每组待调制比特流 的长度为 N; 通过所述调制单元, 调制所述 M组待调制比特流, 获得 M组 待发送信息流。
结合第三方面, 在第六种可能的实现方式中, 所述信息发送设备还包括 编码单元和调制单元, 所述处理单元具体用于: 通过所述编码单元, 编码所 述待分组信息流, 获得比特流, 其中所述编码包括 Turbo编码, 卷积码编码 或者线性分组码编码, 所述待分组信息流包含高层校验信息; 通过所述调制 单元, 调制所述比特流, 获得符号流; 将所述符号流分为 M组待发送信息 流, 其中所述符号流的长度为 C, 每组待发送信息流的长度为 N。
结合第三方面或上述任意一种可能的实现方式,在第七种可能的实现方 式中, 所述信息发送设备还包括接收单元, 所述确定单元具体用于: 从本地 获取预设的所述组数 M和 /或所述组长 N; 或者通过所述接收单元, 从外部 接收所述组数 M和 /或所述组长 N。
结合第三方面或上述任意一种可能的实现方式,在第八种可能的实现方 式中, 所述确定单元具体用于: 根据所述 N和 C确定所述 M, 或者根据所 述 M和 C确定所述 N:
M
Figure imgf000008_0001
其中, C和 N以比特为单位, 或者 C和 N以符号为单位, 「,为向上取 整运算。
结合第三方面或第三方面的第七种可能的实现方式,在第九种可能的实 现方式中, 所述接收单元具体用于: 从外部接收资源分配消息, 所述资源分 配消息用于配置所述 M组待发送信息流中的每一组所占用的时频资源。
结合第三方面或第三方面的第九种可能的实现方式,在第十种可能的实 现方式中,所述资源分配消息包括以下至少一项:所述组数 M;所述组长 N; 每一组时频资源的时域长度; 资源块 RB个数和调制编码方式 MCS; RB个 数和传输块大小 TBS。
结合第三方面,在第十一种可能得实现方式中,所述接收单元具体用于: 在所述 M组待发送信息流中的第一组发送成功后, 接收基站发送的确认信 息, 所述确认信息用于指示后续传输继续占用当前信道。
结合第一方面, 在第十二种可能得实现方式中, 所述接收单元还用于: 接收针对所述 M组待发送信息流的反馈信息; 或者
接收针对每组待发送信息流的反馈信息。
第四方面, 提供了一种信息接收设备, 包括: 接收单元, 用于在 M个 不同的时频资源上分别接收 M组符号流, 其中所述 M个不同的时频资源中 的每一个时频资源中的符号数大于 4, 所述 M为大于 1的整数; 处理单元, 用于对所述 M组符号流进行处理, 获得原始信息流。
结合第四方面, 在第一种可能的实现方式中, 所述信息接收设备还包括 解调单元和解码单元, 所述处理单元具体用于: 通过所述解调单元, 分别解 调所述 M组符号流, 获得 M组的比特流, 其中所述比特流的长度为 C, 每 组比特流的长度为 N; 将所述 M组比特流合成为待解码比特流; 通过所述 解码单元, 解码所述待解码比特流, 获得原始信息流, 其中所述解码包括 Turbo码解码或卷积码解码; 校验所述原始信息流。
结合第四方面, 在第二种可能的实现方式中, 所述信息接收设备还包括 解调单元和解码单元, 所述处理单元具体用于: 将所述 M组符号流合成为 待解调符号流,其中所述待解调符号流的长度为 C,每组符号流的长度为 N; 通过所述解调单元, 解调所述待解调符号流, 获得待解码比特流; 通过所述 解码单元, 解码所述待解码比特流, 获得原始信息流, 其中所述解码包括 Turbo码解码或卷积码解码; 校验所述原始信息流。
结合第四方面, 在第三种可能的实现方式中, 所述信息接收设备还包括 解调单元和解码单元, 所述处理单元具体用于: 通过所述解调单元分别解调 所述 M组符号流, 获得 M组待解码比特流; 通过所述解码单元对所述 M组 待解码比特流分别进行线性分组码解码, 获得 M组比特流; 将所述 M组比 特流合成为原始信息流, 其中所述原始信息流的长度为 C, 每组比特流的长 度为 N; 校验所述原始信息流。
结合第四方面或第四方面的第一种和第二种可能的实现方式,在第四种 可能的实现方式中, 所述校验所述原始信息流包括: 循环冗余校验或者高层 校验信息校验; 所述解码还包括: 线性分组码解码。
结合第四方面或上述任意一项可能的实现方式,在第五种可能的实现方 式中, 所述信息接收设备还包括确定单元, 所述确定单元具体用于: 根据 所述 N和 C确定所述 M , 或者 ^据所述 M和 C确定所述 N:
M
Figure imgf000010_0001
其中, C和 N以比特为单位, 或者 C和 N以符号为单位, 所述 N为大 于 1或等于 1的整数, 「,为向上取整运算。
结合第四方面或第四方面的第五种可能的实现方式,在第六种可能的实 现方式中, 所述信息接收设备还包括发送单元, 用于: 通过所述确定单元, 确定并发送资源分配消息, 所述资源分配消息用于配置所述 M组符号流中 的每一组所占用的时频资源。
结合第四方面或第四方面的第六种可能的实现方式,在第七种可能的实 现方式中,所述资源分配消息包括以下至少一项:所述组数 M;所述组长 N; 每一组时频资源的时域长度; 资源块 RB个数和调制编码方式 MCS; RB个 数和传输块大小 TBS。
结合第四方面, 在第八种可能的实现方式中, 所述发送单元还用于: 在 成功接收到所述 M组符号流中的第一组后, 向用户设备发送确认信息, 所 述确认信息用于指示后续传输继续占用当前信道。
结合第四方面, 在第九种可能的实现方式中, 所述发送单元还用于: 发 送针对所述 M组符号流的反馈信息; 或者发送针对每组符号流的反馈信息。
基于上述技术方案, 在低码率的情况下, 本发明实施例能够通过对待发 送信息进行分组来保证传输效率和传输质量。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明一个实施例的信息发送的方法的流程图。
图 2是本发明另一实施例的信息发送的方法的流程图。
图 3是本发明另一实施例的信息发送的方法的流程图。
图 4是本发明另一实施例的信息发送的方法的流程图。 图 5是本发明一个实施例的信息接收的方法的流程图。
图 6是本发明一个实施例的信息发送设备的示意框图。
图 7是本发明一个实施例的信息接收设备的示意框图。
图 8是本发明另一实施例的信息发送设备的示意框图。
图 9是本发明另一实施例的信息接收设备的示意框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
本发明的技术方案, 可以应用于各种通信系统, 例如: 全球移动通信系 统( Global System of Mobile communication , GSM ),码分多址 ( Code Division Multiple Access , CDMA ) 系统, 宽带码分多址 ( Wideband Code Division Multiple Access Wireless , WCDMA ), 通用分组无线业务 ( General Packet Radio Service, GPRS ), 长期演进( Long Term Evolution , LTE )等。
用户设备 ( User Equipment , UE ) , 也可称之为移动终端 ( Mobile Terminal )、 移动用户设备等, 可以经无线接入网 (例如, Radio Access Network , RAN )与一个或多个核心网进行通信,用户设备可以是移动终端, 如移动电话(或称为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以是 便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线 接入网交换语言和 /或数据。
基站,可以是 GSM或 CDMA中的基站( Base Transceiver Station , BTS ), 也可以是 WCDMA中的基站(NodeB ),还可以是 LTE中的演进型基站( eNB 或 evolutional Node B , e-NodeB ), 本发明并不限定。
本发明的技术方案中, 为了方便描述, 以 UE作为信息发送设备, 以基 站作为信息接收设备。 应理解, 信息发送设备和信息接收设备可以是任意两 个进行机器类型通信(Machine Type Communication, MTC ) 的机器到机器 ( Machine to Machine , M2M )设备, 也可以是基站与用户设备, 其中用户 设备可以是 Μ2Μ终端, 本发明并不限定。
图 1是本发明一个实施例的信息发送的方法的流程图。 101 , 确定组数 M和 /或组长 N, 其中 M为大于 1的整数, N为大于 1 或等于 1的整数。 站)接收组数 M和 /或组长 N, 待发送信息的长度为 C。 可以根据 N和 C确 定 M, 或者根据 M和 C确定 N:
M
Figure imgf000012_0001
其中, C和 N以比特为单位, 或者 C和 N以符号为单位, 「,为向上取 整运算。
102, 根据 M和 /或 N对待分组信息流进行处理, 获得 M组待发送信息 流。
处理过程可以包括添加校险码, 编码, 调制和分组, 其具体顺序和组合 将在实施例中说明。 对于分组过程, 依照步骤 101中 M, N和 C的关系式, 可以单独根据 M或单独根据 N或根据 M和 N来进行分组,
103, 在 M个不同的时频资源上分别发送 M组待发送信息流, M个不 同的时频资源中的每一个时频资源中符号数大于 4。
M组待发送信息流的发送可以是基于调度的, 也可以是基于竟争的。 其 中基于调度的情况需要由基站下发配置信息来配置时频资源。每一个时频资 源中的 OFDM符号数都大于 4, 单位时域资源内所包含的 OFDM符号数越 多, 则覆盖越广。
基于上述技术方案, 在低码率的情况下, 本发明实施例能够通过对待发 送信息进行分组来保证传输效率。
可选地, 作为一个实施例, 在步骤 102中, 对待分组信息流进行处理可 以包括: 在待分组信息流后面加入循环冗余校验码; 编码加入循环冗余校验 码后的待分组信息流, 获得比特流, 其中编码包括 Turbo码编码或卷积码编 码; 将比特流分为 M组待调制比特流, 其中比特流的长度为 C, 每组待调 制比特流的长度为 N; 分别调制 M组待调制比特流, 获得 M组待发送信息 流。
可选地, 作为另一个实施例, 在步骤 102中, 对待分组信息流进行处理 可以包括: 在待分组信息流后面加入循环冗余校验码; 编码加入循环冗余校 验码后的待分组信息流, 获得比特流, 其中编码包括 Turbo码编码或卷积码 编码; 调制比特流, 获得符号流; 将符号流分为 M组待发送信息流, 其中 符号流的长度为 C, 每组待发送信息流的长度为 N。
可选地, 作为另一个实施例, 在步骤 102中, 对待分组信息流进行处理 可以包括: 将待分组信息流分为 M组待编码信息流, 其中待分组信息流的 长度为 C,每组待编码信息流的长度为 N;对 M组待编码信息流分别进行线 性分组码编码, 获得 M组的比特流; 分别调制 M组的比特流, 获得 M组待 发送信息流。
可选地, 作为另一个实施例, 在步骤 102中, 对待分组信息流进行处理 可以包括: 将待分组信息流分为 M组待编码信息流, 其中待分组信息流的 长度为 C,每组待编码信息流的长度为 N,待分组信息流包含高层校验信息; 编码 M组待编码信息流, 获得 M的比特流, 其中编码包括 Turbo编码, 卷 积码编码或者线性分组码编码; 调制 M组的比特流, 获得 M组待发送信息 流。
可选地, 作为另一个实施例, 在步骤 102中, 对待分组信息流进行处理 可以包括: 编码待分组信息流, 获得比特流, 其中编码包括 Turbo编码, 卷 积码编码或者线性分组码编码, 待分组信息流包含高层校验信息; 将比特流 分为 M组待调制比特流, 其中比特流的长度为 C, 每组待调制比特流的长 度为 N; 调制 M组待调制比特流, 获得 M组待发送信息流。
可选地, 作为另一个实施例, 在步骤 102中, 对待分组信息流进行处理 可以包括: 编码待分组信息流, 获得比特流, 其中编码包括 Turbo编码, 卷 积码编码或者线性分组码编码, 待分组信息流包含高层校验信息; 调制比特 流,获得符号流;将符号流分为 M组待发送信息流,其中符号流的长度为 C, 每组待发送信息流的长度为 N。
可选地, 作为另一个实施例, 在基于调度的情况下, 可以从外部接收资 源分配消息, 资源分配消息用于配置 M组待发送信息流中的每一组所占用 的时频资源。 资源分配消息包括以下至少一项: 组数 M; 组长 N; 每一组时 频资源的时域长度; 资源块 RB个数和调制编码方式 MCS; RB个数和传输 块大小 TBS。
可选地, 作为另一个实施例, 在基于竟争的情况下, M组待发送信息流 中的第一组发送成功后, 接收基站发送的确认信息, 确认信息用于指示后续 传输继续占用当前信道。 可选地, 作为另一个实施例, UE可以接收针对 M组待发送信息流的反 馈信息; 或者接收针对每组待发送信息流的反馈信息。
因此,本发明实施例通过对待发送信息流进行分组,在低码率的情况下, 保证传输效率。并且通过共享校验码的或者使用线性分组码编码的方式节省 了开销, 同时提高了覆盖。
图 2是本发明另一实施例的信息发送的方法的流程图。 图 2为图 1的一 个具体实施例。
201 , 添加循环冗余校验 CRC。
发送方在物理层需要发送一串信息流^ « , A, i , 该信息流的长度 为 Α。 首先需要给该信息流加上 1个 CRC, 使之成为
Figure imgf000014_0001
加上 CRC后的信息流的长度为 Β。 也就是说 fi = A + L, L为 CRC的长度, CRC 校验比特可以为 / A,;^,^,...,^—^ —般情况下 L = 8,16,24。 CRC是通过下面 的多项式生成的, D是一个符号, D3代表 3次项:
L=24长的多项式:
gCRC24A (D) = [D24 + D23 + D18 + D17 + D14 + D11 + D10 + D1 + D6 + D5 + D4 + D:" + D + ί CRC24B (D) = [D24 +D23+D6+D5+D + l]
L=16长的多项式:
gcRc16 (^) = [Dlb+Dl2 +D'+ 1]
L=8长的多项式:
gCRC8 (D) = [D&+D7 +D4+D3+D+ l]
其中 Ρο,Α,/^,/^,···,/^—将会满足下面的公式:
Ω。Ζ)Α+231 )Α+22 +〜+ 24 + p0D23 + ΑΖ)22 +〜+ p22Dl + p23除以 24长的多项式 gCRraA(W或 gCRC24B(W的余数为 0;
a0DA+l5 +Ωι )Α+14十…+ ^— ^16 + p0D15 + AZ)14十…十 pl4Dl + p15除以 16长的多项式 gCRC24A {D)或 gcRC24B (D)的余数为 0;
a0DA+7 + Ωι )Α+6 + 8 + p0D7 + PlD6 +〜+ p6Dl + p7除以 8 长的多项式 gCRC24A(W或 gcRC24B(L>)的余数为 0;
其中 和 之间的关系是:
bk =ak 其中 = 0,1,2,...,A— 1
bk = pkA1 k = A,A + l,A + 2,...,A + L-\
202, 编码。 通过编码器对加入了 CRC 后的信息流进行编码, 其中编码器可以是 Turbo编码器, 比如 l/3Turbo编码器, 或者是卷积码编码器, 比如 1/3卷积 码编码器。
203, 分组
首先需要确定组数 M或者组长 N, 或者同时确定 M和N。 具体地, M 和 N可以是预设值, UE可以直接从本地获取, 也可以由基站通过信令通知 UE。 经过步骤 202编码后的比特流长度为 C。 组数 M, 组长 N和 C之间满 足如下关系:
M
Figure imgf000015_0001
在本实施例中,要进行分组的信息流是经过编码后的比特流, 所以 C和
N以比特为单位, 「,为向上取整运算。 通过以上关系式, 可以通过 M和 C 来确定 N, 也可以通过 N和 C来确定 M。 C为已知, 也就是说, 通过获取 M或 N中任意一个就可以对比特流进行分组, 每一组包含的比特数目为 N, 其中 N可以被调制阶数整除, 以便于进行下一步的调制。
204, 调制
调制方式可以是预定义的, 也可以由基站通过信令通知 UE。 表 1给出 了数据信道的调制编码方式索引 IMCS与调制阶数 Qm和传输块索引 ITBS的部 分对应关系, UE 可以通过基站下发的下行控制信息 (Downlink Control Information, DCI )获知调制编码方式索引 IMCS, 通过查表可以确定调制方 式、 调制阶 ¾ Qm和传输块索引 ITBS
表 1: MCS
调制编码 调制阶 传输块
方式索引 数 Qm 索引
Figure imgf000015_0002
0 2 0
1 2 1
2 2 2
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9 10 4 9
11 4 10
12 4 11
13 4 12
14 4 13
15 4 14
16 4 15
17 6 15
18 6 16
19 6 17
20 6 18
例如, ^殳基站通知编码方式索引 IMCS为 4, 通过查表可得知采用 QPSK2阶调制, 并且传输块索引 ITBS为 4, 可以用于进一步的查询 TBS表 以获得传输块大小。
以下给出传输块大小与物理层资源块个数 NPRB和传输块索引 ITBS的对 应关系表的一部分:
表 2: TBS表
Figure imgf000016_0001
根据上述表 1中查的的传输块索引 ITBS和通过 DCI获取的物理层资源块 个数 NPRB就能知道对应的传输块大小 TBS。
下面针对步骤 201 至步骤 204 举个例子, 假设原始的信息流长度为 136bit,在该信息流后面加上一个 24bit 的 CRC, 形成长为 160bit的比特流, 之后对该比特流进行编码, 例如, 用卷积码 1/3编码, 则编码后的比特流长 度变为 480bit, 即 C=480, 根据基站通知或者预定义确定组数 M为 20, 即 把比特流 C等距拆成 20份, 则每一份的 bit数为:
N = [(136 + 24)x 3/ 20 = 24bit
UE根据 DCI通知或预设值确定调制方式和调制阶数,例如 2阶 QPSK, 则经过调制后, 得到 M组符号流(待发送信息流), 其中每一组中含有 12 个 QPSK符号。 在这里, 因为原始信息流只加了一个 CRC, 则相当于 20组 编码调制后的信息流共享一个 CRC, 在低编码率的情况下节省了开销。
205 , 发送 频资源包括时间资源 (也就是 M )至少大于 1 , 也可以等于 1兼容现有技术 (不分组), 可以是 4ms, 8ms, 等 4的倍数, 以便于重用 ΤΉ bundling的 HARQ进程关系。举个例子, M=4,四个传输资源分别对应子帧 #1的 RB#4 ~ 5 , 帧 #2的 RB#2 ~ 3 , 帧 #3的 RB#15 ~ 16, 帧 #4的 RB#30 ~ 31 , 其中时间 资源可以是连续的也可以是不连续的。 时间资源的长度可以是信令通知的, 也可以是预定义的, 比如预定义时域长度为 16。
在基于调度的情况下, 时频资源的分配可以由基站确定并通过信令下发 给 UE。 具体地, 作为一个例子, 基站可以通过 DCI将 M组的传输资源都 进行分配, 可以包括 RB ( PRB ) 的个数和新的 MCS或原来的 MCS (或新的 TBS), 还有 M值或 N值, 还有可能包含一次传输资源的时域长度。
在基于竟争的情况下, UE可以先发送一个码, 例如接入码, 这个码可 以携带一些信息, 例如该用户需要占用多个时频资源, 例如 M, 基站成功收 到该码字后, 下发一个确认信息, 然后用户持续占用某信道,直到传输完毕; 占用的信道, 可以由基站分配, 在确认信息中携带该信道的信息, 也可以是 接入码和 /或接入码所在的信道对应的信道。在分组后最后一次传输中,可以 加上一些特征来向接收方表示传输完毕, 例如导频上采用某个扩频因子, 比 如(1 , -1 ), 或在编码后数据的最后面加上一串全特殊符号, 例如 LTE通常 <NULL>。
206, 反馈信息
由于 M组比特流对应的未编码前的原始信息流只添加了一个 CRC, 只 有在接收方收到所有 M组的信息后, 才能依据 CRC对接收到的信息进行整 体校验, 然后才能反馈。 也就是说, 对 M组的信息流, 在全部接收后反馈 一个 ACK/NACK, 应理解, 反馈信息不限于 ACK/NACK, 本发明对此不作 限定。
因此,本发明实施例通过对待发送信息流进行分组,在低码率的情况下, 保证传输效率。 并且通过共享 CRC方式节省了开销, 提升了编码性能, 提 高了覆盖范围。
图 3是本发明另一实施例的信息发送的方法的流程图。
301, 添加 CRC。
发送方在物理层需要发送一串信息流 , Ωι, , i , 该信息流的长度 为 Α。 首先需要给该信息流加上 1个 CRC, 使之成为
Figure imgf000018_0001
加上 CRC后的信息流的长度为 Β。 也就是说 B = A + L, L为 CRC的长度, CRC 校验比特可以为 / A,/^,/^,...,/^—^ —般情况下 L = 8,16,24。 CRC的具体生成 方法可以参照上述图 2中步骤 201, 此处不再赘述。
其中 和 之间的关系是:
bk =ak 其中 = 0,1,2,···,Α- 1
bk = pk_A k = A,A + l,A + 2,...,A + L-l
302, 编码。
通过编码器对加入了 CRC 后的信息流进行编码, 其中编码器可以是 Turbo编码器, 比如 l/3Turbo编码器, 或者是卷积码编码器, 比如 1/3卷积 码编码器。
303, 调制。
调制方式可以是预定义的, 也可以由基站通过信令通知 UE。 上述步骤 204中的表 1给出了数据信道的调制编码方式索引 IMCS与调制阶数 Qm和传 输块索引 ITBS的对应关系, UE可以通过基站下发的下行控制信息( Downlink Control Information , DCI )获知调制编码方式索引 IMCS , 通过查表可以确定 调制方式、 调制阶 ¾Qm和传输块索引 ITBS
304, 分组。
首先需要确定组数 M或者组长 N, 或者同时确定 M和N。 具体地, M 和 N可以是预设值, UE可以直接从本地获取, 也可以由基站通过信令通知 UE。 经过步骤 303调制后的符号流长度为 C。 组数 M, 组长 N和 C之间满 足如下关系: C
M 或者 N
M
在本实施例中,要进行分组的信息流是经过调制后的符号流, 所以 C和 N以符号为单位, 「,为向上取整运算。 通过以上关系式, 可以通过 M和 C 来确定 N, 也可以通过 N和 C来确定 M。 C为已知, 也就是说, 通过获取 M或 N中任意一个就可以对符号流进行分组, 每一组包含的符号数目为 N, 且 N大于 4。
下面针对步骤 301 至步骤 304 举个例子, 假设原始的信息流长度为 136bit, 在该信息流后面加上一个 24bit 的 CRC, 形成长为 160bit的比特流, 之后对该比特流进行编码, 例如, 用卷积码 1/3编码, 则编码后的比特流长 度变为 480bit, UE根据 DCI通知或预设值确定调制方式和调制阶数, 例如 2阶 QPSK, 则经过调制后, 得到长度为 240个符号的符号流(待分组信息 流), 即 C=240。 根据基站通知或者预定义确定组数 M为 20, 即把符号流 C 等距拆成 20份, 则每一份的 symbol数为:
N =「(136 + 24) x 3 / 2 / 20] = 12symbol
即, 每一组中含有 12个 QPSK符号。 在这里, 因为原始信息流只加了 一个 CRC,则相当于 20组编码调制后的信息流共享一个 CRC在低编码率的 情况下节省了开销。
305, 发送。 频资源包括时间资源 (也就是 M )至少大于 1 , 也可以等于 1兼容现有技术 (不分组), 可以是 4ms, 8ms, 等 4的倍数, 以便于重用 ΤΉ bundling的 HARQ进程关系。举个例子, M=4,四个传输资源分别对应子帧 #1的 RB#4 ~ 5, 帧 #2的 RB#2 ~ 3, 帧 #3的 RB#15 ~ 16, 帧 #4的 RB#30 ~ 31 , 其中时间 资源可以是连续的也可以是不连续的。 时间资源的长度可以是信令通知的, 也可以是预定义的, 比如预定义时域长度为 16。
在基于调度的情况下, 时频资源的分配可以由基站确定并通过信令下发 给 UE。 具体地, 作为一个例子, 基站可以通过 DCI将 M组的传输资源都 进行分配, 可以包括 RB ( PRB ) 的个数和新的 MCS或原来的 MCS (或新的 TBS), 还有 M值或 N值, 还有可能包含一次传输资源的时域长度。
在基于竟争的情况下, UE可以先发送一个码, 例如接入码, 这个码可 以携带一些信息, 例如该用户需要占用多个时频资源, 例如 M, 基站成功收 到该码字后, 下发一个确认信息,然后用户持续占用某信道,直到传输完毕; 占用的信道, 可以由基站分配, 在确认信息中携带该信道的信息, 也可以是 接入码和 /或接入码所在的信道对应的信道。在分组后最后一次传输中,可以 加上一些特征来向接收方表示传输完毕, 例如导频上采用某个扩频因子, 比 如(1 , -1 ), 或在编码后数据的最后面加上一串全特殊符号, 例如 LTE通常 <NULL>。
306, 反馈信息。
由于 M组比特流对应的未编码前的原始信息流只添加了一个 CRC, 只 有在接收方收到所有 M组的信息后, 才能依据 CRC对接收到的信息进行整 体校验, 然后才能反馈。 也就是说, 对 M组的信息流, 在全部接收后反馈 一个 ACK/NACK, 应理解, 反馈信息不限于 ACK/NACK, 本发明对此不作 限定。
因此,本发明实施例通过对待发送信息流进行分组,在低码率的情况下, 保证传输效率。 并且通过共享 CRC方式节省了开销, 提升了编码性能。
图 4是本发明另一实施例的信息发送的方法的流程图。
401 , 分组。
发送方在物理层需要发送一串信息流 C, 在编码之前对信息流进行分 组。 首先需要确定组数 M或者组长 N, 或者同时确定 M和N。 具体地, M 和 N可以是预设值, UE可以直接从本地获取, 也可以由基站通过信令通知 UE。 组数 M, 组长 N和 C之间满足如下关系:
M
Figure imgf000020_0001
在本实施例中,要进行分组的信息流是未经过编码的比特流, 所以 C和 N以比特为单位, 「,为向上取整运算。 通过以上关系式, 可以通过 M和 C 来确定 N, 也可以通过 N和 C来确定 M。 C为已知, 也就是说, 通过获取 M或 N中任意一个就可以对比特流进行分组, 每一组包含的比特数目为 N。
402, 编码。
对原始信息流进行分组后, 对每一组信息流单独进行线性分组码编码, 例如 RM ( Reed-Muller )编码, RM编码的对应矩阵可以为表 3 , 其中 A是 原始信息比特数目。 假设原始信息比特流为。。 , βι ,。2 ,。3 αΑ_γ , 编码后为 b0,b1,b2,b3,...,bB_1 , 其中
bi =
Figure imgf000021_0001
0, 1, 2, ...,B-l
当 β = 32时, 就采用 Ϊ3, 当 Β为其他值时, 则采用相应的 (Β, 0)表 进行编码。
表 3: (32, 0)码的基本序列
Figure imgf000021_0002
403, 调制。
调制方式可以是预定义的, 也可以由基站通过信令通知 UE。 上述步骤 204中的表 1给出了数据信道的调制编码方式索引 与调制阶数 和传输 块索引 的对应关系, UE 可以通过基站下发的下行控制信息 (Downlink Control Information, DCI )获知调制编码方式索引 , 通过查表可以确定 调制阶数 和传输块索引 。
404, 发送。
需要在 M个不同的时频资源上分别发送上述 M组符号流。 时频资源包 括时间资源(也就是 M )至少大于 1 ,也可以等于 1兼容现有技术(不分组 ), 可以是 4ms, 8ms, 等 4的倍数, 以便于重用 ΤΉ bundling的 HARQ进程关 系。 举个例子, M=4, 四个传输资源分别对应子帧 #1的 RB#4 ~ 5 , 帧 #2的 RB#2 ~ 3 , 帧 #3的 RB#15 - 16, 帧 #4的 RB#30 ~ 31 , 其中时间资源可以是 连续的也可以是不连续的。 时间资源的长度可以是信令通知的, 也可以是预 定义的, 比如预定义时域长度为 16。
在基于调度的情况下, 时频资源的分配可以由基站确定并通过信令下发 给 UE。 具体地, 作为一个例子, 基站可以通过 DCI将 M组的传输资源都 进行分配, 可以包括 RB ( PRB ) 的个数和新的 MCS或原来的 MCS (或新的 TBS), 还有 M值或 N值, 还有可能包含一次传输资源的时域长度。
在基于竟争的情况下, UE可以先发送一个码, 例如接入码, 这个码可 以携带一些信息, 例如该用户需要占用多个时频资源, 例如 M, 基站成功收 到该码字后, 下发一个确认信息,然后用户持续占用某信道,直到传输完毕; 占用的信道, 可以由基站分配, 在确认信息中携带该信道的信息, 也可以是 接入码和 /或接入码所在的信道对应的信道。在分组后最后一次传输中,可以 加上一些特征来向接收方表示传输完毕, 例如导频上采用某个扩频因子, 比 如(1 , -1 ), 或在编码后数据的最后面加上一串全特殊符号, 例如 LTE通常 <NULL>。
405 , 反馈信息。
因为本实施例中的信息流未经过添加校验信息, 则分组后的符号流在接 收端可以独立的解调和解码, 所以接收方可以对接收到的 M组符号流中的 每一组都反馈 ACK/NACK; 当然, 也可以在接收到所有 M组符号流后反馈 一个 ACK/NACK。 如果反馈的是 NACK, 还需要同时反馈是哪个时频资源 上的信息出错, 例如, 一共发送了 4个组的信息, 第 1个和第 3个出错, 接 收方除了反馈 NACK, 还反馈一个 bitmap: 1010来指示是哪个组出错, 例 如 0001指示第 1组出错, 0011指示第 3组出错。 下面针对步骤 401至步骤 405举个例子, 假设发送方要发送 20bytes信 息,即 20x8=160bit,拆分成每一份 8bit,也就是 20份来进行传输,用 RM(24, 0 ), 0=8, 对每一组信息流进行 RM编码。
另外, 如果采用连续发送不等待反馈的方式, 可以大幅节省 UE的耗电 量。 并且不添加校验信息也是一种开销的降低。
因此,本发明实施例通过对待发送信息流进行分组,在低码率的情况下, 保证传输效率。 并且通过 RM编码的方式节省了开销, 提升了编码性能。
此外, 作为另一个实施例, 可以对待发送信息流在高层添加校验信息, 从而到了物理层不用在添加 CRC,之后进行编码和调制。 其中编码 Turbo码 编码或者卷积码编码或者 RM码编码。 而分组过程可以在编码前, 也可以在 编码后 (调制前), 或者在调制后进行。 具体步骤可以参照上述图 2至图 4 中的相应步骤, 此处不再赘述。
图 5是本发明一个实施例的信息接收的方法的流程图。
501, 在 M个不同的时频资源上分别接收 M组符号流, 其中 M个不同 的时频资源中的每一个时频资源中的符号数大于 4, M为大于 1的整数。
502, 对 M组符号流进行处理, 获得原始信息流。
基于上述技术方案, 在低码率的情况下, 本发明实施例能够通过对待发 送信息进行分组来保证传输效率。
可选地, 作为一个实施例, 在步骤 502中, 对接收到的 M组符号流进 行处理可以包括: 分别解调 M组符号流, 获得 M组的比特流, 其中比特流 的长度为 C, 每组比特流的长度为 N; 将 M组比特流合成为待解码比特流; 解码待解码比特流, 获得原始信息流, 其中解码包括 Turbo码解码或卷积码 解码; 校验原始信息流。
可选地, 作为一个实施例, 在步骤 502中, 对接收到的 M组符号流进 行处理可以包括: 将 M组符号流合成为待解调符号流, 其中待解调符号流 的长度为 C, 每组符号流的长度为 N; 解调待解调符号流, 获得待解码比特 流; 解码待解码比特流, 获得原始信息流, 其中解码包括 Turbo码解码或卷 积码解码; 校验原始信息流。
可选地, 作为一个实施例, 在步骤 502中, 对接收到的 M组符号流进 行处理可以包括: 分别解调 M组符号流, 获得 M组待解码比特流; 对 M组 待解码比特流分别进行线性分组码解码, 获得 M组比特流; 将 M组比特流 合成为原始信息流, 其中原始信息流的长度为 C, 每组比特流的长度为 N; 校验原始信息流。
可选地, 作为一个实施例, 校验原始信息流可以包括: 循环冗余校验或 者高层校验信息校验; 解码还可以包括: 线性分组码解码。
可选地, 作为一个实施例, 可以根据 N和 C确定 M, 或者根据 M和 C 确定 N:
M
Figure imgf000024_0001
其中, C和 N以比特为单位, 或者 C和 N以符号为单位, N为大于 1 或等于 1的整数, 「,为向上取整运算。
可选地, 作为一个实施例, 接收端可以确定并发送资源分配消息, 资源 分配消息用于配置 M组符号流中的每一组所占用的时频资源。 该资源分配 消息包括以下至少一项: 组数 M; 组长 N; 每一组时频资源的时域长度; 资 源块 RB个数和调制编码方式 MCS; RB个数和传输块大小 TBS。
可选地, 作为一个实施例, 在 M个不同的时频资源上分别接收 M组符 号流, 包括: 在成功接收到 M组符号流中的第一组后, 向用户设备发送确 认信息, 确认信息用于指示后续传输继续占用当前信道。
可选地, 作为一个实施例, 在接收完成后, 可以发送针对 M组符号流 的反馈信息; 或者发送针对每组符号流的反馈信息。
因此,本发明实施例通过对待发送信息流进行分组,在低码率的情况下, 保证传输效率。并且通过共享校验码的或者使用线性分组码编码的方式节省 了开销。
图 6是本发明一个实施例的信息发送设备的示意框图。 如图 6所述, 信 息发送设备 600包括确定单元 601、 处理单元 602和发送单元 603。
确定单元 601确定组数 M和 /或组长 N, 其中 M为大于 1的整数, N为 大于 1或等于 1的整数。 处理单元 602根据 M和 /或所述 N对待分组信息流 进行处理, 获得 M组待发送信息流。 发送单元 603在 M个不同的时频资源 上分别发送 M组待发送信息流, M个不同的时频资源中的每一个时频资源 中符号数大于 4。
本发明实施例通过对待发送信息流进行分组, 在低码率的情况下, 保证 传输效率。 并且通过共享校验码的或者使用线性分组码编码 销。
信息发送设备 600可执行图 1-图 4的方法实施例的各个步骤,为避免重 复, 不再赘述。
可选地, 作为一个实施例, 信息发送设备 600还可以包括编码单元 604 和调制单元 605 , 处理单元 601具体用于: 在待分组信息流后面加入循环冗 余校验码;通过编码单元 604,编码加入循环冗余校验码后的待分组信息流, 获得比特流, 其中编码单元 604包括 Turbo码编码或卷积码编码; 将比特流 分为 M组待调制比特流, 其中比特流的长度为 C, 每组待调制比特流的长 度为 N; 通过调制单元 605分别调制 M组待调制比特流, 获得 M组待发送 信息流。 类似地, 上述图 3和图 4中的处理流程也可以由信息发送设备 600 完成, 不再赘述。
可选地, 作为一个实施例, 信息发送设备 600还包括接收单元 606, 确 定单元 601具体用于: 从本地获取预设的组数 M和 /或组长 N; 或者通过接 收单元 606从外部接收组数 M和 /或组长 N。
可选地, 确定单元 601具体用于: 根据 N和 C确定 M, 或者根据 M和 C确定 N:
M
Figure imgf000025_0001
其中, C和 N以比特为单位, 或者 C和 N以符号为单位, 「,为向上取 整运算。
可选地, 作为一个实施例, 接收单元 606具体用于: 从外部接收资源分 配消息, 资源分配消息用于配置 M组待发送信息流中的每一组所占用的时 频资源。 其中资源分配消息包括以下至少一项: 组数 M; 组长 N; 每一组时 频资源的时域长度; 资源块 RB个数和调制编码方式 MCS; RB个数和传输 块大小 TBS。
可选地, 作为一个实施例, 接收单元 606具体用于: 在 M组待发送信 息流中的第一组发送成功后, 接收基站发送的确认信息, 确认信息用于指示 后续传输继续占用当前信道。 接收单元 606还用于: 接收针对 M组待发送 信息流的反馈信息; 或者接收针对每组待发送信息流的反馈信息。
图 7是本发明一个实施例的信息接收设备的示意框图。 如图 7所述, 信 息接受设备 700包括接收单元 701和处理单元 702。 接收单元 701在 M个不同的时频资源上分别接收 M组符号流, 其中 M 个不同的时频资源中的每一个时频资源中的符号数大于 4, M为大于 1的 整数。 处理单元 702对 M组符号流进行处理, 获得原始信息流。
本发明实施例通过对待发送信息流进行分组, 在低码率的情况下, 保证 销。 - ' 一 - ' ' ' 信息接受设备 700可执行图 5的方法实施例的各个步骤, 为避免重复, 不再赘述。
可选地, 作为一个实施例, 信息接收设备 700还包括解调单元 703和解 码单元 704, 处理单元 702具体用于: 通过解调单元 704, 分别解调 M组符 号流,获得 M组的比特流,其中比特流的长度为 C,每组比特流的长度为 N; 将 M组比特流合成为待解码比特流;通过解码单元 703,解码待解码比特流, 获得原始信息流, 其中解码包括 Turbo码解码或卷积码解码; 校验原始信息 流。
图 8是本发明另一实施例的信息发送设备的示意框图。 图 8的信息发送 设备 800包括处理器 801和存储器 802。 处理器 801和存储器 802通过总线 系统 803相连。
存储器 802用于存储使得处理器 801执行以下操作的指令:确定组数 M 和 /或组长 N, 其中 M为大于 1的整数, N为大于 1或等于 1的整数; 根据 M和 /或所述 N对待分组信息流进行处理, 获得 M组待发送信息流; 在 M 个不同的时频资源上分别发送 M组待发送信息流, M个不同的时频资源中 的每一个时频资源中符号数大于 4。
本发明实施例通过对待发送信息流进行分组, 在低码率的情况下, 保证 销。
此外, 信息发送设备 800还可以包括发射电路 804、 接收电路 805及天 线 806等。 处理器 801控制信息发送设备 800的操作, 处理器 801还可以称 为 CPU ( Central Processing Unit, 中央处理单元)。 存储器 802可以包括只读 存储器和随机存取存储器, 并向处理器 801提供指令和数据。 存储器 802的 一部分还可以包括非易失性随机存取存储器( NVRAM )。 具体的应用中, 发 射电路 804和接收电路 805可以耦合到天线 806。 信息发送设备 800的各个 组件通过总线系统 803耦合在一起,其中总线系统 803除包括数据总线之外, 还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见, 在图中将各种总线都标为总线系统 803。
上述本发明实施例揭示的方法可以应用于处理器 801中,或者由处理器 801实现。 处理器 801可能是一种集成电路芯片, 具有信号的处理能力。 在 实现过程中, 上述方法的各步骤可以通过处理器 801中的硬件的集成逻辑电 路或者软件形式的指令完成。 上述的处理器 801可以是通用处理器、 数字信 号处理器(DSP )、 专用集成电路(ASIC )、 现成可编程门阵列 (FPGA )或 者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件。 可以 实现或者执行本发明实施例中的公开的各方法、 步骤及逻辑框图。 通用处理 器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明 实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成, 或者 用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存 储器, 闪存、 只读存储器, 可编程只读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。该存储介质位于存储器 802,处理器 801 读取存储器 802中的信息, 结合其硬件完成上述方法的步骤。
可选地, 作为一个实施例, 处理器 801可在待分组信息流后面加入循环 冗余校验码; 编码加入循环冗余校验码后的待分组信息流, 获得比特流, 其 中编码包括 Turbo码编码或卷积码编码; 将比特流分为 M组待调制比特流, 其中比特流的长度为 C,每组待调制比特流的长度为 N; 分别调制 M组待调 制比特流, 获得 M组待发送信息流。
可选地, 作为另一个实施例, 处理器 801可在待分组信息流后面加入循 环冗余校验码; 编码加入循环冗余校验码后的待分组信息流, 获得比特流, 其中编码包括 Turbo码编码或卷积码编码; 调制比特流, 获得符号流; 将符 号流分为 M组待发送信息流, 其中符号流的长度为 C, 每组待发送信息流 的长度为 N。
可选地, 作为另一个实施例, 处理器 801可将待分组信息流分为 M组 待编码信息流, 其中待分组信息流的长度为 C, 每组待编码信息流的长度为 N; 对 M组待编码信息流分别进行线性分组码编码, 获得 M组的比特流; 分别调制 M组的比特流, 获得 M组待发送信息流。
可选地, 作为另一个实施例, 处理器 801可将待分组信息流分为 M组 待编码信息流, 其中待分组信息流的长度为 C, 每组待编码信息流的长度为
N, 待分组信息流包含高层校验信息; 编码 M组待编码信息流, 获得 M的 比特流, 其中编码包括 Turbo编码, 卷积码编码或者线性分组码编码; 调制 M组的比特流, 获得 M组待发送信息流。
可选地, 作为另一个实施例, 处理器 801可编码待分组信息流, 获得比 特流, 其中编码包括 Turbo编码, 卷积码编码或者线性分组码编码, 待分组 信息流包含高层校验信息; 将比特流分为 M组待调制比特流, 其中比特流 的长度为 C, 每组待调制比特流的长度为 N; 调制 M组待调制比特流, 获得 M组待发送信息流。
可选地, 作为另一个实施例, 处理器 801可编码待分组信息流, 获得比 特流, 其中编码包括 Turbo编码, 卷积码编码或者线性分组码编码, 待分组 信息流包含高层校验信息; 调制比特流, 获得符号流; 将符号流分为 M组 待发送信息流, 其中符号流的长度为 C, 每组待发送信息流的长度为 N。
可选地, 作为另一个实施例, 在基于调度的情况下, 接收电路 805可以 通过天线 806从外部接收资源分配消息, 资源分配消息用于配置 M组待发 送信息流中的每一组所占用的时频资源。 资源分配消息包括以下至少一项: 组数 M; 组长 N; 每一组时频资源的时域长度; 资源块 RB个数和调制编码 方式 MCS; RB个数和传输块大小 TBS。
可选地, 作为另一个实施例, 在基于竟争的情况下, M组待发送信息流 中的第一组发送成功后,接收电路 805可以通过天线 806接收基站发送的确 认信息, 确认信息用于指示后续传输继续占用当前信道。
可选地, 作为另一个实施例, 接收电路 805可以通过天线 806接收针对 M组待发送信息流的反馈信息; 或者接收针对每组待发送信息流的反馈信 息。
图 9是本发明另一实施例的信息接收设备的示意框图。 图 9的信息接收 设备 900包括存储器 901、 处理器 902、 发射电路 903和天线 904。
存储器 901用于存储使得处理器 902执行以下操作的指令: 在 M个不 同的时频资源上分别接收 M组符号流, 其中 M个不同的时频资源中的每一 个时频资源中的符号数大于 4, M为大于 1的整数;对 M组符号流进行处理, 获得原始信息流。
本发明实施例通过对待发送信息流进行分组, 在低码率的情况下, 保证 销。 - ' 一 - ' ' ' 此外, 信息接收设备 900还可以包括接收电路 905等。 处理器 902控制 基站 900的操作, 处理器 902还可以称为 CPU ( Central Processing Unit, 中 央处理单元)。 存储器 901可以包括只读存储器和随机存取存储器, 并向处 理器 902提供指令和数据。存储器 901的一部分还可以包括非易失性随机存 取存储器( NVRAM )。 具体的应用中, 发射电路 903和接收电路 905可以耦 合到天线 904。信息接收设备 900的各个组件通过总线系统 906耦合在一起, 其中总线系统 906除包括数据总线之外, 还可以包括电源总线、 控制总线和 状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线系 统 906。
上述本发明实施例揭示的方法可以应用于处理器 902中,或者由处理器 902实现。 处理器 902可能是一种集成电路芯片, 具有信号的处理能力。 在 实现过程中, 上述方法的各步骤可以通过处理器 902中的硬件的集成逻辑电 路或者软件形式的指令完成。 上述的处理器 902可以是通用处理器、 数字信 号处理器(DSP )、 专用集成电路(ASIC )、 现成可编程门阵列 (FPGA )或 者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件。 可以 实现或者执行本发明实施例中的公开的各方法、 步骤及逻辑框图。 通用处理 器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明 实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成, 或者 用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存 储器, 闪存、 只读存储器, 可编程只读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。该存储介质位于存储器 901 ,处理器 902 读取存储器 901中的信息, 结合其硬件完成上述方法的步骤。
可选地, 作为一个实施例, 处理器 902分别解调 M组符号流, 获得 M 组的比特流, 其中比特流的长度为 C, 每组比特流的长度为 N; 将 M组比特 流合成为待解码比特流; 解码待解码比特流, 获得原始信息流, 其中解码包 括 Turbo码解码或卷积码解码; 校验原始信息流。
可选地, 作为一个实施例, 处理器 902将 M组符号流合成为待解调符 号流, 其中待解调符号流的长度为 C, 每组符号流的长度为 N; 解调待解调 符号流, 获得待解码比特流; 解码待解码比特流, 获得原始信息流, 其中解 码包括 Turbo码解码或卷积码解码; 校验原始信息流。
可选地, 作为一个实施例, 处理器 902分别解调 M组符号流, 获得 M 组待解码比特流; 对 M组待解码比特流分别进行线性分组码解码, 获得 M 组比特流; 将 M组比特流合成为原始信息流, 其中原始信息流的长度为 C, 每组比特流的长度为 N; 校验原始信息流。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例中描述的 各方法步骤和单元, 能够以电子硬件、 计算机软件或者二者的结合来实现, 为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性 地描述了各实施例的步骤及组成。 这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 本领域普通技术人员可以 对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应 认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或步骤可以用硬件、处理器执行 的软件程序,或者二者的结合来实施。软件程序可以置于随机存储器( RAM )、 内存、 只读存储器(ROM )、 电可编程 ROM、 电可擦除可编程 ROM、 寄存 器、 硬盘、 可移动磁盘、 CD-ROM, 或技术领域内所公知的任意其它形式的 存储介质中。 但本发明并不限于此。 在不脱离本发明的精神和实质的前提下, 本领域普通 技术人员可以对本发明的实施例进行各种等效的修改或替换, 而这些修改或 替换都应在本发明的涵盖范围内。

Claims

权利要求
1. 一种信息发送方法, 其特征在于, 包括:
确定组数 M和 /或组长 N,其中所述 M为大于 1的整数,所述 N为大于 1或等于 1的整数;
根据所述 M和 /或所述 N对待分组信息流进行处理,获得 M组待发送信 息流 ^ 不同的时频资源中的每一个时频资源中的符号数大于 4。
2.根据权利要求 1所述的方法, 其特征在于, 所述根据所述 M和 /或所 述 N对待分组信息流进行处理, 获得 M组待发送信息流, 包括:
在所述待分组信息流后面加入循环冗余校验码;
编码加入循环冗余校验码后的所述待分组信息流, 获得比特流, 其中所 述编码包括 Turbo码编码或卷积码编码;
将所述比特流分为 M组待调制比特流, 其中所述比特流的长度为 C, 每组待调制比特流的长度为 N;
分别调制所述 M组待调制比特流, 获得 M组待发送信息流。
3.根据权利要求 1所述的方法, 其特征在于, 所述根据所述 M和 /或所 述 N对待分组信息流进行处理, 获得 M组待发送信息流, 包括:
在所述待分组信息流后面加入循环冗余校验码;
编码加入循环冗余校验码后的所述待分组信息流, 获得比特流, 其中所 述编码包括 Turbo码编码或卷积码编码;
调制所述比特流, 获得符号流;
将所述符号流分为 M组待发送信息流, 其中所述符号流的长度为 C, 每组待发送信息流的长度为 N。
4.根据权利要求 1所述的方法, 其特征在于, 所述根据所述 M和 /或所 述 N对待分组信息流进行处理, 获得 M组待发送信息流, 包括:
将所述待分组信息流分为 M组待编码信息流, 其中所述待分组信息流 的长度为 C, 每组待编码信息流的长度为 N;
对所述 M组待编码信息流分别进行线性分组码编码, 获得 M组的比特 流;
分别调制所述 M组的比特流, 获得 M组待发送信息流。
5.根据权利要求 1所述的方法, 其特征在于, 所述根据所述 M和 /或所 述 N对待分组信息流进行处理, 获得 M组待发送信息流, 包括:
将所述待分组信息流分为 M组待编码信息流, 其中所述待分组信息流 的长度为 C, 每组待编码信息流的长度为 N, 所述待分组信息流包含高层校 验信息;
编码所述 M组待编码信息流, 获得 M 的比特流, 其中所述编码包括 Turbo编码, 卷积码编码或者线性分组码编码;
调制所述 M组的比特流, 获得 M组待发送信息流。
6.根据权利要求 1所述的方法, 其特征在于, 所述根据所述 M和 /或所 述 N对待分组信息流进行处理, 获得 M组待发送信息流, 包括:
编码所述待分组信息流, 获得比特流, 其中所述编码包括 Turbo编码, 卷积码编码或者线性分组码编码, 所述待分组信息流包含高层校验信息; 将所述比特流分为 M组待调制比特流, 其中所述比特流的长度为 C, 每组待调制比特流的长度为 N;
调制所述 M组待调制比特流, 获得 M组待发送信息流。
7.根据权利要求 1所述的方法, 其特征在于, 所述根据所述 M和 /或所 述 N对待分组信息流进行处理, 获得 M组待发送信息流, 包括:
编码所述待分组信息流, 获得比特流, 其中所述编码包括 Turbo编码, 卷积码编码或者线性分组码编码, 所述待分组信息流包含高层校验信息; 调制所述比特流, 获得符号流;
将所述符号流分为 M组待发送信息流, 其中所述符号流的长度为 C, 每组待发送信息流的长度为 N。
8.根据权利要求 1-7任一项所述的方法,其特征在于,所述确定组数 M 和 /或组长 N包括:
从本地获取预设的所述组数 M和 /或所述组长 N; 或者
从外部接收所述组数 M和 /或所述组长 N。
9.根据权利要求 1-7中任意一项所述的方法, 其特征在于, 所述确定组 数 M和 /或组长 N, 包括:
居所述 N和 C确定所述 M, 或者 居所述 M和 C确定所述 N:
M =「 ]或者 N =「
N M 其中, C和 N以比特为单位, 或者 C和 N以符号为单位, 「,为向上取 整运算。
10. 根据权利要求 8所述的方法, 其特征在于, 从外部接收所述组数 M 和 /或所述组长 N包括: 从外部接收资源分配消息, 所述资源分配消息用于 配置所述 M组待发送信息流中的每一组所占用的时频资源。
11.根据权利要求 10所述的方法,其特征在于,所述资源分配消息包括 以下至少一项:
所述组数 M;
所述组长 N;
每一组时频资源的时域长度;
资源块 RB个数和调制编码方式 MCS;
RB个数和传输块大小 TBS。
12.根据权利要求 1所述的方法, 其特征在于, 所述在 M个不同的时频 资源上分别发送所述 M组待发送信息流, 包括: 在所述 M组待发送信息流 中的第一组发送成功后, 接收基站发送的确认信息, 所述确认信息用于指示 后续传输继续占用当前信道。
13.根据权利要求 1所述的方法, 其特征在于, 还包括:
接收针对所述 M组待发送信息流的反馈信息; 或者
接收针对每组待发送信息流的反馈信息。
14. 一种信息接收方法, 其特征在于, 包括:
在 M个不同的时频资源上分别接收 M组符号流,其中所述 M个不同的 时频资源中的每一个时频资源中的符号数大于 4, 所述 M为大于 1的整数; 对所述 M组符号流进行处理, 获得原始信息流。
15.根据权利要求 14所述的方法, 其特征在于, 所述对所述 M组符号 流进行处理, 获得原始信息流包括:
分别解调所述 M组符号流, 获得 M组的比特流, 其中所述比特流的长 度为 C, 每组比特流的长度为 N;
将所述 M组比特流合成为待解码比特流;
解码所述待解码比特流, 获得原始信息流, 其中所述解码包括 Turbo码 解码或卷积码解码;
校验所述原始信息流。
16. 根据权利要求 14所述的方法, 其特征在于, 所述对所述 M组符号 流进行处理, 获得原始信息流包括:
将所述 M组符号流合成为待解调符号流, 其中所述待解调符号流的长 度为 C, 每组符号流的长度为 N;
解调所述待解调符号流, 获得待解码比特流;
解码所述待解码比特流, 获得原始信息流, 其中所述解码包括 Turbo码 解码或卷积码解码;
校验所述原始信息流。
17.根据权利要求 14所述的方法, 其特征在于, 所述对所述 M组符号 流进行处理, 获得原始信息流包括:
分别解调所述 M组符号流, 获得 M组待解码比特流;
对所述 M组待解码比特流分别进行线性分组码解码,获得 M组比特流; 将所述 M组比特流合成为原始信息流, 其中所述原始信息流的长度为 C, 每组比特流的长度为 N;
校验所述原始信息流。
18.根据权利要求 15-16任一项所述的方法, 其特征在于, 所述校验所 述原始信息流包括: 循环冗余校验或者高层校验信息校验;
所述解码还包括: 线性分组码解码。
19.根据权利要求 14-17任一项所述的方法, 其特征在于, 还包括确定 组数 M和 /或组长 N, 包括:
居所述 N和 C确定所述 M, 或者 居所述 M和 C确定所述 N:
M
Figure imgf000034_0001
其中, C和 N以比特为单位, 或者 C和 N以符号为单位, 所述 N为大 于 1或等于 1的整数, 「,为向上取整运算。
20. 根据权利要求 19所述的方法, 其特征在于, 还包括: 确定并发送资 源分配消息, 所述资源分配消息用于配置所述 M组符号流中的每一组所占 用的时频资源。
21. 根据权利要求 20所述的方法,其特征在于,所述资源分配消息包括 以下至少一项:
所述组数 M; 所述组长 N;
每一组时频资源的时域长度;
资源块 RB个数和调制编码方式 MCS;
RB个数和传输块大小 TBS。
22. 根据权利要求 14所述的方法, 其特征在于, 所述在 M个不同的时 频资源上分别接收 M组符号流, 包括: 在成功接收到所述 M组符号流中的 第一组后, 向用户设备发送确认信息, 所述确认信息用于指示后续传输继续 占用当前信道。
23. 根据权利要求 14所述的方法, 其特征在于, 还包括:
发送针对所述 M组符号流的反馈信息; 或者
发送针对每组符号流的反馈信息。
24. 一种信息发送设备, 其特征在于, 包括:
确定单元,用于确定组数 M和 /或组长 N,其中所述 M为大于 1的整数, 所述 N为大于 1或等于 1的整数;
处理单元, 用于根据所述 M和 /或所述 N对待分组信息流进行处理, 获 得 M组待发送信息流; 息流, 所述 M个不同的时频资源中的每一个时频资源中的符号数大于 4。
25. 根据权利要求 24所述的信息发送设备,其特征在于,所述信息发送 设备还包括编码单元和调制单元, 所述处理单元具体用于:
在所述待分组信息流后面加入循环冗余校验码;
通过所述编码单元, 编码加入循环冗余校验码后的所述待分组信息流 , 获得比特流, 其中所述编码单元包括 Turbo码编码或卷积码编码;
将所述比特流分为 M组待调制比特流, 其中所述比特流的长度为 C, 每组待调制比特流的长度为 N;
通过所述调制单元, 分别调制所述 M组待调制比特流, 获得 M组待发 送信息流。
26.根据权利要求 24所述的信息发送设备,其特征在于,所述信息发送 设备还包括编码单元和调制单元, 所述处理单元具体用于:
在所述待分组信息流后面加入循环冗余校验码;
通过所述编码单元, 编码加入循环冗余校验码后的所述待分组信息流, 获得比特流, 其中所述编码包括 Turbo码编码或卷积码编码; 通过所述调制单元, 调制所述比特流, 获得符号流;
将所述符号流分为 M组待发送信息流, 其中所述符号流的长度为 C, 每组待发送信息流的长度为 N。
27. 根据权利要求 24所述的信息发送设备,其特征在于,所述信息发送 设备还包括编码单元和调制单元, 所述处理单元具体用于:
将所述待分组信息流分为 M组待编码信息流, 其中所述待分组信息流 的长度为 C, 每组待编码信息流的长度为 N;
通过所述编码单元, 对所述 M组待编码信息流分别进行线性分组码编 码, 获得 M组的比特流;
通过所述调制单元, 分别调制所述 M组的比特流, 获得 M组待发送信 息流
28. 根据权利要求 24所述的信息发送设备,其特征在于,所述信息发送 设备还包括编码单元和调制单元, 所述处理单元具体用于:
将所述待分组信息流分为 M组待编码信息流, 其中所述待分组信息流 的长度为 C, 每组待编码信息流的长度为 N, 所述待分组信息流包含高层校 验信息;
通过所述编码单元, 编码所述 M组待编码信息流, 获得 M的比特流, 其中所述编码包括 Turbo编码, 卷积码编码或者线性分组码编码;
通过所述调制单元,调制所述 M组的比特流,获得 M组待发送信息流。
29.根据权利要求 24所述的信息发送设备,其特征在于,所述信息发送 设备还包括编码单元和调制单元, 所述处理单元具体用于:
通过所述编码单元, 编码所述待分组信息流, 获得比特流, 其中所述编 码包括 Turbo编码, 卷积码编码或者线性分组码编码, 所述待分组信息流包 含高层校验信息;
将所述比特流分为 M组待调制比特流, 其中所述比特流的长度为 C, 每组待调制比特流的长度为 N;
通过所述调制单元, 调制所述 M组待调制比特流, 获得 M组待发送信 息流
30. 根据权利要求 24所述的信息发送设备,其特征在于,所述信息发送 设备还包括编码单元和调制单元, 所述处理单元具体用于: 通过所述编码单元, 编码所述待分组信息流, 获得比特流, 其中所述编 码包括 Turbo编码, 卷积码编码或者线性分组码编码, 所述待分组信息流包 含高层校验信息;
通过所述调制单元, 调制所述比特流, 获得符号流;
将所述符号流分为 M组待发送信息流, 其中所述符号流的长度为 C, 每组待发送信息流的长度为 N。
31. 根据权利要求 24-30任一项所述的信息发送设备, 其特征在于, 所 述信息发送设备还包括接收单元, 所述确定单元具体用于:
从本地获取预设的所述组数 M和 /或所述组长 N; 或者
通过所述接收单元, 从外部接收所述组数 M和 /或所述组长 N。
32. 根据权利要求 24-30中任意一项所述的信息发送设备, 所述确定单 元具体用于:
才艮据所述 N和 C确定所述 M, 或者 居所述 M和 C确定所述 N:
M
Figure imgf000037_0001
其中, C和 N以比特为单位, 或者 C和 N以符号为单位, 「,为向上取 整运算。
33.根据权利要求 32所述的信息发送设备,其特征在于,所述接收单元 具体用于: 从外部接收资源分配消息, 所述资源分配消息用于配置所述 M 组待发送信息流中的每一组所占用的时频资源。
34.根据权利要求 33所述的信息发送设备,其特征在于,所述资源分配 消息包括以下至少一项:
所述组数 M;
所述组长 N;
每一组时频资源的时域长度;
资源块 RB个数和调制编码方式 MCS;
RB个数和传输块大小 TBS。
35.根据权利要求 24所述的信息发送设备,其特征在于,所述接收单元 具体用于: 在所述 M组待发送信息流中的第一组发送成功后, 接收基站发 送的确认信息, 所述确认信息用于指示后续传输继续占用当前信道。
36.根据权利要求 24所述的信息发送设备,其特征在于,所述接收单元 还用于:
接收针对所述 M组待发送信息流的反馈信息; 或者
接收针对每组待发送信息流的反馈信息。
37. 一种信息接收设备, 其特征在于, 包括:
接收单元, 用于在 M个不同的时频资源上分别接收 M组符号流, 其中 所述 M个不同的时频资源中的每一个时频资源中的符号数大于 4, 所述 M 为大于 1的整数;
处理单元, 用于对所述 M组符号流进行处理, 获得原始信息流。
38. 根据权利要求 37所述的信息接收设备,其特征在于,所述信息接收 设备还包括解调单元和解码单元, 所述处理单元具体用于:
通过所述解调单元, 分别解调所述 M组符号流, 获得 M组的比特流, 其中所述比特流的长度为 C, 每组比特流的长度为 N;
将所述 M组比特流合成为待解码比特流;
通过所述解码单元, 解码所述待解码比特流, 获得原始信息流, 其中所 述解码包括 Turbo码解码或卷积码解码;
校验所述原始信息流。
39.根据权利要求 37所述的信息接收设备,其特征在于,所述信息接收 设备还包括解调单元和解码单元, 所述处理单元具体用于:
将所述 M组符号流合成为待解调符号流, 其中所述待解调符号流的长 度为 C, 每组符号流的长度为 N;
通过所述解调单元, 解调所述待解调符号流, 获得待解码比特流; 通过所述解码单元, 解码所述待解码比特流, 获得原始信息流, 其中所 述解码包括 Turbo码解码或卷积码解码;
校验所述原始信息流。
40. 根据权利要求 37所述的信息接收设备,其特征在于,所述信息接收 设备还包括解调单元和解码单元, 所述处理单元具体用于:
通过所述解调单元分别解调所述 M组符号流,获得 M组待解码比特流; 通过所述解码单元对所述 M组待解码比特流分别进行线性分组码解码, 获得 M组比特流;
将所述 M组比特流合成为原始信息流, 其中所述原始信息流的长度为
C, 每组比特流的长度为 N; 校验所述原始信息流。
41. 根据权利要求 38-39任一项所述的信息接收设备, 其特征在于, 所 述校验所述原始信息流包括: 循环冗余校验或者高层校验信息校验;
所述解码还包括: 线性分组码解码。
42. 根据权利要求 37-40任一项所述的信息接收设备, 其特征在于, 所 述信息接收设备还包括确定单元, 所述确定单元具体用于:
才艮据所述 N和 C确定所述 M, 或者 居所述 M和 C确定所述 N:
M
Figure imgf000039_0001
其中, C和 N以比特为单位, 或者 C和 N以符号为单位, 所述 N为大 于 1或等于 1的整数, 「,为向上取整运算。
43. 根据权利要求 42所述的信息接收设备,其特征在于,所述信息接收 设备还包括发送单元,用于: 通过所述确定单元,确定并发送资源分配消息, 所述资源分配消息用于配置所述 M组符号流中的每一组所占用的时频资源。
44. 根据权利要求 43所述的信息接收设备,其特征在于,所述资源分配 消息包括以下至少一项:
所述组数 M;
所述组长 N;
每一组时频资源的时域长度;
资源块 RB个数和调制编码方式 MCS;
RB个数和传输块大小 TBS。
45. 根据权利要求 37所述的信息接收设备,其特征在于,所述发送单元 还用于: 在成功接收到所述 M组符号流中的第一组后, 向用户设备发送确 认信息, 所述确认信息用于指示后续传输继续占用当前信道。
46. 根据权利要求 37所述的信息接收设备,其特征在于,所述发送单元 还用于:
发送针对所述 M组符号流的反馈信息; 或者
发送针对每组符号流的反馈信息。
PCT/CN2013/070721 2013-01-18 2013-01-18 信息传输方法和设备 WO2014110812A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2013/070721 WO2014110812A1 (zh) 2013-01-18 2013-01-18 信息传输方法和设备
EP13871836.6A EP2938147A4 (en) 2013-01-18 2013-01-18 METHOD AND DEVICE FOR TRANSMITTING INFORMATION
CN201380000739.6A CN104137638A (zh) 2013-01-18 2013-01-18 信息传输方法和设备
US14/800,373 US20150318967A1 (en) 2013-01-18 2015-07-15 Method and device for transmitting information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/070721 WO2014110812A1 (zh) 2013-01-18 2013-01-18 信息传输方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/800,373 Continuation US20150318967A1 (en) 2013-01-18 2015-07-15 Method and device for transmitting information

Publications (1)

Publication Number Publication Date
WO2014110812A1 true WO2014110812A1 (zh) 2014-07-24

Family

ID=51208992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070721 WO2014110812A1 (zh) 2013-01-18 2013-01-18 信息传输方法和设备

Country Status (4)

Country Link
US (1) US20150318967A1 (zh)
EP (1) EP2938147A4 (zh)
CN (1) CN104137638A (zh)
WO (1) WO2014110812A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3324690B1 (en) * 2015-07-01 2021-09-29 Huawei Technologies Co., Ltd. Method and device for transmitting uplink data
CN107113156B (zh) * 2015-08-07 2020-08-07 华为技术有限公司 一种全双工传输的控制方法和用户设备以及基站
CN107395546B (zh) * 2017-08-30 2020-04-24 重庆物奇科技有限公司 电力线载波通信中对数据符号进行频域信息扩展的方法
CN113542045B (zh) * 2020-04-21 2023-01-24 北京威努特技术有限公司 一种tcp端口状态确定方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291313A (zh) * 2007-04-19 2008-10-22 华为技术有限公司 无线信号发射方法、系统及移动台
CN101867550A (zh) * 2010-06-09 2010-10-20 清华大学 Ofdm系统中支持多业务的多媒体发送、接收方法及其装置
CN102215571A (zh) * 2010-04-01 2011-10-12 上海贝尔股份有限公司 为物理混合自动重传请求指示信道分配资源的方法以及装置
CN102412867A (zh) * 2011-12-07 2012-04-11 清华大学 基于时频交织单载波频域均衡的直流分量克服方法和系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102572820B (zh) * 2004-11-02 2015-11-11 苹果公司 与正交频分复用一起使用的方法及其基站和无线终端
US8355376B2 (en) * 2005-08-25 2013-01-15 Samsung Electronics Co., Ltd Broadcast scheme for a multi-carrier wireless network
US20090022098A1 (en) * 2005-10-21 2009-01-22 Robert Novak Multiplexing schemes for ofdma
US7979784B2 (en) * 2006-03-29 2011-07-12 Samsung Electronics Co., Ltd. Method and system for enhancing transmission reliability of video information over wireless channels
US8169995B2 (en) * 2006-12-04 2012-05-01 Samsung Electronics Co., Ltd. System and method for wireless communication of uncompressed video having delay-insensitive data transfer
US8379738B2 (en) * 2007-03-16 2013-02-19 Samsung Electronics Co., Ltd. Methods and apparatus to improve performance and enable fast decoding of transmissions with multiple code blocks
KR101505193B1 (ko) * 2007-06-18 2015-03-23 삼성전자주식회사 직교주파수분할다중접속방식의 이동 통신시스템에서 심볼전송 방법 및 장치
US20090074103A1 (en) * 2007-09-14 2009-03-19 Texas Instruments Incorporated Rate matching to maintain code block resource element boundaries
US9544776B2 (en) * 2008-03-25 2017-01-10 Qualcomm Incorporated Transmission and reception of dedicated reference signals
US9030977B2 (en) * 2009-10-15 2015-05-12 Qualcomm Incorporated Methods and apparatus for transport block size determination
EP2552044A4 (en) * 2010-03-22 2014-12-31 Lg Electronics Inc METHOD AND USER DEVICE FOR TRANSMITTING UPLINK TAX INFORMATION
EP2561627A1 (en) * 2010-04-20 2013-02-27 Telefonaktiebolaget L M Ericsson (PUBL) Antenna selection scheme based on information bits
US8989156B2 (en) * 2010-06-18 2015-03-24 Sharp Kabushiki Kaisha Selecting a codeword and determining a symbol length for uplink control information
JP2012186736A (ja) * 2011-03-07 2012-09-27 Sharp Corp 端末装置、基地局装置、および無線通信システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291313A (zh) * 2007-04-19 2008-10-22 华为技术有限公司 无线信号发射方法、系统及移动台
CN102215571A (zh) * 2010-04-01 2011-10-12 上海贝尔股份有限公司 为物理混合自动重传请求指示信道分配资源的方法以及装置
CN101867550A (zh) * 2010-06-09 2010-10-20 清华大学 Ofdm系统中支持多业务的多媒体发送、接收方法及其装置
CN102412867A (zh) * 2011-12-07 2012-04-11 清华大学 基于时频交织单载波频域均衡的直流分量克服方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2938147A4 *

Also Published As

Publication number Publication date
EP2938147A4 (en) 2015-12-30
EP2938147A1 (en) 2015-10-28
US20150318967A1 (en) 2015-11-05
CN104137638A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
CN107835063B (zh) 信息传输的方法、发送端设备和接收端设备
EP3783824B1 (en) Apparatus and method for performing retransmission in wireless communication system
CN114258650B (zh) 用于在无线通信系统中管理软缓存的装置和方法
US11038644B2 (en) Data communication method, network device, and terminal device
ES2927236T3 (es) Procedimiento y aparato de mapeo de datos en un sistema de comunicación inalámbrica
AU2016400171A1 (en) Information processing method, terminal device, network device, and communication system
CN113016154B (zh) 用于在通信系统中发送或接收数据的方法和设备
JP2021153312A (ja) データ伝送方法、受信側装置及び送信側装置
WO2017143837A1 (zh) 一种信息传输方法及装置
US20230139754A1 (en) Coding method and apparatus
WO2018009572A1 (en) Low latency data communications utilizing advanced coding
WO2018228236A1 (zh) 数据传输方法和装置
US20150318967A1 (en) Method and device for transmitting information
WO2018228553A1 (zh) 数据传输的方法、网络设备和终端设备
WO2020143908A1 (en) Network access node and client device for indication of multiple data channels in a single control message
WO2020166229A1 (ja) 通信装置及び通信方法
CN110268663A (zh) 新无线电的上行链路控制信息处理
KR102472160B1 (ko) 무선 셀룰라 통신 시스템에서 데이터 전송 방법 및 장치
EP4344113A1 (en) Wireless communication method, terminal device, and network device
WO2022050018A1 (ja) 情報処理装置および情報処理方法
WO2018171538A1 (zh) 数据传输方法、网络设备及终端设备
WO2015100536A1 (zh) 数据交换业务的信道编解码方法和设备
JP2022042428A (ja) 情報処理装置、符号化方法および復号化方法
CN116134937A (zh) 终端、基站及通信方法
CN114944886A (zh) 速率匹配的方法和装置,以及解速率匹配的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013871836

Country of ref document: EP