WO2014110697A1 - 一种多次反射的高分辨飞行时间质谱仪 - Google Patents

一种多次反射的高分辨飞行时间质谱仪 Download PDF

Info

Publication number
WO2014110697A1
WO2014110697A1 PCT/CN2013/000637 CN2013000637W WO2014110697A1 WO 2014110697 A1 WO2014110697 A1 WO 2014110697A1 CN 2013000637 W CN2013000637 W CN 2013000637W WO 2014110697 A1 WO2014110697 A1 WO 2014110697A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
mass spectrometer
ions
flight mass
ion source
Prior art date
Application number
PCT/CN2013/000637
Other languages
English (en)
French (fr)
Inventor
唐紫超
史磊
张世宇
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to AU2013374169A priority Critical patent/AU2013374169B2/en
Publication of WO2014110697A1 publication Critical patent/WO2014110697A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/406Time-of-flight spectrometers with multiple reflections

Definitions

  • the invention belongs to the field of mass spectrometry, and in particular relates to a high resolution time-of-flight mass spectrometer with multiple reflections.
  • the Time of Flight Mass Spectrometer is a commonly used mass spectrometer.
  • This mass spectrometer is mainly composed of an accelerator, a flight tube, and a microchannel plate detector (MCP).
  • MCP microchannel plate detector
  • the ions generated by the ion source are accelerated into a fieldless flying tube and fly to the MCP at a constant speed.
  • ions of different masses can be separated by mass-to-charge ratio (m/z).
  • the two-field acceleration technique is commonly used in current time-of-flight mass spectrometers.
  • the two-field acceleration technique accelerates ions by two electric fields with specific parameters. The effect is that ions with different initial positions reach a specific position at a certain time, realizing "space focusing" of ions. This particular location is the focus of the space, which is determined by the size and voltage distribution of the accelerator.
  • the mass of the ions does not affect the position of the focus, which means that the different ion focus positions are the same, but the flight time is different, which is the basis of time-of-flight mass spectrometry.
  • the accelerator with a specific voltage configuration has a fixed spatial focus distance, it limits the flight time.
  • the solution is to add during the ion flight.
  • the ions with high energy fly into the depth, the time spent is long, the ions with low energy fly into the shallow, and the time spent is short.
  • the reflector is identical in structure to the accelerator and there is also a spatial focus point. The ions of different energies at the focus will return to this focus position after reflection, which realizes the energy focusing of the ions.
  • the essence of the reflector is to increase the flying distance of the ions while ensuring the focus of the ion space.
  • the longer the flight distance the easier it is to separate ions of different masses. Therefore, time-of-flight mass spectrometry with double reflection or even three reflections has been developed.
  • the current multi-reflection time-of-flight mass spectrometry will continue to disperse as the number of reflections increases, so it is difficult to further increase the number of reflections.
  • the traditional multiple-reflection time-of-flight mass spectrometry ions cannot converge, so the ions cannot be separated for subsequent use. And this is what is needed in many scientific instruments.
  • the focusing action prevents the ions from diverging, which greatly increases the flight time and thus the sensitivity of the instrument.
  • the ions are still converged and can be measured in the next step, such as measuring the infrared light dissociation spectrum by another mass spectrometer in series, or measuring the photoelectron velocity spectrum.
  • the present invention provides a high resolution time-of-flight mass spectrometer for multiple reflection, comprising an ion source (1), an accelerator (2), a reflector group (3), and a compensation reflection. (4) and detector (5).
  • the ions are generated by the ion source and enter the dual field accelerator. After the emitter group continues to reflect, it reaches the compensation. The reflector is finally reflected by the compensating reflector and reaches the detector to realize the detection process.
  • Multi-reflection high-resolution time-of-flight mass spectrometer provided by the present invention, the reflector group
  • the multi-reflection high-resolution time-of-flight mass spectrometer provided by the present invention the ion source
  • the ion source (1) is one of an electron bombardment ion source, a photoionization ion source, and an electrospray ion source.
  • the ion source (1) can ionize the solid, gas, and liquid samples and send them to the accelerator (2); the ion reaction product can also be sent to the accelerator's ion reaction device, and the ion photodissociation device can provide multiple reflections provided by the present invention.
  • the multi-reflection high-resolution time-of-flight mass spectrometer provided by the present invention, the function of the compensating reflector (4) is to focus the multi-reflected ions on the detector; the axis thereof and the "accelerator-reflector group" The axis is at a small angle, and the ions are rotated a small angle during the reflection process, eventually focusing on the detector.
  • the present invention provides a multi-reflection high-resolution time-of-flight mass spectrometer, wherein the detector (5) is a device for converting ion bombardment into an electrical signal, such as a microchannel plate, electron multiplication Device.
  • the beneficial effects of the present invention are that the present invention can infinitely increase the number of reflections and place the ions in an in-focus state.
  • the reflector group is not attached to the grid, which avoids losses when the ions are repeatedly passed through.
  • the ions are not lost during the reflection process, so the sensitivity of the instrument is not lowered.
  • Due to the extended flight time the resolution can be greatly improved.
  • Theoretical calculations show that the resolution of the mass spectrometer can reach more than 10,000.
  • ions can be further focused to specific locations for further experiments, such as measuring photoelectron velocity spectra.
  • Figure 1 is a schematic illustration of the construction of a multi-reflection high resolution time-of-flight mass spectrometer of the present invention.
  • (1) is the ion source
  • (2) is the accelerator
  • (3) is the reflector group
  • (4) is the compensation reflector
  • (5) is the detector.
  • a multi-reflection high-resolution time-of-flight mass spectrometer of the present invention is composed of an ion source, a two-field accelerator, a reflector group composed of two reflectors facing each other, an MCP, a detector, and the like.
  • the ions are generated by the ion source and enter the two-field accelerator.
  • the reflector 1 is in a field-free state. After the ions pass through the reflector 1, an electric field is applied. After the ions are reflected by the reflector 2, they are again reflected by the reflector 1. As long as the voltages on the reflectors 1 and 2 are continuously applied, the ions are repeatedly reflected between 1, 2, and the flight time is continuously increased.
  • the reflector 1 coincides with the spatial focus of the reflector 2.
  • the voltage of the reflector 2 is adjusted to the field-free mode to extract the ions.
  • the ions can be focused again for other uses.
  • the reflected ions will be focused on the other side of the reflector focus, and the distance from the focus of the reflector is equal to the focus of the accelerator and the focus of the reflector. the distance.
  • the spatial focus of the two reflectors in the reflector group is at the same point, at the center of the reflector group.
  • the spatial focus point of the accelerator can be set at any position in the opposite space of the two reflectors in the reflector group according to the actual space size.
  • the ions are alternately focused on the center of the reflector focus.
  • the distance is at a point that is the distance between the accelerator focus and the reflector focus.
  • the reflector voltage is removed and the ions are incident on the compensating reflector.
  • the ions are finally focused by adjusting the parameters of the compensating reflector
  • the invention can be applied to mass spectrometry, using ions to reciprocally reflect in a relative set of reflectors, and simultaneously utilizing the self-focusing effect of the meshless reflector to prevent ions from diverging, thereby greatly improving flight time and thereby improving instrument sensitivity. .

Abstract

一种多次反射的高分辨飞行时间质谱仪包括离子源(1)、加速器(2)、反射器组(3)、补偿反射器(4)和探测器(5);离子源(1)产生的离子经加速器(2)加速后到达反射器组(3),在反射器组(3)中多次反射后到达补偿反射器(4),经补偿反射器(4)反射后被探测器(5)检测。加速器(2)采用双场加速,将空间中分散的离子在同一时刻聚焦到某个位置上;通过设置两个相对的等焦距无栅网反射器来实现离子的不限次的反射,利用离子在相对的一组反射器内往复反射,同时利用无网反射器的自聚焦作用使离子不发散,从而极大的提高了飞行时间,进而提高仪器的灵敏度。

Description

说 明 书 一种多次反射的高分辨飞行时间质谱仪 技术领域
本发明属于质谱分析领域,具体涉及一种多次反射的高分辨飞行 时间质谱仪。
背景技术
飞行时间质谱仪 (Time of Flight Mass Spectrometer, TOF)是一 种常用的质谱分析仪器。这种质谱仪主要由加速器、飞行管、微通道 板探测器(MCP)构成。 由离子源产生的离子经加速后进入无场的飞 行管, 并以恒定速度飞向 MCP。 离子质量越大, 到达 MCP所用时间 越长, 离子质量越小, 到达 MCP所用时间越短, 根据这一原理, 可 以把不同质量的离子按质量-电荷比值(m/z)大小进行分离。
由于离子的初始位置不同会对飞行时间造成影响,所以目前的飞 行时间质谱仪中普遍应用了双场加速技术。双场加速技术是通过特定 参数的两个电场对离子进行加速,其效果是使初始位置不同的离子在 某一时刻同时到达一个特定位置, 实现了离子的 "空间聚焦"。 这个 特定的位置,被成为空间焦点, 空间焦点由加速器的尺寸与电压分布 决定。
离子的质量不会影响焦点的位置,也就是说不同的离子焦点位置 相同, 只是飞行时间不同, 这就是飞行时间质谱的基础。
由于特定电压配置的加速器其空间焦点距离固定,限制了进一部 提高飞行时间。为了克服这个障碍,解决办法是在离子飞行过程中加 入一个反射器, 能量高的离子飞入的深, 消耗的时间长, 能量低的离 子飞入的浅, 消耗的时间短。反射器在结构上与加速器相同, 也存在 一个空间聚焦点。在焦点上的不同能量的离子,经过反射后会同时回 到这个焦点位置, 这就实现了离子的能量聚焦。
反射器的本质是在保证离子空间聚焦的前提下,提高了离子的飞 行距离。飞行距离越长, 不同质量的离子也就越容易被分开。所以陆 续有双反射乃至三次反射的飞行时间质谱被开发出来。但是目前的多 次反射飞行时间质谱随着反射次数的增加离子会不断分散,所以很难 进一步提高反射次数; 同时,传统的多次反射飞行时间质谱离子无法 汇聚,所以无法分离离子做后续的利用,而这正是很多科研仪器中所 需要的。
发明内容
为了克服现有技术存在的缺陷,本发明的目的是提供一种多次反 射的高分辨飞行时间质谱仪,其利用离子在相对的一组反射器内往复 反射, 同时利用无网反射器的自聚焦作用使离子不发散,从而极大的 提高了飞行时间,进而提高仪器的灵敏度。离子经过飞行时间分离后, 仍然是汇聚的,可以进行下一步的测量,如串联另一质谱测量红外光 解离谱、 或测量光电子速度谱等。
为了实现上述目的, 本发明的技术方案如下- 本发明提供了一种多次反射的高分辨飞行时间质谱仪,包括离子 源(1 )、加速器(2)、反射器组(3)、补偿反射器(4)及探测器(5)。 离子由离子源产生后进入双场加速器,经发射器组持续反射后到达补 偿反射器, 经补偿反射器最终反射后到达探测器, 实现检测过程。 本发明提供的多次反射的高分辨飞行时间质谱仪,所述反射器组
(3 ) 为等焦距无栅网反射器组; 该质谱仪通过等焦距无栅网反射器 组来实现离子的不限次数的反射,通过多次反射提高飞行时间,进而 提高仪器的分辨率。
本发明提供的多次反射的高分辨飞行时间质谱仪, 所述离子源
( 1 )为电子轰击离子源、 光电离离子源、 电喷雾离子源中的一种。 离子源(1 )可以将固体、 气体、 液体样品离子化并送入加速器(2); 也可以将离子反应产物送入加速器的离子反应装置、 离子光解离装 本发明提供的多次反射的高分辨飞行时间质谱仪, 所述加速器
(2) 采用双场加速, 将空间中分散的离子在同一时刻聚焦到某个距 离上。
本发明提供的多次反射的高分辨飞行时间质谱仪,所述反射器组
(3 ) 由两个相对的反射器过程; 两个反射器的空间焦距相等, 并且 尺寸与电压参数完全相同, 两反射器相对放置, 并且空间焦点重合。
本发明提供的多次反射的高分辨飞行时间质谱仪,所述补偿反射 器(4)的功能是将多次反射后的离子聚焦在探测器上;其轴线与"加 速器 -反射器组"的轴线成一小角度, 离子在反射过程中转一个小角 度, 最终聚焦在探测器上。
本发明提供的多次反射的高分辨飞行时间质谱仪, 所述探测器 (5 )为将离子轰击转变成电信号的装置, 例如微通道板、 电子倍增 器。
本发明的有益效果是:本发明可以无限的增加反射次数并使离子 处在聚焦状态。反射器组不贴栅网,这样可以避免离子反复穿过时的 损失。同时由于无栅网反射器的聚焦作用, 离子在反射过程中不会被 损耗, 所以不会降低仪器的灵敏度。 由于飞行时间的延长, 分辨率可 以被极大的提高, 理论计算表明质谱的分辨率可以达到 10000以上。 而且在具备如此高的分辨率的同时,离子可以进一步聚焦到特定位置 来进行下一步的试验, 例如测量光电子速度谱等。
附图说明
图 1 是本发明一种多次反射的高分辨飞行时间质谱仪的结构示 意图。 图中 (1 ) 为离子源, (2) 为加速器, (3 ) 为反射器组, (4) 为补偿反射器, (5) 为探测器。
具体实施方式
下面结合附图对本发明做进一步详细说明。
如图 1所示,本发明一种多次反射的高分辨飞行时间质谱仪由离 子源、双场加速器、正对的两个反射器构成的反射器组、 MCP、探测 器等构成。离子由离子源产生后进入双场加速器,开始时反射器 1为 无场状态。离子穿过反射器 1后, 开始施加电场。离子被反射器 2反 射后会再次被反射器 1反射, 只要反射器 1与 2上的电压持续施加, 离子就会不断的反复的在 1、 2之间反射, 使飞行时间不断增加。 在 具体操作中,反射器 1与反射器 2的空间焦点重合。在离子飞行了需 要的时间后, 将反射器 2的电压调整为无场模式, 将离子引出。后续 的离子可以再次聚焦, 进行其他的利用。
当反射器与加速器配合使用时,如果加速器的焦点与反射器的焦 点不重合, 则反射后的离子会被聚焦在反射器焦点的另一方, 与反射 器焦点的距离等于加速器焦点与反射器焦点的距离。这就允许我们实 现这样的一种设计: 两个相对的反射器构成一个反射器组。其中反射 器组中两各反射器的空间聚焦点在同一点上, 位于反射器组的中心。 加速器的空间聚焦点根据实际的空间尺寸可以设定在反射器组中两 反射器相对的空间中任何一个位置,在多次反射过程中离子会被交替 的聚焦在以反射器焦点为中心对称、距离为加速器焦点与反射器焦点 距离的连个点上。 当经过足够多次反射后, 撤掉反射器电压, 离子射 入补偿反射器。进而通过调整补偿反射器的参数来将离子最终聚焦在
MCP探测器上。
本发明可以应用于质谱分析,利用离子在相对的一组反射器内往 复反射, 同时利用无网反射器的自聚焦作用使离子不发散, 从而极大 的提高了飞行时间, 进而提高仪器的灵敏度。

Claims

权 利 要 求 书
1 > 一种多次反射的高分辨飞行时间质谱仪, 其特征在于: 该质 谱仪包括离子源(1 )、 加速器(2)、 反射器组(3)、 补偿反射器(4) 及探测器(5); 离子源产生的离子经加速器加速后到达反射器组, 在 反射器组中多次反射后到达补偿反射器,经补偿反射器反射后被探测 器检测。
2、 按照权利要求 1所述多次反射的高分辨飞行时间质谱仪, 其 特征在于: 所述反射器组(3 ) 为等焦距无栅网反射器组; 该质谱仪 通过等焦距无栅网反射器组来实现离子的不限次数的反射,通过多次 反射提高飞行时间, 进而提高仪器的分辨率。
3、 按照权利要求 1所述多次反射的高分辨飞行时间质谱仪, 其 特征在于: 所述离子源 (1 )为电子轰击离子源、 光电离离子源、 电 喷雾离子源中的一种; 离子源 (1 )将固体、 气体、 液体样品离子化 并送入加速器(2)。
4、 按照权利要求 1所述多次反射的高分辨飞行时间质谱仪, 其 特征在于: 所述离子源 (1 )将离子反应产物送入加速器的离子反应 装置、 离子光解离装置。
5、 按照权利要求 1所述多次反射的高分辨飞行时间质谱仪, 其 特征在于: 所述加速器 (2)采用双场加速, 将空间中分散的离子在 同一时刻聚焦到某个距离上。
6、 按照权利要求 1所述多次反射的高分辨飞行时间质谱仪, 其 特征在于: 所述反射器组(3 )有两个相对的反射器过程; 两个反射 器的空间焦距相等,并且尺寸与电压参数完全相同,两反射器相对放 置, 并且空间焦点重合。
7、 按照权利要求 1所述多次反射的高分辨飞行时间质谱仪, 其 特征在于: 所述补偿反射器(4) 的功能是将多次反射后的离子聚焦 在探测器上; 其轴线与 "加速器 -反射器组"的轴线成一小角度, 离 子在反射过程中转一个小角度, 最终聚焦在探测器上。
8、 按照权利要求 1所述多次反射的高分辨飞行时间质谱仪, 其 特征在于: 所述探测器 (5 )为将离子轰击转变成电信号的装置。
9、 按照权利要求 8所述多次反射的高分辨飞行时间质谱仪, 其 特征在于: 所述探测器(5 )为微通道板或电子倍增器。
10、按照权利要求 1所述多次反射的高分辨飞行时间质谱仪,其 特征在于: 所述质谱仪分辨率可达 10000以上。
PCT/CN2013/000637 2013-01-18 2013-05-30 一种多次反射的高分辨飞行时间质谱仪 WO2014110697A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2013374169A AU2013374169B2 (en) 2013-01-18 2013-05-30 Multi-reflection high-resolution time of flight mass spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310019177.1 2013-01-18
CN2013100191771A CN103065921A (zh) 2013-01-18 2013-01-18 一种多次反射的高分辨飞行时间质谱仪

Publications (1)

Publication Number Publication Date
WO2014110697A1 true WO2014110697A1 (zh) 2014-07-24

Family

ID=48108494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000637 WO2014110697A1 (zh) 2013-01-18 2013-05-30 一种多次反射的高分辨飞行时间质谱仪

Country Status (3)

Country Link
CN (1) CN103065921A (zh)
AU (1) AU2013374169B2 (zh)
WO (1) WO2014110697A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10593533B2 (en) 2015-11-16 2020-03-17 Micromass Uk Limited Imaging mass spectrometer
US10629425B2 (en) 2015-11-16 2020-04-21 Micromass Uk Limited Imaging mass spectrometer
US10636646B2 (en) 2015-11-23 2020-04-28 Micromass Uk Limited Ion mirror and ion-optical lens for imaging
US10741376B2 (en) 2015-04-30 2020-08-11 Micromass Uk Limited Multi-reflecting TOF mass spectrometer
US10950425B2 (en) 2016-08-16 2021-03-16 Micromass Uk Limited Mass analyser having extended flight path
US11049712B2 (en) 2017-08-06 2021-06-29 Micromass Uk Limited Fields for multi-reflecting TOF MS
US11081332B2 (en) 2017-08-06 2021-08-03 Micromass Uk Limited Ion guide within pulsed converters
US11205568B2 (en) 2017-08-06 2021-12-21 Micromass Uk Limited Ion injection into multi-pass mass spectrometers
US11211238B2 (en) 2017-08-06 2021-12-28 Micromass Uk Limited Multi-pass mass spectrometer
US11239067B2 (en) 2017-08-06 2022-02-01 Micromass Uk Limited Ion mirror for multi-reflecting mass spectrometers
US11295944B2 (en) 2017-08-06 2022-04-05 Micromass Uk Limited Printed circuit ion mirror with compensation
US11309175B2 (en) 2017-05-05 2022-04-19 Micromass Uk Limited Multi-reflecting time-of-flight mass spectrometers
US11328920B2 (en) 2017-05-26 2022-05-10 Micromass Uk Limited Time of flight mass analyser with spatial focussing
US11342175B2 (en) 2018-05-10 2022-05-24 Micromass Uk Limited Multi-reflecting time of flight mass analyser
US11367608B2 (en) 2018-04-20 2022-06-21 Micromass Uk Limited Gridless ion mirrors with smooth fields
US11587779B2 (en) 2018-06-28 2023-02-21 Micromass Uk Limited Multi-pass mass spectrometer with high duty cycle
US11621156B2 (en) 2018-05-10 2023-04-04 Micromass Uk Limited Multi-reflecting time of flight mass analyser
US11817303B2 (en) 2017-08-06 2023-11-14 Micromass Uk Limited Accelerator for multi-pass mass spectrometers
US11881387B2 (en) 2018-05-24 2024-01-23 Micromass Uk Limited TOF MS detection system with improved dynamic range

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103065921A (zh) * 2013-01-18 2013-04-24 中国科学院大连化学物理研究所 一种多次反射的高分辨飞行时间质谱仪
CN108037525B (zh) * 2017-11-29 2019-06-07 厦门大学 一种用于质谱和光电子速度成像共同探测的装置
CN110739200B (zh) * 2018-07-20 2022-04-29 北京雪迪龙科技股份有限公司 一种飞行时间质谱仪信号聚焦的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2622854Y (zh) * 2003-05-20 2004-06-30 中国科学院安徽光学精密机械研究所 直线多次反射式飞行时间质谱仪
CN1853255A (zh) * 2003-06-21 2006-10-25 莱克公司 多反射飞行时间质谱仪及使用方法
CN103065921A (zh) * 2013-01-18 2013-04-24 中国科学院大连化学物理研究所 一种多次反射的高分辨飞行时间质谱仪

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689111A (en) * 1995-08-10 1997-11-18 Analytica Of Branford, Inc. Ion storage time-of-flight mass spectrometer
CN107833823B (zh) * 2005-10-11 2021-09-17 莱克公司 具有正交加速的多次反射飞行时间质谱仪

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2622854Y (zh) * 2003-05-20 2004-06-30 中国科学院安徽光学精密机械研究所 直线多次反射式飞行时间质谱仪
CN1853255A (zh) * 2003-06-21 2006-10-25 莱克公司 多反射飞行时间质谱仪及使用方法
CN103065921A (zh) * 2013-01-18 2013-04-24 中国科学院大连化学物理研究所 一种多次反射的高分辨飞行时间质谱仪

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10741376B2 (en) 2015-04-30 2020-08-11 Micromass Uk Limited Multi-reflecting TOF mass spectrometer
US10593533B2 (en) 2015-11-16 2020-03-17 Micromass Uk Limited Imaging mass spectrometer
US10629425B2 (en) 2015-11-16 2020-04-21 Micromass Uk Limited Imaging mass spectrometer
US10636646B2 (en) 2015-11-23 2020-04-28 Micromass Uk Limited Ion mirror and ion-optical lens for imaging
US10950425B2 (en) 2016-08-16 2021-03-16 Micromass Uk Limited Mass analyser having extended flight path
US11309175B2 (en) 2017-05-05 2022-04-19 Micromass Uk Limited Multi-reflecting time-of-flight mass spectrometers
US11328920B2 (en) 2017-05-26 2022-05-10 Micromass Uk Limited Time of flight mass analyser with spatial focussing
US11295944B2 (en) 2017-08-06 2022-04-05 Micromass Uk Limited Printed circuit ion mirror with compensation
US11211238B2 (en) 2017-08-06 2021-12-28 Micromass Uk Limited Multi-pass mass spectrometer
US11239067B2 (en) 2017-08-06 2022-02-01 Micromass Uk Limited Ion mirror for multi-reflecting mass spectrometers
US11205568B2 (en) 2017-08-06 2021-12-21 Micromass Uk Limited Ion injection into multi-pass mass spectrometers
US11081332B2 (en) 2017-08-06 2021-08-03 Micromass Uk Limited Ion guide within pulsed converters
US11049712B2 (en) 2017-08-06 2021-06-29 Micromass Uk Limited Fields for multi-reflecting TOF MS
US11756782B2 (en) 2017-08-06 2023-09-12 Micromass Uk Limited Ion mirror for multi-reflecting mass spectrometers
US11817303B2 (en) 2017-08-06 2023-11-14 Micromass Uk Limited Accelerator for multi-pass mass spectrometers
US11367608B2 (en) 2018-04-20 2022-06-21 Micromass Uk Limited Gridless ion mirrors with smooth fields
US11342175B2 (en) 2018-05-10 2022-05-24 Micromass Uk Limited Multi-reflecting time of flight mass analyser
US11621156B2 (en) 2018-05-10 2023-04-04 Micromass Uk Limited Multi-reflecting time of flight mass analyser
US11881387B2 (en) 2018-05-24 2024-01-23 Micromass Uk Limited TOF MS detection system with improved dynamic range
US11587779B2 (en) 2018-06-28 2023-02-21 Micromass Uk Limited Multi-pass mass spectrometer with high duty cycle

Also Published As

Publication number Publication date
CN103065921A (zh) 2013-04-24
AU2013374169B2 (en) 2017-06-01
AU2013374169A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
WO2014110697A1 (zh) 一种多次反射的高分辨飞行时间质谱仪
US20220238320A1 (en) Time of flight mass analyser with spatial focussing
US11309175B2 (en) Multi-reflecting time-of-flight mass spectrometers
JP6907226B2 (ja) 飛行時間質量分析法のためのマルチモードイオンミラープリズム及びエネルギーフィルタリング装置及びシステム
US8604423B2 (en) Method for enhancement of mass resolution over a limited mass range for time-of-flight spectrometry
JP5822919B2 (ja) ビームエキスパンダを備える質量分析計
US8642951B2 (en) Device, system, and method for reflecting ions
US7709789B2 (en) TOF mass spectrometry with correction for trajectory error
JP6152113B2 (ja) 加速器デバイスを備える質量分析計及び質量分析方法
JP5993677B2 (ja) 飛行時間型質量分析計及び飛行時間型質量分析計の制御方法
US8735810B1 (en) Time-of-flight mass spectrometer with ion source and ion detector electrically connected
US9997345B2 (en) Orthogonal acceleration coaxial cylinder mass analyser
JP5243977B2 (ja) 垂直加速型飛行時間型質量分析計
WO2004021386A2 (en) Mass spectrometer
CN207834250U (zh) 一种具有阵列离子光阑结构的多次反射质谱仪
GB2612703A (en) Multi-reflecting Time-of-Flight mass spectrometers
Wang Miniaturized Electrostatic Ion Beam Trap Mass Analyzer
AU2011237721A1 (en) Method for enhancement of mass resolution over a limited mass range for time-of-flight spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013374169

Country of ref document: AU

Date of ref document: 20130530

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871514

Country of ref document: EP

Kind code of ref document: A1